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Constrained Horn Clauses (CHCs) have conventionally been used as a low-level representation in
formal verification. Most existing solvers use a diverse set of specialized techniques, including direct
state space traversal or under-approximating abstraction, necessitating purpose-built complex algo-
rithms. Other solvers successfully simplified the verification workflow by translating the problem to
inputs for other verification tasks, leveraging the strengths of existing algorithms. One such approach
transforms the CHC problem into a recursive program roughly emulating a top-down solver for the
deduction task; and verifying the reachability of a safety violation specified as a control location.
We propose an alternative bottom-up approach for linear CHCs, and evaluate the two options in the
open-source model checking framework THETA on both synthetic and industrial examples. We find
that there is a more than twofold increase in the number of solved tasks when the novel bottom-up
approach is used in the verification workflow, in contrast with the top-down technique.

1 Introduction

Constraint Horn Clauses (CHCs) are widely used in the field of formal verification both as a means for
an intermediate representation [6, 10, 14] and as a specification language [1]. Conventionally, CHCs
allow the specification of deduction problems using implication, allowing the formalization of rules that
govern how atomic facts lead to more complex (deduced) information.

A CHC problem can be solved in many different ways. SPACER [9] in Z3 [15] uses a solver based
on automatic under-approximating abstraction; ELDARICA [13] uses a direct abstract state space traver-
sal over the CHC formulae; and UNIHORN [1] uses a translation to recursive Boogie [3] code before
applying a conventional software verification workflow to achieve a result. While the former approaches
in SPACER and ELDARICA work well as demonstrated by their performance in previous years’ CHC-
COMP [1], a competition for CHC solvers, they require purpose-built solvers, thus incurring additional
effort when developing new algorithms.

In contrast, the approach utilized by UNIHORN relies on existing algorithms, taking advantage of the
tool being part of the ULTIMATE framework with proven and efficient algorithms for tackling software
verification tasks [12]. By complementing the framework with a new front-end for parsing and trans-
forming CHC formulae, the same verification workflows can be applied to the CHC-based problems as
well, enabling their efficient verification.

The transformation step used by UNIHORN creates Boogie code that roughly emulates a program
capable of deducing the existence of facts necessary to reach some end goal (e.g., a safety violation). We
refer to this approach as top-down [18] or backward.

In this paper, we introduce an alternative to the backward method, which creates a program that
emulates a bottom-up solver [18] (i.e., starting from nondeterministic facts and trying to deduce a safety
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violation using the formulae). We implement this forward transformation to another formal representa-
tion of programs, the Control Flow Automaton (CFA), alongside with a backward transformation alter-
native, in THETA [11]. Our benchmarks show that using the proposed approach increased the number
of successfully solved CHCs more than twofold on linear CHC verification tasks from the CHC-COMP
benchmark suite [1].

This paper is structured as follows. In Section 2, we introduce the necessary background concepts.
Then, in Section 3, we present our proposed forward transformation and the accompanying verification
workflow, as well as the theory behind proof- and counterexample-generation. Finally, in Section 4,
we present our experimental results comparing the effect of using the existing backward transformation
versus the novel forward transformation on the performance of the verification workflow.

2 Background

In this section, we introduce the theoretical background for the paper, including software verification,
control flow automata (CFAs), and Counterexample-Guided Abstraction Refinement (CEGAR).

2.1 Formal Software Verification

The goal of software verification is to mathematically prove certain properties of a program. One such
property is the reachability of labelled control locations. A program is unsafe if such a location can be
reached from the initial location of the program using a finite number of transitions; otherwise, it is safe.
Due to the uncertainties and complexity of dealing with high-level programming languages, the input
is first transformed into a formal representation [2]. Model checking is then often employed [8], which
explores the state space of the program, thus verifying the reachability of the error states. While generally
this problem is undecidable [17], and enumerating the state space naively is infeasible in practice [5],
there exist efficient algorithms for solving a subset of the input tasks, such as the Counterexample-Guided
Abstraction Refinement (CEGAR) technique [4].

2.1.1 Control Flow Automata

A Control Flow Automaton represents a program as a directed graph. Formally, a control flow automaton
is a tuple CFA = (V,L, l0,E), where:

• V : A set of variables, where each v ∈V can have values from its domain Dv.

