
Software Verification

Fault Tolerant Systems Research Group
Department of Measurement and Information Systems

Budapest University of Technology and Economics

2021

1 Introduction
Formal software verification techniques aim to provide mathematically precise proofs for the correct
operation of computer programs. One of the most widely used method is model checking [1, 12],
which exhaustively traverses every possible execution of the program for every possible input and
checks whether certain properties are satisfied. There is a wide range of properties to be checked on a
software, including failing assertions, indexing out of bounds, overflows, etc.
The advantage of the exhaustive behavior of model checking (as opposed to testing) is that it can
prove both the presence and the absence of errors. However, a major drawback of model checking is its
computationally expensive nature. Even if a program only takes three 32 bit integers as input, there
are 232 · 232 · 232 possibilities for their values, which cannot be exhaustively enumerated in practice.
This is often referred to as the “state space explosion” problem. A wide variety of advanced model
checking techniques have been proposed in the past decade to tackle this issue, including symbolic
methods [8], bounded model checking [6] and abstraction [10, 11].
After introducing control flow automata [5], a formal representation for programs (Section 2), we
focus on two variants of abstraction for model checking: explicit value abstraction [5] (Section 3.1) and
predicate abstraction [15] (Section 3.2). Finally, we give a brief summary and suggest some materials
for further reading (Section 4).

2 Control Flow Automata
Computer programs can be represented in different ways. The source code for example is a suitable
format for people to read and write, whereas the compiled binary is ideal for execution. In order to
perform model checking on software, the program code must be given in a mathematically precise,
formal representation. A widely used formalism is the control flow automata (CFA) [5], which is a
graph-based representation of a program.
Formally, a CFA is a tuple (V, L, l0, E) with the following elements.

– V = {v1, v2, . . .} is the set of variables appearing in the program. Each variable vi ∈ V is
associated with a domain Dvi . In this document we focus on pure mathematical domains (e.g.,
Booleans and unbounded integers), but domains can also be architecture specific (e.g., 32 bit
signed integers).

– L = {l0, l1, . . .} is the set of control locations modeling the actual position of the program counter.
– l0 ∈ L is the initial location representing the entry point of the program.
– E ⊆ L×Ops×L is a set of directed edges between the location, annotated with operations over

the variables that get executed when control flows from one location to another in the program.
In this document we focus on simple programs with a single function, where operations are either
assignments (e.g. x := x+ 1) or assumptions (e.g., [x > 0]). Assignments and assumptions play
a similar role as actions and guards in statechart models.

1

System Modeling Software Verification

Locations and edges are denoted by circles and arrows respectively in the graphical representation of
a CFA. The initial location is marked with an incoming arrow.

Example 2.1. An example C program can be seen in Figure 1(a) with the corresponding CFA in
Figure 1(b). The entry of the program, i.e., the initial location is l0. The sequential statements in lines

� �
1 int x = 1;
2 int y = 0;
3 while (x < 10) {
4 if (x % 3 == 0) {
5 y++;
6 }
7 x++;
8 }� �

(a) Simple C program.

l0

l1

l2 lf

l3

l4

l5

x := 1

y := 0 [¬(x < 10)]

[x < 10]

[x%3 = 0][¬(x%3 = 0)]

y := y + 1

x := x+ 1

(b) CFA representation of the program.

Figure 1: Simple C program and its corresponding CFA.

1–2 are simply encoded by the path l0 → l1 → l2. The head of the loop is l2 where two options are
possible depending on the loop condition. If the condition does not hold, the program jumps after the
loop, which is the end of the program, usually denoted by a distinguished final location lf . Otherwise,
the program enters the body of the loop (l3). The if statement in line 4 is encoded by the two outgoing
edges from l3. If the condition holds, the program moves to l4, increments y (line 5) and proceeds to l5
after the if statement. Otherwise, the program simply moves to l5 since the if statement does not have
an else branch. Finally, after l5 the program increments x (line 7) and returns to the loop head (l2).

