
Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

A general purpose local search-based pattern
matching framework

MASTER’S THESIS

Author Advisor

Márton Búr Dr. Ákos Horváth
Zoltán Ujhelyi

December 11, 2015

Contents

Kivonat i

Abstract ii

1 Introduction 1

1.1 Model-driven engineering . 1

1.2 Main challenges . 2

1.3 Summary of contributions and structure of the thesis 2

2 Preliminaries 4

2.1 A motivating example: code smell detection in program code 4

2.2 Foundations of model-driven engineering . 5

2.2.1 Metamodeling . 5

2.2.2 Eclipse Modeling Framework . 5

2.3 Implementing model queries using graph patterns 8

2.3.1 EMF-INCQUERY pattern language . 8

2.3.2 Incremental pattern matching . 10

3 Overview of local search-based pattern matching 12

3.1 Related work . 12

3.2 Algorithm adaptation . 13

3.3 Pattern matching workflow . 15

4 Integration to EMF-INCQUERY 18

4.1 Details of the adapted algorithm . 18

4.1.1 Search plan . 18

4.1.2 Search plan calculation . 20

1

4.2 Implementation details . 24

4.2.1 Common matcher API . 24

4.2.2 Flattening . 24

4.2.3 Debugger tooling . 26

4.3 Details of search execution . 28

4.3.1 Sequential search . 28

4.3.2 Multi-threaded execution . 30

4.3.3 Advantages and weaknesses . 31

5 Evaluation 32

5.1 Measurement workflow . 32

5.2 Measurement environment . 33

5.3 Models and patterns used for assessment . 33

5.4 Performance evaluation . 34

5.5 Running the Train Benchmark . 37

5.6 Evaluation summary . 39

6 Conclusion and future work 41

6.1 Conclusions . 41

6.2 Summary of contributions . 41

6.3 Future plans . 42

6.3.1 Information about type cardinality . 42

6.3.2 Adaptive cost calculation . 42

6.3.3 Advanced parallel execution . 42

6.3.4 Hybrid pattern matching . 43

List of Figures 45

List of Tables 46

Bibliography 49

Appendix 50

A.1 A more detailed metamodel for program ASGs . 50

A.2 Detailed measurement results for code anti-patterns 51

2

A.3 Detailed measurement results for Train Benchmark 53

3

HALLGATÓI NYILATKOZAT

Alulírott Búr Márton, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem engedett

segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök

stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de

átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tar-

talmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elekt-

ronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy

autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és an-

nak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a

dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2015. december 11.

Búr Márton

hallgató

Kivonat

Szoftvermodellezési feladatok során a modellek, amiket jellemzően gráfként reprezentálnak,

tartalmazzák a tervezési információkat. Ezek feldolgozásával használjuk ki ennek a megjele-

nítési formának az előnyeit, és hasznosítjuk az ismereteket. A modelleken végzett műveletek

egyik célja hagyományosan a végrehajtható programkód előállítása.

Modelleken végzett tipikus műveletek egyike a keresés, mely során a cél bizonyos feltételnek

megfelelő elemek, azaz egy almodell felderítése. Ez részfeladata a transzformációnak, ami

vagy egy köztes modellt, vagy forráskódot állít elő a bemeneti modell alapján. Szintén a ke-

resésen alapul a jólformáltság ellenőrzése, ami vizsgálja, hogy a modell felépítése követi-e a

modellezési nyelv szabályait.

Dolgozatomban az almodellek keresését gráfmintaillesztést segítségével végeztem. A gráfmin-

taillesztés általánosan egy komplex problémakör, azonban különböző megközelítések már is-

mertek a megoldására. Egyik gyakori módszer a lokális keresésen alapuló mintaillesztési tech-

nika, mely egy kezdeti pontból kiindulva keresi meg az illeszkedéseket. A módszer hatékonyan

működik optimális keresési terv mellett, azonban az optimális keresési tervet csakis az éppen

vizsgált modell struktúrája határozza meg.

Munkám során adaptáltam és implementáltam egy lokális keresésen alapuló gráfmintaillesz-

tési algoritmuscsaládot. A megvalósított módszer lényege, hogy a modell számossági jellemzői

alapján számítja ki a keresési tervet. Emellett elkészítettem a keresés egy egyszálú, valamint

egy párhuzamos verzióját is. A dolgozatban bemutatom az algoritmus főbb gondolatait és

lépéseit, illetve a megvalósítás sajátosságait. A megoldást a nyílt forráskódú EMF-INCQUERY

keretrendszerbe is integráltam, törekedve a komponensek újrafelhasználására.

Mindkét típusú megvalósítás teljesítményét és skálázhatóságát mérésekkel is alátámasztom,

és egymással, illetve a korábban már meglévő inkrementális algoritmus végrehajtási idejével

is összehasonlítom. Emellett elemzem, hogy mely gráfmintaillesztési forgatókönyvek mellett

melyik módszer bizonyul kedvezőbbnek. Az erdemények szerint az alkalmankénti futtatást

igénylő, illetve a memóriaszegény környezetben végzett feladatok során is a lokális keresésen

alapuló algoritmus részesítendő előnyben.

i

Abstract

Model-driven software development tasks involve creation of graph-like models, which store

facts and parameters about the system under design. Developers make use of this represen-

tation when processing the models, and apply the contained information. The ultimate goal

of the development process it to produce executable code, which may be preceded by several

intermediate steps.

A frequent operation executed on a models can be search, which means an exploration of

elements, in other words a submodel, that comply with a set of constraints. Other typical

operations include search as a subtask, such as transformation, which derives a new repre-

sentation of the model, or generates executable source code. Well-formedness validation also

based on search, for it checks whether the model is valid in terms of the rules of the modeling

language.

In this thesis I applied graph pattern matching as the underlying technique to find submodels.

Generally, graph pattern matching is a complex problem, however, different approaches are

commonly used to solve it. One of them is the local search-based pattern matching that finds

all matches by starting the search from specified model elements. If the search plan is optimal,

this technique is highly efficient. However, this is determined only by the structure of the model

on which the search is performed.

During my work I adapted and implemented a local search-based pattern matching algorithm,

which uses the statistics of the underlying model to calculate the search plan. I created two ver-

sions of search execution runtimes: a single-threaded, and a parallel. In this thesis I introduce

the main ideas and key steps of the algorithm, as well as the peculiarity of the implementa-

tion. I also integrated the completed software components to the open-source EMF-INCQUERY

framework.

I provide assessment results in order to show the scalability of the proposed solution. For

this purpose I carried out performance comparison for both pattern matching runtimes. Ad-

ditionally I evaluated the solution with respect to the already existing, incremental pattern

matcher algorithm of EMF-INCQUERY. Finally, the applicability of the algorithm is discussed in

case of different pattern matching scenarios. According to the results, the local search-based

pattern matching technique is preferable in cases when tasks require only a single run, or the

environment is memory constrained.

ii

Chapter 1

Introduction

1.1 Model-driven engineering

The model-driven engineering (MDE) approach is becoming widespread in many areas of soft-

ware and system engineering, such as designing safety-critical systems, where faults can cause

severe injuries or serious environmental harm, as it delivers higher-quality products in a shorter

development lifecycle (see e.g., [17]). MDE aims to focus on creating and analyzing models

at different levels of abstraction during the engineering process, which are used to synthesize

executable program code in the end.

Modeling may start as early as the requirements against the system under design are collected.

It is followed by creating high-level abstract models, then producing lower-level design ar-

tifacts with design decisions and implementation details after a series of refining steps. The

models can be continuously verified during the development process in order to identify design

faults as soon as possible.

There are some extensible formalisms intended as a general purpose way of representing mod-

els (such as UML [22]), the industrial practice seems to prefer domain-specific languages (DSL)

for describing models instead, which can be designed and modified to the needs of application

domains and actual design processes.

On the other hand, developing such a DSL (and providing tool support) is a costly task requir-

ing special skills. For this reason domain-specific modeling (DSM) technologies have emerged

to support these purposes. The Eclipse Modeling Framework (EMF, [10]), which is built on the

Eclipse platform, is a leading technology in this sense, which is considered a de facto indus-

trial standard. A DSL development process with EMF starts with the definition of a metamodel,

from which several components of the modeling tool can be automatically derived. It is de-

fined using the ECore formalism, which is defined as part of the EMF. Numerous generative

and generic technologies assist the creation of tool support (such as textual and graphical edi-

tors) for EMF-based DSLs. The user can define textual or graphical concrete syntax, while code

generators can be created by specifying source code templates for the modeling language.

1

1.2 Main challenges

Model processing can be categorized into the following type of operations: modification, trans-

formation, filtering of elements, and search within the model. All of these require a definition of

an application condition. When this condition is fulfilled, corresponding actions should be ex-

ecuted. As software models have graph like presentation, a way of formulating the conditions

for model elements is using graph patterns, where the task is to find all matches of a pattern

in the underlying model, and execute the required operations on these matches.

However, the problem of graph pattern matching is strongly related to graph isomorphism,

which is a complex computational task, especially when carried out on large graphs. There

are tools that rely on search-based approach to find all matches of a given pattern in a model,

while others are using incremental techniques to collect and constantly maintain the set of

pattern matches.

There is a trade-off between the computation speed and the size of the used operative memory.

The search based algorithms usually execute faster when the pattern matching needs to run

once. However, when a pattern needs to be matched multiple times against slightly changing

models, incremental solutions can easily outperform the search-based algorithms.

The incremental algorithm achieves incremental behavior by maintaining predefined indexes

based on the structure of the underlying model. When this index structure builds up, the set

of matches are directly available. Additionally, model changes are propagated in the index

structure efficiently, and the set of matches is updated immediately. However, this approach

may be constrained by memory limits, because the supplementary data structure can take up

huge amount of memory, based on the complexity of the pattern and the model.

On the other hand, local search-based algorithms collect the matches by traversing the model,

starting from given points, and gathering each tuple of elements that satisfy all constraints

of the pattern. The main challenge here is to select the starting points and to determine the

optimal search plan that guides the traversal.

1.3 Summary of contributions and structure of the thesis

Throughout my thesis, I use the pronoun "we" to refer to my supervisors and me. There are

some publications that I coauthored, and used while writing this thesis. In the following there

is an explicit enumeration of my own contributions to the topic:

• I adapted and implemented a local search-based pattern matching algorithm,

• I provided both single-threaded and parallel execution runtimes for executing search

operations,

• I created a debugger tooling to support pattern development and optimization,

• I integrated the solution to the EMF-INCQUERY official Eclipse project, and

2

• I evaluated the implementation from the aspect of performance.

The rest of the thesis is structured as follows: the basic background information about model-

driven engineering (MDE) and the connecting technologies is introduced in Chapter 2. We

introduce a motivating example for the application of MDE that is used throughout this thesis,

then the relevant tools and frameworks used for our work are introduced.

Chapter 3 provides an overview of the proposed pattern matching framework. First, available

research results and papers are referenced, highlighting their main ideas and achievements. It

is followed by the discussion of algorithm integration aspects, and the key steps of our solution

for local search-based pattern matching.

Chapter 4 describes the integration and implementation tasks, which includes detailed de-

scription of the algorithm, execution methods, and the accompanying tooling.

The performance, and scalability of the implemented framework is evaluated in Chapter 5 on

both industrial and artifical models.

Chapter 6 concludes the thesis with a short summary of the completed work, and an enumer-

ation of possible future development directions

3

Chapter 2

Preliminaries

The current chapter introduces the basic concepts of model-driven engineering (MDE) via a

motivating example from the domain of software modeling. It also summarizes the major

features and capabilities of the EMF-INCQUERY graph pattern matching framework.

2.1 A motivating example: code smell detection in program code

In order to ensure code quality, and maintainability, several programing rules should be fol-

lowed when creating a computer program. However, there are several typical mistakes that

developers make. These so-called code smells (or in other words anti-patterns) can efficiently

be detected by using code queries. For such purposes many advanced techniques use the ab-

stract syntax graph (ASG) representation of a program. With the ASG synthesized from the

code, graph pattern matching can be the underlying method to execute a query on the soft-

ware.

Considering this application as a motivating example, we use the domain of program ASGs, the

Catch problem code smell from [32] to pattern matching related tasks in details throughout this

work. Source code of Java programs serve as the subject of this problem, and its definition

is the following: in a catch block there is an instanceof check for the type of the catch

block parameter. Instead of the instanceof check a new catch block should be added for

the checked type and the body of the conditional has to be moved there.

To demonstrate this code smell, we placed a short Java code fragment in Listing 2.1.

In this snippet, a try-catch block surrounds the FileInputStream object creation. In

line 2, a checked exception of type FileNotFoundException may be thrown, but the

programmer should also prepare for other kinds of (unchecked) exceptions as well, e.g.,

NullPointerException. In this case, additional catch blocks accepting parameters of dif-

ferent types should be implemented instead of adding only one catch block, and using the

instanceof operator on the thrown object.

4

1 try {
2 FileInputStream fis = new FileInputStream(file);
3 } catch (Exception e) {
4 if(e instanceof FileNotFoundException){
5 logger.severe("File not found");
6 } else {
7 logger.severe("An exception was thrown");
8 }
9 }

Listing 2.1. Java code snippet containing code smell.

2.2 Foundations of model-driven engineering

The aim of model-driven engineering is to increase development efficiency by creating various

models of the system under development. These models help focusing on the important design

decisions, and (ideally) they omit unnecessary details. In terms of software development,

several frequently used representations of a program have a graph-like structure, e.g., class

diagram, component diagram, state machine, and the ASG, as in our running example. The

models can be then used for different purposes including source code generation, test case

derivation, and even simulation.

