W([i[tf[aaannnnnnnnnfin mifanannnnnnanaiiff
isflslanannaanaaanaaalin[/BfA/A]R]A]:ilaaaasaaaaaanlss
ilifsffannnnnnnnnnsfin == m IIIIIIIIIIIIJ_[:H:H:I

MUEGYETEM 1782

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics
Department of Measurement and Information Systems

Combining Abstract Domains
for Software Model Checking

BACHELOR’S THESIS

Author Advisor
Viktéria Dorina Bajkai Akos Hajdu

December 7, 2018

Contents

Kivonat
Abstract
1 Introduction

2 Background

2.1 Control flow automata

2.2 Counterexample-guided abstraction refinement

2.2.1 Abstraction
2.2.2 Refinement

3 Product abstraction strategies

3.1 Limit number of successors based on a single state

3.2 Limit number of values on a path . . .
3.3 Limit number of values in ARG
3.4 Related work

4 Evaluation
4.1 Implementation

4.2 Measurement configuration

4.3 Evaluate different limits for each strategy

4.3.1 Single state-based strategy . .
4.3.2 Path-based strategy
4.3.3 ARG-based strategy
4.4 Compare the best strategies

4.5 Compare all strategies with each other
5 Conclusion

Bibliography

15

16
17
19
21
21

23
23
24
25
25
26
28
30
31

33

35

HALLGATOI NYILATKOZAT

Alulirott Bajkai Viktoria Dorina, szigorlé hallgaté kijelentem, hogy ezt a szakdolgozatot
meg nem engedett segitség nélkiil, sajit magam készitettem, csak a megadott forrasokat
(szakirodalom, eszkozok stb.) hasznaltam fel. Minden olyan részt, melyet sz6 szerint,
vagy azonos értelemben, de atfogalmazva mas forrasbol atvettem, egyértelmiien, a forras
megadasaval megjel6ltem.

Hozzéjarulok, hogy a jelen munkdm alapadatait (szerz6(k), cim, angol és magyar nyelvii
tartalmi kivonat, készités éve, konzulens(ek) neve) a BME VIK nyilvanosan hozzaférheté
elektronikus formaban, a munka teljes szovegét pedig az egyetem belsé haldézatan keresztiil
(vagy autentikalt felhasznélok szamara) kozzétegye. Kijelentem, hogy a benyijtott munka
és annak elektronikus verzidja megegyezik. Dékani engedéllyel titkositott diplomatervek
esetén a dolgozat szdvege csak 3 év eltelte utan valik hozzaférhetévé.

Budapest, 2018. december 7.

Bajkai Viktoria Dorina
hallgaté

Kivonat

Mindennapi életiinket egyre jobban meghatarozzak a szoftverrendszerek. Ezek sokszor
biztonsdgkritikusak (pl. autoném jarmiivek, erémiivek), tehat helyes miikodésiik garan-
taldsa kiemelten fontos feladat. Ennek egyik eszkoze a formalis verifikdcio, ami a hibak
jelenlétét és a helyes miikodést is képes matematikailag preciz médon bizonyitani. Az
egyik legelterjedtebb formalis verifikacidos modszer a modellellenérzés, amely a program
Osszes lehetséges dllapotat és atmenetét (azaz dllapotterét) szisztematikusan megvizsgalja.

/////

hasznalatat valds szoftvereken.

Az ellenpélda-alapi absztrakciéfinomitds (angolul Counterexample-Guided Abstrac-
tion Refinement, CEGAR) egy olyan kiegészit6 technika, melynek segitségével a
modellellenérzés hatékonyabbé tehetd. Miikddése soran a CEGAR iterativan hozza létre
és finomitja az ellenérzendd probléma egy absztrakcidjat. Az irodalomban tobb kilénbo6zé
absztrakciés megkozelités 1étezik, példaul az explicit valtozék mddszere, illetve a predika-
tumabsztrakcié. El6bbi a programnak csak a verifikacié céljabol relevans valtozoéit tartja
nyilvan, mig az utobbi konkrét értékek helyett matematikai kifejezések teljestilését vizs-
galja. Korabbi eredmények alapjan megfigyelhet6, hogy kiilonb6z6 absztrakciés modszerek
kiillonbo6z6 tipust szoftvereken miikédnek hatékonyabban. Ebbdl kifolydlag létrejottek
ugynevezett szorzat absztrakciok, amik tébbféle médszert kombindlnak egy algoritmusban.

Munkam soran eltéré stratégiak alapjan kombinaltuk az explicit valtozdkat predi-
katumokkal. Megkozelitésiink lényege, hogy a mar felderitett absztrakt allapottérbél
kinyert informécidk figyelembe vételével a tovabbi felderitést és ellenérzést hatékonyabba
teszi. Ezeket az 4j stratégidkat a THETA nevil nyilt forraskédu verifikaciés keretrend-
szerben implementaltuk. Ennek segitségével szoftverrendszerek széles skalajan tudtuk
lefuttatni méréseinket, tobbek kozott ipari vezérld (PLC) kédokon. Osszevetettiik a
kiillonbo6z6 stratégidk elényeit és hatranyait, és a mar létez6 mddszerekkel is 6sszehasonli-
tottuk 6ket. Az eredményeink azt mutatjik, hogy az 1j moddszereink hatékonyan tudjak
kombindlni a meglévé algoritmusok el6nyeit.

Abstract

Software systems are controlling devices that surround us in our everyday life. Many of
these systems are safety-critical (e.g., autonomous vehicles, power plants), thus ensuring
their correct operation is gaining increasing importance. Formal verification techniques
can both reveal errors and give guarantees on correctness with a sound mathematical
basis. One of the most widely used formal verification approaches is model checking,
which systematically examines all possible states and transitions (i.e., the state space) of
the software. However, a major drawback of model checking is its high computational
complexity, often preventing its application on real-life software.

Counterexample-guided abstraction refinement (CEGAR) is a supplementary tech-
nique, making model checking more efficient in practice. CEGAR works by iteratively
constructing and refining abstractions in a given abstract domain. There are several
existing domains, such as explicit-values, which only track a relevant subset of program
variables and predicates, which use logical formulas instead of concrete values. Obser-
vations show that different abstract domains are more suitable for different kinds of
software systems. Therefore, so-called product domains have also emerged that combine
different domains into a single algorithm.

In this work, we develop and examine various strategies to combine the explicit-
value domain with predicates. Our approaches use different information from the already
explored abstract state space to guide further exploration more efficiently. We implement
our new strategies on top of THETA, an open source verification framework. This allows
us to perform an experiment with a wide range of software systems including industrial
PLC codes. We evaluate the strengths and weaknesses of the different approaches and we
also compare them to existing methods. Our experiments show that the new strategies
can form efficient combinations of the existing algorithms.

Chapter 1

Introduction

Nowadays our reliance on safety-critical software systems is rapidly increasing. Therefore,
there is a growing need for reliable proofs of their correct behaviour, since a failure can
lead to serious damages. A promising approach for giving such proofs is formal software
verification. Formal verification provides a sound mathematical basis to prove the correct
operation of the programs with mathematical precision. A widely used formal verification
method is model checking, which analyses the possible states and transitions (i.e., the state
space) of the software for every possible input and checks whether certain properties are
satisfied. In our current work, we are checking for assertion failures, but in general a wide
variety of properties can be examined, including overflows, null pointers and indexing out
of bounds. The advantage of model checking is that it can not only reveal faults, but
prove their absence as well. However, a major drawback is that systematically examining
every possible state and transition for each input is too expensive computationally. Even
for relatively simple programs the state space can be large or even infinite, which is called
the “state space explosion problem”. Various techniques have been developed in the past
decades to overcome this problem, including symbolic methods, bounded model checking
and abstraction. In our work, we use the supplementary technique countererample-guided
abstraction refinement (CEGAR).

CEGAR is a widely used software model checking algorithm, which uses abstraction to
represent the state space in a more compact way. Abstraction means hiding certain details
about the program. However this does not only yield a smaller state space, but we also lose
information about the program. The abstraction usually over-approximates the original
program. This means, that if no erroneous behaviour (i.e., counterexample) can be found
in the abstraction, then the original program is also safe. However, losing information can
also lead to finding a counterexample in the abstraction, that does not exist originally.
That means, that the abstraction has to be refined to exclude the spurious counterexample.
CEGAR usually starts with a coarse initial abstraction of the program and automatically
finds the proper level of abstraction by a series of refinement steps.

CEGAR can work with different abstract domains, such as explicit-value analysis and
predicate abstraction. Explicit-value analysis operates by tracking values of only a subset
of the program’s variables, while predicate abstraction focuses on tracking certain facts
(predicates) about the variables. However, different abstract domains are more suitable for
different kinds of software. Combinations of abstract domains, called product abstractions
can unify the strengths of the different approaches. However, a key challenge is to find
the proper way of combining them.

In our work, we develop a product abstraction algorithm, which combines explicit-value
analysis and predicate abstraction. We try to focus on the advantages of both algorithms
to propose five different strategies. These approaches use different information from the
abstract state space (e.g., single states, paths, or all states) and different state enumeration
strategies to combine explicit-value analysis with predicate abstraction efficiently.

In order to evaluate and compare these strategies, we implement them in THETA, an
open source verification framework. We evaluate the performance of the new algorithms
on multiple types of programs, including industrial programmable logic controller (PLC)
codes from CERN, and several types of programs from the Competition on Software Ver-
ification (SV-Comp). We also compare the new strategies with the existing explicit-value
analysis and predicate abstraction methods. The results show that our new algorithms
can combine the advantages and outperform existing methods relying only on a single
domain.

