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Abstract. Solving Constrained Horn Clauses (CHC) is necessitated by
numerous fields in formal methods, from verifying software and smart
contracts to modeling systems, yet the competitive scene for academic
tools remains fairly sparse, especially compared to more popular fields
such as software verification. Comparative evaluation as a competition,
such as SV-COMP or CHC-COMP, sparks a more cohesive community
around fields in formal methods. Lately, a trend has been emerging with
tools such as Btor2C that bridge multiple fields together, thus widening
this cohesion. Following that example, we propose and perform an exper-
iment, where we use CHC-to-C transformation to apply software verifi-
cation tools to linear CHC problems. In the process, we help both fields
by diversifying the scene of CHC solvers and providing new and valuable
benchmarks to aid the development of software verification tools. Using
these benchmarks, we uncovered a previously hidden bug in multiple
verification tools that can lead to false positive results. By analysing the
results of the experiment, we can confidently make a recommendation
for developers of software verifiers to consider supporting CHCs via our
pre-verification transformation.
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1 Introduction

Formal methods have been gaining significant traction in many new domains
in recent years. Facilitating this acceleration of adoption are the many special-
ized comparative evaluation-based competitions among tools, such as SV-COMP
for software verification [2], HWMCC for hardware model checking [6], SMT-COMP
for solving queries in satisfiability modulo theories (SMT) [26], or CHC-COMP for
solving constrained Horn clauses (CHC) [10]. These competitions boost both aca-
demic interest and visibility towards potential users of the competitors, as well
as provide a more-or-less standardized benchmark suite for evaluating the tools.

https://orcid.org/0000-0002-6551-5860
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However, with certain tools having been developed for multiple decades to work
(and compete) in one of these domains, the price of entry into one of the more
established fields can be insurmountable to new tools. Thus, instead of develop-
ing a brand new tool with specialized algorithms for a new field of study, a more
established tool can often be used instead, extended with a pre-transformation
layer for adapting to one of the tool’s supported formats.

Lately, this trend of adapting the problem to suit the verification tool instead
of doing it vice versa has not only been used for solving new problems in new
domains but also to close the gap between the many existing domains where
formal methods are already being used. A success story in this regard is about
Btor2C [4], which brought hardware verification problems in the language of
Btor2 to software verification tools by adapting it to standard C. This means
that the exact source of the problem can be opaque to the tools themselves, and
just by supporting C, they also support Btor2 by extension. Furthermore, the
software verification community gained access to valuable new benchmarks in
process, available via the SV-COMP benchmark suite1.

In this paper, we aim to yet again close a gap that exists among use cases
of formal methods. Constrained Horn Clauses (CHCs) have long been used as a
means to verify software [15,23,19], and lately, conventional software verification
tools have also been applied to the reverse problem of representing CHCs via
adapting them to a control-flow based representation, akin to imperative soft-
ware [16,11,25]. However, by adapting the format of (linear) CHC problems to
a suitable format for software verification, such as plain C, any off-the-shelf C

verification tool becomes capable of solving CHC problems. We show that such
a transformation is not only possible but beneficial in terms of performance as
well.

1.1 Our Motivations and Contributions

The main motivation of our work is the diversification of the field of CHC solving,
with the secondary motivation being the addition of valuable benchmark tasks
to the software verification community. The importance of the former task is
demonstrated well by the multitude of types of problems that necessitate CHCs:
various synthesis problems such as syntax- and semantics guided, or functional
synthesis [17,20,12]; systems verification [9]; software verification of conventional
[15,19], higher-order [23,21], and specialized (e.g., dataflow-description [7]) pro-
grams; program equivalence checking [14]; or smart contract verification [27].

While the problem’s importance is well understood, the same diverse and
competitive scene that characterizes other formal methods fields (e.g., software
verification) is yet to form for CHCs. At CHC-COMP, the highest number of com-
petitors in any of its tracks remains well under 10 [10], and this number is not
changing by much year-to-year [24,13].

By enabling conventional software verification tools to also support CHC prob-
lems, both fields (CHC solving and software verification) will be furthered: CHC

1 https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/
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solvers will be more diverse, and software verification tools will receive valuable,
real-life problems as benchmarks to further tweak and tune their algorithms.