As it can be seen in the previous example, the basic elements of structured programming (sequence,
selection, repetition) can be represented in the CFA in the following way.

– Sequential statements are represented by a path (an alternating sequence of locations and edges).
– Selections (if/then/else statements) are represented by separate paths (with assumptions).
– Repetitions (loops) are represented by cycles. There is a location corresponding to the loop header

with two outgoing edges: one into the body of the loop and one pointing after the loop. The loop
body may contain further sequences, selections or repetitions, but their paths eventually return
to the loop header location.

2.1 Assertions

There is a wide variety of properties that can be verified on programs, including assertion failures,
indexing out of bounds, arithmetic overflow, deadlock, null pointer dereference, violating pre- or post-
conditions and so on. In this document we focus on verifying assertions, which check if a Boolean
condition holds at a certain point of the program.
Assertions are usually represented in CFA as a special selection: if the condition holds, the program
continues to the next location, otherwise it goes to a distinguished error location le ∈ L. If there are
multiple assertions, they can use the same error location le to indicate the assertion failure. This way
the task of formal verification is to check whether the given error location le ∈ L is reachable in a
CFA. Therefore, we call the pair of a CFA and an error location (CFA, le) a verification task [3].

Example 2.2. Consider the C program in Figure 2(a), with an assertion in line 5. The corresponding
CFA can be seen in Figure 2(b), where the condition of the assertion is evaluated at the outgoing edges
of l3. If the condition holds, the program continues to the next location, which is actually final location
lf , since the program ends after the assertion. Otherwise, the program proceeds to the distinguished
error location le.

2

System Modeling Software Verification

� �
1 int x = 0;
2 while (x < 5) {
3 x++;
4 }
5 assert x <= 5;� �

(a) Simple C program with an assertion.

l0

l1

l2

l3

lf le

x := 1

[x < 5]x := x+ 1
[¬(x < 5)]

[x ≤ 5] [¬(x ≤ 5)]

(b) CFA representation of the program.

Figure 2: Simple C program with an assertion and its corresponding CFA. The assertion failure is
represented by the distinguished error location le.

2.2 State Space

In order to formally verify the reachability of the error location le ∈ L of a CFA (V, L, l0, E), the model
checking algorithm exhaustively explores all possible states and transitions (also called the state space).
The actual state of the program is described by two components: (1) the actual location l ∈ L, and
(2) the actual values assigned to the variables v ∈ V . Hence, the actual state of the program is a tuple
(l, d1, . . . , dn) where l ∈ L is the actual location and di ∈ Dvi is a value assigned to variable vi from
its domain Dvi . It can be seen that the number of possible states of a program is equal to the product
of the number of locations and the sizes of the domains, i.e., |L| · |Dv1 | · . . . · |Dvn |.
In the CFA formalism variables are not initialized at the beginning (i.e., they can have any value),
hence all states are considered as initial states that have l0 as their location. Note, that initial states (of
the state space) should not be confused with the initial location (of the CFA). There is a single initial
location (l0) in a CFA, but due to the arbitrary values of variables, there can be many corresponding
initial states (l0, . . .) in the state space.

Example 2.3. The program in Figure 1 has 7 locations and 2 variables. Supposing that the variables
x, y are 32 bit integers, the number of possible states is 7 · 232 · 232 ≈ 1020. For example, (l2, 1, 0) is a
possible state where the program is at location l2 and x = 1, y = 0. Furthermore all states (l, x, y) with
l = l0 and any x, y value are initial.

Transitions in the state space of the program can be computed in the following way. Given an actual
state (l, d1, . . . , dn), there is a potential transition for each outgoing edge (l, op, l′) ∈ E from l depending
on the type of the operation op.

– If op is an assumption of the form [cond], where cond is a Boolean expression, then there is a
transition to the successors state (l′, d1, . . . , dn) if cond evaluates to true. In other words, if the
condition of the assumption on the edge holds for the actual state, then there is a transition to
the target location of the edge and the values of the variables remain the same.

