
Model-driven engineering of an openCypher
engine: using graph queries to compile graph

queries

József Marton1, Gábor Szárnyas2,3, and Márton Búr2,3

1 Budapest University of Technology and Economics, Database Laboratory
marton@db.bme.hu

2 Budapest University of Technology and Economics
Fault Tolerant Systems Research Group

3 MTA-BME Lendület Research Group on Cyber-Physical Systems
{szarnyas, bur}@mit.bme.hu

The final publication is available at Springer via
https://doi.org/10.1007/978-3-319-68015-6_6.

Abstract. Graph database systems are increasingly adapted for storing
and processing heterogeneous network-like datasets. Many challenging
applications with near real-time requirements—such as financial fraud
detection, on-the-fly model validation and root cause analysis—can be
formalised as graph problems and tackled with graph databases effi-
ciently. However, as no standard graph query language has yet emerged,
users are subjected to the possibility of vendor lock-in.
The openCypher group aims to define an open specification for a declara-
tive graph query language. However, creating an openCypher-compatible
query engine requires significant research and engineering efforts. Mean-
while, model-driven language workbenches support the creation of domain-
specific languages by providing high-level tools to create parsers, editors
and compilers. In this paper, we present an approach to build a compiler
and optimizer for openCypher using model-driven technologies, which
allows developers to define declarative optimization rules.

1 Introduction

Context. Graphs provide an intuitive formalism for modelling real-world sce-
narios, as the human mind tends to interpret the world in terms of objects
(vertices) and their respective relationships to one another (edges) [30].

The property graph data model [33] extends graphs by adding labels/types
and properties for vertices and edges. This gives a rich set of features for users to
model their specific domain in a natural way. Graph databases are able to store
property graphs and query their contents by matching complex graph patterns,
which would otherwise be cumbersome to define and/or inefficient to evaluate
on traditional relational databases [39].

Neo4j, a popular NoSQL property graph database, offers the Cypher query
language to specify graph queries. Cypher is a high-level declarative query lan-
guage, detached from the query execution plan, which allows the query engine

https://doi.org/10.1007/978-3-319-68015-6_6

to use sophisticated optimisation techniques. The openCypher project [25] aims
to deliver an open specification of Cypher.

Problem and objectives. Even though the openCypher specification was re-
leased more than 1.5 years ago, there are very few open implementations available
and even those offer limited support for the more advanced language constructs.
Besides the novelty of the openCypher specification, the primary reason for the
lack of open implementations is the complexity of the language. Even with the
artifacts provided by the openCypher project—including the specification, the
language grammar and a set of test cases—implementing a compiler is a non-
trivial task and requires significant engineering efforts. Our goal is to deliver
a reusable compiler that can be extended with transformation rules for query
optimisation.

Contributions. In this paper, we use graph queries defined on a cyber-physical
system to demonstrate the key challenges in compiling openCypher queries. We
present an approach for implementing an openCypher query compiler including
a model-based parser generator and a set of model transformation rules built on
a modern language workbench based on Eclipse technologies. We released the
compiler as part of the open-source ingraph project, where it is used as part
of an incremental graph query engine, released under the commercially-friendly
Eclipse Public License.4

Structure of the paper. We first introduce the running example in Sec. 2
and the concepts of graph queries and model transformations in Sec. 3. We give
an overview of the compiler in Sec. 4 and use example queries to elaborate the
details of query compilation in Sec. 5. We discuss related research in Sec. 6 and
conclude the paper in Sec. 7.

2 Running Example

To demonstrate our approach, we use a cyber-physical system demonstrator,
MoDeS3 [7], which stands for Model-Based Demonstrator for Smart and Safe
Systems. It is an educational platform of a model railway system that prevents
trains from collision and derailment using runtime verification techniques based
on safety monitors. The railway track is instrumented with several sensors, such
as cameras and shunt detectors capable of sensing trains on a particular segment
of a track, connected to computing units. In addition to collecting data, these
computing units also control the trains to guarantee safe operation. In this paper,
we will only introduce a small self-contained fragment of the demonstrator in
order to keep the example compact.
4 Available at http://docs.inf.mit.bme.hu/ingraph/.

http://docs.inf.mit.bme.hu/ingraph/

seg2

seg5

seg4

seg3

seg1

seg6 tu8

tu7

tr9 tr12

tr10

tr11

st14

st13

(a) MoDeS3 example graphical syntax.

(b) MoDeS3 example graph.

Fig. 1: The running example.

Fig. 1(a) depicts a snapshot of the simplified system in operation, where
trains are located at different parts of the railway. The railway network itself
consists of two types of railway elements: segments and turnouts. Segments are
selected tracks of the railway network with one entry and exit points individually,
they are approximately of same lengths, and they have no intermediate branches
between the entry and exit points. As opposed to segments, turnouts allow trains
to change tracks. A turnout can either be in divergent or straight state. A station
can represent a railway station with an arbitrary purpose, and they can include
any number of railway elements.