In connection with our motivations outlined above, our contributions regard-
ing this paper are the following:

I. We experimentally show that using software verification tools to solve CHC

problems can be advantageous

II. We contribute valuable new benchmarks to the software verification commu-
nity

In furtherance of these contributions, we also implemented and validated a
proof-of-concept transformation tool that takes CHC problems and generates a
C-language, error-label reachability-based representation of the problem. Fur-
thermore, we benchmarked all ranked participants in this year’s SV-COMP’24 on
all transformed CHC problems, and analyzed their performance.

Note that our contribution is not centered around a fully-fledged and opti-
mized tool for the CHC to C conversion, but rather a demonstration that this
theoretical step is possible, and even a research prototype is capable of bridging
the two domains together in a useful way.

Furthermore, we found and identified some bugs in some of the most widely
used software verification tools using these tests, further justifying the point on
the value of these new problems.

Novelty Certain approaches that use a CHC-to-program pre-transformation step
already exist in the lineup of tools for CHC-COMP [16,11,25]. Details on these
approaches are available in Sect. 1.3. The novelty of the approach presented in
this paper stems from the genericness of the transformation: by using plain C

as the target format, we enable all software verification tools to participate in
CHC solving, while previous attempts focused on transforming the input into a
tool-specific internal formalism. This enables seamless support for CHC problems,
even for tools where no development towards supporting CHCs could be justified.

Significance The significance of our contributions can be demonstrated by the
following points:

1. As shown in Sect. 3, some software verification tools perform on par with
dedicated CHC solvers on a portion of problems. There are certain tasks that
only software verification tools solved, while dedicated CHC solvers all timed
out or threw an exception.

2. We uncovered previously hidden faults in well-known software verification
tools by testing them on the newly acquired benchmark set of CHC problems.

We believe that these results significantly further the field of formal methods.
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1.2 Background and Example

As a slightly simplified definition, let us define a CHC problem in the following
way:

– A CHC problem consists of several deduction rules, i.e., implications
– A deduction rule may have uninterpreted functions (i.e., relations) in both

its premise and its consequence
• The consequence of a deduction rule may have exactly one uninterpreted

function (besides the queries, which have zero)
• The premise of a deduction rule may have zero, one, or more uninter-
preted functions

∗ If zero uninterpreted functions exist in a rule’s premise, we call that
rule an atom

∗ If more than one uninterpreted function exists in a rule’s premise,
the rule is considered to be non-linear

• If any rule is non-linear, the CHC is non-linear. Otherwise, the CHC is
linear.

– Any number of deduction rules may deduce the literal false, these rules are
called queries

The domain of variables in a CHC problem is given as SMT theories. In this
paper, we mostly concentrate on the core theory, with additional support only
for integer arithmetic. Note that problems requiring support for more theories
exist (such as those using arrays or algebraic data types), but we discount those
in the context of this work.

The goal for any CHC problem is to prove whether false is deducible (making
the system unsatisfiable), in which case the query’s premise is true. In practice,
CHC problems are often encoded in the format of SMT-LIBv2 [8], ensuring tools’
interoperability. Tasks for CHC-COMP use a strict subset of SMT-LIBv2 [10].

As an example, we can have three simple deduction rules:

n = 0 =⇒ A(n)

A(n− 2) =⇒ A(n)

A(6) =⇒ false

The first rule states that A(0) is true, and (given A(0)) the second rule makes
all positive even numbers n to also evaluate A(n) to true. The third rule is a
query, stating that if A(6) is true, then false is deduced, and hence the system is
unsolvable. In this case, this problem is trivially solved as 6 is an even number,
and hence, A(6) must be true; thus, the system is unsatisfiable.

In software, the same process is easy to implement. We can take the query
and start from its premise. This approach, demonstrated in Listing 1.1, is called
top-down, or backward ; because it starts the program by evaluating the query.
While due to the infinite recursion in line 3 this program may not terminate
(depending on the parameter to A), tools that can reason about recursion may
find that the exit condition A(6) is reachable.
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Listing 1.1. Backward
1 int A( int n) {
2 i f (n==0) return 1 ;
3 ⟳ else i f (A(n−2)) return 1 ;
4 else return 0 ;
5 }
6
7 int main ( ) {
8 i f (A(6 ) ) return −1;
9 else return 0 ;