• L: A set of locations, where each location can be interpreted as a possible value of the program
counter.

• l0 ∈ L: The initial location, that is active at the start of the program.

• E ⊆ L×Ops×L: A set of transitions, where a transition is a directed edge going from one location
in L to another, with a label op ∈Ops, where Ops is a set of operations that can be executed as the
program advances from one location to another. An op ∈ Ops can be one of the following:

– v = expr: An assignment of a variable, where the value of v ∈ V becomes the evaluation of
the right-hand side expr.

– havoc v: A non-deterministic assignment of a variable, after which the value of v ∈V can be
anything from its domain Dv.

– [cond]: A guard operation, where cond is an expression that evaluates to a boolean value.
The transition can only be executed if the cond in the guard evaluates to true.
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Figure 1: The CEGAR loop Figure 2: Abstract state space

In formal software verification, it is also useful to distinguish error locations, which are locations
where the program would behave in an undesirable way, as well as final locations, which have no outgo-
ing transitions.

The representation of program execution on the CFA consists of an alternating sequence of locations
and operations, where at each location, the state of the CFA can be described as S = (lS,d1,d2, ...,dn),
where:

• l ∈ L is the current location of the program,

• d1,d2, ...,dn are the values of all variables, that is vi = di,vi ∈V,di ∈ Dvi , for every 1≤ i≤ |V |.

All possible states of the CFA make up the state space of the program. The operations in an alter-
nating sequence (representing an execution of the program) can then be interpreted as transitions in the
state-space of the program.

2.2 Counterexample-Guided Abstraction Refinement

Counterexample-Guided Abstraction Refinement (CEGAR) [4] is an abstraction-based model checking
algorithm.

The core of the algorithm is the CEGAR-loop (Figure 1), made up of two main parts: the abstrac-
tor and the refiner. The abstractor builds the Abstract Reachability Graph (ARG, a directed and acyclic
graph containing abstract states and interconnecting transitions) using the expand operation and covering
relation on abstract states. A parameter of abstraction is precision, which describes how much informa-
tion about a concrete state is abstracted in the abstract state. An abstract state is an overapproximation
of the possible concrete states (as seen in Figure 2), consequently, if no abstract error-state is reachable,
then no concrete error-state is reachable, meaning the program is safe.

On the other hand, if an abstract error-state is reachable, the abstractor produces an abstract coun-
terexample, starting at the initial abstract state and ending in an abstract error state. The refiner then
decides whether a concrete error state is reachable in the abstract error state. If it can be reached, then
the program is unsafe, and the path from the initial location of the CFA to a concrete error state is
presented as a counterexample.

However, if a concrete error-state is not reachable, then the reachability of the abstract error state is a
result of the overapproximation of abstraction, as demonstrated in Figure 2. Thus, the abstraction needs
to be refined so that the abstract error state does not contain the unreachable concrete error state. This
results in a refined precision, which is passed back to the abstractor after all unreachable abstract states
are removed (pruned) from the abstract state-space.
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The CEGAR loop is repeated until it either finds a concrete counterexample to the safety of the pro-
gram or proves that no abstract error-state is reachable, that is, all nodes in the ARG are either expanded
or covered. In the first case, the program is unsafe, while in the latter, it is safe.

3 Transforming Constrained Horn Clauses to Control Flow Automata

In this section, we present a novel approach of CHC to CFA transformation. The goal of this transfor-
mation is to create a CFA from a linear CHC in a way that turns the SMT problem of satisfiability in
a CHC into a software verification question of erroneous state reachability in the CFA, so that model
checking techniques can be used to decide both. More specifically, an erroneous state in a CFA should
be reachable if, and only if the CHC is unsatisfiable. In this case, a refutation of the satisfiability should
be given; otherwise a satisfying model ought to be generated. The approach is summarized in Figure 3.

Software
Verification

SMT

CHC

CFA

Model Checking

safe
+

ARG

unsafe
+

counterexample

sat
+

model

unsat
+

refutation

CHC to CFA
transformation

Proof transformation

Figure 3: Overview of the presented work.