We introduce the following example monitoring objectives that are evaluated
continuously by graph queries:

– Close proximity identifies trains on consecutive segments with only a limited
distance between each other (train tr9 on seg1 and tr12 on seg2 in the
example).

– Station with free track monitoring objective finds stations that have at least
one free track available (station st14 in the example).

– Busy station identifies stations with at least two trains residing on its cor-
responding tracks (station st13 in the example).

3 Preliminaries

In this section, we present the theoretical and practical foundations for com-
piling openCypher queries. This includes the notion of property graphs, a brief
description of the openCypher language and the relational algebraic foundations

for formalising graph queries. We also discuss model-driven engineering (MDE)
along with the MDE tools used in our work.

3.1 Property Graphs and the openCypher Query Language
The property graph data model [32] extends typed graphs with properties on
the vertices and edges. This data model is used in NoSQL graph database sys-
tems such as Neo4j [24], OrientDB [27], SparkSee [36], and Titan [40]. Graph
databases provide no or weak metamodeling capabilities. Hence, models can ei-
ther be stored in a weakly typed manner or the metamodel must be included in
the graph (on the same metalevel as the instance model). The property graph
of the running example is shown in Fig. 1(b).

Cypher is a high-level declarative graph query language used in the Neo4j
graph database [29]. It allows users to specify graph patterns with a syntax
resembling an actual graph, which makes the queries easy to comprehend. The
goal of the openCypher project [25] is to provide a standardised specification of
the Cypher language.

List. 3.1 shows a query that returns all tr, seg pairs, where a particular train
tr is ON a particular segment seg.

1 MATCH (tr:Train)-[:ON]->(seg:Segment)
2 RETURN tr, seg

List. 3.1: Example openCypher query.

3.2 Relational Graph Algebra
We gave a formal specification for the core subset of the openCypher language
in [23] using relational graph algebra, which extends relational algebra with
graph-specific operators. Here, we give a brief summary of the operators in re-
lational graph algebra, which operates on multisets (bags) [15] of tuples, that
form graph relations. We refer to named elements of a tuple as attributes.

Notation. Graph relations, schemas and attributes are typeset in italic (r, R,
A1), variable names set in monospace (x1), while labels, types and constants are
set in sans-serif (min, l1, tk). The NULL value is represented as ε.

Nullary operators. The get-vertices [18] nullary operator ©(v:l1∧...∧ln) returns
a graph relation of a single attribute v that contains vertices that have all of
labels l1, . . . , ln.

Additionally to our previous work, we introduce Dual, which is a relation with
no columns and a single (empty) tuple, i.e. Dual = {〈〉}.5 The Dual relation is
the identity element of the Cartesian product and the natural join operators.
We also introduce Singular , which denotes the empty relation {} and is the zero
element of the Cartesian product and the natural join operators.
5 The Dual relation is inspired by the DUAL table in the Oracle database [6].

Unary operators. The projection operator π keeps the specified set of at-
tributes of the relation: πA1,...,An

(r) . The projection operator can also rename
attributes, e.g. πx1→x2 (r) renames x1 to x2. Note that tuples are not dedupli-
cated, i.e. the result has the same number of tuples as the input relation r.

As relational graph algebra operates on multisets, there is a bespoke oper-
ator for removing duplicate tuples. The duplicate-elimination operator δ takes
a multiset of tuples on its input, performs deduplication and returns a set of
tuples.

The selection operator σ filters the incoming relation according to some cri-
teria: σθ (r) , where predicate θ is a propositional formula. The operator selects
all tuples in r for which θ holds.

The expand-out unary operator ↑ (w:l1∧...∧ln)
(v) [e : t1 ∨ . . . ∨ tk] (r) adds new at-

tributes e and w to each tuple iff there is an outgoing edge e from v to w, where e
has any of types t1, . . . , tk, while w has all labels l1, . . . , ln. Similarly, the expand-
in operator ↓ uses incoming edges, while the expand-both operator l uses both
incoming and outgoing edges. An extended version of this operator, ↑ (w)

(v) [e∗max
min]

may use any number of hops between min and max.

Binary operators. The result of the natural join operator ./ is determined by
creating the Cartesian product of the relations, then filtering for those tuples
which are equal on the attributes that share a common name. The combined
tuples are projected: for input relations r and s (with schemas R and S, respec-
tively), we only keep the attributes in r and drop the ones in s. Hence,

r ./ s = πR∪S σ(r.A1=s.A1 ∧ ...∧ r.An=s.An) (r × s) ,

where {A1, . . . , An} = R∩S is the set of attributes that occur both in R and S.
The antijoin operator . (also known as left anti semijoin) collects the tuples

from the left relation r that have no matching pair in the right relation s:

r . s = r \ πR (r ./ s) ,

where πR denotes a projection operation, which only keeps the attributes of the
schema over relation r.

The left outer join ./ pads tuples from the left relation that did not match
any from the right relation with ε values and adds them to the result of the
natural join [35].