10 }

Listing 1.2. Forward
1 int main ( ) {
2 int A, n = 0 ;
3 A = n ;
4
5 while ( t rue ) {
6 n = nondet ( ) ;
7 i f (A == 6) return −1;
8 else i f (A == n − 2) A = n ;
9 }

10 }

An alternative, without recursion, is to leverage the support for nondetermin-
ism in software verification tools and rewrite the program as seen in Listing 1.2.
In this case, the program constructs all facts by following the deduction rules
from the atomic facts; thus, this is called bottom-up or forward transformation,
which is only possible for linear CHCs [25]. In lines 2− 3 the starting A(0) fact is
constructed, then lines 5− 9 construct all further facts by assigning a nondeter-
ministic value to n, then testing whether the previous iteration already deduced
A(6) (in which case an error code is returned), followed by testing if the last
deduced A(n) value is equal to the current n minus two; in which case the value
of A (being the last deduced A(n)) is updated. This loop is repeated infinitely,
only exiting when A(6) is deduced. Verification tools, however, need only dis-
cover that the program is unsafe, and the original CHC problem is unsatisfiable.
Solvers from both SV-COMP’24 and CHC-COMP’23 [10] mostly successfully solved
the problem; these results are shown in Table 1.

Table 1. ✓: successful solution; ?: no result; ×: wrong verdict

Software Verification Tool CHC Solver
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Forward ✓ ✓ ✓ ✓ ? ? ✓ × ? ? ✓ ✓ ✓ ✓ ✓ ✓ ✓
✓ ✓ ✓ ✓ ✓ ✓ ✓

Backward ? ✓ ✓ ✓ ? ? ✓ × ? ? ✓ ✓ ✓ ✓ ✓ ✓ ✓

1.3 Related Work

The presented approach of transforming CHC problems into reachability-based
software verification tasks can be found in multiple CHC solver tools: Eldarica
[16], Ultimate Unihorn [11], and Theta [25]. While the former two are long-time
participants in CHC-COMP [24,13,10], their exact pre-transformation steps are not
well documented (as even mentioned in the CHC-COMP competition report [10]).
The latter, Theta, published an in-depth paper of this process alongside their
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debut on CHC-COMP [25]. Furthermore, Theta is the only tool out of the three
that supports both a backward and a forward transformation option, with the
other two – to the best of this paper’s authors’ knowledge – only supporting
backward transformation.

As to not re-invent the transformation process from the ground up, in this
paper, we take the approach implemented in Theta as the baseline for our ex-
perimental evaluation. We build on the existing implementation to create the
proof-of-concept tool CHC2C and use the method described in the tool paper of
Theta to reason about the theoretical possibilities of the approach.

2 Experiment Proposal and Methodology

To support the claims and goals of this paper, we devise an experiment to answer
the following questions.

RQ1 Is a CHC-to-C transformation sound and complete in terms of support for
CHCs?

RQ2 Is a CHC-to-C transformation beneficial for verification tools in terms of
performance?

2.1 Theoretical Analysis

In short, the answer to RQ1 is no. There are several substantial differences
between the semantics of CHCs and C programs that will make this transformation
impossible, no matter the encoding.

One of the main differences is in handling data types such as integers. C
programs are designed to eventually run on actual hardware, which will always
have a finite number of bits to represent any value; therefore, the C standard
defines different lower and upper bounds on the size of variable types. In contrast,
CHCs use infinite integers, akin to conventional SMT solvers, due to their logical
nature.

However, one familiar with the inner behavior of software model checkers may
see a disconnect here: most model-checking software rely on using SMT solvers
and will definitely need to pay additional attention to implementing fixed-sized
integer or array support when targeting C. Therefore, it is easy to see that this
limitation on the expressive power of C over CHC inside a model checking tool is
entirely artificial and stems from the C standard itself. Therefore, we anticipate
that tools supporting a C-syntax input, albeit with a loose definition of semantics
(allowing for infinite integers in the model), will fully mirror the semantics of
the original CHC problem, even when transformed to C.

As most tools will not support redefining the semantics of C in an easy way,
we also devise a safeguard that limits the types of false verdicts to be false
negatives, akin to a BMC-like behavior, where a bound exists up to which the
problem is deemed safe. However, instead of a bound on the steps from an initial
state, we use a metric on the variables itself. With such safeguarding, the two
verdicts a tool may have are the following:
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– Unsafe output: Unsafe verdict
– Safe output: Safe, given all variables are in bound [−A; +B].

