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Kivonat

Napjainkban a beágyazott rendszerek az élet minden területén egyre nagyobb teret nyer-
nek, így helyességük ellenőrzése is egyre fontosabb, ugyanis kritikus esetben vállalatok
sorsa vagy akár emberi élet is múlhat rajta. Ennek egyik fontos eszköze a formális verifi-
káció, melynek segítségével matematikai precizitással lehet a modellek helyességét már a
tervezési fázisban vizsgálni.

A hierarchikus állapottérképek a viselkedésmodellek egyik gyakran használt eszköze-
ként a mérnöki tervezés alapjául szolgálnak, verifikációjuk ezért kiemelt jelentőséggel bír.
Gyakran azonban egy egyszerű állapottérkép ellenőrzése is nehéz feladat, ugyanis a válto-
zók számával exponenciálisan növekvő állapottér megakadályozhatja a sikeres verifikációt.
Az állapottér hatékony kezelésére és bejárására az irodalomban többféle algoritmust is
kidolgoztak. Ezek közül az egyik legelterjedtebb a korlátos állapotelérhetőségi analízis,
amelyet leggyakrabban logikai megoldók, azaz SAT/SMT solver-ek segítségével valósíta-
nak meg. Ehhez az állapotgépet logikai formulákkal írják le (elkódolás), majd ezeket a
formulákat adják be a megoldóknak.

Gyakran azonban ezek az algoritmusok sem tudnak megbirkózni a komponensmodel-
lekben használt változatos adattípusok és konstrukciók okozta komplex viselkedésekkel.
A nagyméretű állapottér által jelentett komplexitás csökkentésére megoldást jelenthet
az absztrakció alkalmazása, amely azonban elrejthet az ellenőrzés sikerességéhez elen-
gedhetetlen részleteket. Ilyenkor finomítani kell az absztrakciót és gazdagítani a repre-
zentált információt. Ezen elv mentén működik az ellenpélda alapú absztrakciófinomítás
(CounterExample-Guided Abstraction Refinement, CEGAR) módszere.

A gyakorlatban használt verifikációs eszközök általában nem használják ki az álla-
pottérképekben levő hierarchiát. Dolgozatomban a célom olyan algoritmusok fejlesztése,
amelyek hatékonyan tudják kezelni a hierarchikus állapottérképeket, továbbá ki tudják
használni a verifikáció során a hierarchiában rejlő extra információt. Bemutatok egy ál-
talam tervezett módszert, amely lehetővé teszi komplex állapottérképek hatékony elkó-
dolását logikai formulákká a hierarchia kihasználásával. Ezt továbbfejlesztve egy olyan
absztrakciófinomításon (CEGAR) alapuló algoritmust ismertetek, amely az állapotok kö-
zötti hierarchiát felhasználja a finomítás során, és különböző logikai megoldókra építve
akár komplex állapottérképek ellenőrzését is lehetővé teszi. Az elkészített algoritmusok
hatékonyságát egy ipari példán demonstrálom illetve hasonlítom össze.
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Abstract

Nowadays, as embedded systems take an increasingly important part in every aspect of
our life, checking their correct behavior becomes more and more essential, especially in
safety-critical cases, where a future of an enterprise or human lives rely on them. Formal
verification is an important method, providing strong mathematical basis to check the
correctness of the models in the design phase of the system’s lifecycle.

Hierarchical statecharts, as a frequently used behavioral model, are one of the foundations
of system design, so their verification has an increased relevance. However in many cases,
even the verification of a simple statechart can be challenging, since the large state space
can prevent the verification as it grows exponentially with the number of variables in the
system. There are several algorithms in the literature to efficiently handle and explore the
state space. One of the most common amongst them is the bounded state reachability
analysis, which is often realized with logical solvers, such as SAT and SMT solvers. In
order to perform the analysis, the transition relation of the statechart is transformed to
logical formulas, and these formulas are fed to the solver.

However, even these algorithms may not handle the complex behavior caused by the vari-
ous data types and constructions used in the component models. To reduce the complexity
caused by the huge state space, a possible solution is to use abstraction, even though it can
fade details that are inevitable for successful verification. In these cases, the abstraction
needs to be refined and the represented details should be enriched. This concept is the
so-called Counterexample-Guided Abstraction Refinement (CEGAR) approach.

Most of the verification techniques used in practice do not exploit the information under-
lying in the hierarchical structure of the statecharts. The aim of my work is to develop
algorithms that can handle hierarchical statecharts efficiently, and furthermore, that can
benefit from the underlying information encoded in the state hierarchy during verification.
I present a novel approach that can be used to effectively transform complex statecharts
into logical formulas, taking benefits from the hierarchy. Improving that, I introduce an al-
gorithm based on abstraction refinement (CEGAR), that takes hierarchy information into
consideration during the refinement, and makes it possible to verify complex statecharts
using logical solvers. The efficiency of the previously presented algorithms is demonstrated
and compared on an industrial case study.
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Chapter 1

Introduction

Through the years, software evolved from a scientific environment to the industry, and as
it appeared in safety-critical embedded systems, its verification became a critical require-
ment. Nowadays there is a strong tendency of computers taking over tasks from humans
that require continuous concentration and precision, such as driving a car, or managing
a railway system or the cooling of a nuclear power plant. One common attribute of the
preceding examples is that one small failure in their control can lead into enormous loss
in terms of people’s trust, money or even human lives.

Testing the complete system with a given set of inputs and expected results might witness
the presence of errors, but can not prove its faultlessness (unless tested with every possible
input under every possible environmental assumption). In contrast, formal verification
provides automated, mathematically precise techniques to ensure correct functionality of
the system. Furthermore, as most of such techniques operate on models of the system,
verification can be performed before implementing and deploying the real system.

Formal models are also the foundations of system design, and hierarchical statecharts are
amongst the most widely used. They extend simple state machines with composite states,
parallel regions and variables. One widespread technique for their verification is model
checking, that is, the exploration of their state space, and checking it against a given
requirement. Reachability analysis is an important requirement, where the purpose of
verification is to check if a given erroneous state is reachable from the statechart’s initial
state.

A possible solution for reachability analysis is realized by transforming the transition
relation of the statechart and the requirements to a logical formula in a way such that
if the formula is satisfiable, then an execution of the statechart violates the requirement.
The satisfiability of such formulas can be evaluated with logical solvers, mostly with SAT
(boolean satisfiability) and SMT (satisfiability modulo theories) solvers.

However, in many cases, model checking statecharts can be challenging as their state
space becomes unmanageably large or even infinite with the introduction of variables
and parallel regions. This problem is the so-called state space explosion and it leads
to high computational complexity, which can result in non-termination of the verification
procedure. Several techniques have been proposed to overcome this problem, one of them is
bounded model checking where a bound k is introduced that limits the maximum number
of consecutive state transitions to be checked, so the given requirement is tested only
against states that are reachable within k consecutive transitions from the initial state of
the statechart. But as k can be chosen arbitrarily, the completeness of the checking can
not be guaranteed.
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An other promising way to overcome such difficulties is by applying abstraction to the
statechart, that is, checking the requirement against a simplified representation of the
statechart that has fewer states than the original one. There are two main types of
abstractions: over- and under-approximation.

During my work, I focus on over-approximation-based abstraction techniques, which means
that if the requirement stands for the abstract statechart, it also holds for the concrete
one, however there might be spurious counterexamples violating the requirements that only
emerge from the abstraction. Counterexample-Guided Abstraction Refinement (CEGAR)
is a general approach to perform automated refinement of the abstraction to eliminate spu-
rious counterexamples violating the requirements. The four major parts of the algorithm
are the creation of an initial abstraction, verifying the abstracted system against the given
requirement, searching a concrete representation of a counterexample found, and refining
the abstraction if needed. CEGAR has been applied to various modeling formalisms. In
my thesis, I concentrate on the application of it for the verification of statecharts. The
thesis introduces different approaches for creating and refining abstractions of statecharts
based on their hierarchical structure. I also introduce various methods for the verification
of the abstract models.

The evaluation of my work is done by measuring and comparing the performance of the
defined techniques. During the evaluation, the emergency procedure initiating PRISE logic
of the Paks Nuclear Power Plant is verified with the different CEGAR implementations.

The rest of this work is structured as follows. In Chapter 2, I present the necessary
background knowledge related to my work. After that, in Chapter 3, I suggest an algorithm
to encode hierarchical statecharts into logical formulas and present two model checking
algorithms based on the encoding, a bounded and an unbounded one. An extension of
the latter to a CEGAR approach is presented in Chapter 4, while Chapter 5 holds the
relevant details of the implementation. Performance of the model checker is evaluated in
Chapter 6 and I sum up the conclusions of my work in Chapter 7.

2



Chapter 2

Background

This chapter introduces the preliminaries of this work. First, I present the basics of
mathematical logic in Section 2.1, including propositional logic, first order logic and first
order theories. Then, state machines and statecharts are introduced in Section 2.2, while
the common practices to encode them to logical formulas are summarized in Section 2.3.
Finally, Section 2.4 presents the related concepts of model checking, including bounded
model checking and the CEGAR algorithm.

2.1 Mathematical Logic

In this section I present the basics of mathematical logic [5], starting with propositional
logic in Section 2.1.1. Then, in Section 2.1.2 first order logic is introduced. Finally
Section 2.1.3 summarizes first order theories and presents some theories and the SMT
problem.

2.1.1 Propositional Logic

This section describes propositional logic (PL, also known as propositional calculus). First
I present the syntax of the logic, than its semantics. Later additional concepts such as
satisfiability and validity are presented and finally I introduce the SAT problem.

2.1.1.1 Syntax

The basic elements of PL are the nullary logical connectives > (truth) and ⊥ (falsity), and
the propositional variables (usually denoted by P , Q, R), together referred to as atoms.
Every atom is a formula, and a new formula ψ can be constructed from formulas ψ1, ψ2
using logical connectives in the following way:

• ψ = ¬ψ1 (negation),

• ψ = ψ1 ∧ ψ2 (conjunction),

• ψ = ψ1 ∨ ψ2 (disjunction),

• ψ = ψ1 → ψ2 (implication),

• ψ = ψ1 ↔ ψ2 (equivalence).

3



There are some other relevant definitions related to the syntax of propositional logic. A
literal is an atom or its negation, whereas a clause is a disjunction of literals.

Example 2.1. Some examples for the building blocks of proositional logic are presented
below.

• P , Q, R, >, ⊥ are atoms.

• P , ¬P , ⊥ are literals.

• P ∨Q, ¬P ∨R, P ∨ >, P are clauses.

• (P ∨Q) ∧ (¬P ∨R)→ Q ∨R, ¬⊥ ↔ >, ¬P , Q are formulas.

2.1.1.2 Semantics

The semantics of a logic is the meaning assigned to the formulas defined by its syntax.
In propositional logic, this meaning is a truth value, either 1 (true) or 0 (false). If each
propositional variable in a logical formula is assigned a truth value, the truth value of that
formula can be computed. Such assignment is called an interpretation.

Definition 2.1. An interpretation I : L0 7→ {0, 1} for the set of propositional variables
L0 is a function that assigns a truth value to every variable in L0. Let I[P ] denote the
truth value of a variable P ∈ L0 under I. �

As it was mentioned above, given an interpretation I, the truth value of ψ can be evaluated.
The way of calculating this value can be defined with truth tables, that express how the
formula is evaluated depending on the truth value of its arguments. The truth table of
logical connectives can be found in Table 2.1.

Table 2.1: The truth table of logical connectives.

P Q ⊥ > ¬P P ∧ Q P ∨ Q P → Q P ↔ Q

0 0 0 1 1 0 0 1 1
0 1 0 1 1 0 1 1 0
1 0 0 1 0 0 1 0 0
1 1 0 1 0 1 1 1 1

Example 2.2. Consider the formula ψ = (P ∨ Q) ∧ (¬P ∨ R) → Q ∨ R. A possible
interpretation is I = {P 7→ 1, Q 7→ 0, R 7→ 1}. With this interpretation, ψ evaluates
to true as it can be seen in the truth table of the formula in Table 2.2. This example
also demonstrates a way of proving that a formula ψ evaluates true for every possible
interpretation.

The evaluation of a formula ψ under the interpretation I can be calculated recursively
using such tables. However to be able to extend it for predicate logic, it is better to define
semantics in a different way.

Let I |= ψ denote that ψ evaluates to true under I, and I 6|= ψ denote that ψ evaluates to
false. The truth value of propositional variables can then be defined in the following way:

I |= P ⇐⇒ I[P ] = 1, I 6|= P ⇐⇒ I[P ] = 0.

The connectives can be defined inductively according to the following rules:

4



Table 2.2: The truth table of ψ in Example 2.2.

P Q R P ∨ Q ¬P ∨ R (P ∨ Q) ∧ (¬P ∨ R) Q ∨ R (P ∨ Q) ∧ (¬P ∨ R) → Q ∨ R

0 0 0 0 1 0 0 1
0 0 1 0 1 0 1 1
0 1 0 1 1 1 1 1
0 1 1 1 1 1 1 1
1 0 0 1 0 0 0 1
1 0 1 1 1 1 1 1
1 1 0 1 0 0 1 1
1 1 1 1 1 1 1 1

• I |= >,

• I 6|= ⊥,

• I |= ¬ψ1 ⇐⇒ I 6|= ψ1,

• I |= ψ1 ∧ ψ2 ⇐⇒ I |= ψ1 and I |= ψ2,

• I |= ψ1 ∨ ψ2 ⇐⇒ I |= ψ1 or I |= ψ2,

• I |= ψ1 → ψ2 ⇐⇒ if I |= ψ1 then I |= ψ2,

• I |= ψ1 ↔ ψ2 ⇐⇒ I |= ψ1 → ψ2 and I |= ψ2 → ψ1.

Example 2.3. Consider the formula ψ from Example 2.2. Its value can be deduced from
the interpretation I = {P 7→ 1, Q 7→ 0, R 7→ 1} in the following way:

1. I |= P , I 6|= Q, I |= R, and I 6|= ¬P ,

2. I |= (P ∨Q) because (I |= P ) ∨ (I |= Q) is true,

3. I |= (¬P ∨R) because (I |= ¬P ) ∨ (I |= R) is true,

4. I |= (Q ∨R) because (I |= Q) ∨ (I |= R) is true,

5. I |= (P ∨Q) ∧ (¬P ∨R) because (I |= P ∨Q) ∧ (I |= ¬P ∨R) is true, according to
2) and 3),

6. According to 5) I |= (P ∨ Q) ∧ (¬P ∨ R), and according to 4) I |= (Q ∨ R), so
I |= (P ∨Q) ∧ (¬P ∨R)→ (Q ∨R).

2.1.1.3 Satisfiability and Validity

A formula ψ is satisfiable, if and only if an interpretation I exists such that I |= ψ, and ψ
is valid if and only if I |= ψ holds for every interpretation I. The formula ψ is unsatisfiable
iff it is not satisfiable. Satisfiability and validity are duals of each other, that is, ψ is valid
iff ¬ψ is unsatisfiable.

Example 2.4. The formula ψ1 = P∨Q is satisfiable, as for the interpretation I1 = {P 7→
1, Q 7→ 1}, I1 |= ψ1.

The formula ψ2 = P ∧ ¬P is unsatisfiable as there are only two different interpretations:
I2a = {P 7→ 1} and I2b = {P 7→ 0}, and I2a 6|= ψ2 and I2b 6|= ψ2.