A huge advantage of graph-like representation is that there are many analysis techniques,

which can be applied to detect errors in models [9, 6]. Additionally, the definition of graph

patterns can be done in a very concise, and expressive way.

2.2.1 Metamodeling

As it is described in [26], metamodels define available concepts, that can be used to build up

the instance model containing only elements typed by the metamodel. These concepts can

also have attributes in order to enrich the expressiveness of the language. In a metamodel,

relations define connections between concepts, and links are the instances of such a relation.

Via the allowed relations, the metamodel also defines the structure of the models.

2.2.2 Eclipse Modeling Framework

This section about Eclipse Modeling Framework (EMF) is based on [16]. EMF is a Java frame-

work and code generation facility for building tools and other applications based on a struc-

tured model. EMF provides a metamodel (called ECore) for describing structured models.

Using these structured models EMF provides a toolkit and runtime support to produce a set

of Java classes representing the model in the Java Virtual Machine (JVM), a set of adapter

classes that enable viewing, and a basic editor. As EMF already supports a large set of mod-

eling constructs, our discussion mainly focuses on the ECore meta- and instance models and

follows [4].

A simplified ECore model is depicted in Figure 2.1 in order to demonstrate the most important

elements of the metamodel.

5

• EClass models classes themselves. Classes are identified by their name and can contain

a number of attributes and references. To support inheritance, a class can refer to a

number of other classes as its supertypes.

• EAttribute models attributes, the components of an object’s data. They are identified

by their name, and they have a type.

• EDataType models the types of attributes, representing object data types that are defined

in Java, but not in EMF. Data types are also identified by their name.

• EReference is used in modeling associations between classes; it models one end of such

an association. Like attributes, references are identified by their name and have a type.

Figure 2.1. The ECore metamodel

Extension of the ECore

From an ECore model, the generator of EMF can create a corresponding set of Java implemen-

tation classes. Every generated EMF class extends from the framework base class, EObject,

which enables the objects to be integrated and appear in the EMF runtime environment.

EObject provides an efficient reflective API for accessing the properties of the object generi-

cally. In addition, change notification is an essential property of every EObject and an adapter

framework can be used to support extension to the objects.

The reflective API [10] in EMF enables to manipulate all attributes and references attached

to the EObject by using the eSet and eGet functions. This is conceptually equivalent to

java.lang.reflect.Method.invoke() Java method, though it is much more efficient in

the aspect of performance.

Notification observers (or listeners) in EMF are called adapters [5] because in addition to

their observer status, they are often used to extend the behavior (that is, support additional

interfaces without subclassing) of the object they are attached to. An Adapter, as a simple

observer, can be attached to any EObject by simply adding the adapter to the eAdapters

list of the EObject. This Adapter implements a function called notifyChanged, which is

6

called any time when the EObject, which contains the Adapter, is manipulated. All informa-

tion about the manipulation is held by a notification object which is the input parameter of

the notifyChanged function. This adapter is responsible for sending the notifications to the

EMFInstanceAdapter manager class.

Example EMF metamodel and model of a program ASG

As an running example, the an EMF metamodel is shown in Figure 2.2, as exported from

ECoreTools [28]. The main parts of the metamodel are the following:

• Expression is the superclass for every expression type,

• instances of Unary represent expressions that only accept up to one expression as their

operand,

• instances of InstanceOf stand for instanceof operators in the code,

• instances of Identifier represent valid Java identifiers in the ASG,

• Named is a superclass of any valid Java ASG element, that is supplied with a name (except

for Identifier to avoid loops via the refersTo relation),

• instances of Parameter represent parameters in the program, and

• Handler marks an exception handler catch block for a try-catch construction in the

ASG.

Handler

Expression

InstanceOf

Unary Identifier

name : EString

Parameter

Named

name : EString

[0..1] operand

[0..1] parameter

[0..1] refersTo

Figure 2.2. EMF metamodel fragment for ASGs

From the explanatory code snippet in Listing 2.1, using the same tool that was used to gen-

erate the ASGs of the programs included in [32], we obtained the EMF model. We include

a hand drawn version of the instance model in Figure 2.3. It uses simplified object names

and applies some trivial abbreviations of the type names. Each node in Figure 2.3 is adorned

with its corresponding line number from Listing 2.1. We also used four different colors for the

7

Expression, Named, Statement and Handler types. The subtypes of these types are marked

with the same color as the corresponding supertype. Some element types are not shown above

in the metamodel fragment, for they would only complicate the structure, and would not help

the comprehension of the example. However, we include a more detailed, but still incomplete

metamodel in Figure A.1.1 in the Appendix.

try : Try
line 1-9

b1 : Block
line 1-3

hdl : Handler
line 3-9

fis : Variable
line 2

if: If
line 4-8

e : Param
line 3

b2 : Block
line 3-9

pe : ParExpr
line 4

b3 : Block
line 4-6

b4 : Block
line 6-8

io : InstOf
line 4

e : Identifier
line 4

FIS : TypeExpr
line 2

o : NewClass
line 2

file : Identifier
line 2

FIS : TypeExpr
line 2

FNF : TypeExpr
line 2

Figure 2.3. The ASG representation of the example code snippet

2.3 Implementing model queries using graph patterns

As described in [31], graph patterns are graph-like structures that encapsulate a set of con-

straints regarding the nodes, the attributes of the nodes, and edges. Model queries can be

carried out by matching a graph pattern against instance model graphs. During the match-

ing process the objective is to find suitable model elements that satisfy all constraints of the

graph pattern. According to [3], EMF-INCQUERY is a framework with a language for defining

declarative queries over EMF models, and a runtime engine for executing them efficiently without

manual coding.

2.3.1 EMF-INCQUERY pattern language

The framework has its own highly declarative pattern language called IncQuery Pattern Lan-

guage (IQPL). The language is similar to Datalog, which is a subset of Prolog. As stated in [3],

the graph pattern based query language of EMF-INCQUERY references EClasses as node types,

EReferences and EAttributes as edge types. Pattern variables will be mapped to EObjects

of the instance model or attribute values. It is important to add that the language does not

specify the order of constraint evaluation.

Based on [27], we provide a short summary of the constraints supported by the IQPL:

• Classifier constraint: checks if a variable is an instance of an EClass.

• Path constraint: requires a specific reference, an attribute, or a path of reference and

attribute sequence between two variables.

• Equality constraint: specifies that two variables have to be mapped to the same model

element.

8

• Pattern call constraint: enables the composition of multiple patterns. The positive

pattern call refers to another pattern and specifies that the called pattern must be satis-

fied in the context of the actual parameters. Additionally, a pattern may define a nega-

tive application condition (neg keyword), which means that the target pattern is disal-

lowed to have a valid match along the actual parameters. Using the count keyword,

EMF-INCQUERY can save the number of matches to a variable.

• Binary transitive closure: it is possible to describe the transitive closure of a two-

parameter pattern by the + symbol.

• Check constraint: evaluates a specific attribute expression on the variables of the pat-

tern and accept matches only if the result of attribute condition is true.

• Eval constraint: evaluates an expression defined inside the constraint. The return value

of the evaluation will be stored in a variable.

In order to demonstrate the basic capabilities and structural constraints of the language, List-

ing 2.2 shows the example catch finder problem formulated in IQPL. It introduces two patterns,

catchProblemFinder and handlerVariable, both with two symbolic parameters. There are

type constraints applied to the parameters: the substitutions of cBlock need to be of type

Handler, while insOf is expected to be an InstanceOf.

1 pattern catchProblemFinder(cBlock : Handler, insOf : InstanceOf){
2 Identifier(varRef);
3 Unary.operand(insOf, varRef);
4 find handlerVariable(cBlock, varRef);
5 }
6
7 pattern handlerVariable(cBlock : Handler, variable : Identifier) {
8 Handler.parameter(cBlock, param);
9 Identifier.refersTo(variable, param);

10 }

Listing 2.2. Patterns to detect missing catch clauses.

The catchProblemFinder pattern specifies its match set as a set that holds tuples of type

〈Handler, InstanceOf〉 in line 1 using classifier constraints for parameters. In line 2 the pat-

tern declares that the varRef variable should be subtituted with an instance of Identifier,

which is also expressed using a classifier constraint. Line 3 prescribes by a path constraint that

the EObject substituted to insOf should have varRef as its operand. In addition, the pattern

also uses a pattern call constraint to reference the handlerVariable pattern, and the call will

use the substitutions of cBlock, and varRef variables.

The latter pattern will have tuples of 〈Handler, Identifier〉 in its match set, according to

line 7. Line 8 states that the variable cBlock shall have param as its parameter. In line 9 it

is specified that the EObject substituted into param should be navigable from variable via

an instance of the refersTo EReference.

9

2.3.2 Incremental pattern matching

The EMF-INCQUERY framework initially was designed to provide pattern matching capability

for its users, based on an incremental pattern matching algorithm (Rete [2]). This approach

relies on the idea that along with the computation of the initial match set of each pattern, a

data structure is built in the memory. This data structure is then maintained in a way that

every change in the underlying model is propagated efficiently, so that the set of matches is

updated. In case of EMF models this update mechanism implemented using the efficient EMF

notification observers of the framework.

To demonstrate this in operation using our example, Figure 2.4 depicts a possible Rete network

for the catchProblemFinder pattern. The Rete network is essentially a dataflow network,

where every node contains tuples of arbitrary length. At the top of the diagram rectangles

symbolize input nodes, which provide input for the network. The second node in the top-

left corner is, in addition, a production node that means it already holds the match set of the

handlerVariable pattern.

Join

 cBlock, varRef

Join

 cBlock, varRef

0 0

1 0

1

Handler

 cBlock

Identifier

 varRef

operand

 insOf, varRef

Production of

handlerVariable
 cBlock, varRef

Join

 insOf, varRef

0

InstanceOf

 insOf

0

1

Trim

 cBlock, insOf

Join

 cBlock, varRef, insOf

Production

Figure 2.4. Rete network for the catchProblemFinder pattern

Nodes with Join annotation are a type of worker nodes. They carry out join operation on the

input. The diamonds over the worker nodes indicate the operand indices from the previous

node. The Trim node omits some values from the preceding worker node. In the example,

〈cBlock, varRef, insOf〉 is trimmed to 〈cBlock, insOf〉. Finally, Production will hold

the match set for a pattern.

The main advantage of this solution is the ability to retrieve the match results in constant time

after the first evaluation, if the model is unchanged. In case the model changes, the match

10

result update time is proportional to the size of the change, and not the size of the complete

model.

In the example, when a new object of type Identifier appears, the change is propagated in

the Rete net on a directed path down to the production node. This way matches after small

changes in the model are instantly updated.

However, a main drawback of this approach is the memory footprint of the internal data struc-

ture. Its size depends on the size of the model and the complexity of the pattern. In certain

application scenarios, in which the models themselves are extremely large, this footprint means

a bottleneck concerning the usability of the algorithm.

11

Chapter 3

Overview of local search-based

pattern matching

Probably the biggest drawback of the EMF-INCQUERY framework is the memory consumption of

its incremental algorithm. In order to overcome this limitation, we adapted a model sensitive

local search-based pattern matching algorithm described in [33]. This algorithm has a much

smaller memory footprint, as well as the initial pattern matching execution takes also less time

compared to the Rete incremental approaches.

3.1 Related work

There are several modeling tools that implement pattern matching in addition to

EMF-INCQUERY, such as ATL, Eclipse OCL, FUJABA, FunnyQT, and GrGen.NET.

ATL [19] defines a hybrid, textual language for defining graph transformations. It is called

hybrid, for it has declarative language elements, but in order to ease formulation of complex

rules, imperative instructions can also be used. ATL uses local search-based pattern matching,

but applies different heuristics to determine the order of search operations. As it was described

in [30], a parallel algorithm provides the matchings.

Eclipse OCL [11] supports the declarative definition, and evaluation of OCL [21] constraints

over EMF models. In this case, despite the declarative description of the pattern, the OCL con-

straint encodes the execution order of search steps to find elements that conform all constraints

of the description. Also, Eclipse OCL has incremental evaluation support [8].

FUJABA [20] provides a graphical language for specifying model transformation rules, and

relies on local search-based pattern matching. It uses story diagrams for the execution [13],

and applies a dynamic strategy concerning the traversal of the instance model. This means

for every object, the following step is made in the direction of the reference with the lowest

multiplicity. The execution times presented in [13] are very promising regarding this approach.

We can say that SDMLib is the successor of FUJABA, which won the best performance award

on the Transformation Tool Contest 2014 [12] by generating Java code for search execution.

12

FunnyQT is a Clojure library supplying a comprehensive set of model querying and transforma-

tion services to the user [15]. According to [14], it supports pattern matching using an internal

DSL implemented with Clojure’s metaprogramming facilities. The constraint evaluation order

is defined by the user.

GrGen.NET [1] also implements pattern matching based on local search philosophy. It calcu-

lates search plans based on a cost model, that estimates a backtracking and an execution time

for an operation. The used search plan has the lowest total cost of operations possible.

The algorithm we introduce in this work uses a search plan calculation algorithm that dif-

fers from the ones mentioned above. Also, the EMF-INCQUERY framework is unique in a way

that the declaratively defined patterns can be executed using any of the local search or the

incremental algorithm, without specifying the concrete steps of the execution.

3.2 Algorithm adaptation

In order to efficiently integrate the local search-based algorithm, we were required to adapt

many existing components of the EMF-INCQUERY framework, more specifically parts of the

pattern matcher engine. The architecture overview of the engine is depicted in Figure 3.1:

1. EMF-IncQuery Base Index collects the instances of EClasses, EReferences and

EDataTypes contained in a model,

2. the Pattern definition holds the query that is to be evaluated over the instance model,

3. the Pattern matcher uses the pattern matcher algorithm to generate the result based on

the EMF-INCQUERY Base Index and the Pattern definition, and

4. the Match set contains the result tuples.

