
IncQuery-D: A Distributed Incremental
Model Query Framework in the Cloud?

Gábor Szárnyas1, Benedek Izsó1, István Ráth1, Dénes Harmath4,
Gábor Bergmann1 and Dániel Varró1,2,3

1 Budapest University of Technology and Economics,
Department of Measurement and Information Systems,
H-1117 Magyar tudósok krt. 2, Budapest, Hungary

{szarnyas, izso, rath, bergmann, varro}@mit.bme.hu
2 DIRO, Université de Montréal

3 MSDL, Dept. of Computer Science, McGill University
4 IncQuery Labs Ltd.

H-1113 Bocskai út 77-79, Budapest, Hungary
denes.harmath@incquerylabs.com

Abstract. Queries are the foundations of data intensive applications. In
model-driven software engineering (MDE), model queries are core tech-
nologies of tools and transformations. As software models are rapidly
increasing in size and complexity, traditional tools exhibit scalability
issues that decrease productivity and increase costs [17]. While scalabil-
ity is a hot topic in the database community and recent NoSQL efforts
have partially addressed many shortcomings, this happened at the cost
of sacrificing the ad-hoc query capabilities of SQL. Unfortunately, this
is a critical problem for MDE applications due to their inherent work-
load complexity. In this paper, we aim to address both the scalability
and ad-hoc querying challenges by adapting incremental graph search
techniques – known from the EMF-IncQuery framework – to a dis-
tributed cloud infrastructure. We propose a novel architecture for dis-
tributed and incremental queries, and conduct experiments to demon-
strate that IncQuery-D, our prototype system, can scale up from a
single workstation to a cluster that can handle very large models and
complex incremental queries efficiently.

1 Introduction

Nowadays, model-driven software engineering (MDE) plays an important role
in the development processes of critical embedded systems. Advanced modeling
tools provide support for a wide range of development tasks such as require-
ments and traceability management, system modeling, early design validation,
automated code generation, model-based testing and other validation and ver-
ification tasks. With the dramatic increase in complexity that is also affecting
? This work was partially supported by the CERTIMOT (ERC_HU-09-01-2010-0003)
and MONDO (EU ICT-611125) projects partly during the sixth author’s sabbatical.

critical embedded systems in recent years, modeling toolchains are facing scala-
bility challenges as the size of design models constantly increases, and automated
tool features become more sophisticated [17].

Many scalability issues can be addressed by improving query performance.
Incremental evaluation of model queries aims to reduce query execution time by
limiting the impact of model modifications to query result calculation. Such algo-
rithms work by either (i) building a cache of interim query results and keeping it
up-to-date as models change (e.g. EMF-IncQuery [5]) or (ii) applying impact
analysis techniques and reevaluating queries only in contexts that are affected by
a change [10,21]. This technique has been proven to improve performance dra-
matically in several scenarios (e.g. on-the-fly well-formedness validation or model
synchronization), at the cost of increasing memory consumption. Unfortunately,
this overhead is combined with the increase in model sizes due to in-memory
representation (found in state-of-the-art frameworks such as EMF [25]). Since
single-computer heaps cannot grow arbitrarily (as execution times degrade dras-
tically due to garbage collection problems), memory consumption is the most
significant scalability limitation.

An alternative approach to tackling MDE scalability issues is to make use of
advances in persistence technology. As the majority of model-based tools uses a
graph-oriented data model, recent results of the NoSQL and Linked Data move-
ment [20,1,2] are straightforward candidates for adaptation to MDE purposes (as
experimented e.g. in Morsa [7] or Neo4EMF [3]). Unfortunately, this idea poses
difficult conceptual and technological challenges as property graph databases
lack strong metamodeling support and their query features are simplistic com-
pared to MDE needs [15]. Additionally, the underlying data representation for-
mat of semantic databases (RDF [11]) has crucial conceptual and technological
differences to traditional metamodeling languages such as Ecore [25]. Addition-
ally, while there are initial efforts to overcome the mapping issues between the
MDE and Linked Data worlds [13], even the most sophisticated NoSQL storage
technologies lack efficient and mature support for executing expressive queries
incrementally.

We aim to address these challenges by proposing a novel architecture for
a distributed and incremental model query framework by adapting incremental
graph pattern matching techniques to a distributed cloud based infrastructure.
A main contribution of our novel architecture is that the distributed storage of
data is completely separated from the distributed handling of indexing and query
evaluation. Therefore, caching the result sets of queries in a distributed fashion
provides a way to scale out the memory intensive components of incremental
query evaluation, while still providing instantaneous execution time for complex
queries.

We present IncQuery-D, a prototype tool based on a distributed Rete net-
work that can scale up from a single workstation to a cluster to handle very large
models and complex queries efficiently (Sec. 3). For the experimental evaluation,
we revisit a model validation benchmark (Sec. 2) from the railway systems do-
main and extend it to a distributed setup (Sec. 4). Furthermore, we carry out

Route

Segment

length : EInt

SensorSignal

actualState : SignalStateKind

Switch

actualState : SwitchStateKind

SwitchPosition

switchState : SwitchStateKind
TrackElement

SwitchStateKind

FAILURE

LEFT

RIGHT

STRAIGHT

SignalStateKind

STOP

FAILURE

GO

1 + route

* + switchPosition

2..*
+ routeDefinition

1 + exit

1 + entry

*+ sensor

*+ trackElement

*

+ connectsTo

* + switchPosition

1 + switch

Fig. 1: The metamodel of the Train Benchmark.

detailed performance evaluation in the context of on-the-fly well-formedness val-
idation of design models (Sec. 4) which demonstrates that our distributed incre-
mental query layer can be significantly more efficient than the native SPARQL
query technology of an RDF triple store. Finally, we discuss related work in
Sec. 5 and conclude the paper in Sec. 6.

