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Abstract. Analyzing concurrent programs often involves reasoning about
happens-before relations, handled by dedicated SMT theory solvers. Re-
cently, preventative propagation rules have been introduced for consis-
tency models to avoid unnecessary computations. This paper analyses
the reproducibility of a recently published paper regarding a conflict-
avoiding happens-before propagator. We show that the underlying ax-
ioms are insufficient for supporting sequential consistency. We find that
the algorithm can leave out constraints on event ordering (even consid-
ering the original axioms), impacting the accuracy of verification. We
show a simple counterexample to the stability claim in the paper. Two
revisions of the algorithm are presented, and a proof on the correctness
of these approaches respective of the original axioms is shown. The tool
implementing the original algorithm is examined to ascertain how it cir-
cumvents wrong results. It is found that it deviates from the published
algorithm. We show that an unmodified algorithm (via a patch in the im-
plementing tool) causes incorrect results. We also show that our revised
algorithm can be implemented efficiently in an independent verification
tool.
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1 Introduction

Deagle [1,2] won the error-reachability-based ConcurrencySafety category
of the software verification competition SV-COMP for two consecutive years in
2022 [3] and 2023 [4]. This has motivated us to research the underlying algorithms
in detail, in hopes of implementing (and hopefully, improving) the state-of-the-
art techniques that led Deagle to victory. One aspect of the algorithm found in
Deagle is the consistency-preserving propagation of happens-before orders [5].
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However, we found our implementation of the published algorithm faulty, yet
Deagle produced no wrong results in 2022, and only one incorrect result in
2023. Therefore, we constructed a reproducibility study in hopes of uncovering
the reason for this discrepancy. Our contributions in this paper concerning the
reproducibility of the published results are the following:

– We analyze the published algorithm theoretically, and provide a counterex-
ample to its stability claim (see Section 3), and dispute its applicability for
sequential consistency (SC) (see Section 3.4)

– We propose two ways of fixing the algorithm, and prove the stability claim
for both (see Section 4)

– We formulate actionable research questions to validate the applicability of
the proposed approach(es) compared to the previous state of the art (see
Section 5)

– We devise and implement experiments to answer the research questions (see
Section 5.1)

– We evaluate the experimental data and answer the research questions, thus
also providing an answer to the reproducibility premise of our paper (see
Section 5.2, while also discussing the threats to the validity of our results
(see Section 5.3)

We hope that our contributions and insights in this paper will save poten-
tial tool developers from experiencing the same contrariety between theory and
practice, thus being able to build better-performing competing verification tools.

2 Happens-Before Relations in Concurrent Software

The formal verification of concurrent software is often reduced to reasoning about
happens-before relations [6,7] (defined as a partial order on program instruc-
tions), utilized by many Satisfiability Modulo Theories (SMT) based verification
tools both for strictly sequential, as well as weak memory software-hardware sys-
tems [8,9,5]. In most cases, either a dedicated theory solver, or an encoding to
a pre-existing theory (supported by the underlying SMT solver backend) is ap-
plied.

The idea behind these techniques is the following. Instead of applying the
semantics of asynchronous concurrency directly (i.e., any of the threads may ad-
vance from a state of the program, therefore we must analyze all possible orders),
we treat global memory accesses as events, for which we must find a (partially
defined) sequence they can be ordered in. Suitable orders are consistent with the
execution semantics of the platform. Then, we pair read events to write events,
which we call the read-from (rf) relation, meaning the read event returned the
value written by the write event. Furthermore, we employ conventional analyses
to explore the state space of the individual threads, treating reads as reading
values from their rf -paired write accesses.

Because values returned by these read accesses might be used in guards of
conditional statements, and in turn, the accesses to encode as events depend on
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the execution of these conditionals, one cannot completely separate the event
graph and local analyses. However, in the context of this work, we presume that
the local analyses already rely on SMT solvers, that can be utilized to handle the
events and their relations. Some approaches encode this in a theory supported
by the SMT solver [10], and others rely on custom theory solvers integrated with
the SMT engine [8,9,5].