Therefore, such tools may iterate with growing bounds until they run out of
supported domain size, or find a counterexample and can return unsafe.

The problem safeguarding prevents is reaching the bounds of a variable type
defined by the standard. When reaching an unsigned integer’s upper- or lower
bound, the C standard defines the expected behavior of the value to wrap around,
thus remaining inside the bounds of the type. Therefore, 15 + 2 == 1 is satis-
fiable given a 4-bit unsigned integer (bounds [0; 16)), but unsatisfiable given
mathematical, infinite integers. The same problem should not exist for signed
integers, as the standard leaves that to be implementation-dependent, and there-
fore, model checking tools should try and be flexible in handling that case. In
practice, however, most tools just assume the signed values also wrap around.

The safeguards introduced above make the bounds of the values sufficiently
far from the bounds of the variable type so as not to cause the wraparound
problem, which would introduce false positive results.

Taking the above two problems into account, let us amend RQ1 in the fol-
lowing way:

RQ1a Does safeguarding prevent false positive results in verification tools uti-
lizing a CHC-to-C transformation?

RQ1b How often do false negative results occur on a realistic problem set?

Note that a similar set of problems arise with the use of arrays, as C-like arrays
will have some size, outside of which addressing the array leads to undefined
behavior, while CHCs use an infinite, mathematical definition of arrays, where
every value of the address type’s domain must have an associated legal value.
However, we discount CHC problems with arrays in the scope of this paper so as
not to overcrowd the transformation process with mitigations and safeguards.

2.2 Practical Analysis

To answer RQ1 and RQ2, we need to test the proposed approach on a bench-
mark suite with diverse and numerous problems (for RQ1) and representative
and challenging problems (for RQ2). The GitHub organization associated with
CHC-COMP2 contains a high number of CHCs sourced from a vast selection of
sources and each year, a rigorous selection process is applied to the entirety
of this collection to select a subset for CHC-COMP [10]. Therefore, we shall use
all available problems to answer RQ1 (more specifically, RQ1a and RQ1b),
and last year’s selection for CHC-COMP’23 [10] to answer RQ2 as to not skew
the performance evaluation with the numerous simple tasks some of the sources
provide3.

2 https://github.com/chc-comp/
3 The selection is based on perceived verification difficulty, problem traits, etc.

https://github.com/chc-comp/
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As mentioned above, we are using the tool Theta to implement the CHC-to-
C transformation, as it has a well-documented and versatile pre-transformation
step from CHCs to its internal CFA-like representation [25]. We implemented a
serialization step, which outputs a C-language program in the format of SV-COMP
tasks [2] for compatibility and uses signed integers in place of the SMT integers
(Boolean values are handled via the Bool type). We used Theta’s default trans-
formation setting, which performs forward transformation on linear CHCs. Due
to concerns raised about the performance of the backward transformation, as
well as not to dilute the homogeneous benchmark suite consisting only of linear
CHCs with possibly different characteristics over non-linear problems. We also
included a new command-line parameter that governs whether to use bounds
safeguarding, which uses a limit of [−1 000 000 000; +1 000 000 000] to limit the
range of the values. This limit ensures that no single operation may take a value
outside the domain’s range, which is assumed to be at least 32 bits wide.

The plan for the experimental evaluation is the following:

Getting a Baseline. Having the two benchmark suites (all containing ev-
ery benchmark, comp containing CHC-COMP’23 benchmarks), we run CHC-COMP’23
participants [10] (and Spacer [22]) on the problems to get the following:

1. a baseline on their performance (in the case of comp), and
2. an expected verdict (for both sets)

The latter is necessary because unlike other benchmark sets such as that of
SV-COMP [2], the expected verdicts for CHC-COMP are rarely published together
with the input problems. Because verdicts may differ, we take a majority vote
among the participants to decide an expected verdict. Note that we use binary
classification, and no counterexample or proof validation takes place in these
tests.

Note that we ran all participants on the comp benchmark set, but only a
subset of the participants on the all benchmark set: Eldarica, Golem, Spacer
and Theta.