Pattern matcher

EMF-INCQUERY
Base Index

Pattern matcher
algorithms

Rete algorithm

Local search-

based algorithm

Pattern matcher
core

Pattern definition

pattern catchProblemFinder(cBlock: Handler, insOf: InstanceOf)

Match set

Handler = {H1, H2, ..., Hn}
InstanceOf = {I1, I2, ..., Im}

Matches = { 〈Hi,Ij 〉, ..., 〈Hp,Iq 〉}

Figure 3.1. The pattern matcher engine of EMF-INCQUERY

13

In the introductory example, the base index would provide sets filled with the instances of

the elements found in the metamodel, such as Handler and InstanceOf, as indicated in the

lower left corner of Figure 3.1. The catchProblemFinder pattern definition states that the

expected matches are supposed to be tuples with type 〈Handler,InstanceOf〉, as illustrated

below the match set in the diagram.

Our contribution to the engine (emphasized with solid red background) is the local search-

based algorithm, at least in the extent of this thesis. Prior to the implementation, we solved

several adaptation issues. A typical task was to decide how to extend already existing interfaces

in order to obtain all the information needed for executing the algorithm. One of the main

design guidelines was generalization of the existing solution, so that several pattern matching

algorithms may coexist in the EMF-INCQUERY framework.

In as a result of our work, we proposed a common interface for pattern matching algorithms.

In addition, using the chosen solution, users can select the appropriate algorithm runtime,

according to their needs. We also prepared the pattern matcher runtime for parallel search

execution, for the computation of matches can be done by multiple threads simultaneously.

The details about search execution is in Section 4.3.

While the Graph pattern matcher engine provides the basic functions of EMF-INCQUERY, there

are many accompanying tools to ease the use of the provided features. To introduce the layered

architecture of the toolkit based on [31], a diagram of its structure is shown in Figure 3.2.

Graph pattern matcher engine

Query development environment

Pattern
editor

Code
generator

Local search
debugger

Query
explorer

Application integration components

Figure 3.2. The architecture of EMF-INCQUERY

The Query development environment (QDE) provides tooling related to defining and debugging

queries. One of the major components is the (i) Pattern editor. This is an Xtext-based [29]

editor for IQPL with syntax highlighting, auto-completion support and pattern well-formedness

validation. The purpose of the (ii) Query explorer is to evaluate complex queries on selected

EMF models, and to visualize the match set of each pattern. Another very important part of the

QDE is the (iii) Code generator. It is tightly connected to the editor, as well as registered into

the Eclipse builder framework. Thanks to this strong coupling with the IDE, code generation

is executed after pattern definitions are modified, and saved. The output of the generation

process is a pattern-specific Java code, that helps the integration of EMF-INCQUERY to Java

applications by creating type-safe API for matchers.

14

To further extend the capabilities of the QDE, we developed a (iv) Local search debugger (high-

lighted with solid red background in the overview). It is designed to help the pattern devel-

opers understand and debug the local search-based pattern matching process by providing a

visual representation of the calculated search plan, and to support step-by-step execution ca-

pability. Section 4.2.3 introduces the new debugger component and its capabilities in detail.

EMF-INCQUERY provides several application integration components as well, as indicated in

the top part of Figure 3.2. They are not discussed in this work in detail, but they provide an

API for accessing the features of the EMF-INCQUERY framework from Java programs.

3.3 Pattern matching workflow

We separate the local search-based pattern matching tasks into two categories. The first cate-

gory is design time tasks, and the second is execution time tasks. Our pattern matching workflow

is depicted in Figure 3.3.

Flatten
Calculate

search plan
Start

Pattern

definition

Normalize
Compile

search plan

Environment-

specific search

steps

End

Execute

search
Match set

Execution time
Design time

Figure 3.3. The local search-based pattern matching workflow

The majority of the steps of the workflow are considered to be design time tasks. The first task

is to flatten the input pattern description. The pattern description may refer to other patterns,

and flattening means the resolution of these references. As a result, a flat pattern is created

that unifies all constraints and variables, both from the referrer and the referee patterns. This

allows to optimize on a global scale, rather than locally for patterns. It is important to add that

semantics of the pattern is preserved throughout the process. Details about the implemented

flattener algorithm is discussed in Section 4.2.2.

In the next step the flattened pattern is normalized. This means an analysis in order to remove

redundant, thus unnecessary constraints. For instance, type checking multiple times for the

same variable, and with the same type is omitted. This step also unifies variables among

equalities.

From the normalized pattern the local search planner calculates a search plan in the third step

of the above workflow. In this case, this means an ordering of the constraints contained in

the pattern. At this point all constraints and variables are directly contained in a normalized,

15

flattened pattern that provides a global search space for the search plan calculation. As it was

already mentioned in Section 2.3.1, the declarative definition of patterns using IQPL does not

hold information about the order of constraint enforcement and computation of the matches

of a pattern. This requires the local search planner component to create the search operation

sequence that finds substitutions for variables. This list of search operation is derived from an

ordered list of constraints, which is done in compile search plan step. The outcome of design

time tasks is a list of environment-specific search steps. In case of EMF, these environment

specific search operations heavily rely on the efficient EMF reflective API, which is introduced

in Section 2.2.2, to obtain possible substitutions for the variables.

During execution time, this list of search steps determines the order of variable substitutions.

In the execute search phase, the executor looks for substitutions that satisfy all constraints of

the pattern. In the current application, it means that at some point, each variable is assigned a

model element to check if it satisfies the description of the pattern. The details of search plan

execution is detailed later in Section 4.3.

To demonstrate the effects of the tasks depicted in Figure 3.3, the flattened ver-

sion of the catchProblemFinder pattern is presented in Listing 3.1 under the name

catchProblemFinder_flattened.

1 pattern catchProblemFinder_flattened(cBlock : Handler, insOf : InstanceOf){
2 Identifier(varRef);
3 Unary.operand(insOf, varRef);
4 cBlock = handlerVariable_cBlock;
5 varRef = handlerVariable_variable;
6 Handler(handlerVariable_cBlock);
7 Indentifier(handlerVariable_variable);
8 Handler.parameter(handlerVariable_cBlock, handlerVariable_param);
9 Identifier.refersTo(handlerVariable_variable, handlerVariable_param);

10 }

Listing 3.1. Flattened pattern.

The body has all constraints from both catchProblemFinder and handlerVariable, as well

as additional equalities that declare the variables used to serve as parameters for the pattern

call constraint, and the corresponding variables from the flattened pattern are equal. New

variables coming from the flattening process are prefixed with "handlerVariable _".

A normalized version of the catchProblemFinder_flattened pattern is

catchProblemFinder_flattened_normalized (contained in Listing 3.2). To achieve

better readability of the created pattern description, we unified the variables with longer

names into variables with shorter names along equalities, and also simplified the name of

handlervar_param to param.

1 pattern catchProblemFinder_flattened_normalized(cBlock : Handler, insOf : InstanceOf){
2 Identifier(varRef);
3 Unary.operand(insOf, varRef);
4 Handler.parameter(cBlock, param);
5 Identifier.refersTo(varRef, param);
6 }

Listing 3.2. Normalized pattern.

16

From the flattened and normalized pattern description, the search plan depicted in Table 3.1

can be obtained. The details of the search plan calculation is included in Section 4.1.1

Constraint
1: varRef is of type Identifier
2: varRef is in operand relation with insOf
3: insOf is of type InstanceOf
4: varRef is in param relation with refersTo
5: param is referenced by cBlock in parameter
6: cBlock is of type Handler

Table 3.1. Search plan for the flattened pattern

If we compile the search plan for our introductory EMF-based example as the final step of the

design time tasks, the list of environment specific search operations will be the following:

1. Collect all instances that are of type Identifier. Then, one-by-one substitute the values

to variable varRef and advance to the next search operation.

2. For the current value of varRef, enumerate all values which can navigate to it on an

operand reference. Substitute each enumerated element to insOf, then go on to the

next operation.

3. Check if the type of the substituted element for variable insOf is InstanceOf.

4. Get all elements reachable from varRef by navigating on the param relation. Substitute

each element reached this way in place of variable refersTo, then advance to the next

operation.

5. Collect all elements that have the value of param in their parameter relation, then

substitute each to cBlock.

6. Check if cBlock has a substituted element of type Handler.

This step is then followed by the execution task on the given instance model. During the

execution in this current minimal example, there are only a few elements in every steps that

should be considered. There is only one match in this case, a tuple that is 〈hdl,io〉 (using the

notation of the hand drawn instance model in Figure 2.3).

17

Chapter 4

Integration to EMF-INCQUERY

In this chapter the design and integration challenges are discussed in details. The implemented

local search-based algorithm is from the paper [33]. The main advantage of this algorithm is

its adaptive model sensitive approach for calculating search plans. It means that the properties

of the instance model, on which the search plan calculation is executed, are considered. In this

work we only introduce the main differences and key ideas that were required for a successful

implementation and integration.

4.1 Details of the adapted algorithm

The published paper [33], which served as the basis of our implementation, is about pattern

matching over EMF models. However, it did not include any programming source code, only

pseudo code. For this reason, we adapted it to be executable on a JVM, and to also fit into

the internal design of EMF-INCQUERY. The current section introduces the concept of search

plan, and the outline of the search plan calculation algorithm, along with an illustration of its

execution on our running example. For a fully comprehensive description please refer to the

article cited above.

4.1.1 Search plan

A search plan, in our case, means an ordered list of constraints of the pattern definition. As it

was discussed in Section 3.3, the list of executable environment specific search steps are ob-

tained by compiling the search plan. This compilation is simply a mapping between constrains

and search steps, which only depends on the properties of the target modeling environment.

For this reason, in the following we are only concerned about the search plan calculation. In

the following we will refer to elements of the search plan as search operations, and we will

represent them with the corresponding constraint from the query definition.

In order to clarify the purpose of the search plan, we define the concepts of free variables and

bound variables. They can be interpreted as follows: if the search execution of the search plan

18

was halted at a given point, which variables would already be assigned to a model element,

and which variables would not have values yet. Variables without associated values are called

free variables (F), and variables with assigned values are referred as bound variables (B).

The pattern adornment denotes the initial binding state of the parameter variables of a pattern

at the beginning of the pattern matching, in other words describes witch parameter variables

have initial values. The purpose of the search plan is to guide the search execution in a way

that by reaching the end of the search plan each variable should already be bound.

The search operations can be categorized according to the binding state of the variables af-

fected by the corresponding constraint. Two basic categories of search operations are extend,

and check. A check operation verifies whether a variable substitution is in compliance with a

constraint included in the pattern. This means that in case of a check, every variable of the

operation is bound by the time of its execution. On the other hand, an extend operation has

a list of substitution values for a variable, where these values are selected based on the cor-

responding constraint. During the search, all the elements in this list are to be substituted in

order to find all matches in the model.

As a corollary of the definitions of check and extend operations, we can say that the position

of the operation in the search plan decides to which category it belongs. However, there

are some disallowed extend cases, which require a significant computational capacity during

search execution, thus they are to be avoided in a search plan. For instance, negative pattern

calls should always be check operations.

In the example, to find all occurrences in a given ASG of the code smell described by

catchProblemFinder, the initial adornment should be FF, which means both cBlock and

insOf parameters are unbound at the start of the pattern matching process. A possible search

plan for the catchProblemFinder pattern is included in Table 4.1.

Operation Type Bound variables
1: Indentifier(varRef) extend {}
2: Unary.operand(insOf, varRef) extend {varRef}
3: InstanceOf(insOf) check {varRef, insOf}
4: handlerVariable (cBlock, varRef) extend {varRef, insOf}
5: cBlock is a Handler(cBlock) check {varRef, insOf, cBlock}

Table 4.1. Search plan for pattern catchProblemFinder

For there are no bound variables initially, the search plan starts with an extend operation. In

this case it is an enumeration of instances of type Identifier. In the next step, by an inverse

navigation from the bound varRef variable, along the operand relation possible elements

for insOf are collected. When using the EMF-INCQUERY Base Index over a model, inverse

navigation along edges are possible, even if the reference has no inverse in the metamodel.

The third step is a check operation, which makes sure whether the value of insOf is of type

InstanceOf. The fourth operation is an extend, for it binds the cBlock variable by calling

the pattern handlerVariable with an adornment FB. As the result of the pattern call, each

possible Handler block is collected for the value of varRef. In the final step of the search

19

plan, the substituted value for cBlock is verified to be of type Handler. Note, that after the

last search operation all variables are bound.

The search plan for the referred handlerVariable pattern with initial pattern adornment FB

is shown in Table 4.2. However, we do not introduce the execution steps, because it is very

similar to the steps of the search plan introduced for the catchProblemFinder pattern, except

its initial pattern adornment is BF, which means that cBlock already has an assigned value.

Operation Type Bound variables
1: Handler(cBlock) check {cBlock}
2: Handler.parameter(cBlock, param) extend {cBlock}
3: Identifier.refersTo(variable, param) extend {cBlock, param}
4: Identifier(variable) check {cBlock, param, variable}

Table 4.2. Search plan for pattern handlerVariable

To demonstrate the importance of flattening and normalization, we include a possible search

plan for the pattern from Listing 3.2 in Table 4.3. As we previously discussed in Section 3.3,

the flattened and normalized patterns have the same semantics as the original. However, the

search plan for the normalized pattern is simpler than the two original search plans together,

where by simple we mean it has less steps of the same operation type than the search plans

calculated for the original descriptions.

