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Kivonat Egyre több, egyre inkább komplex szoftver vesz körül minket, amelyek gyakran
kritikus rendszereket vezérelnek. Az ilyen rendszerek fő jellemzője, hogy a legapróbb hi-
báik is komoly következményekkel járhatnak. A forráskód statikus analízise egy, a kritikus
szoftverrendszereknél általánosan elfogadott megközelítés, amely a hibák mihamarabbi meg-
találását célozza meg. A statikus analízis már a fejlesztési folyamat korai szakaszaiban is
alkalmazható, mivel nincs szükség a kód fordítására és futtatására az ellenőrzés véghezvi-
teléhez. A megközelítést számos eszköz megvalósítja, amelyek képesek visszajelzést adni a
potenciális hibahelyeken túl arról is, hogy a forráskód megfelel-e a kódolási szabályoknak és
követelményeknek.

Habár több statikus analízis eszköz is elérhető általános célú nyelvek elemzéséhez, és
ezek gyakran a folytonos integráció részét képzik, JavaScript esetén ez nem mondható el
annak dinamikus jellege miatt. A dinamikusan tipizált nyelvek sajátosságai miatt csak pár
eszköz érhető el JavaScript forráskódok kódtárszintű statikus analíziséhez, illetve az eddig
ismert ilyen eszközök nem nyújtanak egyszerremegoldást alaki és globális ellenőrzésre, futási
utak meghatározására és folytonos integrációval történő alkalmazásra.

Jelen dolgozatomban egy olyan, a folytonos integráció kiegészítésére képes keretrend-
szert tervezek, valósítok meg és értékelek, amely képes nagyméretű és gyakran változó Java-
Script forráskódtárak konfigurálható statikus analízisére. A keretrendszer alapjául szolgáló
újszerű megközelítésnek köszönhetően az eddig megszokott megoldások helyett a felhaszná-
lók egyszerűbb módon fejezhetik ki az ellenőrzésre szánt követelményeket és képesek a több
forráskódon átívelő követelményeket hatékonyabban ellenőrizni.
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Abstract We are surrounded by more and more complex software that operate in mission-
critical systems. Even small errors in these software can lead to serious consequences thatmay
be too expensive to let happen. Static analysis is a proven approach for detecting mistakes in
the source code early in the development cycle. Since static analysis does not compile or run
the code, it can be applied at an early state of development. With static analysis it is possible
to check whether the software conforms to the coding rules and requirements, and to locate
potential errors.

While multiple static analysis tools exist for general purpose programming languages and
these are generally part of the continuous integration systems, this is not the case with
JavaScript. Due to the dynamically typed nature of this language there are only a few tools
available for JavaScript codebases. Also, there are currently no tools available jointly providing
lower level and global static analysis, finding control flows, and providing integration points
for continuous integration systems.

In this thesis I design, implement and evaluate a framework extending the continuous inte-
gration workflow of large and frequently changing JavaScript repositories with configurable
static analysis tools and techniques. Due to the novel approach of the framework, its users
can express requirements easier and they are able to check global level requirements more
efficiently.
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Chapter 1

Introduction

1.1 Context

Quality control plays an important role in large-scale software development. Software systems
are getting more complex and more versatile. In particular, the size of the code repository
(measured in lines of code) has been shown increase the number of errors in the software [1].

To ensure the quality of the source code, and at the same time help developers with their
tasks, there is a growing need for a solution that allows continuous checks for the code. Such
checks include code reviews, searching for mistakes, and enforcing conventions. [2]

Version
Control
System

Build
Environment

Development
Environment

Testing
Environment

Code
Analyzer

Figure 1.1 Continuous integration workflow extended with static analysis.

Version control systems (VCS) and continuous integration (CI) [3] solutions are widely used
tools of modern software developers. Figure 1.1 shows an extended version of the generally
used continuous integration workflow. The basic workflow consists of the following steps:
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1) the developer makes modifications to the codebase using their Development Environment,
2) the modifications are committed into a Version Control System, and 3) this commit triggers
the Build Environment to build the project. Then 4) the Testing Environment can perform
runtime tests on the latest build of the project, and 5) the results — build and test logs — are
presented to the developer.

These logs help the developers discover bugs and failures before the software is released
for manual testing or production purposes. Producing this information often and as early
as possible — thus making sure the software is working as intended — is vital for agile
development.

A provenmethod of enhancing software quality is utilizing static program analysis techniques
extending the basic CI workflow. During this process the code is analyzed without executing
the application. In practice it is usually employed to reveal problems undetectable with
testing and thus enabling the developer to create higher quality software.

1.2 Problem Statement

Static analysis methods verifying that the code is compliant with coding conventions is
often time-consuming and resource-intensive in practice. The size of the codebase may
necessitate a scalable solution, especially for continuous integration purposes, since the
entire verification process needs to be carried out on the whole codebase every time it is
modified.

A temporary solution to tackle this problem is to process the changes in batches. This way —
to save resources — static analyses are carried out for a joined group of changes, rather than
for every individual commit.

In an ideal situation, even before committing the changes, the developers would receive
feedback about the problems their modifications could cause.

1.3 Objectives and Contributions

Mymain objective is to provide a solution for reducing the time required for a global, codebase-
level reevaluation of static analysis after a change occurs.

In this work I create a framework that transforms the whole source code repository into a
graph representation and maintains it subsequently. The proposed approach is suitable for
performing code convention compliance checks, for executing built-in static analysis tests
and arbitrary transforming extensions written by the user.

In order to speed up the static analysis, the presented framework uses incremental processing.
Thus it is able to process a subset of the repository, e.g. only the modifications introduced by
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the latest commit, then integrate the changes into the maintained representation. This way
the system can process the modifications for each commit incrementally. After the initial
query evaluation and report generation, consecutive runs can be executed significantly more
efficiently.

The framework relies on two substantial technologies: 1) a source code parser, and 2) a
database solution. Also, the framework provides interfaces making integration possible with
external tools, such as version control systems and integrated developer environments.

1.4 Structure of the Thesis

This thesis is structured as follows. Chapter 2 introduces the previously mentioned back-
ground technologies selected to build an incremental static analyzer. Chapter 3 details the
various approaches and related works. Chapter 4 shows the overview of my approach and
details the main components of its architecture. Chapter 5 presents the implementation of
the framework, and discusses the steps of the analysis. Chapter 6 demonstrates and evaluates
the performance of the framework. Chapter 7 reveals future visions and possible ways of
further improvements. Chapter 8 concludes the thesis.
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Chapter 2

Preliminaries

In this chapter I present the conceptual foundations and related technologies ofmywork. Also,
I discuss the building blocks required to design a static analyzer framework for JavaScript.

2.1 JavaScript

Ohe most used dynamic languages in the world is JavaScript. According to [4], JavaScript
is the most utilized client-side programming language for web applications, with over 94%
estimated usage. In this section I briefly summarize the history of JavaScript, present re-
cent advancements and discuss why it is timely to utilize static analysis techniques for the
language.

2.1.1 From Glue Language to a Full-Fledged Language

This section follows [5]. The language written in 10 days by Brendan Eich in April 1995 —
originally called LiveScript — was one of the first attempts at bringing dynamic behavior to
the web. It was supposed to look like Java, leaving its complexity behind and appealing for
developers looking for easy scripting solutions on the web.

The initial goal — to create a language for portable applications — has been seemingly
achieved by the time of writing this thesis. While it has been gaining popularity due to its
simpler syntax, the language, its tooling, and its community had time to evolve, making it
the most used web programming language. JavaScript has shifted from simpler scripts to
complex systems on the web, desktops, and servers.

2.1.2 ECMAScript

After its release, JavaScript was submitted to and standardized by the Ecma International
industry association, resulting in the first release of the ECMAScript language specifica-
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tion (of the ECMA-262 standard [6]) in June 1997. Apart from JavaScript, there are several
implementations, e.g., Chakra1, JScript2, and V83.

There are several reasons why the standard and the usage of ECMAScript is getting more
and more popular. Besides the improvement of the developer tools, developer community,
and being already popular, conscious and regular development of the language also makes
the language more appealing. At the time of writing this thesis there are 8 editions of the
standard, 6 of them published. The last published edition, ES7 was published in June 2016,
one year after the previous edition, ES6.

The initial language specifications were indulgent, and only best practices were guiding the
developers. The challenges of analyzing such dynamic, untyped language — able to express
one thing in several different ways — may be one of the reasons why there are only a few
tools present even today implementing static analysis for ECMAScript.

The syntactic sugars added to the language across the editions of ECMAScript made it pos-
sible to express the most used code parts in an easier manner, while being more concise.
Encouraging the developers to use these constructs makes it easier to interpret the source
code — both manually and with source code analysis.

2.2 Static Analysis

The idea of static analysis is almost half a century old. A paper from 1995 states that “The
idea that computer software should be used to analyze source programs rather than compile
them, has a history of at least 25 years.” [7]

Source code analysis can be used to discover facts about a particular program. Two basic
automated analysis methods exist for this purpose:

– Static analysis is performed by parsing the source code and analyzing it without evalu-
ating the statements or executing the program.

– Dynamic analysis is performed by executing the program and evaluating its output for
given input sequences.

While high-level language (e.g., C++, Java) source codes are checked at least by the compiler,
JavaScript is usually not compiled before it is published. Thus a specific static analysis tool
for JavaScript should aim to discover unwanted traits of the source in ways a generic compiler
would not be able to, resulting in better code quality. These traits, code smells are usually
perceptible while running the code. Another way to locate these bugs is to write and run
tests, dynamically testing the program. [7]

1https://github.com/Microsoft/ChakraCore
2https://msdn.microsoft.com/library/hbxc2t98.aspx
3https://github.com/v8/v8

https://github.com/Microsoft/ChakraCore
https://msdn.microsoft.com/library/hbxc2t98.aspx
https://github.com/v8/v8


2.2. Static Analysis 6

The two analysis methods are complementing each other. They discover different subsets of
problematic constructions. While static analysis can discover syntactical problems (like the
lack of the default case in a switch), dynamic analysis may catch behavioral problems (such
as error handling and timing errors). Information discovered using static analysis may be
used later in dynamic testing, resulting in a hybrid technique.

2.2.1 Use Cases

Static analysis tools employ diverse levels of abstraction. Formatters are able to ensure
that the source code complies with a predefined style guide. Linters check for stylistic and
programming errors, thus indicating suspicious programming constructs. Formal verification,
on the other hand, utilizes formal mathematical methods to prove statements about a piece
of source code and its behavior.

For dynamic languages static analysis has even more use cases. For example, it allows finding
previously undefined property reads, catching invocation of non-functional variables [8],
detecting dead code.

2.2.2 Advantages and Disadvantages

Since static analysis tools deliberately do not evaluate the source code, there are fundamental
limitations to what problems they can discover. In the context of my work, static analysis has
the following trade-offs.

Advantages

No Need for Execution Since there is no need for execution, the hardware and software
requirements of the analysis software do not need to match the requirements of the applica-
tion. There is also no need to emulate or mock its dependencies, making the analysis more
portable and cost efficient.