2 Preliminaries

2.1 Motivating Example: a DSL for Railways System Design

In this paper, we use the Train Benchmark [15,29] to present our core ideas
and evaluate the feasibility of the approach. The Train Benchmark is used in
the MONDO EU FP7 [27] project to compare query evaluation performance of
various MDE tools and it is publicly available5. It is built around the railroad
system defined in the MOGENTES EU FP7 [26] project. The system defines a
network composed of typical railroad items, including signals, segments, switches
and sensors. The complete EMF metamodel is shown in Fig. 1.

2.2 Queries

The Train Benchmark defines four queries which have similar characteristics to
the workload of a typical MDE application. The queries look for violations of
well-formedness constraints in the model. The violations are defined by graph
patterns. The graphical representation of the patterns is shown in Fig. 2. Opaque
blue rectangles and solid arrows mark positive constraints, while red rectangles
and dashed arrows represent negative application conditions (NACs). The result
of the query (also referred as the match set) is marked with transparent blue
rectangles. Additional constraints (e.g. arithmetic comparisons) are shown in the
figure in text.

The queries contain a mix of join, antijoin and filtering operations. The two
simpler queries involve at most 2 objects (PosLength and SwitchSensor), while the
5 https://opensourceprojects.eu/p/mondo/wiki/TrainBenchmark.

https://opensourceprojects.eu/p/mondo/wiki/TrainBenchmark

segment: Segment

segment.length 0

(a) PosLength

sensor

switch: Switch

sensor: Sensor

(b) SwitchSensor

sensor
routeDefinition switch

switchPosition

switch: Switch

sp: SwitchPositionroute: Route

sensor: Sensor

(c) RouteSensor

connectsTo

routeDefinition

exit

sensor sensor

routeDefinition

routeDefinition

entry

route1 != route3

te1: TrackElement

sensor1: Sensor

route1: Route

signal: Signal

te2: TrackElement

sensor2: Sensor

route3: Route

route2: Route

(d) SignalNeighbor

Fig. 2: Graphical representation of the patterns in the Train Benchmark.

other two queries involve 4–8 objects and multiple join operations (RouteSensor
and SignalNeighbor).

For the sake of conciseness, we only discuss the RouteSensor query in detail.
The RouteSensor constraint requires that all sensors that are associated with a
switch that belongs to a route must also be associated directly with the same
route. Therefore, the query (Fig. 2c) looks for sensors that are connected to a
switch, but the sensor and the switch are not connected to the same route. This
query checks for the absence of circles, so the efficiency of both the join and the
antijoin operations is tested.

1 pattern routeSensor(Sen : Sensor) = {
2 Route(R);
3 SwitchPosition(Sp);
4 Switch(Sw);
5 Route.switchPosition(R, Sp);
6 SwitchPosition.switch(Sp, Sw);
7 Trackelement.sensor(Sw , Sen);
8 neg find noRouteDefinition(Sen , R);
9 }

10 pattern noRouteDefinition(Sen , R) {
11 routeDefinition(R, Sen);
12 }

Fig. 3: The RouteSensor query
in IncQuery Pattern Language.

The textual representation of
the RouteSensor query, defined in
IncQuery Pattern Language, is
shown in Fig. 3. This query binds
each variable (Sen, Sw, Sp, R) to
the appropriate type. It defines
the three edges as relationships be-
tween the variables and defines the
negative application condition as a
negative pattern (neg find).

2.3 Transformations

The Train Benchmark defines a quick fix model transformation for each query.
The graphical representation of the transformations is shown in Fig. 4. The
insertions are shown in green with a «new» caption, while deletions are marked
with a red cross and a «del» caption. In general, the goal of these transformations
is to remove a subset of the invalid elements from the model. For example, in the
case of the RouteSensor query, randomly selected invalid sensors are disconnected
from their switch, which means that the constraint is no longer violated (Fig. 4c).

length = length + 1

segment.length 0

segment: Segment

(a) PosLength

sensor

sensor: Sensor

sensor: Sensor

sensor
«new»

«new»

switch: Switch

(b) SwitchSensor

sensor
routeDefinition switch

switchPosition

switch: Switch

sp: SwitchPositionroute: Route

sensor: Sensor
«del»

(c) RouteSensor

connectsTo

routeDefinition

exit

sensor sensor

routeDefinition

routeDefinition

entry

route1 != route3

te1: TrackElement

sensor1: Sensor

route1: Route

signal: Signal

te2: TrackElement

sensor2: Sensor

route3: Route

route2: Route

«del»

(d) SignalNeighbor

Fig. 4: Graphical representation of the transformations in the Train Benchmark.