Operation Type Bound variables
1: Identifier(varRef) extend {}
2: Unary.operand(insOf, varRef) extend {varRef}
3: InstanceOf(insOf) check {insOf, varRef}
4: Identifier.refersTo(varRef, param) extend {insOf, varRef}
5: Handler.parameter(cBlock, param) extend {insOf, varRef, param}

6: Handler(cBlock) check
{insOf, varRef,
param, cBlock}

Table 4.3. Search plan for the flattened and normalized pattern

4.1.2 Search plan calculation

To find the ordering of the constraints that yields an efficient search plan is a non-trivial task.

To estimate the time needed to execute the matching, we can assign costs to search operations,

and from the individual costs of the operations we can derive the cost for the complete search

plan. Cheap search plans are desired, for it means that the search can finish faster according

to our cost estimation.

In addition to Table 4.3, the search plan listed in Table 4.4 can also be used to find matches

for the catchProblemFinder pattern, they only differ in the order of operations. It is model-

dependent, which provides faster execution.

20

Operation Type Bound variables
1: Handler(cBlock) extend {}
2: Handler.parameter(cBlock,param) extend {cBlock}
3: Identifier.refersTo(varRef, param) extend {cBlock, param}
4: Identifier(varRef) check {cBlock, param, varRef}
5: Unary.operand(insOf, varRef) extend {cBlock, param, varRef}

6: InstanceOf(insOf) check
{insOf, varRef,
param, cBlock}

Table 4.4. An alternative search plan for catchProblemFinder

Calculating the cost of a search plan

The search plan calculation algorithm described in [33] proposes a method to calculate op-

eration weight to encode the estimated costs of the operations and search plans. Our current

implementation of the algorithm applies the proposed solution with minor modifications.

The main idea is to take every constraint form the pattern, and generate search operations

with all possible and allowed variable binding combinations. This means, for every constraint

it generates 2a search operations, where a is the number of variables affected by the constraint.

This could results in several search operation objects, however, typically constraints have 1 or

2 variables, and for pattern call constraint, we only allow BB...B adornments. We can say that

in practical applications, the result search operation set will not reach extreme sizes typically.

In the final search plan each constraint will be represented by exactly one search operation, and

the unused ones will be discarded.

Along with the creation of search operations, an estimated number of potential substitutions

values is calculated, which the executor has to check each time, when it is executed. This

number is then used as its weight or cost. This means that check operations have a weight of

1, for they only verify whether the current substitutions satisfy a constraint.

For extend operations, we distinguish several cases. If the operation affects only one variable,

which is in case of EMF-INCQUERY means a type constraint, then the cost of the operation is the

cardinality of the type required by the constraint. In case of operations enforcing an IQPL path

expression, which define that two model elements are connected by an EReference instance,

there can be three cases according to the binding state of the of the affected variables:

• FF: this operation adornment is disallowed.

• BF: in this case the cost is estimated with the average branching factor, given by the

formula weight=
cardinality of source class

number of links
.

• FB: similarly to the previous case, the average branching factor is calculated by

weight=
cardinality of target class

number of links
.

21

Every other type of constraint, that is not flattened or normalized (count find, neg find,

and inequality) are not allowed as extend operations, for they would typically require unman-

ageable search times. Positive pattern calls are at the moment always flattened.

The cited article distinguishes other constraint types as well, such as ternary constraints for

ordered references, but in EMF-INCQUERY there is no support to directly input such constraints

yet.

From the wok
costs for each ok operation, where k represents the position in the search plan,

the total cost Cn of a search plan containing n search operations is calculated with the following

recursive formula:

Cn =
n
∑

i=1

i
∏

j=1

w j = Cn−1 +wo1
·wo2

· · · ·won
.

Dynamic programming based search calculation

With the above definition of search plan cost, a dynamic programming based approach is used

to create search plans that are cheap in this sense. The algorithm outline is as follows:

1. Initialize a table with dimensions d × (f + 1), where d is an input parameter of the

algorithm. We call it drop threshold, because it influences which search plans are con-

sidered too expensive during the planning process, and thus ignored in later steps. The

f symbolizes is the number of free variables in the initial adornment of the pattern. Each

column symbolizes the number of free variables, and each cell represents a search plan.

Column indices go from f to 0.

2. Starting from the f th column, we begin filling out the table using the rules below:

• Based on a previous search plan, we pick an applicable extend operation, which

means every variable affected by the operation and marked with B in its adornment

is bound by the end of the previous search plan, and every variable marked with

F in the operation adornment is free at the end of the selected, preceding search

plan. When done, we append it to the search plan. In case we are filling out the

f th column, and there is no preceding, then create a new one instead.

• Append all applicable check operations to the search plan, then calculate a new

cost using the recursive formula.

• Insert search plans calculated this way in an increasing cost order to the table, and

simply drop search plans that do not fit. The number of search plans in a column

is determined by the parameter d.

3. Select the plan that is in the intersection of the first row and 0th column, because has

the lowest cost, and yields BB...B variable binding after its final step.

22

Two steps of the running algorithm on the model depicted in Figure 2.3 is demonstrated in

Figure 4.1 by filling up the columns 4, 3 and 2 of the table of search plans. The d parameter

is set to 2.

Search

plan cost

Bound

variables

Search

plan cost

Bound

variables

Search

plan cost

Bound

variables

1 [] 0 {} 1 [Handler(cBlock)] 1 {cBlock} 1 [Handler(cBlock),

Handler.parameter(cBlock,param)]
2 {cBlock,

param}

2 2 [InstanceOf(insOf)] 1 {insOf} 2 [InstanceOf(insOf),

Unary.operand(insOf, varRef)]
2 {insOf,

varRef}

3 [Identifier(varRef)] 2 {varRef}

d = 2

Column 3 Column 2

Operation list Operation list Operation list

Column 4

Figure 4.1. Table of search plans

Initially column 4 contains only one entry, which is a search plan with an empty list of

operations, total cost of 0, and an empty set of bound variables. Based on the vari-

able binding, the applicable constraints are Handler(cBlock), Identifier(varRef), and

InstanceOf(insOf), all with adornment F.

In the first step, the cost of the search plans containing only one of them is calculated. Using the

recursive cost formula, it gives the cost of the operation plus the cost of the preceding search

plan, which is in this case 0. Based on the instance model the costs are 1 for Handler(cBlock),

2 for Identifier(varRef), and 1 for InstanceOf(insOf). The search plans are then in-

serted into column 3 in increasing cost order. We chose d = 2, so the third search plan is

discarded, which means it is not stored in the table, thus not used as the basis of latter search

plans.

In the second illustrated step, the same considerations are applied. First, the applicable search

operations are collected for the search plans: Handler.parameter(cBlock,param) with

adornment BF is for the plan in column 3, row 1, and Unary.operand(insOf, varRef) with

adornment BF for the plan in column 3, row 2. Other operations are currently not available,

neither extend operations, nor check operations, so only one new plan is derived for each of

them. We can estimate the cost for Handler.parameter(cBlock,param) to
1
1
= 1, because

our simple example model contains only 1 Handler element, that has only one parameter

link. Similarly for Unary.operand(insOf, varRef) the cost is also 1. In both cases the

costs of the new search plans will add up to 1+ 1 ∗ 1= 2, using the recursive cost calculation

formula again.

We do not introduce the complete run, but the paper [33], from which we adapted the algo-

rithm, contains a complete running example on the process of calculating the search plan.

The complexity of the implemented algorithm is O (|V |2 · |O|2), where V denotes the set vari-

ables, while O marks the set of constraints included in the pattern. The parameter d simplifies

the calculation, because the plans that are more likely to have too high costs are discarded im-

mediately, and not taken into account in later steps. However, if this value is chosen to be too

small, the algorithm will execute similarly to a greedy algorithm. According to our experiences,

choosing d = 4 is a reasonable setting for practical applications.

23

4.2 Implementation details

This section summarizes the main design decisions that were followed during the implemen-

tation. In Section 4.2.1 the common matcher interface for both the local search and the Rete

pattern matcher introduced. Then in Section 4.2.2 the iterative flattener algorithm imple-

mented for the local search planner is outlined. In Section 4.2.3 we describe the capabilities

of the Local Search Debugger component, that can help developers to optimize the patterns.

4.2.1 Common matcher API

In terms of development of EMF-INCQUERY, one of the biggest recurring questions is to decide

for which extent we are supposed to provide a generic solution to a problem, and to which

extent we should give a specialized solution. Before answering this question, several aspects

will be considered, such as modularity, reusability and backward compatibility.

When we decided to provide matchers that use the local search-based pattern matching algo-

rithm for finding matches, there was already an existing Rete algorithm-based matcher imple-

mentation. To prevent breaking the API and causing backward incompatibility, the functions of

the RetePatternMatcher were pulled up to an interface called IQueryResultProvider. For

the new algorithm, a new class LocalSearchResultProvider was created that implements

the (now common) IQueryResultProvider interface. This way users who already worked

with a RetePatternMatcher can still do so, while users of the new API are advised to access a

result provider via the IQueryResultProvider interface. Figure 4.2 shows the class diagram

of the current solution.

Figure 4.2 illustrates the classes that are associated with the new

LocalSearchResultProvider. The provider has a LocalSearchPlanner and a

LocalSearchMatcher. The former is responsible for the search plan calculation, while

the latter contains the search execution code. The planner has dedicated compo-

nents for each process depicted in Figure 3.3: PQueryFlattener, PQueryNormalizer,

LocalSearchPlannerStrategy, and POperationCompiler, respectively.

We reused the normalizer from the Rete algorithm. The other three components, which also

realize steps of the search plan calculation workflow, are created with respect to modular-

ization. Each provide a functionality that may be later replaced with a new implementation.

This is especially true for the LocalSearchPlannerStrategy. It holds the business logic for

the search plan calculation, so if an alternative version is to be created, only this component

should be replaced or changed.

4.2.2 Flattening

The flattening is a novel feature in the EMF-INCQUERY framework. It is not needed by the

Rete pattern matcher, but in case of local search-based pattern matching it supports cheaper

24

Figure 4.2. The internal structure of the new result provider

search plan calculation. Pseudo code of the core algorithm used for flattening is shown in

Algorithm 1.

Algorithm 1: Flattening
input : A pattern patternDescription
output: Semantically equivalent, flattened pattern

1 preStack← ;; postStack← ;;
2 preStack.push(patternDescription);

3 while preStack not empty do

4 item = preStack.pop();

5 postStack.push(item); // Schedule for flattening

6 for calledPattern ∈ set of patterns called by item do

7 if calledPattern needs flattening then

8 preStack.push(calledPattern); // Fill up preStack
9 end

10 end

11 end

12 while postStack not empty do

13 item = postStack.pop(); // Take out for flattening

14 item.copyCalledIntoCaller();

15 end

In line 1 two empty stacks are initialized: preStack holds the patterns that are encountered

during the traversal of the call tree, while postStack holds patterns that need to be flattened,

and all the referred patterns are flat. In line 2 the parameter pattern is scheduled for flattening.

To flatten all calls, a preorder depth-first traversal is done on the pattern call tree between line 3

and line 11. This collects all calls that are necessary to be flattened at some point. This cycle

25

leaves patterns untouched, only inserts them to the preStack by the time they are encountered

during the traversal of the call tree.

From line 12 to line line 15 postorder actions are carried out. At this point we know, that the

item in line 13 is a pattern that may refer only to flattened patterns, or to patterns that need

no flattening. For this reason, the only remaining task is to copy the called patterns into the

caller. The function copyCalledIntoCaller leaves the pattern untouched, in case it needs

no flattening, in other cases it merges the called pattern constraints and variables to the caller.

The reason for this can be the pattern contains no call, or some predicate tells that the pattern

should not be flattened.

This algorithm can be used efficiently to flatten pattern calls. However, EMF-INCQUERY has

language constructs, for which flattening cannot be applied, namely neg find, count find,

and binary transitive closure. In these cases the matching should be done by calling matchers

for the referenced queries.

A limitation of the current implementation is the lack of support for recursive queries. This

algorithm would end up in an infinite loop, if a recursive query was its input. For this reason,

in the current implementation the planner first checks for recursion. If the pattern is not

recursive, flattener can proceed, otherwise an exception is thrown.

4.2.3 Debugger tooling

This description of the Local Search Debugger tooling is from the paper [7]. The high-level,

declarative nature of graph patterns sometimes results in hard to understand corner cases.

In such cases simply looking at match results, as supported by the Query Explorer, does not

provide enough details to locate the source of the problem. To support this use case, the

development environment of EMF-INCQUERY has been extended with a Local Search Debugger

view that follows through the execution of a search plan created for a pattern over a model.

As constraints of graph patterns are often not evaluated in the order of their definitions, it

is hard to see which constraints are already evaluated during search execution. On the other

hand, the ordered search operations visualize the status of pattern matching, and can be traced

back to the source pattern. The view can also be used for pattern matching execution opti-

mization, similar to explain plans [23] used for optimizing SQL queries.

As Figure 4.3 depicts a screenshot of the tool. Its view has four distinct parts to display infor-

mation about as well as to control the execution. At the upper left corner (a) the search plan

itself is shown, including the plans created for called patterns. Each line represents a search

operation, and child nodes are operations of a called pattern. The current status of the execu-

tion is indicated with a set of icons: check marks are assigned to executed operations, question

marks are assigned to operations not yet started, while the current operation is denoted with

the ’Run’ symbol. In this screenshot, the search plan contained in Table 4.4 is displayed for the

catchProblemFinder pattern. It is also extended with a final virtual search step called Match

found, which is only used to visualize the event of finding a match. The execution is halted

26

after the execution of the first three extend operations, and the following check is ready for

execution.