Early Detection of Possible Errors Static analysis may catch problems even before the
whole software is complete or even runnable, potentially allowing the developers to fix the
problems earlier in the development process. [9]

Thorough While dynamic testing executes the manually written or automatically gener-
ated test cases covering a portion of the source code, static analysis systematically explores
every possible execution scenarios. Thus it may achieve higher coverage and detect more
problems in the code. [9]
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Disadvantages

Speed Static analysis trades CPU time and memory for better code quality. By design it
may be multiple orders of magnitude slower than compilation. Its speed depends not only on
the underlying data structure and algorithms, but also the level of analysis. [10]

However, with a given limitation of granularity (e.g., considering a single file as the unit of
processing), in case of a source code modification, previous results can be reused. There
is a possibility that only the modified — and other affected — parts need to be processed
again. The incremental approach of static analysis may speed up the process by orders of
magnitude [11].

False Positives Static analysis can not prove the correctness of a source code. It rather
warns in case there is a possibility of a problem. Thus static analysis tools can introduce false
positive warnings and flag code parts as problematic even if they behave correctly. To reduce
the number of false positive warnings, one usually introduces more precise, specified rules
and more thorough analysis. [10]

2.2.3 Source Code Processing and Analysis

The source code of a program is a sequence of instructions formulated in a programming
language as a text. Grammars of formal languages are a set of rules describing what the
compiler considers a valid input—how to create valid instructions or a set of instructions
from the alphabet of the language (syntax). A source code processing entity (transformer, or
hereafter compiler) assigns a meaning (semantics) and transforms the instruction to another
language (generally an intermediate language or bytecode). [12]

What input data the compiler considers useful information depends on the semantics of
the language the compiler is built for. Source codes contain a much wider variety of data
than a compiler requires for transforming, analyzing the application: comments, function
declaration order, indentation, line breaks all help the reader (and writer) of the code, but
carry no additional information.

Figure 2.1 shows the general process for processing source code and transforming a stream of
characters into a data structure with meaning (semantic information).

Lexical Analysis

A lexer, tokenizer, or scanner forms the first phase of a parsing process. It scans the input
character stream and segments them into sequence of groups, tokens, strings with a “meaning”.
It also categorizes these groups into various token classes, token types. Processing the raw
input into a value (converting the string "2" into the number 2) can also happen in this phase.
Figure 2.2 shows how an expression string can be tokenized.
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Source Code

tokenizer

Tokens

parser

Abstract Syntax Tree

scope analyzer

Abstract Semantic Graph

tokenization
breaking the stream of source code characters
into tokens (words, symbols)

parsing
ordering the tokens into a data structure based
on grammar rules

scope analysis
resolving the references in the AST and extend-
ing it with derived information into an ASG

Figure 2.1 Processing the source code.

foo = 1 / 0

Token Token type

foo IDENTIFIER (Ident)

= ASSIGN (Punctuator)

1 NUMBER (NumericLiteral)

/ DIV (Punctuator)

0 NUMBER (NumericLiteral)

Figure 2.2 Character stream and tokenization result with token type information.

Parser

A parser forms the second phase of a parsing process, using the output token stream of the
lexer. It takes the input data and builds a hierarchical data structure (a parse tree or an abstract
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syntax tree) representing the input. If the input does not comply with the syntax rules, and a
tree can not be built, the source code is syntactically incorrect.

Figure 2.3 shows a sentence and its s-expression representation. S-expressions (for “symbolic
expression”) are a notation for tree-structured nested list, mainly used in Lisp.

The quick brown fox jumps over the lazy dog

(Sentence
(Word The)
(Word quick)
(Word fox)
(Word jumps)
(Word over)
(Word the)
(Word lazy)
(Word dog)

)

Figure 2.3 A sentence and its s-expression representation.

Abstract Syntax Tree An Abstract Syntax Tree (AST) is a tree representation of the syn-
tactic structure of the result of a parsing along a grammar. The nodes of the tree denote a
construct occurring in the input, while the edges represent the connection between these
nodes based on the grammar rules.

As mentioned in Section 2.2.3, source code contains much more detail (e.g., indentation,
whitespace, comments) than is required and restrained during the parsing process. Thus
this representation is a more compact, abstract syntax tree. It may be transformed based on
transformation rules and source code can be generated from ASTs. Without restraining the
layout information and reusing it during the code generation, the resulting text can show
differences in indents, whitespaces and expression formulation compared to the initial source
code.

Figure 2.4 shows an example AST (in black), where a one-statement JavaScript file is parsed.
The content of the file was only the following line:

var foo = 1 / 0;
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Scope Analyzer

A scope analyzer or context analyzer produces a data structure representing the scoping infor-
mation of a program, extending the information in the AST or ASG. An element representing
a scope in this data structure may contain, inter alia, metadata about the scope itself, the
AST node related to the scope, available assets (variables, functions, etc.) in that scope. [13]

Abstract Semantic Graph An Abstract Semantic Graph (ASG) differs from an Abstract
Syntax Tree in two essential concepts: ASGs 1) are not necessarily trees, and 2) express more
than the syntactic information; ASGs carry semantic information expressed with additional
edges. An example of this type of edge connects variable references to their declarations. [14]

An ASG is a graph representation of a parse result; the nodes represent subterms of an
expression. Shared subterms can occur, having more than one node linked to the same,
common subterm. Compilers generally work on ASGs internally, since not only the syntactical,
but the behavioral information is also represented in them.

Figure 2.4 shows the difference between an AST and an ASG (in turquoise).

Type Inference

In order to make sure that a system behaves correctly according to the specification, a broad
range of formal methods can be used. Besides model checkers, run-time monitoring, the most
popular formal methods are type systems. [15] “A type system is a syntactic method for
automatically checking the absence of certain erroneous behaviors by classifying program
phrases according to the kinds of values they compute.” [15]

Type inference refers to the deduction of the data types of expressions, statements in the
source code, usually executed during compilation and static analysis. By utilizing type
inference, deducing types as interfaces, and checking contracts — e.g., preconditions for the
types of arguments, postconditions for the types of return values — between various parts of
the software can yield a more consistent and bug-free code.

Type systems also help developers write the source code with context-aware assistance. With
implicitly typed languages the ability to infer data types canmake prototyping and developing
programs occur in a more agile fashion, compared to explicitly typed languages. Omitting
the type annotations eliminates the need to propagate changes in the source code in case of
a refactor, while still executing interface checks prevent type errors at runtime.

Typed JavaScript Derivations There are several languageswith type systems that compile
to JavaScript, such as TypeScript4, Dart5, Elm6, and Flow (see Section 3.1.5).

4https://www.typescriptlang.org/
5https://www.dartlang.org/
6http://elm-lang.org/

https://www.typescriptlang.org/
https://www.dartlang.org/
http://elm-lang.org/
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Figure 2.4 AST (in black) with additional edges (ASG, in turquoise) and derived helper
edges (in gray).
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2.3 Handling Large Interconnected Data

In numerous use cases, interconnected data sets can be represented and processed as a graph.
Graph databases provide a way to efficiently store graphs and evaluate graph queries. In
this section I introduce the concept of graph databases, and graph pattern matching. I also
present different types of graph database implementations from which I selected the most
appropriate technology for the approach.

The advancements in hardware components – the ever increasing amount of processing
power, and memory and storage speed and sizes – and the analogous growth of data to be
stored and processed during the last more than fifty years yielded various solutions.

Based on historic evolution, these solutions can be categorized in three main categories:

– Navigational database management systems (DBMS) were mainly used in the era of
magnetic tape based storages, in which the records contained references to other
records allowing the system to fast-forward, navigate there and load additional data.

– Relational DBMSs organizes data in a relational model [16], where one or more relations
contain unique entries (records or tuples).

Relational databases leverage precise mathematical background (see relational algebra
and relational calculus), have diverse implementations, mature tooling, and data access
security by authentication and authorization. There are also disadvantages; due to
their data structure, relational databases may have scalability and performance issues.
They are also typically optimized for transactional processing and not data analysis
(there are exceptions, see data warehouses).

– Post-relational databases is a vague collective name for every database system that
abandons the strictness and burden of the relational data model and the Structured
Query Language (SQL).

Since the turn of the millennium, the struggle with storing and processing huge
amounts of data using relational technologies spawned a diverse palette of newdatabase
management systems using simpler, more scalable data models. These systems are
consequently called non SQL, NoSQL databases, and are increasingly used in real-time
and big data applications.

NoSQL systems are a heterogeneous set of systems, with very different approaches.
Categories of these systems based on their data models include, but are not limited to:
key-value stores, wide column stores, document stores, graph DBMSs, RDF stores.

2.3.1 On Graph Computing

The mathematical concepts of graphs are well-known and widely used in computer sciences.
Numerous graph technologies have evolved, each with their advantages and disadvantages.
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From graphs themselves to physical and virtual worlds, many scenarios can be represented as
graphs and stored in graph databases with their respective data model. This section loosely
follows [17, 18].

Simple, textbook-style graphs can be extended in several different ways. To describe the
connections in more detail, one may add directionality to edges (directed graph). To allow
different connections, one may label the edges (labeled graph). Typed graphs introduce types
for vertices. Property graphs add even more possibilities by introducing properties. Each
graph element, both vertices and edges can be described with a collection of properties. The
properties are key–value pairs, e.g. type = ‘Person’, name = ‘John’, age = 34.

:WORKS_WITHAlice
:Person

Bob
:Personage: 32 age: 30

Figure 2.5 Typed and labeled property graph example.

My approach utilizes typed (labeled) property graphs (see Figure 2.5).

Graph Computing Technologies

The practice of data storage and processing is encumbered with space and time trade-off.
This trade-off is also present in various graph computing technologies. This section discusses
the categorization of these technologies and mentions a few technologies of which the most
popular ones are detailed in Section 2.3.3.

The landscape of graph storing and processing solutions is populated and diverse (see [19]).
The basic categorization of software graph database solutions is the following. Graph com-
puting technologies can be divided into two groups: 1) on-line, real-time, and 2) global
analyzing, batch-processing graph databases. The former can be divided into in-memory,
and persistent databases.

In-Memory Graph Toolkits The challenge of big data problems shed light on that the
existing disk-based systems can not offer timely response due to the latency of hard disks.
The role of storage shifted from the hard drive to the memory of the system. In-memory
graph databases are constrained to graphs that fit into the main memory. Thus these systems
are single-user systems that are oriented towards low-latency graph analysis.

The locality of data allows the usage of rich algorithm libraries and the choice of the adequate
graph representation with respective space-time trade-off. The constraint of space allows
large graphs (with millions of edges) to be stored and processed, but this may not be sufficient
in all cases.
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Example in-memory graph toolkits: Apache Giraph7,Microsoft Graph Engine8 (formerly Trin-
ity), Apache Spark GraphX9,WhiteDB10.