3 A Distributed Incremental Model Query Framework

The queries and transformations introduced in Sec. 2 represent a typical work-
load profile for state-of-the-art modeling tools [15]. With current MDE tech-
nologies, such workloads can be acceptably executed for models up to several
hundred thousand model elements [29], however when using larger models con-
sisting of multiple million elements (a commonplace in complex domains such
as AUTOSAR [5]), the performance of current tools is often not acceptable [17].
Incremental techniques can provide a solution, however they require additional
(memory) resources.

The primary goal of our approach is to provide an architecture that can
make use of the distributed cloud infrastructure to scale out memory-intensive
incremental query evaluation techniques. As a core contribution, we propose a
three-tiered architecture. To maximize the flexibility and performance of the sys-
tem, model persistence, indexing and incremental query evaluation are delegated
to three independently distributable asychronous components. Consistency is
ensured by synchronized construction, change propagation and termination pro-
tocols.

3.1 Architecture

In the following, we introduce the architecture of IncQuery-D (see Fig. 5), a
scalable distributed incremental graph pattern matcher. The architecture con-
sists of three layers: (i) the storage layer, (ii) the distributed indexer with the
model access adapter and (iii) the distributed query evaluation network.

Storage. For the storage layer, the most important issue from an incremental
query evaluation perspective is that the indexers of the system should be filled as
quickly as possible. This favors database technologies where model sharding can
be performed appropriately (i.e. with balanced shards in terms of type-instance

Server 0

Database

shard 0

Transaction

Server 1

Database

shard 1

Server 2

Database

shard 2

Server 3

Database

shard 3

Distributed query evaluation network

Notifications3

Results

1

Model

manipulation
Elementary queries

and modifications
2

4

Distributed indexer Model access adapter

Fig. 5: The architecture of IncQuery-D, an incremental query framework (de-
ployed in a sample four-node cluster configuration).

relationships), and elementary queries can be executed efficiently. Our framework
can be adapted to fundamentally different storage back-ends, including triple
stores, graph databases and relational database managements systems.

Model access adapter. In contrast to a traditional setup where the distributed
model repository is accessed on a per-node basis by a model manipulation trans-
action, IncQuery-D provides a model access adapter that offers three core
services:

1. The primary task is to provide a surrogate key mechanism so that each model
element in the entire distributed repository can be uniquely identified and
located within storage shards.

2. The model access adapter provides a graph-like data manipulation API (1©
in Fig. 5) to the user. The model access adapter translates the operations
issued by the user to the query language of the backend and forwards it to
the underlying data storage.

3. Change notifications are required by incremental query evaluation, thus
model changes are captured and their effects are propagated in the form
of notification objects (3© in Fig. 5). The notifications generate update mes-
sages that keep the state of the query evaluation network consistent with
the model. While relational databases usually provide triggers for generating
notifications, most triplestores and graph databases lack this feature. Due to
the lack of general support, notifications are controlled by the model access
adapter by providing a façade for all model manipulation operations.

Distributed indexer. Indexing is a common technique for decreasing the exe-
cution time of database queries. In MDE, model indexing has a key role in high

performance model queries. As MDE primarily uses a metamodeling infrastruc-
ture, all queries utilize some sort of type attribute. Typical elementary queries
include retrieving all vertices of a certain type (e.g. get all vertices of the type
Route), or retrieving all edges of a certain type/label (e.g. get all edges of label
sensor).

To support efficient query processing, IncQuery-D maintains type-instance
indexes so that all instances of a given type (both vertices and edges) can be
enumerated quickly. These indexers form the bottom layer of the distributed
query evaluation network. During initialization, these indexers are filled from
the database backend (2© in Fig. 5).

The architecture of IncQuery-D facilitates the use of a distributed indexer
which stores the index on multiple servers. A distributed indexer inherently
provides some protection from exceeding memory limits.

Distributed query evaluation network. IncQuery-D constructs a dis-
tributed and asynchronous network of communicating nodes that are capable
of producing the results set of the defined queries (4© in Fig. 5). Our prime can-
didate for this layer is the Rete algorithm, however, the architecture is capable of
incorporating other incremental (e.g. TREAT [18]) and search-based query eval-
uation algorithms as well. In the upcoming section, we provide further details
on this critical component of the architecture.

3.2 The Rete Algorithm in a Distributed Environment

Numerous algorithms were proposed for the purpose of incremental query eval-
uation. The Rete algorithm was originally proposed for rule-based expert sys-
tems [8] and later improved and adapted for EMF models in [4]. Our current
paper discusses how to adapt the Rete algorithm in a distributed environment.

Data representation and structure. The Rete algorithm uses tuples to rep-
resent the vertices (along with their properties), edges and subgraphs in the
graph. The algorithm defines an asynchronous network of communicating nodes
(see Fig. 7).

The network consists of three types of nodes. Input nodes are responsible
for indexing the model by type, i.e. they store the appropriate tuples for the
vertices and edges. They are also responsible for producing the update messages
and propagating them to the worker nodes. Worker nodes perform a transfor-
mation on the output of their parent node(s) and propagate the results. Partial
query results are represented in tuples and stored in the memory of the worker
node thus allowing for incremental query reevaluation. Production nodes are ter-
minators that provide an interface for fetching the results of the query and the
changes introduced by the latest transformation.