2.1 Consistency-Preserving Propagation

Satisfiability Modulo Theories (SMT) is the problem of deciding whether a value
assignment to symbols exists that satisfies a first-order formula within formal
theories [11]. SMT solvers utilize theory solver backends to handle the different
supported theories (such as real numbers, integers, or arrays), and recently, even
user-defined theory solvers (user propagators) have become possible to imple-
ment [12]. Generally, a dedicated theory solver must implement three procedures
[11]:

– Propagation: Given a set of facts, derive consequences and add them to the
set of known facts

– Consistency checking : Decide whether a certain set of facts are consistent
with the background theory

– Conflict clause generation: If a set of facts is inconsistent with the back-
ground theory, determine which (minimal) subset is responsible for the in-
consistency.

However, Sun et al. recently developed a framework of preventative propa-
gation rules for sequential consistency that always result in consistent models,
and thus, there is no need for either consistency checking or conflict clause gen-
eration [5]. This novel approach greatly boosts verification performance due to
the decreased need for backtracking in the solver.

Unfortunately, part of the published algorithm contains an oversight, which
results in missing crucial constraints on the event ordering (in case of certain
sequences of decisions in the solver backend). We aim to revise this algorithm,
and discuss its influence on the overall performance of the algorithm.

3 Instability in Propagation

In this paper, program verification based on event propagation assumes a loop-
free program in concurrent static single assignment (CSSA) form [13], and an
error property ρerror (e.g., a designated “bad” program location, or some variable
valuation representing an erroneous state) [5].

In this section, we start by summarizing the work of Sun et al. [5]. This work
is not our contribution to claim, and for a more contextualized explanation, we
direct the Reader to the original paper [5]. Here we introduce the core concepts
and notations, which are necessary for understanding our contributions in later
sections.
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3.1 Value Encoding in SMT

First, we encode the value assignments of the program in the formula ρva by
taking each write access with its accompanying guard (i.e., its enabling condition;
the conjunction of all decisions the program must have taken in order for the
event to execute). Given a guard grdwi

, and assuming wi sets variable vi with
CSSA index k to expr i, then grdwi

⇒ vki = expr i. Consequently, ρva is the
conjunction of all such implications.

Similarly, we must encode the read accesses in the program. Because the value
of the read operations depend on their rf -paired write operation, we introduce
a boolean variable rf ij for each same-address events wi and rj . Then, if rf ij is
true, we know that vi = vj , grdwi

, and grdrj hold. To encode all reads, ρrf−val [9]
is the conjunction of all rf ij ⇒ grdwi

∧ grdrj ∧ vi = vj . Furthermore, because all
reads must be paired with a write, we know that if a grdri holds, then ∃j.rf ij .
We encode this in ρrf−some [9].

3.2 Ordering Constraint Encoding

Furthermore, we must encode the ordering constraints of the program. Due
to causality, all read operations paired with a write operation must happen
after the associated write operation (this is the rf -ordering set ≺rf , a subset
of the happens-before ordering set ≺). For sequential consistency, all program
order (i.e., the actual instruction order in the program source) constraints are
preserved, and are thus added to ≺ as ρppo . For both of these sets, we use the
same notation as a predicate, meaning i ≺ j := (i, j) ∈≺. We also encode the
relationship that ∀(i, j).i ≺rf j ⇐⇒ rfij as ρrf−ord .

3.3 Decision Procedure

We must decide if ρva ∧ρerror ∧ρrf−val ∧ρrf−some∧ρrf−ord ∧ρppo is satisfiable. If
yes, we return the resulting model as the counterexample to the original problem.
If not, we have proven the safety of the program.

This satisfiability check will need to check whether any candidate model
would result in a cycle being formed in the transitive closure of the ≺ relation.
Because all elements of ≺ denote a happens-before relation, this would mean
that an element precedes itself, which is impossible, thus rendering the candi-
date inconsistent. To achieve this, we can implement a propagation module for
the SMT solver, which will be called every time the decision procedure fixes
a value for a given expression that influences the ordering sets. For us, these
expressions will either be the rf ij variables, or the guard expressions grdk. We
then perform derivation on the current elements of ≺ and ≺rf by applying the
following axioms:

1. transitivity axiom: (e1 ≺ e2) ∧ (e2 ≺ e3) ⇒ (e1 ≺ e3)
2. from-read axiom [9] for same-address events:

