

DIPLOMATERVEZÉSI FELADAT

Bajkai Viktória Dorina (HUJK05)
szigorló mérnökinformatikus hallgató részére

Hatékony szoftver modellellenőrzés predikátumabsztrakció

és explicit változó analízis kombinálásával

Napjainkban a szoftverek az élet olyan területein is egyre elterjedtebbek, ahol helyes viselke-

désük garantálása elengedhetetlen a biztonságos működéshez. Ezeken a területeken különböző

verifikációs technikákat alkalmaznak, például szoftver modellellenőrzést, amely a program

állapotterének szisztematikus vizsgálatával bizonyos hibák meglétét és hiányát is matemati-

kailag precíz módon tudja bizonyítani. A módszer hátránya azonban a nagy számítási igénye,

amely általában meggátolja közvetlen használatát valós méretű programokra.

Az ellenőrzés hatékonyságának növelésére gyakran alkalmazzák az úgynevezett ellenpélda-

alapú absztrakció finomítás (CEGAR) módszerét, amely absztrakciók iteratív építésével és fi-

nomításával csökkenti a vizsgált állapottér komplexitását. A szakirodalomban számos külön-

böző típusú absztrakciót dolgoztak ki, többek között az explicit változó analízist, amely bizo-

nyos változókat nem vesz figyelembe, illetve a predikátumabsztrakciót, amely konkrét értékek

helyett logikai formulák teljesülését vizsgálja. A gyakorlati tapasztalatok alapján a különböző

típusú absztrakciók más esetekben hatékonyak, így az irodalomban ezek kombinációi, az úgy-

nevezett szorzat absztarkciók is megjelentek.

A hallgató korábbi – szakdolgozat és önálló laboratórium – munkája során szorzat absztrak-

ciókat dolgozott ki különálló algoritmusok formájában. Ezen munka folytatásaként a hallgató

diplomatervezési feladata, hogy ezeket az algoritmusokat egy olyan egységes keretrendszerbe

illessze, amely a klasszikus CEGAR-alapú megközelítéseket hatékonyan egészíti ki. Ezáltal

lehetővé válik a CEGAR algoritmus többi komponensének hatékony újrafelhasználása és az

algoritmusok szisztematikus összehasonlítása is.

A hallgató feladatának a következőkre kell kiterjednie:

 Ismertesse a szoftver-modellellenőrzésben használt explicit változó analízist és prediká-

tumabsztrakciót, mutassa be a szorzat absztrakció és a CEGAR működését!

 Egészítse ki az irodalomból ismert klasszikus CEGAR megközelítést úgy, hogy az képes

legyen különböző szorzat absztrakciós stratégiák hatékony megvalósítására.

 Dolgozzon ki további, az irodalomból ismert stratégiákat a különböző absztrakciós mód-

szerek kombinálására!

 A nyílt forráskódú THETA verifikációs keretrendszerben található CEGAR megközelítés

kiegészítésével implementálja saját keretrendszerét és algoritmusait!

 Példa szoftverek segítségével demonstrálja az algoritmusok működését és hatékonyságát!

Tanszéki konzulens: Hajdu Ákos, egyetemi tanársegéd

Budapest, 2020. 03. 13.

…………………………..

Dr. Dabóczi Tamás

tanszékvezető

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Efficient combinations of predicate
abstraction and explicit-value analysis for

software model checking

Master’s Thesis

Author Advisor
Viktória Dorina Bajkai Dr. Ákos Hajdu

December 20, 2020

Contents

Kivonat

Abstract

1 Introduction

2 Background
2.1 Control Flow Automata .
2.2 Counterexample-guided abstraction refinement

2.2.1 Abstraction .
2.2.2 Refinement .
2.2.3 CEGAR loop .

3 Product abstraction strategies
3.1 Modification of the common CEGAR framework
3.2 Strategies tracking explicit values and predicates simultaneously

3.2.1 Limit number of successors based on a single state
3.2.2 Limit number of values on a path .
3.2.3 Limit number of values in ARG .

3.3 Strategies switching between explicit values and predicates
3.4 Related work .

3.4.1 Dynamic precision adjustment .
3.4.2 Changing domain based on counterexample

4 Evaluation
4.1 Implementation .
4.2 Measurement configuration .
4.3 Results .

4.3.1 RQ1: Basic state-, path- and ARG-based strategies
4.3.2 RQ2: Path- and ARG-based strategies with and without ⊤

1

4.3.3 RQ3: Combiner and domain switching strategies
4.3.4 RQ5: Sharing information .
4.3.5 RQ6: Coverage checking order .
4.3.6 RQ7: Related work .
4.3.7 RQ8: Predicate abstraction and explicit-value analysis
4.3.8 Summary .

5 Conclusion

Bibliography

2

HALLGATÓI NYILATKOZAT

Alulírott Bajkai Viktória Dorina, szigorló hallgató kijelentem, hogy ezt a diplomatervet
meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás
megadásával megjelöltem.
Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2020. december 20.

Bajkai Viktória Dorina
hallgató

Kivonat

Mindennapi életünket egyre jobban meghatározzák a szoftverrendszerek. Ezek sokszor
biztonságkritikusak (pl. autonóm járművek, erőművek), tehát helyes működésük garan-
tálása kiemelten fontos feladat. Ennek egyik eszköze a formális verifikáció, ami a hibák
jelenlétét és a helyes működést is képes matematikailag precíz módon bizonyítani. Az
egyik legelterjedtebb formális verifikációs módszer a modellellenőrzés, amely a program
összes lehetséges állapotát és átmenetét (azaz állapotterét) szisztematikusan megvizsgálja.
A módszer egyik hátránya viszont a nagy számítási igénye, ami gyakran megakadályozza
használatát valós szoftvereken.

Az ellenpélda-alapú absztrakciófinomítás (angolul Counterexample-Guided Abstrac-
tion Refinement, CEGAR) egy olyan kiegészítő technika, melynek segítségével a
modellellenőrzés hatékonyabbá tehető. Működése során a CEGAR iteratívan hozza létre
és finomítja az ellenőrzendő probléma egy absztrakcióját. Az irodalomban több különböző
absztrakciós megközelítés létezik, például az explicit változók módszere, illetve a prediká-
tumabsztrakció. Előbbi a programnak csak a verifikáció céljából releváns változóit tartja
nyilván, míg az utóbbi konkrét értékek helyett matematikai kifejezések teljesülését vizs-
gálja. Korábbi eredmények alapján megfigyelhető, hogy különböző absztrakciós módszerek
különböző típusú szoftvereken működnek hatékonyabban. Ebből kifolyólag létrejöttek
úgynevezett szorzat absztrakciók, amik többféle módszert kombinálnak egy algoritmusban.

Munkánk során eltérő stratégiák alapján kombináltuk az explicit változókat predi-
kátumokkal. Megközelítésünk lényege, hogy a már felderített absztrakt állapottérből
kinyert információk figyelembe vételével a további felderítést és ellenőrzést hatékonyabbá
teszi. Ezen kívül az újonnan javasolt algoritmusokat egy egységes keretrendszerben forma-
lizáltuk és az új stratégiákat a Theta nevű nyílt forráskódú verifikációs keretrendszerben
implementáltuk. Ennek segítségével szoftverrendszerek széles skáláján tudtuk lefuttatni
méréseinket, többek között ipari vezérlő (PLC) kódokon. Összevetettük a különböző
stratégiák előnyeit és hátrányait, és a már létező módszerekkel is összehasonlítottuk őket.
Az eredményeink azt mutatják, hogy az új módszereink hatékonyan tudják kombinálni a
meglévő algoritmusok előnyeit.

Abstract

Software systems are controlling devices that surround us in our everyday life. Many of
these systems are safety-critical (e.g., autonomous vehicles, power plants), thus ensuring
their correct operation is gaining increasing importance. Formal verification techniques
can both reveal errors and give guarantees on correctness with a sound mathematical
basis. One of the most widely used formal verification approaches is model checking,
which systematically examines all possible states and transitions (i.e., the state space) of
the program. However, a major drawback of model checking is its high computational
complexity, often preventing its application on real-life software.

Counterexample-guided abstraction refinement (CEGAR) is a supplementary tech-
nique, making model checking more efficient in practice. CEGAR works by iteratively
constructing and refining abstractions in a given abstract domain. There are several
existing domains, such as explicit-values, which only track a relevant subset of program
variables and predicates, which use logical formulas instead of concrete values. Obser-
vations show that different abstract domains are more suitable for different kinds of
software systems. Therefore, so-called product domains have also emerged that combine
different domains into a single algorithm.

In this work, we develop and examine various strategies to combine the explicit-
value domain with predicates. Our approaches use different information from the
already explored abstract state space to guide further exploration more efficiently. We
also formalize the proposed algorithms in a unified framework and implement our new
strategies in Theta, an open source verification framework. This allows us to perform
experiments with a wide range of software systems including industrial PLC codes. We
evaluate the strengths and weaknesses of the different approaches and we also compare
them to existing methods. Our experiments shows that the new strategies can form
efficient combinations of the existing algorithms.

Chapter 1

Introduction

Nowadays our reliance on safety-critical software systems is rapidly increasing. Therefore,
there is a growing need for reliable proofs of their correct behaviour, since a failure can
lead to serious damage. A promising approach for giving such proofs is formal software
verification. Formal verification provides a sound mathematical basis to prove the correct
operation of programs with mathematical precision. A widely used formal verification
method is model checking, which analyses the possible states and transitions (i.e., the
state space) of the software for every possible input and checks whether certain properties
are satisfied. There is a wide variety of properties that can be examined, including the
failure of assertions, overflow and null pointers. The advantage of model checking is that
it can not only reveal faults, but prove their absence as well. However, a major drawback
is that systematically examining every possible state and transition for each input is too
expensive computationally. Even for relatively simple programs the state space can be
large or even infinite, which is called the “state space explosion”. Various techniques have
been developed in the past decades to overcome this problem. In our work, we use the
supplementary technique counterexample-guided abstraction refinement (CEGAR).
CEGAR is a widely used software model checking algorithm, which uses abstraction to
represent the state space in a more compact way. Abstraction means hiding certain details
about the program. However this does not only yield a smaller state space, but we also
lose information about the program. Abstraction usually over-approximates the original
program. This means, that if no erroneous behaviour (i.e., counterexample) can be found
in the abstraction, then the original program is also safe. However, losing information can
also lead to finding a counterexample in the abstraction, that does not exist originally.
That means, that the abstraction has to be refined to exclude the spurious counterexample.
CEGAR usually starts with a coarse initial abstraction of the program and automatically
finds the proper level of abstraction by a series of refinement steps.
CEGAR can work with different abstraction methods, such as explicit-value analysis and
predicate abstraction. Explicit-value analysis operates by tracking values of only a subset
of the program’s variables, while predicate abstraction focuses on tracking certain facts
(predicates) about the variables. However, different abstraction methods are more suitable
for different kinds of software. Combinations of abstract domains, called product abstrac-
tions, can unify the strengths of the different approaches. However, a key challenge is to
find the proper way of combining them.
In our work, we develop a product abstraction algorithm, which combines explicit-value
analysis and predicate abstraction. We try to focus on the advantages of both algorithms
to propose seven different strategies. These approaches use different information from

the abstract state space (e.g., single states, paths, or all states) to combine explicit-value
analysis with predicate abstraction efficiently.
Besides proposing new strategies, an important contribution of this work is formalizing
and implementing these new strategies in a unified framework.
In order to evaluate and compare these strategies, we implement them in Theta, an
open source verification framework. We evaluate the performance of the new algorithms
on multiple types of programs, including industrial programmable logic controller (PLC)
codes from CERN, and several types of programs from the Competition on Software Ver-
ification (SV-COMP). We also compare the new strategies with the existing explicit-value
analysis and predicate abstraction methods. The results show that our new algorithms
can combine the advantages and outperform the existing methods.