Tab. 1 shows a concise set of rules for mapping openCypher expressions to
relational graph algebra [23].

3.3 Model-Driven Engineering
Model-driven engineering (MDE) is a development paradigm, used in many ar-
eas of software and system engineering, such as designing safety-critical systems.
MDE focuses on creating and analyzing models at different levels of abstraction
during the engineering process. Model transformations are used to process mod-
els, e.g. to convert models between different modeling languages and to generate
code.

Language construct Relational algebra expression

Vertices and patterns. LpM denotes a pattern that contains a vertex «v».
(«v»:«l1»:···:«ln») ©(v:l1∧···∧ln)

LpM<-[«e»:«t1»|···|«tk»]->(«w») l (w)
(v) [e : t1 ∨ · · · ∨ tk] (p), where e is an edge

LpM-[«e»*«min»..«max»]->(«w») ↑ (w)
(v) [e∗max

min] (p), where e is a list of edges
Combining and filtering pattern matches

MATCH Lp1M, Lp2M, ··· 6≡edges of p1, p2, ··· (p1 ./ p2 ./ · · ·)
MATCH Lp1M
MATCH Lp2M

6≡edges of p1 (p1) ./ 6≡edges of p2 (p2)

OPTIONAL MATCH LpM WHERE LconditionM Dual ./condition 6≡edges of p (p)

JrK OPTIONAL MATCH LpM 6≡edges of r (r) ./ 6≡edges of p (p)

JrK WHERE «condition» σcondition(r)
JrK WHERE LpM r ./ p

Result and subresult operations. Rules for RETURN also apply to WITH.
JrK RETURN «x1» AS «y1», ··· πx1→y1,··· (r)
JrK RETURN «x1», «aggr»(«x2») γx1

x1,aggr(x2)(r)
JrK WITH «x1»
JsK RETURN «x2»

πx2

((
πx1 (r)

)
./ s

)
Table 1: Mapping from openCypher constructs to relational algebra [23]. Vari-
ables, labels, types and literals are typeset as «v». The notation LpM represents
patterns resulting in a relation p, while JrK denotes previous query fragment
resulting in a relation r. To avoid confusion with the “..” language construct
(used for ranges), we use ··· to denote omitted query fragments.

Domain-specific languages. While there are some extensible formalisms in-
tended as a general-purpose way of representing models (such as UML), in-
dustrial practice often prefers domain-specific languages (DSLs) for describing
modeling languages instead. These can be designed and modified to the needs of
application domains and actual design processes. On the other hand, developing
such a DSL (and providing tool support) is an expensive task.

The Eclipse Modeling Framework (EMF) is a domain-specific modeling tech-
nology, built on the Eclipse platform. A DSL development process with EMF
starts with the definition of a metamodel, from which several components of the
modeling tool can be automatically derived. The metamodel is defined in Ecore,
the metamodeling language of EMF [37].

Language workbenches. Model-driven language workbenches [13] support
the creation of domain-specific languages by providing high-level tools to cre-
ate parsers, editors and compilers. Xtext [14] is an EMF-based framework for
development of programming languages and DSLs. Xtend is a general-purpose

programming language (implemented with an Xtext-based parser), which is tran-
spiled to Java source code. Xcore [12] is an extended textual syntax for Ecore
and provides an Xtext-based language for defining EMF metamodels.

Model transformations Viatra [43] is an open-source Eclipse project written
in Java and Xtend [11]. Viatra builds on the Eclipse Modeling Framework and
provides the following main features:

– The Viatra Query Language, a declarative language for writing queries over
models, which are evaluated once or incrementally upon each model change.

– An internal domain-specific language over the Xtend language to specify
both batch and event-driven, reactive transformations.

– A rule-based design space exploration framework [17] to explore design can-
didates with transformation rules where the design candidates must satisfy
multiple criteria.

4 Overview of the Approach

The high-level workflow of our openCypher query engine is shown in Fig. 2. A
domain expert first formulates the query using the openCypher language, which
serves as the input for our engine. The query is then parsed and transformed into
the query syntax graph using the openCypher grammar (created by the Slizaa
project6). It is then compiled to our relational graph algebra model. This pro-
duces a canonical relational graph algebra representation to keep compiler code
simple. The relational graph algebra representation is modified by the relational
algebra optimizer. The resulting relational algebra model is then passed on to the
query execution engine.

openCypher
query

query
syntax
graph

query parser
Cypher to

relational algebra
compiler

relational
graph

algebra
model

relational
algebra

optimizer

query execution
engine

query result

Fig. 2: Workflow of the query engine: compiler and execution engine.

Relational graph algebra metamodel. The metamodel of the relational
graph algebra operators introduced in Sec. 3.2 is shown in Fig. 3. An openCypher
query is represented by a rooted tree having nullary operators as its leaves and
unary or binary operators as its non-leaf nodes.
6 https://github.com/slizaa/slizaa-opencypher-xtext, released under EPL v1.0.

https://github.com/slizaa/slizaa-opencypher-xtext

Nullary operators. The GetVertices and GetEdges operators retrieve vertices and
edges of the graph, respectively. SingularObjectSource and DualObjectSource emit
the Singular and the Dual relation, respectively.