(w1 ≺rf r) ∧ (w1 ≺ w2) ∧ grdw2
⇒ (r ≺ w2)
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x1 := 0 y2 := 3

y1 := 2 b := y3

a := x3 x2 := 1

Fig. 1: CSSA program

W(x1,0)

W(y1,2)

R(x3)

W(y2,3)

R(y3)

W(x2,1)
rf

rf

po

po

po

po

Fig. 2: Final ≺, ≺rf

propagate ( r f x 1 x3 ) ≺rf ,≺ += ( x 1 , x 3 )
t r a n s i t i v i t y ( x 1 , x 3 )
de r i v e ( x 1 , x 2 , x 3 )

propagate ( r f y 1 y3 ) ≺rf ,≺ += ( y 1 , y 3 )
t r a n s i t i v i t y ( y 1 , y 3 ) ≺ += ( y 1 , x 2 )

t r a n s i t i v i t y ( y 1 , x 2 ) ≺ += ( x 1 , x 2 )
t r a n s i t i v i t y ( x 1 , x 2 )

≺ += ( x 1 , y 3 )
t r a n s i t i v i t y ( x 1 , y 3 )

de r i v e ( y 1 , y 2 , y 3 ) ≺ += ( y 2 , y 1 )
t r a n s i t i v i t y ( y 2 , y 1 ) ≺ += ( y 2 , x 3 )

t r a n s i t i v i t y ( y 2 , x 3 )

Fig. 3: A trace of Algorithm 1 over Figure 1

3. write-serialization axiom [5] for same-address events:
(w1 ≺rf r) ∧ (w2 ≺ r) ∧ grdw2

⇒ (w2 ≺ w1)

The algorithm for propagation is shown in Algorithm 1, taken from Sun et
al.’s Algorithm 2: Theory Propagation1 [5]. Then, either conventional consistency
checking and conflict clause generation follows, or the preventative reasoning step
introduced by Sun et al. [5]. The claim these solutions build upon is that after
propagation, ≺ is stable, i.e., it contains all elements derivable by applying theory
axioms. Using the example CSSA program in Figure 1 and the accompanying
trace in Figure 3, we show a counterexample to this claim: x3 and x2 are not
ordered in ≺ as shown in Figure 2, therefore any order may be taken. However,
because x1 ≺rf x3 and x1 ≺ x2, Axiom 2 would order x2 after x3, yet this is not
encoded in ≺. Therefore, we conclude that the state of ≺ is not always stable
after propagation. This may (and will) lead to incorrect results.

3.4 Happens-Before Orders for Sequential Consistency

In this paper, we use the same axioms as Sun et al. [5] for the ordering con-
straints, and thus, for the happens-before order propagation. However, we must
discuss the applicability of said axioms on Sequential Consistency, the most strict
memory model targeted in the original paper (besides its relaxed versions Total
Store Ordering (TSO) and Partial Store Ordering (PSO)).

Consider the happens-before graph (including rf , po, and generic ≺ relations)
in Figure 4:

– We cannot apply the transitivity axiom any further, because all such relations
have already been discovered (shown in gray).

1 There are some typos in the original paper’s Algorithm 2: in lines 31-33, e should
be e′. These are minor mistakes and are fixed here.
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Algorithm 1 Original Theory Propagation Algorithm [5], with typos fixed
Input: l: Positive literal
1: proc Propagate(l)
2: if l is rf ij then

3: wi, rj := write and read of rf ij

4: ≺rf←≺rf ∪{(wi, rj)}
5: ≺←≺ ∪{(wi, rj)}
6: Transitivity(wi, rj)
7: foreach wk s.t. grdk do
8: if (wi, wk, rj) same-addr. then
9: Derive(wi, wk, rj)
10: end if
11: end foreach
12: else if l is grdk then
13: wk := write of grdk
14: foreach (wi, ri) ∈≺rf do
15: if (wi, wk, rj) same-addr. then
16: Derive(wi, wk, rj)
17: end if
18: end foreach
19: end if
20: end proc

Input: wi, wk, rj : wi ≺rf rj , grdk
1: proc Derive(wi, wk, rj)
2: if wk ≺ rj then
3: ≺←≺ ∪{(wk, wi)}
4: Transitivity(wk, wi)
5: else if wi ≺ wk then
6: ≺←≺ ∪{(rj , wk)}
7: Transitivity(rj , wk)
8: end if
9: end proc