Persistent, Real-Time Graph Databases Persistent graph databases are the prevalent
group of graph computing technologies. Unlike in-memory graph tools, graph databases
persist data on hard drives, thus are able to store billions of edges on a single machine and
distributed systems can handle hundreds of billions of edges. These databases can provide
multi-user concurrency, transactional semantics and eventual consistency.

Since global graph algorithms are not feasible, these systems are optimized for local neigh-
borhood analysis and concurrent access. Global graph analytics are inefficient due to the
communication overhead and the computational overhead, e.g., ensuring ACID transactional
semantics.

Example for persistent, real-time graph databases: InfiniteGraph11, Neo4j (see Section 2.3.3),
OrientDB12, and Titan13.

Batch-Processing Graph Frameworks In case there is no real-time requirement for an
analysis that accesses the whole dataset, batch-processing graph frameworks can be used
for global analytics. Since there is also no requirement for quick response time, the applied
algorithm can even scan data multiple times and leverage sequential reads from the disk.
These systems can be used to periodically process data and feed back the results into real-time
graph databases. Most of these frameworks utilize Hadoop for storage (HDFS) and processing
algorithms implemented using the MapReduce paradigm.

Example batch-processing graph frameworks: Apache Hama14 and Apache Giraph15.

2.3.2 Evaluating Queries on a Data Structure

Numerous strategies exist for defining and executing queries over data structures. They can
be defined in an imperative manner with programming languages like a navigation described
in Gremlin16 over a graph database. Declarative solutions also exist, where the query plan is

7http://giraph.apache.org
8https://www.graphengine.io
9https://spark.apache.org/graphx/
10http://whitedb.org
11http://www.objectivity.com/products/infinitegraph/
12https://orientdb.com
13http://titan.thinkaurelius.com
14https://hama.apache.org
15http://giraph.apache.org
16http://gremlin.tinkerpop.com

http://giraph.apache.org
https://www.graphengine.io
https://spark.apache.org/graphx/
http://whitedb.org
http://www.objectivity.com/products/infinitegraph/
https://orientdb.com
http://titan.thinkaurelius.com
https://hama.apache.org
http://giraph.apache.org
http://gremlin.tinkerpop.com
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calculated from the query formalized in a declarative language (like SQL17, SPARQL18, and
Cypher) and execution is performed by a query framework (such as 4store19 and Neo4j). Graph
pattern matching – one of the declarative querying solutions, supplemented by imperative
logic – forms the foundation of my approach.

Graph Pattern Matching

“Graph patterns are a declarative, graph-like formalism representing a condition (or con-
straint) to be matched against instance model graphs. The formalism is useful for various
purposes in model-driven development, such as defining model transformation rules or defin-
ing general purpose model queries including model validation constraints. A graph pattern
consists of structural constraints prescribing the interconnection between nodes and edges
of a given type.

A match of a pattern is a tuple of pattern parameters that fulfill all the following conditions:

1. have the same structure as the pattern,

2. satisfy all structural and attribute constraints,

3. and does not satisfy any negative application condition (NAC) describing cases when
the original pattern does not hold.

” [20]

2.3.3 Graph Databases

Since my approach is based on graph-based data handling, it is essential to employ the most
suitable technique. Related to my approach suitable refers to having the following traits:
being fast, flexible, versatile, and easy to use and deploy. In this section I give an overview on
the most promising candidates and justify why I have chosen Neo4j as the foundation of my
approach.

Neo4j

Neo4j is the most popular [21] and most mature NoSQL graph database, developed by Neo
Technology. It is open-source, well-documented and continuously-developed. Neo4j is avail-
able in two editions: a free Community Edition and a paid Enterprise Edition. [22]

17Structured Query Language
18SPARQL Protocol and RDF Query Language
19https://github.com/garlik/4store

https://github.com/garlik/4store
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Architecture It can be deployed two ways: in server mode the database is started separately
and listens for queries on its HTTP REST and Bolt interface; where in embedded mode it runs
in the same JVM as the only client application.

Data Model The graph model of Neo4j is an implementation of a labeled property graph.
The relations are labeled and the nodes can hold multiple labels; the nodes and relations can
both hold properties.

Sharding Although the Enterprise Edition of Neo4j has a high availability solution and
supports clustered replication and cache sharding, it does not support sharded data storage
over a cluster of devices. This results in the advantage of low latency (clustering provides scale
out capabilities for read), the ability to handle transactions with ACID (Atomicity, Consistency,
Isolation, and Durability) semantics. [23]

Query Language Neo4j provides two methods for data queries out-of-the-box: an object-
oriented native Java API for graph navigation and Cypher, a graph pattern description and
query language with declarative and imperative traits. Additional interfaces may be loaded
as a plugin, like the imperative Gremlin query interface [24].

One of Cypher’s best features is the readability of its syntax (see Section 5.3 for examples). It
provides an intuitive way to describe patterns of nodes and relations in the graph and also
connections between subpatterns using bound identifiers for nodes and relations. Cypher also
manages the indexes and constraints of the graph database. Negative application conditions
(NAC) can be also expressed, describing constraints that should not hold for the matches.

Other interesting and useful features of Cypher include:

– Transitive closure over a set of edge labels, with optional repetition binding.

– Java procedures can be stored in the server as a plug-in and called from inside the
queries. This way an arbitrary logic with multiple queries can be stored on the Neo4j
server and executed with a Cypher query. This can solve cases where it is not possible
to express the query in Cypher; ranging from duplicating a node (with parameters
and labels) to inferring the metamodel (from the nodes and relations already in the
database).

– Parameterized queries may be utilized for faster evaluation.

Alternative Graph Databases

Although other database solutions, like Titan [25] or OrientDB might serve as an alternative,
the rapid development and feature set of Neo4j ruled them out as a candidate for my approach.
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For rapidly changing, albeit smaller datasets, incremental querying using VIATRA [26] Query
over EMF [27] models can be a solution. Since VIATRA stores the database in-memory, it is
not suitable for my approach.

2.4 Integrated Development Environment (IDE)

Apart from the continuous integration workflow, static analysis tools are usually employed
by developers within the integrated development environment they use. In this section I
introduce one of the many freely available IDEs, and detail how static analysis tools can be
integrated with it.

2.4.1 Visual Studio Code

Visual Studio Code [28] is Microsoft’s take on a lightweight, yet powerful Integrated Developer
Environment for modern programming languages. It is available for free for Windows, macOS
and Linux. It comes with built-in support for JavaScript, TypeScript and has a growing
ecosystem of extensions for other languages, theming, and developer support [29].

Debugging is also made easy, as the editor can be attached to the running code and the
developer can add break points, look at call stacks and evaluate statements with an interactive
console. With the relatively small package, Git support comes built-in: reviewing changed
lines, staging files, making commits can be made right in the IDE.

IntelliSense

Visual Studio Code’s syntax highlighting and autocomplete system is called IntelliSense, that
also provides better completion based on variable types, function definitions, and imported
modules. IntelliSense provides syntactical features like format on type, outlining; and also
language service features like peek, go to definition, find all references and rename symbol.

To make these smarter functions possible, JavaScript service relies upon the TypeScript
language service to handle JavaScript source code. It uses the same type inference system as
TypeScript to determine the type of a value. (It recognizes the “ES3-style” class declaration.)
Explicit JSDoc annotations can also be used, in case the type inference does not provide the
desired type information. For major libraries it is also possible to download an import a type
definition file.

Extensions

Visual Studio Code is built with extensions in mind. Extensions make it possible to add new
languages, themes, debuggers, and to connect to additional services. The framework runs
them in a separate process, ensuring they will not slow the editor down.
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Every extension uses the same model to describe its contribution (how it is registered in the
framework), activation (when it is loaded) and the same way to access the VS Code extension
API. There are two special type of extensions: language servers and debuggers, which have
their own additional protocols.

Extensions are the building blocks of VS Code. When activated, every extension runs in
a shared host process, separate from the IDE. This ensures that the IDE itself can remain
responsive even if an extension is resource-heavy or not well-written.

An extension is a package of source code, resources, and configuration files. They have
support for:

– Activation – it is possible to specify when an extension is loaded: when a specific
file type exists in the workspace or is opened; or when a command (described in the
configuration) is executed via the Command Palette or the key combination.

– Editor – the extension can read and manipulate the editor’s content.

– Workspace – the extension can access working files, modify the content of the status
bar and show information messages (and more).

– Eventing – it is also possible to subscribe and react to the life-cycle events of the editor
such as: open, close, change events of the editor (and more).

– Evolved editing – rich language support can be provided, including IntelliSense services,
peek, hover and diagnostic (info, warning and error messages).

Language Servers The language server framework and its sample implementation helps
developers create a dedicated process for resource-heavy language server applications. It
is the better design choice if the extension may slow down other extensions while working.
Its possibilities are limited, as custom communication between the client extension and the
language server needs modification in the underlying communication protocol handler.

Debuggers Connecting an external debugger written for any language to VS Code is also
possible through the VS Code Debug protocol.

2.4.2 Alternative IDEs

There are several alternatives to Visual Studio Code. Atom20, Eclipse21, andWebStorm22 can all
be extended with a plugin adding extra features for a given language. Since VSC is one of the

20https://atom.io
21https://eclipse.org
22https://www.jetbrains.com/webstorm/

https://atom.io
https://eclipse.org
https://www.jetbrains.com/webstorm/
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most actively developed lightweight IDEs aiming for JavaScript (and TypeScript) development,
I have developed an extension integrating the IDE with my framework (see Section 6.3).
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Chapter 3

Related Work

In this chapter I enumerate themost notable similar systems and approaches, while discussing
the related scientific research.

3.1 Static Analysis Frameworks

This section briefly introduces the various static analysis approaches and available tooling
for JavaScript: what they aim for, and with what kind of limitations.

3.1.1 Tern

“Tern is a stand-alone code-analysis engine for JavaScript. It is intended to be used with a
code editor plugin to enhance the editor’s support for intelligent JavaScript editing. Features
provided are:

– Autocompletion on variables and properties

– Function argument hints

– Querying the type of an expression

– Finding the definition of something

– Automatic refactoring

Tern is open-source (MIT license), written in JavaScript, and capable of running both on
node.js [30] and in the browser.” [31]

The Tern suite is a modular, extendable stand-alone system. Editor plugins communicate
with the Tern server module, connected to the Acorn parser (introduced in Section 3.2.1) and
the inference engine. Third-party plugins can introduce implementation environmental or
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behavioral information for the system, for example ECMAScript module loading rules, or
node.js specific variables. [32] It uses the AST structure of Acorn (detailed in Section 3.2.1),
extends the in-memory representation with type information and propagates it in the graph.

3.1.2 TAJS

Type Analyzer for JavaScript (TAJS) [33] is a dataflow analysis tool infering type information
and call graphs developed by the programming language research group at Aarhus University,
with contributions from Universität Freiburg.

The current version (as of 2016) can model scripts of ECMAScript 3; it also contains model of
the standard library and partial model of the HTML DOM and browser API. [34] The initial aim
of TAJS was to warn programmers about the following problematic cases. This enumeration
follows [8].