Chapter 2

Background

In this chapter we present the background of product abstraction-based software model
checking. We describe programs using Control Flow Automata (Section 2.1), a formal rep-
resentation based on graphs and first order logic formulas. Then we introduce abstraction
and the CEGAR approach (Section 2.2), which is a widely used technique for software
verification.

2.1 Control low automata

Programs can be described in various ways. Humans usually work with source code as it is
readable and understandable. Computers on the other hand mostly work with a compiled
binary, which can be executed. For verification purposes some formal representation is
required, which allows mathematical reasoning. A widely used formal representation is
the Control Flow Automata (CFA). It is also called a model of the program. A CFA
is a graph-based representation annotated with first order logic (FOL) [15] formulas to
describe the operations of the program. Given a domain D, let FOL” denote formulas of
that domain. For example, FOL® denotes Boolean formulas, e.g. z =y Ay > 5.

While FOL is undecidable in general [15], in practice satisfiability modulo theory (SMT)
solvers [4, 22] can efficiently reason about FOL formulas in many theories that appear
in programs (e.g., integer arithmetic, arrays). In our work, we also use SMT solvers to
reason about the satisfiability of formulas.

Definition 1 (Control Flow Automata). A control flow automata [9] is a tuple
CFA = (V,L,ly, E) where

o V={v1,v9,...,v,} is a set of program variables with domains Dy, Da, ..., Dy,

L ={l,la,...,lx} is a set of program locations representing the program counter,

lo € L is the initial location, i.e., the entry point of the program,

e FE C L x Ops x L is a set of directed edges between locations, representing the
operations, which are executed when we go from the source location to the target in
the program. .

Currently we are working with Boolean and (mathematical) integer variables, but in gen-
eral bit-precise representation and managing floating-point arithmetic, arrays, etc. are also
possible.

N O Ut W N

The operations op € Ops can be assumptions, assignments or havocs. Assumptions are
Boolean expressions (also called predicates) denoted by [¢] where ¢ € FOLE. If there is
an edge between two locations with an assumption, the program can take a transition to
the target location if the predicate holds in the source location.

Assignments are in the form v; := ¢, where v; € V and ¢ € FOLP. After this operation,
v; will be assigned the result of evaluating ¢ in the target location. All other variables
will have the same value as in the source location.

Havocs have the form havoc v;, where at the target location v; will be assigned a random
value from its domain. Havoc operations can be used to model non-deterministic values,
for example an input provided by the user or the return value of an unknown external
function.

2
[z < 5]
r:=x+1 é
:)
—

int x = 0;

int y = 0;

while (x <= 5) {
y=x%5;
X++;

}

assert(y == 0);

(a) Example program. (b) CFA representation.

Figure 2.1: Simple program and its corresponding CFA.

Example 1. We can see an example program in Figure 2.1a. The program has two
variables, x and y. In the program, x counts up to 5 assigning x%5 to y in every cycle.
At the end there is an assertion which checks whether the value of y is 0. In Figure 2.1b,
the corresponding CFA can be seen. The initial location is ly, which is the entry of the
program. The first two lines are encoded by path lg — 11 — lo, where we arrive at the head
of the loop. If the condition holds, the program enters the body of the loop by moving to l3.
Then the program mowves to ly with an assignment and returns to lo, the head of the loop,
incrementing x. If the loop condition does not hold any more, the program moves to s,
where the assertion is evaluated. The assertion is treated as a special case: If the condition
holds, the program arrives to its end, a final location, which is ly (in this example, but it
is possible that there is more code after the assertion, and in that case, the program moves
forward as usual). Otherwise it reaches le, a special error location to signal the assertion
failure, which will be described later.

State space. The actual state of the program can be described by the program counter
(the actual location) and its data (the values of the variables). Therefore, the set of possible
states for a program is C' = L x Dy X ... X Dy,. A concrete state c € C'is ¢ = (I,dy, ..., dy),
which is a location and a value for each variable from its domain.

In the CFA model, each variable is uninitialized at the beginning. Therefore, any state

¢ = (lp,dy,...,d,) with the initial location [y is considered to be an initial state of the
program.
A transition ¢ = ¢ between two concrete states ¢ = (I, dy, ..., d,) and ¢ = (I',d},...,d,)

exists, if there is an edge (I,0p,l") € E between the locations of the two states with the
semantics of the operation op.

o If op is an assumption [p], then ¢ has to hold for di,...,d, and the values do not
change, i.e., dj, = dj, for each k.

o If op is an assignment d; := 1), d} will be equal to the result of evaluating), while
the other variables will remain unchanged, i.e., d), = dj, for each k # i.

o If op is a havoc over d;, then d; can take any value, but the other variables must be
unchanged, i.e., dj, = dj, for each k # i.

Note that the semantics described above means that if an edge with an assumption oper-
ation starts from the source state, then there may be 0 or 1 target state. If the operation
is an assignment, there will be exactly 1 target state and in case of a havoc, the number
of the target states corresponds to the size of the havoced variable’s domain.

op1 op2 OPpn—1 . .
A concrete path ¢y — cg — ... —— ¢, is an alternating sequence of concrete states

and transitions.

The states, the initial state and the transitions together define the state space of the
program.

Software model checking. During software verification, a wide variety of properties
can be verified, including overflow, null pointers and indexing out of bounds [6]. In our
work, we focus on verifying assertion failures in the input programs. These assertions are
represented in CFA with a choice: if the condition of the assertion holds, the program
moves forward to the next location, but if it does not hold, it goes to a distinguished error
location denoted by [, (see Example 1).

The purpose of software model checking [20] is to check if a program state with the error
location (l¢,d1,...,dy,) is reachable with any valuation of the variables, i.e., whether an
assertion failure can occur. Note that this is different than just checking if the error
location is reachable in the graph of the CFA. The semantics of the operations also need
to be considered. From now on, if we refer to the reachability of ., we mean reaching
some state in the state space, which has [, as its location.

A CFA is called safe if I, is not reachable, otherwise it is unsafe. If the CFA is unsafe, a
path ¢; o, o RN N ¢n leading to the state ¢, = (l¢, . ..) with the error location is
called a counterexample, as it is a witness for the assertion failure. Such counterexamples
are important because they help the program developer to identify the source of the
problem.

Software model checking is a very complex problem, because if we want to prove that the
error location is unreachable, we have to explore the whole state space of the program,
which can be very large or even infinite. For example, if a program has 100 locations and
three 64 bit integer variables, the number of possible states is 100-264.264.264 ~ 6.2.10%7.
This problem is often called the “state space explosion”. To overcome this limitation
of software model checking, various techniques have been developed in the past decades,

including symbolic methods [16], partial order reduction [31], bounded model checking [14],
modular verification [30] and abstraction [17, 25]. In this thesis we focus on CEGAR [18],
an abstraction-based algorithm, which we present in the next section.

2.2 Counterexample-guided abstraction refinement

Abstraction is a general method to reduce the complexity of a task by hiding certain
details. In the context of software model checking this yields a smaller abstract state
space compared to the original (concrete) state space, mitigating the problem of state
space explosion. Intuitively, a single abstract state can represent multiple (or even infinite)
concrete states [17]. Applying abstraction also means that we lose information, which
can lead to incorrect results. However, if we use an over-approzimating abstraction [17],
the incorrect results are only one sided. This means, that if the error location is not
reachable in the abstract state space, it is also not reachable in the original state space,
i.e., the original program is safe. On the other hand, we might find a counterexample
(path leading to the error location) in the abstract state space, which does not exists in
the original program. Such counterexamples are called spurious and in this case a more
precise abstraction is required.

The granularity of the abstraction (i.e., the amount of information hidden) is called the
precision [9]. For example, a possible abstraction is to omit certain variables from the
software and treating them as if they could take any value from their domain, represented
by a single unknown value. In this case, the precision can be controlled by the amount
of variables omitted: fewer omitted variables give more precise abstraction (but possibly
larger state space).

Counterexample-Guided Abstraction Refinement (CEGAR) [18] is a widely used technique
in software model checking [23, 27, 7, 29|, which starts with an initially coarse abstraction
to avoid state space explosion. Then it applies refinements iteratively until all spurious
counterexamples are eliminated (proving safety) or a real counterexample is found (proving
the program to be unsafe).

The steps of a typical CEGAR algorithm [34] can be seen in Figure 2.2. The two main
components are the abstractor and the refiner, whose detailed behaviour will be presented
in Section 2.2.1 and Section 2.2.2 respectively. The first step is to build the initial abstrac-
tion from the initial (usually coarse) precision, which is done by the abstractor. When a
counterexample is found, it is passed to the refiner. If there are no counterexamples, the
model is safe due to the over-approximating [17] nature of abstraction. In the next step,
the refiner checks whether the counterexample is feasible. If it is feasible, the original
model is unsafe. Otherwise, we have a spurious counterexample and the precision of the
abstraction is refined, allowing the abstractor to build a more precise (but potentially
larger) abstract state space in the next iteration. This process is iterated until there are
no abstract counterexamples or a feasible one is found.