Input: e1, e2: e1 ≺ e2
1: proc Transitivity(e1, e2)
2: foreach (e2, e3) ∈≺ do
3: if (e1, e3) /∈≺ then
4: ≺←≺ ∪{(e1, e3)}
5: Transitivity(e1, e3)
6: end if
7: end foreach
8: foreach (e0, e1) ∈≺ do
9: if (e0, e2) /∈≺ then
10: ≺←≺ ∪{(e0, e2)}
11: Transitivity(e0, e2)
12: end if
13: end foreach
14: end proc

– We cannot apply the from-read axiom, because that would require an rf -edge
beginning with a write that has a successor write with the same address, and
no such pair exists.

– We cannot apply the write-serialization axiom either, because that would
require an rf -edge ending with a read that has a predecessor write with the
same address, and no such pair exists.

Therefore, according to the axioms, we are finished with deriving happens-
before relations, and as we found no cycles, the execution is deemed allowed.
However, adding any order between the writes to z (shown in bold) makes a
cycle (via the reads to z in the last two threads, when all axioms are applied
again after adding either order between the writes), and therefore, this execution
is not actually allowed over SC. Therefore, we conclude that the axioms are not

R(z)

W(y, 2)

R(x)

W(x, 1)

W(y, 1)

W(z, 1)

W(t, 1)

W(s, 1)

W(z, 2)

R(z)

W(x, 2)

R(y)

R(z)

W(t, 2)

R(s)

R(z)

W(s, 2)

R(t)

po

rf

≺

Fig. 4: Counterexample for the applicability of Sun et al.’s axioms [5] for Sequen-
tial Consistency (SC). Example taken from [14], Fig. 1c.
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suitable for determining SC-consistency. Therefore, in this paper, we cannot
claim we verify SC concurrency, but rather, a somewhat weaker memory model,
called Weak Sequential Consistency [14].

Fixing this issue can be done post-propagation, by trying to serialize all writes
in the program, and reporting the execution inconsistent with SC if this cannot
be done. However, this scales exponentially with the number of same-variable
writes, which we expect, as the problem (VSC-Read) is NP-complete [15]2.
Therefore, we exclude this fix from our solution proposals in Section 4, and
focus on satisfying the axioms as they are written by Sun et al. [5], and show
they are still not fulfilled.

4 Fixing Stability of the Propagation

To fix the stability problems of ≺ after the propagation step, we propose two
solutions:

Retrospective approach We repeat Propagate in Algorithm 1 until its ap-
plications of all axioms no longer produce new relations.

Prospective approach We patch Algorithm 1 to disallow non-stable ≺ out-
puts by analyzing and fixing its procedures, thus achieving stability by con-
struction.

4.1 Fixing Stability Retrospectively

In order to achieve stability, i.e., a state of ≺ where the theory axioms can no
longer add new relations, the simplest method is to apply this definition directly
by wrapping Propagate in the procedure in Algorithm 2. Because this will not
return until ≺ stops changing, we can be sure that all axioms are fully applied
and therefore, stability is achieved. However, as evident from Algorithm 2, this
comes at the price of complexity: we need to iterate over ≺ and ≺rf repeatedly.

4.2 Fixing Stability Prospectively

To avoid the expensive option of fixing stability retrospectively, the alternative
is to fix it prospectively, i.e., by applying the axioms only on recent additions to
the orders. This was also the goal of Sun et al. [5], and hence Algorithm 1 needs
only some minor modifications to realize this.

The main problem with Algorithm 1 is that Derive is not re-called even
though the conditions wk ≺ rj and wi ≺ wk may change during later calls to
any of the procedures when new elements are added to ≺. Therefore, as shown
in Figure 3, when Derive is first called with (wi, wk, rj) = (x1, x2, x3), it checks
whether wk ≺ rj (which is false with x2 ≺ x3), and wi ≺ wk (which is also false

2 Note: the originally published algorithm is polynomial (every edge is added at most
once to the event graph) [5], and therefore, cannot be the solution to this problem.