The formula ψ3 = (P ∨Q)∧ (¬P ∨R)→ Q∨R is valid, as it can be seen in its truth table
presented in Table 2.2.

5



Definition 2.2 (SAT problem). The Boolean satisfiability problem, often referred to as
the SAT problem is deciding if an interpretation I exists for a formula ψ such that I |= ψ.�

The problem can be solved in exponential time, however there is no known algorithm that
can decide satisfiability in polynomial time. Even so, given an interpretation I, it can
be determined in polynomial time if I satisfies the formula ψ, so SAT ∈ NP. Cook and
Levin also proved that all problems in NP can be reduced to SAT [9].

Although the problem is algorithmically hard to solve, it has several relevant usage in
science. The ever-growing need of fast solutions for the problem pushes the research
community to continuously optimize the algorithms and develop new ones. Even though
the problem is still exponential in the worst case, modern solvers can solve practical
problems for even large inputs (ten thousands of variables) in reasonable time [12].

2.1.2 First Order Logic

First order logic (FOL), also referred to as predicate logic or predicate calculus extends
propositional logic with predicates, functions and quantifiers. Formulas in predicate logic
form sentences about instances of an entity set (domain).

The structure of this section is similar to the previous one, as I first describe the syntax of
FOL, then I present its semantics. Finally, satisfiability and validity are defined for FOL
formulas.

2.1.2.1 Syntax

The basic elements of FOL are terms. A simple term can be a variable (often denoted by
x, y, z, . . .) or a constant symbol (a, b, c, . . .). More complex terms can be constructed using
function symbols (f, g, h, . . .). The arity of a function symbol is the number of arguments
it takes. A constant symbols can be interpreted as a nullary function symbol.

Example 2.5. The following list contains examples for terms:

• 1, “marmot” are constant symbols (nullary function symbols),

• x is a variable,

• cos(x) is the application of a unary function symbol cos to variable x,

• f(x, a) is the application of a binary function symbol f to variable x and constant
symbol a.

Predicate symbols of FOL are the generalization of propositional variables from PL. Like
function symbols, predicate symbols (p, q, r, . . .) also have an arity: an n-ary predicate
symbol takes n terms as arguments. A nullary predicate symbol in FOL is analogous to a
propositional variable (P,Q,R, . . .) in PL.

Like in PL, formulas of FOL are constructed from atoms. An atom can be >, ⊥ or an
n-ary predicate symbol applied to n terms. A literal is an atom or its negation.

Example 2.6. p is a binary predicate symbol, so ψ = p(f(x), g(x, y)) is an atom, a binary
predicate symbol applied to two terms.

6



Every atom is a formula, and more complex formulas are constructed by the application of
logical connectives (¬,∧,∨,→,↔) to formulas, or by using quantifiers. In FOL, there are
two quantifiers, the existential quantifier denoted by ∃x.ψ[x], and the universal quantifier,
denoted by ∀x.ψ[x]. In both cases x is the quantified variable, also said to be bound. In a
formula ψ a variable is free if it has an occurrence that is not bound by any quantifier. A
formula ψ is closed if every variable in ψ is bound.

Let ψ be a FOL formula, and V = {v1, v2, . . . vn} be the set of its variables. Let ψk denote
the FOL formula where each variable is replaced with its k-indexed equivalent from the
variable set Vk = {v1k, v2k, . . . vnk}. For example if ψ is x < y then ψk is xk < yk.

2.1.2.2 Semantics

Terms of FOL formulas evaluate to an instance of a specified domain, so to define the
semantics for FOL formulas, the concept of interpretation defined in PL has to be extended.

Definition 2.3 (Interpretation). An interpretation I in FOL is a pair (DI , αI), where
DI is the domain of I, a nonempty set of objects, and αI is the assignment of I. �

The assignment αI is constructed in the following way:

• Each variable x is mapped to a value from DI , usually denoted by xI .

• Each n-ary function symbol f is mapped to an n-ary function fI that maps n
elements of DI to one element of DI , that is, fI : Dn

I 7→ DI . In particular, each
constant symbol is assigned to an element of DI .

• Each n-ary predicate symbol p is mapped to an n-ary relation pI ⊆ Dn
I .

Example 2.7. Consider the formula ψ = (x > 1) ∧ (y > 1)→ cos(x) + y > 1.

Let the domain be the set of real numbers, so DI = R. To construct an assignment let
cos and + be assigned the cosine and addition function over real numbers, and assign the
"greater-than" relation over R to the binary predicate symbol >. The variables x and y
need to be assigned to, let them be 2 and

√
3 respectively. It is important to note that

the constant symbol 1 needs to be assigned too, as it is a nullary function symbol. So the
assignment is αI : {cos 7→ cosR,+ 7→ +R, >7→>R, x 7→ 2R, y 7→

√
3R, 1 7→ 1R}, and the

interpretation is I = (R, αI).

Note, that although in the preceding example all function and predicate symbols were as-
signed to their intuitive meaning, assigning the sine function over real numbers to the
symbol cos, or the relation "less than" to the binary predicate > also results in an assign-
ment.

Like in case of PL, semantics determine if the formula ψ evaluates to true, or false under a
given interpretation I = (DI , αI) (denoted by I |= ψ or I 6|= ψ). The semantics is defined
recursively.

Terms, that is, variables (x), constant symbols (a) and function symbols (f) get mean-
ings based on αI , denoted by αI [x], αI [a] and αI [f ]. Arbitrary terms can be evaluated
recursively as follows:

• αI [f(t1, t2, . . . , tn)] = αI [f ](αI [t1], αI [t2], . . . , αI [tn]).
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Then predicates can be evaluated as follows:

• I |= p(t1, t2, . . . , tn) ⇐⇒ (αI [t1], αI [t2], . . . , αI [tn]) ∈ αI [p].

More complex formulas can be built using logical connectives the same way as it was
defined in PL in Section 2.1.1.2.

Example 2.8. Consider the formula ψ = (x > 1) ∧ (y > 1) → cos(x) + y > 1 from
Example 2.7, with the interpretation I = (R, αI = {cos 7→ cosR,+ 7→ +R, >7→>R, x 7→
2R, y 7→

√
3R, 1 7→ 1R}). The truth value of ψ under the interpretation I can be computed

in the following way:

• (αI [x], αI [1]) = (2R, 1R) ∈ >R = αI [>], thus I |= x > 1.

• (αI [y], αI [1]) = (
√

3R, 1R) ∈ >R = αI [>], thus I |= y > 1.

• (αI [cos(x) + y], αI [1]) = (αI [cos(x)] +R αI [y], 1R) = (cosR(αI [x]) +R
√

3R, 1R) =
(cosR(2R) +R

√
3R, 1R) ∈ >R = αI [>], thus I |= cos(x) + y > 1.

Applying the semantics of ∧ and →, I |= ψ can be deduced.

In order to define the semantics of quantifiers, the x-variant of an interpretation has to
be defined. Given I = (DI , αI), an x-variant of I is an interpretation I B {x 7→ v} =
(DI , αI′) such that for every variable, function symbol and predicate symbol y 6= x we
have αI [y] = αI′ [y], and αI′ [x] = v. Then

• I |= ∀x.ψ ⇐⇒ for all v ∈ DI we have I B {x 7→ v} |= ψ,

• I |= ∃x.ψ ⇐⇒ there exists v ∈ DI such that I B {x 7→ v} |= ψ.

2.1.2.3 Satisfiability and Validity

The definition of satisfiability in FOL is similar to PL, a formula ψ is satisfiable iff there
exists an interpretation I such that I |= ψ, and valid iff for all interpretations I we have
I |= ψ. As in PL, the two concepts are the duals of each other.

Technically, satisfiability and validity can not be applied to FOL formulas with free vari-
ables. However, a non-closed formula ψ′ is considered valid if ∀ ∗ .ψ′ is valid, so for every
possible value for its free variables, the formula is valid. Using duality, the satisfiability
of a non-closed formula can be deducted, ψ′ is satisfiable if ∃ ∗ .ψ′. In the general case
however, satisfiability and validity is undecidable, as it was proven by Church [6] and
Turing [18].

2.1.3 First Order Theories

In case of FOL the interpretation of a formula could be literally anything, thus satisfiability
and validity is undecidable. First order theories formalize structures like numbers or lists,
in order to enable reasoning about them. For many quantifier free theories used in practice,
satisfiability (thus validity) is decidable [14].

Definition 2.4 (First order theory). A first order theory T is a set of closed formulas,
called axioms. �
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An interpretation I is called a T -interpretation iff I |= ψ for all axioms ψ ∈ T . A formula
is satisfiable in T iff it is satisfiable by a T -interpretation. Dually, a formula is valid if it
is satisfiable by all T -interpretations.

Like the SAT problem for PL, the problem of deciding the satisfiability of a formula can
be expressed for first order theories too.

Definition 2.5 (SMT problem). The satisfiability modulo theories problem, often re-
ferred as SMT problem is to decide the satisfiability of a formula in a theory T . �

The algorithmic complexity of solving an SMT problem is dependent on the theory itself.
There are decidable theories, such as the theory of equality (TE), the theory of Presburger
arithmetic (TN), or the theory of integers (TZ). Some theories, like the extension of TZ
with multiplication, the so-called Peano arithmetic (TPA), or the theory of rationals (TQ)
are undecidable [14]. For a decidable theory Td, there are SMT solver algorithms that
always terminate, however for an undecidable theory Tu, the solver may terminate, but it
can also fail to decide satisfiability for ψ.

2.2 Statecharts

The language of statecharts [16] is a basic modeling formalism in system design, which
offers various syntactic elements to simplify the modeling of complex systems. In Sec-
tion 2.2.1 I introduce state machines, a mathematical and modeling concept from which
statecharts originated. Section 2.2.2 introduces state hierarchy and statecharts, and Sec-
tion 2.2.3 defines configurations and execution sequences (paths) for statecharts.

2.2.1 State Machines

Definition 2.6 (State). A state is a unique configuration of information about the sys-
tem. �

Definition 2.7 (State machine). A finite state machine (finite state automaton, state
machine) is a tuple M = (S,Σ,Tr , s0), where

• S is a finite set of states,

• Σ is the alphabet, the set of allowed symbols,

• Tr ⊆ S × S × Σ is the set of transitions, with each of them connecting exactly one
source state to one target state, and having an input symbol assigned,

• s0 ∈ S is the initial (start) state. �

For a transition t, the source state of the transition is denoted by src(t) and the target
state of the transition is denoted by trgt(t). Let sym(t) ∈ Σ denote the input symbol
assigned to the transition.

Note that a transition does not always require an input symbol to be taken. This can be
interpreted as introducing a ε symbol. Let the default notation be that if a transition has
no symbol assigned, it is assigned ε. Let ε be in every Σ by default.
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Figure 2.1: An example for state machine.

Example 2.9. Figure 2.1 presents an example state machine. For this machine S =
{A,B,C,D}, Σ = {AC}, Tr = {(A,B), (A,C,AC ), (B,C), (C,D)}, s0 = A.

A state machine can be in exactly one state of its finite number of states, which is the
so-called active state. A transition is the change of the active state.

The basic concept of state machines can be extended with actions (output of the machine).
An action is a sequence of operations, that are usually interpreted as a sentence of a
programming language. A simple operation can be either an assignment of a variable, or a
generation of an event. Depending on which item of the tuple M is the output associated
with, state machines can be considered as Mealy or as Moore machines.

Definition 2.8 (Mealy Machine). A Mealy machine is a tuple MMealy =
(S,Σ,Tr , s0,Act) where S,Σ, s0 are the same as for standard state machines, Act
is a set of actions and Tr ⊆ S × S × Σ×Act. �

Definition 2.9 (Moore machine). A Moore machine is a tuple MMoore =
(S,Σ,Tr , O, s0,Act) where S,Σ,Tr , s0 are the same as for standard state machines,
Act is a set of actions and O : S 7→ Act. �

Informally, if a state machine’s outputs are associated with the transition of the automaton,
the state machine is considered a Mealy machine. In case of a Moore machine, the output
is associated with the states.

Definition 2.10 (Path). For a state machine M , π = (s0, s1, . . . , sn) is a path iff s ∈ S
(for 0 ≤ i ≤ n), and (si, si+1) ∈ Tr (for 0 ≤ i < n). �

The input of the state machine determines the path. Let inputM (k) denote the input of
the state machine after k elapsed transitions.

Example 2.10 (Path). Consider the example state machine (M) presented in Fig-
ure 2.1. For M π1 = (A,B,C,D) and π2 = (A,C,D) are paths. Note that π1 is always a
path for M , while π2 is a path only if inputM (0) = AC .

2.2.2 Hierarchical Statecharts

In order to define statecharts, the concept of hierarchy has to be defined first.
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Definition 2.11 (Hierarchy function). Let S be a set of states, R a set of regions and
root an abstract object representing the top of the hierarchy. par : S∪R 7→ S∪R∪{root}
is a function that maps states to their parent region, and regions to their parent state or
directly to the root of the hierarchy in a way that:

• for all s ∈ S we have par(s) ∈ R, so every state is contained in a region,

• for all r ∈ R it holds that par(r) ∈ S ∪ {root}, so the parent of each region is either
a state or the root object,

• there exists r ∈ R such that par(r) = root, which means informally there is at least
one region, that is contained directly by the root element of the hierarchy,

• for every r ∈ R there exists a state s ∈ S such that par(s) = r, so there are no
empty regions. �

For a region r ∈ R, the state par(r) is called the parent state of r, and for a state s ∈ S,
the region par(s) is called the parent region of s.

For convenience, lets define chld as the inverse of par . Note however, that chld is not an
inverse in the mathematical sense as it maps a state to a set of regions and a region to
a set of states. For a region r ∈ R, chld(r) = {s ∈ S | par(s) = r}, for a state s ∈ S,
chld(s) = {r ∈ R | par(r) = s}, and for the root, chld(root) = {r ∈ R | par(r) = root}.

For a region r, the elements of chld(r) are called child-states of r, and for a state s, the
elements of chld(s) are called child-regions of s. The member regions of chld(root) are
called top-level regions.

Let S be a set of states, R a set of regions, and par the hierarchy mapping between
them. A state scom ∈ S is a composite state if chld(scom) 6= ∅, and a state ssim ∈ S is a
simple state iff ssim is not composite. Informally, composite states are states that contain
regions, whereas simple states are the ones that do not. Regions r1, r2 ∈ R are orthogonal
(or parallel) if par(r1) = par(r2).

Definition 2.12 (Statechart). A statechart is a tuple Sc = (S,R, par , I, V,Tr ,H)
where the members of the tuple are the following.

• S is a finite set of states.

• R is a finite set of regions.

• par : S ∪R 7→ S ∪R ∪ {root} is the state-hierarchy function as defined above.

• I ⊆ S are the initial states such that for all r ∈ R, |chld(r) ∩ I| = 1. Informally I
contains exactly one initial state for every region.

• V is the set of variables.

• Tr ⊆ S × S × EV × G × Act is the set of transitions with a trigger event, a guard
and output actions assigned, where the trigger event e ∈ EV , the set of the possible
events for Sc, guard is from the set of FOL formulas G that evaluate to a boolean
value, and the output action is from the set of possible actions Act .

• H ⊆ R is the history marker, a set of regions that have history. �
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The source and target state for a transition can be defined and denoted the same way as
for a state machine, src(t) denoting the source and trgt(t) denoting the target state.