The transformation consists of two parts: the mapping of CHCs to CFAs, and the generation of a
model/refutation from the output of model checking. These are represented in Figure 3 by the boxes
CHC to CFA transformation and Proof transformation, respectively, and are not to be confused with
forward and backward transformations described later on. As seen in the figure, proof transformation
requires the utilized model checking algorithm to provide a counterexample when the CFA is deemed
unsafe, and to produce an ARG when the CFA is safe.

The main idea behind the CHC to CFA transformation is to represent the uninterpreted functions as
locations in the CFA, map CHCs to edges guarded by the conditions in the CHC, and use local variables
to model the implications of deductions. The deducibility of a predicate with certain parameters can then
be represented by the corresponding location’s reachability during verification, with the given parameters
as the variables’ values. The source of the edges of fact CHCs can be the initial location of a CFA, since
these do not have any preconditional predicates in their bodies. The target of the edge of a query CHC can
then be an error location, which can only be reached if the conditions on an incoming edge are satisfied,
similarly to how ⊥ is deduced. If the error location can be reached from the initial location, then the
counterexample contains the path of edges to it, which can then be mapped to their CHCs to show a
sequence of CHCs that deduce ⊥ from facts. On the other hand, if the error location is unreachable,
then the explored abstract states can be used to define the uninterpreted functions to provide a satisfying
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model.
One way of approaching the problem of CHC satisfiability is to start with the facts, and try to apply

the induction and query CHCs to deduce ⊥. This is called the forward or bottom-up approach, which
is what our main contribution, the forward transformation employs. Another approach is to recursively
check what would be required to satisfy the body of the query CHC, stopping only when all requirements
are satisfied by facts. We refer to this as a backward or top-down approach, which is used by ULTIMATE

UNIHORN [1] to transform CHCs into program code.
An example CHC problem will be used throughout the chapter to demonstrate the transformations.

Example 1 Consider the following CHC problem within integer arithmetic:

A(n)← n > 0∧n < 100 (1)

B(n,x)← A(n)∧ x > 0 (2)

C(y,x)← B(n,x)∧ y = n− x∧ y > 0 (3)

A(n)←C(y,x)∧n = y+(y mod x) (4)

⊥← A(n)∧n≥ 100 (5)

The fact states that A(n) needs to evaluate to true for 0 < n < 100, while the satisfiability of the
query depends on A(n) being false for n ≥ 100 and n ≤ 0. What makes this problem non-trivial is the
cyclic deductions between the predicates A,B and C: B can be deduced from A, C can be deduced from
B, and A can be deduced from C under certain conditions. Trying a naive, manual deduction approach
becomes a bit cumbersome here, due to the possibility of an infinite deduction cycle and the high number
of combinations possible between the variables’ values.

One may notice that n can not increase in the cycle since no matter what the subtracted x is, it will
always be larger than the y mod x that is added to n in a cycle. In the following, it will be shown that the
problem is indeed satisfiable, by transforming it into a software verification problem and synthesizing a
satisfying model from its proof. The CFA resulting from the transformation can be seen on Figure 4. The
effect of each step on the CFA is explained as the steps are introduced.

Step 2/a. Step 2/b.

Step 2/c.

lInit

lErr

lA

lB

lC

[n > 0∧n < 100]
a1 = n

n = a1
[n≥ 100]

n = a1
[x > 0]

b1 = n,b2 = x

n = b1,x = b2
[y = n− x∧ y > 0]

c1 = y,c2 = x

y = c1,x = c2
[n = y+(y mod x)]

a1 = n

Figure 4: CFA of Example 1 after forward transformation.
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3.1 Constrained Horn Clause Transformation

The transformation first creates the locations and variables of the CFA, then maps the CHCs to edges in
different ways for fact, induction and query CHCs.

Consider the linear CHC problem with CHC set {C1,C2, . . . ,Ck} over the following uninterpreted
functions:

B1(b1
1,b

1
2, . . . ,b

1
m1
),B2(b2

1,b
2
2, . . . ,b

2
m2
), . . . ,Bn(bn

1,b
n
2, . . . ,b

n
mn
)

That is, each CHC Cl,∀l ∈{1,2, . . . ,k} takes one of the following three forms for some i, j∈{1,2, . . . ,k}:

Bi(x1,x2, . . . ,xmi)← ϕl,

Bi(x1,x2, . . . ,xmi)← B j(y1,y2, . . . ,ym j)∧ϕl,

⊥← B j(y1,y2, . . . ,ym j)∧ϕl,

where ϕl is the interpreted formula in the body of Cl . As before, CHCs in these forms are referred to as
facts, inductions and queries, respectively.