Chapter 2

Background

In this chapter we present the background of product abstraction-based software model
checking. First, we present Control Flow Automata (Section 2.1), a formal representation
based on graphs and first order logic formulas, which we use to describe the programs.
Then we introduce abstraction and the CEGAR approach (Section 2.2), which is a widely
used technique for software verification.

2.1 Control Flow Automata

Programs can be described in various ways. Humans usually work with source code as it
is readable and understandable. Computers on the other hand mostly work with a com-
piled binary, which can be executed. Since software verification is based on mathematical
reasoning, a formal representation is required. A widely used formal representation is
the Control Flow Automata (CFA). It is also called a model of the program. A CFA
is a graph-based representation annotated with first order logic (FOL) [13] formulas to
describe the operations of the program. Given a domain D, let FOLD denote formulas of
that domain. For example, FOLB denotes Boolean formulas like x = y ∧ y > 5.
While FOL is undecidable in general [13], in practice satisfiability modulo theory (SMT)
solvers [3, 19] can efficiently reason about FOL formulas under various theories (e.g.,
integer arithmetic, arrays). In our work, we also use SMT solvers to reason about formulas.

Definition 1 (Control Flow Automata). A control flow automaton [8] is a tuple
CFA = (V, L, l0, E) where

• V = {v1, v2, . . . , vn} is a set of program variables with domains Dv1 , Dv2 , . . . , Dvn ,

• L = {l1, l2, . . . , lk} is a set of program locations representing the program counter,

• l0 ∈ L is the initial location, i.e., the entry point of the program,

• E ⊆ L × Ops × L is a set of directed edges between locations, representing the
operations which are executed when control flows from the source location to the
target in the program. �

The operations op ∈ Ops can be assumptions, assignments or havocs. Assumptions are
boolean expressions (also called predicates) denoted by [φ] where φ ∈ FOLB. If there is
an edge between two locations with an assumption, the program can take a transition to
the target location if the predicate holds in the source location.

Assignments are in the form vi := ψ, where vi ∈ V and ψ ∈ FOLDvi . After this operation,
in the target location vi will be assigned the result of evaluating ψ. All other variables
will have the same value as in the source location.
Havocs have the form of havoc vi, where at the end of the operation vi will be assigned a
random value from its domain. Havoc operations can be used to model non-deterministic
values, for example an input provided by the user or the return value of an unknown
external function.

1 int x = 0;
2 int y = 0;
3 while (x <= 5) {
4 y = x % 5;
5 x++;
6 }
7 assert(y == 0);
8

(a) Example program.

l0

l1

l2

l3

l4

l5

lfle

x := 0

y := 0

[x ≤ 5]

y := (x%5)

x := x+ 1

¬[x ≤ 5]

¬[y = 0] [y = 0]

(b) CFA representation

Figure 2.1: Simple program and its corresponding CFA.

Example 1. We can see an example program in Figure 2.1a. The program has two
variables, x and y. In the program, x counts up to 5 assigning x%5 to y in every cycle.
At the end there is an assertion which checks whether the value of y is 0. In Figure 2.1b,
the corresponding CFA can be seen. The initial location is l0, which is the entry of the
program. The first two lines are encoded by path l0 → l1 → l2, where we arrive at the head
of the loop. If the condition holds, the program enters the body of the loop by moving to
l3. Then the program moves to l4 with an assignment and returns to l2, the head of the
loop, incrementing x. If the loop condition does not hold anymore, the program moves to
l5, where the assertion is evaluated. If the condition holds, the program arrives to its end,
the final location, which is lf . Otherwise it reaches le, the error location.

The concrete data state c ∈ Dvi ×· · ·×Dvn assigns for each variable a value of its domain.
A concrete state of the program can be described by the program counter (the current
location) and its data (the values of the variables), the concrete data state. Therefore,
a concrete state is s = (l, c), which is a location and a value for each variable from its
domain.
In the CFA model, each variable is uninitialized at the beginning. Therefore, any state
s = (l0, c) with the initial location l0 is considered to be an initial state of the program.

A transition s
op−→ s′ between two concrete states s = (l, c) and s′ = (l′, c′) exists, if there

is an edge (l, op, l′) ∈ E between the locations of the two states with the semantics of the
operation op.

• If op is an assumption [φ], then φ has to hold for dv1 , . . . , dvn and the values do not
change when taking the transition, i.e., dvk = d′vk for each k.

• If op is an assignment vi := ψ, d′vi will be equal to the result of evaluating ψ, while
the other variables will remain unchanged, i.e., d′vk = dvk for each k ̸= i.

• If op is a havoc over vi, then d′vk can take any value, but the other variables must
be unchanged, i.e., d′vk = dvk for each k ̸= i.

A concrete path s1
op1−−→ s2

op2−−→ ...
opn−1−−−−→ sn is an alternating sequence of concrete states

and operations.
The states, the initial state and the transitions together define the state space of the
program.
During software verification, a wide variety of properties can be verified, including overflow,
null pointers and indexing out of bounds [5]. In our work, we focus on verifying assertion
failures in the input programs. These assertions are represented in CFA with a choice: if
the condition of the assertion holds, the program moves forward to the next location, but
if it does not holds, it goes to a distinguished error location denoted by le.
The purpose of software model checking [17] is to check (in a mathematically precise way)
if a program state with the error location (le, d1, . . . , dn) is reachable with any valuation of
the variables, i.e., whether an assertion failure can occur. Note that this is different than
just checking if the error location is reachable in the graph of the CFA. The semantics of
the operations also need to be considered. From now on, if we refer to the reachability of
le, we mean reaching some state in the state space, which has le as its location.
A CFA is called safe if le is not reachable, otherwise it is unsafe. If the CFA is unsafe, a
path s1

op1−−→ s2
op2−−→ ...

opn−1−−−−→ sn leading to the state sn = (le, . . .) with the error location is
called a counterexample, as it is a witness for the assertion failure. Such counterexamples
are important because they help the program developer to identify the source of the
problem.
Software model checking is a very complex problem, because if we want to prove that the
error location is unreachable, the whole state space of the program has to be explored,
which can be very large or even infinite. For example, if a program has 100 locations and
three 64 bit integer variables, the number of possible states is 100 ·264 ·264 ·264 ≈ 6.2 ·1059.
This problem is often called the “state space explosion”. To overcome this limitation
of software model checking, various techniques have been developed in the past decades,
including abstraction [14, 22] and CEGAR [15], which will be presented in the next section.

2.2 Counterexample-guided abstraction refinement

Abstraction is a general method to reduce the complexity of a problem by hiding certain
details. In the context of software model checking this yields a smaller abstract state space
compared to the original (concrete) state space, mitigating the problem of state space
explosion. Intuitively, a single abstract state can represent multiple (or even infinite)
concrete states [14]. Applying abstraction also means that we lose information, which
can lead to incorrect results. However, if we use an over-approximating abstraction [14],
the incorrect results are only one sided. That means, that if the error location is not
reachable in the abstract state space, it is also not reachable in the original state space,
i.e., the original program is safe. On the other hand, we might find a counterexample
(path leading to the error location) in the abstract state space, which does not exists in
the original program. Such counterexamples are called spurious and in this case a more
precise abstraction is required.

The granularity of the abstraction (i.e., the amount of information hidden) is called the
precision [8]. For example, a possible abstraction is to omit certain variables from the
software and treating them as if they could take any value from their domain. In this
case, the precision can be controlled by the number of variables omitted: fewer omitted
variables give more precise abstraction (but possibly larger state space).
Counterexample-Guided Abstraction Refinement (CEGAR) [15] is a widely used technique
in software model checking [20, 26, 6, 28], which starts with a coarse initial abstraction
to avoid state space explosion. Then it applies refinements iteratively until all spurious
counterexamples are eliminated (proving safety) or a real counterexample is found (proving
the program to be unsafe).
The steps of a typical CEGAR algorithm [30, 24] can be seen in Figure 2.2. The two main
components are the abstractor and the refiner, whose detailed behavior will be presented in
Section 2.2.1 and Section 2.2.2 respectively. The first step is to build the initial abstraction
from the initial (usually coarse) precision, which is done by the abstractor. When a
counterexample is found, it is passed to the refiner. If there are no counterexamples, the
model is safe due to the over-approximating [14] nature of abstraction. In the next step,
the refiner checks whether the counterexample is feasible. If it is feasible, the original
model is unsafe. Otherwise, we have a spurious counterexample and the precision of the
abstraction is refined, allowing the abstractor to build a more precise (but potentially
larger) abstract state space in the next iteration. This process is iterated until there are
no abstract counterexamples or a feasible one is found.

Abstractor

Initial
precision

Safe

Refiner

Unsafe

No counterexamples
Abstract counterexample

Feasible
counterexample

Refined precision

Figure 2.2: CEGAR algorithm

2.2.1 Abstraction

An abstract domain is defined by the abstract nodes N , the coverage relation ⊑, the set
of possible precisions Π and the transfer function T [8]. Informally, the abstract domain
controls the kind of information that is hidden to obtain abstract states and the precision
defines the amount of information hidden. As mentioned previously, a single abstract
node can represent any number of concrete states. The coverage relation s ⊑ s′ holds
for two abstract states s, s′ ∈ N , if s′ represents all the states that s does. Intuitively, if
we already processed s′, we can skip s since if the error location is reachable from s, it
would have already been reached from s′. The transfer function calculates the successor
(transition) relation between abstract states.
In our work, we use three different abstract domains, namely predicate abstraction [22],
explicit-value analysis [6] and their combination, the product abstraction [9]. We formalize
these domains in the rest of this section.

Explicit-value analysis. Explicit-value analysis is a widely used abstraction
method [16, 6, 29]. It tries to reduce the size of the state space by tracking only a subset of
the program variables. Usually only a few or no variables are tracked initially and the set
of tracked variables is iteratively expanded during the refinement phase. The motivation
behind explicit-value analysis is that proving safety (or finding a counterexample) only
depends on a small subset of the program variables.
The set of all possible precisions is Πe = 2V , i.e., all possible subsets of the variables. A
precision πe ∈ Πe simply defines the subset of the tracked variables (πe ⊆ V), which is
also called the set of explicitly tracked variables.
If a variable is not tracked (or unknown), its value is represented by a special top element
⊤, meaning that it can take any value from its domain. Given a variable vi with its domain
Di, let D⊤

i = Di ∪ {⊤} represent its extension with the top element.
Abstract states Se = L×D⊤

1 × . . .×D⊤
n track the location and the value of each variable in

πe or ⊤ for variables outside πe. For example, if there are three variables V = {x, y, z} and
the precision is πe = {x, y}, the state (l1, 0, 10,⊤) means that the program is at location
l1, where x = 0, y = 10 and z is not tracked. Note that it is also possible for a tracked
variable to be unknown (⊤), for example if x is tracked but z is not, the assignment x := z
will make x = ⊤.
An abstract state represents the concrete states where the assignments for the explicitly
tracked variables hold. Also in case of a ⊤ value this means every value in its domain. For
example, for two variables V = {x, y}, (l1, 0,⊤) represents states with location l1, x = 0
and any value for the y variable.
For each state we calculate its successors with the transfer function Te : Se ×Ops×Πe →
2Se , which yields a set of successor states for a given state, operation and precision. The
values of the tracked variables of the new state depend on the type of operation given to
the transfer function.