An event e ∈ EV is a trigger for a transition t (e = trig(t)), if the transition is initiated
by e. Informally, the transition can fire if and only if a trigger event is active. Since
having a trigger is not required for a transition, there is a default event ε ∈ EV that is
always considered active. A g ∈ G is the guard of t transition (g = grd(t)), where g is
an expression that can be evaluated to a boolean value, if g = true is required for the
transition to fire.

The output of a statechart is the same as the output of a Mealey machine. Act is the set
of all possible output actions. Since an action is not required during a transition, there
is an action skip ∈ Act that has no effect. For a transition t, act(t) denotes the output
action that takes place when the transition fires.

Example 2.11. Consider the statechart Sc = (S,R, par , I, V,Tr ,H) presented in Fig-
ure 2.2. Note that in the figure regions are denoted with dashed rectangles, whereas states
denoted by rectangles with solid border. For this statechart

Figure 2.2: An example for statechart.

• S = {A,A1a,A1b, A2a,A2b, B,B1, B2, B3, B3a,B3b}. The states A,B,B3 are
composite states, the others are simple states,

• R = {main, A1, A2,mainB,mainB3},

• par = {main 7→ root, A 7→ main, A1 7→ A,A1a 7→ A1, A1b 7→ A1, . . .}

• I = {A,A1a,A2a,B1, B3a},
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• V = {x, y}, and their type can be implicitly derived from their values, x is an integer,
and y is a boolean,

• Tr = {(A1b, B3, e, x = 3, y ← true), (B,A, ε, y = true, x← x+ 1) . . .},

• H = {mainB}.

The regions A1 and A2 are orthogonal regions.

For the transition t = (A1b, B3, e, x = 3, y ← true),

• src(t) = A1b,

• trgt(t) = B3,

• trig(t) = e,

• grd(t) = (x = 3),

• act(t) = {(y ← true)}.

2.2.3 Statechart Configurations

Unlike a state machine, a statechart might have more than one active states at a time
during its execution. However, there are strict rules for active states.

Formally, let Sc = (S,R, par , I, V,Tr ,H) be a statechart. Then ω ⊆ S is the set of active
states for the statechart in a way that

1. for all s1, s2 ∈ ω we have par(s1) 6= par(s2), so a region has at most one active state,

2. for every r ∈ chld(root), chld(r)∩S 6= ∅, which informally means that every top-level
region has an active state,

3. for all s ∈ ω and r ∈ chld(s) there exists s′ ∈ ω such that par(s′) = r, meaning that
every region that is a child of an active state must contain an active state,

4. for all s ∈ ω we have par(par(s)) = root or par(par(s)) ∈ ω, so if a state is active,
the parent state of its parent region is also active, unless it is in a top-level region.

Note, that the second constraint can be replaced with root ∈ ω if ω ⊆ S ∪ {root}.

Definition 2.13 (Statechart Configuration). Let Sc = (S,R, par , I, V,Tr ,H) be a
statechart. Then c = (ω, ρ,F , H) is the configuration of the statechart if

• ω is a valid set of active states for Sc,

• ρ is the currently active events on the input of the statechart,

• F is an interpretation for variables V ,

• H : H 7→ S is the history information, that stores the active state for every region
marked with a history indicator. �

Example 2.12. Consider the statechart presented in Figure 2.2. Example valid configu-
rations for Sc are
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• c1 = ({B1, B}, ∅, {x 7→ 1, y 7→ true}, {mainB 7→ B1}). Note that with this config-
uration, the history information of region mainB is not allowed to be anything else
but B1,

• c2 = ({A,A1a,A2a}, {e}, {x 7→ 2, y 7→ true}, {mainB 7→ B1}).

For a statechart Sc = (S,R, par , I, V,Tr ,H) let cI denote the initial configuration of a
statechart, and CSc = {c1, c2, . . .} denote all the possible configurations of Sc. Note that
CSc is not necessarily a finite set.

Definition 2.14 (Transition Relation). Let Sc = (S,R, par , I, V,Tr ,H) be a state-
chart. N ⊆ CSc×CSc is the transition relation of Sc where (c1, c2) ∈ N if there exists t ∈ Tr
such that t is enabled in c1 (it is enabled by its trigger and guard), and after t fires, the con-
figuration of Sc will be c2. Furthermore, for a c ∈ CSc let N (c) = {c′ ∈ CSc | (c, c′) ∈ N}.�

Informally, N (c) is the set of the configurations that are reachable from c within a transi-
tion of Tr .

The definition of a path in a state machine, defined in Definition 2.10 can be extended to
a definition for path in a statechart.

Definition 2.15 (Path). Let Sc = (S,R, par , I, V,Tr ,H) be a statechart. A sequence
of configurations π = (c0, c1, . . . , cn) is a path for Sc if ci ∈ CSc (for 0 ≤ i ≤ n) and
(ci, ci+1) ∈ N (for 0 ≤ i < n) and c0 = cI . �

Informally, a path is a sequence of configurations with the initial configuration of the
statechart as the first element, and each configuration in the path is reachable with a
transition from the preceding one.

Example 2.13. Consider the statechart Sc presented in Figure 2.2. Let the initial value
of the variables be x = 3, y = false. Let the configurations c0, c1, c2 be

• c0 = ({A,A1a,A2a}, {e}, {x 7→ 3, y 7→ false}, {mainB 7→ B1}),

• c1 = ({A,A1b, A2a}, {e}, {x 7→ 3, y 7→ false}, {mainB 7→ B1}),

• c2 = ({B,B3, B3a}, ∅, {x 7→ 3, y 7→ true}, {mainB 7→ B3}).

In that case π = (c0, c1, c2) is a valid path for Sc.

2.3 Encoding Statecharts

In order to be able to automatically reason about the behavior of a statechart, it needs to
be encoded to formulas. In this section, I present well-known techniques from the literature
to encode state machines (Section 2.3.1) and primitive statecharts (Section 2.3.2) to logical
formulas.

2.3.1 Encoding State Machines

Let BVn = {0, 1}n be the set of bit vectors of length n. For a bit vector bv ∈ BVn let
bv(i) denote its i-th component (0 ≤ i < n).
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For a state machine M = (S,Σ,Tr , s0) let enc : S 7→ BVn be a function that assigns a
distinct bit vector to every state in S.

Given a bit vector bv ∈ BVn and a variable set {v0, v1, . . . vn−1}, let lit(bv(i)) = {vi if
bv(i) = 1 and ¬vi, if bv(i) = 0} assign a literal to each element of the bit vector.

Let form : BVn 7→ FOL (where FOL denotes the set of first order formulas) be a function
that assigns a formula to a bit vector in a way that

form(bv) =
n−1∧
i=0

lit(bv(i)). (2.1)

Informally this means, that a bit vector is encoded as a conjunction of variables, where
for each bit, 0 is encoded as a negated and 1 is encoded as a ponated variable.

Finally, let ψs : S 7→ FOL be a function in a way that for a state s ∈ S

ψs(s) = form(enc(s)). (2.2)

Given a bit vector bv ∈ BVn and a state s, the indexed formulas form(bv)k and ψs(s)k
can be defined as presented in Section 2.1.2.1. The reason behind indexing this formula
is to be able to reason about a sequence of bit vectors, and a sequence of states in a state
machine.

There can be several different enc functions for a set of states S, one of the most intuitive
ways are the binary encoding, and the 1 out of n encoding. As these two are quite
analogous and the methods presented in Chapter 3 build on the binary encoding, only
that one is presented.

In this case, for a set of states S, bit vectors of length n = dlog2 |S|e are required to assign
each state in S a unique vector. This can be achieved by numbering the states starting
from 0 to |S| − 1, and assigning a bit vector as an n long binary representation of the
given number.

Example 2.14. Consider the state machine presented in Figure 2.1, with S =
{A,B,C,D}. Let them be numbered as A 7→ 0, B 7→ 1, C 7→ 2, D 7→ 3, so the as-
signed bit vectors are 00, 01, 10, 11 respectively. The value of function form for the four
states given the variable set {V0, V1} are

• form(00) = ¬V1 ∧ ¬V0,

• form(01) = ¬V1 ∧ V0,

• form(10) = V1 ∧ ¬V0,

• form(11) = V1 ∧ V0.

Given the set of variables {P0,0, P1,0} for k = 0 and {P0,1, P1,1} for k = 1, the values of
ψs(s)k for states A and B, and for k = 0, 1 are:

• ψs(A)0 = ¬P1,0 ∧ ¬P0,0,

• ψs(A)1 = ¬P1,1 ∧ ¬P0,1,

• ψs(B)0 = ¬P1,0 ∧ P0,0,
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• ψs(B)1 = ¬P1,1 ∧ P0,1.

A transition t ∈ Tr in a path π = (s0, s1, . . . sn) occurs if there exists an index i such
that src(t) = si and trgt(t) = si+1 (0 ≤ i < n). For transition t to fire, the input symbol
sym(t) ∈ Σ is also required.

For a state machine M = (S,Σ,Tr , s0) let ψt : Tr 7→ FOL be a function such that for
every t ∈ Tr ,

ψt(t)k = ψs(src(t))k ∧ ψs(trgt(t))k+1 ∧ (inputM (k) = sym(t)). (2.3)

Informally, a formula assigned to a transition is the conjunction of the formula of the
source state, the target state at the next step of the execution, and the existence of the
input symbol that is required for the transition to fire.

Combining Equations 2.2 and 2.3,

ψt(t)k = form(enc(src(t)))k ∧ form(enc(trgt(t)))k+1 ∧ (inputM (k) = sym(t)). (2.4)

For a path π = (s0, s1, . . . , sn) in the state machine M , define an interpretation Iπ in a
way that Iπ |= ψs(si)i for every 0 ≤ i ≤ n, and Iπ 6|= ψs(si)j if i 6= j.

Informally, Iπ is an interpretation for the variables used to encode M into formulas in a
way that Iπ uniquely determines π.

Note that for a path π = (s0, s1, . . . , sn) Iπ |= ψt(t)k iff the k’th element of π is src(t) and
the k + 1’th is trgt(t).

Define the FOL formula ψTr as (ψTr)k =
∨
t∈Tr

ψt(t)k. Note that (ψTr)k evaluates to true,

if after k transitions, another transition fires in M . The formula (ψTr)k can be referred to
as the transition relation formula of M .

For a state machine M = (S,Σ,Tr , s0) let ψMk be a formula such that

ψMk =
(

k∧
i=0

((ψTr)i

)
∧ ψs(s0)0 =

 k∧
i=0

∨
t∈Tr

ψt(t)i

 ∧ ψs(s0)0. (2.5)

The formula ψTr contains restrictions about the transitions that are allowed to fire. If it
is unfolded k times, it restricts k consecutive transitions to be valid. The formula ψMk is
the conjunction of (ψTr)i, as all the transitions are required to be valid. The conjunction
of the formula ψs(s0)0 is required as the execution of the state machine can only start
from the initial state.

It can be proven that for each possible k long path π of M , Iπ |= ψMk, and for every
other interpretation I ′, I ′ 6|= ψMk. The construction of formula ψMk is also referred as
unfolding ψTr k times.

It can also be seen, that from the interpretation satisfying the formula ψMk, a path π can
be retained, by decoding the interpretation for each 0 ≤ i ≤ k, and constructing a path
from si’s.

Example 2.15. Consider the example state machine in Figure 2.1. For this machine
S = {A,B,C,D}, Σ = {AC}, Tr = {(A,B), (A,C, (AC)), (B,C), (C,D)}, and s0 = A.
ψt for the machine is:
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• ψt((A,B))k = ψs(A)k ∧ ψs(B)k+1

• ψt((A,C))k = ψs(A)k ∧ ψs(C)k+1 ∧ (inputM (k) = AC )

• ψt((B,C))k = ψs(B)k ∧ ψs(C)k+1

• ψt((C,D))k = ψs(C)k ∧ ψs(D)k+1

For this state machine (ψTr)k = ψt((A,B))k∨ψt((A,C))k∨ψt((B,C))k∨ψt((C,D))k that
can be expressed as presented in Equation 2.6.

ψs(A)k ∧ ψs(B)k+1 ∨ ψs(A)k ∧ ψs(C)k+1 ∧ (inputM (k) = AC ) ∨
ψs(B)k ∧ ψs(C)k+1 ∨ ψs(C)k ∧ ψs(D)k+1

(2.6)

This unfolded twice is ψM 2 = (ψTr)0 ∧ (ψTr)1 ∧ ψs(A)0, which results in Equation 2.7.

ψM 2 =ψs(A)0 ∧
(ψs(A)0 ∧ ψs(B)1 ∨ ψs(A)0 ∧ ψs(C)1 ∧ (inputM (0) = AC ) ∨
ψs(B)0 ∧ ψs(C)1 ∨ ψs(C)0 ∧ ψs(D)1) ∧
(ψs(A)1 ∧ ψs(B)2 ∨ ψs(A)1 ∧ ψs(C)2 ∧ (inputM (1) = AC ) ∨
ψs(B)1 ∧ ψs(C)2 ∨ ψs(C)1 ∧ ψs(D)2)

(2.7)

Using the binary state encoding method presented before, this can be transformed to a FOL
formula. One possible interpretation satisfying this formula is I = {P0,0 = 0, P1,0 =
0, P0,1 = 1, P1,1 = 0, P0,2 = 1, P1,2 = 1, inputM = {0 7→ AC , 1 7→ ε, . . .}, . . .}. So the path
π corresponding to this interpretation is (A,C,D).

2.3.2 Encoding Statecharts

The transformation presented above can easily be extended to a subset of statecharts that
meet some additional requirements.

Definition 2.16 (Flat Statechart). Let statechart Sc = (S,R, par , I, V,Tr ,H) be a flat
statechart if Sc does not contain hierarchy, parallel regions (so there is only one region,
contained by the root of the hierarchy), formally |R| = 1, |chld(root)| = 1. �

From now on, lets assume that for a statechart |V | = 0, and |H| = 0, so there are no vars
in the statechart, and in the only region, there is no history.

The encoding of flat statecharts is really similar to the encoding of state machines presented
in the previous section, as with only one region, for every c = (ω, ρ,F , H) ∈ CSc, ω = {s}
and as there are no variables and history, F = {} and |H| = 0. For now, lets also
assume that |ρ| ≤ 1, so there is at most one active event. This can be also modeled as
ρ = {e}, where e is allowed to be the default event ε, noting that there is no active event
in the statechart. For a statechart Sc = (S,R, par , I, V,Tr ,H) with configurations CSc,
let ψc : CSc 7→ FOL be a function that assigns a formula to every state configuration. Due
to the restrictions presented above, for a configuration c ∈ CSc, ψc(c)k can de defined as
ψs(s)k ∧ ψEV (e)k, where ψs(s)k can be defined similarly as for state machines.

However ψEV has to be defined. Events can be encoded just the same as states, let
enc : EV 7→ BVn be a function that assigns a unique bit vector for each event. Then
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ψEV : EV 7→ FOL is a function such that

ψEV (e)k = form(enc(e))k (2.8)

As for states, there are several methods to assign bit vectors to events, and the presented
one is the binary. However binary encoding, like the 1 out of n allow only one active event.
In order to support the cases where |ρ| > 1, the 1 out of n method can be extended to k
out of n.