Step 1. Create CFA locations and variables
The uninterpreted functions B1(b1

1,b
1
2, . . . ,b

1
m1
), . . . , Bn(bn

1,b
n
2, . . . ,b

n
mn
) are mapped to the CFA =

(V,L, lInit ,E), where:

• V = {bi
j |∀i ∈ {1,2, . . . ,n} : ∀ j ∈ {1,2, . . . ,mi}},

• L = {lInit , lErr, l1, l2, . . . , ln},
• lInit ,
• E =∅.

Semantically, a new location is created for each uninterpreted function, along with an initial location
lInit and a distinguished error location lErr. In addition, a unique variable is created for each parameter in
every predicate. It is worth noting that the edge set is empty at this point, because edges are added in the
next step of the transformation.

The motivation behind creating a location and variables for every uninterpreted function is that this
way, a location’s reachability with certain variable values can be directly mapped to the predicate’s
evaluation with said variable values as parameters: if a location li representing Ci is reachable with some
values for variables bi

1,b
i
2, . . . ,b

i
mi

, then Ci(bi
1,b

i
2, . . . ,b

i
mi
) should evaluate to true. On the other hand, if

li can not be reached with variables bi
1,b

i
2, . . . ,b

i
mi

, then Ci(bi
1,b

i
2, . . . ,b

i
mi
) ought to evaluate to false.

Example 2 From Example 1, the first step of the forward transformation would create the CFA =
(V,L, lInit ,∅), with locations L = {lInit , lErr, lA, lB, lC} and variables V = {a1,b1,b2,c1,c2}. The created
locations can be seen in white on the CFA in Figure 4.

Step 2. Create CFA edges
In this step, each CHC is transformed into an edge in the CFA created in Step 1. Each kind of CHC

(fact, induction, query) is treated differently, as described in the following subsections. The goal of this
mapping is for the transition on the edge to only be possible, when the head of the CHC is deducible
from the body of it.

Step 2/a. Create fact edges
For each fact CHC Cl : Bi(x1,x2, . . . ,xmi)← ϕl where i ∈ {1,2, . . . ,n}, an edge is created from the

initial location lInit to li, the location representing Bi. The labels on the created edge consist of the
following, in the specified order:
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• ϕl , the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1,bi

2 = x2, . . . ,bi
mi

= xmi , assignment of the passed values to the variables corresponding to
the input parameters.

Fact CHCs are named facts because they can be deduced just from the background theory >, when
the interpreted formula ϕl is true. The created edge from the initial location mimics this, since the target
of an edge will be reachable from the initial location when the guard ϕ is true.

To put it more formally, the head of a fact CHC Bi(x1,x2, . . . ,xmi) is only deducible when its body,
the interpreted formula ϕl is true. Similarly, the location li is only reachable from the initial location
lInit of the CFA using the created edge, when its guard ϕl evaluates to true. Furthermore, the parameters
x1,x2, . . . ,xmi are assigned to bi

1,b
i
2, . . . ,b

i
mi

, meaning that the constraints of ϕl on the parameters are
applied to the variables related to the location, just as they are applied when deducing Bi(x1,x2, . . . ,xmi).
Thus, we can conclude that li is only reachable using the created edge with variables bi

1,b
i
2, . . . ,b

i
mi

valued
x1,x2, . . . ,xmi , when Bi(x1,x2, . . . ,xmi) is deducible using Cl .

Example 3 In Example 1, the second step of the forward transformation for fact CHCs would create the
edge e = (lInit ,op, lA) from Equation 1, where the guard of op would be n > 0∧n < 100, and the assign-
ments would consist of a1 = n, since a1 is the variable corresponding to the first (and only) parameter of
the predicate A. The created edge can be seen in the top-left gray rectangle on the CFA in Figure 4.