– If op is an assignment of the form vk := expr, where expr is an expression, then there is a
transition to the target state (l′, d′1, . . . , d

′
n) where d′i = di, except for d′k, which is equal to

the result of evaluating expr with d1, . . . , dn. In other words, the values of the actual state are
substituted into the expression on the right side of the assignment, and the result is assigned to
the variable on the left side. Other variables are left unchanged.

Example 2.4. Consider the program in Figure 1. The state of this CFA can be described with a triple
(l, dx, dy) where l is the actual location and dx, dy are the actual values of the variables x, y. Some
example transitions are listed below.

– (l4, 3, 0) → (l2, 3, 1) is a transition since there is an edge from l4 to l2 with the operation y := y+1.

3

System Modeling Software Verification

– (l2, 1, 0) → (l3, 1, 0) is a transition since there is an edge from l2 to l3 with the assumption
[x < 10], which holds for the state (l2, 1, 0).

– Note however, that there is no transition from (l2, 1, 0) with the other edge [¬(x < 10)], since
this condition does not hold.

2.3 Model Checking

The purpose of software model checking is to determine whether a state with the error location le
can be reached1 starting from the initial state(s) of the CFA. A path leading to the error location is
called a counterexample as it proves the incorrectness of the program. However, the previous exam-
ples demonstrated that the state space can be prohibitively (or even infinitely) large for even small
programs, which makes explicit traversal of the state space infeasible in practice.

Example 2.5. The CFA in Figure 3(a) has a single variable x, therefore states are described by pairs
(l, dx) of a location and the value of x. A part of the state space of the CFA can be seen in Figure 3(b).
Since x is initially arbitrary, every state with l0 is an initial state. However, since the only edge from

l0

l1

l2

l3

lf le

x := 0

[x < 5]x := x+ 1
[¬(x < 5)]

[x ≤ 5] [¬(x ≤ 5)]

(a) CFA.

l0, 0 l0, 1 l0, 2 · · ·

l1, 0 l1, 1 l1, 2 · · ·

l2, 0 l2, 1 l2, 2 · · ·
...

...
... . . .

le, 6

(b) State space.

Figure 3: Example CFA and its state space.

l0 goes to l1 and sets x to 0, the successor of each initial state will be (l1, 0). From l1 there are two
edges, but for x = 0 only the condition [x < 5] holds, therefore the only transition goes from (l1, 0) to
(l2, 0). From l2 there is a single edge to l1 updating x := x + 1, so the successor of (l2, 0) is (l1, 1).
The example continues similarly, as it can be seen in Figure 3(b). Note, that there are states with le
somewhere in the state space, for example (le, 6) in the figure. If we continued the example, we would
soon reach the final location lf with no outgoing edges, and therefore we could conclude that le is not
reachable. In real-life examples however, this question is often impossible to decide due to the large
number of reachable states.

To overcome the problem of state space explosion, many advanced approaches have been developed in
the past decades, including symbolic methods [8], bounded model checking [6] and abstraction [10, 11].
All of these methods try to reduce the size of the state space by bounding the search or using a compact
representation.

3 Abstraction-Based Model Checking
The main reason for state space explosion is that variables in a program can have a great, or even
an infinite amount of different values. Two of the most prominent abstraction based methods try to
tackle this issue in the following ways.

– Explicit value abstraction [5] only tracks the values for a subset of the variables and also allows
variables to have an unknown value (instead of enumerating all possibilities). Unknown values

1Model checking originally refers to checking whether temporal logic expressions (e.g., CTL or LTL) hold [9]. Checking
reachability is a special case that can be expressed using temporal logic, but it is often also referred to as model checking.

4

System Modeling Software Verification

mean that the variable can take any value from its domain. For example, if a CFA has variables
x and y, we might only track x and treat y as unknown.

– Predicate abstraction [15] only tracks certain facts or relationships about the variables (called
predicates). For example, instead of tracking the concrete values of x and y, we might only track
whether x > y holds or not.