– invoking a non-function value as a function

– reading an absent variable

– accessing a property of null or undefined

– reading an absent property of an object

– writing to variables or object properties that are never read

– implicitly converting a primitive value to an object

– implicitly converting undefined to a number

– calling a function object both as a function and as a constructor or passing function
parameters with varying types

– calling a built-in function with an invalid number of parameters or with a parameter of
an unexpected type

3.1.3 TRICORDER

TRICORDER [35] is a pluggable program analysis platform used internally at Google, helping
developers and reviewers notice possible problems with code changes. The system mainly
supports C++, Go, and Java codes, but it has support for JavaScript too.

Related researches show that static analysis tools are either not used or ignored, when not
configured correctly and take more time from the user than necessary. “High false positive
rates, confusing output, and poor integration into the developers’ workflow all contribute to
the lack of use in everyday development activities [36, 37].
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TRICORDER introduces an effective place to show warnings. Given that all developers at
Google use code review tools before submitting changes, TRICORDER’s primary use is to
provide analysis results at code review time. This has the added benefit of enabling peer
accountability, where the reviewer will see if the author chose to ignore analysis results.” [35]

3.1.4 jQAssistant

“jQAssistant [38] is a QA tool which allows the definition and validation of project specific
rules on a structural level. It is built upon the graph database Neo4j and can easily be plugged
into the build process to automate detection of constraint violations and generate reports
about user defined concepts and metrics.

Example use cases:

– Enforce naming conventions, e.g. EJBs, JPA entities, test classes, packages, maven
modules etc.

– Validate dependencies between modules of your project

– Separate API and implementation packages

– Detect common problems like cyclic dependencies or tests without assertions

” [39]

jQAssistant mainly aims at processing and validating Java projects during the continuous
integration process. Its approach is similiar to mine, it also uses the same database backend
— Neo4j — for storing the source code representation. However, instead of analyzing the
semantics of the source code, it concentrates on the structural details and connections within
the codebase.

3.1.5 Facebook Flow

Flow [40] is an open-source static type checker for JavaScript, written in OCaml, utilizing
annotation-based language extension and type inferencing. The implicit infered types can be
corrected by explicit type annotations helping the framework. Exported variable, function,
and class declarations have to be explicitly annotated.

Since Flow requires a modified language, a new compilation step is required in order to omit
the annotations and produce a source code in pure JavaScript. It is also possible to provide
interface files for Flow, enabling to import third party libraries.

Flow utilizes control flow analysis, allowing property access detection on null or undefined
values. It also executes analyses in an incremental fashion, storing the intermittent results
in a persistent server and updating it in the background when the source code is changed.
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3.1.6 JSNice

JSNice [41] is a scalable prediction engine based on Nice2Predict [42], a learning framework
for program property prediction. The novel approach of JSNice utilizes machine learning;
first it learns a probabilistic model from existing, prepared data, then predicts properties for
unseen programs based on this model. Besides predicting names of identifiers, it also predicts
type annotations of variables, thus producing both syntactic and semantic information. [43]

3.1.7 Infernu

Infernu [44] is a type checker for JavaScript, written in Haskell. “Infernu’s type system is de-
signed for writing dynamic-looking code in a safe statically type-checked environment. Type
annotations are not required [...] instead, Infernu infers the types of expressions by examining
the code. If the inferred types contradict each other, Infernu reports the contradiction as an
error.” [44]

Its type system is based on Damas-Hindley-Milner type system, and it places restriction on
the elements and expressions that can be expressed, thus the grammar of Infernu is a subset
of JavaScript’s.

3.1.8 Comparison

Although several tools are available, they are not widely used. This thesis aims to find out
why and whether a graph pattern matching based approach can solve the issues and act as an
universal framework. Table 3.1 concludes some of the common features of the previously
mentioned tools.

Flow jQA Tern TAJS TRICORDER My approach

Open-source     #  

Linting  G# G# #   

Handles multiple files    #   

Dead code detection # G# # # G#  

Type inferencing  G#   G# G#

Languages JS* Java JS ESX JS, Go, Py JS

Table 3.1 Comparison of static analysis frameworks.
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3.2 JavaScript Parsers

In this section I showcase the most used, trending JavaScript parser technologies and justify
why I have chosen the Shape Security Shift family as the parser and additional toolset for my
approach.

3.2.1 Acorn

Acorn [45] is an open-source, small JavaScript written in ECMAScript 6 (see Section 2.1.2). It
is up-to-date, able to parse ECMAScript version 3, 5, 6, 7, and the newest one, 8. The resulting
AST structure of the parser conforms the ESTree specification [46].

It is also able to parse multiple files into a single AST, connected with a Program node. To
analyze and navigate in the resulting AST, Acorn provides a walker interface, to be used with
a visitor pattern based algorithm.

The parser is also configurable with several options, locations being one of the most useful
for my approach. Setting this option stores the location of the represented source snippet in
the AST node. There is also an error-tolerant version of the parser enabling parsing unfinished
or syntactically incorrect sources.

3.2.2 Esprima

Esprima is also an open-source, ECMAScript standard-compliant parser. It fully supports
ES7, and produces ESTree models. It has a great user-base and several tools depend on it. It
also has experimental support for JSX, an XML syntax extending JavaScript for React [47], “a
declarative, efficient, and flexible JavaScript library for building user interfaces” [48].

3.2.3 Shift

The Shift [49] family consists of several tools. Besides the parser, there is a scope analyzer, a
code validator, fuzzer, and a code generator, besides others.

Shift AST

The reason behind the number of tools is due to the fact that Shift does not conform the
ESTree specification. In 2014, Shape Security, the company behind Shift announced a new
JavaScript AST specification [50]. This specification was developed with ECMAScript 6 in
mind, along with analysis and transformation.

The specification describes interface for an AST syntax that can represent the structure of an
ECMAScript source code. According to Shape Security, a “good AST format. . .

– minimizes the number of inhabitants that do not represent a program.
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– is at least partially homogenous to allow for a simple and efficient visitor.

– does not impede moving, copying, or replacing subtrees.

– discourages duplication in code that operates on it.

” [51]

Shift Scope Analyzer

“The Shift Scope Analyser produces a data structure called a scope tree that represents all
of the scoping information of a given program. Each element of the scope tree represents a
single scope in the analysed program, and contains many pieces of information, including:

– the scope type (there are 12 of them!)

– the AST node associated with the scope

– variables declared within that scope, each of which points to its declarations and
references

– whether the scope contains a with statement or direct call to eval, making it dynamic

” [13]

Additional Notes

The Shift family has other interesting members and features as well:

– Besides JavaScript, most of the Shift family is also available for Java projects. This
makes it easier to integrate it with projects and tools only available for Java.

– Shape Security has a project, Bandolier [52] for packaging projects with ES6 modules
into a single JavaScript file, imitating the export-import mechanism, related to my
approach.

– Shape Security is also developing a semantic transformer [53] for ECMAScript ASTs,
also related to my approach.

3.2.4 Comparison of Parser Technologies

In order to find a best parser and related technologies, I had to compare them: measure their
speed, investigate their parameters and output model, and transform their extra functions
into potential features of my approach.
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Speed

Although speed is not the most important property of a system aiming to make sure no errors
are present, swift response can boost the performance of the user. Table 3.2 shows the time
difference between parsers processing various source codes repositories. The benchmark 1

was run on a personal computer. Its sole purpose is to get a rough comparison between the
different technologies available running in a JavaScript environment.

It is visible that Shift NEE2 is one of the fastest parsers available.

Source Esprima3 UglifyJS2 Traceur Acorn4 Shift Shift (NEE)

jQuery.Mobile5
154.0

±22.3%

244.6

±8.4%

304.6

±15.1%

215.3

±16.9%

480.7

±13.1%

119.9

±11.9%

Angular6
125.5

±16.3%

212.2

±11.2%

254.1

±20.7%

146.3

±18.6%

452.7

±12.5%

94.6

±18.2%

React7
134.7

±10.8%

221.6

±8.9%

258.5

±13.4%

176.9

±15.6%

496.4

±11.6%

116.1

±14.2%

Total 414.3 ms 678.4 ms 817.2 ms 538.5 ms 1429.8 ms 330.6 ms

Table 3.2 Speed comparison of JavaScript parsers.

Metamodel and Precision

For analysis and transformation purposes it is important to have a model with as much and
as precise information as possible. If the parser produces a model conforming a detailed
metamodel, it is easier to differentiate seemingly similar cases.

Based on the comparison [51] between the ESTree and the Shift AST specification, it is visible
that Shift is a better choice if more details are required.

1http://esprima.org/test/compare.html
2Early error checking disabled. NEE – No Early Errors
3Esprima version 2.7.2
4Acorn version 2.4.0
5jQuery.Mobile version 1.4.2
6Angular version 1.2.5
7React version 0.13.3

http://esprima.org/test/compare.html
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Chapter 4

Overview of the Approach

In this chapter I introduce the high-level architecture overview of the proposed framework.
The chapter also discusses each component in detail including details on how they cooperate.

4.1 Architecture

Figure 4.1 shows the overview of the framework’s architecture. Since the novelty of the
approach is how the source code representation is handled — stored, transformed, and
queried — the essence of the approach is visualized on the right half of the figure. This is
embedded and utilized in the framework itself, and integrated into the continuous integration
circle and user-facing systems.

Version
Control
System

transformationIntegrated
Developer

Environment

tokenizer

source code

tokens

AST

ASG

parser

scope analyzer

querying

graph
database

Git, Visual StudioCode ShapeSecurityShift Java, Cypher Neo4j

Figure 4.1 Architecture overview of the approach.
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4.2 Main Components

4.2.1 Workflow Integration Points

The proposed framework is intended to be integrated with at least two types of development
tooling. First, connecting to the Version Control System makes it possible to extend the
continuous integration workflow and provide the users of the systemwith current information
about the codebase they are working on. Second, connecting to the Integrated Development
Environment empowers their users with feedback on the current modifications.

Version Control System (VCS)

Version control systems are change management systems for files (e.g., documents, software
code). They store revisions of the current set of files managed by the system. Each revision is
differentiated with a timestamp and also the person performing the changes are associated
with a revision.

Version control is one of the most essential collaboration tools. When developers work on the
same codebase, especially when the codebase is large, they need to share the code and work
on it at the same time. Using a VCS, one can investigate the current version of the codebase
at a selected revision. Also, it is possible to determine the changes performed between two
revisions, manage multiple development branches with the same root and merge the changes
made in these.

Integrating a VCS into the architecture makes it possible to extend the workflow with the
features of the framework. By automatically calculating the changeset and forwarding this
information to the framework, it is possible to keep an up-to-date representation of the
version controlled data source.

The most known implementations are Git [54], Subversion (SVN) [55], and Mercurial (Hg) [56].

Integrated Development Environment (IDE)

An IDE is an application for (software) developers that integrates several tools making it
easier to write, compile, and test the product. Integrated development environments are
detailed in Section 2.4.

In the architectural overview, the IDE also represents the working set of the software and
its dependencies available on the developer’s computer. This working set also contains the
developer’s modifications that are not yet transferred to the shared VCS.