Step 2/b. Create induction edges
For each induction CHC Cl : Bi(x1,x2, . . . ,xmi)← B j(y1,y2, . . . ,ym j)∧ϕl where i, j ∈ {1,2, . . . ,n}, an

edge is created from l j (the location representing B j) to li (the location representing Bi). The labels on
the created edge consist of the following, in the specified order:

• y1 = b j
1,y2 = b j

2, . . . ,ym j = b j
m j , assignment of the variables corresponding to the input parameters

of B j to the passed values,

• ϕl , the interpreted formula in the CHC’s body as a guard,

• bi
1 = x1,bi

2 = x2, . . . ,bi
mi

= xmi , assignment of the passed values to the variables corresponding to
the input parameters of Bi.

In addition to the first assignments, x1,x2, . . . ,xmi and all variables in ϕl need to be uninitialized with
a havoc statement to ensure that the semantics of ∀ in the CHCs are kept. However, the havoc statements
are omitted from the examples for ease of readability. The order of instructions is also important: the
assignments from the source location’s variables need to happen before ϕl is evaluated.

Induction CHCs embody deductions from their bodies to their heads with some conditions ϕl . As-
suming that l j could have only been reached if it is deducible with some parameters, then this edge
resembles the same: one can only go to li from l j when ϕl is true.

More formally, the head of an induction CHC Bi(x1,x2, . . . ,xmi) is only deducible, when ϕl is true
and B j(y1,y2, . . . ,ym j) is deducible. Similarly, the location li can only be reached from l j once l j has
been reached and the guard ϕl evaluates to true. Furthermore, the variables b j

1,b
j
2, . . . ,b

j
m j are assigned to

y1,y2, . . . ,ym j and the parameters x1,x2, . . . ,xmi are assigned to bi
1,b

i
2, . . . ,b

i
mi

, meaning that the constraints
of ϕl are applied to the y parameters and the bi variables related to the location li, just as they are
applied when deducing Bi(x1,x2, . . . ,xmi) from B j(y1,y2, . . . ,ym j). Thus, we can conclude that li is only
reachable using the created edge with variables bi

1,b
i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi from l j with variables
b j

1,b
j
2, . . . ,b

j
m j valued y1,y2, . . . ,ym j , when Bi(x1,x2, . . . ,xmi) is deducible from B j(y1,y2, . . . ,ym j) using

Cl .
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Example 4 From Example 1, the second step of the forward transformation for induction CHCs would
create three edges from Equation 2, 3 and 4:

• e1 = (lA,op1, lB) for B(n,x)← A(n)∧x > 0, where op1 consists of the assignment n = a1, then the
guard x > 0, and the assignments b1 = n,b2 = x at last,

• e2 = (lB,op2, lC) for C(y,x)← B(n,x)∧ y = n− x∧ y > 0, where op2 consists of the assignments
n = b1,x = b2, then the guard y = n− x∧ y > 0, and the assignments c1 = y,c2 = x at last,

• e3 = (lC,op3, lA) for A(n)← C(y,x)∧ n = y+(y mod x), where op3 consists of the assignments
y = c1,x = c2, then the guard n = y+(y mod x), and the assignment a1 = n at last.

The created edges can be seen in the right-hand side gray rectangle on the CFA in Figure 4.

Step 2/c. Create query edges
For each query CHC Cl : ⊥← B j(y1,y2, . . . ,ym j)∧ϕl where j ∈ {1,2, . . . ,n} an edge is created to

the error location lErr from l j, the location representing B j. The labels on the created edge consist of the
following, in the specified order:

• y1 = b j
1,y2 = b j

2, . . . ,ym j = b j
m j , assignment of the variables corresponding to the input parameters

to the passed values,

• ϕl , the interpreted formula in the CHC’s body as a guard.

The bodies of CHC queries should not be deducible, otherwise ⊥ can be deduced and the problem
is unsatisfiable. This behaviour is captured by the created edge: if the edge’s source is reachable with
values that make the guard of the edge true, then the error location is reachable, making the program
unsafe.