Of course, by applying abstraction, we lose information, which might make the outcome of model
checking incorrect. However, these methods are usually over-approximations [11], which means that
there can be false positives, but no false negatives. In other words, if there are no counterexamples
in the abstract state space (error location is not reachable), then there are no counterexamples in
the original program (no false negative). However, it is possible that there is a counterexample in the
abstract state space (due to the loss of information), but no counterexample in the original program
(false positive). If the abstract counterexample turns out to be a false positive, then one must find
a different abstraction, i.e., track other variables, or other predicates. This is called counterexample-
guided abstraction refinement [5, 10, 16], but it is out of the scope of this document. The following
sections introduce how explicit value and predicate abstractions work in a more detailed way.

3.1 Explicit Value Abstraction

Explicit value abstraction [5] tries to reduce the size of the state space by tracking only a subset V0 ⊆ V
of the variables V . The subset V0 is called the set of explicitly tracked variables.2 Other variables are
assigned an unknown value, denoted by ⊤ (“top”). Unknown values mean that the variable can take
any value from its domain. Note, that it is also possible for a tracked variable in V0 to have an unknown
value if it is not initialized yet, or if an assignment cannot be evaluated. For example, if x is tracked,
but y is not, the value of x will be unknown after an operation such as x := y + 1.
An abstract state in explicit value abstraction is a tuple (l, d1, . . . , dn), where some di values are
possibly ⊤. Since ⊤ values represent all possibilities from the domain, a single abstract state can also
represent multiple (or even infinite) number of states from the original CFA. For example, the abstract
state (l0, 1,⊤) represents states (l0, 1, 0), (l0, 1, 1), (l0, 1, 2), . . . , (l0, 1, n).
Given a CFA (V, L, l0, E) and the subset V0 ⊆ V of explicitly tracked variables, the abstract state
space is constructed in the following way. The only initial state is (l0,⊤, . . . ,⊤), since the CFA starts
at l0 and no variable is initialized. Then, given an actual state (l, d1, . . . , dn) (where some di values
are possibly ⊤), there is a possible transition for each outgoing edge (l, op, l′) ∈ E from l depending
on the type of the operation op.

– If op is an assumption of the form [cond], where cond is a Boolean expression, then there is
a transition to the successor state (l′, d1, . . . , dn) if cond evaluates to true or if it cannot be
evaluated (due to ⊤ values). For example, [x > 0] cannot be evaluated if x = ⊤. Note, that
treating unknown values this way yields an over-approximation. For example, if the condition
of an if/else statement cannot be evaluated, we will explore both paths, avoiding false negatives
(but possibly introducing false positives).

– If op is an assignment of the form vk := expr, where expr is an expression, then there is a
transition to the successor state (l′, d′1, . . . , d

′
n) where d′i = di, except for d′k, which is ⊤ if expr

cannot be evaluated (due to ⊤ values) or if vk /∈ V0. Otherwise d′k is equal to the result of
evaluating expr with d1, . . . , dn. In other words, the variable on the left side of the assignment
becomes unknown if the expression on the right side cannot be evaluated or if the variable is
not tracked. Otherwise, the variable takes the result of the expression. Other variables are left
unchanged.

Example 3.1. Consider the CFA in Figure 4(a), which alternates x between 0 and 1 in a loop, and
checks in the end whether x ≤ 1. Although it can be seen that the error location cannot be reached
(since x is only 0 or 1), a basic model checking algorithm would need to explore many states due to the

2A similar approach was previously proposed for transition systems, where tracked and untracked variables are called
“visible” and “invisible” respectively [13].

5

System Modeling Software Verification

l0

l1

l2

l3l5

l4

lf le

x := 0

i := 0

[i < 1000]

x := (x+ 1)%2

i := i+ 1

[¬(i < 1000)]

[x ≤ 1] [¬(x ≤ 1)]

(a) CFA.

l0,⊤,⊤

l1, 0,⊤

l2, 0,⊤

l3, 0,⊤

l5, 1,⊤

l4, 0,⊤

lf , 0,⊤

l2, 1,⊤

l3, 1,⊤

l5, 0,⊤

l4, 1,⊤

lf , 1,⊤

(b) Abstract state space.