Generating the Software Benchmark Suits. Using Theta, we generate
four benchmark suites: all-range, all-norange, comp-range, comp-norange.
Default settings are used for parsing the CHC files. We use the tool indent4 to
pretty-print the results for manual readability, with options -nut -i4.

A step of the transformation process is to generate code for non-deterministic
transitions in the control flow automaton (i.e., a location has more than one out-
going edge, and their guards overlap). As in most cases (for CHCs), this means
a binary decision, we used the C type Bool to create a non-deterministic value
of either 0 or 1, then used a switch-case statement to choose a transition in the
CFA. An example of such a construct can be seen in Figure 1. Here, reach error

should never be reached because all cases of the switch statement return from

4 https://www.gnu.org/software/indent/

https://www.gnu.org/software/indent/
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extern void r e a ch e r r o r ( ) ;
extern Bool VERIFIER nondet Bool ( ) ;
int main (){

switch ( VERIFIER nondet Bool ( ) ) {
case 0 : return 0 ;
case 1 : return 0 ;

}
r e a ch e r r o r ( ) ;

}
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✓ ✓ ✓ × ? ✓ ✓ ✓ ? ? ✓ ✓ × × × ✓ ✓

Fig. 1. Verification test case, and verifier outputs (✓: safe, ×: unsafe, ?: no result)

main5. Therefore, the program exits. However, some tools fail to interpret this
correctly and allow a non-existent default case to be executed, which may lead
to an incorrect verdict. Out of the 17 tools used in the context of this paper, 10
solve the example task correctly (yielding a safe verdict), and 4 tools solve it
incorrectly (yielding an unsafe verdict). Therefore, we included an additional de-
fault case calling abort(), so that no trace taking the default case may continue
after the statement. This modification made all tools previously giving a wrong
output to correct their verdict. Therefore, we used this modification throughout
the transformation process to get usable results from these 4 tools. We plan to
open issues in the offending tools’ repositories, where possible, to help developers
correct this behavior.

Executing the Software Benchmarks. We used all non-hors concours par-
ticipants of the ReachSafety category in SV-COMP’24. The full list is shown in
Table 1. We used the submitted tool archives archived on Zenodo6 to run the
experiments, with the unreach-call property as an input specification. We
recorded all tools’ verdicts and CPU time over all benchmarks.

For the soundness and completeness check (RQ1), we executed all SV-COMP
tools [3] on all-range and all-norange. For the performance check (RQ2),
we executed all SV-COMP tools on comp-range and comp-norange.

Expected Outcomes. We expect that – besides some tool-specific failures –
all tools will be able to handle at least a subset of the benchmark tasks, given
they only use commonly seen elements of the C language. We expect that tools
will report false negative verdicts for tasks where a counterexample cannot be
found within the range of the signed integer domain. We also expect that in the
case of the *-norange sets, tools that handle signed integer overflow will report
false positives where wraparound behavior leads to an infeasible (in terms of
feasibility over logical integers) counterexample to be found.

5 Note that the outcomes do not change when an explicit cast is placed inside the
switch statement’s head, for which the standard definitely states the value should
either be 0 or 1 [18]

6 https://zenodo.org/
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We can discount false positive verdicts, as they can easily be eliminated with
a simple feasibility check in an SMT solver after the verification run, which
could mark the verdict as unknown. We omitted such a check to not group false
verdicts together with actual unknown verdicts in the experiment’s evaluation
phase.

For false results, we matched up different tools’ outputs and classified the
benchmark as commonly wrong if multiple tools gave a wrong result for the same
task, or tool-specific fault if at least one other tool solved the task correctly.

3 Results

We ran the experiments as discussed in Sect. 2.2 [1]. We collected 23958 CHC

problems from the CHC-COMP GitHub organization7. We removed 8644 tasks
containing algebraic data types and a further 8892 tasks containing arrays. Out
of the remaining 6422 tasks, Theta could parse (in 60 seconds) 3076 tasks, out
of which 1914 tasks were linear. The selected linear CHC problems were then
transformed to C, both with and without the safeguarding technique presented
in Sect. 2.1. We also filtered and transformed the CHC-COMP’23 benchmark set8,
yielding us 405 succesfully transformed CHC tasks.