Figure 4.3. Local search debugger view

In the bottom left corner (b) a set of tables is presented on different tabs summarizing the found

matches. The tabs have the same name as the corresponding pattern, and the tables include

the found matches of all patterns in different tables on different tabs, including both parame-

ters and local variables. In Figure 4.3, currently variables cBlock, param, and variable are

assigned a value, and insOf is null, which indicates that it is not bound to a value.

In the right side (c) of the view, a graph representation is provided for the currently evaluated

(partial) match, showing the current substitutions for the pattern variables along with the

relationships between them. The example screenshot depicts that there is an object of type

Handler (bottom), which is linked to a Parameter instance (middle). The Parameter in-

stance is further linked to an object of type Identifier (top). The presentation also contains

the names and types of objects, and the names of relations.

Finally, to control the execution, (d) standard debugging operations are available [25]. Break-

points can be assigned to search operations either by selecting the operation and clicking on

the bug icon, or by double clicking on an operation in the search plan. In addition, both

step-by-step and continuous execution modes are available. The former is indicated with the

step into, the latter is with the continue halted execution icon. To initiate the pattern matching

process, the play button should be pressed after selecting the desired pattern in the Query

Explorer.

This view complements the debugging capabilities of the Query Explorer, as the latter one is

useful for identifying problematic cases by providing live feedback when the model changes,

while the former visualizes the detailed execution of the search. The local search algorithm,

in our experience, works similarly as a query developer reasons about a graph pattern, thus it

eases the understanding of complex graph patterns.

27

4.3 Details of search execution

The search execution relies on the search plan to find suitable substitutions for the variables

of the pattern. In the following sections a sequential, and a parallel execution approach is

introduced in Section 4.3.1, and in Section 4.3.2, respectively.

4.3.1 Sequential search

A generic structure for a search plan is depicted in Figure 4.4. If an operation is scheduled for

th first execution, is initialized, then executed. A search execution should always start with the

initialization of the first operation.

oi+2: extendoi+1: checkoi: extendoi-1: check ... on: check

Rest of the search planFirst extend

Possible substitutions: e1, e2, ..., en

o1: check ...

First operation

Figure 4.4. Search plan as list of search operations

For extend operations, the initialization means gathering all elements of a type, or enumerating

model elements that are navigable from a reference of a given object. In general terms, it

initializes a collection of potential substitutions for a variable. When executing the extend

operation, there can be be two outcomes, which are success or failure. In case of success, the

next value from the collection was successfully substituted into a variable. When execution

fails, it indicates that there were no more potential substitutions available for the variable.

Initialization for check operations only means setting a boolean indicator isExecuted to

false. When the check is executed, it sets isExecuted to true, and the substitutions of the

affected variables are tested against the constraint that is assigned to the check operation. The

result of the execution returns success, if the substituted values fulfill the requirements set by

the constraint and the isExecuted flag was now set to true.

If the execution of an operation is successful, the executor may carry on to the next operation,

otherwise it backtracks. Upon backtracking, the previous operation is not initialized again,

only executed.

A match is found, when the last operation returns success. In this case, after storing the match,

a backtrack is enforced on the last operation in order to find further matches, even though the

operation returned success. Matching is finished, when the first operation returns failure.

A running example of the search is illustrated step-by-step in the followings. In this case the

search is carried out on the example instance model captured in Figure 2.3, and uses the search

plan included in Table 4.3.

Figure 4.5 displays the search space tree for the example. Its nodes are symbolizing different

states from the aspect of variable bindings. Each of them is represented by a table containing

28

a header with the names of all variables in the pattern, and a single row containing the names

of the substituted model elements. The minus sign (−) symbolizes that a variable is unbound.

The parameter variables are in the left part of the tables, while the right part, which is separated

by double vertical lines, holds the rest of the pattern variables.

The directed edges are showing the possible transitions between the states by substituting a

suitable value. There are no different states representing fully identical assignments to all

variables.

cBlock InsOf varRef param
− − − −

cBlock InsOf varRef param cBlock InsOf varRef param
− − file − − − e −

cBlock InsOf varRef param
− io e −

cBlock InsOf varRef param
− io e e

cBlock InsOf varRef param
hdl io e e

1. Identifier(varRef)

3. InstanceOf(insOf)

6. Handler(cBlock)

4. Identifier.refersTo(varRef, param)

5. Handler.parameter(cBlock, param)

2. Unary.operand(insOf, varRef)

Figure 4.5. Search space tree for search plan in Table 4.3

In our running example, the search starts with unbound variables. In the first step, which is the

execution of an extend operation, the executor collects all possible substitutions for varRef in

a list, which is in this case [file, e]. Then, it substitutes file, which is the first element, to

varRef, and proceeds to the next operation. In Figure 4.5, the newly substituted values are

indicated with bold letters. However, the model does not contain any element of type Unary

from which the element file would be navigable via the operation reference, and for this

reason the executor backtracks.

The next action is to substitute a new value to varRef, which is e with the type Identifier.

Then again, the executor seeks for all Unary elements that has e as their operand. This case

it gives a list of length 1, namely [io]. Then this only value is substituted to insOf. After

substitution, it is made sure that its type is InstanceOf by the check operation, which is

indicated by italic letters in the search space tree. Next, the elements of the refersTo relation

is gathered, which is a list of containing the model element e of type Parameter, which is not

to be confused with the Identifier already substituted to varRef. It is followed by collecting

all objects from the model that can reach e via parameter reference. This case it is only the

hdl, which is finally checked if it has the type Handler. This is also stands, so a match is

found.

At this point the matching process is not over, for all other potential values gathered in extend

operations should be tested, if they can form a match. For this reason, the execution backtracks

until the last extend operation can pick a new value for substitution. However, this case every

29

extend operations, including the first, have reached to the end of their list of substitution

values. For this reason, after the backtracking is done, the pattern matching finishes.

4.3.2 Multi-threaded execution

If a search plan contains at least one extend operation, it means that the executor will test each

possible substitutions one-by-one. This provides an opportunity, to distribute the substitution

tasks among multiple executors. We proposed a simple solution in which the search plan is

forked at the first extend operation. These forks are assigned to separate executors running on

different threads in order to harness the additional resources available in multi-core/Hyper-

threading computers. The basic idea of the solution is illustrated in Figure 4.6

oi+2: extendoi+1: checkoi: extend ... on: check

Rest of the search planFirst extend

o1: check ...

First operation

oi+2: extendoi+1: checko1i: extend ... on: check

Possible substitutions: e1, e2, ..., ej1

oi+2: extendoi+1: checko2i: extend ... on: check

oi+2: extendoi+1: checkoci: extend ... on: check

Possible substitutions: ej1+1,ej1+2, ..., ej2

Possible substitutions: ejc-1+1,ejc-1+2, ..., ejc = en

oi-1: check

Figure 4.6. A possible parallelization of search plan execution

We can assume that the first extend operation in the search plan is oi with the possible sub-

stitutions e1, e2, . . . , en, and we also know that ep = eq iff p = q, where p, q ∈ [1, n]. Then we

can evenly distribute the values among c processors by creating c number of modified ok
i ex-

tend operations. These modified extends should have substitution values e jk+1, e jk+2, . . . , e jk+1
,

where jk = (k− 1) ·
jn

c

k

for every k = 1,2, . . . , c − 1, and e jc = n

Creating a copy of the operations marked as Rest of the search plan in Figure 4.6 is necessary,

because the search operations are represented by stateful objects. Preserving a state is required

for extend operations to maintain the internal collection of potential substitutions, and also

required for check operations to handle backtracks with the isExecuted flag.

We can summarize our solution for parallelization in three steps:

30

1. The task is to instantiate modified extend operations, marked with the ok
i in Figure 4.6,

and distribute the candidate elements of the first extend among them. This step also

includes creating a copy from the rest of the search plan.

2. Carry out sequential execution for each newly created search plan. Each executor should

maintain its own result set, instead putting the matches in a shared collection. The

latter option was also considered, but in order to avoid synchronization and blocking,

we decided to merge the results in a separate step.

3. Await all executors, then merge the results. The uniqueness of matches is automatically

ensured by the fact that the modified extend operations work with disjoint lists of model

elements, which is the result of the initial assumption of ep = eq iff p = q, where p, q ∈
[1, n].

4.3.3 Advantages and weaknesses

A huge advantage of the solution is the possibility to utilize all physical execution cores of

the hardware. Based on Amdahl’s law, using a CPU with c cores, the time t needed for the

sequential the search execution could drop to (1− p) · t +
p
c
· t, where p ∈ [0,1] expresses the

portion of the instructions that can run in parallel. If there was p ≈ 1, it would yield
t
c

for the

new execution time. This sounds promising, but the evaluation results in Section 5.4 and in

Section 5.5 will show that the speedup in practice is not even close to this bound generally,

which means a significant part of the instructions cannot run in parallel.

As a drawback, the solution has preparation overhead. This currently means the creation of

the executor thread pool, the distribution of the model elements among executors, and the

cloning of the rest of the search plan. Additionally, when creating sublist from the list of

elements of the first extend operation, it is unknown how long will it take for the executor,

until all matches that involve the element will be found. It may turn out soon that the value

fails to fulfill even the constraint associated with the next check, but it is also possible that the

substituted value is part of several matches, taking the executor long time to compute them

all.

31

Chapter 5

Evaluation

In the current chapter the environment used for assessing the implementation is introduced

in Section 5.1, Section 5.2 and in Section 5.3, then the performance of the implemented local

search-based pattern matching algorithm is evaluated in Section 5.4. An additional measure-

ment was done for scalability in an environment with limited memory in Section 5.5.

5.1 Measurement workflow

The measurement setup is composed of four phases: (i) Read, (ii) Create engine, (iii) Calculate

search plan, and (iv) Check. The steps are depicted in Figure 5.1.

LoadStart

Instance

model

[Local search]

Type of

backend

Index the

model

Calculate

search plan

Execute

search

End

Build Rete

network

Read match

set

[Rete]

Read Create engine
Calculate

search plan
Check

Figure 5.1. The workflow used for measurements

The Read step measures merely the time needed to load the EMF model into memory. The

Create engine step is different for the incremental, and local search-based approaches. For a

local search based-algorithm only a basic indexing of the elements is performed in order to

provide cardinality information for the search plan calculation. In case of Rete, in addition to

the indexing, the whole Rete network is created, which means most of the pattern matching

is done here. Calculate search plan phase is only related to local search, for in this step the

32

search plan calculation time is monitored. Finally the time needed for the retrieval of results

is observed in the Check phase.

5.2 Measurement environment

The computer used for carrying out the measurements was a ThinkPad T440p laptop, running

Linux 3.16.0-38-generic x86_64 operating system, and had the following hardware configu-

ration:

• CPU: Intel® CoreTM i7-4700MQ CPU @ 2.40GHz

• Memory: 2 × 4096 MB DDR3 @ 1600 MHz

• SSD: Intel 320 Series SSDs, model: INTEL SSDSA2CW160G3

We used JavaTM SE Runtime Environment (build 1.8.0_66-b17). In order to successfully load

every used model to memory, we supplied the JVM 6 gigabytes of heap size by using the -Xms6G

and -Xmx6G parameters.

We tested the performance of the incremental Rete (referred as Incremental), the single-

threaded local search-based (Sequential), and the parallel local search-based (Parallel) algo-

rithms. We assessed the performance using the newest algorithm versions available on De-

cember 10, 2015 in EMF-INCQUERY.

5.3 Models and patterns used for assessment

In order to evaluate scalability of the algorithms, we carried out measurements on three dif-

ferent model sizes with four different queries. Both the models and queries are from [32].

The selected models for this work are the EMF representations of the ASGs of programs Qw-

icap, Frinika, and Hibernate. Qwicap is a library for Java web application development. Frinika

is a music workstation software, which provides several features for editing and working with

music. Hibernate is a tool that can be used to implement object-relation mapping for appli-

cations to persist data. We chose these softwares, because both are free and open-source,

and have different sizes, thus they can help assessing scalability of the approaches. Table 5.1

summarizes the basic metrics of the source code and the generated ASGs.

Model name Version LOC Node Count Edge Count
Qwicap 1.4b24 443 7,903 21,222
Frinika 0.5.1 64,828 429,407 1,292,961
Hibernate 3.5.0 773,166 2,444,419 7,563,207

Table 5.1. Metrics of the analyzed ASGs

The four cases if code smell are named Catch, which is the same as the example

catchProblemFinder pattern describes, Constant compare, No default switch and Unused pa-

33

rameter. The descriptions of the latter three anti-patterns are again taken from [32], and are

as follows:

• Constant compare: When a String variable is compared to a String literal using the

equals() method, it is unsafe to have the variable on the left hand side. Changing

the order makes the code safe (by avoiding null pointer exception) even if the String

variable to compare is null.

• No default switch: Missing default case has to be added to the switch.

• Unused parameter: When unused parameters remain in the parameter list they can be

removed from the source code in most cases.

In Table 5.2 we summarized the total number of variables, constraints, and any type of pat-

tern calls used to describe the problem using IQPL. These numbers does not provide precise

description, however, they tell that these patterns are adequate for performing measurements

to test scalability of the approaches from the aspect of pattern complexity. The No default

switch is considered to be the simplest, while Unused parameter the most difficult to match.