Figure 4: Example CFA and its state space using explicit value abstraction.

bound (i < 1000) of the loop. However, when explicit value analysis is used, and only x is tracked (i.e.,
V0 = {x}), the abstract state space can be seen in Figure 4(b). Abstract states (denoted by rectangles)
are triples of the form (l, dx, di), but since i is not tracked, the third value is always ⊤.
The initial state is (l0,⊤,⊤) since the CFA starts at l0 and no values are initialized. The first transition
sets x to 0 and the second sets i to 0, but since i is not tracked, we arrive to state (l2, 0,⊤). The loop
condition [i < 1000] cannot be evaluated (because i = ⊤), thus we explore both possibilities. If we do
not enter the loop we arrive to (l4, 0,⊤) where the assumption [x ≤ 1] holds so we proceed to the final
location lf with no outgoing edges. If we enter the loop we set x to 1 and arrive at the loop header
(l2, 1,⊤) again, while passing l5. Note, however, that the operation of the edge l5 → l2 has no effect
on the state space as i is not tracked. At (l2, 1,⊤) the condition cannot be evaluated again, hence we
both take the path to (l4, 1,⊤), leading to the final location and the path into the loop that sets x to 0
again. The latter path goes back to the state (l2, 0,⊤), which was already explored. There are no more
states to explore and the error location was not reached so we can conclude that it is not reachable in
the original state space as well (due to over-approximation).

Example 3.2. Consider now the program in Figure 5(a) with the corresponding CFA in Figure 5(b).
It can be seen that the error location cannot be reached, since [x ̸= 0] and its negation cannot hold at
the same time. Basic model checking cannot solve this task since x can take any value (for example

� �
1 int x;
2 if (x != 0) {
3 assert x != 0;
4 }� �

(a) Program.

l0

l1

lf

le

[x ̸= 0]

[¬(x ̸= 0)]
[¬(x ̸= 0)]

[x ̸= 0]

(b) CFA.

l0,⊤

lf ,⊤ l1,⊤

le,⊤

(c) Abstract state space.

Figure 5: Example CFA that cannot be checked with explicit value abstraction.

because it is an input). However, explicit value abstraction also fails even if x is tracked. The abstract
state space can be seen in Figure 5(c). States are triples of the form (l, dx), but since x is never
assigned, it is always ⊤. The only initial state is (l0,⊤), where the condition cannot be evaluated.
One of the possibilities lead to the final location, but the other leads to (l1,⊤). In the latter case, even

6

System Modeling Software Verification

though we know that x ̸= 0, we cannot represent this fact in explicit value abstraction: the value of x
can be anything other than 0 so we must set x to the unknown value ⊤. However, this way the error
location can be reached, since the condition of the assertion is also unknown (false positive).

The previous examples demonstrated that while explicit value abstraction can reduce the state space
effectively, it cannot solve certain kinds of tasks.