1 2 3 4

Serialized

model

Metamodel

specification

Query

specification

9

Construct Rete

Database

shards

Load model,

initialize Rete

Maintain

query results
Evaluate queryDeploy Rete

Model access

adapter
Client

6

7

5

8

Fig. 6: The operational workflow of the distributed Rete algorithm.

Construction. The system constructs the Rete network from the layout derived
from the query specification. The construction algorithm may apply various opti-
mization techniques, e.g. reusing existing Rete nodes, known as node sharing [4].
An efficient Rete construction is discussed in detail in [31], and it is out of scope
for the current paper.

In a distributed environment, the construction of the Rete network intro-
duces additional challenges. First, the system must keep track of the resources
available in the server cluster and maintain the mapping between the Rete nodes
and the servers accordingly. Second, the Rete nodes need to be aware of the cur-
rent infrastructure mapping so they can send their messages to the appropriate
servers. In our system, the Rete nodes are remotely instantiated by the coor-
dinator node. The coordinator node then sends the infrastructure mapping of
the Rete network to all nodes. This way, each node is capable of subscribing
to the update messages of its parent node(s). The coordinator also starts the
operations in the network, such as loading the model, initiating transformations
and retrieving the query results.

Operation. The operational workflow of IncQuery-D is shown in Fig. 6. Based
on the metamodel and the query specification, IncQuery-D first constructs a
Rete network 1© and deploys it 2©. In the next step, it loads the model 3© and
traverses it to initialize the indexers of the Rete network. The Rete network
evaluates the query by processing the incoming tuples 4©. Because both the
Rete indexers and the database shards are distributed across the cluster, loading
the model and initializing the Rete network needs network communication. The
client is able to retrieve the results 5©– 6©, modify the model and reevaluate the
query again 7©– 9©.

The modifications are propagated in the form of update messages (also known
as deltas). Creating new graph elements (vertices or edges) results in positive
update messages, while removing graph elements results in negative update mes-
sages. The operation of the network is illustrated on the instance graph depicted
in the lower left corner of Fig. 7. This graph violates the well-formedness con-
staint defined by the RouteSensor query, hence the tuple 〈3, 4, 2, 1〉 appears in
the result set of the query. The figure also shows the Rete network containing
partial matches of the original graph.

Server 0 Server 1 Server 2 Server 3

switch routeDefinitionsensorswitchPosition

Join node

Production

node

Join node

Antijoin node

 3, 4 2, 3 4, 1

 3, 4, 2

 3, 4, 2, 1

 3, 4, 2, 1

Negative

update

 3, 4, 2, 1

Negative

update

 4, 1

Ready

Ready

5

4

2

7

IX IX

IX IX

IX IX

Negative

update

 3, 4, 2, 1

3

Ready

6

 3, 4, 2, 1
sensor

switch

switchPositionRoute

Id: 2

SwitchPosition

Id: 3

Switch

Id: 4

Sensor

Id: 1
«del»

Model access adapter

Notification1

Fig. 7: A transformation sequence on a distributed Rete network.

To resolve the violation, we apply the quick fix transformation defined in the
Train Benchmark and delete the sensor edge between vertices 4 and 1. When the
edge is deleted, the sensor type indexer (an input node) receives a notification
from the model access adapter 1© and sends a negative update 2© with the tuple
〈4, 1〉. The subsequent join node processes the update messages and propagates
a negative update 3© with the tuple 〈3, 4, 2, 1〉. The antijoin node also propa-
gates a negative update message with the same tuple 4©. This is received by
the production node, which initiates the termination protocol 5©– 7©. After the
termination protocol finishes, the indexer signals the client about the successful
update. The client is now able to retrieve the results from the production node.
The client may choose to retrieve only the change set, i.e. only the tuples that
have been added or deleted since the last modification.

Termination protocol. Due to the asynchronous propagation of changes in
Rete, the system must also implement a termination protocol to ensure that
the query results can be retrieved consistently with the model state after a given
transaction (i.e. by signaling when the update propagation has been terminated).

The protocol works by adding a stack to the update message propagated
through the network. The stack registers each Rete node the message passes
through. After the message reaches a production node, the termination protocol
starts. Based on the content of the stack, acknowledgement messages (Ready)

are propagated back along the network. When all relevant input nodes (where
the original update message(s) started from) receive the acknowledge messages,
the termination protocol finishes. The operation of the termination protocol can
be observed in Fig. 7 (messages 5©– 7©).

4 Evaluation

To evaluate the feasibility of the IncQuery-D approach, we created a dis-
tributed benchmark environment. We implemented a prototype of IncQuery-D
and compared its performance to a state-of-the-art non-incremental SPARQL
query engine of a (distributed) RDF store.

4.1 Benchmark Scenario

In order to measure the efficiency of model queries and manipulation opera-
tions over the distributed architecture, we adapted the Train Benchmark [15,29]
(briefly introduced in Sec. 2.1) to a distributed environment. The main goal of
the Train Benchmark is to measure the query reevaluation times in systems op-
erating on a graph-like data set. The benchmark targets a “real-world” MDE
workload by running a specific set of queries (Sec. 2.2) and transformations on
the model (Sec. 2.3). In this workload profile, the system runs either a single
query or a single transformation at a time, as quickly as possible.