8 Bajczi et al.

Algorithm 2 Retrospective algorithm

Input: l: Positive literal
1: proc PropagateWrapper(l)
2: Propagate(l)
3: while ≺ not fix do
4: foreach (e1, e2) ∈≺ do
5: Transitivity(e1, e2) // Axiom 1

6: end foreach
7: foreach (wi, rj) ∈≺rf do
8: foreach wk s.t. grdk do
9: if (wi, wk, rj) same-addr. then
10: Derive(wi, wk, rj) // Axiom 2, 3

11: end if
12: end foreach
13: end foreach
14: end while
15: end proc

with x1 ≺ x2), then returns without adding anything to the order. Later, when
propagating rf y1y3

, during the call to Transitivity(y1, x2), the pair (x1, x2)
is added to ≺, making the else if condition retroactively true for the Derive
call above, but it is never checked again. Thus, x3 ≺ x2 is missed, ≺ is unstable,
and we mistakenly allow some executions that would never be observable on the
execution platform.

To fix this issue, one solution is to re-call Derive every time a new relation is
added to ≺ that could influence the conditions therein. This means that all same-
address (wk, rj) and (wi, wk) relations are subject to this rule, for all previously
checked triples (wi, wk, rj). Because we know that Derive is only ever called
with same-address events for which wi ≺rf rj also holds, we already have access
to the set of already checked triples. Therefore we introduce a helper procedure,
AddToOrder, and change Algorithm 1 to always call this procedure instead,
when any other procedure adds a new element to ≺. The updated algorithm can
be seen in Algorithm 3. Notice that checking the nonexistence of the new pair
in ≺ is also included in AddToOrder, leading to it no longer being necessary
in other procedures.

Theorem 1. After executing Algorithm 3 with any l positive literal, then given
≺ is stable, ≺ remains stable.

To prove stability, we must show that all three axioms are fully applied to ≺
when Propagate returns.

Lemma 1. Axiom 1 is fully applied (may no longer be used to derive new rela-
tions) when Propagate returns.

Proof. The full application of Axiom 1 is always given, as after every addition
to ≺ (line 3), the procedure Transitivity is called, which adds all events that
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Algorithm 3 Revised Theory Propagation Algorithm
Input: l: Positive literal
1: proc Propagate(l)
2: if l is rf ij then

3: wi, rj := write and read of rf ij

4: ≺rf←≺rf ∪{(wi, rj)}
5: AddToOrder(wi, rj)
6: foreach wk s.t. grdk do
7: if (wi, wk, rj) same-addr. then
8: Derive(wi, wk, rj)
9: end if
10: end foreach
11: else if l is grdk then
12: wk := write of grdk
13: foreach (wi, ri) ∈≺rf do
14: if (wi, wk, rj) same-addr. then
15: Derive(wi, wk, rj)
16: end if
17: end foreach
18: end if
19: end proc

Input: e1, e2: Events
1: proc AddToOrder(e1, e2)
2: if (e1, e2) /∈≺ then
3: ≺←≺ ∪{(e1, e2)}
4: Transitivity(e1, e2)
5: if (e1, e2) same-addr. then
6: if e1 is write, e2 is read then
7: foreach (w, e2) ∈≺rf do
8: Derive(w, e1, e2)
9: end foreach
10: else if e1 is write, e2 is write then
11: foreach (e1, r) ∈≺rf do
12: Derive(e1, e2, r)
13: end foreach
14: end if
15: end if
16: end if
17: end proc

Input: wi, wk, rj : wi ≺rf rj , grdk
1: proc Derive(wi, wk, rj)
2: if wk ≺ rj then
3: AddToOrder(wk, wi)
4: end if
5: if wi ≺ wk then
6: AddToOrder(rj , wk)
7: end if
8: end proc

Input: e1, e2: e1 ≺ e2
1: proc Transitivity(e1, e2)
2: foreach (e2, e3) ∈≺ do
3: AddToOrder(e1, e3)
4: end foreach
5: foreach (e0, e1) ∈≺ do
6: AddToOrder(e0, e2)
7: end foreach
8: end proc

are ≺-before the first event as being ≺-before the second element as well; and
events ≺-after the second event as being ≺-after the first element as well. This
is the definition of Axiom 1.

Lemma 2. Axiom 2 and Axiom 3 are fully applied (may no longer be used to
derive new relations) when Propagate returns.