Unary operators. Projection and Selection work as given in Sec. 3.2. Exact seman-
tics of the other unary operators are given in [23]. DuplicateElimination, Grouping,
Sort and Top operators work like their corresponding SQL clauses.7 Expand is a
graph-specific operation to traverse one or a sequence of edges from a source to a
given target vertex, while AllDifferent is specific to openCypher’s edge uniqueness
semantics. The Unwind operator is the inverse of the list-constructing collect()
aggregation function.

Binary operators. The Union operator creates the set or multiset union of its
inputs. Join, LeftOuterJoin and AntiJoin operators, based on the joinVariable list
declared in AbtractJoin creates the natural join, antijoin and left outer join op-
erations on their inputs, respectively, as given in Sec. 3.2.

Relational algebra optimizer. The relational algebra optimizer has two main
tasks. It removes idempotent operations from the relational graph algebra model
and identifies combinations of operations that could be expressed using advanced
operations. The relational graph algebra model is also a graph, so both of these
tasks are graph manipulation tasks which we have implemented using graph
pattern matches using the Viatra model transformation framework (Sec. 3.3).

5 Elaboration

We have shown the overview of our approach in Sec. 4. In this section we present
our approach in detail, driven by examples of the MoDeS3 system (Sec. 2). We
focus on the relational algebra optimizer, and introduce the compiler to the
extent needed to put the optimizations in context.

5.1 Compilation of a Multipart Query

In openCypher, queries are composed as a sequence of query parts. Details are
given in [23], but essentially a query part contains clauses up to the next WITH
or RETURN clause and defines a result set of the attributes listed, which is then
fed into the next query part as its input. For example, the query in List. 5.1 is
composed of two query parts: first query part spans lines 3–5 and feeds its result
set of the schema 〈s, countTrains〉 into the second query part listed in line 6.

Variable chaining refers to the fact that attributes of the resulting schema
are available in the subsequent query part, i.e. s and countTrains are available.

7 In the order of appearance: DISTINCT, GROUP BY, ORDER BY and SKIP ... LIMIT ...

Fig. 3: Operator metamodel of the relational graph algebra.

1 // identifies stations with at least two trains residing on its
2 // corresponding tracks
3 MATCH (s:Station)-[:INCL]->(:Element)<-[:ON]-(tr:Train)
4 WITH s, count(tr) AS countTrains
5 WHERE countTrains >= 2
6 RETURN s

List. 5.1: Busy station.

Compilation of each query part starts from the Dual relation. Each pattern
given in a MATCH clause is then compiled and joined to the previous patterns: for
MATCH clauses we use the natural join operator and for OPTIONAL MATCH, we use
left outer join. Possible projection, grouping and duplicate-elimination operators
are appended above as required by the WITH or RETURN clauses.

Query parts are compiled one by one and combined together using the natural
join operator as follows. The natural join is injected into the compiled form of the
current query part just below the possible projection, grouping and duplicate-
elimination operators populating its right input with the descendants. Its left
input is the compiled form of the query parts processed so far.

Each query part that begins with a non-optional MATCH clause, like the first
query part in List. 5.1 is joined with Dual. As the second query part has no
patterns, its inputs are the first query part’s result set and the Dual relation.
The raw compiled form of this query is shown in Fig. 4(a), which contains two
joins having Dual, its identity operand as one of its operands. Thus these natural
join operations along with Dual should be removed, which we implemented using
a Viatra graph transformation rule (see Sec. 5.4). Applying this transformation,
we get the simplified form shown in Fig. 4(b).

πs

./

σcountTrains≥2

γs
s,count(tr)→countTrains

./

Dual 6≡_e1,_e2

↓ (tr:Train)
(_e1) [_e2 : ON]

↑ (_e1:Element)
(s) [_e1 : INCL]

©(s:Station)

Dual

(a) Raw query plan.

πs

σcountTrains≥2

γs
s,count(tr)→countTrains

6≡_e1,_e2

↓ (tr:Train)
(_e1) [_e2 : ON]

↑ (_e1:Element)
(s) [_e1 : INCL]

©(s:Station)

(b) Simplified query plan.

Fig. 4: Query plans for Busy station.

5.2 Compilation of Variable Length Path Patterns

1 // identify trains on consecutive segments with only a limited distance
2 // between each other
3 MATCH
4 (t1:Train)-[:ON]->(seg1:Element)-[:NEXT*1..2]-
5 (seg2:Element)<-[:ON]-(t2:Train)
6 RETURN t1, t2, seg1, seg2

List. 5.2: Close proximity.