Using the top performing CHC tools from CHC-COMP, we attempted to solve
the 1914 tasks and got 1207 true (i.e., safe); 475 false (i.e., unsafe); and 232
unknown results. For the 405 tasks in CHC-COMP’23, 269 true, 71 false and 65
unknown verdicts were given.

Results of the first experiment regarding RQ1 can be seen in Table 2 and
Table 3. Each row corresponds to an SV-COMP participant, and the columns
represent the classification of their outputs. The first six number columns show
the number of wrong verdicts (false) the tool produced. Within the false results,
there are common wrong results (where every software verification tool that
solved the task produced the wrong verdict), and tool-specific wrong results
(where at least one other tool succeeded with the verification). True results are
correctly classified tasks. In all three groups of columns, All denotes the total
number of results (common false, tool-specific false, true); and+ or - denote the
output of the tool (i.e., False/Tool/+ means tool-specific false positive results,
which are said to be safe by the tool yet the expected verdict is unsafe, and
there is at least one other tool that returned unsafe correctly). The last but
one column shows the unconfirmed verdicts, which are tasks the CHC solvers
could not solve. The last column shows the points a tool would receive should
the scoring system of SV-COMP be applied (1 point per good verdict, -32 points
per false negative, -16 points per false positive). Note that false positives are
discarded from point calculation due to their inherent easyness in checking: as
opposed to software verification, a counterexample to a CHC problem is trivially
checked by substituting the values in the SMT formula, and having it solved

7 https://github.com/chc-comp/
8 https://github.com/chc-comp/chc-comp23-benchmarks

https://github.com/chc-comp/
https://github.com/chc-comp/chc-comp23-benchmarks
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Fig. 2. Software verifiers vs. CHC solvers. Best two tools per category highlighted.

with a dedicated SMT solver. The table is sorted in descending order by the
points column.

The number of tasks where a common fault caused all tools to report a wrong
verdict upon success is not directly readable from the table. For the safeguarded
transformation, 84 tasks were found to cause common wrong verdicts, while
for the non-safeguarded transformation, 68 tasks. 16 tasks were found to cause
common wrong verdicts only in the safeguarded transformation but not in the
non-safeguarded transformation, meaning all 68 tasks from the latter remain
commonly wrong for the safeguarded version as well.

Table 4 and Table 5 show the results for the tasks in CHC-COMP’23 in the same
format as described above. Here, 39 and 34 tasks were commonly wrong among
the tools for the safeguarded and non-safeguarded transformations, respectively.

The performance of the tools is shown on the quantile plots in Figure 2.
Horizontal axes show the number of solved tasks (out of 405 possible), and
vertical axes show verification time, with data points in the series sorted by
ascending order. Given any line y(x) = N , we can easily determine the tool
solving the most tasks under N timelimit by taking the series containing the
rightmost point under the said line.
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Each quantile plot shows the performance of the native CHC solvers, the soft-
ware verification tools using safeguarded transformation, and software verifi-
cation tools with non-safeguarded transformation. The top two participants are
highlighted and shown on the legend above each plot in each of the three groups.
The top participant is shown in the thickest line.

Tools with negative points in Table 4 and Table 5 are not shown on the two
plots in the first row.

Verdicts with unconfirmed results (i.e., tasks solved only by software verifi-
cation tools) are not shown on the two plots in the first column. Wrong verdicts
are not shown in either column.

4 Discussion

In this paper, we claim to have made two contributions: we have experimentally
shown that solving CHC problems is possible – and sometimes even advantageous
– using software verification tools, and we contributed a new set of valuable
benchmarks to the software verification community.

The value of these benchmarks lies in the diversity and complexity of the
benchmarks. As shown later in the discussion of the results, these tasks differen-
tiated the verification tools, meaning they provide a good balance of difficulty,
diversity, and complexity: if all tools were able to solve the tasks easily or no tool
could solve any at all, this value would significantly decrease. Furthermore, by
uncovering a latent fault in some of the tools (seen on the problem in Figure 1),
we hope to have helped their development towards a more sound verification
workflow. With these new benchmarks, we opened a pull request in the SV-
Benchmarks repository9.