Proof. Axiom 2 as per its definition can derive new elements of ≺ when either
grdk becomes true, or a new same-address write-write pair is added to ≺, or a
new pair is added to ≺rf . In addition, Axiom 3 can also derive new elements
when a new same-address write-read pair is added to ≺. Therefore, when:

1. grdk becomes true, we must examine all w ≺rf r elements for which the
premise of Axiom 2 may hold with wk, i.e., w ≺ wk. Therefore,Derive(w,wk, r)
is called with all (w, r) ∈≺rf (line 15 in Propagate), and checks whether
w ≺ wk holds (line 5), after which it adds the new derived element (r, wk)
to ≺;

2. a new same-address write-write pair (w1, w2) is added to ≺, we must examine
all w1 ≺rf r pairs. We know grdw2

holds because it could not have been added
to ≺ otherwise, so we call Derive(w1, w2, r) (in line 12 of AddToOrder),
which, because w1 ≺ w2 (in line 5), adds (r, w2) to ≺;

3. a new same-address write-read pair (w, r) is added to ≺, we must examine
all such w2 ≺rf r2 pairs where r is r2. We know grdw2

holds because it could
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not have been added to ≺rf otherwise, so we call Derive(w2, w, r) (in line
8 of AddToOrder), which, because w ≺ r (in line 2), adds (w,w2) to ≺;

4. a new pair (w, r) is added to ≺rf , we must examine all same-address write-
write (w1, w2) (for Axiom 2, where w1 is w) and write-read (w2, r2) (for
Axiom 3, where r2 is r) pairs in ≺. In both cases, grdw2

must hold. There-
fore, we must look at all guard-enabled same-address writes, and call De-
rive(w,w2, r) (in line 8 of Propagate), which will add both the conse-
quence of Axiom 2 (in line 6), and the consequence of Axiom 3 (in line 3),
given their premises are fulfilled (lines 5 and 2, respectively)3.

Because for every possible change in the terms of the premises of Axiom 2
and Axiom 3 the premises are checked and the consequences are applied, both
axioms are fully applied.

5 Empirical Evaluation

In order to determine the performance impact and efficacy of the two proposed
solutions, we formulated the following experimental research questions:

ERQ1 How does the performance change among the original, the retrospective,
and the prospective algorithm in an isolated, clean implementation?

ERQ2 How does the practical implementation in the tool corresponding to the
original Sun et al. publication [5] (Deagle) circumvent false results, given
the theoretical issue with Algorithm 1?

ERQ3 How does the performance and efficacy of the revised algorithms (both
the prospective and the retrospective) transfer to another verification tool
(Theta [16])?

ERQ4 How does the performance change among the retrospective and the
prospective algorithm when integrated in a model checking tool?

Additionally, we formulate the premise of our paper as a research question:

RQ Is the stability claim by Sun et al. [5] supported theoretically, and repro-
ducible in practice?

5.1 Experimental Setup

We used theConcurrencySafety-Main category of SV-COMP [4] to measure
verification performance throughout the experiments. We relied onBenchexec [17]
to provide accurate and reproducible performance measurements.

3 In the original algorithm presented in Algorithm 1, the check for Axiom 2 and
Axiom 3 were mutually exclusive in Derive. We believe this is faulty, and have
therefore changed it here.
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Isolated Implementation We transformed a simple (i.e., pointerless and ar-
rayless) subset of the SV-COMP ConcurrencySafety-Main category’s tasks
into the CSSA form suitable for the algorithms above, with an unrolling bound
of 2. Then, we used the original algorithm (in Algorithm 1) to generate a consis-
tent rf -assignment for each task. We then replayed the order of rf -assignments
in the two algorithms proposed in Section 4. We measured time, and the size
of ≺ after propagation. There were 22 tasks where there was a discrepancy in
the size of ≺ among the original and the two revised algorithms (on average,
6.9%), in which cases more traces are thought to be possible than in reality,
possibly leading to false unsafe verdicts (see Figure 1). The two revised algo-
rithms always produced the same size ≺, as expected, empirically supporting
the soundness proof in Section 4.2. In these 22 instances, the performance of the
three algorithms is visible in Figure 5. We can see that the retrospective solution
is much slower than the original (on average, by 240%), and that the prospective
approach is consistently a bit slower (on average, by 16%).