2.2.1 Abstraction

An abstract domain is defined by the set of abstract states S, the coverage relation T,
the set of possible precisions I and the transfer function T' [9]. Informally, the abstract
domain controls the kind of information that is hidden to obtain abstract states and the
precision defines the amount of information to be hidden. As mentioned previously, a
single abstract state can represent any number of concrete states. The coverage relation

Refined precision

Initial ' |
precision|
—| Abstractor > Refiner
Abstract counterexample
Feasible
No counterexamples counterexample

Figure 2.2: CEGAR algorithm.

s £ s’ holds for two abstract states s,s’ € S, if s’ represents all the states that s does.
Intuitively, this means that if we already processed s’, we can skip s since if the error
location is reachable from s, it would have already been reached from s’. The transfer
function defines the successor (transition) relation between abstract states.

The abstractor builds the abstract state space for a given domain (also called an abstract
reachability graph, ARG [8]) using the components above.

Definition 2 (Abstract reachability graph). Formally, an abstract reachability
graph is a tuple ARG = (S, A, C) where

e S is a set of abstract states from the domain,

e AC SxOpsxSisaset of edges defined by the transfer function T between abstract
states, labelled with operations.

e C'C S xS isaset of covering edges defined by the covering relation C. .

The abstractor starts with the initial abstract state, which corresponds to the initial
location [y and has usually no information as no variable is initialized. Then it maintains
a queue for the unprocessed states. As long as the queue is not empty, it picks an abstract
state and checks if it can be covered with some already explored state. If yes, it adds the
covering edge and leaves the state. Otherwise, it uses the transfer function to calculate
its successors. The abstractor stops if there are no more states in the queue or if a state
with the error location [, is found.

In our work, we use three different abstract domains, namely predicate abstraction [25],
explicit-value analysis [7] and their combination, the product abstraction [10]. We formalize
these domains in the rest of this section.

Explicit-value analysis. Explicit-value analysis is a widely used abstraction
method [19, 7, 33]. It tries to reduce the size of the state space by tracking only a subset of
the program variables. Usually only a few or no variables are tracked initially and the set
of tracked variables is iteratively expanded during the refinement phase. The motivation
behind explicit-value analysis is that proving safety (or finding a counterexample) may
only depend on a small subset of the program variables.

The set of all possible precisions is I, = 2", 1ie., all possible subsets
of the wvariables. For example, if the program’s variables are {x,y,z}, then

I = {{}.{z}.{v}, {z}.{z, v}, ..., {z,y,2}}. A precision 7, € II. simply defines the

subset of the tracked variables (m, C V'), which is also called the set of explicitly tracked
variables.

If a variable is not tracked (or unknown), its value is represented by a special top element
T, meaning that it can take any value from its domain. Given a variable v; with its domain
D;, let D;r = D; U{T} represent its extension with the top element.

Abstract states S, = L x D] x...x D,! track the location and the value of each variable in
me or T for variables outside m.. For example, if there are three variables V' = {z,y, 2z} and
the precision is . = {z,y}, the state (I1,0,10, T) means that the program is at location
l1, where x = 0, y = 10 and z is not tracked. Note that it is also possible for a tracked
variable to be unknown (T), for example if x is tracked but z is not, the assignment = := z
will make z = T.

For each state we calculate its successors with the transfer function 7, : S, x Ops x II, —
25¢ which yields a set of successor states for a given state, operation and precision. The
values of the tracked variables of the new state depend on the type of operation given to
the transfer function.

o If the operation is an assumption [p], we have to check whether it can be evaluated
over the source state. If it evaluates to true or can not be evaluated, a successor state
is created, where the values of the tracked variables are unchanged. For example, if
the assumption is [z > 5] and x is T, the expression cannot be evaluated, therefore
we add a successor state, since x can take any value.

o If the operation is an assignment v; := 1, a successor can be created. If v; is not in
the set of explicitly tracked variables, the new state’s variables are left unchanged.
Otherwise, v} is assigned the result of evaluating ¢, or if it cannot be evaluated,
it is assigned T, while the other variables are unchanged. For example, let the
precision be m, = {x,y}, the source state be s, = (11,2,0, T) and the operation
be op = (z := z + 1). Since z is not tracked, the operation cannot be evaluated,
therefore the successor is (I3, T,0, T).

o If the operation is a havoc, a successor state is created. If the havoced variable is
not tracked, the new state’s variables are left unchanged. Otherwise, the havoced
variable is assigned T and the other values do not change.

The coverage relation s C s’ holds between two states s,s’ € S, if the locations are equal
(I =1") and the values of s’ are broader than the values of s. This means that if a v; variable
has a value d; in s, then it must have d; or T in s’. For example, (lp,1,2) C (Ip, T,2), but
(lp,1,2) IZ (lp,3, T). Intuitively, if we have a covered state, we do not have to explore the
paths starting from this state as they would lead to the same states as the transitions of
the covering state.

Example 2. Consider the CFA in Figure 2.3a. It alternates the variable y between 0
and 1 while x counts up to 1000. At the end it checks whether y < 1. In Figure 2.3b
the corresponding ARG with me = {y} can be seen. In this case we only track y, because
tracking x while it counts to 1000 would create too many states to explore. The initial state
is (lp, T, T), since x is not tracked (because of this, the value of x will be T throughout
the whole example) and y is not initialized. The first two transitions set the variables of
the program and we arrive to state (l2, T,0). Here we are at the head of a loop, whose
condition (z < 1000) cannot be evaluated since we do not track x. Thus the program
has to explore both possibilities. If we do not enter the loop, we move to (I5, T,0), where
we arrived at the evaluation of the assertion. Since we know that y = 0, we can only

10

move to the final location. Otherwise, if we enter the loop, we move to (I3, T,0). The
next transition is an assignment, which we can evaluate because we know the value of y.
Therefore, we arrive at (l4, T,1). In the next step x is incremented and we move back to
la, but this time the value of y is 1. Here we can enter the loop again reaching (I3, T,1)
and then (g, T,0) and (I3, T,0). This is a state where we have been before, so we do not
have to explore again. We mark this fact with the dashed covering edge. From (l2, T,1),
we can also move forward to the end of the loop, (I5, T,1), where we reach the assertion
again. Since we know the value of y, we can evaluate the assertion, therefore we only
reach the final state (ly, T,1). At this stage, there are no more states left to explore, and
since we did not reach the error location, the program is safe. This example shows that we
can successfully verify a program with only tracking one variable.

\ c==»lly, T,0 {15, T,0]
x:=0 : v v
@ [, 1.0] 10
y = 0/\ ! v
(1 ! Iy, T,1
[z < 100]\fj l -
r=x+1 @ E |l2,—|—,1}—>|l5,—|—71|
Y= (y+1)%2 —[z < 1000] : ! !
(1s) s T (1T
: !
| : 14, T,0
-y <=1 y <=1] E
@ o1y, T,0
(a) Example CFA. (b) Corresponding ARG.

Figure 2.3: CFA an its corresponding ARG created with
Te = {y}

Predicate abstraction. In predicate abstraction [25, 18, 2], the values of the variables
are not tracked explicitly, but instead certain facts are stored about them. For example,
we do not track the exact values of a variable x, but only the fact whether x < 5 holds.
These facts are called predicates, which are Boolean FOL formulas. In case of a too coarse

abstraction, refinement is performed by extending the set of tracked predicates.
The set of precisions is II, = oF OLB, i.e., all possible subsets of all Boolean formulas.
A precision 7, € II, is a set of Boolean FOL formulas (m, C FOLP) that are currently

tracked.

Abstract states S, = L x 9FOL® 4re also subsets of predicates with the additional loca-
tion component. An abstract state s, € S, for the actual precision m, can contain each
predicate of 7, ponated or negated. It is also possible that a predicate does not occur in
an abstract state. Then, it represents both cases (it can hold or not). For example, if we

11

have the precision m, = {z < 5,y > 7}, the abstract state (I;,~(z < 5)) means that the
program is at location /1, where x < 5 does not hold and y > 7 can both hold or not.

An abstract state represents all concrete states for which the predicates evaluate to true.
For example, (I1, =(z < 5)) represents states with location 1, z = {4,3,2,1,0,—1,...} and
any value for the other variables.

For each state we calculate its successors with the transfer function 7}, : S, x Ops x II,, —
250 Tt works based on a source state, an operation and a target precision. The successor
states will include predicates based on the operations.

o If the operation is an assumption [p], we check whether the conjunction of the
predicates of the source state and ¢ is feasible. If yes, a successor state is created.
The successor state will have all predicates from the precision that are implied by
the source state and the assumption'. Similarly, if their negation is implied, the
successor state will include the negated version. For example, if the source state has
the predicate > 0 and the assumption is [z < 0], there will be no successor state.
On the other hand, if the assumption is [x < 0], then a successor state is possible.
If there is a predicate x # 0 in the precision, the successor state can include its
negation, as z > 0 and = < 0 together imply that —(z # 0).

e If the operation is an assignment v; := 1), a new state is created. Similarly to the
assumptions, we check whether the predicates of the source state and the assignment
imply predicates in the precision or their negated form. For example, let the precision
be m, = {(z < 5),(y > z)}, the abstract state be s, = (I1,(z < 5),~(y > z)) and
the operation be op = (x := z + 1). Incrementing x means that (z < 5) might hold
or not, since the value of x can reach 5. On the other hand, it also means that the
predicate =(y > x) holds, because increasing x does not change the fact, that y is
less than x. Therefore, the new state is (l2, ~(y > z)).

o If the operation is a havoc, a successor state is created. If the havoced variable
appears in a predicate, that predicate will be lost in the target state. Other predicates
are left unchanged.

The covering relation s C s’ holds for two states if the locations are equal (I = ') and
the predicates of s imply the predicates of s’. For example, (x < 4) implies that (z < 5),
hence, if we already explored all states from (x < 5), then it already covers all possibilities
from (z < 4) as well.