• If the operation is an assumption [φ], we have to check whether it can be evaluated
over the source state. If it evaluates to true or can not be evaluated, a successor state
is created, where the values of the tracked variables are unchanged. For example, if
the assumption is [x > 5] and x is ⊤, the expression cannot be evaluated, therefore
we add a successor state, since x can take any value.

• If the operation is an assignment vi := ψ, a successor can be created. If vi is not in
the set of explicitly tracked variables, the new state’s variables are left unchanged.
Otherwise, d′i is assigned the result of evaluating ψ, or if it cannot be evaluated,
it is assigned ⊤, while the other variables are unchanged. For example, let the
precision be πe = {x, y}, the source state be se = (l1, 2, 0,⊤) and the operation
be op = (x := z + 1). Since z is not tracked, the operation cannot be evaluated,
therefore the successor abstract state is (l1,⊤, 0,⊤).

• If the operation is a havoc, a successor state is created. If the havoced variable is
not tracked, the new state’s variables are left unchanged. Otherwise, the havoced
variable is assigned ⊤ and the other values do not change.

The coverage relation s ⊑ s′ holds between two states s, s′ ∈ S, if the locations are equal
(l = l′) and the values of s′ are broader than the values of s. This means that if a vi variable
has a value di in s, then it must have di or ⊤ in s′. For example, (l0, 1, 2) ⊑ (l0,⊤, 2), but
(l0, 1, 2) ̸⊑ (l0, 3,⊤). Intuitively, if we have a covered state, we do not have to explore the

paths starting from this state as they would lead to the same states as the paths from the
covering state.

Example 2. Consider the CFA in Figure 2.3a. It alternates the variable y between true
and false while x counts up to 1000. At the end it checks whether y = false. In Figure 2.3b
the corresponding ARG with πe = {y} can be seen. In this case we only track y, because
tracking x while it counts to 1000 would create too many states to explore. The initial
state is (l0,⊤,⊤), since y is not initialized and x is not tracked (because of this, the value
of x will be ⊤ throughout the whole example). The first two transitions set the variables of
the program and we arrive to state (l2, false,⊤). Here we are at the head of a loop, whose
condition (x < 1000) cannot be evaluated since we do not track x. Thus the program has
to explore both possibilities. If we do not enter the loop, we move to (l5, false,⊤), where we
arrived at the evaluation of the assertion. Since we know that y = false, we can only move
to the final location. Otherwise, if we enter the loop, we move to (l3, false,⊤). The next
transition is an assignment, which we cannot evaluate because we do not know the value of
x. Therefore, we arrive at (l4,⊤,⊤). In the next step x is incremented and we move back
to l2, but this time the value of y is unknown. Here we can enter the loop again reaching
(l3,⊤,⊤) and then (l4,⊤,⊤). This is a state where we have been before, so we do not have
to explore again. We mark this fact with the dashed covering edge. From (l2,⊤,⊤), we
can move forward to the end of the loop, (l5,⊤,⊤), where we reach the assertion again.
This time we can reach both (le,⊤,⊤) and (lf ,⊤,⊤) since the value of y is unknown.
However, this example code is safe, but here in this example le has been reached in the
abstract state space. This means, that tracking only variable y explicitly yielded a spurious
counterexample and the precision has to be refined by adding a new program variable to
the explicitly tracked set.

l0

l1

l2

l3

l4

l5

le lf

x := 0

y := false

[x < 1000]

¬[x < 1000]y := (x%2 == 0)

x := x+ 1

¬[y = false] [y = false]

(a) Example CFA

l0,⊤,⊤

l1,⊤,⊤

l2, false,⊤l3, false,⊤

l4,⊤,⊤

l4,⊤,⊤

l2,⊤,⊤

l3,⊤,⊤ l5,⊤,⊤

l5, false,⊤

lf , false,⊤

le,⊤,⊤ lf ,⊤,⊤

(b) Corresponding ARG

Figure 2.3: CFA an its corresponding ARG created with
πe = {y}

Predicate abstraction. In predicate abstraction [22, 15, 2], the values of the variables
are not tracked explicitly, but instead certain facts are stored about them. For example,
we do not track the exact values of a variable x, but only the fact whether x < 5 holds.

These facts are called predicates, which are Boolean FOL formulas. In case of a too coarse
abstraction, refinement is performed by extending the set of tracked predicates.
The set of precisions is Πp = 2FOLB , i.e., all possible subsets of all Boolean formulas.
A precision πp ∈ Πp is a set of Boolean FOL formulas (πp ⊆ FOLB) that are currently
tracked.
Abstract states Sp = L × 2FOLB are also subsets of predicates with the additional loca-
tion component. An abstract state sp ∈ Sp for the actual precision πp can contain each
predicate of πp ponated or negated. It is also possible that a predicate does not occur in
an abstract state. Then, it represents both cases (it can hold or not). For example, if we
have the precision πp = {x < 5, y ≥ 7}, the abstract state (l1,¬(x < 5)) means that the
program is at location l1, where the negated form of x < 5 holds, while y ≥ 7 can both
hold or not.
An abstract state represents all concrete states for which the predicates evaluate to true.
For example, (l1,¬(x < 5)) represents states with location l1, x = {4, 3, 2, 1, 0,−1, . . .} and
any value for the other variables.
For each state we calculate its successors with the transfer function Tp : Sp ×Ops×Πp →
2Sp . It works similarly to the transfer function of the explicit-value analysis.

• If the operation is an assumption [φ], we check whether the conjunction of the
predicates of the source state and φ is feasible. If yes, a successor state is created.
The successor state will have all predicates from the precision that are implied by
the source state and the assumption. Similarly, if their negation is implied, the
successor state will include the negated version 1. For example, if the source state
has the predicate x ≥ 0 and the assumption is [x < 0], there will be no successor
state. On the other hand, if the assumption is [x ≤ 0], then a successor state is
possible. If there is a predicate x ̸= 0 in the precision, the successor state can
include its negation, as x ≥ 0 and x ≤ 0 together imply that ¬(x ̸= 0).

• If the operation is an assignment vi := ψ, a successor state is created. Similarly
to the assumptions, we check whether the predicates of the source state and the
assignment implies predicates in the precision or their negated form. For example,
let the precision be πp = {(x < 5), (y ≥ x)}, the abstract state be sp = (l1, (x <
5),¬(y ≥ x)) and the operation be op = (x := x + 1). Incrementing x means that
(x < 5) might hold or not, since the value of x can reach 5. On the other hand, it
also means that the predicate ¬(y ≥ x) holds, because increasing x does not change
the fact, that y is less than x. Therefore, the successor state is (l2,¬(y ≥ x)).

• If the operation is a havoc, a successor state is created. If the havoced variable
appears in a predicate, that predicate will be lost in the target state. Otherwise, the
predicates are left unchanged.

The covering relation s ⊑ s′ holds for two states if the locations are equal (l = l′) and
the predicates of s imply the predicates of s′. For example, (x < 4) implies that (x < 5),
hence, if we already explored all states from (x < 5), then it already covers all possibilities
from (x < 4) as well.

Example 3. An example for predicate abstraction can be seen in Figure 2.4. In Fig-
ure 2.4a, there is an example CFA with a variable x, which counts up to 11 and checks

1This method described is called Cartesian predicate abstraction [24]. An other predicate abstraction
method is the Boolean, where an arbitrary boolean combination of the predicates can be included in the
states.

whether its value is greater than 10. In Figure 2.4b, an abstract state space created with
precision πp = {(x > 10)} can be seen. In the initial state l0, x has not been initialized
yet, therefore we cannot decide if the predicate is true or false. In the next step x is
assigned the value 0, hence the ¬(x > 10) predicate holds at l1. The program then arrives
to a selection, and because of the predicate, the program can only move to l2. Since no
assignment happened, the ¬(x > 10) predicate still holds. In the next step x is incremented
while returning to l1, therefore we can not evaluate the predicate anymore. That is why the
program can move to both ways from here. If x ≤ 10, it reaches the state (l2,¬(x > 10)),
which is covered as it already appeared. Otherwise it moves to (l3, x > 10). At l3, the
program arrives to the evaluation of the assertion. It can only go to the final location
from here, because the predicate x > 10 stands. Therefore the CFA is safe. This is a great
example of how a simple predicate creating a compact abstraction can prove the correctness
of a program, without having to traverse the whole concrete state space.

l0

l1

l2

l3

le lf

x := 0

[x ≤ 10]

¬[x ≤ 10]

x := x+ 1

¬[x > 10] [x > 10]

(a) Example CFA

l0

l1,¬(x > 10)

l2,¬(x > 10)

l2,¬(x > 10) l1

l3, x > 10

lf , x > 10

(b) Corresponding ARG

Figure 2.4: CFA an its corresponding ARG created with the pre-
cision πp = {(x > 10)}

Product abstraction. Product abstractions [9] combine different abstract domains. In
our case we use a combination of explicit-value analysis and predicate abstraction. The
precision is Π = Πp × Πe, the combination of the two precisions. An abstract state
S = L × 2FOLB × D⊤

1 × . . . × D⊤
n consists of a location and of predicates and explicitly

tracked variables at the same time. The transfer function T : S × Ops × Π → 2S gets
a product state s = (l, sp, se), an operation op, a precision π = (πp, πe) and calculates
Tp((l, sp), op, πp)×Te((l, se), op, πe), that is the Descartes product of the successor predicate
states and successor explicit states. A state (l, sp, se) ∈ S is covered by another state
(l′, s′p, s

′
e) ∈ S if both components are covered, i.e., (l, sp) ⊑ (l′, s′p) and (l, se) ⊑ (l′, s′e).

The main research question in product abstraction is how to select which variable gets
tracked explicitly and which one gets predicates. We developed multiple strategies for
efficiently combining predicates and explicit values. We will explain these in Chapter 3.

Example 4. Consider the example CFA in Figure 2.5a. It has two variables, an integer x
and a Boolean y. The program enters a loop and x starts to count up. When it reaches 5,
the program assigns y to true, increments x once again and checks whether the value of x is
6. In Figure 2.5b the corresponding abstract state space can be seen, created with precision
πe = {y} and πp = {(x ≥ 5)}. Therefore an abstract state consists of the name of the

l0

l1

l2

l3

l4 l5

l6

le lf

x := 0

y := false

[y = false]

¬[x ≥ 5] [x ≥ 5]

y := true

x := x+ 1

¬[y == false]

¬[x == 6] [x == 6]

(a) Example CFA

l0,⊤

l1,⊤,¬(x ≥ 5)

l2, false,¬(x ≥ 5)

l3, false,¬(x ≥ 5)

l4, false,¬(x ≥ 5)

l4, false,¬(x ≥ 5)

l2, false

l3, false

l5, false, x ≥ 5

l4, true, x ≥ 5

l2, true, x ≥ 5

l6, true, x ≥ 5

le, true, x ≥ 5lf , true, x ≥ 5

(b) Corresponding ARG

Figure 2.5: CFA an its corresponding ARG created with
π = {y, (x ≥ 5)}

location, the value of y and the predicate (x ≥ 5). The initial state is (l0,⊤, {}) since the
CFA starts at l0 and no variables are initialized. We do not know the value of y and cannot
evaluate the predicate. After initializing the variables in path l0 → l1 → l2, the program
arrives at (l2, false,¬(x ≥ 5)). Here it enters the loop, since we know that y = false. In
the next step, the program checks whether x ≥ 5 and moves to (l4, false,¬(x ≥ 5)). The
next transition increments x and takes the program back to the head of the loop. Since
the value of x changed, we cannot evaluate the predicate any more, therefore the program
arrives at (l2, false), where it enters the loop again. It moves to (l3, false), where we can
now take both paths, either moving back to (l4, false,¬(x ≥ 5)) or going to (l5, false, x ≥ 5).
From here the program moves to (l4, true, x ≥ 5), changing the value of y to true. The
program then goes to (l2, true, x ≥ 5), from where it jumps after the loop, arriving at the
end of the program, (l6, true, x ≥ 5). It checks the assertion, where we can reach both the
final and error locations.