0 5 10 15 20

1

10

100

Tasks

T
im

e
(s
)

Original

Retrospective

Prospective

Fig. 5: Quantile plot of execution times for the isolated implementation

Implementation in Deagle We used the publicly available source code of
Deagle4 for this part of the experimental evaluation. We also ran our experi-
ments with the SV-COMP’24 binary release [2]. We used 900 seconds of timeout
in the experiments.

We used the entire ConcurrencySafety-Main category of SV-COMP
with 713 tasks. The results can be seen in Figure 6, showing a verdict-based
comparison.

We first ran our experiments with the binary release [2] and an unmodified
version of the source code. We found that the binary release solved marginally

4
https://github.com/thufv/Deagle/commit/19e267151cca620cb1d24bc109a451b8a0e617f8

https://github.com/thufv/Deagle/commit/19e267151cca620cb1d24bc109a451b8a0e617f8
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fewer tasks, but produced no incorrect verdicts. However, the source release
solved marginally more tasks, but produced 14 incorrect verdicts. We compared
the logs of these two configurations, and found the lines “Use SV-COMP un-
winding strategy: X” differ between the two configurations, varying between
2 and 100. This leads us to believe that there is a discrepancy in the way the
unwinding strategy is selected between the two versions, which leads to the
slight difference in solved tasks and can cause false results, because Deagle ac-
cepts a bounded proof of safety as an overall safety proof. There is one notable
exception, pthread-race-challenges/thread-local-value.yml, which is
correctly determined to be safe by the binary version with 5 unwindings, but
incorrectly classified as unsafe by the source version with 2 unwindings. This
means that there may be further differences between the versions.

We examined the source code of Deagle to find out how it is possible that
with a faulty implementation, there can still exist a version (the binary re-
lease) which circumvents all incorrect results. We found that in the Closure-
Solver.cc file there is a one more time flag in the propagate() function5

that checks for newly added edges, and recursively calls propagate again, until
a fixpoint (no new edges) is reached. This closely resembles what we call the
retrospective approach.

Because this is not aligned with the algorithm of the original publication,
we removed this flag. Besides this flag, we found no other meaningful difference
between the published algorithm and the source. We ran the experiments with
this version as well, and its results are included in Figure 6. A lot of tasks run
afoul of an assertion in this configuration, causing an overall dip in solved tasks,
but this is not (directly) the problem of the originally published algorithm,
just a side effect. However, even with this smaller sample size, the nominal
number of incorrect verdicts still grew: there were 20 tasks that this version
solved incorrectly, out of which 14 could still be solved by the source code,
unpatched version.

binary release
(retrospective)

source code
(retrospective)

patched
(original)

correct 618 628 236
true 320 332 165
false 298 296 71

incorrect 0 14 20
true 0 10 4
false 0 4 16

Fig. 6: Verification efficacy of Deagle’s binary release, source code release, and
patched version

5
https://github.com/thufv/Deagle/blob/19e267151cca620cb1d24bc109a451b8a0e617f8/minisat-2.2.
1/minisat/core/ClosureSolver.cc#L452

https://github.com/thufv/Deagle/blob/19e267151cca620cb1d24bc109a451b8a0e617f8/minisat-2.2.1/minisat/core/ClosureSolver.cc#L452
https://github.com/thufv/Deagle/blob/19e267151cca620cb1d24bc109a451b8a0e617f8/minisat-2.2.1/minisat/core/ClosureSolver.cc#L452
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Fig. 7: Quantile plot of execution times for Theta vs. Deagle

Implementation in Theta We implemented a version of the prospective, as
well as the retrospective algorithm in Theta [16] (as an independent model
checker tool). We compare its experimental results with the best performing,
source-based, unpatched version of Deagle. The results can be seen as a quan-
tile plot in Figure 7. Theta produced 2 wrong results due to insufficient loop
unrollings, and Deagle produced 14 wrong results, presumably due to similar
issues. These verdicts are not included in the quantile plot. Furthermore, Theta
does not support certain elements of the C language in its frontend, and therefore
we excluded these tasks to preserve a fair comparison.

We can see (in Figure 7) that the two tools produce almost the same number
of correct verdicts (528 for Deagle and 522/520 for the retrospective/prospec-
tive version of Theta), with similar performance characteristics. The offset in
performance (in our opinion) is down to Theta being a non-native, JVM-based
application, while Deagle is a compiled, native program. We can further see that
while the prospective algorithm consistently outperformed the retrospective one,
it did so only marginally, and even ended up solving two tasks fewer.