Anti-pattern problem Variables Constraints Pattern calls
Catch 6 9 1
Constant compare 9 10 4
No default switch 3 5 1
Unused parameter 19 29 9

Table 5.2. Main attributes of the patterns

5.4 Performance evaluation

The output of the assessment for the three different models are summarized in Figure 5.2. For

detailed numeric results, please refer to Table A.1, Table A.2, and Table A.3 in the Appendix.

Based on the times needed for each task, we obtained multiple conclusions.

In the Read phase, loading the model takes significant amount of time. In case of large models

this is the longest task, but for smaller sizes it is still comparable to engine creation. This

complies with the fact that engine creation involves indexing the model elements, and for the

Rete algorithm, also building the Rete network based on the index. This also explains why it

takes multiple times more, according to the measurements, to finish the engine creation phase

for the incremental algorithm.

For the search plan calculation phase, however, unexpectedly large execution times were en-

countered. This is the step, when the constraints of the pattern are put into an ordered list that

makes up the search plan. The current implementation of the algorithm uses cardinality infor-

mation of types about the instance model in order to determine the order of the operations.

After a more detailed analysis of the relevant module, it turned out, that the base indexer has a

34

Catch Constant compare No default switch Unused parameter

0.0

0.1

0.2

0.3

0.4

0.5

0

2

4

6

0

10

20

30

Q
w

icap
F

rinika
H

ibernate

In
cr

em
en

ta
l

Par
all

el

Seq
ue

nt
ial

In
cr

em
en

ta
l

Par
all

el

Seq
ue

nt
ial

In
cr

em
en

ta
l

Par
all

el

Seq
ue

nt
ial

In
cr

em
en

ta
l

Par
all

el

Seq
ue

nt
ial

Algorithm

E
xe

cu
tio

n
tim

e
[s

]

Read Engine creation Search plan calculation Check

Total execution time on source code models

Figure 5.2. Measurement results for anti-pattern detection in ASGs

35

fairly suboptimal implementation for this part. The method countTuples(IInputKey key,

Tuple seed) in EMFQueryRuntimeContext currently returns the result of the size() method

called on the result of baseIndex.getAllInstances(eClass). The already existing imple-

mentation of the getAllInstances(EClass type) method of the NavigationHelperImpl

class is included in Listing 5.1.

1 @Override
2 public Set<EObject> getAllInstances(EClass type) {
3 Set<EObject> retSet = new HashSet<EObject>();
4 Object typeKey = toKey(type);
5 Set<Object> subTypes = contentAdapter.getSubTypeMap().get(typeKey);
6 if (subTypes != null) {
7 for (Object subTypeKey : subTypes) {
8 final Set<EObject> instances = contentAdapter.getInstanceSet(subTypeKey);
9 if (instances != null) {

10 retSet.addAll(instances);
11 }
12 }
13 }
14 final Set<EObject> instances = contentAdapter.getInstanceSet(typeKey);
15 if (instances != null) {
16 retSet.addAll(instances);
17 }
18 return retSet;
19 }

Listing 5.1. The implementation of the getAllInstances method.

This method, as its name advices, returns a collection of all objects of a given type. If we

inspect the implementation, in line 3, a new Set is instantiated. All subtypes of the given type

are collected in line 5. Between line 6 and line 13 all instances of all subtypes are added to

retSet, if there were any. In line 16 all direct instances of the given type are added to the

set containing the collected subtype instances. Finally, in 18 retSet is returned. According

to our measurements, adding approximately 100,000 elements to an empty set, then calling

size() takes about 20 ms on the computer, on which the performance evaluation was carried

out. For these cardinality information are not cached, if it is needed multiple times, the same

gathering of elements is carried out again. It also turned out, that the planner in many cases

does ask for cardinality information several times for a type.

An important observation is that generally the execution of Check phase may require orders of

magnitude less time than other steps. In case of the Rete algorithm this step consists of only

returning a copy of a collection in which matches are stored, because it is already prepared by

the time the Rete network is built. The local search-based algorithm, however, computes the

matches in this final phase of measurement. Thanks to the efficient, model sensitive search

plan, which is calculated in the preceding phase, the search for matches is done under a few

milliseconds for most cases. We experienced slightly notable durations for the largest used

model, Hibernate. In this case the matcher for Constant compare and Unused parameter pat-

terns worked several hundred milliseconds to compute matches. It is also important to add,

that these patterns are considered to be more complex than Catch and No default switch.

The results also shed light on the shortcomings of the current search parallelization. The

implementation creates a thread pool with c threads, where c equals the number of currently

36

available cores of the CPU. Then, the parallelization starts when the search execution reaches

the first extend operation, where the potential substitutions are divided between the threads.

The creation of a thread pool and distributing the work among threads seemingly imposes

some overhead, as it was foreseen in Section 4.3.3.

To decide which algorithm should be used in a certain scenario depends on several circum-

stances. According to the results, we can estimate the number of runs, where the Rete algo-

rithm outperforms the local search-based one in runtime. If we were to match the Catch prob-

lem against the model Frinika only once, it would take 2.535+1.813+0+0.0017= 4.3497 sec-

onds with the incremental algorithm. The same scenario would took 2.512+0.842+0.400+

0.0009 = 3.7549 seconds for the sequential local search-based algorithm. However, if we in-

creased the number of runs on a loaded model with an already created engine, each additional

run after the first one would took only 0.0017 seconds with Rete, and 0.4009 seconds with the

current implementation of the sequential local search-based version. From these data, we can

obtain a run count threshold, for which incremental algorithm is more beneficial with respect

to execution time. This run threshold r comes from the equation

2.535+ 1.813+ r · 0.0017= 2.512+ 0.842+ r · (0.400+ 0.0009),

and it yields r ≈ 2.5. So it means, if we run the same anti-pattern detection several times on

the model only one or two times, it is worth using local search, in other cases Rete will finish

faster. If we apply the above calculations for the measurement results of No default switch, we

get a threshold r ≈ 1546.7. However, we have to remark three important factors regarding

the above calculations:

• Rete network update times are neglected in this calculation, for they are assumed to be

minimal for small model changes.

• Currently the search plan calculation is highly ineffective due to a shortcoming in the

implementation of the base indexer. If this problem were fixed, the time needed for plan

calculation for local search would notably drop.

• In these cases the memory bounds were not a limitation.

• Search plans are not cached for later execution.

5.5 Running the Train Benchmark

Train Benchmark is a benchmarking framework aiming to test query evaluation performance

of model-driven engineering tools [18]. This evaluation is carried out by matching the same

patterns against several models with growing sizes. For this purpose Train Benchmark has a

model generator component that creates synthetic models for a given size range. It also pro-

vides predefined patterns to match against the generated models, for which basic complexity

information are included in Table 5.3. For detailed description of the models provided by the

generator and the patterns, please refer to the cited technical report above.

37

Pattern Variables Constraints Pattern calls
ConnectedSegments 7 7 0
RouteSensor 4 4 1
SemaphoreNeighbor 7 8 1
SwitchSet 4 7 0

Table 5.3. Train Benchmark pattern names and complexities

In our case we used this framework to test the scalability of the pattern matching algorithms

on the benchmark scenario depicted in Figure 5.1. We ran these measurements on a virtual

machine with the following hardware configuration:

• CPU: Intel® Xeon® CPU E5-2630L v2 @ 2.40GHz (12 cores)

• Memory: 32 GB DDR3 @ 1600 MHz

• SSD: Intel Corporation 82371SB PIIX3 IDE [Natoma/Triton II]

We used JavaTM SE Runtime Environment (build 1.8.0_66-b17), and ran the JVM without

extra parameters, which means the heap size limit was 1 GB.

Benchmarking memory consumption is a non-trivial issue in case of managed environments

like Java. For this reason we chose a limit for the maximum heap size. From this limit we will

not know the exact amount of memory needed, an out of memory error can indicate that the

program could not fit in the available size. This strategy can be used to decide which algorithm

needs more memory than others.

The performance characteristics were similar to what we described previously in Section 5.4.

The search plan generation times for the patterns of Train Benchmark, depicted in Figure 5.3,

were increasing with model size (in the diagram both axes are logarithmic). This also leads

to the conclusion that obtaining type cardinality information depends on model sizes. The

diagram also shows that search plan calculation for different patterns for the same model size

take time based on the complexity of the pattern.

On the synthesized models of Train Benchmark, we measured mostly linear characteristics

for both the sequential and the parallel local search-based pattern matching. The results are

depicted in Figure 5.4 (again, note the logarithmic axes in the diagram). In this cases, we can

observe almost immediate retrieval of results in case of Rete for every pattern. However, for

the local search based-pattern matching solutions both scale up in a linear way with the model

sizes. We can see that the parallel version of the implementation has an overhead compared

to the sequential solution, by comparing the check times needed for small model sizes. This

overhead, however, may pay off, since in case of large models the parallel version completes

faster.

The benchmark also showed that the incremental algorithm is more constrained by memory

than local search-based approaches. While running the benchmark with ConnectedSegments

38

●

●

●

●

●

●

●

●

●

●

●

●

10−2

10−1

100

101

102

1
4.9k

2
9.3k

4
19.8k

8
44.5k

16
85.4k

32
191.1k

64
372.1k

128
750.7k

256
1.5M

512
2.9M

1024
5.8M

2048
11.5M

Model size
Number of model elements

E
xe

cu
tio

n
tim

e
[s

]

●ConnectedSegments RouteSensor SemaphoreNeighbor SwitchSet

Batch scenario, Calculating search plan

Figure 5.3. Search plan calculation times for different patterns

on model scale 2048, the measurement was terminated by an out of memory error, showing

that the Rete network grew too large in this case.

The rest of the diagrams and tables, which contain the evaluation results of the benchmark,

are included in Section A.3 in the Appendix.

5.6 Evaluation summary

Based on the performed measurements, we came to the conclusion that the incremental Rete al-

gorithm runs significantly slower for the first time, compared to the implemented local search-

based approach. It also requires more memory for execution. However, we recommend to use

this algorithm despite these extra requirements if the same pattern should be matched against

the model multiple times consecutively, and if sufficient amount of memory is available.

The sequential local search-based solution has lower memory requirement in many cases, com-

pared to Rete. If the pattern matching is a one-time task, and the cardinality information about

the model elements is available, then this is the recommended algorithm.

The parallel local search-based approach differs from the sequential version only in search

execution. It has an initial overhead, but for large models it is more preferable in cases where

local search should be used.

39

●
●

● ●
● ●

●
●

●
●

●
●

●
●

●
● ● ●

●
●

●
●

● ●

●

●
●

●
●

● ●
●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

RouteSensor SwitchSet

ConnectedSegments SemaphoreNeighbor

10−2

10−1

100

101

10−2

10−1

100

101

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

Model size
Number of model elements

E
xe

cu
tio

n
tim

e
[s

]

●Incremental Parallel Sequential

Batch scenario, Check phase

Figure 5.4. Times needed for the Check phase

40

Chapter 6

Conclusion and future work

6.1 Conclusions

We implemented and integrated to the EMF-INCQUERY framework a model adaptive search

plan calculation algorithm for local search-based pattern matching. We also provided two

search execution runtimes, a single-threaded and a simple parallel runtime.

The implementation was tested for performance and scalability, and was compared to an al-

ready existing, incremental pattern matching algorithm from the aspect of execution time.

This evaluation, and comparison was done for models coming from two different domains.

First part of the measurements were done on source code models with patterns describing

program code smells. Additionally, we used the Train Benchmark to assess the usability of the

proposed solution. The results proved that in scenarios, in which patterns are only matched

against a model.

We also provided tooling support for the local search algorithm with a Local Search Debug-

ger component, which can help programmers find problems with the pattern definitions, and

provide help in finding time consuming operations in the pattern matching process.

6.2 Summary of contributions

I successfully adapted a local search-based pattern matching algorithm, which involves a

model sensitive local search planner implementation, and two executor runtimes. During

the implementation solved several design issues and integrated the result to the open-source

EMF-INCQUERY project. I provided support for debugging the local search execution by the

Local Search Debugger View.

I assessed the performance and scalability of the solutions, and via the evaluation I showed

that the local search-based algorithm provides a scalable solution for pattern matching even

over large models. The measurements also shed light on a shortcoming of the current imple-

mentation of the EMF-INCQUERY Base Indexer.

41

6.3 Future plans

The ultimate goal of the EMF-INCQUERY graph pattern matching framework is to successfully,

and efficiently find matches of a pattern over a given model. To improve execution times of

the local search based approaches, there are several improvement possibilities.

6.3.1 Information about type cardinality

It was covered in Section 5.4 that the current implementation of the base indexer is subopti-

mal. In addition to optimizing the current implementation, the performance can be improved

by providing an option to only maintain type cardinalities. This could return the required in-

formation with minimal overhead in execution time. It would also take up less memory than

the current implementation of the base index, for it would not keep track of the model ele-

ments themselves, only just the number of instances of the types. This information is sufficient

in most cases, when inverse navigation along links is not a requirement.

6.3.2 Adaptive cost calculation

The search operation costs are calculated based on the instance model properties, type of the

corresponding constraint, and the types of operations, which can be extend or check. This,

however, is still an estimation for the time needed to execute the operation. For this reason,

this information may mislead the local search planner, when an expensive operation is declared

to be cheap by the cost function.

The times needed for operations to execute can be collected runtime. We suppose that by

analyzing the historical data about the execution times can significantly help search operation

cost estimation by assigning different kinds of bias to search operations that take a long time

to finish.

6.3.3 Advanced parallel execution

As it was emphasized in Section 4.3.3, the current parallel pattern matching execution runtime

relies on a basic concept, and may not result in significant speedup. The evaluations show that

on practical models, in our case obtained from software source code, this approach does not

seem to be successful. In case of artificial models, a tendency was discovered that for larger

sizes the parallel outperforms the sequential implementation, but the execution times are far

below the theoretic possible speedup.