4.2.2 Transforming the Source Code

One of the most important third party components of the approach is the source code parser.
This component is used to transform a given source file, a compilation unit into a model
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representation of the syntax and semantics of the source code. The process itself is detailed
in Section 2.2.3.

Since Shape Security Shift (detailed in Section 3.2.3) suits my approach the best (see compari-
son of JavaScript parsers in Section 3.2.4), I have used the Java implementation of the Shift
Parser, and Scope Analyzer.

4.2.3 Graph Maintenance

The novelty of my approach is how it processes, stores and connects the source code rep-
resentation in a graph database. In this section I discuss how the subgraphs of the source
code files are prepared and then connected to each other constructing a connected graph
representing the whole source code repository.

The process can be summarized in 4 concise sentences:

1. The repository is transformed one file-by-file.

2. The ASG model is transformed into a property graph.

3. After every file is processed, the ASG subgraphs are interconnected using graph trans-
formations.

4. In case a file is added/modified/deleted, the corresponding subgraph is also added/re-
moved and reprocessed/removed from the graph.

This process and the algorithm for graph maintenance is detailed in Section 4.3.3.

4.3 Steps of Processing

The following enumeration presents the basic algorithm for processing, transforming, storing
and analyzing the source code repository.

4.3.1 Initial State

The graph representation of the repository follows the development of the source code.
Thus initially both the graph database and the repository are empty. When the database is
initialized, metadata and initial database structure can be inserted, so the queries executed
later can build on the existence of this structure.

4.3.2 Calculating the Changes to Propagate

Once there are modifications published in the repository or the IDE, it is the integrating
tool’s responsibility to notify the framework. This can be an event hook for the IDE or the
CVS, for example. The changes to a file at a given path may be the following:
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– Addition. In case a new file is added, it is processed, and the subgraph representation
is stored in the database.

– Modification. Since the approach is incremental with a file-level granularity, the modi-
fication of a file’s contents requires the removal of the whole old and addition of the
new subgraph.

– Removal. The removal of a file causes the removal of the subgraph too.

4.3.3 Maintaining the Graph

The file changes are processed one-by-one. The integrating tool notifies the framework,
specifying the path and content of the file along with additional metadata. The content is
then preprocessed using the parser resulting in a model representation.

Transforming the Instance Model

This representation of the parser conforms the metamodel based on the syntax and semantics
of the source language. But the property graph database can not import the data in this
form, thus it needs to be transformed. Figure 4.2 presents the transformation of a Java object
structure into a graph based on the basic rules detailed in this section.

:LiteralNumericExpression
value = 0

:LiteralNumericExpression
value = 1

:BinaryExpression
operator = 'Div'

LiteralNumericExpression
value: Double

«Enum»
BinaryOperator

«Interface»
Operator

Expression

«Interface»
Node

BinaryExpression

:LiteralNumericExpression
value = 0

:LiteralNumericExpression
value = 1

:BinaryExpression
operator = 'Div'

LiteralNumericExpression
value: Double

«Enum»
BinaryOperator

«Interface»
Operator

Expression

«Interface»
Node

BinaryExpression

«instanceOf»

right

left«instanceOf»

operator

right
left BinaryExpression

Expression
'operator' = 'Div' : String

Expression
LiteralNumericExpression

'value' = 0.0 : double

right

Expression
LiteralNumericExpression

'value' = 1.0 : double

left

metamodel

instance model

graph representation

Figure 4.2 Transformation of a Java object structure into a graph.

In order to acquire information from this model and transform it, one either knows its
metamodel and iterates over every element or — if the programming language of the parser
allows — uses reflection. In my approach I use the combination of the Shift parser written in
Java — thus using the reflective approach — and the Neo4j labeled property graph database.
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Typed Nodes Every AST or ASG node is a node in the graph. The graph node is typed with
the class, superclasses and interfaces of the represented model entity.

Node Properties Every property of a model entity — regardless of whether they are its own
or inherited from its supertypes — are also transferred to the graph node. These properties
are also stored with their basic type: double, string or boolean.

Labeled Relations References in the model are represented in the graph as relations,
directed edges. The relations are labeled after the name of the references.

Collections The metamodel also contains several reference collections: maps, lists and
tables. Maps and tables are represented in the graph as a new node, with appropriately labeled
relations to the referred nodes.

Lists are transformed similarly. In order not to lose ordinal information, the items are related
to the referrer with two routes (see Figure 4.3).

Variable

Reference
'accessibility' = 'Write' : String

references List

references

Reference
'accessibility' = 'Read' : String

next

0

1

Figure 4.3 Graph representation of a list.

The first route is direct; the referrer has a relation to every item of the list (labeled with
the name of the list). The second route has an additional List node between the two, and
its relations are labeled with the index of the item. The sequential items also have a direct,
chaining relation.

Source Code Location To be able to report precise location for a problem, the graph also
contains line and character information for the beginning and the end of every model entity.
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Storing the Graph Representation

If the parser successfully processes the source code, the resulting ASG is transformed using
the aforementioned rules. In a writing transaction, the transformed graph is serialized and
stored in the database.

Metadata Besides the ASG, additional properties are stored. For example, for every source
file, a node exists in the graph connected to nodes belonging to the particular ASG. This
enables handling nodes of a file as a whole.

Multilayered Graph With more complex rules it is also feasible to store multiple versions
of the same file in the database. This yields the ability to maintain multilayered versioning
for multiple users.

If the VCS supports branching the code development, the framework could also accommodate
this behavior. For example if two developers work on the master development branch in their
own IDE, there could be layers for all of them.

metadata

ASG ASG ASG

ASG ASG

Graph
representation

for a branch
in the VCS

Graph
representation
for the working 
copy in the IDE

metadata metadata metadata

metadata

Figure 4.4 Multilayered graph.

One layer contains every ASG for the master branch. One layer for each user, containing only
the ASGs of their modified files. ASGs in these are connected if both are present in the same
layer. If not, they are connected to the corresponding file in the layer of the master branch
(see Figure 4.4).
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Transforming the Graph

After the data has been stored in the database, it can be freely transformed with framework-
or user-defined rules. This step may be utilized for transforming the set of subgraphs into one
connected graph based on the export and import rules of the language (detailed in Section 5.4).

Neo4j allows the execution of in-place transformations, where queryingwith patternmatching
and manipulations may be declared in the same query. The possibilities of Neo4j are detailed
in Section 2.3.3. Transformation examples are presented and visualized in Chapter 5.

4.3.4 Executing Graph Queries

By utilizing the built-in pattern-matching abilities of Neo4j, it is easier and more user-
friendly to write pseudo-graphic, declarative patterns to find a structure in the graph —
compared to the generally used visitor patterns. [20] An example graph pattern query is
detailed in Section 5.3.

If the query language of Neo4j, Cypher is not powerful enough to express logic in a standalone
query, one may also employ arbitrary Java code. This code may be used inside the query or
even command multiple queries and aggregate the result.
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Chapter 5

Elaboration of the Workflow

In this chapter I demonstrate the various steps of the static analysis workflow in detail. I
employ small working source code examples in order to demonstrate the steps of the source
code transformation. A prototype implementation of the proposed workflow is available as
an open-source project at https://github.com/FTSRG/codemodel-rifle.

5.1 Transforming the Source Code Into an AST

As mentioned in Section 4.2.2, this transformation is carried out by the Shape Security Shift
toolkit. The source code is passed to the parser along with the parameters for the parsing
algorithm. Considering the new constructs introduced in ES6 (Section 2.1.2), I’ve chosen to
parse every file as aModule. This affects the grammar used in the parser and the resulting
data model.

The parse result of the one-line code snippet in Source 5.1 was previously presented in Fig-
ure 2.4.

var foo = 1 / 0;

Source 5.1 Basic example source code.

5.2 Storing the ASG in the Graph Database

Once the source code is parsed and the ASG is returned, the framework updates the stored
graph representation. Since Section 4.3.3 details how the Java Object structure is transformed
into a graph, this section only describes the queries used for the maintenance.

https://github.com/FTSRG/codemodel-rifle


5.3. Division by Zero 35

When a new file is added to the repository, there is no need to prepare the database. A new
metadata node is created with the name and path of the file, and optionally the session iden-
tifier of the IDE it has been created and sent in to the framework. The subgraph representing
the ASG is then inserted in a database transaction.

The newly created metadata node acts as a subgraph selector, since it is connected to every
node belonging to the file (of the given session). This makes it easy to remove the file upon
the removal of the file it represents.

In case the file has been modified, the nodes connected to its metadata node are removed,
then the new graph is inserted.

5.3 Division by Zero

As one of the most basic and easy-to-discover mistakes, division by zero should be reported
to the developer. In the context of mathematics, division by zero is undefined for the real
numbers. In JavaScript, it may result in NaN or Infinity.

Without dynamic testing or symbolic execution it is rather hard to find this kind of expression,
since the right side of the division may come from a variable. On the other hand, finding the
cases where the right side is a literal is trivial.

Taking a look at Figure 5.1, the graph representation of the previous example, it is relatively
easy to find the problematic nodes. A natural language definition of the problem would sound
like this: „we are looking for binary expressions that have a literal zero on the right side”.

Oneway to formalize this declarative definition in Cypher can be seen in Source 5.2. Executing
this query on the AST of the source code would 1) find matching nodes with the right type,
2) bind them to the corresponding names, and 3) check whether the required relations are
present, resulting in a state like in Figure 5.2. Finally, the result is the BinaryExpression
node. By querying the source code location (also stored in the graph connected to the node)
this query can report the precise location of the expression in the source code as problematic.

5.4 Handling Import and Export

Since the beginning, JavaScript projects have grown tremendously. With the size of the
average project, the language has also matured for handling bigger, more complex code
repositories. With ES6, a module syntax has been introduced to spread the codebase into
files, even directories. (Even before ES6 there have been several module systems, but ES6
described a standard for it.)

As described previously, I instruct the parser to process source files as modules. An ES6
module differs in two ways from a script: it is automatically interpreted as a strict-mode code,
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Module

VariableDeclarationStatement

VariableDeclaration

VariableDeclarator

BindingIdentifier
name = `foo`

BinaryExpression
operator = `Div`

LiteralNumericExpression
value = 1.0

LiteralNumericExpression
value = 0.0

declaration

declarators

items

binding init

left right

Figure 5.1 Graph representation of the code snippet of Source 5.1.

MATCH (binding:BindingIdentifier)
<-[:binding]-()-->
(be:BinaryExpression)
-[:right]->(right:LiteralNumericExpression)

WHERE be.operator = 'Div'
AND right.value = 0.0

RETURN binding

Source 5.2 Graph Pattern Matching Division by Zero.

and one can use import and export statements in them.

This section follows [57, 58, 59] and collects the most important details about the specifica-
tions.

5.4.1 Export

Everything declared inside a module belongs to the scope of the module. In order to let other
modules to access them, they need to be explicitly exported.