3.2 Predicate Abstraction

Predicate abstraction [15] tries to reduce the size of the state space by tracking a set of predicates
(denoted by P = {p1, p2, . . . , pk}) instead of concrete values of variables. Predicates are Boolean
formulas over V that capture facts or relationships about variables, for example (x > 0), (y + 2 = x),
(x%2 = 0), and so on. An abstract state in predicate abstraction consists of a location (as usual) and
of predicates or their negations, e.g., (l0, p1,¬p3). It is also possible that neither a predicate pi nor its
negation ¬pi appears in a state if we cannot evaluate the predicate. For example, if the variable x is
not initialized, the predicate x < 0 cannot be evaluated.
An abstract state represents all original states of the CFA for which the associated predicates hold. For
example, if there is a single variable x and a predicate (x%2 = 0), then the abstract state (l0, x%2 = 0)
represents states (l0, 0), (l0, 2), (l0, 4), . . . , (l0, 2k). Similarly, the abstract state (l0,¬(x%2 = 0)) with
the negated predicate represents states (l0, 1), (l0, 3), (l0, 5), . . . , (l0, 2k + 1).
Given a CFA (V, L, l0, E) and a set of predicates P = {p1, p2, . . . , pk} to be tracked, the abstract state
space is constructed in the following way. The only initial state is (l0), since the CFA starts at l0
and no variable is initialized, therefore we cannot evaluate any of the predicates. Let p̂i denote the
predicate pi or its negation ¬pi or true (when the predicate is not present in a state). Then, given an
actual state (l, p̂1, . . . , p̂k), there is a possible transition for each outgoing edge (l, op, l′) ∈ E from l
depending on the type of the operation op.

– If op is an assumption of the form [cond], then we check if it contradicts the predicates of the
actual state p̂1, . . . , p̂k. If not, there is a transition to a successor state with location l′. The
successor state will have those predicates (or their negations) from P that are implied by the
predicates of the source state and the assumption. For example, a predicate ¬(x < 0) on the
source state and an assumption [x ̸= 0] together imply that the predicate (x > 0) holds for the
successor state.

– If op is an assignment of the form vk := expr, then there is a transition to a successor state
with location l′. The successor state will have those predicates (or their negations) from P that
are implied by the predicates of the source state and the assignment. For example a predicate
(x > 0) on the source state and an assignment x := x + 1 together imply that the predicate
(x > 0) holds for the successor state.

In practice, contradictions and implications between formulas are calculated by satisfiability modulo
theory (SMT) solvers [2, 7, 14].

Example 3.3. Consider the CFA in Figure 6(a), which increments the variable x in a loop until 1000
and then checks if x > 0 holds. It can be seen that the error location is not reachable, but the basic
model checking algorithm would need to explore many states due to the bound (x < 1000) of the loop.
The same holds for explicit value analysis, since x must be tracked, otherwise the condition of the edge
between l3 and le cannot be evaluated, leading to a false positive. However, using predicate abstraction
with a single predicate P = {x < 1000} yields the state space in Figure 6(b).
The initial state is (l0) since the CFA starts at l0 and no values are initialized (so predicates cannot
be evaluated). The operation of the edge l0 → l1 sets x to 0, which implies that the predicate x < 1000
will hold for the successor state (at location l1). At the state (l1, x < 1000) only the edge l1 → l2 can
be taken, since the operation of the other edge (l1 → l3) contradicts the predicate x < 1000. Therefore,
the only successor is (l2, x < 1000), where the only edge l2 → l1 increments x. Taking this edge to (l1),
we do not know if the predicate holds or not, since x < 1000 held previously, but incrementing x can

7

System Modeling Software Verification

l0

l1

l2

l3

lf le

x := 0

[x < 1000]x := x+ 1
[¬(x < 1000)]

[x > 0] [¬(x > 0)]

(a) CFA.

l0

l1, x < 1000

l2, x < 1000

l1

l3,¬(x < 1000)

lf ,¬(x < 1000)

(b) Abstract state space.

Figure 6: Example CFA and its state space using predicate abstraction.

make the predicate either hold or not. From (l1) we can now take both paths, from which l1 → l2 will
lead to the already explored state (l2, x < 1000). The other path leads to l3 where we know that the
negation of the predicate holds, due to the assumption on edge l1 → l3. Now at l3 we cannot go to the
error location, since the assumption [¬(x > 0)] and the predicate ¬(x < 1000) contradict each other.
The other path is feasible, leading to the final location lf and concluding that le cannot be reached.

4 Summary
This document presented abstraction-based methods for formal software verification. A basic model
checking approach often suffers from the large number of potential states and transitions. Explicit value
abstraction can often reduce the state space efficiently, but might not be able to solve certain kind
of tasks. Predicate abstraction can be an alternate solution, but it often requires more computational
power due to checking implications and contradictions between predicates.