In order to approach the desired execution time introduced also in Section 4.3.3, work stealing

should be applied. This would mean that at any point of the search plan, the matching process

could be forked by several sequential executors. In an ideal case, this would happen in an on-

demand way during search execution: if an executor seems to have significantly more work

42

at a given extend operation, while other executors have finished their part, the work could be

redistributed, thus the computational resources of the platform could be harnessed again.

6.3.4 Hybrid pattern matching

In the EMF-INCQUERY framework there are two available graph pattern matching strategies

for the users, and both approaches has their own advantages and drawbacks. It would be

beneficial, to allow their combination in order to profit from their advantages. To accomplish

this, we see the following options. (i) Local search based pattern matcher may call incremental

pattern matchers for calculating matches of calls. (ii) In case of a Rete matcher, the production

representing a called pattern can be provided by the result set of a local search-based matcher.

43

Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors, Ákos Horváth and Zoltán

Ujhelyi for their continuous support and invaluable advices throughout my work.

Besides my advisors, I thank Gábor Szárnyas for all the precious help with the Train Benchmark

framework, and data visualization.

Finally, I would like to thank the staff working for DigitalOcean for providing me a multi-core

virtual machine to run Train Benchmark.

44

List of Figures

2.1 The ECore metamodel . 6

2.2 EMF metamodel fragment for ASGs . 7

2.3 The ASG representation of the example code snippet 8

2.4 Rete network for the catchProblemFinder pattern 10

3.1 The pattern matcher engine of EMF-INCQUERY . 13

3.2 The architecture of EMF-INCQUERY . 14

3.3 The local search-based pattern matching workflow 15

4.1 Table of search plans . 23

4.2 The internal structure of the new result provider . 25

4.3 Local search debugger view . 27

4.4 Search plan as list of search operations . 28

4.5 Search space tree for search plan in Table 4.3 . 29

4.6 A possible parallelization of search plan execution 30

5.1 The workflow used for measurements . 32

5.2 Measurement results for anti-pattern detection in ASGs 35

5.3 Search plan calculation times for different patterns 39

5.4 Times needed for the Check phase . 40

A.1.1 A more detailed EMF metamodel fragment for ASGs 50

A.3.1 Train Benchmark – Read phase . 53

A.3.2 Train Benchmark – Create engine phase . 53

45

List of Tables

3.1 Search plan for the flattened pattern . 17

4.1 Search plan for pattern catchProblemFinder . 19

4.2 Search plan for pattern handlerVariable . 20

4.3 Search plan for the flattened and normalized pattern 20

4.4 An alternative search plan for catchProblemFinder 21

5.1 Metrics of the analyzed ASGs . 33

5.2 Main attributes of the patterns . 34

5.3 Train Benchmark pattern names and complexities 38

A.1 Measurement results for Qwicap (in seconds) . 51

A.2 Measurement results for Frinika (in seconds) . 51

A.3 Measurement results for Hibernate (in seconds) . 52

A.4 Benchmark results for the incremental algorithm . 54

A.5 Benchmark result for the sequential local search-based algorithm 55

A.6 Benchmark result for the parallel local search-based algorithm 56

46

Bibliography

[1] Gernot Veit Batz, Moritz Kroll, and Rubino Geiß. A first experimental evaluation of

search plan driven graph pattern matching. In Andy Schürr, Manfred Nagl, and Albert

Zündorf, editors, Applications of Graph Transformations with Industrial Relevance, Third

International Symposium, AGTIVE 2007, Kassel, Germany, October 10-12, 2007, Revised

Selected and Invited Papers, volume 5088 of Lecture Notes in Computer Science, pages

471–486. Springer, 2007.

[2] Gábor Bergmann. Incremental Model Queries in Model-Driven Design. PhD thesis, Bu-

dapest University of Technology and Economics, Budapest, 2013.

[3] Gábor Bergmann, Zoltán Ujhelyi, István Ráth, and Dániel Varró. A graph query language

for EMF models. In Jordi Cabot and Eelco Visser, editors, Theory and Practice of Model

Transformations - 4th International Conference, ICMT 2011, Zurich, Switzerland, June 27-

28, 2011. Proceedings, volume 6707 of Lecture Notes in Computer Science, pages 167–182.

Springer, 2011.

[4] Franck Budinsky, David Steinberg, and Raymond Ellersick. Eclipse Modeling Framework:

A Developer’s Guide. Addison-Wesley Professional, 2003.

[5] Frank Budinsky. Moving into model-driven development. http://collaboration.

cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2005/0508/

0508c/0508c.html.

[6] Márton Búr. Model-based validation of Matlab-Simulink systems. Bachelor’s thesis,

Budapest University of Technology and Economics, Budapest, 2013, 2013.

[7] Márton Búr, Zoltán Ujhelyi, Ákos Horváth, and Dániel Varró. Local search-based pattern

matching features in EMF-IncQuery. In Parisi-Presicce and Westfechtel [24], pages 275–

282.

[8] Jordi Cabot and Ernest Teniente. Incremental integrity checking of UML/OCL conceptual

schemas. Journal of Systems and Software, 82(9):1459–1478, 2009.

[9] György Csertán, Gábor Huszerl, István Majzik, Zsigmond Pap, András Pataricza, and

Dániel Varró. VIATRA - visual automated transformations for formal verification and

validation of UML models. In 17th IEEE International Conference on Automated Software

47

http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2005/0508/0508c/0508c.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2005/0508/0508c/0508c.html
http://collaboration.cmc.ec.gc.ca/science/rpn/biblio/ddj/Website/articles/DDJ/2005/0508/0508c/0508c.html

Engineering (ASE 2002), 23-27 September 2002, Edinburgh, Scotland, UK, pages 267–

270. IEEE Computer Society, 2002.

[10] Eclipse Foundation. Ecore API. https://eclipse.org/modeling/emf/.

[11] Eclipse OCL Project. MDT-OCL website, 2014. https://projects.eclipse.org/

projects/modeling.mdt.ocl.

[12] Christoph Eickhoff, Tobias George, Stefan Lindel, and Albert Zündorf. The sdmlib so-

lution to the FIXML case for TTC2014. In Louis M. Rose, Christian Krause, and Tassilo

Horn, editors, Proceedings of the 7th Transformation Tool Contest part of the Software

Technologies: Applications and Foundations (STAF 2014) federation of conferences, York,

United Kingdom, July 25, 2014., volume 1305 of CEUR Workshop Proceedings, pages 22–

26. CEUR-WS.org, 2014.

[13] Holger Giese, Stephan Hildebrandt, and Andreas Seibel. Improved flexibility and scala-

bility by interpreting story diagrams. ECEASST, 18, 2009.

[14] Tassilo Horn. Model querying with funnyqt - (extended abstract). In Keith Duddy and

Gerti Kappel, editors, Theory and Practice of Model Transformations - 6th International

Conference, ICMT 2013, Budapest, Hungary, June 18-19, 2013. Proceedings, volume 7909

of Lecture Notes in Computer Science, pages 56–57. Springer, 2013.

[15] Tassilo Horn. Graph pattern matching as an embedded clojure DSL. In Parisi-Presicce

and Westfechtel [24], pages 189–204.

[16] Ákos Horváth. Automatic generation of platform specific model transformation. Master’s

thesis, Budapest University of Technology and Economics, Budapest, May 2006.

[17] John Hutchinson, Jon Whittle, and Mark Rouncefield. Model-driven engineering prac-

tices in industry: Social, organizational and managerial factors that lead to success or

failure. Sci. Comput. Program., 89:144–161, 2014.

[18] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. Train benchmark technical

report. 2014.

[19] Frédéric Jouault and Ivan Kurtev. Transforming models with ATL. In Jean-Michel Bruel,

editor, Satellite Events at the MoDELS 2005 Conference, MoDELS 2005 International Work-

shops, Doctoral Symposium, Educators Symposium, Montego Bay, Jamaica, October 2-7,

2005, Revised Selected Papers, volume 3844 of Lecture Notes in Computer Science, pages

128–138. Springer, 2005.

[20] Ulrich Nickel, Jörg Niere, and Albert Zündorf. The FUJABA environment. In Carlo Ghezzi,

Mehdi Jazayeri, and Alexander L. Wolf, editors, Proceedings of the 22nd International

Conference on on Software Engineering, ICSE 2000, Limerick Ireland, June 4-11, 2000.,

pages 742–745. ACM, 2000.

48

https://eclipse.org/modeling/emf/
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl

[21] Object Management Group. Object Constraint Language Specification (Version 2.3.1), May

2012. http://www.omg.org/spec/OCL/2.3.1/.

[22] Object Management Group. UML Version 2.5, June 2015. http://www.omg.org/spec/

UML/2.5/.

[23] Oracle. Enterprise Manager, 2015. http://www.oracle.com/technetwork/oem/

enterprise-manager/overview/index.html.

[24] Francesco Parisi-Presicce and Bernhard Westfechtel, editors. Graph Transformation - 8th

International Conference, ICGT 2015, Held as Part of STAF 2015, L’Aquila, Italy, July 21-23,

2015. Proceedings, volume 9151 of Lecture Notes in Computer Science. Springer, 2015.

[25] Mirko Seifert and Stefan Katscher. Debugging triple graph grammar-based model trans-

formations. Fujaba Days, pages 19–25, 2008.

[26] Oszkár Semeráth. Consistency analysis of domain-specific languages. Master’s thesis,

Budapest University of Technology and Economics, Budapest, Dec 2013.

[27] Oszkár Semeráth, Ágnes Barta, Ákos Horváth, Zoltán Szatmári, and Dániel Varró. For-

mal validation of domain-specific languages with derived features and well-formedness

constraints. Software & Systems Modeling, pages 1–36, 2015.

[28] The Eclipse Project. EcoreTools. https://www.eclipse.org/ecoretools/.

[29] The Eclipse Project. Xtext. http://www.eclipse.org/Xtext/.

[30] Massimo Tisi, Salvador Martínez Perez, and Hassene Choura. Parallel execution of ATL

transformation rules. In Ana Moreira, Bernhard Schätz, Jeff Gray, Antonio Vallecillo,

and Peter J. Clarke, editors, Model-Driven Engineering Languages and Systems - 16th In-

ternational Conference, MODELS 2013, Miami, FL, USA, September 29 - October 4, 2013.

Proceedings, volume 8107 of Lecture Notes in Computer Science, pages 656–672. Springer,

2013.

[31] Zoltán Ujhelyi, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István

Ráth, Zoltán Szatmári, and Dániel Varró. EMF-IncQuery: An integrated development

environment for live model queries. Sci. Comput. Program., 98:80–99, 2015.

[32] Zoltán Ujhelyi, Gábor Szőke, Ákos Horváth, Norbert István Csiszár, László Vidács, Dániel

Varró, and Rudolf Ferenc. Performance comparison of query-based techniques for anti-

pattern detection. Information & Software Technology, 65:147–165, 2015.

[33] Gergely Varró, Frederik Deckwerth, Martin Wieber, and Andy Schürr. An algorithm for

generating model-sensitive search plans for pattern matching on EMF models. Software

and System Modeling, 14(2):597–621, 2015.

49

http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/UML/2.5/
http://www.omg.org/spec/UML/2.5/
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
http://www.oracle.com/technetwork/oem/enterprise-manager/overview/index.html
https://www.eclipse.org/ecoretools/
http://www.eclipse.org/Xtext/

Appendix

A.1 A more detailed metamodel for program ASGs

This metamodel fragment in Figure A.1.1 contains all types required for the example instance

model in Figure 2.3.

Expression

Unary Block

Try

Statement

Identifier

name : EString

Named

name : EString

Parameter

Handler

InstanceOf

Variable

If

ParenthesizedExpression

[0..1] operand

[0..1] block

[0..*] statements

[0..1] refersTo [0..*] handlers

[0..1] parameter

[0..1] block

[0..*] resources

[0..1] substatement

[0..1] falseSubstatement

Figure A.1.1. A more detailed EMF metamodel fragment for ASGs

50

A.2 Detailed measurement results for code anti-patterns

Numeric output of the measurement process on the source code examples by phases is dis-

played in Table A.1, Table A.2, and Table A.3.