A transition of a statechart can only fire, if its guard evaluates to true, and if its trigger
event is active. For a transition t, grd(t) is a formula that evaluates to a truth value, thus
the transition is enabled if it evaluates to >.

For a flat statechart Sc = (S,R, par , I, V,Tr ,H), let ψt : Tr × N 7→ FOL be a function
that assigns a first order logic formula to every transition of Sc. The value of ψt for a
t ∈ Tr is presented in Equation 2.9.

ψt(t)k = ψs(src(t))k ∧ ψs(trgt(t))k+1 ∧ ψEV (trig(t))k ∧ grd(t)k (2.9)

Iπ can be introduced for statecharts too, only with the extension of π = (c0, c1, . . . , cn)
being a sequence of configurations for Sc.

The formula ψTr can be defined as the disjunction of formulas ψt for every transition in
Tr , and ψSck can be defined just the same as for state machine, such that for every valid
path π = (c0, c1, . . . , cn) in Sc, Iπ |= ψSck, and for every other interpretation I ′ 6|= ψSck.

The only difference is that instead of the initial state formula ψs(s0)0, the initial configu-
ration formula ψc(cI )0 is conjuncted to the transition conjunction as seen below.

ψSck = ψc(cI )0 ∧
(

k∧
i=0

(ψTr)i

)
(2.10)

The preceding equation can be extracted to

ψc(cI )0 ∧

 k∧
i=0

∨
t∈Tr

(ψs(src(t))i ∧ ψs(trgt(t))i ∧ ψEV (trig(t))i ∧ grd(t)i)

 . (2.11)

For encoding hierarchical statecharts, the state-of-the-art solutions [3] are transform-
ing the statecharts to the input of an other model checker [1] or flattening [13].
For a statechart Sc = (S,R, par , I, V,Tr ,H) flattening creates a statechart Sc′ =
(S′, R′, par ′, I ′, V ′,Tr ′,H′) such that Sc′ is flat, and there is a bijection between the ele-
ments of CSc and CSc′ such that the transition relation is the same for both of them. With
flattening, the size of the statechart grows, and the information stored in the hierarchy is
lost.

Example 2.16. An example for flattening a statechart can be found in Figure 2.3.

The statechart on the top is the hierarchic one, and its flat equivalent can be seen below.
Each transition has one or more corresponding transitions in the flattened statechart.

This example points out that parallel regions reduce the number of states and transitions,
whereas composite states reduce the number of transitions in the statechart, however they
introduce more states.
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Figure 2.3: Example for flattening.

2.4 Model Checking

Model checking is the concept of automatically verifying the model of a behavioral system
against a set of given requirements by systematically exploring the state space of the
system. As models and requirements both vary on a wide spectrum, there are several
algorithms. In this section, I present model checking techniques related to reachability
properties that can be applied during the verification of statecharts.

2.4.1 Safety and Reachability

Safety and reachability are global properties of a statechart.

Definition 2.17 (Reachable configuration). For a statechart Sc =
(S,R, par , I, V,Tr ,H), the configuration c ∈ CSc is considered reachable if there
exist a path π = (c0, c1, . . . , cn) in Sc such that c = cn for some n. �

Let CScr ⊆ CSc denote the set of the reachable configurations for Sc.

An error-state or false-state is a state configuration for a statechart, that should not be
reached during the execution in order to assure faultless functionality.

Let Sc = (S,R, par , I, V,Tr ,H) be a statechart. For each configuration c ∈ CSc a predicate
p can be defined such that p(c) = true, if c is an error state, otherwise p(c) = false.
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The predicate function p is defined by the designer of the system, as it can be different
for every statechart, so it can be interpreted as an input for the verification method.

Definition 2.18 (Safety). A statechart Sc is safe for the predicate function p if for every
cr ∈ CScr p(cr) = false. �

Definition 2.19 (Reachability). In a statechart Sc with the predicate function p, reach-
ability holds if there is a cr ∈ CScr such that p(cr) = true. �

Note that safety and reachability are duals to each other, as the reachability of a bad state
is equivalent to the unsafety of the statechart.

The existence of bad-states can be proven by providing a path to it.

Definition 2.20 (Counterexample). A path π = (c0, c1, . . . , cn) is a counterexample
for the predicate function p if p(cn) = true. �

Note that for convenience, the counterexample does not only contain the error state, but
it contains it as its last member.

2.4.2 State Space Exploration

The concept of state space exploration is the basic method for model checking. The
algorithm explores all the reachable states for a system. In case of a statechart, it is
equivalent to CScr, the set of reachable configurations.

It is important to note, that the state space can be unmanageably large, or even infinite
as the domains of variables can be infinite too. However state space exploration still
can be used to test the statechart against reachability requirement as upon finding a
counterexample, the algorithm terminates.

The exploration can be done by an interpreter, starting from the initial configuration, and
preforming a BFS1, maintaining the reached configurations. If the execution reaches a
configuration that is an error state, the algorithm terminates and an explored path to the
configuration is returned as a counterexample. Logical solvers can also be used for finding
reachable configurations from a configuration c ∈ CSc within one transition, as described
in Section 2.3.

2.4.3 Bounded Model Checking

State space exploration can handle statecharts with small state space, however as with
the introduction of parallel regions and variables the state space grows exponentially, or
even becomes infinite, preventing termination. Bounded model checking aims to overcome
this problem.

Bounded Model Checking [4], abbreviated as BMC, is an iterative process of checking if a
reachability requirement is violated.

Definition 2.21 (k-reachability). Let CSc be the set of configurations for a statechart
Sc = (S,R, par , I, V,Tr ,H). A configuration c ∈ CSc is k-reachable if a path π with length
k exists to c. �

1It can also be performed by DFS, but it may fail to find the shortest counterexample.
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Informally, a configuration is k-reachable, if it is reachable from the initial configuration
within k transitions.

During the process, the value of k is incremented in each step, starting from 0, and the
k-reachability of the given configuration is tested. If the state is k-reachable, it is also
reachable, so the requirement is violated, otherwise k is incremented. The loop continues
until a counterexample is found or a limit of execution (in computational resources or in the
value of parameter k) is reached. For that reason, BMC can not be considered complete,
as there might be false positives (reachable configurations marked as unreachable).

In practice, checking k-reachability for a configuration is often realized by logical solvers
(SAT/SMT). The transition relation of the statechart is transformed into formulas, and
unfolded k times (as presented in Section 2.3), and so does the reachability requirement
in such way that the satisfiability of the and clause of these formulas is equivalent to
the reachability of the configuration, and a satisfying interpretation gives a path as a
counterexample.

2.4.4 Counterexample-Guided Abstraction Refinement

BMC might handle infinite state space, but for a large state space the solvers still have to
find a value for each variable, however this is not always necessary to prove reachability
or safety.

Counterexample-Guided Abstraction Refinement (CEGAR) [7] is a general approach to
perform analysis in state transition systems with large or even infinite state space. The
CEGAR algorithm verifies requirements in an abstract representation of the system. Ab-
straction is a mathematical approach to hide irrelevant details of a system. CEGAR uses
existential abstraction, that is an over-approximation of the system, meaning that if a
requirement holds in the original model, it also holds in the abstract one, however the ab-
straction can introduce additional behavior. If such behaviors have impact on the result
of the verification, the abstraction has to be refined.

The algorithm contains four major steps, creating an initial abstraction for the system,
verifying the abstract model against a given requirement, examining the output of the
verification and refining the abstraction if needed. The flowchart of the CEGAR algorithm
is presented in Figure 2.4.

The creation of the initial abstraction is based on some heuristics, however coarse ab-
stractions are preferred as the algorithm refines it if needed. The verification can be done
by one of the model checking methods, i.e. the ones presented above. If the checking
does not find a counterexample, due to the existential property of the abstraction, there
is no counterexample in the original model. Although if a counterexample is found, it
has to be concertized, which means searching for a corresponding counterexample in the
original model. If such concrete counterexample exists, the requirement is violated, other-
wise the counterexample is called spurious, and the abstraction needs to be refined, with
adding extra details to prevent checking methods on the abstract model to find the same
counterexample again.
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Figure 2.4: Flowchart of CEGAR.
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Chapter 3

Encoding Hierarchical Statecharts

In this chapter, I present techniques that can be used to encode hierarchical statecharts.
The methods presented in Section 2.3 do not take hierarchy into consideration. Further-
more, instead of making benefit of it, the algorithms become more complex as the depth
of the hierarchy increases.

First, in Section 3.1, I suggest a method to assign interpretations to states that perseveres
the hierarchy. In Section 3.2, I introduce an algorithm to transform statecharts with
hierarchy into logical formulas, using the previously introduced numbering. In Sections 3.3
and 3.4 I demonstrate how these formulas can be used in practice to verify statecharts.

3.1 Numbering States Persevering the Hierarchy

Section 2.3 presented two possible approaches to implement the function enc, but those
can only be applied to state machines and simple statecharts since only one active state
was allowed. In case of hierarchical statecharts, all information stored in the hierarchy
was lost when the statechart was flattened.

During my work, I focused on creating an encoding that transforms states to bit vectors
in a way that the hierarchy information is persevered.

For this purpose, lets extend the concept of bit vectors: let a bit vector be a sequence of
symbols from the set {0, 1, X}, where X is the don’t care bit, marking that its value can
be either 0 or 1. Let BVn = {0, 1, X}n be the set of bit vectors of length n.

A bit vector bv of length n is complete if it does not have a don’t care bit, formally
bv(i) 6= X for every 0 ≤ i < n.

The bit vectors bv1, bv2 ∈ BVn can be combined if they don’t have any conflicting bits.
Two bits are conflicting if they are different and none of them is don’t care. This can be
formalized as bv1(i) = bv2(i) or bv1(i) = X or bv2(i) = X for every 0 ≤ i < n.

Let the combination of two combinable bit vectors bv1, bv2 be denoted by comb(bv1, bv2).
The combination vector’s each bit is the not don’t care bit at the same position in the
two combined bits. If both bits are don’t care, the corresponding bit in the combined bit
vector is don’t care too. Formally, if comb(bv1, bv2) = bvc for each 0 ≤ i < n we have
bvc(i) = bv1(i) if bv1(i) = bv2(i) or bv2(i) = X, otherwise bvc(i) = bv2(i).

If two bit vectors can not be combined, they are conflicting.
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The bit vectors bv1, bv2 ∈ BVn are disjunct if bv1(i) = X or bv2(i) = X for every 0 ≤ i < n.
Every disjunct bit vector pair bv1, bv2 can be combined.

Example 3.1. Let bit vectors bv1, bv2, bv3 be 00XX, 0X11, XXX0 respectively.

• Bit vectors bv1 and bv2 can be combined, their combination is bv4 = 0011. Note that
bv4 is complete.

• Bit vectors bv1 and bv3 can be combined, their combination is 00X0. Note that bv1
and bv3 are disjunct.

• Bit vectors bv2 and bv3 can not be combined as they are conflicting in their fourth
bit.

Combination can be defined inductively for k ≥ 2 bit vectors too. With combination
defined for k − 1 bit vectors, bit vectors bv1, bv2, . . . bvk are combinable if the combina-
tion bvc′ = comb(bv1, bv2, . . . bvk−1) exists and bvc′ is combinable with bvk. Then the
combination of the k bit vectors is the combination of bvc′ and bvk, so

comb(bv1, bv2, . . . bvk) = comb(bvc′ , bvk). (3.1)

If k bit vectors can’t be combined, they are conflicting. Note that the conflict can only
be due to the conflict of two bit vectors. This results in that if in a set of bit vectors
{bv1, bv2, . . . bvk} every pair of bit vectors bv, bv′ is non-conflicting (so combinable), the k
bit vectors are also combinable.

For a statechart Sc = (S,R, par , I, V,Tr ,H), let the function enc : S 7→ BVn be the
encoding function that assigns a unique bit vector to each state in a way that for every
configuration c = (ω, ρ,F , H) ∈ CSc, the set of bit vectors {enc(si)|si ∈ ω} is not conflict-
ing, and their combination is complete. The enc for the set of states ω can be defined as

enc(ω) = comb({enc(si)|si ∈ ω}). (3.2)

During my work, as the main priority was to minimize the variables used for encoding
states, I extended the binary way of encoding states to bit vectors.

Let Sc be a flat statechart, and let enc be the same function that was presented in
Section 2.3.1. It is trivial that this encoding meets the requirement of the encoding
function for statecharts, as there is always exactly one active state for a flat statechart.

From now on, the encoding of flat statecharts will be generalized with each subsection
releasing the constraints required for the encoded statechart.

3.1.1 Parallel Regions

Parallel regions have the property that in each region there can be only one active state.
Lets release the constraint of a flat statechart, by allowing more than one regions, with
the restriction that each region is a top level region. Note that this is equivalent to the
constraint that the statechart must not contain any composite state.

As the active states in orthogonal regions are independent to each other, the bit vectors
assigned to configurations should have independent segments, each segment referring to
the active state in its associated region. A segment is represented by a pair of integers, the
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offset and the length of the segment. The segments combined should make up the whole
bit vector, and they should not have common bits.

For a region r ∈ R let bits(r) denote the minimum number of bits required to encode
states in r. In order to assign a unique bit vector to each state in r, bit vectors of length
n ≥ dlog2 |chld(r)|e are required, so

bits(r) = dlog2 |chld(r)|e . (3.3)

This assures that each region will have enough bits to encode all the states inside the
region.

Let R = {r1, r2, . . . rn} be a set of regions with a given order. Let the function offs : R 7→ N
be a function that assigns the offset of the segment assigned to each region, and let the
value of it be calculated as presented by Equation 3.4.

offs(ri) =
i−1∑
j=1

bits(rj) (3.4)

So for each region r ∈ R, a segment (offs(r), bits(r)) is assigned, and the total length of the
assigned bit vector will be the sum of the length of the assigned segments so

∑n
i=1 bits(ri).

This guarantees that the segments are distinct for every ri, rj ∈ R, since the intervals
[offs(ri), offs(ri) + bits(ri)) and [offs(rj), offs(rj) + bits(rj)) are distinct. Each segment is
inside the interval [0,

∑
r∈R bits(r)). Note that [ and ] denote an inclusive, whereas ( and

) denote an exclusive interval boundary.

For a state s ∈ S, let bvs be a bit vector of length bits(par(s)), a unique bit vector in the
scope of the states inside region par(s) that does not contain any don’t care bits, with the
extra requirement that if s is the initial state of r, the bit vector assigned to it contains
only 0’s.

Let enc : S 7→ BVn be a function that assigns a bit vector of length n =
∑
r∈R bits(r) to

every state s ∈ S such that bv(i) = bvs(i−offs(r)), if 0 ≤ i < bits(r), otherwise bv(i) = X.

Example 3.2. Consider the example statechart presented in Figure 3.1.

Figure 3.1: Statechart for Example 3.2.

25



There are three regions:

• A, containing 3 states: A1, A2, A3, so bits(A) = 2,

• B, containing 2 states: B1, B2, so bits(B) = 1,

• C, containing 3 states: C1, C2, C3, so bits(C ) = 2.

One possible value for the offset function is {A 7→ 0, B 7→ 2, C 7→ 3}. 1 Let the unique bit
vector bvs value for states in the same regions as follows:

• For region A, bvA1 = 00, bvA2 = 01, bvA3 = 10

• For region B, bvB1 = 0, bvB2 = 1

• For region C, bvC1 = 00, bvC2 = 01, bvC3 = 10

The value of enc for each state is as follows: A1: 00XXX, A2: 01XXX, A3: 10XXX,
B1: XX0XX, B2: XX1XX, C1: XXX00, C2: XXX01, C3: XXX10.