In a formal way, the head of the query CHC ⊥ is only deducible when both B j(y1,y2, . . . ,ym j) is
deducible, and ϕl is true. Similarly, the error location lErr can only be reached from l j once l j has been
reached and the guard ϕl evaluates to true. Furthermore, the variables b j

1,b
j
2, . . . ,b

j
m j are assigned to

y1,y2, . . . ,ym j , meaning that the constraints of ϕl are applied to the y parameters, just as they are applied
when deducing ⊥ from B j(y1,y2, . . . ,ym j). Thus, we can conclude that lErr is only reachable using
the created edge from l j with variables b j

1,b
j
2, . . . ,b

j
m j valued y1,y2, . . . ,ym j , when ⊥ is deducible from

B j(y1,y2, . . . ,ym j) using Cl .

Example 5 In Example 1, the second step of the forward transformation for query CHCs would create
the edge e = (lA,op, lErr) from Equation 5, where op would consist of the assignment n = a1 and the
guard n≥ 100. The created edge can be seen in the bottom-left gray rectangle on the CFA in Figure 4.

To summarize, first a location li and variables bi
1,b

i
2, . . . ,b

i
mi

are created for each uninterpreted func-
tion Bi(bi

1,b
i
2, . . . ,b

i
mi
), then all CHCs are transformed into edges. Since the edges are created in a way

that li can only be reached with the corresponding variables bi
1,b

i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and
only if Bi(x1,x2, . . . ,xmi) can be deduced, we can conclude that the described transformation successfully
converts the problem of satisfiability into a question of error location reachability. Thus, using a model
checker to decide the latter will yield a result for the former as well: if the CFA is unsafe, the CHC
problem is unsatisfiable; if the CFA is safe, the CHC problem is satisfiable.

It is worth to consider what the transformation results in, when there is no fact or query CHC in the
set of CHCs. In the former case, there will not be any outgoing edges from the initial location of the



Márk Somorjai et al. 9

CFA. As a result, none of the locations will be reachable, meaning the predicates need not be true for
any input, which can be expressed as Bi ≡ f alse,∀i ∈ {1,2, . . . ,n}.

In the latter case, there will not be any edges going to the error location of the CFA. As a result, all
locations are reachable in the abstract state >, meaning the predicates can be true for any input, which
can be expressed as Bi ≡ true,∀i ∈ {1,2, . . . ,n}.

3.2 Proof Transformation

Proof transformation is the step of converting the result of the model checking algorithm to an answer
to the CHC problem. This consists of two parts, depending on the result: the generation of a satisfying
model from the ARG built during verification, or the creation of a refutation from the counterexample
provided by the model checking algorithm.

3.2.1 Satisfying Model Generation

An SMT problem is called satisfiable, when a model (i.e., an assignment to constants) fulfilling all
constraints exists. In the case of a CHC problem this means the definition of all uninterpreted functions
B1(b1

1,b
1
2, . . . ,b

1
m1
), B2(b2

1,b
2
2, . . . ,b

2
m2
), . . . , Bn(bn

1,b
n
2, . . . ,b

n
mn
) present in the set of CHCs, that satisfy all

of the CHCs.
The transformation in Subsection 3.1 ensures that a location li in the CFA can only be reached with

the corresponding variables bi
1,b

i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and only if Bi(x1,x2, . . . ,xmi) can be
deduced. If a node S j = (li,L

j
1, . . . ,L

j
k j
) is present in the ARG, it means li has been reached under the

condition L j
1 ∧ ·· · ∧ L j

k j
. Consequently, it is guaranteed that Bi can be deducted under the condition

L j
1∧·· ·∧L j

k j
. This is true for all Si = {S j |S j = (li,L

j
1, . . . ,L

j
k j
)} nodes in the ARG, therefore Bi needs to

evaluate to true under either of their conditions, which can be represented by concatenating them with ∨.
This gives the following the definition for Bi,∀i ∈ {1,2, . . . ,n}:

Bi(bi
1,b

i
2, . . . ,b

i
mi
) =

Si∨
S j=(li,L

j
1,...,L

j
k j
)

(
L j

1∧·· ·∧L j
k j

)
(6)

At the end of verification of a safe CFA, the ARG is fully expanded, i.e., all reachable abstract states
have been visited and none are in an erroneous location. Furthermore, no erroneous state can be reached
from any of the nodes in the ARG. Therefore the definitions provided by Equation 6 guarantee that there
can not be a deduction to ⊥, meaning they satisfy the CHC problem.