The abstractor builds the abstract state space (also called an abstract reachability graph,
ARG [7]) using the parameters above.

Definition 2 (Abstract reachability graph). Formally, an abstract reachability
graph is a tuple ARG = (N, A, C) where

• N is a set of abstract states from the domain,

• A ⊆ S×Ops×S is a set of edges (actions) defined by the transfer function T between
abstract states, labeled with operations.

• C ⊆ S × S is a set of covering edges defined by the covering relation ⊑. �

Algorithm 1: Abstraction algorithm. [23]
Input : ARG = (N,E,C): partially constructed abstract reachability graph

lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
π: current precision
TL: transfer function with locations

Output: (safe or unsafe, ARG)
1 waitlist := unmarked nodes from N
2 while waitlist ̸= ∅ do
3 l, s := remove from waitlist
4 // Check if (l, s) is unsafe
5 if l = lE then
6 return (unsafe, ARG)
7 end
8 // Check if (l, s) can be covered
9 else if ∃(l′, s′) ∈ N : (l, s) ⊑L (l′, s′) then

10 C := C ∪ {(l, s, l′, s′)} // Add covered-by edge
11 end
12 // Otherwise (l, s) gets expanded
13 else
14 foreach (l′, s′) ∈ TL((l, s), π) \ ⊥L do
15 waitlist := waitlist ∪ {(l′, s′)}
16 N := N ∪ {(l′, s′)} // Add new node
17 E := E ∪ {(l, s, op, l′, s′)} // Add successor edge
18 end
19 end
20 end
21 return (safe, ARG)

Algorithm 1 presents the abstraction process used in this Thesis. The input is a partially
constructed ARG, an error location lE , an abstract domain DL with location, a current
precision πL and a transfer function TL with locations.
At first, the abstractor starts with the initial abstract state and precision. The initial
abstract state correspond to the initial location l0 and usually has no information since
no variable has been initialized yet. Although an initial precision can be given to the
abstractor, it is usually empty, therefore at the beginning no variables or predicated are
tracked.
The first step of the algorithm is to collect the unmarked states of N into a waitlist. An
abstract state is unmarked, if it has not been expanded nor covered, and neither contains

an error location. In other words, it has not been processed yet by the algorithm. The
next step is to remove and process states from the waitlist. If the currently examined state
contains the error location, the algorithm terminates and returns with an unsafe result.
Otherwise it is checked if the state can be covered with al already reached state. If so,
a covering edge is added, and if not, the state gets expanded. Expanding a state means
calculating its successor states, which is done by the transfer function. These successor
states are then added to the waitlist. When there are no more nodes left to examine and
no error location was found, the abstraction returns with a safe result and the created
ARG.

2.2.2 Refinement

The refiner’s task is to check whether the abstract counterexample is feasible, and if
not, it has to find a new precision. It checks the counterexample by translating the
alternating sequence of states and actions into FOL formulas and giving them to an SMT
solver [31, 12]. If the SMT solver can find a satisfying assignment, it corresponds to a
concrete counterexample.
Otherwise, the counterexample is spurious and the refiner extracts the reason of infeasi-
bility using for example interpolation [27, 32, 25] or unsat cores [26]. This will yield new
variables or new predicates that should be tracked.
The refinement algorithm of which this our work was based on is presented in 2. The
refiner gets an unsafe ARG, an error location and the current precision as inputs, and
returns an unsafe or spurious result with the adjusted precision and ARG.

Algorithm 2: Refinement algorithm. [23]
Input : ARG = (N,E,C): unsafe abstract reachability graph

lE : error location
π: current precision

Output: (unsafe or spurious, π′, ARG)
1 σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) := path to unsafe node (with lE) from ARG
2 // Feasibility check
3 if s⟨1⟩1 ∧ op⟨1⟩1 ∧ . . . ∧ op⟨n−1⟩

n−1 ∧ s⟨n⟩n is satisfiable then return (unsafe, π, ARG);
4 else
5 (I1, . . . , In) := get interpolant for σ
6 // Precision adjustment
7 (π1, . . . , πn) := map interpolant (I1, . . . , In) to precisions
8 π′ := π
9 // Pruning

10 i := lowest index for which Ii /∈ {true, false}
11 Ni := all nodes in the subtree rooted at (li, si)
12 N := N \Ni // Prune nodes
13 E := {(n1, op, n2) ∈ E | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune successor edges
14 C := {(n1, n2) ∈ C | n1 ̸∈ Ni ∧ n2 ̸∈ Ni} // Prune covered-by edges
15 return (spurious, π′, ARG)
16 end

The first step is to extract the path σ = ((l1, s1), op1, . . . , opn−1, (ln, sn)) to the unsafe state
containing lE , then its feasibility is checked. If the path is feasible, the counterexample

is real, therefore the program is unsafe and the refinement terminates. Otherwise an
interpolant [27, 24] is calculated from the infeasible path σ, it assigns potentially one
formula to every state of the path. Then its formulas are mapped to the precision. The
interpolant gives us information about why the counterexample is unfeasible, therefore
using its formulas can help us to eliminate the problem of finding the same spurious
counterexample. It can also map true of false to a state, meaning that it do not have to
be refined. When using predicates (in predicate or product abstraction), the interpolant
formulas can be used as new predicates. In case of explicitly tracked variables (in explicit-
value analysis and product abstraction), the variables of these formulas can be extracted
and added to the explicitly tracked variables set. Then the new precisions are simply
joined to the old ones.
The final step of refinement is pruning the ARG. This cuts back the the ARG until the
earliest state where the refinement occurred. This way the abstraction does not have to
start again from scratch, but it can continue constructing the ARG from a place where
an actual change occurred. Therefore the algorithm has to find the node (li, si) with the
lowest index for which Ii /∈ {true, false}. Then pruning happens by removing the subtree
rooted in node (li, si) with all of its successors and covered-by edges. Then the abstraction
acan continue to construct the ARG from this location.

2.2.3 CEGAR loop

Algorithm 3 presents the behavior of the CEGAR loop. It shows how are abstraction and
refinement connected. The inputs of the algorithm are the initial location l0, the error
location lE , an abstract domain DL with locations, an initial precision π0 and a transfer
function TL. The first step is to initialize an abstract reachability graph with only a node
corresponding to the initial location l0 and a ⊤ element. Then, the initial precision π0 is
set as the current precision π. After that the algorithm iterates between abstraction and
refinement until abstraction concluded that the error location lE is not reachable int the
ARG or refinement founds a real counterexample.

Algorithm 3: CEGAR loop. [23]
Input : l0: initial location

lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
π0: initial precision
TL: transfer function with locations

Output: safe or unsafe
1 ARG := (N := (l0,⊤), E := ∅, C := ∅)
2 π := π0
3 while true do
4 result,ARG := Abstraction(ARG, lE , DL, π, TL)
5 if result = safe then return safe;
6 else
7 result, πL,ARG := Refinement(ARG, lE , π)
8 if result = unsafe then return unsafe;
9 end

10 end

Chapter 3

Product abstraction strategies

This chapter presents our approaches for combining explicit-value analysis and predicate
abstraction into various efficient product abstraction strategies. When combining the two
different abstractions, a very important question arises: What should be the new precision
when refining the abstraction? The new precision can include new predicates or we can
extend the set of explicitly tracked variables, or we can also combine these two methods
by picking a predicate for some variable but adding another one to the explicitly tracked
set.
Our first idea is to always start by adding a new variable to the explicitly tracked variable
set. The motivation behind this was that knowing the exact value of a variable yields
more information than a predicate and handling predicates is also more expensive compu-
tationally. However the downside of explicit-value analysis is that the abstract state space
might start growing exponentially if a variable has a large number of different values and
some problems might even not be decidable due to unknown (⊤) values.
Consider the example CFA in Figure 3.1a, which first checks if x ̸= 1 and then if x = 1
(which obviously cannot be possible). Suppose, that no variables are tracked initially. In
this case, the error location is trivially reachable and the refiner extends the precision by
adding x. In Figure 3.1b, the corresponding ARG created with explicit-value analysis can
be seen. Since x is not initialized, the initial state is (l0,⊤). Then we check the condition
x ̸= 1. Since x is unknown, the condition can both hold and not. If it does not hold, the
program terminates in the final location lf . However, if it holds we proceed to l1, where x
is still ⊤. Then we check the condition x = 1, which can again hold or not, due to x being
unknown. This way, the program can still reach the error location. Since there are no
other variables to be tracked, the program cannot be verified with explicit-value analysis.
A solution for this problem can be that instead of assigning ⊤ to x at l1, we start to
enumerate all the possible values x can take. It is an effective strategy, if the variable
can only have a couple of different values, since knowing the exact values yields more
information than a ⊤ value. For example, if the assumption is 0 < x < 5, then x can only
have 4 different values and creating four successor states is a more effective solution than
using a ⊤ value or using predicates. However, in this case this strategy does not solve our
problem since (x ̸= 1) means that x can have an infinite number of different values, and
this leads to state space explosion.
Our key idea is to introduce a limit k for the number of possible values for each tracked
variable. Before expanding the successors of an abstract state during the abstraction
phase, we evaluate every expression on the outgoing edges of the current state. When an
expression cannot be evaluated deterministically, we start to enumerate the possible values

l0

l1 lf

le

[x ̸= 1]

[x = 1]

[x ̸= 1][x = 1]

(a) Simple CFA.

l0,⊤

l1,⊤ lf ,⊤

le,⊤

(b) Corresponding ARG with πe : {x}.

Figure 3.1: Simple CFA and its corresponding ARG with explicit-
value analysis.

of each tracked variable. We count the number of the different values of a variable and if
its greater than k, we stop enumerating, add the variable to a special dropouts set, and
discard the variable from the precision’s explicitly tracked variable set. Then we expand
the current state with the transfer function and the newly adjusted precision, which will
now not lead to state space explosion, since the variables that can have a large number of
values have been eliminated.
The strategy of the product refiner R is the following. It calculates both new variables
π′e using Re and new predicates π′p using Rp. All variables included in the dropouts set
are removed from π′e, since we do not want to track them again. Instead, we (only) keep
predicates from π′p that have a removed variable, other predicates are discarded. In other
words, we first always add a variable to the explicit precision. If it is later removed during
the transfer function due to the limit, we do not add it again, but rather add predicates
containing that variable.
This way we can (1) avoid working unnecessarily with computationally expensive predi-
cates and (2) we can solve problems that need explicit enumeration instead of a top value,
while still avoiding state space explosion.
There are multiple ways to count the different values of the variables against the limit k.
Examining the possibilities yielded three different strategies [1]. These limit the number
of values of an explicitly traced variable based on a single state, or a path, or the whole
ARG. The path- and ARG-based strategies also work if we use ⊤ values when an expression
cannot be evaluated., since the limit can still be reached on the whole path or in the ARG.
This means that we do not check the number of different values in the reachable states,
only in the states that have been previously examined. That way, when we start to expand
the state with the transfer function, ⊤ will be assigned to every variable that can have more
one different values. In case of the state-based strategy, this method is useless, because
using ⊤ values instead of enumerating would only result in 0 or 1 different value, therefore
we would never reach the limit. That is why we implemented two different algorithms for
the path- and ARG-based strategies, one which enumerates all possible states, and one
which uses ⊤ values instead.
In addition to these strategies, this thesis presents another idea of combining explicit-value
analysis and predicate abstraction. In the previously described strategies, there can be
both explicitly tracked variables and predicates present in the precision. However this
might not always be the right approach, since handling both kinds of precision at the
same time could complicate the algorithm too much while using either only explicit-value
analysis or predicate abstraction could solve the problem easily. Therefore we also wanted
to create strategies where the precision can contain either only explicitly tracked variables
or predicates. However an important question also arises here : Which domain should we

use and when? To answer this question, we created two additional algorithms, which will
be discussed in detail in Section 3.3.
The goal of this thesis is not only the development of new algorithms but also formu-
lating them using the abstraction and refinement algorithms presented earlier. To be
able to seamlessly integrate these 7 strategies in total into the general CEGAR frame-
work discussed in Section 2.2 , we also had to make some important modifications to the
framework.