As for the main contribution (i.e., analysis of the CHC-to-C transformation in
verification), we show the following using the results in Sect. 3:

Ans1a The transformation can be free from introducing false positive results
(answering RQ1a)

Ans1b The false negative results are significantly less frequent than correct
results (answering RQ1b)

Ans2 The performance characteristics of software verification tools on CHC prob-
lems make them competitive (answering RQ2)

4.1 Analysis of the Results

For Ans1a and Ans1b, see Table 2 and Table 3: no common false positive
results exist, meaning no safe task was deemed unsafe by all tools; but 84 and
68 common false negative results exist for the safeguarded and non-safeguarded
transformations, respectively. 84 false negative results make up around 4% of
all tasks (as to answer Ans1b). Tool-specific false positive results exist; for

9 gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1467.

https://gitlab.com/sosy-lab/benchmarking/sv-benchmarks/-/merge_requests/1467


14 Bajczi et al.

most tools, their number is significantly lower in the case of the safeguarded
transformation.

Almost half of the tools received negative points (8), and 2 tools produced
no results, leaving 7 tools to receive positive points. Out of these 7, the tool 2ls
is noteworthy: in the case of the safeguarded transformation, it produced only
correct results, while in the non-safeguarded transformation, it only produced
3 false positive results. These are likely cases where 2ls handled signed integer
overflow using wraparound. This fairly clean result also provides further evidence
for Ans1a and RQ1a, showing that safeguarding can prevent false positive
results.

The top scoring tool in both cases, Ultimate Automizer, experienced 25
and 24 common faults out of the 84 and 68 commonly wrong tasks for the
safeguarded and non-safeguarded transformation, respectively. A further 38 and
39 tasks were given a wrong verdict by the tool, where at least one further tool
was successful, therefore, we classify these as tool-specific faults. Almost all of
these were false positive results.

Note that these wrong verdicts might not mean actual faults in the former
set of tools, as the handling of signed integer overflow is undefined, and if the
3 tools having more false positive results handle overflow as wraparound, while
some other tools just allow values outside of the domain to persist; then tools
using wraparound will have false positive results while the others will solve the
tasks correctly. This explanation is more likely for such a small number of false
positive results. However, for tools on the other end of the scores, having almost
a quarter of the results be wrong is more likely to hide a fault in the tool rather
than some quirk of such edge cases.

As for the performance of the software verification tools concerning Ans2,
results are shown in Figure 2. The best performing native CHC solver throughout
the experiments was Spacer, with second best being either Golem or Theta

depending on the addition of unconfirmed results10.
The overwhelming amount of false results in the case of some of the tools

makes reasoning about performance difficult. We cannot distinguish between a
faulty tool coupled with a lucky guess and a correctly reasoning tool. Therefore,
we present multiple views about the participants’ performance and the unique
flaws these representations may carry.

Filtering. If we exclude all negative scoring tools (as per Table 4 and Table 5)
from appearing on the plots, the native CHC solvers cannot be outperformed by
software verification tools in terms of number of solved tasks. However, including
these tools makes software verification seem on-par (in the case of confirmed
results only) or even better (in the case of confirmed and unconfirmed results)
than native CHC solvers. Their exclusion favors CHC solvers, while their inclusion
favors software verification tools – these tools did provide a good verdict for a
number of the tasks, but overwhelming false verdicts allow for speculation on

10 Note that these results show performance on only a subset of the real problems in
CHC-COMP’23, which Theta could parse.
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hidden faults. A faulty tool may still produce a good result, but it may or may
not be correct in its reasoning.

Including unconfirmed results. Excluding unconfirmed verdicts skews the
results towards CHC solvers, because their majority vote is the confirmation –
meaning if only a single CHC solver solves a task (e.g., Spacer), it is automat-
ically confirmed. On the other hand, including unconfirmed verdicts may skew
the results towards software verification tools because their verdict is accepted
without validation from a dedicated (and thoroughly tested) CHC solver.

To summarize, the following problems exist with the four quantile plots rep-
resenting performance characteristics in Figure 2:

Confirmed, filtered results Favors CHC solvers because only confirmed re-
sults are shown. Favors CHC solvers because the results are filtered only to
show positive scoring tools.

Confirmed and unconfirmed, filtered results Favors software verification
tools because unconfirmed results are treated as good verdicts. Favors CHC
solvers because the results are filtered only to show positive scoring tools.