The type of information present in any L j needs to be taken into consideration when defining the func-
tion. If L j contains information about any other variable x then the variables bi

1,b
i
2, . . . ,b

i
mi

representing
the input parameters of Bi, then unless some information about a bi is dependent on x (e.g. bi

1 > x), L j

can be left out. If there is a dependent bi, then x needs to be defined with a universal quantifier inside the
function (∀x).

Example 6 Applying model checking with predicate abstraction to the CFA in Figure 4 may result in the
Abstract Reachability Graph (ARG) seen in Figure 5. The regular arrows represent transitions between
abstract states, while the dotted arrow denotes that the source abstract state is covered by the target
abstract state.
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lInit

>

lA

a1 < 100

lB

a1 < 100
b1 ≤ 100∧b2 > 0

lC

a1 < 100
b1 ≤ 100∧b2 > 0

c1 > 0∧ c1 + c2 ≤ 100

lA

a1 < 100
b1 ≤ 100∧b2 > 0

c1 > 0∧ c1 + c2 ≤ 100

Figure 5: ARG resulting from the model checking of the CFA in Figure 4.

As described in Example 2, the uninterpreted function A(n) corresponds to the location lA and the
variable a1. Therefore its definition depends on the predicates of the abstract states that are in lA, more
specifically (lA,a1 < 100) and (lA,a1 < 100∧b1 ≤ 100∧b2 > 0∧ c1 > 0∧ c1 + c2 ≤ 100). Using these
states, we can define A(n) as the disjunction of the predicates by converting ai to n: A(n)= n< 100∨(n<
100∧b1 ≤ 100∧b2 > 0∧ c1 > 0∧ c1 + c2 ≤ 100),∀b1,b2,c1,c2. Since predicates of n do not depend on
other variables, they can be left out, leading to A(n) = n < 100∨n < 100 = n < 100.

Similarly, B(n,x) can be defined using abstract states that are in lB, namely the single abstract state
(lB,a1 < 100∧b1 ≤ 100∧b2 > 0). Converting b1 and b2 back to n and x gives B(n,x) = a1 < 100∧n≤
100∧x > 0,∀a1, which can also be simplified to B(n,x) = n≤ 100∧x > 0 by omitting unused variables.

Lastly, C(y,x) is defined using the abstract state (lC,a1 < 100∧b1 ≤ 100∧b2 > 0∧c1 > 0∧c1+c2 ≤
100). Converting c1 and c2 back to y and x results in C(y,x) = a1 < 100∧ b1 ≤ 100∧ b2 > 0∧ y >
0∧y+x≤ 100,∀a1,b1,b2, which leads to the definition of C(y,x) = y > 0∧y+x≤ 100 after getting rid
of unused variables.

While it may not be trivial to see why this definition is a good model of the CHC problem, part of
the reasoning is that using the definition of A(n) = n < 100, the query CHC Equation 5 takes the form
⊥← n < 100∧n≥ 100. The body of this CHC is clearly unsatisfiable, thus, ⊥ cannot be deduced.

3.2.2 Refutation Creation

When a CHC problem is unsatisfiable, a deduction can be found from the facts to ⊥ that is always valid,
regardless of how the uninterpreted functions are defined. The refutation is then a series of applications
of the CHCs in the CHC set that start with a fact CHC and end with a satisfiable query CHC.

The counterexample provided by the model checker is an alternating sequence of concrete states of
the CFA and edges. It starts at the initial location of the CFA with some values assigned to the variables
and ends in the error location. The transformation described in Subsection 3.1 ensures that a location li
in the CFA can only be reached with the related variables bi

1,b
i
2, . . . ,b

i
mi

valued x1,x2, . . . ,xmi if, and only
if Bi(x1,x2, . . . ,xmi) can be deduced. Consequently, all predicates corresponding to the locations of the
concrete states in the counterexample are deducible, with the valuations present in the concrete states as
parameters. The transformation also creates a one-to-one mapping of CHCs and edges. Thus, mapping
the edges in the counterexample back to their CHCs, with the values of variables in the concrete states
substituted as parameters, amounts to a valid refutation of the CHC problem’s satisfiability.