3.1 Modification of the common CEGAR framework

The common CEGAR algorithm is discussed in Section 2.2. The core of the proposed
algorithms is the enumeration and limitation of explicit values. This should happen when
checking a node in the abstraction phase. Therefore we extended the abstraction algorithm
with an additional precision adjustment step. This precision adjustment step can be
different for the different strategies. In addition, if the step does not perform any action
(just leaves the precision as is), we get back the original algorithm. The precision adjusting
method is called after checking if a node is unsafe or can be covered, and before it is
expanded, so the expansion can be performed without state space explosion. The modified
abstraction algorithm is shown in line 14 of Algorithm 4.
We also had to define the new precision adjusting algorithm for the refiner (this step can
be found at the 6th line of Algorithm 2), to be able to select between predicates and
explicit values. The new Precision adjusting algorithm is presented by Algorithm
When giving an overview of the newly proposed algorithms in the previous section, a
special dropouts set was also mentioned. This set contains the variables which have been
explicitly tracked but the number of their different values reached the given limit, and
now we want to remove them from the explicitly tracked variable set, and track predicates
containing these variables instead. This means that this set must be available and known
in the abstraction phase, so that these variables can be immediately removed from the
precision before expanding the successors of a node. At the same time it has to be available
in the refining phase too, to know when to add predicates instead of explicit values to the
precision. This motivated our decision to make the dropouts set a part of the product
precision, since the precision is also available from both phases. Therefore from now on the
presicion is as follows: π = (πp, πe, dropouts). It contains a set of tracked predicates and
two variable set: an explicitly tracked variable set and the dropouts set. This modification
does not affect the CEGAR algorithms that does not require a dropouts set, since this set
can easily be ignored.
To summarize the main changes in the framework, we modified the abstractor by adding a
precision adjustment phase to it so now it is also able to modify the precision. We added
a dropouts set to the precision, so it is reachable both from the abstractor and refiner.
And last but not least, we implemented the product abstraction strategies as precision
adjustment algorithms in the abstractor and refiner. The next section elaborates these
algorithms in more detail.
We also have ideas to further improve the performance of the newly created product
algorithms.

Information sharing between domains. One idea is that it could be beneficial if the
two different sets of precisions would be able to share information with one and other.

Algorithm 4: Abstraction algorithm.
Input : ARG = (N,E,C): partially constructed abstract reachability graph

lE : error location
DL = (SL,⊥L,⊑L, exprL): abstract domain with locations
πL: current precision
TL: transfer function with locations

Output: (safe or unsafe, ARG)
1 waitlist := unmarked nodes from N
2 while waitlist ̸= ∅ do
3 l, s := remove from waitlist
4 // Check if (l, s) is unsafe
5 if l = lE then
6 return (unsafe, ARG)
7 end
8 // Check if (l, s) can be covered
9 else if ∃(l′, s′) ∈ N : (l, s) ⊑L (l′, s′) then

10 C := C ∪ {(l, s, l′, s′)} // Add covered-by edge
11 end
12 // Otherwise πL get adjusted and (l, s) gets expanded
13 else
14 πL := PrecisionAdjustment(πL, (l, s))
15 foreach (l′, s′) ∈ TL((l, s), πL) \ ⊥L do
16 waitlist := waitlist ∪ {(l′, s′)}
17 N := N ∪ {(l′, s′)} // Add new node
18 E := E ∪ {(l, s, op, l′, s′)} // Add successor edge
19 end
20 end
21 end
22 return (safe, ARG)

This means that the set of predicates and the explicitly tracked variables set are visible
for each other when enumerating new successor states.
Consider the example CFA in Figure 3.2a. It first assigns 0 to its variable x then 10 to
its variable y. In the next step, y is assigned to x and at the end it is checked whether x
equals to x. This CFA is obviously safe but Figure 3.2b shows what happens we decide
to track x explicitly with the (y == 10) predicate. In the first two steps both variables
are assigned and therefore we reach (l2, 0, (y == 10)) with the value of x being 0, and
(y == 10) being true. However when y is assigned to x in the next step, the value of
x becomes ⊤, since the predicates are not visible for the explicitly tracked values. From
the standpoint of explicit value analysis y is not tracked, therefore its value is unknown.
At the end, with the value of x being ⊤, the error location is reachable and a spurious
counterexample is found. However Figure 3.2c depicts the ARG created with the same
precision, but this time the two precision sets are visible to each other. This way when
assigning y to x, because it is known from the predicate that the value of y is 10, x is also
assigned 10. At the end, the CFA can be successfully verified with information sharing.
Therefore now a special flag can be used to turn on or off information sharing between
the two domains.

l0

l1

l2

l3

lfle

x := 0

y := 10

x := y

[x = 10][¬(x = 10)]

(a) Simple CFA.

l0, T

l1, 0

l2, 0, (y == 10)

l3, T, (y == 10)

le, T, (y == 10)

(b) ARG without informa-
tion sharing.

l0, T

l1, 0

l2, 0, (y == 10)

l3, 10, (y == 10)

lf , 10, (y == 10)

(c) ARG with information
sharing.

Figure 3.2: Simple CFA and its corresponding ARG πe : {x},
πp : {(y == 10)}, with sharing information turned
on and off.

Changing the order of coverage check. Another idea is that changing the order
in which coverage is checked during abstraction can further improve the speed of the
algorithms. Since a product state contains a state for predicate abstraction and another
for explicit value analysis, both of them have to be covered by the corresponding states of
another product state, to be able to add a covering edge.
Originally, coverage was checked by first examining the coverage of the product abstraction
states, then if it could be covered, the explicit value analysis states are also checked.
However since handling predicates is more expensive computationally, maybe examining
the explicit states first could produce faster results. Therefore now it is an option to choose
which order we would like to check the coverage.
We also added a third option, to check both kinds of states at the same time.

3.2 Strategies tracking explicit values and predicates simul-
taneously

3.2.1 Limit number of successors based on a single state

In the first strategy (Algorithm 5), we count the different values of the tracked variables
when enumerating successors for a given state. We start by setting a restart flag which will
be used later. Then we start enumerating the reachable states based on the operations
on the outgoing edges of the source state and we examine the values of the explicitly
tracked variables. If the number of the different values of a variable in the reachable
states exceeds k, we add it to the precision’s dropouts set. We also remove it from the
precision πe explicitly tracked variable set, and we set the flag that we should restart the
enumeration, since the precision changed (at least one variable was dropped). If there are
no more reachable states to list and no variable was removed, we do not need to restart
and we can return the modified precision.

Example 5. Consider the example CFA in Figure 3.1a again. If we use the state-based
product abstraction, the variable x is added to the set of explicitly tracked variables as pre-

Algorithm 5: State-based precision adjustment
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 Opss := operations from the outgoing edges of s
2 foreach op ∈ Opss do
3 restart := false
4 while restart do
5 assignments := map the different assignments for each variable in π for the

formula s ∧ op
6 if more than k different values are possible for a variable vi then
7 dropouts := dropouts ∪ vi
8 πe := πe \ vi
9 restart := true

10 end
11 end
12 end
13 return (πp, πedropouts)

viously (πe = {x}). The corresponding ARG for this precision can be seen in Figure 3.3a.
The program starts at state (l0,⊤), from where it can go to two different directions. Taking
the assumption [x = 1], it arrives at state (lf , 1) since x = 1 is the only possible value
satisfying the formula. Otherwise, the program moves to l1, where it starts to list the
possible values for [x ̸= 1]. There are infinitely many different values, but when we exceed
k, the algorithm stops. It removes x from the set of explicitly tracked variables and restarts
the enumeration. However, now x is not tracked, so it proceeds to (l1,⊤) without enumer-
ating values and then eventually reaches the error location le similarly to Figure 3.1b. The
refiner will not add x again since it is included in the dropouts set. Instead, it adds some
predicate, e.g., x = 1 to the precision πp. Figure 3.3b shows the ARG created with the new
precision. From l0, the program can arrive to final location (lf , x = 1) where the predicate
is true or move to (l1,¬(x = 1)) where the negation of the predicate holds. At this point,
the predicates keep track that x ̸= 1 so the algorithm can only proceed to (lf ,¬(x = 1)),
where we reached the final location again. Since there are no more states to explore and
the algorithm did not reach the error location, the program is safe.

l0,⊤ lf , 1

l1, 0 l1, 2 l1, 3 ...

(a) ARG created with precisions πe : {x}
and πp : {}.

l0

l1,¬(x = 1)

lf , x = 1

lf ,¬(x = 1)

(b) ARG created with precisions πe : {}
and πp : {(x = 1)}.

Figure 3.3: ARGs created with the state-based strategy.

3.2.2 Limit number of values on a path

The previous strategy only counted different values for the reachable states of a single
state. However, multiple values can occur in other ways as well. For example, if the
program includes a loop counting to a large number, then the loop counter i will have a
single successor i+1 for each state. However, if we consider the whole path, many different
values will start to accumulate: 1, 2, 3,
This example motivated our next strategy, where we examine the number of values of the
tracked variables on the path leading to a state before we expand it. Algorithm 6 presents
the procedure for this strategy, which is similar to the state-based. The main difference is
that before we start to examine the reachable states, we collect the ancestors of the current
state and map the different values occurring in them for each explicitly tracked variable.
After this step, the algorithm is the same as the state-based one: We start to enumerate
the reachable states of the current state while always updating the map containing the
different values for each explicitly tracked variable. If the number of different values of
a variable reach k, we add this variable to the dropouts set, remove it from the precision
and set the restart flag.

Algorithm 6: Path-based precision adjustment
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ancestor

states
2 Opss := operations from the outgoing edges of s
3 foreach op ∈ Opss do
4 restart := false
5 while restart do
6 assignments := map the different assignments for each variable in π for the

formula s ∧ op
7 if more than k different values are possible for a variable vi then
8 dropouts := dropouts ∪ vi
9 πe := πe \ vi

10 restart := true
11 end
12 end
13 end
14 return (πp, πedropouts)

Example 6. Consider the example CFA in Figure 3.4. The program’s only variable x
counts to 1001, then examines whether its value is greater than 1000. Using path-based
product abstraction, x is first added to πe. When creating the ARG, we arrive at the
head of the loop from the initial location. If the program stays in the loop, we get a path,
where the value of x is increasing continuously, therefore the number of different values
can reach the limit (the corresponding ARG can be seen in Figure 3.5a). When we exceed
the limit, we remove x from the set of explicitly tracked variables and instead treat it as a
top value. This way the error location can be reached. The refiner will not include x in
πe again, but rather add a predicate, e.g., x > 1000 to the precision πp. The ARG created
with the new precision can be seen in Figure 3.5b. The program starts at (l0), where the

l0

l1

l2

l3

le lf

x := 0

[x ≤ 1000]

¬[x ≤ 1000]

x := x+ 1

¬[x > 1000] [x > 1000]

Figure 3.4: Example CFA.

predicate cannot be evaluated. After initializing x, it arrives at (l1,¬(x > 1000)). Because
of the predicate, the program moves to (l2,¬(x > 1000)). In the next step, the value of x
is increased, therefore we cannot evaluate the predicate any more, and arrive to (l1). The
program is at the head of the loop again, but now it can go to two different directions. If it
enters the loop, it arrives to (l2,¬(x > 1000)) again. Otherwise it moves to (l3, x > 1000),
from where it arrives at the final location, (lf , x > 1000). Since there are no more states
to explore and the algorithm did not reach the error location, the program is safe. The
advantage of the path-based approach is that we did not have to explore all 1001 values for
x.

l0,⊤

l1, 0

l2, 0

l1, 1

l2, 1

l1, 2

l2, 2

l1, 3

...