The query in List. 5.2 features a variable length path pattern stating that two
segments, seg1 and seg2 are connected through one to two edges of type NEXT.
A variable length path pattern is compiled to an expand-both operator given
in Sec. 3.2. The raw compiled form of this query is shown in Fig. 5(a), which
is simplified to Fig. 5(b) using the transformation rule described in Sec. 5.1 to
remove a join having Dual on one of its inputs.

πt1,t2,seg1,seg2

./

Dual 6≡_e3,_e1,_e2

↓ (t2:Train)
(seg2) [_e3 : ON]

l (seg2:Element)
(seg1)

[
_e2 : NEXT∗2

1
]

↑ (seg1:Element)
(t1) [_e1 : ON]

©(t1:Train)

(a) Raw query plan.

πt1,t2,seg1,seg2

6≡_e3,_e1,_e2

↓ (t2:Train)
(seg2) [_e3 : ON]

l (seg2:Element)
(seg1)

[
_e2 : NEXT∗2

1
]

↑ (seg1:Element)
(t1) [_e1 : ON]

©(t1:Train)

(b) Simplified query plan.

Fig. 5: Query plans for Close proximity.

5.3 Identifying Antijoin Operators

1 // monitoring objective finds stations that have at least one free track
2 // available
3 MATCH (s:Station)-[:INCL]->(re:Element)
4 WHERE NOT (re)<-[:ON]-(:Train)
5 RETURN DISTINCT s

List. 5.3: Station with free track.

The query in List. 5.3 uses negative pattern match on line 4 to express that
track element re does not have a train on it. This is essentially an antijoin
operation. In order to keep compiler simple, the query is compiled in the raw
form to the left outer join of the two pattern matches and a negated selection
stating that edge and vertex variables of the pattern condition are all non-null
(6= ε). We highlighted the corresponding operator nodes with blue boxes in the
raw compiled form of this query, shown in Fig. 6(a). It is transformed by an other
Viatra rule to the antijoin operator, also highlighted using blue in Fig. 6(b).

Simplification of this query again shows the removal of an unused join (high-
lighted with red). The green box in Fig. 6(a) shows the all-different operator
which states that the listed edge variables match unique edges. This is specified
by openCypher’s edge uniqueness semantics. As one edge is always unique, we
added an other transformation rule to remove this operator from the tree.

δ

πs

σ¬(re6=ε∧_e2 6=ε∧_v16=ε)

./

Dual ./

6≡_e1

↑ (re:Element)
(s) [_e1 : INCL]

©(s:Station)

↓ (_v1:Train)
(re) [_e2 : ON]

©(re:Element)

(a) Raw query plan.

δ

πs

.

↑ (re:Element)
(s) [_e1 : INCL]

©(s:Station)

↓ (_v1:Train)
(re) [_e2 : ON]

©(re:Element)

(b) Simplified query plan.

Fig. 6: Query plans for Station with free track.

5.4 Formalisation as Graph Transformation Rules

Based on the previous examples, we introduce generic transformation rules for
query optimization.

1 pattern parentOperator(op : Operator, parentOp : Operator) {
2 UnaryOperator.input(parentOp, op);
3 } or {
4 BinaryOperator.leftInput(parentOp, op);
5 } or {
6 BinaryOperator.rightInput(parentOp, op);
7 }

List. 5.4: Query for determining the parent of an operator.

Removing unnecessary joins. Fig. 7 shows the transformation rule for detect-
ing and removing unnecessary join operators. It looks for natural join operators
that have a Dual operator on one of their inputs and another child operator on
their other inputs. If a match is found, it is removed and the child operator is

parent

./

Dual child

or

parent

./

child Dual

(a) Left-hand side.

parent

child

(b) Right-hand side.

Fig. 7: Transformation for removing unnecessary join operators.

1 def changeChildOperator(Operator parentOp, Operator currentOp, Operator
newOp) {

2 switch parentOp {
3 UnaryOperator:
4 parentOp.input = newOp
5 BinaryOperator: {
6 if (parentOp.getLeftInput.equals(currentOp))
7 parentOp.leftInput = newOp
8 if (parentOp.getRightInput.equals(currentOp))
9 parentOp.rightInput = newOp
10 }
11 }
12 }

List. 5.5: Change child operator.

connected directly to the parent operator of the removed join operator. There are
no restrictions on the arity of the parent, i.e. it can be either a unary operator
or a binary operator.

To implement this rule in Viatra, we first define a rule that allows us to
handle the parent operator in a uniform way. The parentOperator pattern in
List. 5.4 returns the parent operator parentOp of operator op. The Xtend code
for the transformation rule, which replaces a given child operator currentOp of a
certain parent operator parentOp to a new operator newOp, is shown in List. 5.5.

The unnecessaryJoin pattern in List. 5.6 uses the parentOperator rule to
find the parent operator of a certain join operator, checks whether there is a
DualObjectSource operator on either the left or the right input of the join oper-
ator. The Viatra transformation rule for removing unnecessary joins is shown
in List. 5.7.