Confirmed, unfiltered results Favors CHC solvers because only confirmed re-
sults are shown. Favors software verification tools because the results are
not filtered only to show positive scoring tools, potentially including tools
incorrectly deducing the expected output

Confirmed and unconfirmed, unfiltered results Favors software verifica-
tion tools because unconfirmed results are treated as good verdicts. Favors
software verification tools because the results are not filtered only to show
positive scoring tools, potentially including tools incorrectly deducing the
expected output

Even if we ignore the two extremes (confirmed, filtered ; and confirmed and
unconfirmed, unfiltered) due to them skewing to one side only, the remaining
two plots still do not show a congruent picture. What conclusion we can draw is
that using software verification tools with the presented approach may be better
than some native CHC solver tools and worse than or on-par with the leading
CHC solvers. Note that these results are produced by a research prototype as the
transformation step, meaning a theoretical, optimal transformation step may
outperform these results. Our contribution concludes by showing that using this
transformation, on-par performance is possible to native CHC solvers; and should
be considered a viable solution in the future.

4.2 Threats to Validity

As the main contribution of this paper is the experiment design and its analysis,
the factors that threaten the validity of this experiment are presented in this
section.
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Internal Validity. Consistency and accuracy of the experiments were ensured
by using the BenchExec framework [5]. Memory consumption statistics may de-
viate between executions due to the managed nature of some languages used in
developing the tested tools, therefore, such metrics are not used. CPU time and,
therefore, solved tasks may be influenced by external factors such as other pro-
cesses or environmental temperature fluctuations, therefore, minute differences
are disregarded.

External Validity. The results of the experiments are at risk of not being gen-
eralizable due to the relatively low number of benchmarks used throughout the
experiments. The experiment in this paper is designed to show the characteristics
of one possible CHC-to-C transformation, and therefore, we can only state obser-
vations about the feasibility of the concept, not about the actual performance
impact of an optimal transformation. This may skew the results to the detriment
of software verification tools because there may be a better, optimized version
of the CHC2C tool, which would make them outperform their current behavior.

Construct Validity. To justify the type of metrics used in the evaluation of the
experiments, we considered the main use cases these tools would face should they
be used in the approach described in this paper. Academic competitions such as
CHC-COMP [10] or SV-COMP [2] reflect the performance of tools after careful tuning
of them while constantly re-testing on the same benchmark set. Therefore, tools
that may produce wrong results when applied first to a problem, are generally
fixed before the actual competition. This means that directly comparing the
number of successfully solved tasks of dedicated CHC solvers, which have been
developed relying on the benchmark set we tested on, to software verification
tools that see these problems the first time may skew the results to the benefit of
CHC solvers. Small problems and imperfections (such as the one seen in Figure 1)
may introduce false results.

Notice that we have designed our experiment and its analysis to consistently
skew against our main hypothesis – which is that software verification tools may
be beneficial in solving CHCs – rather than being in favor of it. Therefore, the
presented results show a pessimistic view about the value of our contributions.

4.3 Conclusion

We have shown that software verification tools can be useful tools for CHC solving
using a CHC2C pre-transformation step before verification. While dedicated CHC

solvers produced a better ratio of good results to bad results, just the number
of new tools that became capable of solving CHC problems results in a useful
diversification of the state-of-the-art.

We plan to use a version of our presented approach in the next CHC-COMP

to create a participant that uses a portfolio-based approach and tries to run
the optimal software verification tool on any given CHC problem. We hope to
show the developers and researchers in both domains, CHC solving and software
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verification, that it is worth collaborating on tool development and that the exact
domain might only matter regarding a pre-verification transformation step, not
at the algorithmic level. Thus, we hope to help integrate the knowledge of both
fields, resulting in advantages for all parties involved.
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16. Hojjat, H., Rümmer, P.: The ELDARICA Horn Solver. In: Bjørner, N.S., Gurfinkel,
A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin,
TX, USA, October 30 - November 2, 2018. pp. 1–7. IEEE (2018). https://doi.
org/10.23919/FMCAD.2018.8603013

17. Hu, Q., Cyphert, J., D’Antoni, L., Reps, T.W.: Exact and approximate methods for
proving unrealizability of syntax-guided synthesis problems. pp. 1128–1142. ACM
(2020). https://doi.org/10.1145/3385412.3385979

18. Information technology — Programming languages — C. Standard, International
Organization for Standardization (Apr 2011)
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