(a) ARG created with π : {x}.

l0

l1,¬(x > 1000)

l2,¬(x > 1000)

l2,¬(x > 1000) l1

l3, x > 1000

lf , x > 1000

(b) ARG created with π : {(x > 1000)}.

Figure 3.5: AGRs created with the path-based strategy.

As mentioned previously, we proposed another algorithm for the path-based strategy,
which does not enumerate all the possible states when an expression cannot be evaluated,
but uses the ⊤ value instead. This way the limit can still be reached on the whole path
leading to a state. That is why we check the number of values of the explicitly tracked
variables before enumerating the successors of a state. Algorithm 7 presents the procedure.

First we count the number of different values for each variable vi in the ancestors of se
(including se). If a variable’s number of values exceeded the limit k, we add this variable
to the dropouts set, and remove it from the precision. This way when there are multiple
values in the successors, we use the ⊤ value in the transfer function instead of enumerating
them.

Algorithm 7: Path-based precision adjustment without enumeration
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ancestor

states
2 if more than k different values are possible for a variable vi then
3 dropouts := dropouts ∪ vi
4 πe := πe \ vi
5 end
6 return (πp, πedropouts)

3.2.3 Limit number of values in ARG

Our third strategy examines the number of the different values in the whole ARG. It
examines the variables in all of the previous states through the whole ARG. Algorithm 8
presents the procedure, similar to the previous strategies, except that here we count the
number of different values in the whole ARG. Note that in the implementation we use a
cache, so that we do not have to traverse the whole ARG at every calculation. Therefore
the map containing the different values for each variable is not recreated each time the
method is called, but stored in it and updated every time a new stated is examined.
For the ARG-based strategy, we also have another algorithm where we use ⊤ values instead
of enumerating all possible states, which is presented in Algorithm 9. It works by the same
principle as the path-based non-enumerating algorithm. If a variable’s number of values
exceeded the limit k, we add this variable to the dropouts set, remove it from the precision
and then we g on to use the transfer function using ⊤ values to calculate the successors.

3.3 Strategies switching between explicit values and predi-
cates

The theory of these strategies are very similar to the ARG-based strategy. The main
principle is that we start with explicit value analysis, we introduce a k limit, count the
different values in the ARG before expanding a state and adjust the precision, just like in
the ARG-based. The new strategies also use the same refiner. The difference is that after
the limit has been reached, the new algorithms clear the set of explicitly tracked variables,
add every variable of the program to the special dropouts set and therefore switching solely
to predicate abstraction.
What distinguishes the two new algorithms is that in one algorithm k limits the number
of different values of a single variable, while in the other it limits the number of different
values of every variable of the explicitly tracked variable set.

Algorithm 8: ARG-based precision adjustment
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ARG
2 Opss := operations from the outgoing edges of s
3 foreach op ∈ Opss do
4 restart := false
5 while restart do
6 assignments := map the different assignments for each variable in π for the

formula s ∧ op
7 if more than k different values are possible for a variable vi then
8 dropouts := dropouts ∪ vi
9 πe := πe \ vi

10 restart := true
11 end
12 end
13 end
14 return (πp, πedropouts)

Algorithm 9: ARG-based precision adjustment without enumeration
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ARG
2 if more than k different values are possible for a variable vi then
3 dropouts := dropouts ∪ vi
4 πe := πe \ vi
5 end
6 return (πp, πedropouts)

3.4 Related work

The combination of different abstract domains have been studied in the literature be-
fore. To be able to thoroughly evaluate our results achieved with our newly introduced
strategies, we also wanted to compare them to other already existing, similar algorithms.
Therefore, we also implemented two strategies in the Theta framework.

3.4.1 Dynamic precision adjustment

The dynamic precision adjustment approach [9] for the explicit and predicate domains is
similar to our ARG-based strategy. The main difference is that while both this and our
approaches are able to adjust the precision in the abstraction phase, our algorithms are
only able to reduce the size of the explicitly tracked variable set, while dynamic precision
adjustment also adds new predicates during abstraction. In other words, dynamic precision
adjustment behaves like we combined the precision adjusting algorithms of the abstractor

Algorithm 10: Domain switching precision adjustment based on a single variable
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ARG
2 Opss := operations from the outgoing edges of s
3 foreach op ∈ Opss do
4 restart := false
5 while restart do
6 assignments := map the different assignments for each variable in π for the

formula s ∧ op
7 if more than k different values are possible for a variable vi then
8 dropouts := every variable of the program
9 πe := ∅

10 end
11 end
12 end
13 return (πp, πedropouts)

and the refiner. This also means that this strategy does not adjust the precision during
refinement.
Algorithm 12 presents the dynamic precision adjustment strategy we implemented in
Theta. It starts out the same way as the ARG-based strategy: It examines the vari-
ables in all of the previous states through the whole ARG and also in the reachable states
from the current one. But when the number of different values for a variable reaches limit
k, we not only remove this variable from the set of explicitly tracked variables and add it
to the dropouts set, but also add a predicate containing this variable to the predicate set.
To obtain an appropriate predicate, we examine the statements of the edges of the CFA.
If an assumption statement containing the variable is found, it is added to the precision
as a predicate.

3.4.2 Changing domain based on counterexample

Counterexample-based product abstraction [10] focuses on the counterexamples returned
by the abstractor. This strategy is different form every previously discussed one, because
it does not modify the precision during abstraction. It does not keep explicitly tracked
variables and predicates at the same time in the precision, but rather switches domains
when the same counterexample is found multiple times. Therefore for this algorithm, a
new refiner was created.
Algorithm ?? presents the counterexample based strategy. It also starts with explicit
value analysis, but beside adjusting the precision, the refiner also examines and stores
the received counterexamples. If a counterexample is already present in the cache, the
algorithm changes from explicit value analysis to predicate abstraction.

Algorithm 11: Domain switching precision adjustment based on every variable
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ARG
2 Opss := operations from the outgoing edges of s
3 foreach op ∈ Opss do
4 restart := false
5 while restart do
6 assignments := map the different assignments for each variable in π for the

formula s ∧ op
7 if more than k different values are possible in total vi then
8 dropouts := every variable of the program
9 πe := ∅

10 end
11 end
12 end
13 return (πp, πedropouts)

Algorithm 12: Dynamic precision adjustment
Input : s: source state

(πp, πedropouts): current precision
k: bound for values of explicitly tracked variables

Output: (πp, πe, dropouts): refined precision
1 assignments := map the different values for each variable in π in the ARG
2 Opss := operations from the outgoing edges of s
3 foreach op ∈ Opss do
4 restart := false
5 while restart do
6 assignments := map the different assignments for each variable in π for the

formula s ∧ op
7 if more than k different values are possible for a variable vi then
8 dropouts := dropouts ∪ vi
9 πe := πe \ vi

10 foreach edge in CFA do
11 if edge has an assumption stmt containing vi then
12 πp := πp ∪ stmt
13 break
14 end
15 end
16 restart := true
17 end
18 end
19 end
20 return (πp, πedropouts)

Chapter 4

Evaluation

This chapter presents our implementation of the nine product abstraction-based strategies
and the evaluations of these algorithms including a comparison to explicit-value analysis
and predicate abstraction. We proposed different research questions and run measurements
so each of these questions can be answered.

4.1 Implementation

A goal of this thesis is to implement the precision adjuster algorithms and the modifications
discussed in Chapter 3 in the open source1 Theta framework [30, 24], which is a modular
and configurable model checking framework developed at the Budapest University of Tech-
nology and Economics. The explicit-value analysis and predicate abstraction algorithms,
and the abstractor and refiner components were already included in Theta [25, 30]. Fur-
thermore, Theta uses Z3 [18] as an SMT solver.
We also had to modify the runnable tool which is deployed in a jar file named
theta-cfa-cli.jar to be able to run the algorithms with command line arguments.
The used arguments are given by the following flags.

• model: This is a mandatory argument, the path of the CFA file to be checked.

• domain: This is the abstract domain to run. The used values are EXPL for explicit-
value analysis, PRED for predicate abstraction and PROD_PRED_EXPL for the product
abstraction of predicate abstraction and explicit-value analysis. It is also a manda-
tory argument.

• refinement: This is the refinement strategy. In case of the counterexample-based
strategy the used value is CEX_BASED, for every other it is SEQ_ITP (this refers to
the sequence interpolation [24]).

• precadjust: With this flag the precision adjustment strategy of the abstractor can
be defined. The possible values are:

– STATE for the state-based (Section 3.2.1),
– PATH_NO_T for the path-based (Section 3.2.2),
– PATH_T for the path-based using ⊤ values (Section 3.2.2),

1https://github.com/FTSRG/theta

https://github.com/FTSRG/theta

– ARG_NO_T for the ARG-based (Section 3.2.3),
– ARG_T for the ARG-based using ⊤ values (Section 3.2.3),
– ARG_ONE_PRED for the domain switching based on a single variable (Section 3.3),
– ARG_WHOLE_PRED for the domain switching based on all variables (Section 3.3),
– DYNAMIC for the dynamic precision adjuster strategy (Section 3.4.1)
– and NO_OP which is used if no precision adjustment is needed during abstraction

(for predicate abstraction, explicit-value analysis and the counterexample-based
strategy in Section 3.4.2).

• limit: This is the limit k for product abstraction. It is an optional parameter with
a default value of 5.

• share: With this flag information sharing in product abstraction can be turned on
or off.

• secondFirst: With this flag, the order of coverage checking can be set. The possible
values are 0 if we want to leave the order unchanged (in case of our strategies this
mean that predicates are examined first), 1 if we want to change the order or 2 if we
want to check the coverage of both of them at the same time.

4.2 Measurement configuration

We ran the measurements on a 64 bit Ubuntu 18.04 operating system, with the tool
RunExec fron the BenchExec suite [11]. RunExec ensures highly accurate results, since
it measures the actual time spent on the CPU and also takes various side-effects into
consideration (e.g., memory swapping). BenchExec is also used at the Competition on
Software Verification (SV-COMP) [4].
We evaluated 548 input programs from five different sources and categories: plc, eca,
locks, loops and ssh. The 90 programs in plc are industrial programmable logic controller
(PLC) codes from CERN [21], while the other four categories come from the Competition
on Software Verification (SV-COMP) [4, 5]. The category eca contains 180 programs,
which describe large event-driven systems, where the events are represented with non-
deterministic variables. The category locks contains 156 programs with small locking
mechanisms described with non-deterministic integers and if-then-else constructs. The 105
programs in category loops describe tasks focusing on loops. The programs in category
ssh describe 17 large server-client systems.
We evaluated these programs based on the following research questions:

RQ1 How do the basic state-, path- and ARG-based strategies perform compared to each
other?