Introducing antijoins. In order to evaluate negative conditions efficiently, the
optimizer tries to introduce antijoin operators where possible. Fig. 8 shows the
transformation rule for detecting antijoins. The rule looks for left outer join
operators that:

1 pattern unnecessaryJoin(childOp: Operator, joinOp: JoinOperator, parentOp
: Operator) {

2 find parentOperator(joinOp, parentOp);
3 DualObjectSourceOperator(dualOp);
4 JoinOperator.leftInput(joinOp, dualOp);
5 JoinOperator.rightInput(joinOp, childOp);
6 } or {
7 find parentOperator(joinOp, parentOp);
8 DualObjectSourceOperator(dualOp);
9 JoinOperator.leftInput(joinOp, childOp);
10 JoinOperator.rightInput(joinOp, dualOp);
11 }

List. 5.6: Determine unnecessary joins. The parentOperator pattern is defined
in List. 5.4.

1 def removeUnnecessaryJoinOperator() {
2 createRule()
3 .precondition(UnnecessaryJoinMatcher.querySpecification)
4 .action [
5 changeChildOperator(parentOp, joinOp, otherInputOp)
6].build
7 }

List. 5.7: Rule for removing unnecessary joins.

– have a selection operator as their parent, which defines a condition that is
satisfied iff ¬ (v1 6= ε ∧ . . . ∧ vn 6= ε) and

– v1, . . . , vn are the variables of the right input of the left outer join operator
(see Sec. 5.3).

If there is a match, the left outer join operator is replaced by a single antijoin
operator and the selection operator is removed from the tree.

6 Related Work

6.1 Graph Query Languages

As graph queries are increasingly used in industry, graph query languages are
available across different technological spaces. Here, we discuss related query
languages and compilers.

Property graphs. The Cypher language was originally designed as the pri-
mary query language of the Neo4j graph database system [24,29]. The grammar
specification and the language behaviour of openCypher was defined to match
those of Neo4j. Consequently, the compiler and query engine of Neo4j form

parent

σ¬(v1 6=ε∧...∧vn 6=ε)

./

left child right child

(a) Left-hand side.

parent

.

left child right child

(b) Right-hand side.

Fig. 8: Transformation for introducing antijoin operators.

the most complete openCypher implementation available, and is dual licensed
(GPLv3/AGPLv3 for compatible projects and custom licensing for commercial
applications).

The authors of [18] studied the Cypher query language and defined graph-
specific relational algebra operators, such as get-vertices and expand-out (Sec. 3.2).
While their work focused on optimisation, our work aims to provide a mapping
and compilation steps for transforming openCypher to relational graph algebra.

In [19], graph queries were defined in a Cypher-like language and evaluated
in the Apache Flink-based Gradoop framework. However, formalisation and
compilation of the queries was not discussed in detail.

TinkerPop. The TinkerPop framework aims to define a standard data model
for property graphs. For graph queries, it provides the Gremlin Structure API,
a low-level programming interface and the Gremlin language, a high-level im-
perative graph traversal language [31]. The latter is implemented as a Groovy
DSL [20].

EMF. Eclipse Modeling Framework (Sec. 3.3) is an object-oriented modelling
framework widely used in model-driven engineering. Henshin [3] provides a visual
language for defining patterns, while Epsilon [21] and Viatra Query [5] provide
high-level declarative (textual) query languages, the Epsilon Pattern Language
and the Viatra Query Language (Sec. 3.3), respectively. Viatra Query sup-
ports both incremental and search-based queries [9].

RDF. Widely used in semantic technologies, SPARQL is a standardised declar-
ative graph pattern language for querying RDF [47] graphs. SPARQL bears close
similarity to Cypher queries, but targets a different data model and requires users
to specify the query as triples instead of graph vertices/edges. A formal definition
of the language is given in [28]. Apache Jena ARQ [2] and Eclipse RDF4J [10]
are open-source compilers and query engines for the SPARQL language.

Comparing graph query engines. The Train Benchmark is a framework for
comparing graph query frameworks across different technological spaces, such as
property graphs, EMF, RDF and SQL [39].

6.2 Query Compilation in Graph Transformation Systems
The authors of [8] adapted the Rete algorithm originally developed in the domain
of production rule systems for pattern matching in a GT engine. The presented
solution supported a simple core graph pattern language.

The Fujaba [26] graph transformation tool fixes a single, breadth-first traver-
sal strategy at compile-time, using simple heuristics, e.g. that navigation along
an edge with an at most one multiplicity constraint precedes navigations along
edges with arbitrary multiplicity. PROGRES [34] uses a sophisticated cost model
for basic operations and generates the search plan at compile-time by a greedy
algorithm.

An algorithm to produce a high-quality (e.g. compact) Rete network from a
pattern specification was proposed in [44]. Paper [45] presented an algorithm to
define efficient search plans on EMF models. These approaches are used in the
eMoflon system [22]. The approach of [46] uses both metamodel- and instance
model-level information to adaptively optimize graph queries based on statistical
data collected from the current instance model. GrGen.NET provides a dynamic,
runtime optimization engine, which uses a mix of heuristical and cost-based
techniques [16].