Example 3. An example for predicate abstraction can be seen in Figure 2.4. In Fig-
ure 2.4a, there is an example CFA with a variable x, which counts up to 11 and checks
whether its value is greater than 10. In Figure 2.4b, an abstract state space created with
precision m, = {(x > 10)} can be seen. In the initial state ly, = has not been initialized
yet, therefore we cannot decide if the predicate is true or false. In the next step x is
assigned the value 0, hence the —(x > 10) predicate holds at ly. The program then arrives
to a selection, and because of the predicate, the program can only move to ls. Since no
assignment happened, the —(x > 10) predicate still holds. In the next step x is incremented
while returning to ly, therefore we can not evaluate the predicate any more. That is why the
program can move to both ways from here. If x < 10, it reaches the state (l2, —(x > 10)),
which is covered as it already appeared. Otherwise it moves to (I3,x > 10). At l3, the
program arrives to the evaluation of the assertion. It can only go to the final location

"'We check such implications using an SMT solver.

12

from here, because the predicate x > 10 holds. Therefore the CFA is safe. This example
demonstrates that we could prove the safety of the program by tracking a single predicate
instead of concrete values.

I1,—(z > 10)
z:=0 Y
_>(;)7 =< ly, = (z > 10)
ri=x+1 [x < 10] :

—[z < 10] ly, —~(z > 10)

—
x>10 x>10

. @ Iy, > 10

(a) Example CFA. (b) Corresponding ARG.

Figure 2.4: CFA an its corresponding ARG created with the pre-
cision m, = {(z > 10)}.

The predicate abstraction presented in our work is the Cartesian abstraction, which labels
the states with the ponated or negated form of the predicates. Note that other abstrac-
tion strategies exist too, like the Boolean predicate abstraction [2], which handles any
combination of predicates. Our product algorithms can work with these strategies as well.

Product abstraction. Product abstractions [10] combine different abstract domains.
In our case we use a combination of explicit-value analysis and predicate abstraction.
The precision is II = II,, x Il,, the combination of the two precisions. An abstract state

S = L x 2FOL DlT X ... X DZ consists of a location and of predicates and explicitly
tracked values at the same time. The transfer function T : S x Ops x II — 2° gets
a product state s = ([, s, s¢), an operation op, a precision m = (mp, m.) and calculates
Tp((L, sp), 0p, mp) X Te((1, se), 0p, Te), that is the Descartes product of the successor predicate
states and successor explicit states®. A state (I,sp,s.) € S is covered by another state
(Vs € S if both components are covered, i.e., (I,s,) C (I, s},) and (I, s.) E (I, s¢.).

The main research question in product abstraction is how to select which variable gets
tracked explicitly and which one gets predicates. To address this question, we devel-
oped multiple strategies to select between domains for the variables, which we present in
Chapter 3.

ap7 e)

Example 4. Consider the example CFA in Figure 2.5a. It has two variables, an integer
x and y. The program enters a loop and y starts to count up to 1000, while the value of
x alternates between 0 and 1. At the end, it checks whether x < 1. It is very similar to
the example CFA in Figure 2.3a, but the difference is that x is assigned 2 in the first step.
Therefore, we have to make sure that the program enters the loop at least once to avoid
arriving at the assertion while x = 2. This means that tracking x explicitly is not sufficient,
we also have to add for example the predicate (y < 1000) to the precision. In Figure 2.5b

2In our current work, there is an optimization which sorts out the infeasible states. E.g. the (z = 1)
explicit state with the (z < 0) predicate will be removed.

13

by
lp, T

lh,2
12,2,y < 1000 |
13,2,y < 1000 |
1
14,1,y < 1000 |
N v
R . Is,1,—(y < 1000)
T =2 E v
@ v 25,1, (y < 1000) | {14, 1,-(y < 1000)
y:=0 ¥
~(1,) + (14,0, (y < 1000)
[y < 1000]\$/ !
y=y+1 @ | !_. 5,0, ~(y < 1000)
= (z+1)%2 —[y < 1000] !]
(1s) ' (15,0, (y < 1000) | [17,0,=(y < 1000)
| !
«— ' 14,1, (y < 1000)
—|[£L‘ <= 1}% <= 1} : *
‘ - o, 1
(a) Example CFA. (b) Corresponding ARG.

Figure 2.5: CFA and its corresponding ARG created with
m = {z,(y < 1000)}.

the corresponding abstract state space can be seen, created with precisions m. = {x} and
mp = {(y < 1000)}. Therefore an abstract state consists of the name of the location, the
value of x and the predicate (y < 1000). The initial state is (lo, T,{}) since the CFA
starts at ly and no variables are initialized. We do not know the value of x and cannot
evaluate the predicate. After initializing the variables in path lo — l1 — la, the program
arrives at (l2,2,(y < 1000)). Here it enters the loop, since we know that (y < 1000).
In the next step, the program evaluates the assignment and moves to (l4,1, (y < 1000)).
The next transition increments y and takes the program back to the head of the loop.
Since the value of y changed, we cannot evaluate the predicate any more, therefore the
program arrives at (l2,1,{}), where it can enter the loop again, or jump to the end,
to the evaluation of the assertion. If if jumps to the assertion, after evaluating it, the
program arrives to final location (Iy,1,—(y < 1000)). If it enters the loop, the program
moves to (I3, 1,(y < 1000)), then with the evaluation of the assignment, it arrives to
(14,0, (y < 1000)). After incrementing y the program moves to the head of the loop again.
If it enters, after the assignment and the incrementation steps, the program arrives to the
(I2,1,{}) state. Since we have been at this state before, we do not have to explore it again.
From the head of the loop, the program can also move to the assertion, (I5,0,=(y < 1000)).
Since the value of x is 0, we can only reach the final location, (15,1, -(y < 1000)). At this
point, there are no more states left to explore, and since we did not reach the error location,
the program is safe.

14

2.2.2 Refinement

The refiner’s task is to check whether the abstract counterexample is feasible, and if not,
it has to find a new precision to avoid the same spurious counterexample in the next
iteration. It checks the counterexample by translating the alternating sequence of states
and actions into FOL formulas and giving them to an SMT solver [35, 13]. If the SMT
solver can find a satisfying assignment, it corresponds to a concrete counterexample.

Otherwise, the counterexample is spurious and the refiner extracts the reason of infeasibil-
ity using for example interpolation [28, 36, 26], unsat cores [27], weakest preconditions [3]
or strongest postconditions [1]. This will yield new variables or new predicates that should
be tracked. In our work, we treat the refinement as a black-box, which gives a new preci-
sion based on the path (counterexample) that should be joined to the old precision. We
use an interpolation based method [26], which is described for transition systems, but can
also work for CFA.

e In explicit-value analysis, the refiner R.: PATH — 1. gives new variables to be
tracked.

o In predicate abstraction the refiner R,: PATH — II, gives new predicates to be
tracked.

« In the product abstraction the refiner R: PATH > 11, xII, can call both components
R, and R, and decide which variables and predicates to include. We developed
different strategies for this decision, which we present in Section 3.

15

Chapter 3

Product abstraction strategies

In this chapter we present five different approaches for combining explicit-value analysis
and predicate abstraction into a product abstraction. When combining the two different
abstractions, a very important question arises: What should be the new precision when
refining the abstraction? The new precision can include new predicates or we can extend
the set of explicitly tracked variables, or we can also combine these two methods by picking
a predicate for some variable but adding another one to the explicitly tracked set.

The main principle is the same for all five strategies: at first, we add a new variable to the
explicitly tracked variable set. Our motivation was that handling predicate formulas is
more expensive computationally (e.g., checking implications in the transfer function and
in the coverage relation). However, the abstract state space might start growing quickly
if a variable has a large number of different values and some problems might even not be
decidable due to unknown (T) values.

Consider the example CFA in Figure 3.1a, which first checks if z # 1 and then if z = 1
(which obviously cannot be possible). Suppose, that no variables are tracked initially. In
this case, the error location is trivially reachable and the refiner extends the precision by
adding z. In Figure 3.1b, the corresponding ARG created with explicit-value analysis can
be seen. Since z is not initialized, the initial state is (lp, T). Then we check the condition
x # 1. Since x is unknown, the condition can both hold and not. If it does not hold, the
program terminates in the final location [;. However, if it holds we proceed to l1, where
x is still T. Then we check the condition £ = 1, which can again hold or not, due to
x being unknown. This way, the program can still reach the error location. Since there
are no other variables to be tracked, the program cannot be verified (with explicit-value
analysis).

A solution for this can be that instead of assigning T to z at [y, we start to list all the
values = can be assigned. It is an effective strategy, if the variable can only have a couple
of different values, since knowing the exact values yields more information than a T value.
For example, if the assumption is 0 < < 5, then x can only have 4 different values and
creating four successor states is still more effective than using a T value or using predicates.
However, in this case this does not solve our problem, since (z # 1) means that = can
have an infinite number of different values, and this leads to state space explosion.

Our key idea is to introduce a limit k for the number of possible values for each tracked
variable. When we cannot evaluate an expression in the transfer function (e.g., z # 1),
we start to enumerate the possible values instead of using a T value. However, we count
the number of different values for each tracked variable and if it is greater than k, we stop

16

\! [x =1] T
I:x # 1] Y

[z =1] [z # 1] @ ol il

e, T

(a) Simple CFA. (b) Corresponding ARG with . : {z}.