For the active states ω = {A2, B1, C3}, the combination of the encoded bit vectors is
01110.

Theorem 3.1. Let Sc = (S,R, par , I, V,Tr ,H) be a flat statechart with parallel regions.
For every state configuration c = (ω, ρ,F , H) ∈ CSc, the set of bit vectors assigned to each
active state are combinable, and their combination is complete. �

Proof. For each region r ∈ R there is an active state in ω. The distinction of intervals
[offs(r), offs(r) + bits(r ′)) and [offs(r′), offs(r′) + bits(r ′)) for every region pair r, r′ ∈ R
assures that the bit vectors can be combined, as there is only one state in ω for each
region. As for every s ∈ S, bv contains only 0 and 1 bits, the combination of the bit
vectors assigned to the states in ω will be complete. �

3.1.2 Hierarchically Nested States

In this subsection an other constraint is released, namely states are allowed to be compos-
ite.

Definition 3.1 (Ancestor state). For a statechart Sc = (S,R, par , I, V,Tr ,H), s is
an ancestor state of s′, if s is the parent state of s′ or one of its ancestors, formally if
par(par(s′)) = s, or s is an ancestor to par(par(s′)). For a state s the set of ancestor
states is denoted by anc(s). �

Note that a state can have more than one ancestors, and that the root pseudo state is an
ancestor of every state.

Definition 3.2 (Descendant states). Let Sc = (S,R, par , I, V,Tr ,H) be a statechart.
For a state s ∈ S the descendant states are the elements of the set {si | si ∈ S and
s ∈ anc(si)}. The state s′ is the descendant of s, which is denoted by s′ ∈ desc(s) iff
s ∈ anc(s′). �

1It is possible for the offset function to have other values, in this case for example {A 7→ 0, C 7→ 2, B 7→
4} also meets the given requirements.
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Informally, the descendant states of s are the states in a statechart, for which s is an
ancestor.

Ancestors and descendants can be defined for regions as well. The state s is an ancestor
to region r (s ∈ anc(r)) if s = par(r) or s ∈ anc(par(r)), and the state s is the descendant
of region r (s ∈ desc(r)), if there exists s′ ∈ chld(r) such that s′ = s or s′ ∈ anc(s), so if
the region contains the state, or one of its ancestors.

Definition 3.3 (Depth of state). For a statechart Sc = (S,R, par , I, V,Tr ,H), let
depth : S 7→ N be a function that assigns the number of its ancestor states to a state. In-
ductively defined, depth(root) = 0, and for every s ∈ S depth(s) = depth(par(par(s)))+1.�

The integer d = max({depth(s) | s ∈ S}) is the maximum depth of the hierarchy. Let the
i-th level of the hierarchy refer to the set of states {s ∈ S | depth(s) = i}.

Example 3.3. Consider the statechart presented in Figure 3.2.

Figure 3.2: An example statechart.

The states with depth(s) = 1, so the stated of level 1 are A, B and C.

The states with depth(s) = 2, so the stated of level 2 are A1a, A1b, A1c, A2a, A2b, A2c,
B1 , B2 .

The states with depth(s) = 3, so the stated of level 3 are A1c1 and A2c2 .

The depth of the statechart is 3, as the deepest level is 3

For a region r ∈ R, let bits(r) be the minimum number of bits required to encode the
region, assuming that each contained state is simple, so bits(r) = log2d|chld(r)|e.

For a composite state sc ∈ S, let bits(sc) be
∑
r∈chld(sc) bits(r), so the sum of the minimum

bits required to encode each region and for a simple state ss ∈ S, let bits(ss) be 0.

For the i-th level in a statechart, let bits(i) denote the minimum bits required to encode
that level, which is obviously the maximum of the minimum required bits for each state
in that level, so formally bits(i) = max({bits(s) | s ∈ S and depth(s) = i}). In the deepest
level, there is no composite state (otherwise there would be another level), so bits(d) = 0.

The active states of the statechart can be encoded into a bit vector in a way that to each
level a bit segment of fixed length is assigned that marks in which state the statechart is
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at that level. As for level i, bits(i) bits are enough, let the length of the assigned segment
be bits(i).

In order to formalize it, let the function offs assign an offset to a level such that offs(0) = 0,
and offs(i) =

∑i−1
j=0 bits(j) for every 0 < i ≤ d, where d is the maximum depth of the

statechart.

Eventually, all states will be encoded to a bit vector of length n =
∑d
i=0 bits(i).

Example 3.4. The statechart Sc presented in Example 3.3 is three levels deep, and the
value of bits(i) are 2,max(2 + 2, 1), 1, 0 respectively. For each state, a 2 + 4 + 1 + 0 = 7
bit long bit vector is assigned. The offset that is assigned for the levels is listed below.

• For level 0, offs(0) = 0 is assigned.

• For level 1, offs(1) = bits(0 ) = 2 is assigned.

• For level 2, offs(2) = bits(0 ) + bits(1 ) = 6 is assigned.

• For level 3, offs(3) = bits(0 ) + bits(1 ) + bits(2 ) = 7 is assigned.

So the bit segments of a bit vector bv assigned to each level are

• For level 0, as bits(0 ) = 2, bits bv(0) and bv(1).

• For level 0, as bits(1 ) = 4, bits bv(2), bv(3), bv(4) and bv(5).

• For level 0, as bits(2 ) = 1, the bit bv(6).

• For level 0, as bits(3 ) = 0, no bits are assigned. It makes sense since there are no
contained states of that state.

Not all the simple states are in the deepest level, so there might be segments whose value is
ambiguous. If this state is on level i, the bits after the first offs(i) bits are not defined, but
still, the first offs(i) bits determine the state. By convention, let the remaining ambiguous
bits be 0-s. For composite states, the bits after bv(offs(i)) are also ambiguous, however
unlike in the case of the simple state, their value can be anything, so let these bits be filled
up with don’t care bits.

This kind of encoding involves that not all bit vectors are valid. It also has the feature
that a bit vector assigned to a state s ∈ S is combinable with the bit vector assigned to
every descendant state of s. Furthermore, for a state s ∈ S at level i = depth(s), the first
offs(i) bits are the same for s and all the descendant states of s as they are on the same
state at level i.

Example 3.5. Recall the statechart in Figure 3.2. This statechart has a composite state
A on level 1 that is assigned the bit vector bvA, amongst others, a simple children state
A1a and a composite A1c. Let the state A1a be assigned the bit vector bvA1a, and A1c be
assigned bvA1c. Both vectors are 7 bits long, corresponding to Example 3.4

As for all three states, regarding level 1 the statechart is at the same states, the first two
bits are the same for all three vectors. According to the convention of assigning ambiguous
bits, the last 5 bits of bvA are don’t care bits, such as the last bit of bvA1c. However the
last bit of bvs is 0.

However, enc is not complete as it is not defined how to assign bit vectors to states in a
level.
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Definition 3.4 (Substatechart). Let Sc = (S,R, par , I, V,Tr ,H) be a statechart
and s be the root object or a composite state in it, let sub-statechart Sc′ =
(S′, R′, par ′, I ′, V ′,Tr ′,H′) be a statechart such that R′ = chld(s), S′ = {si |par(par(si)) =
s}, I ′ = I ∩ S′ and par ′ = {par(x) | x ∈ r′ ∪ s′}. �

Informally said, Sc(s)′ is a statechart that contains s and the root element, its regions
and its child states. Note that Sc(s)′ is a statechart, for which encoding was defined in
Section 3.1.1.

The values of V ′,Tr ′,H′ were omitted deliberately, as variables, transitions and their
labeling and history have no impact on assigning numbers to states.

Let encp be a function that assigns a bit vector to each state s ∈ S such that encp(s) = bv,
where bv is the value of enc(s) for Sc′(par(par(s))).

Informally encp assigns a bit vector to the state s that is assigned to s in the substatechart
of the parent state of s.

Example 3.6. Recall the statechart presented in Figure 3.2. Example 3.4 showed, that
for each level, the offset assigned is 0, 2, 6,7 respectively. According to that, and the bit
vector assigning conventions presented above, the bit vectors for level 1 regions are:

• enc(A) = 00XXXXX,

• enc(B) = 01XXXXX,

• enc(C) = 1000000.

Note that C is assigned terminal zeros as it is not a composize state.

For the states in level 2, the next 4 bits can be assigned. A is considered as a statechart
with two parallel regions, 3-3 states in each, and B is considered as a statechart with two
substates. The vectors assigned are:

• enc(A1a) = 0000XX0,

• enc(A1b) = 0001XX0,

• enc(A1c) = 0010XXX,

• enc(A2a) = 00XX000,

• enc(A2b) = 00XX010,

• enc(A2c) = 00XX100,

• enc(B1) = 1000000,

• enc(B2) = 1000010.

Finally, the substates of A1c can be assigned a bit vector.

• enc(A1c1) = 0010XX0.

• enc(A1c2) = 0010XX1.

Theorem 3.2. Let Sc = (S,R, par , I, V,Tr ,H) be a statechart, and c = (ω, ρ,F , H) ∈
CSc of Sc a configuration of it. The set of bit vectors {enc(s) | s ∈ ω} is not conflicting.
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Proof. To prove the non conflicting behavior of the bit vectors assigned, lets assume that
there is a conflict amongst the vectors. By the offs function, the conflicting level i can be
determined. The conflict can not be due to parallel regions, as segments in the bit vectors
assigned to each region are distinct, so it can be assumed that there are two active states
s1, s2 ∈ ω such that their ancestors at level i are different, but they are in the same region.
However, this contradicts the first point of the definition of ω. �

Theorem 3.3. Let Sc = (S,R, par , I, V,Tr ,H) be a statechart, and c = (ω, ρ,F , H) ∈
CSc of Sc a configuration of it. Let bv be the combination of a set of combinable bit
vectors {enc(s) | s ∈ ω}. The vector bv is complete.

Proof. To prove the completeness of bv, examine the possible occurrences of X bits. A
don’t care bit can come from the bit vector assigned to an abstract state, or to a parallel
region. However by definition, for every composite state sc ∈ ω, there is an active state
in ω from each subregion of sc, so there is a simple state, whose assigned bit vector can
not contain hierarchy related don’t care bits. So if there is a don’t care bit in bv it is
due to parallel regions. But also by definition, if there is a composite state sc ∈ ω with
more than one regions, each region must have an active state, and as it was pointed out
by Theorem 3.1, when every region has an active state, the combination of the bit vectors
assigned is complete. �

3.2 Transforming the Transition Relation to Logical Formu-
las

The previous section released constraints about the statechart that was the object of
reasoning. According to the hierarchy, every constraint has been released. However Sec-
tion 2.3.2 introduced constraints about history, variables and events in statecharts. From
now on, I assume that for every statechart Sc = (S,R, par , I, V,Tr ,H), |H| = 0. Assume
also that for every configuration c = (ω, ρ,F , H) in Sc, there is at most one active event,
so |ρ| ≤ 1, and let this event be denoted by e.

This section extends the techniques presented in Section 2.3 for encoding statecharts meet-
ing the requirements above.

3.2.1 Encoding States and Events

Given a bit vector bv ∈ {0, 1, X}n and a variable set {v0, v1, . . . vn−1}, let lit(bv(i)) = {vi
if bv(i) = 1, lit(bv(i)) = ¬vi, if bv(i) = 0, and lit(bv(i)) = > otherwise } assign a literal
for each element of the bit vector.

Informally, this function extends the lit for bit vectors over {0, 1}n, with handling the
don’t care value as it is always true.

The function form can be defined similarly to bit vectors over {0, 1}n.

Let form : BVn 7→ FOL be a function that assigns a formula to a bit vector in a way that

form(bv) =
n−1∧
i=0

lit(bv(i)). (3.5)

30



Example 3.7. Consider the bit vector bv = 01X1. Given the variable set {v0, v1, v2, v3},
the value of form(bv) is ¬v0 ∧ v1 ∧>∧ v3, which can be abbreviated as ¬v0 ∧ v1 ∧ v3 since
the two formulas are equivalent.

The value of form(bv)k for every k ∈ N is ¬v0,k ∧ v1,k ∧ v3,k.

Similar to the encoding of simple statecharts, let ψs : S 7→ FOL be a function that assigns
a formula to a state s ∈ S such that

ψs(s) = form(enc(s)). (3.6)

Define the function ψω for a set of states ω as

ψω(ω) =
∧
s∈ω

form(enc(s)). (3.7)

This function can be used to assign bit vectors to a set of active states. Theorem 3.4 states
that the assigned bit vector will be the same as if each state was assigned a vector, and
these vectors were combined.

Theorem 3.4. Let Sc = (S,R, par , I, V,Tr ,H) be a statechart, and let c = (ω, ρ,F , H) ∈
CSc be a configuration in it. Let bv be the combination of the bit vectors in the set
BV ω = {enc(s) | s ∈ ω}. For every c = (ω, ρ,F , H), form(bv) =

∧
s∈ω

ψs(s). �

Proof. First of all, according to Equation 3.6,∧
s∈ω

ψs(s) =
∧

bv′∈BV ω

form(bv′). (3.8)

By definition,

form(bv) =
n−1∧
i=0

lit(bv(i)). (3.9)

Also by definition,

∧
bv′∈BV ω

form(bv′) =
∧

bv′∈BV ω

(
n−1∧
i=0

lit(bv′(i))
)

=

=
n−1∧
i=0

 ∧
bv′∈BV ω

lit(bv′(i))

 .
(3.10)

From the formula
∧

bv′∈BV ω

lit(bv′(i)), the members where lit(bv′(i)) = > can be excluded

as for every boolean formula, ψ ↔ (ψ ∧ >). Note that if for every bv′ the formula
lit(bv′(i)) = >, than in every bit vector, there is a don’t care bit at position i, which
would contradict the completeness, defined by Theorem 3.3. However if there were bit
vectors bv′, bv′′ ∈ BV ω such that lit(bv′(i)) = ¬lit(bv′′(i)), that would mean that the i-th
bit of bit vectors bv′, bv′′ are different, which contradicts the combinability of the assigned
bit vectors stated by Theorem 3.2.

So for all bit vector bv′ ∈ BV ω, the value of lit(bv′(i)) is either > or the same literal that
is assigned to the combination of them. And for every formula ψ ↔ ψ ∧ ψ, so for every
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0 ≤ i < n,
lit(bv(i)) =

∧
bv′∈BV ω

lit(bv′(i)) (3.11)

And from that,
n−1∧
i=0

lit(bv(i)) =
n−1∧
i=0

 ∧
bv′∈BV ω

lit(bv′(i))

 (3.12)

is trivial. �

Regarding the preceding theorem, if ω is a complete set of active states in a statechart
configuration,

ψω(ω) =
∧
s∈ω

ψs(s). (3.13)

The function enc : EV 7→ BVn is defined the same way as for simple statecharts. Note
that this implies that don’t care bits are not allowed in bit vectors assigned to events.

ψEV (e) = form(enc(e)). (3.14)

From further on, the k-indexed form of the assigned FOL formulas will be used. The
main reason behind this is to be able to reason about the sequence of state sets or events,
and the index expresses the consecutiveness of them. Due to similar consideration, define
ψV : V ×N 7→ FOLconst , where FOLconst ⊂ FOL is the set of the first order logic constants.