Source 5.3 lists the various ways declaring a feature export. Just to list a few combinations;
one may, for example, export expressions, variables, function and generator declaration
statements either named, or using an alias. Or have default export expressions, even in an
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VariableDeclarator

BindingIdentifier
name = `foo`

BinaryExpression
operator = `Div`

LNExpression
value = 1.0

LNExpression
value = 0.0

binding init

left right

binding be

right

Figure 5.2 Graph representation of the query describing division by zero.

export statement.

export { name1, name2, . . . , nameN };
export { variable1 as name1, variable2 as name2, . . . , nameN };
export let name1, name2, . . . , nameN; // also var
export let name1 = . . . , name2 = . . . , . . . , nameN; // also var, const

export default expression;
export default function . . . () { . . . } // also class, function*
export default function name1. . . () { . . . } // also class, function*
export { name1 as default, . . . };

export * from . . . ;
export { name1, name2, . . . , nameN } from . . . ;
export { import1 as name1, import2 as name2, . . . , nameN } from . . . ;

Source 5.3 ES6 export statement examples from MDN.

Parsing these export statements result in different representation in the instance model
and the resulting graph. Figure 5.3 shows an example inline default export statement for a
function named foo: export default function foo() {}. Note that the export statements
are listed in the Module, but not in any of the Scopes.

5.4.2 Import

Like there are many ways for exporting features in a module, there are also several ways for
importing them. Source 5.4 lists these.

The imported features are placed in themodule-level global scope as a Variablewithout their
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GlobalScope
Scope

'type' = 'Global' : String
'dynamic' = true : boolean

Scope
'type' = 'Module' : String
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Figure 5.3 ES6 export statement example.
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import defaultMember from "module-name";
import * as name from "module-name";
import { member } from "module-name";
import { member as alias } from "module-name";
import { member1 , member2 } from "module-name";
import { member1 , member2 as alias2 , [...] } from "module-name";
import defaultMember, { member [ , [...] ] } from "module-name";
import defaultMember, * as name from "module-name";
import "module-name";

Source 5.4 ES6 import statement examples from MDN.

declaring node, and the import statements are also present in the AST. Figure 5.4 shows the
ASG of a module importing and then using a function declaration (exported in the previous
module): import foo from "export"; foo();.

5.4.3 Connecting Imports to Exports

Since there are several ways to both export and import features, there are even more com-
binations. This thesis does not aim to cover all of these, but to show that it is possible to
connect graph module representations based on simple rules.

Executing the following steps emulates the resolution made by the interpreter of the source
codes and connects the usages of the imported feature to the declaration of the exported one:

1. Find the imported IdentifierExpression in the items list of the GlobalScope node.

2. Find the connected upstream Variable node.

3. Find the Declaration for the Export that has a Nodewith the same BindingIdentifier
as the import.

4. Connect the Variable on the import side to the Declaration on the export side with
a declarations relation.

The Cypher query in Source 5.5 manages to connect the exact type of imports and exports
mentioned previously. Note that this query does not search for a file exporting the statement.
For the correct match it should also check themetadata, whether the found node was declared
in a file with matching absolute path.

After executing the query in Source 5.5, the two ASG subgraphs are connected with a new edge
(see Figure 5.5). This enables executing global-level queries addressing multiple modules.
These newly added relations are always removed when either the source or the destination is
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Figure 5.4 ES6 import statement example.
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MATCH
(:ImportDeclaration)-[*]->(importIdentifier:BindingIdentifier)

MATCH
(:GlobalScope)-[:through]->(:HashTable)-[]->(reference:Reference)
-[:node]->(:Either)-[:data]->(identifier:IdentifierExpression)

MATCH
(:ExportDeclaration)-[:declaration]->(:Node)-[:name]
->(exportIdentifier:BindingIdentifier)

MATCH
(exportIdentifier)<-[:node]-(declaration:Declaration)

MATCH
(reference)<-[:references]-(variable:Variable)

WHERE
importIdentifier.name = identifier.name AND
exportIdentifier.name = importIdentifier.name

MERGE
(variable)-[:declarations]->(declaration)

Source 5.5 Cypher query for connecting import and export statements.

removed, in case a module is modified. Thus it is optimal to run this query only when all of
the files are already processed and the chance of modification in the near future is low. (This
might happen after a modification is sent to the VCS or the developer saves the files in the
IDE.)

5.5 Dead Code Search

Code that is written, but not used in the whole codebase is often called dead code. Without
symbolic execution it is a complex problem to decide what part of the code is reachable,
but (excluding dynamic evaluation, e.g., eval in JavaScript) it is feasible to find function
declarations in a file which are possibly not referenced in the local scope.

5.5.1 Search Algorithm as a Graph Query

If a function declaration is not exported from the module and no exported declaration refer-
ences it, it is highly likely that the declaration is unreachable and contains dead code. With
the following steps and the Cypher query described in Source 5.6 it is possible to locate dead
code in a file.
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1. Find the called FunctionDeclarations target for every CallExpression.

2. Find every call from the body of a function.

3. Create a calls relationship between the caller and the callee FunctionDeclaration.

4. Find the exported FunctionDeclarations that can be entrance points.

5. Find every FunctionDeclaration that should be available through the entrance points.

6. Return every FunctionDeclaration that are not in this list.

5.5.2 Evaluating the Result

For the sake of conciseness, I present the query for a simplified version of this algorithm,
which only works with a single module in the database.

Compared to other commercially available software, this solution is able to detect more dead
code scenarios: e.g., circular references without incoming calls (see Figure 5.6. Instead of
reporting the problems one-by-one or layer-by-layer, it reports the clique, without user input.

5.5.3 Transformation in a Transaction

This query utilizes several possibilities only available in Neo4j. Since the query modifies the
database, but the modifications are derived information, they should not be stored in the
database. Database transactions that can be discarded, but still query the modified database
are highly utilized here.

It is not possible to declare transitive closure1 over arbitrary node type and edge label sequence
in one Cypher query. This can be tackled by utilizing the trick of starting a new transaction,
writing the database and immediately querying the modified created data, then discarding
the transaction. One can match and replace every sequence with a new, dedicated labeled
edge and declare a transitive closure over it, but this requires the database to be modified
(see Figure 5.7).

5.6 Control Flow Graph (CFG)

Control Flow Graphs (CFG) are graph representations of the computation and control flows
in the program. In this graph the nodes represent statements that are not interrupted by
control changes. Directed edges represent possible flow of control between the two nodes.
Nodes can have multiple incoming and outgoing edges. [60] Figure 5.8 presents an example
CFG.

1Transitive closure is marked with an asterisk in Cypher.
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// Prepare call edges
MATCH

// Match called FunctionDeclarations for every CallExpression
(call:CallExpression)-[:callee]->(:IdentifierExpression)
<-[:node]-(:Reference)<-[:references]-(:Variable)
-[:declarations]->(:Declaration)-[:node]->(:BindingIdentifier)
<-[:name]-(fd:FunctionDeclaration)

MATCH
// List every call from a function body
shortestPath(
(fun:FunctionDeclaration)-[*]->(call:CallExpression)

)

MERGE
// Create a calls relationship between the caller
// FunctionDeclaration and the called FunctionDeclaration
(fun)-[:calls]->(fd)

;

// Get not used FunctionDeclarations
MATCH

// Find the exported FunctionDeclaration that
// may be an entrance point
(main)-[:items]->(:ExportDeclaration)
-[:declaration]->(fd:FunctionDeclaration)

MATCH
// Find every FunctionDeclaration that should
// be available through the entrance points
(find:FunctionDeclaration)

WHERE
// List the ones that are not reachable from the
// entrance nodes (thus are not the entrance nodes "<>").

( NOT (fd)-[:calls*]->(find) )
AND ( find <> fd )
AND ( main:Script OR main:Module )

RETURN
find

Source 5.6 Cypher queries for finding dead code.
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In this section I demonstrate how to transform the basic ASG structures into a CFG, and to
utilize the result for static analysis.

5.6.1 Theoretically Possible Paths

As previouslymentioned, nodes can havemultiple incoming and outgoing edges. At execution
time when the state of the program is at a given CFG node — based on the dynamic state of
the execution — it may continue with any statement of the corresponding subsequent nodes.

Without running or interpreting the source code it is only possible to find and map every
scenario in the ASG and transform them into nodes and edges in the CFG. A possible execution
path is a path in the graph fromone of the entry nodes to one of the exit nodes. The constraints
on this path may be unsatisfiable, thus an execution of the source code may not iterate over
this path. The CFG thus contains every feasible, and some infeasible execution paths.

5.6.2 Transforming by Node Type

There are several ways to transform the ASG into a CFG. Since my approach utilizes a graph
database, the framework transforms the graph one smaller subgraph structure at a time,
utilizing on pattern matching.

Self-Containing Transformations

The key to this approach is widely used: every node has a start and end node that acts as a
connection point for other nodes — transformed at another time. These transformations will
eventually connect the whole graph and represent the CFG.

This approach enables parallelization and thus speeds up the transformation, while gen-
eralizing the transformation patterns. The following sections present how different ASG
information may be transformed.

Sequencing

Knowing the order of the statement sequences is one of the most important information
for CFG transformations. Although it can be derived from the indexes of the list nodes, it
is a rather compute-heavy operation. The graph thus redundantly contains the sequence
information by storing the list elements both chained and indexed.

Data Structures

Data structures, like uninterrupted list of statements (statement blocks, such as the body of
a function) may contain zero or more elements. Like previously detailed, lists are chained
and the last element is also marked.
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If the list contains one or more elements, the ASG structure is transformed as follows:

1. The start node (the ASG node itself) is connected to the start node of the first element.

2. The end node of every element except the last is connected to the start node of the
next element.

3. The end node of the end node of the list itself.

If the list does not contain any elements, its start node is connected to its end node.

Statements

As the main building blocks of a language, the various statement types represent different
behaviors when interpreted. There are several statement types in the Shiftmetamodel, and in
this section I introduce a few of these for the purpose of building a small example program.

VariableDeclarationStatement A variable declaring statement is parsed into a structure
ofmultiple graphnodes. These are VariableDeclarationStatement, VariableDeclaration,
and VariableDeclarator. On the right side of the variable declaration statement is one
Expression.

It is the framework’s job to transform this ASG segment into a CFG. The transformation of
any other element inside of the subtree of the root VariableDeclarationStatement node is
executed at another time.

The assigned behavior to this node type and structure is the following:

1. The Expression is evaluated.

2. The VariableDeclaration is executed.

IfStatement This branching statement is parsed into one graph node. This node has two
or three references. It must have one condition that decides the branching direction. A
(positive) consequence is also required, but the alternate path reference is optional. In order
to optimally transform these two scenarios, two transformation patterns are necessary.

1. Both scenarios evaluate the Expression.

2. The positive consequence is connected with the true path, and the end node of the
consequence node is connected to the end of the IfStatement.

3. If there is an alternate branch, its start node is connected with the false path from
the conditional Expression and its end node is also connected to the end node of the
IfStatement.
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This transformation creates a diamond-shaped flow. If there are more alternative branches,
the ASG represents them in chained containment. Thus eventually every branching will be
connected, one-by-one.