Example 7 Since the motivating Example 1 is satisfiable, consider a modified version of it, in which the
only fact is replaced with A(n)← n > 0∧n≤ 100. The forward generated CFA would be similar to the
one in Figure 4, with the exception of the edge going from lInit to lA having n ≤ 100 instead of n < 100
in its guard.
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The model checking algorithm would return the following counterexample, with the irrelevant vari-
able values omitted:

(lInit ,n = 100)

(lInit ,([n > 0,n≤ 100],a1 = n), lA)

(lA,n = 100,a1 = 100)

(lA,(n = a1, [n >= 100]), lErr)

(lErr,n = 100,a1 = 100)

This could be mapped to the refutation below:

A(n)← (n > 0∧n <= 100)∧n = 100

⊥← (A(n)∧n≥ 100)∧n = 100

Since all variables have values assigned to them, it is trivial to check that this is indeed unsatisfiable.

4 Evaluation

Implementation The CHC to CFA transformation steps were implemented as ANTLR frontends [16]
in the open-source model checking framework THETA [11]. The implementation is able to check the
satisfiability of a CHC problem; however the generation of refutations and proofs is not implemented
yet. Backward transformation was also implemented in a similar manner in the tool for comparison.

Goals and Design The aim of this evaluation is to show the effectiveness of the bottom-up approach
by comparing it to the top-down approach. It also aims to study the performance of the approach with
different configurations of CEGAR, e.g., different abstract domains.

The main comparison was done inbetween configurations of THETA only. Thus we were able to com-
pare the different transformation approaches while the verification process was the same. Additionally,
we also compared THETA to other state-of-the-art CHC solvers.

The implementation was evaluated on 585 linear CHCs over the background theory of linear integer
arithmetic from the LIA-Lin track of the CHC-COMP21 benchmark repository1. The benchmarks were
run on machines with 8 logical CPU cores and 16 GB of memory, with a timeout of 300 seconds.

domain interpolation pred-split
transformation

BACKWARD FORWARD
EXPL NWT_IT_WP - 77 138
EXPL NWT_WP_LV - 82 137
EXPL SEQ_ITP - 81 175

PRED_BOOL BW_BIN_ITP WHOLE 110 288
PRED_CART BW_BIN_ITP WHOLE 141 302
PRED_SPLIT SEQ_ITP ATOMS 131 310
PRED_SPLIT SEQ_ITP WHOLE 142 318
PRED_SPLIT BW_BIN_ITP ATOMS 83 291
PRED_SPLIT BW_BIN_ITP WHOLE 114 328

Table 1: Number of solved tasks by certain configurations.

1https://github.com/chc-comp/chc-comp21-benchmarks

https://github.com/chc-comp/chc-comp21-benchmarks
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THETA (FW) 328
THETA (BW) 142

ELDARICA 337
UNIHORN 380

Z3 437

Table 2: Comparison to
other tools.
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Figure 6: Number of solved tasks by tools under a certain time.

Results Table 1 shows the results of THETA with the different configuration options of THETA [11].
The results of the tool were either correct or timeout for all of the tasks.

Forward transformation proved to be far more effective than backward transformation in all config-
urations. The configurations using boolean predicate based abstraction with sub-state splitting (PRED_-
SPLIT) performed the best, with the other predicate based abstraction methods not too far behind.

The same benchmarks were also run with the top solvers of the LIA-Lin track from CHC-COMP21
[7], namely Z3, UNIHORN and ELDARICA. These solvers were run using their default configuration
and with the same constraints as THETA. Table 2 shows the number of solved tasks compared to the
best-performing configuration of THETA. Although THETA performs worse than the other solvers, its
performance is comparable to ELDARICA’s.

A quantile plot of the tools’ performances can be seen on Figure 6. THETA performs better than both
UNIHORN and ELDARICA for easier tasks, but it starts to get slower at a faster pace for tougher tasks
than the other tools.

Conclusion As shown in Table 1, the performance of THETA was greatly improved by the forward
transformation process for all of the tested configurations. This improvement gains even more signif-
icance when compared to other tools: just by changing the transformation method, THETA becomes
a relevant competitor for some of the best linear CHC solvers of CHC-COMP. Based on our findings,
we propose that tools employing software verification techniques for CHC solving implement our novel
approach, to potentially significantly increase the number of successfully solved CHC problems.
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