The first Viatra prototype, which was capable of generating Prolog code
from metamodels and model transformations defined in XMI (XML Metadata
Interchange) format, was presented in [42].

The IncQuery-D [38] system is an incremental graph query engine, built
on top of the components of the Viatra Query framework [43] (later known
as EMF-IncQuery [41]). IncQuery-D reused the query parser and compiler
of EMF-IncQuery, but used a different query engine, tailored for scalable dis-
tributed query evaluation and operating on RDF data sets.

7 Conclusion and Future Work

In this paper, we presented an approach to design and implement a query engine
for the openCypher graph query language. We implemented this approach based
on a language workbench built on EMF-based technologies, such as Xcore, Xtext,
Xtend and Viatra. The resulting prototype is part of the ingraph project, an
openCypher-compatible incremental graph query engine.

In the future, we plan to enhance a query optimizer. A possible approach
is to use search-based optimization techniques using model transformations, also
known as planning by rewriting [1]. As our solution already utilizes the Viatra
query engine, the optimizer can be based on the Viatra-DSE design-space ex-
ploration framework [17] without a significant integration overhead. Another
feasible approach is to use Catalyst, a state-of-the-art extensible optimizer frame-
work developed as part of the Apache Spark SQL project [4].

Acknowledgements

The second and third authors of this work were partially supported by the MTA-
BME Lendület Research Group on Cyber-Physical Systems. We would like to
thank János Maginecz and Dávid Szakállas for their contributions to the rela-
tional graph algebra model. We are also grateful to András Vörös and Gábor
Bergmann for their suggestions and comments on the draft of this paper.

References

1. J. L. Ambite and C. A. Knoblock. Planning by rewriting. J. Artif. Intell. Res.,
15:207–261, 2001.

2. Apache Software Foundation. Apache Jena. https://jena.apache.org/.
3. T. Arendt et al. Henshin: Advanced concepts and tools for in-place EMF model

transformations. In MODELS, pages 121–135, 2010.
4. M. Armbrust et al. Spark SQL: relational data processing in Spark. In SIGMOD,

pages 1383–1394, 2015.
5. G. Bergmann et al. Incremental evaluation of model queries over EMF models. In

MODELS, pages 76–90, 2010.
6. B. Bryla and K. Loney. Oracle Database 12C The Complete Reference. McGraw-

Hill Osborne Media, 1st edition, 2013.
7. Budapest University of Technology and Economics, Department of Measurement

and Information Systems. Model-based Demonstrator for Smart and Safe Systems.
https://modes3.inf.mit.bme.hu/, 2015.

8. H. Bunke, T. Glauser, and T.-H. Tran. An efficient implementation of graph
grammars based on the RETE matching algorithm. In Graph-Grammars and Their
Application to Computer Science, pages 174–189, 1990.

9. M. Búr, Z. Ujhelyi, Á. Horváth, and D. Varró. Local search-based pattern matching
features in EMF-IncQuery. In ICGT, pages 275–282, 2015.

10. Eclipse Foundation. RDF4J. http://rdf4j.org/.
11. Eclipse Foundation. Xtend – Modernized Java. https://www.eclipse.org/

xtend/.
12. Eclipse Foundation. Xcore, 2017. http://wiki.eclipse.org/Xcore.
13. S. Erdweg et al. The state of the art in language workbenches - conclusions from

the language workbench challenge. In SLE, pages 197–217, 2013.
14. M. Eysholdt and H. Behrens. Xtext: Implement your language faster than the

quick and dirty way. In SIGPLAN, SPLASH/OOPSLA, pages 307–309, 2010.
15. H. Garcia-Molina, J. D. Ullman, and J. Widom. Database systems – The complete

book. Pearson Education, 2nd edition, 2009.
16. R. Geiß, G. V. Batz, D. Grund, S. Hack, and A. Szalkowski. GrGen: A fast SPO-

based graph rewriting tool. In ICGT, pages 383–397, 2006.
17. Á. Hegedüs, Á. Horváth, and D. Varró. A model-driven framework for guided

design space exploration. Autom. Softw. Eng., 22(3):399–436, 2015.
18. J. Hölsch and M. Grossniklaus. An algebra and equivalences to transform graph

patterns in Neo4j. In GraphQ at EDBT/ICDT, 2016.
19. M. Junghanns et al. Cypher-based graph pattern matching in Gradoop. In

GRADES at SIGMOD, 2017.
20. D. Koenig, A. Glover, P. King, G. Laforge, and J. Skeet. Groovy in Action. Manning

Publications Co., Greenwich, CT, USA, 2007.

https://jena.apache.org/
https://modes3.inf.mit.bme.hu/
http://rdf4j.org/
https://www.eclipse.org/xtend/
https://www.eclipse.org/xtend/
http://wiki.eclipse.org/Xcore

21. D. S. Kolovos et al. The Epsilon transformation language. In ICMT, pages 46–60,
2008.

22. E. Leblebici, A. Anjorin, and A. Schürr. Developing eMoflon with eMoflon. In
ICMT, pages 138–145, 2014.

23. J. Marton, G. Szárnyas, and D. Varró. Formalising openCypher graph queries in
relational algebra. In ADBIS, Lecture Notes in Computer Science. Springer, 2017.