To assess scalability, the benchmark uses instance models of growing sizes,
each model containing twice as many model elements as the previous one. Scal-
ability is also evaluated against queries of different complexity. For a successful
run, the tested tool is expected to evaluate the query and return the identifiers
of the model elements in the result set.

Execution phases. The benchmark transaction sequence consists of four dis-
tinct phases. The serialization of the model is loaded into the database (load);
a well-formedness query is executed on the model (initial validation); some ele-
ments are programmatically modified (transformation) and the query is reevalu-
ated (revalidation).

Instance models. We developed a generator that creates instance models.
The instance models are generated pseudorandomly, with pre-defined structural
constraints and a regular fan-out structure (i.e. the in-degree and out-degree of
the vertices follow a uniform distribution) [15].

Transformations. In the transformation phase, the benchmark runs quick fix
transformations (Sec. 2.3) on 10% of the invalid elements (the result set of the ini-
tial validation phase), except for the SignalNeighbor query, where 1/3 of the invalid
elements are modified. The transformations run in a single logical transaction,
implemented with multiple physical transactions.

PosLength (2) RouteSensor (4) SignalNeighbor (8) SwitchSensor (2)
Problem size Triples Nodes Edges RSS MS RSS MS RSS MS RSS MS

1 23k 6k 17k 470 47 94 9 3 1 19 1
4 86k 23k 63k 1769 176 348 31 6 2 91 9

16 334k 88k 245k 6893 689 1301 126 19 6 326 29
64 1M 361k 1M 28239 2823 5324 511 69 19 1287 119

256 5M 1M 3M 110739 11073 21097 1996 254 74 5109 485
1024 21M 5M 15M 443458 44345 84107 8024 983 287 20716 1977
4096 85M 22M 63M 1769402 176940 336507 32051 − − 81410 7730

RSS: result set size MS: modification size

Fig. 8: Metrics of the instance models and queries.

Metrics. To quantify the complexity of the benchmark test cases, we use a set of
metrics that have been shown to correspond well to performance [15]. The values
for the test cases are shown in Fig. 8. The problem size numbers take the values
of 2n in the range from 1 to 4096. For space considerations, only every other
problem size is listed. The complexity of an instance model is best described by
the number of its triples, equal to the sum of its nodes and edges. The queries
are quantified by the number of their variables (shown in parentheses) and their
result set size (RSS). The transformations are characterized by the number of
model elements modified (modification size, MS).

4.2 Benchmark Architecture

Benchmark executor. The benchmark is controlled by a distinguished node
of the system, called the executor. The executor delegates the operations (e.g.
loading the model) to the distributed system. The queries and the model manip-
ulation operations are handled by the underlying database management system
which runs them distributedly and waits for the distributed operation to finish,
effectively creating a synchronization point after each transaction.

Methodology. We defined two benchmark setups. (1) As a non-incremental
baseline, we used an open-source distributed triplestore and SPARQL query sys-
tem, 4store. (2) We deployed IncQuery-D with 4store as a backend database. It
is important to mention that the benchmark is strongly centralized: the coordi-
nator node of IncQuery-D runs on the same server as the benchmark executor.

The benchmark executor software used the framework of the Train Bench-
mark to collect data about the results of the benchmark. These were not only
used for performance benchmarking but also to ensure the functional equivalence
of the systems under benchmark.

The precise execution semantics for each phase are defined as follows. (1) The
load phase includes loading the model from the disk (serialized as RDF/XML),
persisting it in the database backend, and, in the case of IncQuery-D, initial-
izing the Rete network. (2) The execution time of the initial validation phase is
the time required for the first complete evaluation of the query. (3) The trans-
formation phase starts with the selection of the invalid model elements and is
finished after the modifications are persisted in the database backend. In the

case of IncQuery-D, the transformation is only finished after the Rete network
has processed the changes and is in a consistent state. (4) The revalidation phase
re-runs the query of the initial validation phase, and retrieves the updated results.

The execution time includes the time required for the defined operation, the
computation and I/O operations of the servers in the cluster and the network
communication (to both directions). The execution times were determined using
the System.nanoTime() Java method.

Environment. We used 4store [12] (version 1.1.5) as our storage backend. The
servers ran the Ubuntu 12.10 64-bit operating system with Oracle Java 7. For
the implementation of the distributed Rete network, we used Akka [28] (version
2.1.4), a distributed, asynchronous messaging system.

The system was deployed on the private cloud that runs on the Apache VCL
(Virtual Computing Lab) platform. We reserved four virtual machines on sepa-
rate host machines, with each using a quad-core Intel Xeon L5420 CPU running
at 2.5 GHz and having 16 GB of RAM. The host machines were connected to a
dedicated gigabit Ethernet network.

4.3 Results

The benchmark results of our experiments are shown in Fig. 9. On each plot,
the x axis shows the problem size, i.e. the size of the instance model, while the
y axis shows the execution time of a certain phase, measured in seconds. Both
axes use logarithmic scale.