Let Sc = (S,R, par , I, V,Tr ,H) be a statechart where |H| = 0, and let c = (ω, ρ,F , H) be
a configuration of it where ρ = {e}. Let ψc : CSc ×N 7→ FOL be a function that assigns a
unique first order formula to every configuration in c = (ω, ρ,F , H) ∈ CSc such that

ψc(c)k =
(∧
s∈ω

ψs(s)k

)
∧ ψEV (e)k ∧

( ∧
v∈V

(ψV (v)k = F [v])
)
. (3.15)

For a path π = (c0, c1, . . . , cn), let Iπ be an interpretation such that I |= ψc(ci)i for every
0 ≤ i ≤ n, but for every other configuration c ∈ CSc, Iπ 6|= ψc(c)j if c 6= cj .

3.2.2 Transforming the Transition Relation

This section presents a possible method to transform the transition relation of the state-
chart into logical formulas.

3.2.2.1 Source and Target States

With parallel regions and hierarchically nested states, transitions connect two, not neces-
sarily real states of the system. This could mean that the source and the target of the
transition can correspond to more than one state. For example, a transition originating
from a composite state corresponds to every descendant state of the source state, and a
source state in a region with parallel regions refers that for every state in the Cartesian
product of the states elements the transition is allowed. Consider the method presented
in the previous section for the encoding of states to bit vectors. Don’t care bits exactly
denoted this.
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However, after the transition fires, the execution of a statechart must arrive to an explicitly
given state configuration. If the explicit target state is not the only one, that becomes
active after a transition, the target state configuration is not trivial. The expected behavior
has to be defined for each cases of nontrivial target states.

• In the case, when the target state is a composite state, the execution continues from
the initial state of the region inside the state, or from the set of initial states if the
target state has more regions.

• If the containing region of the target state has orthogonal pairs, there are two cases.

– If the source of the transition is from inside the region, the transition should
not have any effect outside the region, the other parallel regions continue their
execution from the state they were before.

– If the source state is outside of the region, the other regions should start their
execution from their initial state.

Compositeness and parallelity are not opposites to each other, both criterion can stand for
a state. In that case, of course both rules has to be applied, as they are not contradicting
each other.

Taking these into consideration, different formulas should be assigned to a state if it is
regarded as a source state of a transition, than when it is regarded as the target state.

Example 3.8. Recall the statechart presented in Figure 3.2. In this statechart, the state
A1c is a composite state, so a direct transition to A1c implies a transition to its initial
state A1c1 .

This state is contained in a region that has orthogonal pairs. So a transition from inside
region regA1 with A1c as target state implies, that the active state in region regA2 remains
unchanged. However, if the transition source is outside of the region, the statechart’s
execution not only enters regA1 , but also regA2 in its initial state A2a.

Define a function init that can be used to determine the target state configuration for a
transition, that has a given state as target.

For a statechart Sc = (S,R, par , I, V,Tr ,H), let init be a function that assigns a set of
states ωr to a region r such that ωr = {s|s ∈ I and s ∈ desc(r)}. Informally said, ωr is
the set of initial states in r. Note that these states will be active, if the execution enters
the region.

For a state s ∈ S let init(s) be
⋃
{init(r) | r ∈ chld(s)}, so the set of all the initial states

that are descendant of s.

Define the function target that assigns a set of states to every state s ∈ S that will be
active if a transition with s as target state fires.

The value of target depends on the compositeness and parallelity of the state.

For a simple state ss that is not contained by any parallel region, let target(ss) = {s′ | s′ =
ss ∨ s′ ∈ anc(ss)}, so the state and all of its ancestors, as these will be the only active
states.

For a composite state sc that is not contained by any parallel region, let target(sc) =
{s′ |s′ = sc∨s′ ∈ anc(sc)}∪ init(sc), so the state, its ancestors and the nested initial states
of it. These two rules can be united as |init(ss)| = 0 for a simple state ss.
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In case of a state s contained in any region that is orthogonal to another region, let the
value of the function target be the union of the value of target(s) if the state was not
contained in a parallel region and the initial states of the regions, to which a parallel
region the state is in, but the source state is not. So from each region the set of initial
states, but from the region, from where the source state is added to the union.

Before formalizing this, consider that this is required because if a statecharts execution
arrives to a region, it arrives to every region next to them, even though it is only derived
implicitly from the semantics of statecharts, but these regions should continue from their
initial state. However, if during the execution the statechart just steps in a region, the
parallel regions in the same state do not change their active states, the active states in
those regions remains what is was before the transition.

For a state sp in a parallel region, let target(sp) be

{s′ |s′ = sp∨s′ ∈ anc(sp)}∪ init(sp)∪{init(r) |r ∈ chld(s′)∧s′ ∈ anc(sp)∧¬(r ∈ anc(sp))}
(3.16)

Informally, the value of target(sp) is the set of sp and initial states for regions that are
contained in an ancestor of sp, however they do not contain sp.

Example 3.9. Consider the statechart Sc presented in Figure 3.2. A1b is a simple state
in a region with parallel pair in Sc. The initial state of the other parallel region is A2a,
so the value of target(A1b) is {A1b, A2a}.

In Sc, the state A is a composite state. It has two regions, regA1 and regA2 , each having
a simple initial state. So the value of target(A) = {A1a,A2a}.

3.2.2.2 Guards

With the previously defined functions the source and target states of the transitions can
be encoded into formulas. However in order for the transformation to be complete, the
variables in the statechart have to be handled. Guards in statecharts are first order logic
formulas, so in order to reason about them their k-indexed version can be used.

Example 3.10. Consider the transition t with grd(t) = (x = 2) ∨ (y + 1 < 4). The
variables in the guard are x and y, so grd(t, k) = (ψV (x, k) = 2) ∨ (ψV (y, k) + 1 < 4).

3.2.2.3 Actions

To enable reasoning about their effect on variables, actions also have to be encoded into
logical formulas. Regarding the encoding, actions can be interpreted as formulas that
evaluate to true, if the action is executed. Restrict the set of allowed statements in actions
to raising events and assigning variable values. Let act : Act 7→ FOL, such that for every
a ∈ Act, the value of act(a)k is

∧
stm∈a

ψSTM (stm)k, where stm is a statement in a, and

ψSTM assigns a formula for every statement. For a statement stm in a,

• if stm raises event e, let ψSTM (stm)k = ψEV (e)k+1 ,

• if stm assigns the value of a formula ψ to a variable v, let ψSTM (stm)k be ψV (v)k+1 =
ψk.
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Informally, the raising of an event causes the event at the next execution step to be active,
and and assigning the variable assigns its value at the next execution step, based on its
current values.

3.2.2.4 Transition relation

From now on, the functions defined in Section 2.3.2 are defined again for hierarchical
statecharts.

Let Sc = (S,R, par , I, V,Tr ,H) be a statechart. For Sc, let ψt : Tr 7→ FOL be a function
that assigns a first order logic formula to every transition of Sc. The value of ψt for a
t ∈ Tr is presented in Equation 3.17.

ψt(t)k = ψω(target(src(t)))k ∧ ψs(trgt(t))k+1 ∧ ψEV (trig(t))k ∧ grd(t)k ∧ act(t)k (3.17)

The transition relation formula of the statechart is defined the same as for simple state-
charts. The value of the formula ψTr is

ψTr =
∨
t∈Tr

ψt(t) (3.18)

The definition of ψSc is the same as it was in case of a flat statechart.

ψSck = ψc(cI )0 ∧
(

k∧
i=0

(ψTr)i

)
(3.19)

The properties of Iπ still hold, with the extensions made here.

3.3 State Space Exploration

The previous section presented encoding of statecharts to FOL formulas. This section
presents the application of the encoding in the verification of them based on the basic
concept of verifying statecharts, which was presented in Section 2.4.2.

The input of the algorithm is a statechart Sc = (S,R, par , I, V,Tr ,H) with an initial
configuration cI , and a set of error states that should not be reached. The iterative
algorithm of exploring the state space is summarized in Algorithm 1.

The core of the algorithm is a breadth-first search in the state space. In each step, the
set of configurations Q′ is explored, in which each configuration is reachable from the
previously discovered configurations Q witihin one transition. The configurations in Q
processed in a loop, one at each iteration, and the configuration c is only processed, if it is
not already in the set of reached configuration R, and is added to R while being processed.
Hence each configuration is only processed once.

A configuration c1 is reachable from c0 within one transition, if for the path π = (c0, c1),
there is an interpretation Iπ satisfying the constraints ψc(c)∧ (ψTr)0. The interpretations
can be explored with logical solvers, in case of only boolean variables, a SAT solver will
do, however to handle more complex formulas, an SMT solver is required. Since a logical
solver can find all the satisfying interpretations for a formula, no reachable configuration
is omitted.
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Algorithm 1: The many-at-once method
Input : Sc = (S,R, par , I, V,Tr ,H): the verified statechart,

Cf : the set of error states
Output : Path π as a counterexample or success

1 R← ∅;
2 Q← {cI};
3 while Q 6= ∅ do
4 Q′ ← ∅ ;
5 foreach c ∈ Q do
6 if c /∈ R then
7 R← R ∪ {c} ;
8 ψ ← ψc(c)0 ∧ (ψTr)0;
9 foreach π = (c, c′) where Iπ |= ψ do

10 if c′ ∈ Cf then return path to c′ (cI , . . . , c, c
′) ;

11 Q′ ← Q′ ∪ {c′} ;
12 end
13 end
14 end
15 Q← Q′ ;
16 end
17 return success;

Given a configuration c′ = π[1], it is checked if it is an error configuration (π[1] ∈ Cf ). If it
is so, a path to it is returned, for example based on the information for each configuration
c, from which state configuration it was reached. If not, it is added to the set of freshly
discovered configurations (Q′).

At the end of the iteration over the last discovered configuration, Q is assigned the set of
the newly discovered configurations Q′, and the loop starts again. It terminates when Q′
is empty, which is equivalent to the fact that no new configurations were discovered in the
previous iteration, which can only be, because all the reachable states have been explored.

Example 3.11. Consider the statechart presented in Figure 3.2. Let the initial value for
variables x and y be 0.

For simplicity, as there are no events or history in the statechart, let the configurations be
denoted by the set of the active states and variable values.

Let the set of error states Cf contain only one configuration, {A1a,A2a, x = 0, y = 2}.

The execution of the algorithm start from configuration {A1a,A2a, x = 0, y = 0}, as it is
the initial configuration of the statechart. So Q = {{A1a,A2a, x = 0, y = 0}}.

The configurations reached in the first step are:

• {A1b,A2a, x = 1, y = 0},

• {A1c1 ,A2a, x = 0, y = 1},

• {A1a,A2b, x = 0, y = 1},

• {B1 , x = 1, y = 0}.

Each configuration is put into Q′ and the exectuion continues.
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The next step, from each configuration, the reachable configurations are listed.

• From {A1b,A2a, x = 1, y = 0}, the reachables are:

– {A1a,A2a, x = 1, y = 0},
– {A1b,A2b, x = 1, y = 1},
– {B1 , x = 2, y = 0}.

• From {A1c1 ,A2a, x = 0, y = 0}, the reachables are:

– {A1c2 ,A2a, x = 0, y = 0},
– {A1c1 ,A2b, x = 0, y = 1},
– {B1 , x = 1, y = 0}.

• From {A1a,A2b, x = 0, y = 1}, the reachables are:

– {A1b,A2b, x = 1, y = 1}, however that was dicovered before, so it will not be
put in Q′,

– {A1c1 ,A2b, x = 0, y = 1},
– {A1a,A2a, x = 0, y = 2}.

An error configuration is found, the execution terminates, however there would be more
states that are reachable from {A1a,A2b, x = 0, y = 1}. The path ({A1a,A2a, x = 0, y =
0}, {A1a,A2b, x = 0, y = 1}, {A1a,A2a, x = 0, y = 2}) is returned as counterexample.

The reachable configurations are also presented in a reachability graph in Figure 3.3. The
light red configuration marks the error configuration. Note, that the reachability graph is
a tree, when the dashed edges marking the already found configurations are excluded.

The algorithm however has the disadvantage, that it polls the solver all the reachable con-
figurations, including the already reached ones. Furthermore, it is possible that from one
configuration, an infinite amount of configurations are reachable, and the solver algorithm
never terminates, even though all of them are error states.

This can be optimized with only getting one satisfying interpretation from the solver, and
then add extra formulas to the solver, expressing that already found states are not valid
solutions, such as for every configuration c in the set of already discovered configurations
R, the formula ¬ψc(c)1 is conjuncted to the unfolded transition relation.

Algorithm 2 demonstrates the pseudo code of the optimized algorithm.

Let the method presented by Algorithm 1 be called as the many-at-once exploring whereas
the method of Algorithm 2 as the one-at-once method.

3.4 Bounded Reachability Checking

Section 2.4.3 presented the basics of bounded model checking. The concept can be applied
in the verification of statecharts, using the formulas defined in Section 3.2. Recall that
bounded model checking iteratively checks if a requirement holds for every path π of length
k. In each step, k is incremented until a counterexample is found or a limit of checking is
reached.
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Figure 3.3: Reachability graph for Example 3.11.

The k-reachability of a state configuration can be checked with logical solvers. The formula
ψSck evaluates true with interpretations that represents a valid path, and the formula
ψc(c)k evaluates to true if the path has c as its k-th configuration. So the formula ψSck ∧
ψc(c)k evaluates to true, if there is a path π of length k with the configuration c as last
element. If c is an error state, π is a k long counterexample.

The iterative process of the bounded model checking is presented in Algorithm 3.

Note, that the algorithm has a disadvantage that if there is a counterexample, which is
longer than MAX , the algorithm still returns not reachable. Apart from special cases (e.g.
acyclic statecharts) it can not be known, if there would be a counterexample, if the limit
was higher. Formally speaking, the bounded model reachability can not prove safety, only
k-safety and reachability.
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Algorithm 2: The one-at-once method
Input : Sc = (S,R, par , I, V,Tr ,H): the verified statechart,

Cf : the set of error states
Output : Path π as a counterexample or success

1 R← {cI} ;
2 Q← {cI};
3 while Q 6= ∅ do
4 Q′ ← ∅ ;
5 foreach c ∈ Q do

6 ψ ← ψc(c)0 ∧ (ψTr)0 ∧
( ∧
c′∈R
¬ψc(c′)1

)
;

7 if ∃ π(c, c′) such that Iπ |= ψ then
8 if c′ ∈ Cf then return path to c′ (cI , . . . , c, c

′) ;
9 Q′ ← Q′ ∪ {c′} ;

10 R← R ∪ {c′}
11 end
12 end
13 Q← Q′ ;
14 end
15 return success;

Algorithm 3: Bounded reachability checking.
Input : Sc = (S,R, par , I, V,Tr ,H): the verified statechart,

cf : an error configuration,
MAX the limit of the iterations

Output : Path π as a counterexample or not reachable
1 k ← 0;
2 while k < MAX do
3 ψ = ψSck ∧ ψc(cf )k ;
4 if ψ is SAT then
5 return path to cf
6 end
7 k ← k + 1
8 end
9 return not reachable;
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Chapter 4

Applying CEGAR to Hierarchical
Statecharts

The techniques presented in Chapter 3 provide sufficient functionality to check statecharts
against reachability requirements. However, for statecharts with huge or even infinite
state space, the efficiency (or even termination) of those algorithms is not guaranteed.
Abstracting the statechart and checking the abstract model against the requirements of-
fers a method to overcome this problem. In this chapter I propose an adaption of the
Counterexample-Guided Abstraction Refinement method (Section 2.4.4) for statecharts.