RQ2 How do the basic path- and ARG-based strategies perform compared to their coun-
terparts using ⊤ values?

RQ3 How do the strategies tracking predicates and explicit values at the same time per-
form compared to the domain switching strategies?

RQ4 How do the different product abstraction strategies perform for different limits?

RQ5 How do the different product abstraction strategies perform with information sharing
between the two domains?

RQ6 How do the different product abstraction strategies perform with different coverage
checking orders?

RQ7 How do our product abstraction strategies perform compared to related work?

RQ8 How do the product abstraction strategies perform compared to predicate abstrac-
tion and explicit-value analysis?

We ran measurements for every question on every model, but not with every possible
configuration. This decision was made because we would have more than 88 different con-
figurations, which proved to be too much to handle. Therefore we used the best performing
result from the previous measurements for the comparison everywhere it was possible. For
example in the case of RQ8 we chose to present only the best performing product abstrac-
tion strategy to compare with predicate abstraction and explicit-value analysis. Also RQ4
has not been evaluated individually, we ran measurements with different limits for every
other question. We enforced a time limit of 500 seconds and a memory limit of 4 GB.
We also checked that the result of the algorithms (safe/unsafe) always correspond to the
expected result, increasing our confidence in the soundness of our approaches.
In the following sections, we evaluate the results of the measurements for every proposed
question.

4.3 Results

This section presents the results of the measurement ran to evaluate the proposed research
questions in the previous section.

4.3.1 RQ1: Basic state-, path- and ARG-based strategies

To evaluate RQ1, we ran measurements with six different configurations: the state-based,
and the path- and ARG-based strategies without using ⊤ values. The limits were set at
1 and 32. The other values were left at default, meaning that the information sharing
between the two domains was turned off, and the coverage checking started with predicate
abstraction states.

Precision adjustment Limit Succ. count Total time (ms)
ARG_NO_T 1 444 18358
PATH_NO_T 1 443 18467
STATE 1 437 11457
ARG_NO_T 32 415 7753
PATH_NO_T 32 415 8603
STATE 32 395 7390

Table 4.1: Comparison of the state-, path and ARG-based strategies

Table 4.1 show the results of this measurement. The different configurations are ranked
form best to worst. The first column shows the precision adjustment algorithm, the
second represents the number of the limit, the third shows the number of successfully

verified models and in the fourth column the total run time can be seen in milliseconds.
The table shows that the best result with 444 successfully verified models was achieved by
the ARG-based strategy with limit 1. Only one model behind is the path-based strategy
also with limit 1. Based on this result, we can see that with a larger limit, the performance
gets worse.

Figure 4.1: Heatmap of the state-, path- and ARG-based strate-
gies

In Figure 4.1 a heatmap can be seen representing the success rate and total runtime of
the different configurations in every program category. The greener the tile is, the better
the performance. Column virtual best represents the best configuration chosen for every
modell. As the heatmap shows, the performance of the different configurations are pretty
similar in every category. Generally the configurations with limit 1 have better results
with plcs and loops, while they have a slightly worse performance in program category
eca. It is also worth noting that every configuration was able to successfully verify all the
programs in locks and while the state-based algorithm had a worse overall performance
(mainly because of the loops category), with limit 1 it was able to verify more programs
than any other configurations in category eca.

4.3.2 RQ2: Path- and ARG-based strategies with and without ⊤

This section presents the results of the evaluation of RQ2. We compared the path- and
ARG-based strategies that use ⊤ values to the ones that do not. Measurements for the al-
gorithms using top values were run with limits 1 and 32, while from the other category only
limit 1 was selected, because it had the better performance in the previous measurements.
There other configuration parameters were left unchanged again.

Precision adjustment Limit Succ. count Total time (ms)
ARG_NO_T 1 444 18358
PATH_NO_T 1 443 18467
ARG_T 32 239 11805
PATH_T 32 216 5840
ARG_T 1 175 5523
PATH_T 1 162 6798

Table 4.2: All the measurements ran

Table 4.2 shows the results of this measurement. It is obvious that the algorithms that use
⊤ values have a far worse performance. While they have a generally better performance
with a higher limit, they could only verify almost half as much models as the algorithms
that do not use ⊤ values.

Figure 4.2: Heatmap of the strategies using ⊤

Heatmap 4.2 shows the performance of the configurations for the different program cate-
gories. They have generally bad results in every category. The best performance of the
⊤ using algorithms is achieved by the ARG-based one with limit 1, in the category eca,
with 144 successfully verified programs of the 180.

In conclusion the algorithms using ⊤ do not measure up to the other base algorithms.

4.3.3 RQ3: Combiner and domain switching strategies

The results of the evaluation of RQ3 are presented in this section. We compare the best
path- and ARG-based strategies again, bu this time with the domain switching algorithms.
The domain switching algorithms were also run with limits 1 and 32 and with the other
parameters unchanged.

Precision adjustment Limit Succ. count Total time (ms)
ARG_NO_T 1 444 18358
PATH_NO_T 1 443 18467
ARG_ONE_PRED 1 438 14049
ARG_ONE_PRED 32 429 8220
ARG_WHOLE_PRED 1 247 13660
ARG_WHOLE_PRED 32 195 5693

Table 4.3: All the measurements ran

Table 4.3 shows the results of the measurements. While the domain switching algorithm
that limits based on one variable is not far behind, the simple path- and ARG-based
algorithms still have the best performance. For the domain switching algorithms there
is not much difference in the performance between a lower and a higher limit, but the
two kinds of algorithms have very different results. The algorithms limiting based on the
whole ARG have far worse results.
In Figure 4.3 the heatmap representing the domain switching algorithms can be seen.
While the algorithms limiting based on the whole ARG have a worse performance in
every category, with limit 1 it almost have as good results as the best configuration in
this measurement. The result of the two algorithms limiting based on one variable are
not that different, but it is worth noting that while with limit 1 has the best results in
category plc and a little worse in eca, the opposite is true for limit 32.

4.3.4 RQ5: Sharing information

In this section, the results of evaluating RQ5 can be seen. Now we focus on the informa-
tion sharing between the two different domains. Therefore we chose the best performing
configurations form the previous results (which are still the basic path- and ARG-based
with limit 1) and ran the measurements now with the information sharing enabled.

Precision adjustment Limit Share Cover order Succ. count Total time (ms)
PATH_NO_T 1 true 0 448 13941
ARG_NO_T 1 true 0 447 17353
ARG_NO_T 1 false 0 444 18358
PATH_NO_T 1 false 0 443 18467

Table 4.4: All the measurements ran

The results are presented in Table 4.4 and it shows that we managed to find a slightly
better configuration. Although the result are not that different, with the difference being
only 5 models between the number of successfully verified models of the best and worst
performing configurations of this category.

Figure 4.3: Heatmap of the domain switching strategies

The heatmap 4.4 of these configurations are also showing the same results.

4.3.5 RQ6: Coverage checking order

This section focuses on the comparison of the coverage checking order, RQ6. For the
measurement we chose the best performing configurations from the previous result, which
were the path- and ARG based algorithms with limit 1 and information sharing turned on.
We ran the measurements with this time changing only the order of the coverage checking.

Precision adjustment Cover order Succ. count Total time (ms)
ARG_NO_T 2 449 13774
PATH_NO_T 2 449 14381
ARG_NO_T 1 448 13226
ARG_NO_T 0 448 13326
PATH_NO_T 0 448 13941
PATH_NO_T 1 447 13708

Table 4.5: All the measurements ran

Figure 4.4: Heatmap of the best strategies sharing information

Table 4.5 shows the results of this measurement. It can be seen that changing the coverage
checking order between the two domains did not change much, but the configurations
checking both of them at the same time managed to produce better results by one model.

Heatmap 4.5 presents the results of the different configurations in the different program
categories. This figure also shows that there is no significant change if we change the
coverage checking order.

4.3.6 RQ7: Related work

This section presents the results of evaluating RQ7 : the comparison of our best strategies
with related work. The counterexample-based strategy can only have one configuration,
but the dynamic precision adjusting algorithm has been run with both limit 1 and 32.

Refinement Precision adjustment Limit Succ. count Total time (ms)
SEQ_ITP ARG_NO_T 1 449 13774
SEQ_ITP PATH_NO_T 1 449 14381
SEQ_ITP DYNAMIC 32 336 12922
SEQ_ITP DYNAMIC 1 285 8404
CEX_BASED NO_OP - 220 11463

Table 4.6: Comparison of our best configurations and related work

Figure 4.5: Heatmap of the best strategies switching cover orders

Table 4.6 presents the results of the measurement. The counterexample-based strategy
did not perform well, it only verified 220 models from the 548 successfully. The dynamic
precision adjustment especially with limit 32 had better results with 336 verified models,
but it still does not come close to our best results: 449 successfully verified model by both
the path- and ARG-based strategies with turned on information sharing, and checking
coverage for bot domains at the same time.
Figure 4.6 presents the heatmap showing the performance of the dynamic precision adjust-
ment and counterexample-based algorithms in the different program categories. All of the
configurations have bad result in categories locks-single and ssh while having in general
good results in eca. The counterexample-based strategy also performs especially bad in
category locks. Although it can be observed in this heatmap too, that configurations with
higher limits have better results in category eca.

4.3.7 RQ8: Predicate abstraction and explicit-value analysis

This section present the evaluation of our last but maybe most important question: How
do the product abstraction based algorithms perform in comparison to the two base algo-
rithms: product abstraction and explicit-value analysis.
Table 4.7 shows the results of the measurement. All in all, though the product abstraction
strategies performed better than explicit-value analysis, they still could not measure up
to the number of 452 successfully verified models of the predicate abstraction. Although
it is worth noting that the difference is very minimal.

Figure 4.6: Heatmap of the related strategies

Domain Precision adjustment Succ. count Total time (ms)
PRED NO_OP 452 11110
PROD_PRED_EXPL ARG_NO_T 449 13774
PROD_PRED_EXPL PATH_NO_T 449 14381
EXPL NO_OP 239 8575

Table 4.7: Measurements comparing our best configurations to predicate abstraction and
explicit-value analysis

Figure 4.7 shows the heatmap of the predicate abstraction and explicit-value analysis. The
explicit-value analysis has very similar results to the performance of the counterexample-
based seem in Figure 4.6. Predicate abstraction also has almost the same results as our
best performing configurations seen in Figure 4.5.