First, we discuss the results for RouteSensor, a query of medium complexity.
Fig. 9a presents the combined execution time for the load and initial validation
phases. The execution time is a low order polynomial of the model size for both
the standalone 4store and the IncQuery-D system. The results show that de-
spite the initial overhead of the Rete network initialization, IncQuery-D has
a significant advantage starting from medium-sized models (with approximately
1 million triples). Fig. 9b shows the execution time for the sum of the trans-
formation and revalidation phases. The results show that the Rete maintenance
overhead imposed by IncQuery-D on model manipulation operations is low,
and overall the model transformation phase when using IncQuery-D is con-
siderably faster for models larger than a few hundred thousand triples. Fig. 9c
focuses on the revalidation phase. The performance of IncQuery-D is charac-
teristically different from that of the SPARQL engine of 4store. Even for models
with tens of millions of tuples, IncQuery-D provides close to instantaneous
query re-evaluation.

Fig. 9d–9f are presented to compare the results for the PosLength, the Signal-
Neighbor and the SwitchSensor queries, respectively. The PosLength query uses
only a few variables but has a large result set. The SignalNeighbor query includes
many variables but has a small match set. The SwitchSensor query uses a few
variables and has a medium-sized result set.

Combined execution phases
●●●

load+initial validation
transformation+revalidation
revalidation

Configuration
4store
IncQuery-D

0.75

6.27

52.42

438.52

3668.00

1 4 16 64 256 1024 4096

Problem size

E
xe

cu
tio

n
tim

e
[s

]

(a) Load and initial validation
(RouteSensor)

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●

0.25

3.35

45.47

617.11

8376.00

1 4 16 64 256 1024 4096

Problem size

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(b) Transformation and revalidation
(RouteSensor)

0.02

0.34

7.28

157.28

3399.00

1 4 16 64 256 1024 4096

Problem size

E
xe

cu
tio

n
tim

e
[s

]

(c) Revalidation (RouteSensor)

●
●

●
●

●●

●●

●

●●

●●

●
●

●

●●

●
●

●
●

●●

0.06

0.76

10.07

133.61

1773.00

1 4 16 64 256 1024 4096

Problem size

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(d) PosLength

●

●

●

●

●

●●●

●

●
●●

●

●●
●

●

●

●

●
●
●

0.01

0.14

3.82

108.27

3067.00

1 4 16 64 256 1024

Problem size

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(e) SignalNeighbor

●

●
●●

●●●●

●
●
●

●
● ●

● ●

●
●

●

●
●●

●
●

0.01

0.15

3.41

75.25

1660.00

1 4 16 64 256 1024 4096

Problem size

E
x
e

c
u

ti
o

n
 t

im
e

 [
s
]

(f) SwitchSensor

Fig. 9: Benchmark results

The large result set of the PosLength query (Fig. 9d) is a challenge for incre-
mental query evaluation systems, however, IncQuery-D still provides reason-
ably fast load, transformation and query evaluation times, while outperforming
4store on the revalidation time. The results for the SignalNeighbor query (Fig. 9e)
show IncQuery-D has a characteristic advantage on both the transformation
and the revalidation times. The SwitchSensor query also shows a clear advantage
of IncQuery-D for transformation and revalidation.

Summary of observations. Based on the results, we can conclude the fol-
lowing observations. As expected, due to the overhead of the Rete construction,
the non-incremental approach is often faster for small models. However, even
for medium-sized models (with a couple of million triples), the Rete construc-
tion overhead already pays off for the initial validation. After the Rete network
is initialized, IncQuery-D provides significantly improved transformation and

revalidation times, with the revalidation times being consistently orders of mag-
nitude faster due to the different characteristics of their execution time.

In summary, these observations show that IncQuery-D is not just capable of
processing models with over 10 million elements (pushing the limits well beyond
the capabilities of single-workstation modeling tools), but also, it provides close
to instantaneous query evaluation times even for very complex queries.

Threats to validity. To minimize internal threats to validity, we turned off
the caching mechanisms of the operating system to force rereading the serial-
ized model from the disk. Additionally, to avoid the propagation of the warmup
effect of the Java Virtual Machine between the runs, each test case was started
independently in separate JVM.

As our cloud infrastructure was subject to minimal concurrent load during
the measurements, we aimed to minize the distortion due to load transients by
running the benchmark three times and taking theminimum value for each phase
into consideration. We did experience a certain deviation of execution times for
smaller models (Fig. 9f). However, for larger models (our most important target),
the transient effects do not influence validity of the benchmark results.

Regarding external validity, we used a benchmark that is a faithful represen-
tation of a workload profile of a modeling tool for large-scale models [15,29]. The
queries both for 4store and IncQuery-D were validated by domain experts. We
aimed to minimize the potential bias introduced by the additional degrees of
freedom inherent in distributed systems, e.g. by a randomized manual allocation
of the processing nodes of Rete network in the cloud. We plan to conduct a more
detailed investigation of these effects as future work.

5 Related Work

A wide range of special languages have been developed to support graph-based
querying over EMF [25] for a single-machine environment. OCL is a declarative
constraint and query language that can be evaluated with the local-search based
[6] engine. To address scalability issues, impact analysis tools [10,21] have been
developed as extensions.

Outside the Eclipse ecosystem, the Resource Description Framework
(RDF [11]) is developed to support the description of instances of the semantic
web, assuming sparse, ever-growing and incomplete data stored as triples and
queried using the SPARQL [33] graph pattern language. Property graphs [23]
provide a more general way to describe graphs by annotating vertices and edges
with key-value properties. They can be stored in graph databases like Neo4j [20]
which provides the Cypher [24] query language.