In Section 4.1 I introduce the concept of abstraction for statecharts. Section 4.2 presents
the CEGAR algorithm for statecharts, and the following sections presents one step of the
CEGAR algorithm each. Section 4.3 presents the construction of an initial abstraction,
Section 4.4 introduces model checking techniques for abstracted statecharts, Section 4.5
demonstrates the concretization of an abstract counterexample and Section 4.6 presents
refinement algorithms for abstractions.

4.1 Abstraction of Statecharts

CEGAR operates on abstract system, thus in order to apply it on a statechart, a notion
of abstraction has to defined for them. As CEGAR requires existential abstraction, the
abstract stataechart has to be an over-approximation of the concrete statechart. This
requires that if a statechart has a transition between two states that is allowed to fire under
some circumstances, the abstracted statechart must also have a transition between the two
corresponding states. However, the abstract statechart might have other transitions that
have no corresponding pairs in the original statechart.

The top-down design of systems involves a generalization, first defining the behavior of
the top level components, and later expanding the inner implementation of components.
In case of statecharts, this top-down design results in hierarchy, providing an intuitive
way of abstraction. During my work, I focused on creating and applying hierarchy-based
abstractions for the verification of statecharts.

Definition 4.1 (State Abstraction). Let Sc = (S,R, par , I, V,Tr ,H) be a statechart.
Let hS : S 7→ S be the state-abstraction function of Sc that assigns to each state s ∈ S its
abstracted pair, such that

• for each state hS(s) ∈ anc(s) or hS(s) = s,
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• for each state s ∈ S such that h(s) 6= s, for every s′ ∈ desc(s), h(s) = h(s′). �

Informally, state abstraction function maps each state to its corresponding abstraction,
which can either be the state itself or one of its ancestors. Furthermore, if a state s is
mapped to one of its ancestor states s′, all the descendant states of s is also mapped to s′.

If hS(s) = s for a state s ∈ S, the state is considered refined, otherwise it is regarded as
abstracted.

Abstraction can be defined for variables too [8]. In this case abstraction means that only
a subset of the variables is considered during verification. Refinement means to extend
this set with additional variables.

Definition 4.2 (Variable Abstraction). Let Sc = (S,R, par , I, V,Tr ,H) be a state-
chart. Separate the variable set V into two distinct sets, the set of visible and invisible
variables. For a set of variables V let the value of the function hV (V ) be the set of the
visible variables. The function hV : V 7→ {>,⊥} is the variable abstraction function that
assigns each variable of V if it is refined in the abstraction. �

Refined variables can be referred as visible.

The two previously defined functions can also be combined to one function, loosely speak-
ing.

Definition 4.3 (Statechart Abstraction). Let Sc = (S,R, par , I, V,Tr ,H) be a state-
chart, let hS be a state abstraction function, and hV be a variable abstraction function for
it. The functions hS and hV together are referred to as the abstraction function, denoted
by h, or h = {hS ,hV }. For a state s ∈ S let h(s) denote hS(s) and for a variable v ∈ V
let h(v) denote hV (v). �

An abstraction for a statechart intuitively implies the definition of the abstract equivalent
of Sc.

Definition 4.4 (Abstract Statechart). Let Sc = (S,R, par , I, V,Tr ,H) be a stat-
echart, and let h be an abstraction function for Sc. The tuple Sc′ =
(S′, R′, par ′, I ′, V ′,Tr ′,H′) is the abstract statechart of Sc corresponding to h if the fol-
lowing requirements hold.

• S′ = {h(s) | s ∈ S}, where S′ is a mathematical set, not containing any instance
more than once.

• R′ = {r | ∃s ∈ chld(r) such that h(s) = s}, that is, the regions kept are those, that
have at least one child state that is mapped to itself.

• par ′ = {(r, s) | (r, s) ∈ par , r ∈ R′, s ∈ S′∪{root}}∪{(s, r) | (s, r) ∈ par , s ∈ S′, r ∈
R′}. Informally, the hierarchy is persevered between a state and a region if both the
state and the region is included in the abstract statechart.

• I ′ = S′ ∩ I.

• V ′ = {v | h(v) = >}.

• Tr ′ = {(h(src(t)),h(trgt(t)), trig(t), grd(t),Act(t)) | t ∈ Tr}.

• |H′| = 0, as |H| = 0. �
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Let Sc′ be denoted by h(Sc).

Example 4.1. Recall the statechart Sc presented in Example 3.3, that is presented again
in Figure 4.1

Figure 4.1: An example statechart.

Let hS be a function such that hS = {A 7→ A,A1a 7→ A,A1b 7→ A,A1c 7→ A,A1c1 7→
A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→ B1, B2 7→ B2, C 7→ C}, and
let hV be a function such that hV ({x, y}) = {x}.

The abstraction h = {hS ,hV } is a valid abstractiom for Sc as all the requirements defined
above are satisfied. The abstract statechart for h is presented in Figure 4.2

Figure 4.2: Example abstraction for the statechart presented in
Figure 3.2

Note, that s ∈ S′ → s ∈ S and v ∈ V ′ → v ∈ V , that is, the states of the abstract
statechart are states of the original statechart, and variables of the abstract statechart are
variables of the original statechart.
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For the set of states ω, abstraction can be defined as h(ω) = {h(s) | s ∈ ω}. Informally,
the abstraction of a set of states is the set of the abstract states.

For a configuration c = (ω, ρ,F , H) of the statechart Sc = (S,R, par , I, V,Tr ,H), the
value of h can be defined as h(c) = (h(ω), ρ, {F(v) | v ∈ V and h(v) = >}, {}), so the set
of active states is abstracted, the active events are kept, the history is not allowed (note
that |H| = 0), and in F only visible variables are kept. Note that h(c) is a configuration
for the abstract statechart h(Sc) if c is a configuration for Sc.

For a statechart Sc = (S,R, par , I, V,Tr ,H), the state abstraction h′S is finer than the
abstraction hS , if for every state s ∈ S, hS(s) = h′S(s) or hS(s) ∈ anc(h′S(s)). Informally,
if for every state, h′S assigns hS(s) or one of its descendant.

For a statechart Sc = (S,R, par , I, V,Tr ,H), the variable abstraction h′V is finer than the
abstraction hV , if for every variable v ∈ V we have hV (v) → h′V (v), informally, if v is
visible in hV , it is also visible in h′V .

For a statechart Sc = (S,R, par , I, V,Tr ,H), the abstraction h′ = {h′S ,h′V } is finer than
h = {hS ,hV }, if h′S is finer than hS and h′V is finer than hV , and h′ 6= h. If h′ is finer
than h, then h is coarser than h′.

Example 4.2. Consider the statechart and the abstraction, presented in Example 4.1
and the abstraction h presented there. The abstraction h′ = {{A 7→ A,A1a 7→ A,A1b 7→
A,A1c 7→ A,A1c1 7→ A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→
B,B2 7→ B,C 7→ C}, {x}}, for which the abstract statechart is presented in Figure 4.3 is
finer than h.

Figure 4.3: A coarser abstraction for the statechart presented in
Figure 4.1.

For an abstraction function h, an inverse can be defined, however like in the case of the
hierarchy function of statecharts, this inverse is not a real mathematical inverse, as an
abstract object (e.g. variable, state, configuration) can be an abstraction of more than
one object of the original statechart.

Definition 4.5 (Inverse abstraction). Let Sc = (S,R, par , I, V,Tr ,H) be a statechart
and h be an abstraction function for it.The inverse abstraction function h−1 is as follows:

• h−1(s) = {s′ | h(s′) = s}
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• h−1(c) = {c′ | h(c′) = c}

• h−1(Sc) = {Sc′ | h(Sc′) = Sc} �

Note that there is no point defining an inverse function for the abstraction of variables, as
they are mapped to truth symbols.

Applying the inverse abstraction function on an abstraction is also referred to as a con-
cretization.

Example 4.3. Recall the abstraction h presented in Example 4.1. The inverse of
h is h−1 = {A 7→ {A,A1a,A1b,A1c,A1c1 ,A1c2 ,A2a,A2b,A2c}, B 7→ {B}, B1 7→
{B1}, B2 7→ {B2}, C 7→ {C}}.

Definition 4.6 (Identity Abstraction). Let M = (S,Σ,Tr , s0) be a statechart. The
abstraction h is the identity abstraction of the statechart if h(Sc) = Sc. �

Note that there is no finer abstraction that the identity abstraction.

During my work, I constructed and examined two kind of abstractions, one that abstracts
both states and variables, and one that only abstracts states. From further on, let them
be referenced as states-only abstraction and generic abstraction.

4.2 CEGAR Loop for Statecharts

As presented in Section 2.4.4, the CEGAR loop has four major steps: creating the initial
abstraction, checking the given requirement against the abstract model, and if the require-
ment was violated, trying to concretize the counterexample returned by the checker, and
finally refining the abstraction if needed.

The CEGAR loop can be implemented for the verification of statecharts using the abstrac-
tion defined above. The input of the algorithm is a statechart Sc = (S,R, par , I, V,Tr ,H)
and a set of error states Cf .

The set of error states Cf can be given by explicitly enumerating its member configuration,
however a set of configurations can be expressed by bounding the value of some active
states and variables. For example in case of three varaibles a, b, c, the Cf set can be
implicitly declared as the set of configurations where a = 3. With this declaration, for an
error state, the value of variables b and c are unbound. Let it be denoted by unb(Cf ), and
let the set of bound variables be denoted by bound(Cf ) = V \ unb(Cf ).

The algorithm first creates an initial abstraction for Sc, and then the execution enters
the CEGAR loop. In each step, the abstract statechart h(Sc) is tested against the given
requirements. The checking techniques presented in Sections 3.3 and 3.4 can be used, as
h(Sc) is a valid statechart. Then if no counterexample is found, the execution terminates,
however in case of a counterexample, the algorithm tries to concertize the counterexample,
which amounts to searching a path in Sc fitting the counterexample. Note, that although
this check is performed on the original statechart, only a subset of its state space has to be
considered because the counterexample bounds the search. If the concretization succeeds,
a concrete path to a failure state is returned, and the execution terminates. However if
the counterexample turns out to be spurious, the algorithm creates a finer abstraction
for Sc, based on the configuration in which the concretization failed. If there is no finer
abstraction, and the identity abstraction is reached, then the previous checking was done in
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the concrete statechart, so it can be said that there is no reachable error state. Otherwise,
the loop continues.

The flowchart of the CEGAR loop specified for statecharts is presented in Figure 4.4.

Figure 4.4: Flowchart of CEGAR for statecharts.

4.3 Initial Abstraction

The initial abstraction is the first abstraction that is checked against the requirements
during the loop. Coarser abstractions are preferred, as a completely refined abstraction
does not omit any irrelevant detail of the statechart, and it leaves no room to the refinement
algorithm. In general, the coarser the initial abstraction is, the more power the refinement
algorithm has.

During my work, I constructed and examined two kind of abstractions, one that abstracts
both states and variables, and one that only abstracts states. The initial abstraction for
the two are inevitably different, as the states only abstraction must contain every variable
as visible. Still, the main idea for the two is the same, namely creating an abstraction as
coarse as possible.

In terms of state abstraction, setting every state abstracted is not rewarding, as the
algorithm will refine them anyway. Setting the states in top-level regions (so the states
for which depth(s) = 1) as refined, and every other state abstract averts the refiner doing
the same.

In case of the states-only abstraction, the initial abstraction is h0 = {hS0, true}, where
true assigns > to every variable, and for a state hS0(s) = s if depth(s) = 1, and hS0(s) = s′

such that depth(s′) = 0 and s′ ∈ anc(s) otherwise. In this case, the value of h0(V ) = V .

In case of the generic abstraction, the initial abstraction is h0 = {hS0,hV 0}, where hV 0
assigns ⊥ to every variable that is unbound by Cf , and > to the bound variables. In this
case, the value of h0(V ) = bound(Cf ).

Example 4.4. Consider the statechart presented in Figure 3.2, and let an error configu-
ration c for it be ({C}, ∅, x = 3, ∅).
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For the states-only abstraction, the initial abstraction for the statechart is h0 = {hS0, {x 7→
>, y 7→ >}}, where hS0 = {A 7→ A,A1a 7→ A,A1b 7→ A,A1c 7→ A,A1c1 7→ A,A1c2 7→
A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→ B,B2 7→ B,C 7→ C}.

The abstract statechart corresponding to this abstraction is presented in Figure 4.5

In case of generic abstraction, the initial abstraction is h0 = {hS0, {x 7→ >, y 7→ ⊥}}
where hS0 is the same as the one described in case of the states-only abstraction. Note,
that this is the same abstraction that was presented in Figure 4.3

Figure 4.5: Abstract statechart for the initial states-only abstrac-
tion in Example 4.4

Figure 4.6: Abstract statechart for the initial generic abstraction
in Example 4.4

4.4 Model Checking

For both abstractions, state space exploration can be applied. Let Sc =
(S,R, par , I, V,Tr ,H) be a statechart and h be an abstraction to it. Recall the algo-
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rithms that were described in Section 3.3. Each of them takes a statechart Sc′ and a set
of error configurations Cf as input, and returns success, or an abstract path πh to one
of the error configurations as counterexample. Let the input be the abstract statechart
h(Sc), and the set of abstract configurations Cfh = {h(c) | c ∈ Cf}. Due to the existen-
tial property of the abstraction, if in the abstract statechart h(Sc) a safety requirement
holds, it also holds in the concrete statechart. However if it does not, a path to one of the
abstract configurations of Cfh is returned.

The state configurations in the counterexample πh are abstractions of state configurations
in Sc, however it is not guaranteed that there is a path π = (c0, c1, . . . , cn) in Sc such that
ci ∈ h−1(chi) for 0 ≤ i ≤ n.

Example 4.5. Recall the statechart Sc presented in Example 4.4. Let the error config-
uration c be ({C}, ∅, ∅, ∅). With the generic abstraction, the initial abstraction is h0 =
{hS0, {x 7→ ⊥, y 7→ ⊥}}, where hS0 = {A 7→ A,A1a 7→ A,A1b 7→ A,A1c 7→ A,A1c1 7→
A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→ B,B2 7→ B,C 7→ C}.

For this reachability problem, with the generic abstraction, a model checker will return the
following counterexample: π = (({A}, ∅, ∅, ∅), ({B}, ∅, ∅, ∅), ({C}, ∅, ∅, ∅)).

This notation is a bit complex, however the point is, that the value of x and y are invisible
for the checker, and so is the inner hierarchy of states. So the path contains abstract
configurations where only top-level states are listed. For this reason, the fact that the
transition to state C requires y to be 5 is neglected by the checker. However, this path will
fail on the concretization.

4.5 Concretizing the Counterexample

If the model checking marks an error state reachable, and provides an abstract counterex-
ample πh = (ch0, ch1, . . . , chn) for it, that is, a path to it in Sch = h(Sc), it has to be
verified if a corresponding path exists in Sc.

A convenient way to do that is to check the existence of an 0 ≤ i ≤ n long path π =
(c0, c1, . . . , cn) in Sc, such that h(ci) = chi.