FunctionDeclaration Function declaration structures are rather simple. The node has
references to its parameters and body. The parameters — if necessary — are evaluated upon
calling. The FunctionBody contains a list of directives and a list of statements.

The transformation pattern ignores the directives and immediately connects the Function-
Declaration to the list of Statements, both ways (as after the function should also end after
the last statement has been executed).

Expressions

There are 28 expression implementations in the Shift metamodel, for example literal ex-
pressions for strings, booleans, numerals, null, infinity, and regular expressions. There are
also expressions representing class declarations, arrays, array functions. Unary and binary
operators are also parsed into corresponding unary or binary expressions.

The prototype of the framework contains graph transformation patterns for literal and call
expressions. Regarding the control flow graph, literals are immediately evaluated, so their
end node is connected directly. Call expressions try to find the declaration of the called
function and set it as the next block of the control flow.

The end node of the function declaration is also connected to the end node of the call
expression. If the function is called more than once, its end node will have multiple out-
going edges. Thus when writing graph pattern queries over the CFG, one has to declare
constraints matching the ingoing and outgoing edges between the CallExpression and the
FunctionDeclaration.

In case the call expression provides parameters, they are also transformed into the CFG and
evaluated in the given order.

5.6.3 Transformation Challenges

Besides the effort required for writing the transformation rules for every class and structure
in the metamodel, there are also other challenges. Helping graph structures introduced for
easy querying may slow down or even make impossible to correctly query given patterns.

Queries for dead code search (detailed in Section 5.5) for example require the list ordering
and CFG end nodes to be removed, or the transitive closure slows down the query. This would
make it unsuitable for near real-time user feedback.

Another challenge occurs, when a dynamic object or its member is passed as a parameter
to a function call. When evaluated, the function declaration references it with an alias; the
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static analysis, however, may only guess the current value or reference. Substituting all
the possible uses for a given reference and collecting dynamically added members may be a
partial solution, but this is a future work of the research.

5.6.4 Test Generation

As previouslymentioned in Section 5.6.1, the CFG contains every feasible, and some infeasible
execution paths. In Cypher it is also possible to find the shortest paths or every path between
two nodes. Knowing the entrance node of the CFG and selecting an arbitrary node in the CFG
it is thus possible to list every path from the entry node to the selected one. This node can
represent, e.g., a troublesome, unwanted or unexpected state.

With the transformation of the statements and the conditions of the if statements and other
branching structures into a satisfactory problem it may be possible to decide whether there
are program inputs that take the execution of the program to the selected node. This topic is
subject to future work.

5.7 Type Inference

As detailed in Section 2.2.3, type inference refers to the deduction of the data types of
expressions, statements in the source code. My approach to finding the possible types of an
expression or variable is similiar to the technique introduced in Section 5.6, transforming
the ASG into a CFG-like structure, as the data flow closely follows the control flow.

Type inference is a particularly difficult problem, even for statically typed languages. For
dynamic languages, such as JavaScript, it is even more problematic and only a few tools are
available. The most popular ones are listed in in Chapter 3.

Following the approach of one of these tools, Tern (introduced in Section 3.1.1), first I
assign type information to given nodes in the ASG, then propagate this information based on
constraints and rules, detailed in this section.

5.7.1 Type System

In order to represent the types in the graph, structures are introduced and stored in the same
graph database. The database has a singular TypeSystem collector node, connected to every
Tag, representing a type. These Tags are attached to a given ASG node, meaning the node
can contain a value of the given type.

Literal Types

Since the literal expression nodes in the ASG are explicitly annotated with their type, it is the
easy to mark these with a Tag: Boolean, RegExp, Infinity, Numeric, Null, and String.
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Classes

Handling classes and composite structures requires new Tags to be introduced to the type
system. The Tags should contain information about properties and methods, along with
their possible types. The topic of developing the proper representation and transformations
collecting and maintaining these structures is subject to future work.

Functions

Functions take parameters and based on inner logic (that could even consider the type of the
parameters and other variables) may return any type of result. If the function declaration
body returns a literal, an already tagged variable reference, or a new instance of a class, it is
easily tagged.

The representation of function types is also subject to future work. I outline two possible
representations:

1. Maintain multiple type declarations for a given function, with every combination of
parameter types.

2. Store only a composite declaration with a list of possible values for every parameter
and the return value.

5.7.2 Propagation Strategy

As the program runs, the values and thus their respective types are moving from variable
to variable through variable reads, operators, expressions, statements, and variable writes.
While this process follows the control flow of the program, during static analysis there is no
way to find the exact order of execution. Just like the CFG in my approach contains every
possible flow, the type annotations in the graph will also contain every possible type that a
given node may have.

The basic algorithm for propagating type information is the following:

1. Identify the literals and class instaces, tag these accordingly.

2. Apply the propagation rules considering the constraints and propagate the tags so a
given node can only have one reference to a given tag.

3. Repeat step 2 until there is no modification in the graph — or in case of an endless
loop stop after given amount of iterations.
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Expressions

There are 28 expression types in the Shift metamodel for JavaScript. Some of these have dis-
criminator values, thatmay result in differentmeaning for different input types. BinaryExpressions
have an Expression on their left and rigth side each with their type information, and the
operator gives meaning (semantics) to what the resulting value can be.

Table 5.1 shows the various semantics of a simple addition (a BinaryExpression with a +
sign as a discriminating BinaryOperator). [61]

Left expression Operator Right expression Result Meaning

Number + Number −→ Number (addition)

Boolean + Number −→ Number (addition)

Boolean + Boolean −→ Number (addition)

Number + String −→ String (concatenation)

String + Boolean −→ String (concatenation)

String + String −→ String (concatenation)

Table 5.1 Semantics of the addition operator in JavaScript.

Logical operators also behave differently compared to other languages, e.g., Java. The logical
and operator (&&) returns the left expression if it is so-called falsy (values that can be converted
to false, such as null, 0, undefined). If the left side expression is truthy, it returns the right
side value. Thus the possible return type of the expression can be types of both expression
and not necessarily Boolean.

Apart from UnaryExpressions and BinaryExpressions, there are several more. Most im-
portantly the CallExpression, that returns the value of the called function. A value with
possible types that the function may return with. Just like in case of the CFG transformations,
several rules have to be written in order to cover the various expressions of the language.

Since the base of the transformation is the ASG, where the expression is parsed in the correct
precedence, the transformation will also respect this order and compute the possible types of
the whole expression.

Statements

There are also more than 20 Statement types in the metamodel of Shift. Some of these intro-
duce new, temporary variables in the scope, such as ForStatement or its specific, syntactic
sugar version, ForOfStatement, that iterates over the values of an iterable type. In these
cases the transforming graph pattern has to extract the inner type information from the type
of the iterable and propagate it to the variable.
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Variable References

In JavaScript one may think of a variable identifier as a label, a name, a reference to a value.
These variables are represented in the ASG and (most of) their static access references are
also represented.

When an Expression accesses the value of a Variable, a reading Reference is present in the
ASG. The same goes for the VariableDeclarationStatements and ExpressionStatements
with AssignmentExpression inside, assigning value to a variable, represented by a writing
Reference.

These References are only present for static scope variable accesses. New transformation
rules have to be created to cover the cases when an Object is dynamically introduced to a
scope — e.g., passed as a parameter for a function. This is also subject to future work.

Figure 5.9 shows how the type information may propagate in the graph. After the Literals
have been tagged 1 , the type information propagates to the Variable 2 through the
VariableDeclarator and the BindingIdentifierMemberExpression. This type information
is read by the IdentifierExpression 3 and the final type of the BinaryExpression based

on the rules of adding a number to another number will be calculated and assigned 4 .

5.7.3 Limitations and Challenges

For my thesis I have only investigated whether it is possible to build the foundations of a type
inferencing system on graph pattern matching and transformations. The type inferencing
system in Tern (introduced in Section 3.1.1) has already shown that it is possible to do so on
in-memory AST representations with visitor patterns.

In order to achieve better language coverage, it is subject to future work to develop an appro-
priate representation for compound and complex data structures, handle built-in functions
and methods of data types. Challenges also include handling the this references in functions
and class methods, anonymous functions, and method calls like forEach, map, or filter.

With the right constraints it is possible to approximately infer the type of a given expression
and help developers with context-aware information and warnings for type-related problems.
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Figure 5.9 Type information propagation.
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Chapter 6

Evaluation of the Prototype

In this chapter I present the measurements of various system functions and the runtime
characteristics of the prototype framework.

Due to the underlying approached, the presented framework has its limitations and trade-
offs. Processing one file at a time makes the approach incremental with file-level granularity,
potentially saving time on the whole, but takes a large amount of time integrating the parser
into the system. The approach also requires less memory during the parsing phase, but takes
more time once every file was processed and the connecting phase takes place.

6.1 Benchmarking Environment

In order to make sure that the measurements are reproducible, and are not affected by user
input or other environmental events, the measurements were performed in the cloud. In this
section I detail the hardware and software configurations for the benchmarks.

6.1.1 Virtual Machine Configuration

The benchmarkswere carried out in aMicrosoft Azure virtualmachine [62]. Since the approach
utilizes a persisted graph database with in-memory caching, I have chosen a configuration
with moderate amount of memory for a server and high IO performance.

The D-series virtual machines were designed with data-intensive use-cases in mind, like Big
Data and Analytics. [63] The virtual machine instance was located in the West Europe region.

The Standard DS3_v2 configuration consists of the following:

– 4 CPU cores (Intel(R) Xeon(R) CPU E5-2673 v3 @ 2.40GHz — reported)

– 14 GB memory

– 8 data disks
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– 12800 maximum IOPS

– 28 GB local SSD

6.1.2 Software Configuration

The results of the benchmarks can also be affected by the software configuration. I have
selected the preconfigured Ubuntu Server virtual machine with the following properties and
modifications:

– Ubuntu 16.04.1 LTS (GNU/Linux 4.4.0-42-generic x86_64)

– Oracle Java(TM) SE Runtime Environment (build 1.8.0_111-b14)

– Java Virtual Machine with 2 GB minimum and 12 GB maximum heap space

– bash benchmarking script with curl

6.1.3 Framework Dependencies

The prototype of the framework was based on changing and rapidly developed dependencies.
Both Neo4j and Shift had version and API changes, so I chose to freeze the versions at a
working state and use them for the measurements.

Neo4j was freezed at the first released 3.0 version: 3.0.0. At the time of writing this thesis it
is at version 3.0.6, with 3.1 being available as a beta. Shift was freezed at 2.2.0 with custom
modifications.

I needed to perform some modifications on the Shift source code, which were later merged1

to the Shift repository.

6.2 Benchmark Cases

In this section I iterate over the various benchmark cases, present them in detail, introduce
the results of the measurements and evaluate the results.

6.2.1 Graph Database Initialization

The framework uses the Neo4j server in embedded mode (instead of a standalone configura-
tion). This means that the server is started with the framework and at the first usage it needs
initialization.