24. Neo Technology. Neo4j. http://neo4j.org/.
25. Neo Technology. openCypher project. http://www.opencypher.org/, 2017.
26. U. Nickel, J. Niere, and A. Zündorf. The FUJABA environment. In ICSE, pages

742–745. ACM, 2000.
27. OrientDB LTD. OrientDB graph-document NoSQL DBMS. http://www.

orientdb.org/.
28. J. Pérez et al. Semantics and complexity of SPARQL. ACM TODS, 34(3), 2009.
29. I. Robinson, J. Webber, and E. Eifrém. Graph Databases. O’Reilly Media, 2nd

edition, 2015.
30. M. A. Rodriguez. A collectively generated model of the world. In Collective

intelligence: creating a prosperous world at peace, pages 261–264. 2008.
31. M. A. Rodriguez. The Gremlin graph traversal machine and language (invited

talk). In DBPL, pages 1–10, 2015.
32. M. A. Rodriguez and P. Neubauer. Constructions from dots and lines. Bulletin of

the American Society for Information Science and Technology, 36(6):35–41, 2010.
33. M. A. Rodriguez and P. Neubauer. The graph traversal pattern. In Graph Data

Management: Techniques and Applications, pages 29–46. 2011.
34. A. Schürr et al. Handbook of graph grammars and computing by graph transfor-

mation. pages 487–550. World Scientific Publishing Co., Inc., 1999.
35. A. Silberschatz, H. F. Korth, and S. Sudarshan. Database System Concepts, 5th

Edition. McGraw-Hill Book Company, 2005.
36. Sparsity-technologies. Sparksee high-performance graph database. http://www.

sparsity-technologies.com/.
37. D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks. EMF: Eclipse Modeling

Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.
38. G. Szárnyas et al. IncQuery-D: A distributed incremental model query framework

in the cloud. In MODELS, pages 653–669, 2014.
39. G. Szárnyas et al. The Train Benchmark: Cross-technology performance evaluation

of continuous model validation. Softw. Syst. Model., 2017.
40. ThinkAurelius. Titan. https://github.com/thinkaurelius/titan.
41. Z. Ujhelyi et al. EMF-IncQuery: An integrated development environment for live

model queries. Sci. Comput. Program., 98:80–99, 2015.
42. D. Varró. Automated program generation for and by model transformation sys-

tems. In AGT, pages 161–174, 2002.
43. D. Varró et al. Road to a reactive and incremental model transformation platform:

three generations of the VIATRA framework. Softw. Syst. Model., 15(3):609–629,
2016.

44. G. Varró and F. Deckwerth. A rete network construction algorithm for incremental
pattern matching. In ICMT, pages 125–140, 2013.

45. G. Varró et al. An algorithm for generating model-sensitive search plans for pattern
matching on EMF models. Softw. and Syst. Model., 14(2):597–621, 2015.

46. G. Varró, K. Friedl, and D. Varró. Adaptive graph pattern matching for model
transformations using model-sensitive search plans. Electronic Notes in Theoretical
Computer Science, 152:191–205, 2006.

47. W3C. Resource Description Framework. https://www.w3.org/RDF/, 2014.

http://neo4j.org/
http://www.opencypher.org/
http://www.orientdb.org/
http://www.orientdb.org/
http://www.sparsity-technologies.com/
http://www.sparsity-technologies.com/
https://github.com/thinkaurelius/titan
https://www.w3.org/RDF/

	Model-driven engineering of an openCypher engine: using graph queries to compile graph queries
	Introduction
	Context.
	Problem and objectives.
	Contributions.
	Structure of the paper.

	Running Example
	Preliminaries
	Property Graphs and the openCypher Query Language
	Relational Graph Algebra
	Notation.
	Nullary operators.
	Unary operators.
	Binary operators.

	Model-Driven Engineering
	Domain-specific languages.
	Language workbenches.
	Model transformations

	Overview of the Approach
	Relational graph algebra metamodel.
	Relational algebra optimizer.

	Elaboration
	Compilation of a Multipart Query
	Compilation of Variable Length Path Patterns
	Identifying Antijoin Operators
	Formalisation as Graph Transformation Rules
	Removing unnecessary joins.
	Introducing antijoins.

	Related Work
	Graph Query Languages
	Property graphs.
	TinkerPop.
	EMF.
	RDF.
	Comparing graph query engines.

	Query Compilation in Graph Transformation Systems

	Conclusion and Future Work