Figure 3.1: Simple CFA and its corresponding ARG with explicit-
value analysis.

enumerating and we discard the variable from the explicitly tracked set. We also add this
variable to a special dropouts set, which is passed over to the refiner.

The strategy of the product refiner R is the following. It calculates both new variables
7, using R, and new predicates 7r1’0 using R,. All variables included in the dropouts set
are removed from 7., since we do not want to track them again. Instead, we (only) keep
predicates from 7r;, that have a removed variable, other predicates are discarded. In other
words, we first always add a variable to the explicit precision. If it is later removed during
the transfer function due to the limit, we do not add it again, but rather add predicates

containing that variable.

This way we can (1) avoid working unnecessarily with computationally expensive predi-
cates and (2) we can solve problems that need explicit enumeration instead of a top value,
while still avoiding state space explosion.

There are multiple ways to count the different values of the variables. In this chapter we
present three different approaches. These limit the number of successor states based on
a single state, or a path, or the whole ARG. The path- and ARG-based strategies also
work if we use T values when an expression cannot be evaluated, since the limit can still
be reached on the whole path or in the ARG. In case of the state-based strategy, this
method is useless, because using T values instead of enumerating would only result in 0 or
1 successor states, therefore we would never reach the limit. That is why we implemented
two different algorithms for the path- and ARG-based strategies, one which enumerates
all possible states, and one which uses T values instead. This means that in total we have
five different strategies to combine explicit-value analysis and predicate abstraction.

3.1 Limit number of successors based on a single state

In the first strategy (Algorithm 1), we count the different values of the tracked variables
when enumerating successors for a given state. We start by initializing the successor
states S, as an empty set. We also set a restart flag which will be used later. Then we
start enumerating the successor states and we examine the values of the explicitly tracked
variables. If the number of the different values of a variable in the successor states exceeds
k, we add it to the dropouts set. We also remove it from 7., and we set the flag that
we should restart the enumeration, since the precision changed (at least one variable was
dropped). If there are no more successor states to list and no variable was removed, we
do not need to restart and we can return the successor states S..

Example 5. Consider the example CFA in Figure 8.1a again. If we use the state-based
product abstraction, the variable x is added to the set of explicitly tracked variables as pre-

17

Algorithm 1: State-based transfer function Ts(se, op, 7e, k).

Input : se: source state

op: operation

Te: precision

k: bound for successors
Output: S, C 2%: set of successor states

1 do
2 | S {}
3 restart < false
4 while new successor state s, exists A—restart do
5 S+ SLu{sl}
6 foreach v; € m, do
7 if number of different values for v; in S, greater than k then
8 dropouts < dropouts U {v;}
9 Te < e \ {vi}
10 restart < true
11 end
12 end
13 end
14 while restart;

juy
(S}

return S,

viously (me = {x}). The corresponding ARG for this precision can be seen in Figure 3.2a.
The program starts at state (lg, T), from where it can go to two different directions. Taking
the assumption [x = 1], it arrives at state (ly,1) since x = 1 is the only possible value
satisfying the formula. Otherwise, the program mowves to li, where it starts to list the
possible values for [x # 1]. There are infinitely many different values, but when we exceed
k, the algorithm stops. It removes x from the set of explicitly tracked variables and restarts
the enumeration. However, now x is not tracked, so it proceeds to (11, T) without enumer-
ating values and then eventually reaches the error location l. similarly to Figure 3.1b. The
refiner will not add x again since it is included in the dropouts set. Instead, it adds some
predicate, e.g., x = 1 to the precision m,. Figure 3.2b shows the ARG created with the new
precision. From ly, the program can arrive to final location (ly, x = 1) where the predicate
is true or move to (l1,—(x = 1)) where the negation of the predicate holds. At this point,
the predicates keep track that x # 1 so the algorithm can only proceed to (ly, —~(x = 1)),
where we reached the final location again. Since there are no more states to explore and
the algorithm did not reach the error location, the program is safe.

3
PR
/
|l170| l172| |ll,3| ll,—|($:1) > lf,ﬁ(l’:l)
(a) ARG created with precisions m, : {z} (b) ARG created with precisions 7. : {}
and m, : {}. and m, : {(z = 1)}.

Figure 3.2: ARGs created with the state-based strategy.

18

3.2 Limit number of values on a path

The previous strategy only counted different values for the successors of a single state.
However, multiple values can occur in other ways as well. For example, if the program
includes a loop counting to a large number, then the loop counter ¢ will have a single
successor ¢ + 1 for each state. However, if we consider the whole path, many different
values will start to accumulate: 1,2,3,....

This example motivated our next strategy, where we examine the number of values of
the tracked variables on the path leading to a state when we calculate its successors.
Algorithm 2 presents the procedure for this strategy, which is similar to the state-based.
When we start to enumerate the new successors of a state, we check each new state’s
ancestors. If the number of different values of an explicitly tracked variable in the new
state and its ancestors reach k, we add this variable to the dropouts set, remove it from
the precision and set the restart flag.

Algorithm 2: Path-based transfer function Ty (se, op, 7, k).

Input : s.: source state

op: operation

Te: precision

k: bound for successors
Output: S/ C 2%: set of successor states

1 do

2 | S {}

3 restart < false

4 while new successor state s., exists A—restart do
5 S+ SLu{sl}

6 foreach v; € m, do

7 if different values for v; in ancestors of s. and states in S, is greater

than k then

8 dropouts < dropouts U {v;}

9 Te < e \ {vi }

10 restart < true
11 end
12 end
13 end

14 while restart;
15 return S,

Example 6. Consider the example CFA in Figure 3.3. The program’s only variable x
counts to 1001, then erxamines whether its value is greater than 1000. Using path-based
product abstraction, x is first added to w.. When creating the ARG, we arrive at the
head of the loop from the initial location. If the program stays in the loop, we get a path,
where the value of x is increasing continuously, therefore the number of different values
can reach the limit (the corresponding ARG can be seen in Figure 3.4a). When we exceed
the limit, we remove x from the set of explicitly tracked variables and instead treat it as a
top value. This way the error location can be reached. The refiner will not include x in
Te again, but rather add a predicate, e.g., x > 1000 to the precision m,. The ARG created
with the new precision can be seen in Figure 3.4b. The program starts at (lp), where the
predicate cannot be evaluated. After initializing x, it arrives at (I3, —~(xz > 1000)). Because

19

z:=0
r:=x+1 ;[l’ﬁlOOO]

e

—[z > 1000 x> 1000]
W W

Figure 3.3: Example CFA.

[z < 1000]

of the predicate, the program moves to (I3, —(x > 1000)). In the next step, the value of
is increased, therefore we cannot evaluate the predicate any more, and arrive to (l1). The
program is at the head of the loop again, but now it can go to two different directions. If it
enters the loop, it arrives to (l2, ~(x > 1000)) again. Otherwise it moves to (I3,x > 1000),
from where it arrives at the final location, (Iy,x > 1000). Since there are no more states
to explore and the algorithm did not reach the error location, the program is safe. The
advantage of the path-based approach is that we did not have to explore all 1001 values for
x.

lh,2 - ol Iy, =(x > 1000)

lp.2 ls, ~(z > 1000)

1.3 I3,z > 1000

EI L,z > 1000
(a) ARG created with 7 : {z}. (b) ARG created with 7 : {(z > 1000)}.

H

Figure 3.4: AGRs created with the path-based strategy.

As mentioned previously, we proposed another algorithm for the path-based strategy,
which does not enumerate all the possible states when an expression cannot be evaluated,
but uses the T value instead. This way the limit can still be reached on the whole path
leading to a state. That is why we check the number of values of the explicitly tracked
variables before enumerating the successors of a state. Algorithm 3 presents the procedure.
First we count the number of different values for each variable v; in the ancestors of s,

20

(including s.). If a variable’s number of values exceeded the limit &k, we add this variable
to the dropouts set, and remove it from the precision. Then we simply use the original
transfer function 7T, with the new precision to calculate the successors. This way when
there are multiple values in the successors, we use the T value instead of enumerating
them.

Algorithm 3: Path-based transfer function without enumeration
TP(8€70p77r67k)'

Input : s.: source state

op: operation

T.: target precision

k: bound for successors
Output: S! C 2%: set of successor states
1 foreach v; € 7, do
2 if number of different values for v; in ancestors of s > k then
3 dropouts < dropouts U {v;}
4 Te < Te \ {v;}
5 end
6 end
7 SL To(Se,0p,me)
8 return S,

3.3 Limit number of values in ARG

Our third strategy examines the number of the different values in the whole ARG. It
generalizes the previous algorithms: it examines the variables in the successor states and
also in the previous states through the whole ARG. Algorithm 4 presents the procedure,
similar to the previous strategies, except that here we count the number of different values
in the whole ARG. Note that in the implementation we use a cache, so that we do not
have to traverse the whole ARG at every calculation. Whenever a new state is calculated
or a variable is removed, the cache is updated.

For the ARG-based strategy, we also have another algorithm where we use T values instead
of enumerating all possible states, which is presented in Algorithm 5. It works by the same
principle as the path-based non-enumerating algorithm. If a variable’s number of values
exceeded the limit k, we add this variable to the dropouts set, remove it from the precision
and then we use the original transfer function T, to calculate the successors, but now some
variables might have been removed.

3.4 Related work

The combination of different abstract domains have been studied in the literature before.
The dynamic precision adjustment approach [10] for the explicit and predicate domains is
similar to our ARG-based strategy. The main difference is that our algorithms can also
enumerate states for a formula, while the dynamic precision adjustment method keeps top
values.