4.1 Further reading

A crucial point of abstraction-based methods is to find the proper abstraction, i.e., the appropriate
variables or predicates to be tracked. It is out of scope for this document, but there are automatic
algorithms for this purpose, usually referred to as “counterexample-guided abstraction refinement” [10,
16]. Such algorithms usually start with a coarse initial abstraction and apply refinements based on false
positives (counterexamples). Refinement often relies on SMT solvers [2, 7, 14] and interpolation [5,
17, 19] that can automatically infer the set of variables or predicates to be tracked.
There are various tools implementing abstraction-based verification for software, including
CPAchecker3 [4] and Theta4 [18], the latter being developed at our research group. There is also
an annual competition on software verification [3], where tools compete on a large set of benchmarks.

References
[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press, 2008.

[2] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Handbook of satisfiability, volume 185 of Frontiers in Artificial Intelligence and
Applications, chapter 26, pages 825–885. IOS press, 2009.

3http://cpachecker.sosy-lab.org
4http://github.com/FTSRG/theta

8

http://cpachecker.sosy-lab.org
http://github.com/FTSRG/theta

System Modeling Software Verification

[3] Dirk Beyer. Software verification with validation of results. In Tools and Algorithms for the
Construction and Analysis of Systems, volume 10206 of LNCS, pages 331–349. Springer, 2017.

[4] Dirk Beyer and M. Erkan Keremoglu. CPAchecker: A tool for configurable software verification.
In Computer Aided Verification, volume 6806 of LNCS, pages 184–190. Springer, 2011.

[5] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR and
interpolation. In Fundamental Approaches to Software Engineering, volume 7793 of Lecture Notes
in Computer Science, pages 146–162. Springer, 2013.

[6] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic model check-
ing without BDDs. In Tools and Algorithms for the Construction and Analysis of Systems, volume
1579 of Lecture Notes in Computer Science, pages 193–207. Springer, 1999.

[7] Aaron R Bradley and Zohar Manna. The calculus of computation: Decision procedures with
applications to verification. Springer, 2007.

[8] Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill, and Lain-Jinn Hwang.
Symbolic model checking: 1020 states and beyond. In Proceedings of the 5th Annual IEEE Sym-
posium on Logic in Computer Science, pages 428–439. IEEE, 1990.

[9] Edmund M. Clarke. The birth of model checking. In 25 Years of Model Checking, volume 5000
of Lecture Notes in Computer Science, pages 1–26. Springer, 2008.

[10] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of the ACM, 50(5):752–794,
2003.

[11] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction. ACM
Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[12] Edmund M. Clarke, Orna Grumberg, and Doron Peled. Model checking. MIT Press, 1999.

[13] Edmund M. Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based counterexample-guided
abstraction refinement. IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 23(7):1113–1123, 2004.

[14] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction and appli-
cations. Communications of the ACM, 54(9):69–77, 2011.

[15] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS. In Computer
Aided Verification, volume 1254 of Lecture Notes in Computer Science, pages 72–83. Springer,
1997.

[16] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR framework
with interpolation-based refinements. In Formal Techniques for Distributed Objects, Components,
and Systems, volume 9688 of LNCS, pages 158–174. Springer, 2016.

[17] K.L. McMillan. Applications of Craig interpolants in model checking. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 3440 of Lecture Notes in Computer Science,
pages 1–12. Springer, 2005.

[18] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta: a framework
for abstraction refinement-based model checking. In Proceedings of the 17th Conference on Formal
Methods in Computer-Aided Design, pages 176–179. FMCAD inc., 2017.

[19] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In Formal Meth-
ods in Computer-Aided Design, pages 1–8. IEEE, 2009.

9

	Introduction
	Control Flow Automata
	Assertions
	State Space
	Model Checking

	Abstraction-Based Model Checking
	Explicit Value Abstraction
	Predicate Abstraction

	Summary
	Further reading

	References