Even though big data storages (like document databases, column family
stores or MapReduce based databases) provide fast object persistence and re-
trieval, query engines realized directly on these data structures do not provide
dedicated support for incremental query evaluation or efficient evaluation of
query primitives (like join). This inspired Morsa [7] and Neo4EMF [3] to use

MongoDB and Neo4j, respectively, as a scalable NoSQL persistence backend
for EMF persistence, extended with caching and dynamic loading capabilities.
The commercial Virtuoso binds relational and RDF domains into one universal
database, supporting SQL and SPARQL querying, and distributed query eval-
uation. While Morsa and Virtuoso use disk-based backend, Trinity.RDF [34] is
a closed source, pure in-memory solution, which executes a highly optimized
local-search based algorithm on top of the Trinity distributed key-value store
with low response time. However, the effect of data updating on query perfor-
mance is currently not investigated.

Rete-based caching approaches have been proposed to process Linked Data
(bearing the closest similarity of our approach). INSTANS [22] uses this al-
gorithm to perform complex event processing (formulated in SPARQL) on
RDF data, gathered from distributed sensors. Diamond [19] evaluates SPARQL
queries on Linked Data, where the main challenge is the efficient traversal of data,
but our distributed indexing technique is still unique wrt. these approaches.

The TrainBenchmark framework was introduced in [29], where the domain
and scenario were defined together with four queries, and an instance model gen-
erator. In [15], we extended the approach by characterizing models and queries
with metrics, and introducing 30 new queries, and a new instance model gen-
erator. There are numerous graph and model transformation benchmarks [32,9]
presented also at GRABATS and TTC tool contests, but only [16,30] focuses
specifically on query performance for large models.

The conceptual foundations of our approach are based on
EMF-IncQuery [5], a tool that evaluates graph patterns over EMF models
using Rete. With respect to an earlier prototype [14], the main contributions
of the current paper are (i) a novel architecture that introduces a separate
distributed indexer component in addition to the distributed data store and
distributed query evaluation network (which is key distinguishing feature
compared to similar tools [19,22,34]) and (ii) the detailed performance evalu-
ation and analysis of the system with respect to a state-of-the-art distributed
RDF/SPARQL engine. Up to our best knowledge, IncQuery-D is the first
approach to support distributed incremental query evaluation in an MDE
context.

6 Conclusion

We presented IncQuery-D, a novel approach to adapt distributed incremental
query techniques to large and complex model-driven software engineering sce-
narios. Our proposal is based on a distributed Rete network that is decoupled
from a sharded graph database by a distributed model indexer and model ac-
cess adapter. We presented a detailed performance evaluation in the context of
quick-fix software design model transformations combined with on-the-fly well-
formedness validation. The results are promising as they show nearly instanta-
neous complex query re-evaluation well beyond 107 model elements.

References

1. OpenLink Software: Virtuoso Universal Server. http://virtuoso.openlinksw.
com/.

2. Sesame: RDF API and Query Engine. http://www.openrdf.org/.
3. Atlanmod research team. NEO4EMF. http://neo4emf.com/, Oct. 2013.
4. G. Bergmann. Incremental Model Queries in Model-Driven Design. Ph.D. dis-

sertation, Budapest University of Technology and Economics, Budapest, 10/2013
2013.

5. Bergmann, Gábor et al. Incremental Evaluation of Model Queries over EMF Mod-
els. In MODELS, volume 6394 of LNCS. Springer, 2010.

6. Eclipse MDT Project. Eclispe OCL website, 2011. http://eclipse.org/
modeling/mdt/?project=ocl.

7. J. Espinazo Pagan, J. Sanchez Cuadrado, and J. García Molina. Morsa: A scalable
approach for persisting and accessing large models. In J. Whittle, T. Clark, and
T. Kühne, editors,Model Driven Engineering Languages and Systems, volume 6981
of Lecture Notes in Computer Science, pages 77–92. Springer Berlin / Heidelberg,
2011. 10.1007/978-3-642-24485-8_7.

8. C. Forgy. Rete: A fast algorithm for the many pattern/many object pattern match
problem. Artificial Intelligences, 19(1):17–37, 1982.

9. R. Geiß and M. Kroll. On improvements of the Varro benchmark for graph trans-
formation tools. Technical Report 2007-7, Universität Karlsruhe, IPD Goos, 12
2007. ISSN 1432-7864.

10. T. Goldschmidt and A. Uhl. Efficient OCL impact analysis, 2011.
11. R. C. W. Group. Resource Description Framework (RDF). http://www.w3.org/

RDF/, 2004.
12. S. Harris, N. Lamb, and N. Shadbolt. 4store: The design and implementation of

a clustered RDF store. In 5th International Workshop on Scalable Semantic Web
Knowledge Base Systems (SSWS2009), 2009.

13. G. Hillairet, F. Bertrand, J. Y. Lafaye, et al. Bridging emf applications and rdf
data sources. In Proceedings of the 4th International Workshop on Semantic Web
Enabled Software Engineering, SWESE, 2008.