1https://github.com/shapesecurity/shift-java/pull/101

https://github.com/shapesecurity/shift-java/pull/101
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While the following benchmarks are prepared with initialized databases, I have measured
the time required to prepare an empty database. This is measured by deleting the database
folder, restarting the application and executing a simple query counting the nodes.

The database requires on average 996, median 1015 milliseconds to initialize2.

6.2.2 Source to Graph Transformation

After the database has been initialized, it can receive content. This transformation process
is one of the most time-consuming workflows. Here the source code of the file is read from
the disk or the memory, transferred to the server. It is then parsed using the Shift parser,
extended with the scope analyzer and stored in the database while iterating over every node.

Figure 6.1 The characteristics of the import steps.

Figure 6.1 shows the characteristics of these three steps. Since even the longest source codes
can be written in one line, instead of the source lines of code I have chosen the number of
nodes in the transformed subgraph (model size) as the horizontal axis. The vertical axis
represents the time (in milliseconds) required to perform the given transformation step. Note
that both axes are logarithmic.

In order to present an accurate and wide-range measurement, I have selected the repository
of the Tresorit3 web client [64]. The current version of this repository contains 780 JavaScript
files, with 75 907 lines of actual code in total. This results in 8 437 838 graph nodes.

2936, 945, 1010, 1019, 1022, and 1042 milliseconds in the 6 runs, respectively
3Tresorit is a secure online cloud storage service with syncing and sharing features.
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Since the source code contains language elements not yet standardized, I translated the source
code to conform ES5 before it is parsed by the Shift parser. This step is not calculated in the
benchmark. The resulting files are then imported into the database one-by-one, sequentially,
thus the parallel optimizations are not present in this measurement.

Based on Figure 6.1 the time requirement of the parsing and scope analysis steps are negligible
compared to the third step. Iterating and storing the elements of the ASG in the graph
database shows polynomial correlation with the size of the graph. It is also visible that
most of the files are parsed under one second, which indicates that it can be employed in
continuous and everyday development.

These results are based on two separate, sequential, full import of the source code repository,
containing 780 files.

6.2.3 Dead Code Search

Searching for dead code snippets consists of two phases: first, the call graph has to be prepared,
then the graph is queried for unreachable code. Since the transformation rules and queries
are far from complete and are not covering every code model scenario, this measurement can
only report the characteristics of the current implementation.

Figure 6.2 The characteristics of dead code search.

Figure 6.2 shows at least two horizontal clusters for both steps. On the bottom, there are
files that probably contain none or only a few nodes processed by the queries. Based on the
figure and manual testing, the characteristics of the upper cluster is to be expected when the
transformation rules provide full coverage, resulting in constant runtime for most cases.
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The results are based on one-time, file-by-file import and dead code search of the source
code repository, containing 780 files.

6.2.4 ASG to CFG Transformation

In order to measure the characteristics of the CFG transformation, I have imported the source
files of the Tresorit web client one-by-one and executed the CFG transformation queries at a
time.

Figure 6.3 The characteristics of building the CFG.

Figure 6.3 shows that the measurements are clustered into three parts. There are at least two
explanations for this:

– The number of CFG transformations implemented in the prototype framework is low.
Since there are measurements in every cluster for a great amount of model sizes, it is
possible that the composition of the files are different in each cluster.

This would mean that the top cluster — implementing business logic — contains more
nodes to transform, while the files in the bottom cluster —mostly describing interfaces
and proxies — contain less.

– The transformation is executed in a parallel manner. If two transformations cause a
deadlock in the database, they are canceled and tried again later. It is also possible
that subgraphs containing more transformable nodes by the framework are processed
slower. The slower the transformations are, the more deadlocks may happen, resulting
in slower overall performance.
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It is also unexpected to have the top two clusters show no correlation with the size of the
resulting graph size. This phenomenon can be explained with the reasons above or with the
way Neo4j executes declarative transformations.

The results are based on one-time, file-by-file import and transformation of the source code
repository, containing 780 files. Since the CFG transformation in the framework is far from
finished, deeper examination of the results is subject to future work.

6.2.5 Incremental Processing

Since the framework processes the changes file-by-file, it is possible to execute the analysis
in an incremental fashion with file-level granularity. After every file has been processed and
a new changeset is present, it is only required to update and process the modified file and the
affected graph parts.

Figure 6.4 Runtime measurements of the execution of the analysis for sequential modifi-
cations.

Figure 6.4 details the execution times for each step during the initial and the subsequent
change propagations. These all consist of the same steps: 1) the source code is parsed, then
2) scope analysis is applied, and 3) the resulting ASG is stored in the graph database, finally
4) the inserted subgraph is linked to the already stored nodes, imitating the JavaScipt module
import-export resolution.

The initial import was executed first, represented by the first set of bars on Figure 6.4. After
all 780 files have been processed one-by-one, the import-export linking was executed once.
Subsequent modifications were simulated by removing and reprocessing a file with one of the
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most import statements (thus resulting in more work for the linking transformation). The
linking transformation was applied after every modification.

Since the processing time of the parsing and scope analysis steps are negligible in every
iteration. The most time-consuming operation is storing the graph in the database, which
closely relates to the size of the graph to be stored. Thus reducing this resulted in visible
difference. The incremental approach for the complete process is faster by three orders of
magnitude. By reusing the already stored and linked ASG subgraphs, the incremental linking
step itself is faster by one order of magnitude.

Please note that along with the previous figures, Figure 6.4 is logarithmically scaled on the
vertical axis.

6.3 IDE Integration

Besides executing measurements, I also created a plugin for Visual Studio Code (introduced
in Section 2.4.1) that sends the content of the open file to the framework, when the file is
modified and saved. Then it requests the results of the dead code search, and conviniently
displays it using the API provided by Visual Studio Code.

Figure 6.5 Proof-of-concept plugin integration in an industrial case study.

Figure 6.5 shows the proof-of-concept plugin integration displaying dead code warnings for a
file in an industrial case study. The previously introduced results in Figure 5.6 show that the
approach was able to find circular references without incoming calls and report the clique,
without user input. To validate the results, I have manually checked the presented warnings.
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6.4 Threats to Validity

Although I carefully designed and executed each measurement, there might have been factors
beyond control that influence the results yielded. In this section, I try to list the possible
mistakes and also discuss the steps taken to mitigate their effects.

6.4.1 Benchmarking in the Cloud

As a multiple access system, the virtual servers in the cloud can be easily affected by neighbor-
ing virtual machines using the same resources. The virtual machine manager can also limit
the usage of these resources, if the machines disturb other ones. One can neither control the
resources assigned to the machines, nor influence their precise geolocation and connections.

My mitigation strategy is to run the benchmarks multiple times and treat their median as
the representative value, or import a larger codebase with file sizes varying from a few to
hundreds of lines.

6.4.2 Methodological Mistakes

It is possible that I made mistakes while implementing the approach. It may not adhere to
the specification correctly, perform the transformations correctly or measure correctly.

To check the validity of the results, I checked the results manually and with others tools.
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Chapter 7

Future Vision

My goal was to create the foundation of a versatile framework capable of doing even more
than originally planned. Based on my approach there are several use-cases it makes possible:

– Existing linters do a good job at analyzing linting rules. However, extending them with
new, complex rules is difficult. My approach allows tool developers to formalize rules
more intuitively with graph patterns.

– With connecting the ASGs there are new possibilities in static analysis that were not
possible or available before. This might be used for finding usages of source code
elements, helping refactors and finding problematic structures reaching across files.

– Having several files processed in the same database also enables comparing them,
potentially allowing executing sophisticated graph-based plagiarism searches.

– Transforming the ASG into CFG not only allows path searches, but combining it with
other tools and techniques may result in automated test generation. This can result in
higher code coverage and the more unresolved references discovered.

– Based on the CFG and the ASG, basic type inferencing algorithms may produce typing
information in the untyped source code, allowing even more ways to write queries and
constraints on the source code.

Since the transformation rules in the framework are far from finished, writing more, more
precise, optimized, and general transformation rules and examining the benchmark results is
subject to future work.
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Chapter 8

Conclusions

My main objective was and still is to provide a solution for reducing the time required for a
global, codebase-level reevaluation of static analysis after a change occurs.

The elaborated framework can transform a rather large source code repository as a whole
into a graph representation and maintain it subsequently. It is found that the approach is
suitable for performing code convention compliance checks and for executing static analysis
tests on the graph representation.

This approach also utilizes incremental processing with file-level granularity, speeding up
the static analysis. Based on my measurements the framework is fast enough to help its users
with fast changing code repositories.

Once the framework contains enough transformations and queries for handling the language,
it can extend the everyday toolkit of developers.

8.1 Summary of Contributions

I presented an extensible proof of my novel concept to perform incremental static analysis
on dynamic JavaScript source code repositories based on graph transformations. My proposal
is based on software code modeling, graph transformation and graph pattern matching. The
feasibility of the approach was evaluated using manual validation and benchmarking.

8.1.1 Scientific Contributions

I have achieved the following scientific contributions:

– Proposed an architecture for building an incremental static analyzer using freely avail-
able components.
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– Proposed an approach to transform JavaScript source code repository into a connected
graph model.

– Provided an algorithm to update the graph data model incrementally.

– Presented a working method for finding problematic code parts using graph pattern
matching.

– Provided a transformation approach for creating CFG1 from ASG2.

8.1.2 Practical Accomplishments

I have also achieved the following practical accomplishments:

– Created an extensible incremental static analysis framework.

– Developed a tool for transforming JavaScript source code into graph data model.

– Designed a benchmark evaluating the approach.

– The prototype framework has been published as an open-source project3.

8.2 Novel Results

A report about my approach was also presented [65] at the annual Scientific Students’ Asso-
ciations Conference4 in 2016. Compared to this report, this thesis has the following novel
contributions:

– I investigated the feasibility of a type inferring system on the graph structure using
graph transformation.

– I have implemented a prototype transformation simulating a JavaScript module loader.

– To show the advantages of incremental processing, I have measured the time required
to process a complete initial project import and subsequent modifications.

Compared to my earlier work in static analysis [66, 11, 67], this thesis has the following novel
contributions:

– This approach utilizes a property graph for storing the transformedmodel of the source
code (as opposed to EMF5 and RDF6 models).

1Control Flow Graph
2Abstract Semantic Graph
3https://github.com/ftsrg/codemodel-rifle
4In Hungarian: Tudományos Diákköri Konferencia
5Eclipse Modeling Framework
6Resource Description Framework

https://github.com/ftsrg/codemodel-rifle
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– My approach tackles the problem of carrying out static analysis for dynamic languages
(e.g., JavaScript), instead of static languages (e.g., Java).

– Besides static analysis, I proposed an algorithm for transforming the ASG into a variant
of the CFG.

– This approach was tested on an industrial case study, provided by Tresorit Kft. Tresorit
is a secure online cloud storage service with syncing and sharing features, on multiple
platforms. The Tresorit Web Client is based on JavaScript.

– I implemented a proof-of concept IDE integration with Visual Studio Code that is able
to detect dead code with quick response times and display corresponding warnings to
the source code developers.
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