Refinement selection [11] focuses on the different refinements returned by the explicit and
predicate refiners. Various metrics are defined to compare possible refinements and pick

21

the “better” one. In contrast, our method always tries the explicit refinement, but then
switches to predicate if needed.

Algorithm 4: ARG-based transfer function T, (se, op, Te, k).
Input : s.: source state
op: operation
Te: precision
k: bound for successors
Output: S, C 25: set of successor states

1 do

2 | S {}

3 restart < false

4 while new successor state s., exists A—restart do
5 S+ SLu{sl}

6 foreach v; € 7, do

7 if number of different values for v; in the ARG and in the states of S.,

is greater thank k then

8 dropouts < dropouts U {v;}

9 Te < e \ {vi }

10 restart < true

11 end

12 end
13 end

14 while restart;
15 return S,

Algorithm 5: ARG-based transfer function without enumeration
TP(SeaOpaTrevk)'

Input : s.: source state

op: operation

Te: target precision

k: bound for successors
Output: S/ C 2%: set of successor states
1 foreach v; € . do
2 if number of different values for v; in the ARG > k then
3 dropouts < dropoutsU {v; }
4 Te Te \ {vi}
5 end
6 end
7 S, Te(Se,0p, me)
8 return S/

22

Chapter 4

Evaluation

This chapter presents our implementation of the five product abstraction-based strate-
gies and their evaluation, including a comparison to explicit-value analysis and predicate
abstraction. We ran measurements for every strategy with multiple different limits to
examine which limit is the most effective for the different algorithms. We then compare
the strategies with each other and the two basic algorithms, explicit-value analysis and
predicate abstraction.

4.1 Implementation

We implemented the algorithms based on the open source! THETA framework [34], which
is a modular and configurable model checking framework developed at the Budapest
University of Technology and Economics. The explicit-value analysis and predicate ab-
straction algorithms, and the abstractor and refiner components were already included in
THETA [26, 34]. Furthermore, THETA uses Z3 [21] as an SMT solver.

We had to implement the transfer functions for the product abstraction-based strategies
and since the refiner has to know which explicitly tracked variables had been removed, we
had to modify the refiner as well. We implemented these components in a Gradle? Java
project, where THETA is imported as a Gradle plug-in.

We also implemented a runnable tool which is deployed in a jar file named
prodanalysis.jar to run the algorithms with command line arguments. These argu-
ments are given by the following flags.

« model: This is a mandatory argument, the path of the CFA file? to be checked.

e domain: This is the abstract domain to use. Its possible values are EXPL for explicit-
value analysis, PRED for predicate abstraction and PROD2 for product abstraction. It
is also a mandatory argument.

e prodstrategy: This is the strategy to run product abstraction with. Possible values:
STATE for state-based (Section 3.1), PATH for path-based (Section 3.2) and ARG for
ARG-based (Section 3.3).

'https://github.com/FTSRG/theta

*https://gradle.org/

STHETA supports a simple textual description for the CFA with frontends in different languages, which
will be mentioned later.

23

https://github.com/FTSRG/theta
https://gradle.org/

e limit: This is the limit k for product abstraction. It is an optional parameter with
a default value of 5.

e useTop: This is a Boolean flag for the path- and ARG-based algorithms. When it
is set to true, these strategies use the transfer function which includes the T values
instead of enumerating possible states for expressions that cannot be evaluated. It
is an optional parameter with a default value of false.

For example, the following call checks example.cfa with the state-based product ab-
straction strategy, where k& = 2: java -jar prodanalysis.jar --model example.cfa
--domain PROD2 --prodstrategy STATE --limit 2.

4.2 Measurement configuration

We ran the measurements on a 64 bit Ubuntu 16.04 operating system, with the tool
RunExec fron the BenchExec suite [12]. RunExec ensures highly accurate results, since
it measures the actual time spent on the CPU and also takes various side-effects into
consideration (e.g., memory swapping). BenchExec is also used at the Competition on
Software Verification (SV-Comp) [5].

We evaluated 430 input programs from four different sources and categories: plc, eca,
locks, ssh. The 90 programs in plc are industrial programmable logic controller (PLC)
codes from CERN [24], while the other three categories contain C programs* coming from
the Competition on Software Verification (SV-Comp) [5, 6]. The category eca contains
180 programs, which describe large event-driven systems, where the events are represented
with non-deterministic variables. The category locks contains 143 programs with small
locking mechanisms described with non-deterministic integers and if-then-else constructs.
The programs in category ssh describe 17 large server-client systems.

We evaluated these programs with 22 different configurations: PRED, EXPL and PROD2
represents the predicate abstraction, the explicit-value analysis and the product abstrac-
tion respectively. Behind PROD2, STATE, PATH and ARG represents the different product
abstraction strategies presented before. The letter E means the strategy enumerates the
possible values while T means that it uses top values. Finally, the number corresponds
to the current limit (1, 2, 8 and 32). Thus we have 5 -4 = 20 product strategies, and
predicate and explicit abstractions giving two more.

We ran every configuration on every model, yielding 9460 measurements. We enforced a
time limit of 180 seconds and a memory limit of 4 GB. With this time limit, 5828 measure-
ments terminated successfully. We also checked that the result of the algorithms (safe/un-
safe) always matches to the expected result, increasing our confidence in the soundness of
our approaches.

In the following sections, we first evaluate each of the three main strategies with different
limits and transfer functions (in case of the path- and ARG-based algorithms) and compare
them to predicate and explicit analyses. Then we take the best k value and transfer
function for each strategy and compare them to each other. Finally, we also present a
summarizing table for all 22 configurations.

“These programs are automatically converted to CFA with THETA’s C frontend [32].

24

4.3 Evaluate different limits for each strategy

In this section we examine the performance of every product abstraction strategy with
four different limits. Besides that, they are also compared to PRED and EXPL.

4.3.1 Single state-based strategy

Table 4.1 shows the results of evaluating models with PROD2_STATE with the different
limits. In case of this strategy, there is only one transfer function (which enumerates the
possible states), therefore there are only configurations with the letter “E”. The first col-
umn shows the configuration, the second represents the number of successful results (i.e.,
the algorithm terminated) out of the 430 total models and the third is the total execution
time (e.g. sum of the time of the successful runs) in milliseconds. The different configura-
tions are ranked from best to worst. We can see that the PROD2_STATE strategy preforms
better with every limit than the PRED and EXPL algorithms. PROD2_STATE_E_01 has
by far the best results with 354 verified models. We can see that effectiveness decreases
as the limit increases. Although the difference is small for k£ = 2,8,32 (only 1 model).

Configuration Succ. count Total time (s)
PROD2_STATE_E_01 354 3852
PROD2_STATE_E_02 339 3564
PROD2_STATE_E_ 32 338 4178
PROD2_STATE_E_08 337 3983
PRED 325 7280
EXPL 312 2800

Table 4.1: Evaluate different k& values for STATE.

In Figure 4.1, a heatmap can be seen representing the success rate and total time of
the configurations in every category. The greener the tile is, the better the performance.
EXPL has the best results in categories eca and ssh, although it has the worst overall
performance because of the weak results in category plc. PRED has a good performance in
every category except eca and ssh. Since the PROD2_STATE strategy has the same great
performances in plc as PRED and in eca as EXPL, it could outperform both algorithms.
The strategy with £ = 1 is more successful than other k£ values due to the plc models.

Figure 4.2 represents a quantile plot [12]. It is comparing the maximal time per model on
the vertical axis to the number of verified models on the horizontal axis. The performance
of the configurations are represented by different coloured lines. A point (z,y) for a
given configuration means that it could solve x models within y milliseconds for each.
Lines shifted to the left could solve more models and lines shifted to the bottom require
less time. Therefore, the line located closest to the bottom right corner yields the best
performance. This figure shows essentially the same results as the heatmap in Figure 4.1:
PROD2_STATE_E_ 01 is the most efficient strategy and PRED and EXPL are the worst,
verifying a low number of models with a rather long execution time.

25

Success rate and total time

PROD2_STATE_E 32

PROD2_STATE_E_08 SucgRate
o PROD2_STATE_E_02 0.75
8
5 0.50
O PROD2_STATE_E 01
0.25
PRED 0.00
EXPL
z 2 3 2 G
2 = @ g @2
®] =3 2 =3
= e S e
| <] £ o
o] 9
o g 7
n
Category
Figure 4.1: Heatmap of the PROD2_STATE strategies.
Quantile plot
> Timeout
E 1e+05- Config
3 — EXPL
o
1S — PRED
38 — PROD2_STATE_E_01
g le+da- — PROD2_STATE_E_02
B — PROD2_STATE_E_08
E —— PROD2_STATE_E_32
)
=
le+03 L ' ' ' ' '
0 100 200 300 400

Number of verified models

Figure 4.2: Quantile plot of PROD2_STATE.

4.3.2 Path-based strategy

The results of the measurements run with configurations PROD2_PATH, PRED and EXPL
can be seen in Table 4.2. We can see, that the PATH strategy with the enumerating
transfer function has better results than PRED and EXPL with every k value. The best
configuration is the one where k = 8, verifying 338 models successfully. The second best
with k = 32 verified the same amount of programs but with a greater total execution time.
The PROD2_PATH_T configuration had the worst results verifying almost only half the
models as the enumerating strategies and the base algorithms did. With limits 32 and
8, PATH had the same results, verifying 172 models. But with a decreasing limit, the
performance also drops. PATH could only verify 97 models with limit 1, resulting in the
worst overall performance.