Case Tool Read
Create
engine

Calculate
search plan Check

1 Catch Incremental 0.082 0.097 N/A 0.0002
2 Catch Parallel 0.092 0.032 0.008 0.0000
3 Catch Sequential 0.064 0.067 0.010 0.0001
4 Constant compare Incremental 0.076 0.099 N/A 0.0002
5 Constant compare Parallel 0.081 0.025 0.025 0.0014
6 Constant compare Sequential 0.080 0.037 0.023 0.0007
7 No default switch Incremental 0.077 0.091 N/A 0.0001
8 No default switch Parallel 0.082 0.026 0.001 0.0004
9 No default switch Sequential 0.085 0.038 0.001 0.0002

10 Unused parameter Incremental 0.082 0.416 N/A 0.0013
11 Unused parameter Parallel 0.092 0.126 0.086 0.0120
12 Unused parameter Sequential 0.084 0.106 0.144 0.0063

Table A.1. Measurement results for Qwicap (in seconds)

Case Tool Read
Create
engine

Calculate
search plan Check

1 Catch Incremental 2.535 1.813 N/A 0.0017
2 Catch Parallel 2.575 0.855 0.406 0.0008
3 Catch Sequential 2.512 0.842 0.400 0.0009
4 Constant compare Incremental 2.448 1.906 N/A 0.0014
5 Constant compare Parallel 2.529 0.837 0.685 0.0052
6 Constant compare Sequential 2.385 0.867 0.575 0.0081
7 No default switch Incremental 2.535 1.628 N/A 0.0009
8 No default switch Parallel 2.485 0.851 0.001 0.0007
9 No default switch Sequential 2.395 0.840 0.001 0.0005

10 Unused parameter Incremental 2.458 3.105 N/A 0.0024
11 Unused parameter Parallel 2.529 0.989 2.350 0.0711
12 Unused parameter Sequential 2.406 0.912 2.283 0.0757

Table A.2. Measurement results for Frinika (in seconds)

51

Case Tool Read
Create
engine

Calculate
search plan Check

1 Catch Incremental 17.858 10.588 N/A 0.0002
2 Catch Parallel 16.671 4.925 2.698 0.0018
3 Catch Sequential 16.377 4.758 2.647 0.0020
4 Constant compare Incremental 16.854 11.408 N/A 0.0007
5 Constant compare Parallel 16.887 5.019 4.570 0.1888
6 Constant compare Sequential 17.903 5.101 7.730 0.0588
7 No default switch Incremental 17.648 9.166 N/A 0.0002
8 No default switch Parallel 16.620 4.683 0.001 0.0007
9 No default switch Sequential 16.987 4.888 0.001 0.0003

10 Unused parameter Incremental 16.748 12.785 N/A 0.0008
11 Unused parameter Parallel 16.776 4.702 9.959 0.2326
12 Unused parameter Sequential 15.965 4.939 10.557 0.2632

Table A.3. Measurement results for Hibernate (in seconds)

52

A.3 Detailed measurement results for Train Benchmark

Diagrams output by the Train Benchmark framework displaying the times needed for the dif-

ferent measurement phases by model sizes. Results for the Read and Crete engine phase is

included in Figure A.3.1 and in Figure A.3.2 below. Detailed measurement data is added in

Table A.4, Table A.5, and in Table A.6.

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
● ●

● ●

●

●

●

●

●

RouteSensor SwitchSet

ConnectedSegments SemaphoreNeighbor

100

101

100

101

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

Model size
Number of model elements

E
xe

cu
tio

n
tim

e
[s

]

●Incremental Parallel Sequential

Batch scenario, Read phase

Figure A.3.1. Train Benchmark – Read phase

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

RouteSensor SwitchSet

ConnectedSegments SemaphoreNeighbor

100

101

102

100

101

102

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

1
4.9k

4
19.8k

16
85.4k

64
372.1k

256
1.5M

1024
5.8M

Model size
Number of model elements

E
xe

cu
tio

n
tim

e
[s

]

●Incremental Parallel Sequential

Batch scenario, Create engine phase

Figure A.3.2. Train Benchmark – Create engine phase
53

Case
Model
scale

Calculate
search plan Check

Create
engine Read

1 ConnectedSegments 1 N/A 0.005 0.343 0.6160
2 ConnectedSegments 2 N/A 0.005 0.406 0.6973
3 ConnectedSegments 4 N/A 0.006 0.561 0.8009
4 ConnectedSegments 8 N/A 0.005 1.119 1.3233
5 ConnectedSegments 16 N/A 0.005 1.289 1.5371
6 ConnectedSegments 32 N/A 0.006 2.402 1.6769
7 ConnectedSegments 64 N/A 0.008 4.095 2.1386
8 ConnectedSegments 128 N/A 0.009 5.975 2.7748
9 ConnectedSegments 256 N/A 0.010 15.595 4.4905

10 ConnectedSegments 512 N/A 0.020 27.702 7.5964
11 ConnectedSegments 1024 N/A 0.030 77.361 14.6564
11 ConnectedSegments 2048 N/A - - -
12 RouteSensor 1 N/A 0.004 0.284 0.6573
13 RouteSensor 2 N/A 0.004 0.299 0.7124
14 RouteSensor 4 N/A 0.004 0.360 0.8038
15 RouteSensor 8 N/A 0.004 0.583 1.0638
16 RouteSensor 16 N/A 0.004 0.832 1.1981
17 RouteSensor 32 N/A 0.004 1.192 1.5331
18 RouteSensor 64 N/A 0.006 1.583 1.8914
19 RouteSensor 128 N/A 0.005 2.416 2.7768
20 RouteSensor 256 N/A 0.006 4.279 4.6098
21 RouteSensor 512 N/A 0.007 7.726 7.7939
22 RouteSensor 1024 N/A 0.009 14.953 14.2515
23 RouteSensor 2048 N/A 0.017 29.599 31.1415
24 SemaphoreNeighbor 1 N/A 0.004 0.302 0.6278
25 SemaphoreNeighbor 2 N/A 0.005 0.346 0.7314
26 SemaphoreNeighbor 4 N/A 0.003 0.564 0.9943
27 SemaphoreNeighbor 8 N/A 0.004 0.644 1.2172
28 SemaphoreNeighbor 16 N/A 0.005 0.920 1.2461
29 SemaphoreNeighbor 32 N/A 0.004 1.516 1.5093
30 SemaphoreNeighbor 64 N/A 0.006 2.436 2.0862
31 SemaphoreNeighbor 128 N/A 0.005 4.065 2.8686
32 SemaphoreNeighbor 256 N/A 0.006 7.648 4.5046
33 SemaphoreNeighbor 512 N/A 0.006 14.986 7.6752
34 SemaphoreNeighbor 1024 N/A 0.005 28.147 14.2688
35 SemaphoreNeighbor 2048 N/A 0.007 53.646 29.8475
36 SwitchSet 1 N/A 0.004 0.298 0.6307
37 SwitchSet 2 N/A 0.004 0.299 0.7143
38 SwitchSet 4 N/A 0.004 0.413 0.9119
39 SwitchSet 8 N/A 0.004 0.500 1.1864
40 SwitchSet 16 N/A 0.005 0.628 1.3747
41 SwitchSet 32 N/A 0.004 1.075 1.5935
42 SwitchSet 64 N/A 0.005 1.439 1.9664
43 SwitchSet 128 N/A 0.006 2.134 2.8516
44 SwitchSet 256 N/A 0.007 3.714 4.6632
45 SwitchSet 512 N/A 0.009 6.989 7.8651
46 SwitchSet 1024 N/A 0.011 13.969 14.4903
47 SwitchSet 2048 N/A 0.016 23.615 29.4733

Table A.4. Benchmark results for the incremental algorithm

54

Case
Model
scale

Calculate
search plan Check

Create
engine Read

48 ConnectedSegments 1 0.047 0.074 0.175 0.5428
49 ConnectedSegments 2 0.043 0.037 0.160 0.6564
50 ConnectedSegments 4 0.081 0.050 0.210 1.4798
51 ConnectedSegments 8 0.262 0.086 0.289 0.9131
52 ConnectedSegments 16 0.396 0.128 0.348 1.1620
53 ConnectedSegments 32 1.202 0.276 0.763 1.3668
54 ConnectedSegments 64 2.496 0.240 1.026 1.8711
55 ConnectedSegments 128 5.115 0.341 1.423 2.6572
56 ConnectedSegments 256 10.875 0.458 2.678 4.0401
57 ConnectedSegments 512 14.811 1.289 4.648 7.9337
58 ConnectedSegments 1024 28.935 2.672 9.810 13.1614
59 ConnectedSegments 2048 81.477 21.778 16.030 27.3225
60 RouteSensor 1 0.014 0.020 0.156 0.5635
61 RouteSensor 2 0.019 0.024 0.173 0.6561
62 RouteSensor 4 0.027 0.029 0.190 0.7796
63 RouteSensor 8 0.072 0.034 0.263 1.4431
64 RouteSensor 16 0.119 0.045 0.396 1.1981
65 RouteSensor 32 0.284 0.053 0.785 1.6905
66 RouteSensor 64 0.542 0.067 0.967 1.9556
67 RouteSensor 128 1.207 0.104 1.406 2.6108
68 RouteSensor 256 2.539 0.151 2.669 4.3887
69 RouteSensor 512 3.800 0.189 4.885 6.8383
70 RouteSensor 1024 7.025 0.285 9.403 11.9807
71 RouteSensor 2048 14.836 0.380 16.569 25.7272
72 SemaphoreNeighbor 1 0.024 0.040 0.145 0.5200
73 SemaphoreNeighbor 2 0.041 0.052 0.176 0.5795
74 SemaphoreNeighbor 4 0.066 0.083 0.199 1.0330
75 SemaphoreNeighbor 8 0.103 0.050 0.268 1.2399
76 SemaphoreNeighbor 16 0.210 0.195 0.351 1.1655
77 SemaphoreNeighbor 32 0.702 0.231 0.646 1.6327
78 SemaphoreNeighbor 64 1.534 0.422 1.113 1.7387
79 SemaphoreNeighbor 128 2.776 0.123 1.400 2.4430
80 SemaphoreNeighbor 256 5.743 1.732 2.543 4.1405
81 SemaphoreNeighbor 512 7.488 0.250 4.615 7.1392
82 SemaphoreNeighbor 1024 15.876 1.702 9.112 12.2774
83 SemaphoreNeighbor 2048 52.981 0.665 17.138 26.8228
84 SwitchSet 1 0.019 0.011 0.145 0.5297
85 SwitchSet 2 0.025 0.017 0.173 0.6714
86 SwitchSet 4 0.028 0.021 0.209 0.7397
87 SwitchSet 8 0.037 0.028 0.375 1.0071
88 SwitchSet 16 0.064 0.027 0.337 1.1823
89 SwitchSet 32 0.230 0.025 0.599 1.3891
90 SwitchSet 64 0.497 0.047 0.954 1.8049
91 SwitchSet 128 0.895 0.038 1.307 2.6413
92 SwitchSet 256 2.009 0.069 2.480 4.3071
93 SwitchSet 512 2.885 0.084 4.675 7.1133
94 SwitchSet 1024 6.073 0.131 9.606 12.4735
95 SwitchSet 2048 11.590 0.148 17.169 28.1495

Table A.5. Benchmark result for the sequential local search-based algorithm

55

Case
Model
scale

Calculate
search plan Check

Create
engine Read

96 ConnectedSegments 1 0.160 0.029 0.182 0.6048
97 ConnectedSegments 2 0.179 0.041 0.200 0.6937
98 ConnectedSegments 4 0.240 0.069 0.234 2.8547
99 ConnectedSegments 8 0.455 0.079 0.295 1.0115

100 ConnectedSegments 16 0.859 0.247 0.411 1.2394
101 ConnectedSegments 32 2.020 0.258 0.661 1.5176
102 ConnectedSegments 64 3.175 0.735 1.162 2.0864
103 ConnectedSegments 128 6.631 0.827 1.438 2.8166
104 ConnectedSegments 256 14.495 3.906 2.361 4.4578
105 ConnectedSegments 512 20.719 3.109 4.542 8.2206
106 ConnectedSegments 1024 39.900 6.585 9.425 14.7102
107 ConnectedSegments 2048 104.046 34.750 17.492 29.6772
108 RouteSensor 1 0.092 0.006 0.165 0.6108
109 RouteSensor 2 0.104 0.009 0.180 0.6993
110 RouteSensor 4 0.147 0.014 0.225 0.8292
111 RouteSensor 8 0.265 0.023 0.302 1.0207
112 RouteSensor 16 0.471 0.034 0.567 1.3270
113 RouteSensor 32 0.795 0.060 0.708 1.5513
114 RouteSensor 64 1.398 0.067 1.019 1.9423
115 RouteSensor 128 2.529 0.102 1.655 2.9249
116 RouteSensor 256 5.121 0.174 2.583 4.7742
117 RouteSensor 512 10.334 0.227 4.330 7.7517
118 RouteSensor 1024 19.039 0.488 10.023 14.7573
119 RouteSensor 2048 38.614 0.525 17.730 30.2251
120 SemaphoreNeighbor 1 0.138 0.036 0.181 0.6367
121 SemaphoreNeighbor 2 0.152 0.060 0.200 0.7069
122 SemaphoreNeighbor 4 0.206 0.100 0.221 0.8413
123 SemaphoreNeighbor 8 0.353 0.084 0.302 1.0385
124 SemaphoreNeighbor 16 0.663 0.133 0.395 1.2638
125 SemaphoreNeighbor 32 1.355 0.356 0.648 1.5020
126 SemaphoreNeighbor 64 1.993 0.287 1.254 2.0495
127 SemaphoreNeighbor 128 4.037 0.957 1.554 2.9425
128 SemaphoreNeighbor 256 8.168 0.994 2.621 4.6234
129 SemaphoreNeighbor 512 14.477 2.945 4.356 8.0286
130 SemaphoreNeighbor 1024 27.131 6.580 9.242 14.5130
131 SemaphoreNeighbor 2048 52.988 44.576 17.004 28.2886
132 SwitchSet 1 0.105 0.004 0.165 0.6604
133 SwitchSet 2 0.113 0.005 0.183 0.6893
134 SwitchSet 4 0.151 0.009 0.222 0.9518
135 SwitchSet 8 0.232 0.010 0.309 1.1063
136 SwitchSet 16 0.354 0.014 0.408 1.3451
137 SwitchSet 32 0.736 0.025 0.718 1.6062
138 SwitchSet 64 1.044 0.033 1.211 2.0653
139 SwitchSet 128 2.188 0.056 1.622 2.8650
140 SwitchSet 256 5.262 0.093 2.735 4.7560
141 SwitchSet 512 9.661 0.132 4.624 7.6547
142 SwitchSet 1024 18.099 0.142 9.202 13.4744
143 SwitchSet 2048 34.605 0.262 17.445 29.0464

Table A.6. Benchmark result for the parallel local search-based algorithm

56