5.2 Evaluation of Experiments

Based on our results reported in Section 5.1, we can answer the three experi-
mental research questions.

ERQ1 As shown in Section 5.1, the original (faulty) algorithm is the fastest, the
prospective algorithm is slightly slower (by around 16%), and the retrospective
algorithm is much slower (by around 240%).
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ERQ2 As shown in Section 5.1, the published algorithm [5] and the implemen-
tation in the published source code differ in containing a flag to re-run Propa-
gate() when necessary (akin to our proposed retrospective solution). Without
this patch, the original algorithm produces (more) wrong results.

ERQ3 The performance and efficacy of the algorithm transfers suitably to inde-
pendent tools, as shown with our implementation in the Theta model checking
framework.

ERQ4 As shown in Figure 7, the prospective algorithm is slightly faster than
the retrospective algorithm. The difference is far less pronounced than with the
clean, isolated implementation (Section 5.1).

Additionally, we can answer RQ as well. The claim that after propagation,
the state of the execution graph is stable, is not supported theoretically, as shown
with our counterexample in Figure 3. In practice, the stability is reproducible,
but only with a modified algorithm, containing a supporting flag, as uncovered
in Section 5.1. Without this patch, the stability after running the algorithm is
not guaranteed, and can cause real-life problems, as the newly incorrect verdicts
in Section 5.1 showcase.

5.3 Threats to Validity

As one of the main contributions of this paper is the experiment design and its
analysis, the factors that threaten the validity of this experiment are presented
in this section.

Internal Validity. Consistency and accuracy of the experiments were ensured
by using the BenchExec framework [17]. Memory consumption statistics may de-
viate between executions due to the managed nature of some languages used in
developing the tested tools, therefore, such metrics are not used. CPU time and,
therefore, solved tasks may be influenced by external factors such as other pro-
cesses or environmental temperature fluctuations, therefore, minute differences
are disregarded.

External Validity. The results of the experiments are at risk of not being
generalizable due to the relatively low number of benchmarks used throughout
the experiments. Furthermore, we as authors do not have access to the most
up-to-date source code of Deagle which was used to compile the competition
binary. Additionally, we are not familiar with the whole Deagle code base,
which may mean we missed crucial implementation details in the tool. Also,
we were not able to meaningfully circumvent the assertion violation using our
patched version when trying to achieve an implementation close to the published
one, and therefore, the majority of test cases were excluded in that analysis.
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Construct Validity. To justify the type of metrics used in the evaluation of the
experiments, we considered the main use cases these tools would face should they
be used in the approach described in this paper. Academic competitions such as
SV-COMP [4] reflect the performance of tools after careful tuning of them while
constantly re-testing on the same benchmark set. Therefore, our results may not
be easily reproduced on a different benchmark set.

6 Conclusion and Future Work

In this paper, we have shown that the Basic algorithm published by Sun et al.
[5] contains a problem where some ≺ elements are not discovered given a set
of axioms for weak sequential consistency. Their algorithm is the basis of the
software verification tool Deagle [5] that was the winner of the concurrency
category of SV-COMP 2022 [3] and 2023 [4] which highlights the importance
of the approach and the need for its improvement. We have proposed two so-
lutions to this problem, a retrospective and a prospective algorithm, and have
proven the post-propagation stability property of both. Using empirical data, we
can conclude that in some circumstances the issue materializes in real-life prob-
lems as well, but there is a performance impact of using the revised algorithms.
We found the prospective algorithm does not impact performance as much as
the retrospective, but we could only show a significant difference in an isolated
environment. We further found that the original implementing tool, Deagle,
already contains a way to circumvent the problem, by utilizing a solution resem-
bling our retrospective approach. We show that without this modification of the
algorithm, Deagle does produce wrong results on verification tasks. We also
showed that our proposal transfers to other model checkers as well, by showing
that an implementation in the Theta [16] model checking framework achieved
similar results to that of Deagle. Finally we have analyzed the empirical results
and answered the premise of our reproducibility study: the claims of the paper
are not substantiated either theoretically, or in practice.
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