Figure 4.3 shows a heatmap representing the success rate and total time of the
PROD2_PATH strategy and PRED and EXPL algorithms in the different program cat-

26

Configuration Succ. count Total time (s)

PROD2_PATH E 08 338 4057
PROD2_PATH_E_32 338 4085
PROD2_PATH_E_01 330 8937
PROD2_PATH_E_02 328 6406
PRED 325 7280
EXPL 312 2800
PROD2_PATH_T 32 172 3536
PROD2_PATH_T 08 172 3542
PROD2_PATH_T 02 135 4180
PROD2_PATH T 01 97 2087

Table 4.2: Evaluate different & values for PATH.

egories. There is not one category where PROD2_PATH has the best results, but with
the enumerating transfer function, it successfully combined the strengths of the PRED
and EXPL algorithms, resulting in the best overall performance. The non-enumerating
strategy had by far the worst performance in categories locks and ssh. In locks, it could
only verify 4 models while every other configuration verified all 143 models successfully.
PROD2_PATH_T_01 performed especially bad in the eca category, resulting in only 29
verified models from 180.

Success rate and total time
PROD2_PATH_T_32
PROD2_PATH_T_08
PROD2_PATH_T_02

Succl%%te

PROD2_PATH_T 01

© PROD2_PATH_E_32 0.75
5 0.50
O PROD2_PATH_E_08
0.25
PROD2_PATH_E_02
0.00

PROD2_PATH_E_01

PRED

EXPL

TOTAL
plc

svcomp/eca
svcomp/locks
svcomp/ssh

Category

Figure 4.3: Heatmap of the PROD2_PATH strategies.

In Figure 4.6 the quantile plot representing the number of verified models and the
maximal time per model for the PATH strategies can be seen. It shows that
PROD2_PATH_E has the best performance followed by PRED and EXPL. The non-

27

enumerating PROD2_PATH_T strategies preform way worse than the others. We can
also clearly see that the results of PATH get worse with decreasing the limit.

Quantile plot Config

Timeout EXPL

le+05- PRED
PROD2_PATH_E_01
— PROD2_PATH_E_02
— PROD2_PATH_E_08
le+04 - — PROD2_PATH_E_32
— PROD2_PATH_T_01

PROD2_PATH_T_02

Maximal time per model (ms)

PROD2_PATH_T 08
1e+03 -

0 100 200 300 400 PRODZ_PATH_T_32
Number of verified models

Figure 4.4: Quantile plot of PROD2_PATH.

4.3.3 ARG-based strategy

The results of evaluating PROD2_ARG can be seen in Table 4.3. The enumerating
strategy performed better with all four limits than the PRED and EXPL algorithms. We
can see, that bigger limits yield better performance, resulting in PROD2_ARG_E_32 being
the most effective strategy, verifying 338 models. There is not much difference between the
number of models verified, but the execution times vary greatly. PROD2_ARG_E_01 not
only verified the least models of the enumerating strategies, but it took more than twice
as long. The non-enumerating strategies all performed worse than the other algorithms.
With limits 8 and 32, it successfully verified 172 models, with a very insignificant time
difference. The PROD2_ARG_T_01 configuration had the worst overall performance,
verifying only 98 models.

Config Succ. count Total time (s)
PROD2_ARG_E_32 338 4170
PROD2_ARG_E_08 337 3959
PROD2 ARG E 02 334 5575
PROD2_ARG_E_01 327 8599
PRED 325 7280
EXPL 312 2800
PROD2 ARG T 08 172 3352
PROD2_ARG_T_32 172 3358
PROD2 ARG T 02 135 3891
PROD2_ARG_T_01 98 2107

Table 4.3: Evaluate different & values for ARG.

In Figure 4.5 we can see a heatmap representing the success rate and total time of the
PROD2_ARG strategies for every program category. The enumerating ARG strategy
has good results in every category. It is interesting to note that in the plc category,
PROD2_ARG_E_01 verified remarkably more models, but because of the bad results in
category eca, this configuration has the worst performance. The non-enumerating strategy

28

has the worst results in almost every category with every limit. It performed especially
bad in the locks and ssh categories, yielding a very similar result to the results of the
path-based strategy.

Success rate and total time
PROD2_ARG_T 32
PROD2_ARG_T 08

PROD2_ARG_T 02

t
PROD2_ARG_T 01 SucqRate
D PROD2_ARG_E_32 0.75
5 0.50
O PROD2_ARG_E_08
0.25
PROD2_ARG_E_02
0.00

PROD2_ARG_E 01

PRED

EXPL

plc

-
z
O
}—

svcomp/eca
svcomp/locks
svcomp/ssh

Category
Figure 4.5: Heatmap of the PROD2_ARG strategies.

Figure 4.6 represents the quantile plot for PROD2_ARG strategies. Interestingly, there is
a part in the plot where EXPL is below all the other algorithms, which means that it had
a better performance. But later it could not solve as much models as the others, therefore
it is not as efficient. This plot is also very similar to the quantile plot of the path-based
strategy. The ARG-based strategy’s efficiency is also decreasing with a lower limit.

Quantile plot Config

Timeout — EXPL
1e+05 - — PRED

— PROD2_ARG_E_01
— PROD2_ARG_E_02
— PROD2_ARG_E_08
— PROD2_ARG_E_32
— PROD2_ARG_T_01
— PROD2_ARG_T_02
—— PROD2_ARG_T_08
— PROD2_ARG_T_32

le+04 -

Maximal time per model (ms)

1e+03 - 1 1 1 1
0 100 200 300 400
Number of verified models

Figure 4.6: Quantile plot of PROD2_ARG.

29

4.4 Compare the best strategies

In this section we compare the configuration with best k value of each strategy with
the PRED and EXPL algorithms. These are respectively the PROD2_STATE_E_01, the
PROD2_PATH_E_8 and the PROD2_ARG_E_32 configurations. We can see, that with
every strategy, the enumerating version yielded better results.

Table 4.4 presents the results of the best strategies. It shows, that PROD2_STATE_E_01
has the best results overall. It verified 354 models in less time, than the second best
PROD2_PATH_E_08, which verified 338. The PROD2_ARG_E_32 verified the same
amount of models successfully as the best path-based, but with a little longer execu-
tion time. All three strategies preformed better with their best configurations than the
PRED and EXPL algorithms. It is also important to note that the execution time of the
PRED algorithm is almost twice as long as the other configurations’.

Configuration Succ. count Total time (s)
PROD2_STATE_E_01 354 3852
PROD2_PATH_E_08 338 4057
PROD2 ARG _E 32 338 4170
PRED 325 7280
EXPL 312 2800

Table 4.4: Comparing the strategies with their best k value.

The heatmap of the best configurations can be seen in Figure 4.7. In the category locks,
every strategy and algorithm successfully verified all the models. PROD2_STATE_01 has
a an overall good performance in every category. PRED and EXPL also have good results,
but there is one category for each of them, where their performance is really weak (eca
for PRED and plc for EXPL). It can be clearly seen that all of our new strategies can
successfully combine the advantages of explicit value-analysis and predicate abstraction
to give an overall better performance.

Success rate and total time

PROD2_STATE_E_01

Sucrll%%te

PROD2_PATH_E_08

PROD2_ARG_E_32

Config

PRED

EXPL

plc

-
z
O
'_

svcompl/eca
svcomp/locks
svcomp/ssh

Category

Figure 4.7: Heatmap of the best strategies.

30

The quantile plot of the best strategies can be seen in Figure 4.8. We can see that the
algorithm with the longest runtime is by far the PRED. PRED and EXPL started well, but
they verified less models than the product-based algorithms. This plot clearly shows that
the most efficient strategy is the state-based, verifying the most models.

Quantile plot
> Timeout
E 1e+05-
© Config
e]
5} EXPL
S
E’_ PRED
Q le+04- — PROD2_ARG_E_32
£ — PROD2_PATH_E_08
E / PROD2_STATE_E_01
=
® "
= r___—————/(—’_
1e+03-
0 100 200 300 400

Number of verified models

Figure 4.8: Quantile plot of the best strategies.

4.5 Compare all strategies with each other

Table 4.5 summarizes the results of every configuration starting from the best to the worst.
This table contains all information from the previous tables. It shows that all enumerating
strategies had a better performance than the PRED and EXPL algorithms, while the non-
enumerating strategies preformed worse. PROD2_STATE_01 produced by far the best
results with 354 successfully evaluated models with a good total execution time, followed
closely by the other enumerating strategies with pretty similar results.

From these results we can conclude that the new product-based strategies with enumer-
ation can successfully combine the strengths of explicit-value analysis and predicate ab-
straction in order to give an overall better performance.

31

Configuration

Suce. count

Total time (s)

PROD2_STATE_E_01
PROD2_STATE_E_02
PROD2_PATH_E_08
PROD2_PATH_E_32
PROD2_ARG_E_32
PROD2_STATE_E_32
PROD2 ARG E 08
PROD2_STATE_E_08
PROD2_ARG_E_02
PROD2_PATH_E_01
PROD2_PATH_E_02
PROD2_ARG_E_01
PRED

EXPL
PROD2_ARG_T_ 32
PROD2_ARG_T 32
PROD2_PATH_T_ 32
PROD2_PATH_T 08
PROD2_ARG_T_ 32
PROD2_PATH_T 02
PROD2_ARG_T_32
PROD2_PATH_T 01

354
339
338
338
338
338
337
337
334
330
328
327
325
312
172
172
172
172
135
135
98
97

3852
3564
4057
4085
4170
4178
3959
3983
9575
8937
6406
8599
7280
2800
3352
3358
3536
3542
3891
4180
2107
2087

Table 4.5: Comparing all strategies.