14. B. Izsó, G. Szárnyas, I. Ráth, and D. Varró. Incquery-d: Incremental graph search
in the cloud. In Proceedings of the Workshop on Scalability in Model Driven Engi-
neering, BigMDE ’13, pages 4:1–4:4, New York, NY, USA, 2013. ACM.

15. B. Izsó, Z. Szatmári, G. Bergmann, Á. Horváth, and I. Ráth. Towards precise
metrics for predicting graph query performance. In 2013 IEEE/ACM 28th Inter-
national Conference on Automated Software Engineering (ASE), pages 412–431,
Silicon Valley, CA, USA, 11/2013 2013. IEEE, IEEE.

16. F. Jouault, J.-S. Sottet, et al. An AmmA/ATL solution for the grabats 2009
reverse engineering case study. 5th International Workshop on Graph-Based Tools,
Grabats, 2009.

17. D. S. Kolovos, L. M. Rose, N. Matragkas, R. F. Paige, E. Guerra, J. S. Cuadrado,
J. De Lara, I. Ráth, D. Varró, M. Tisi, and J. Cabot. A research roadmap towards
achieving scalability in model driven engineering. In Proceedings of the Workshop
on Scalability in Model Driven Engineering, BigMDE ’13, pages 2:1–2:10, New
York, NY, USA, 2013. ACM.

18. D. P. Miranker and B. J. Lofaso. The Organization and Performance of a TREAT-
Based Production System Compiler. IEEE Trans. on Knowl. and Data Eng.,
3(1):3–10, Mar. 1991.

http://virtuoso.openlinksw.com/
http://virtuoso.openlinksw.com/
http://www.openrdf.org/
http://neo4emf.com/
http://eclipse.org/modeling/mdt/?project=ocl
http://eclipse.org/modeling/mdt/?project=ocl
http://www.w3.org/RDF/
http://www.w3.org/RDF/

19. Miranker, Daniel P et al. Diamond: A SPARQL query engine, for linked data
based on the Rete match. AImWD, 2012.

20. Neo Technology. Neo4j. http://neo4j.org/, 2013.
21. A. Reder and A. Egyed. Incremental consistency checking for complex design rules

and larger model changes. In MODELS’12. Springer-Verlag, 2012.
22. M. Rinne. SPARQL update for complex event processing. In ISWC’12, volume

7650 of LNCS. 2012.
23. M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. CoRR,

abs/1006.2361, 2010.
24. A. Taylor and A. Jones. Cypher Query Lang., 2012.
25. The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/

emf/.
26. The MOGENTES project. Model-Based Generation of Tests for Dependable Em-

bedded Systems. http://www.mogentes.eu/.
27. The MONDO project. Scalable Modelling and Model Management on the Cloud.

http://www.mondo-project.org/.
28. Typesafe, Inc. Akka documentation. http://akka.io/, 2013.
29. Z. Ujhelyi, G. Bergmann, Á. Hegedüs, Á. Horváth, B. Izsó, I. Ráth, Z. Szatmári,

and D. Varró. EMF-IncQuery: an integrated development environment for live
model queries. Science of Computer Programming, 2014. Accepted.

30. Z. Ujhelyi, Á. Horváth, D. Varró, N. I. Csiszár, G. Szőke, L. Vidács, and R. Ferenc.
Anti-pattern Detection with Model Queries: A Comparison of Approaches. In IEEE
CSMR-WCRE 2014 Software Evolution Week. IEEE, IEEE, 02/2014 2014.

31. G. Varró and F. Deckwerth. A rete network construction algorithm for incremental
pattern matching. In K. Duddy and G. Kappel, editors, ICMT, volume 7909 of
Lecture Notes in Computer Science, pages 125–140. Springer, 2013.

32. G. Varró, A. Schürr, and D. Varró. Benchmarking for graph transformation.
In Proc. IEEE Symposium on Visual Languages and Human-Centric Computing
(VL/HCC 05), pages 79–88, Dallas, Texas, USA, September 2005. IEEE Press.

33. W3C. SPARQL Query Language for RDF. http://www.w3.org/TR/
rdf-sparql-query/.

34. K. Zeng, J. Yang, H. Wang, B. Shao, and Z. Wang. A distributed graph engine
for web scale rdf data. In Proceedings of the 39th international conference on Very
Large Data Bases, PVLDB’13, pages 265–276. VLDB Endowment, 2013.

http://neo4j.org/
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.mogentes.eu/
http://www.mondo-project.org/
http://akka.io/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/

	IncQuery-D: A Distributed Incremental Model Query Framework in the Cloud
	1 Introduction
	2 Preliminaries
	2.1 Motivating Example: a DSL for Railways System Design
	2.2 Queries
	2.3 Transformations

	3 A Distributed Incremental Model Query Framework
	3.1 Architecture
	Storage.
	Model access adapter.
	Distributed indexer.
	Distributed query evaluation network.

	3.2 The Rete Algorithm in a Distributed Environment
	Data representation and structure.
	Construction.
	Operation.
	Termination protocol.

	4 Evaluation
	4.1 Benchmark Scenario
	Execution phases.
	Instance models.
	Transformations.
	Metrics.

	4.2 Benchmark Architecture
	Benchmark executor.
	Methodology.
	Environment.

	4.3 Results
	Summary of observations.
	Threats to validity.

	5 Related Work
	6 Conclusion