4.3.8 Summary

Figure 4.7: Heatmap of predicate abstraction and explicit-value
analysis

D
om

ai
n

R
efi

ne
m

en
t

Pr
ec

isi
on

ad
ju

st
m

en
t

Li
m

it
Sh

ar
e

C
ov

er
or

de
r

Su
cc

.
co

un
t

To
ta

lt
im

e
(m

s)
PR

ED
SE

Q
_

IT
P

N
O

_
O

P
-

-
-

45
2

11
11

0
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
A

RG
_

N
O

_
T

1
tr

ue
2

44
9

13
77

4
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
PA

T
H

_
N

O
_

T
1

tr
ue

2
44

9
14

38
1

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
RG

_
N

O
_

T
1

tr
ue

1
44

8
13

22
6

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
RG

_
N

O
_

T
1

tr
ue

0
44

8
13

32
6

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

PA
T

H
_

N
O

_
T

1
tr

ue
0

44
8

13
94

1
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
PA

T
H

_
N

O
_

T
1

tr
ue

1
44

7
13

70
8

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
RG

_
N

O
_

T
1

tr
ue

0
44

7
17

35
3

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
RG

_
N

O
_

T
1

fa
lse

0
44

4
18

35
8

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

PA
T

H
_

N
O

_
T

1
fa

lse
0

44
3

18
46

7
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
A

R
G

_
O

N
E_

PR
ED

1
fa

lse
0

43
8

14
04

9
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
ST

AT
E

1
fa

lse
0

43
7

11
45

7
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
A

R
G

_
O

N
E_

PR
ED

32
fa

lse
0

42
9

82
20

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
R

G
_

N
O

_
T

32
fa

lse
0

41
5

77
53

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

PA
T

H
_

N
O

_
T

32
fa

lse
0

41
5

86
03

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

ST
AT

E
32

fa
lse

0
39

5
73

90
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
D

Y
N

A
M

IC
32

-
-

33
6

12
92

2
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
D

Y
N

A
M

IC
1

-
-

28
5

84
04

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
R

G
_

W
H

O
LE

_
PR

ED
1

fa
lse

0
24

7
13

66
0

EX
PL

SE
Q

_
IT

P
N

O
_

O
P

-
-

-
23

9
85

75
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
A

RG
_

T
32

fa
lse

0
23

9
11

80
5

PR
O

D
_

PR
ED

_
EX

PL
C

EX
_

BA
SE

D
N

O
_

O
P

-
-

-
22

0
11

46
3

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

PA
T

H
_

T
32

fa
lse

0
21

6
58

40
PR

O
D

_
PR

ED
_

EX
PL

SE
Q

_
IT

P
A

R
G

_
W

H
O

LE
_

PR
ED

32
fa

lse
0

19
5

56
93

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

A
RG

_
T

1
fa

lse
0

17
5

55
23

PR
O

D
_

PR
ED

_
EX

PL
SE

Q
_

IT
P

PA
T

H
_

T
1

fa
lse

0
16

2
67

98

Ta
bl

e
4.

8:
A

ll
th

e
m

ea
su

re
m

en
ts

ra
n

Table 4.8 summarizes the results of every evaluated configuration strating from the best
to the worst. While the predicate abstraction algorithm produced the best results, there
is only a slight difference to the best product abstraction based strategies, which were the
path- and ARG based algorithms without using ⊤ values, with limit 1.
In general configurations with lower limits had better performance and although with
information sharing and the changing of the coverage checking order the performance did
become a little better, the changes were insignificant.
Also, an interesting pattern can be found in the heatmaps of the measurements. Config-
urations with the low limit have generally better results in the program category plc, and
slightly worse resluts in eca. At the same time, the opposite is true for configurations with
the high limit: they have better performance in category eca and worse in plc.
The most important thing to note is that although the state-based strategy had an average
performance, it did manage to verify a good number of model in category eca, which the
predicate abstraction could not. Since explicit-value analysis had the best performance
in that category too, these evaluations show that the combination of the two different
domains was successful, we managed to incorporate the benefits ot both strategies into
one.

Chapter 5

Conclusion

In our work, we presented seven different CEGAR-based algorithms for software model
checking, namely explicit-value analysis and predicate abstraction. Explicit-value analysis
only tracks the values of a subset of program variables, while predicate abstraction fo-
cuses on tracking formulas over the variables. Both methods can be suitable for checking
different kinds of software.
In order to combine their advantages, we proposed a product abstraction domain with
three different strategies. These approaches start by explicitly tracking each variable first
and then if the number of different values for a variable exceed a given limit, track a
predicate containing this variable instead. The difference between the methods is the way
they count the values. Counting can be based on a single state, a path or the whole
abstract reachability graph.
We also created two additional strategies that do not track explicit values and predicates
simultaneously, but rather switch between the two domains if the number of different
values of a single variable, or of the whole ARG exceed a given limit.
We implemented our new strategies in the open source Theta verification framework. We
also implemented two additional, already existing algorithms to be able to compare our
newly introduced strategies with related work.
We proposed research questions and evaluated them by running measurements on various
input programs and compared the strategies to each other and the two basic algorithms
(explicit values and predicates). We used benchmark models from the Software Verification
Competition and industrial codes from CERN. Measurements show, that the strategies
using ⊤ values are less efficient, but the other algorithmsall outperform pure explicit-value
analysis, and the path- and ARG-based ones with the best configurations can measure up
to predicate abstraction. We can conclude that our new algorithms can successfully com-
bine the advantages of the different abstract domains, providing a more efficient software
model checking approach.

Future work. Even though the evaluation confirmed the efficiency of the new strategies,
there are several opportunities to improve our work.
It would be interesting to run the measurements on a wider set of models, possibly from
different domains. This would help to generalize our results. Currently we only experi-
mented with a few values for the limit. Evaluating more possibilities could give further
insights. Furthermore, the CEGAR algorithm also has some other parameters (indepen-
dent from the abstract domains), such as the search strategy in the abstract state space. It

would be interesting to experiment with those parameters as well, to find a configuration
that works the best with product abstraction.
It would also be important to analyze our results further and find an answer to why some
configurations perform better in certain program categories. A through analysis could
even reveal new patterns or characteristics that could lead to similar findings concerning
software verification.

Bibliography

[1] Viktória Dorina Bajkai. Combining abstract domains for software model checking.
Bachelor’s thesis, Budapest University of Technology and Economics, 2018.

[2] Thomas Ball, Andreas Podelski, and Sriram K. Rajamani. Boolean and Cartesian
abstraction for model checking C programs. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, volume 2031 of Lecture Notes in Computer Science,
pages 268–283. Springer, 2001.

[3] Clark W Barrett, Roberto Sebastiani, Sanjit A Seshia, and Cesare Tinelli. Satisfiabil-
ity modulo theories. In Handbook of satisfiability, volume 185 of Frontiers in Artificial
Intelligence and Applications, chapter 26, pages 825–885. IOS press, 2009.

[4] Dirk Beyer. Reliable and reproducible competition results with benchexec and wit-
nesses (report on sv-comp 2016). In Tools and Algorithms for the Construction and
Analysis of Systems, volume 9636 of Lecture Notes in Computer Science, pages 887–
904. Springer, 2016.

[5] Dirk Beyer. Software verification with validation of results. In Tools and Algorithms
for the Construction and Analysis of Systems, volume 10206 of Lecture Notes in
Computer Science, pages 331–349. Springer, 2017.

[6] Dirk Beyer and Stefan Löwe. Explicit-state software model checking based on CEGAR
and interpolation. In Fundamental Approaches to Software Engineering, volume 7793
of Lecture Notes in Computer Science, pages 146–162. Springer, 2013.

[7] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker Blast. International Journal on Software Tools for Technology
Transfer, 9(5):505–525, 2007.

[8] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz. Configurable software
verification: Concretizing the convergence of model checking and program analysis.
In Computer Aided Verification, volume 4590 of Lecture Notes in Computer Science,
pages 504–518. Springer, 2007.

[9] Dirk Beyer, Thomas A. Henzinger, and Gregory Theoduloz. Program analysis with
dynamic precision adjustment. In Proceedings of the 2008 23rd IEEE/ACM Interna-
tional Conference on Automated Software Engineering, pages 29–38. IEEE, 2008.

[10] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Refinement selection. In Model
Checking Software, volume 9232 of Lecture Notes in Computer Science, pages 20–38.
Springer, 2015.

[11] Dirk Beyer, Stefan Löwe, and Philipp Wendler. Reliable benchmarking: requirements
and solutions. International Journal on Software Tools for Technology Transfer, 2017.
Online first.

[12] Dirk Beyer, Matthias Dangl, and Philipp Wendler. A unifying view on SMT-based
software verification. Journal of Automated Reasoning, 60(3):299–335, 2018.

[13] Aaron R Bradley and Zohar Manna. The calculus of computation: Decision procedures
with applications to verification. Springer, 2007.

[14] Edmund Clarke, Orna Grumberg, and David E Long. Model checking and abstraction.
ACM Transactions on Programming Languages and Systems, 16(5):1512–1542, 1994.

[15] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
Counterexample-guided abstraction refinement for symbolic model checking. Journal
of the ACM, 50(5):752–794, 2003.

[16] Edmund M Clarke, Anubhav Gupta, and Ofer Strichman. SAT-based
counterexample-guided abstraction refinement. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 23(7):1113–1123, 2004.

[17] Edmund M Clarke, Thomas A Henzinger, Helmut Veith, and Roderick P Bloem.
Handbook of model checking. Springer, 2018.

[18] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In Tools and
Algorithms for the Construction and Analysis of Systems, volume 4963 of Lecture
Notes in Computer Science, pages 337–340. Springer, 2008.

[19] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: Introduction
and applications. Communications of the ACM, 54(9):69–77, 2011.

[20] Evren Ermis, Jochen Hoenicke, and Andreas Podelski. Splitting via interpolants. In
Verification, Model Checking, and Abstract Interpretation, volume 7148 of Lecture
Notes in Computer Science, pages 186–201. Springer, 2012.

[21] Borja Fernández Adiego, Dániel Darvas, Enrique Blanco Viñuela, Jean-Charles
Tournier, Simon Bliudze, Jan Olaf Blech, and Víctor M. González Suárez. Apply-
ing model checking to industrial-sized PLC programs. IEEE Trans. on Industrial
Informatics, 11(6):1400–1410, 2015.

[22] Susanne Graf and Hassen Saidi. Construction of abstract state graphs with PVS.
In Computer Aided Verification, volume 1254 of Lecture Notes in Computer Science,
pages 72–83. Springer, 1997.

[23] Ákos Hajdu. Effective Domain-Specific Formal Verification Techniques. PhD thesis,
Budapest University of Technology and Economics, 2020.

[24] Ákos Hajdu and Zoltán Micskei. Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning, 64(6):1051–1091, 2020. DOI:
10.1007/s10817-019-09535-x.

[25] Ákos Hajdu, Tamás Tóth, András Vörös, and István Majzik. A configurable CEGAR
framework with interpolation-based refinements. In Formal Techniques for Distributed
Objects, Components and Systems, volume 9688 of Lecture Notes in Computer Sci-
ence, pages 158–174. Springer, 2016.

[26] Martin Leucker, Grigory Markin, and MartinR. Neuhäußer. A new refinement strat-
egy for CEGAR-based industrial model checking. In Hardware and Software: Verifica-
tion and Testing, volume 9434 of Lecture Notes in Computer Science, pages 155–170.
Springer, 2015. DOI: 10.1007/978-3-319-26287-1_10.

http://dx.doi.org/10.1007/s10817-019-09535-x
http://dx.doi.org/10.1007/978-3-319-26287-1_10

[27] Kenneth L McMillan. Applications of Craig interpolants in model checking. In Tools
and Algorithms for the Construction and Analysis of Systems, volume 3440 of Lecture
Notes in Computer Science, pages 1–12. Springer, 2005.

[28] Kenneth L McMillan. Lazy abstraction with interpolants. In Computer Aided Verifi-
cation, volume 4144 of Lecture Notes in Computer Science, pages 123–136. Springer,
2006.

[29] Cong Tian, Zhenhua Duan, and Zhao Duan. Making CEGAR more efficient in soft-
ware model checking. IEEE Transactions on Software Engineering, 40(12):1206–1223,
2014.

[30] Tamás Tóth, Ákos Hajdu, András Vörös, Zoltán Micskei, and István Majzik. Theta:
a framework for abstraction refinement-based model checking. In Proceedings of the
17th Conference on Formal Methods in Computer-Aided Design, pages 176–179. FM-
CAD inc., 2017.

[31] Y. Vizel, G. Weissenbacher, and S. Malik. Boolean satisfiability solvers and their
applications in model checking. Proceedings of the IEEE, 103(11):2021–2035, 2015.

[32] Yakir Vizel and Orna Grumberg. Interpolation-sequence based model checking. In
Formal Methods in Computer-Aided Design, pages 1–8. IEEE, 2009.