32

Chapter 5

Conclusion

In our work, we presented two different CEGAR-based algorithms for software model
checking, namely explicit-value analysis and predicate abstraction. Explicit-value analysis
only tracks the values of a subset of program variables, while predicate abstraction fo-
cuses on tracking formulas over the variables. Both methods can be suitable for checking
different kinds of software. In order to combine their advantages, we proposed a product
abstraction domain with five different strategies. These approaches start by explicitly
tracking each variable first and then switch to predicate abstraction, if the number of
different values for a variable exceed a given limit. The difference between the methods
is the way they count the values. Counting can be based on a single state, a path or the
whole abstract reachability graph. For the path- and ARG-based strategies there is also
another version, which uses unknown values instead of enumerating all the possible states.

We implemented our new strategies based on the open source THETA verification frame-
work. We ran measurements on various input programs and compared the strategies to
each other and the two basic algorithms (explicit values and predicates). We used bench-
mark models from the Software Verification Competition and industrial PLC codes from
CERN. Measurements show, that the non-enumerating strategies are less efficient, but all
the strategies which use the enumerating transfer function outperform pure explicit-value
analysis and predicate abstraction. We can conclude that our new algorithms can success-
fully combine the advantages of the different abstract domains, providing a more efficient
software model checking approach.

Future work. Even though the evaluation confirmed the efficiency of the new strategies,
there are several opportunities to improve our work.

We could implement a strategy that first does not enumerate possible values for an ex-
plicitly tracked variable, but uses the unknown value. Then, if the refiner would add this
variable again, we would start to enumerate values. Finally, if the number of the different
values reach the limit, we switch to predicates.

It would be interesting to run the measurements on a wider set of models, possibly from
different domains. This would help to generalize our results. Currently we only experi-
mented with a few values for the limit. Evaluating more possibilities could give further
insights. Furthermore, the CEGAR algorithm also has some other parameters (indepen-
dent from the abstract domains), such as the search strategy in the abstract state space. It
would be interesting to experiment with those parameters as well, to find a configuration
that works the best with product abstraction.

33

Our evaluation at the moment is high level, because we only look at the summarised
data. It would be interesting to look into the details to see why certain configurations
have better or worse results in different program categories. This way we could identify
possible improvements to our algorithms.

34

Bibliography

1]

Thomas Ball and Tom Ball. Formalizing counterexample-driven refinement with
weakest preconditions. Technical Report MSR-TR-2004-134, Microsoft Research,
2004.

Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science,
pages 268-283. Springer, 2001.

Tom Ball and Sriram Rajamani. Generating abstract explanations of spurious coun-
terexamples in C programs. Technical Report MSR-TR-2002-09, Microsoft Research,
2002.

Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiabil-
ity modulo theories. In Handbook of satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 26, pages 825-885. IOS press, 2009.

Dirk Beyer. Reliable and reproducible competition results with Benchexec and wit-
nesses (report on SV-Comp 2016). In Tools and Algorithms for the Construction
and Analysis of Systems, volume 9636 of Lecture Notes in Computer Science, pages
887-904. Springer, 2016.

Dirk Beyer. Software verification with validation of results. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 10206 of Lecture Notes in
Computer Science, pages 331-349. Springer, 2017.

Dirk Beyer and Stefan Lowe. Explicit-state software model checking based on CEGAR
and interpolation. In Fundamental Approaches to Software Engineering, volume 7793
of Lecture Notes in Computer Science, pages 146-162. Springer, 2013.

Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker BLAST. International Journal on Software Tools for Technology
Transfer, 9(5):505-525, 2007.

Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Computer Aided Verification, volume 4590 of Lecture Notes in Computer Science,
pages 504-518. Springer, 2007.

Dirk Beyer, Thomas A. Henzinger, and Gregory Theoduloz. Program analysis with
dynamic precision adjustment. In Proceedings of the 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 29-38. IEEE, 2008.

35

[11]

[12]

[13]

[14]

18]

[19]

[20]

[21]

Dirk Beyer, Stefan Léwe, and Philipp Wendler. Refinement selection. In Model
Checking Software, volume 9232 of Lecture Notes in Computer Science, pages 20-38.
Springer, 2015.

Dirk Beyer, Stefan Lowe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer, 2017.
Online first.

Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view on SMT-based
software verification. Journal of Automated Reasoning, 60(3):299-335, 2018.

Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. Symbolic
model checking without BDDs. In Tools and Algorithms for the Construction and
Analysis of Systems, volume 1579 of Lecture Notes in Computer Science, pages 193—
207. Springer, 1999.

Aaron R Bradley and Zohar Manna. The calculus of computation: Decision procedures
with applications to verification. Springer, 2007.

Jerry R Burch, Edmund M Clarke, Kenneth L McMillan, David L Dill, and Lain-Jinn
Hwang. Symbolic model checking: 10%° states and beyond. In Proceedings of the 5th
Annual IEEE Symposium on Logic in Computer Science, pages 428—-439. IEEE, 1990.

Edmund M Clarke, Orna Grumberg, and David E Long. Model checking and abstrac-
tion. ACM Transactions on Programming Languages and Systems, 16(5):1512-1542,
1994.

Edmund M Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752-794, 2003.

Edmund M Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based
counterexample-guided abstraction refinement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(7):1113-1123, 2004.

Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P Bloem.
Handbook of model checking. Springer, 2018.

Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture
Notes in Computer Science, pages 337-340. Springer, 2008.

Leonardo De Moura and Nikolaj Bjgrner. Satisfiability modulo theories: Introduction
and applications. Communications of the ACM, 54(9):69-77, 2011.

Evren Ermis, Jochen Hoenicke, and Andreas Podelski. Splitting via interpolants. In
Verification, Model Checking, and Abstract Interpretation, volume 7148 of Lecture
Notes in Computer Science, pages 186—201. Springer, 2012.

Borja Ferndndez Adiego, Déaniel Darvas, Enrique Blanco Vinuela, Jean-Charles
Tournier, Simon Bliudze, Jan Olaf Blech, and Victor M. Gonzélez Suarez. Apply-
ing model checking to industrial-sized PLC programs. IEEE Trans. on Industrial
Informatics, 11(6):1400-1410, 2015.

Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS.
In Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science,
pages 72-83. Springer, 1997.

36

[26]

[35]

[36]

Akos Hajdu, Tamds Téth, Andras Vorss, and Istvan Majzik. A configurable CEGAR
framework with interpolation-based refinements. In Formal Techniques for Distributed
Objects, Components and Systems, volume 9688 of Lecture Notes in Computer Sci-
ence, pages 158-174. Springer, 2016.

Martin Leucker, Grigory Markin, and Martin R. Neuhédufler. A new refinement strat-
egy for CEGAR-based industrial model checking. In Hardware and Software: Verifica-
tion and Testing, volume 9434 of Lecture Notes in Computer Science, pages 155-170.
Springer, 2015. DOI: 10.1007/978-3-319-26287-1_10.

Kenneth L. McMillan. Applications of Craig interpolants in model checking. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 1-12. Springer, 2005.

Kenneth L. McMillan. Lazy abstraction with interpolants. In Computer Aided Verifi-
cation, volume 4144 of Lecture Notes in Computer Science, pages 123-136. Springer,
2006.

Peter Miiller. Modular Specification and Verification of Object-oriented Programs.
Springer, 2002.

Doron Peled. All from one, one for all: On model checking using representatives.
In Computer Aided Verification, volume 697 of Lecture Notes in Computer Science,
pages 409-423. Springer, 1993.

Gyula Sallai, Akos Hajdu, Tamds Té6th, and Zoltdn Micskei. Towards evaluating size
reduction techniques for software model checking. In Alexei Lisitsa, Andrei P. Nemy-
tykh, and Maurizio Proietti, editors, Proceedings of the Fifth International Workshop
on Verification and Program Transformation, volume 253 of Electronic Proceedings
in Theoretical Computer Science, pages 75-91. Open Publishing Association, 2017.
DOI: 10.4204/EPTCS.253.7.

Cong Tian, Zhenhua Duan, and Zhao Duan. Making CEGAR more efficient in soft-
ware model checking. IEEE Transactions on Software Engineering, 40(12):1206-1223,
2014.

Tamés Téth, Akos Hajdu, Andris Voros, Zoltan Micskei, and Istvan Majzik. THETA:
a framework for abstraction refinement-based model checking. In Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, pages 176-179. FM-
CAD inc., 2017.

Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEFE, 103(11):2021-2035, 2015.

Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In
Formal Methods in Computer-Aided Design, pages 1-8. IEEE, 20009.

37

http://dx.doi.org/10.1007/978-3-319-26287-1_10
http://dx.doi.org/10.4204/EPTCS.253.7

	Kivonat
	Abstract
	Introduction
	Background
	Control flow automata
	Counterexample-guided abstraction refinement
	Abstraction
	Refinement

	Product abstraction strategies
	Limit number of successors based on a single state
	Limit number of values on a path
	Limit number of values in ARG
	Related work

	Evaluation
	Implementation
	Measurement configuration
	Evaluate different limits for each strategy
	Single state-based strategy
	Path-based strategy
	ARG-based strategy

	Compare the best strategies
	Compare all strategies with each other

	Conclusion
	Bibliography