Since the length of the searched path is determined by the value of i, the algorithm
of bounded model checking can be applied here, with some modification. The abstract
configuration chi can be transformed into the encoding function ψc defined for Sc, as for
every state, event and variable in Sch is also a state, event or variable in Sc. However
Theorem 3.3 is not applicable here, as for an abstract configuration ch = (ωh, ρh,Fh, {})
the state set ωh is not necessarily a valid set of active states for Sc, and Fh is also not
necessarily a proper value assignment for variables in Sc.

The subject of the concretization is finding values for don’t care bits in bit vectors and
unassigned variables in configurations. If they have an interpretation I such that Iπh∪I =
Iπ, where π is a valid path for Sc and Iπh is the interpretation for the counterexample
given by the model checker, the counterexample is concretizable, and the concretized
counterexample is π.

Example 4.6. Consider the result of the checking presented in Example 4.5. The checker
method returned an abstract counterexample (A,B,C). The bit vectors assigned to each
set of active states in the conuterexample, according to Example 3.6 are

• enc(A) = 00XXXXX,
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• enc(B) = 01XXXXX,

• enc(C) = 1000000.

For this reason the subject of concretizing, is that is there any interpretation Iπ for the
don’t care bits in the code of A for i = 0 and B for i = 1, and the value of x and y, such
that Iπ |= ψSc2.

This is checked iteratively, first searching a concrete path of 1 configuration, that is ab-
stracted to A, and an initial state. The formula to satisfy is

ψc(cI )0 ∧ ψc((A, ∅, ∅, ∅))0. (4.1)

Such interpretation exists, when all the don’t care bits are 0, and x = 0, y = 0.

The next step, a path of two concrete configurations searched, the first abstracting to
(A, ∅, ∅, ∅) and the second abstracting to (B, ∅, ∅, ∅). This case the formula to satisfy is

ψc(cI )0 ∧ ψc((A, ∅, ∅, ∅))0 ∧ (ψTr)0 ∧ ψc((B, ∅, ∅, ∅))1. (4.2)

Such interpretation also exists, as one example path can be ((({A1a,A2a}, ∅, {x = 1, y =
0}, ∅), ({B1}, ∅, {x = 1, y = 0}, ∅)).

However the concretization will fail on the third step, as the following formula is unsatis-
fiable.

ψc(cI )0 ∧ ψc((A, ∅, ∅, ∅))0 ∧ (ψTr)0 ∧ ψc((B, ∅, ∅, ∅))1 ∧ (ψTr)1 ∧ ψc((C, ∅, ∅, ∅))2. (4.3)

The interpretation of the abstract counterexample assigns variables that can be added as
extra constraints to the solver.

Note that not the full transition relation is required to be feeded to the solver, as with
abstract configurations chi, chi+1 in the abstract path, the i-th transition can only be a
transition t for which the source state is abstracted to a state in configuration chi and the
target state to a state that is in configuration chi+1. However this filtering of transition can
have relevant impact on the performance of the solver, in order to simplify the description
of the algorithm, so lets overlook this filtering.

If for the bound i a concrete path exists, the first i configurations of the path are con-
cretizable. If the i+ 1’th concretization fails, chi is called a failure state.

If the concretization succeeds, the concretized counterexample is returned, otherwise, a
failure state is returned.
Example 4.7. Consider the concretization in Example 4.6. The concretization failed
upon trying the find the third state of the path. In that case (B, ∅, ∅, ∅) is a failure state,
and it has to be refined. (The real cause of failure is that the variable y is not in the set of
visible variables, and it has nothing to do with B, however the concretization until B was
successful.)

4.6 Refinement

Should the counterexample be spurious, the abstraction needs to be refined based on
the failure state. The applicable techniques differ for states-only abstraction and generic
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abstraction. For different statecharts, different methods can be effective, an ultimate
refinement algorithm can not be created, still, there are some reasonable heuristics. During
my work, I defined and investigated two refinement methods.

The method of hierarchy-only refinement presented in Section 4.6.1 can be applied to the
states-only abstraction, and the hierarchy first technique, presented in Section 4.6.2, that
refines variables only if the state hierarchy can not be refined, can be used for both.

4.6.1 Hierarchy-only Refinement

The hierarchy only refinement only refines state abstraction, and does not modify the
variable abstraction. As generic abstraction contains invisible variables, with this method,
this kind of abstraction can be refined, however the termination of refinement is not
guaranteed.

Given a failure configuration ch = (ωh, ρh,Fh, {}), the algorithm modifies the abstraction
h to h′ the following way: for each s ∈ ωh, the direct descendants of s, so states s′ where
par(par(s′)) = s added as refined, formally h′(s′) = s′, for every other state h′(s) = h(s).

It can be seen that each abstraction is finer than the preceding one, and as there are finite
number of states, the algorithm terminates.

Example 4.8. Recall the previous examples. Examples 4.6 and 4.7 showed that the coun-
terexample of the previous examples was spurious, and the failure state for it was B.
Although the abstraction was created for generic abstraction, the hierarchy refinement can
be presented on it.

As the refinement method states, the direct children states of the failure state has to be
refined. This case, as the original abstraction was hS = {A 7→ A,A1a 7→ A,A1b 7→
A,A1c 7→ A,A1c1 7→ A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→
B,B2 7→ B,C 7→ C}, the refined abstraction is h′S = {A 7→ A,A1a 7→ A,A1b 7→ A,A1c 7→
A,A1c1 7→ A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→ B1, B2 7→
B2, C 7→ C}.

The difference between hS and h′S is in the abstract states assigned to states B1 and B2.

Note that by this method, the variable abstraction is not refined. This results in the failure
of the execution again in B, and than the refinement algorithm can not refine the abstrac-
tion any more. This example demonstrates, why is it deprecated to use this refinement
method on abstractions, initially created as a generic abstraction.

4.6.2 Hierarchy-first Refinement

The hierarchy first refinement refines the hierarchy first with the method defined in Sec-
tion 4.6.1 if the set of active states in the abstract failure configuration is not completely
refined. However if the failure state can not be refined further, the visibility of variables
modified.

It can be seen that if a configuration is a failure state, and all the active states in the con-
figuration are completely refined, but the execution can not continue to the next abstract
configuration, it is due to a guard expressions that contain variables invisible by the ab-
straction. For example is the variable a is invisible, and from state s1 there is a transition
to s2 with the guard a = 3, but the state s1 only appear in reachable configurations with
a = 1, the transition can not fire. However, if a is abstracted, there is a transition from
configuration s1 to s2, because there is a transition from (s1, a = 3) to (s2, a = 3).
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So the hierarchy-first refinement refines variables appearing in guards. Two approaches
are possible, the eager one makes all the contained variables visible, however the lazy
approach refines them one by one.

With this refinement, the CEGAR algorithm will not get into an endless loop as by each
step a variable is refined, and the only case the execution can not continue if there is no
outgoing transition enabled, however in that case, there is no transition enabled in the
level of abstraction.

Example 4.9. The previous example showed the possible refinement for the failure state
(B, ∅, ∅, ∅) if the states in the set of active states are not completely refined, and in case of
hierarchy-first refinement, this step is the same. However it was mentioned at the end of
the previous example, that the concretization of the statechart will fail again, and the hi-
erarchy only refinement method could not handle that case. The hierarchy-first refinement
however refines variables if the hierarchy has been completely refined.

The only variable that appears in triggers is y, so independent to the eagerness of the
approach, the refinement will be the same. Consider the result of the refinement in Ex-
ample 4.8 h′ = (h′S ,h′V ), where h′S = {A 7→ A,A1a 7→ A,A1b 7→ A,A1c 7→ A,A1c1 7→
A,A1c2 7→ A,A2a 7→ A,A2b 7→ A,A2c 7→ A,B 7→ B,B1 7→ B1, B2 7→ B2, C 7→ C}, and
h′V = {x 7→ ⊥, y 7→ ⊥} as variables weren’t refined.

The refinement of h′ is h′′ = (h′S ,h′′V ), where h′′V = {x 7→ ⊥, y 7→ >}.

After the refinement, the execution continues with the next iteration checking the abstract
model. As each refinement step refines a state or a variable, and there are finite states and
variables in a statecharts, after a while, the loop terminates as the identity abstraction is
reached.
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Chapter 5

Implementation

During my work, I implemented the previously described algorithms in Java. This section
summarizes the key features of the implementation and the external tools used.

The implementation is a part of the theta framework, which is presented in Section 5.1.
The module architecture is presented by Section 5.2. Finally, Section 5.3 presents a shell
that can be used to load and verify statecharts from command line.

5.1 The theta Framework

theta is a verification framework developed at the Fault Tolerant System Research Group
of Budapest University of Technology and Economics. The framework provides formalisms
and algorithms to describe and verify software and hardware systems. The theta project
is currently under development, and does not have any public documentation yet.

The toolkit of the framework is really diverse, this section presents the relevant parts
utilized by my work.

5.1.1 Expressions

The framework provides classes to represent first order logic expressions. The interface
Expr is a common interface for expressions allowed by the syntax of FOL, each having an
implementing representation. The ones used during my work are listed below.

• Boolean connectives, for example AndExpr.

• Functions, for example AddExpr.

• Predicates, for example EqExpr.

• To reference constants, ConstRefExpr is used.

• To reference variables, VarRefExpr is used.

theta also offers utility functions to manipulate the expressions, provided by utility classes.
A non exhaustive list of utilities is

• collecting variables in expressions,
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• unfolding expressions by replacing variables with the k-indexed constant version.

The framework also provides a general interface for SAT/SMT solvers, so that the under-
lying solver is interchangeable. The relevant functions of the Solver interface are:

• add: add a formula or a set of formulas (regarded as the conjunction of the formulas)
to the solver,

• check: check if the formulas are satisfiable,

• getStatus: get the result of checking (satisfiable or unsatisfiable),

• getModel: if the formula is satisfiable, get the satisfying interpretation,

• push: push the state of the solver to a stack,

• pop: remove the formulas added to the solver since the last pop.

Currently, the only supported solver implementation is Z3, which is an open source SMT
solver developed by Microsoft Research [10].

5.2 Architecture

The software that was realized follows layered architecture. The basic summary of the
architecture is presented in Figure 5.1.

Figure 5.1: Overview of the architecture.

The topmost level is an internal statechart representation, to which all the parsed models
are transformed. The representation is detailed in Section 5.2.1.

The next layer contains checkers such as BMC and SSE, where BMC is a bounded model
checker and SSE is a state space explorer.

Both rely on the encoder layer, that is the implementation for the enc function described
in Section 3.1. It assigns a bit vector to states and events in statecharts.

52



The encoder layer passes the bit vectors to the formatter layer, that creates logic formulas,
as described in Section 3.2.

The formulas are passed on to the theta layer, that references a call to the theta frame-
work which is presented in Section 5.1. The framework is used to search a satisfying
interpretation for the formula.

The CEGAR Looper layer is an implementation of a CEGAR loop, that follows the design
described in Chapter 4. It relies on all the other layers as it uses different checking methods
to perform abstraction based verification, for example state space exploration used in the
model checking step of the CEGAR loop, whereas BMC used during the concretization.
Its detailed implementation is presented in Section 5.2.4.

The CEGAR Looper layer consists four main bricks for resemblance to the modules pre-
sented in Chapter 4, however in terms of implementation, the Abstractor and the Refiner
logic are implemented by the same module, as specific refinement methods only work with
a corresponding abstraction, as it was pointed out in Section 4.6.

5.2.1 Internal Statechart Representation

The theta framework defines an Xtext grammar of statecharts, and provides features for
parsing EMF models from text files. EMF is a modeling framework for Eclipse that
offers various features for models, for example code generation and building tools. Ob-
jects defined in the grammar have their Java object representation, however these objects
serve modeling purposes, and they have unnecessary and redundant fields and methods.
Furthermore, the grammar allows wilder scale of statecharts than what my algorithms
currently support.

During my work, I created and implemented a package for objects to represent elements
of statecharts. The implementation corresponds the formalisms introduced in Section 2.2,
with the restrictions required by the algorithms presented in Chapter 3 and Chapter 4.

The only change in formalism is the parameters in statecharts that are introduced to be
able to verify the same statechart with different constant values. The Xtext grammar
defined by the theta framework allows constants and the value assigned to these constants
are replaced to the parameter value during the parsing of a statechart.

5.2.2 SSE - State Space Explorer

The state space explorer is the implementation of the algorithms presented in Section 3.3.
The two key algorithms are realized by three concrete explorers.

The common feature for them is that with each implementation, during the process of
exploration a map is maintained, marking for each reached configuration which configura-
tion it was reached from. Based on the information stored in that map, the path to each
reached configuration can be retained.

The naive method, introduced by Algorithm 1 is realized by two different classes, one uses
the push-pop functionality of the solvers, and adds the transition relation once, however
the other computes the transition formulas over and over again. The two implementations
were separated to measure the efficiency of transforming the transition relation to boolean
formulas.
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The optimized method, presented by Algorithm 2 is realized by feeding the transition
relation to the solver, and after getting the reachable configurations one by one, adding
an extra constraint to the solver, that prevents finding the same configurations again.

5.2.3 BMC - Bounded Model Checker

The project contains two bounded model checkers, one is based on the bounded model
checking algorithm presented in Section 3.4, whereas the other is created for the concretiza-
tion of an abstract counterexample, as presented in Section 4.5. The first can be used as
a replacement of the state space explorer algorithm in the checking step of CEGAR.

5.2.4 The CEGAR Looper

The core of the CEGAR algorithm is a class CegarLooper. It takes an initial abstraction,
a checker, a concretizer and a refiner object as parameter in its constructor, and has
a method searchCounterexample, that takes a configuration as an input, and returns a
counterexample if any found, or returns null, in case of the configuration being unreachable.
The class hierarchy is sketched in Figure 5.2

Figure 5.2: Structure of CEGAR related classes

The abstraction is represented by a class Abstraction, that is the Java representation
of the abstraction function h, its get(s) method returns h(s) for a state, and for a
variable, it has a method isVisible returning true if the variable is visible in h. Its inner
implementation is realized by Maps from the Java collections.

For the objects implementing the checking logic, Checker is a common interface with
one check function, taking an abstraction and a error configuration as parameter, and
returning a Path object, a representation of paths.

The different checker implementations are listed in Table 5.1. The ID column shows the
values, by which they can be referenced from the shell. The abbreviation column contains
a label for each method, by which they will be referenced during the evaluation.

Concretizer is a common interface for concretizers, however the only existing implemen-
tation of it is currently the BoundedConcretizer, for which the algorithm was sketched
in Section 4.5. It has a concretize method, that takes an abstract path, an abstraction
and a error configuration as input, and returns a concretized path. If the length of the
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Table 5.1: Different check modes for a CEGAR loop.

Name ID Abbreviation Details
Many at once (non-popping) 0 MON The absolute naive implementation of a state

space explorer, presented by Algorithm 1
Many at once (popping) 1 MOP A state space explorer implementation, that

uses the push-pop functionality of the solver
to reduce the computation time spent on con-
structing the transition relation formulas. This
implementation is also based on Algorithm 1

Exploring one 2 OAO The optimized implementation of a state space
explorer, based on Algorithm 2.

BMC 3 BMC With this implementation, instead of exploring
the state space, the checking of the abstract
model is performed with a bounded model
checker. The implementation is based on Al-
gorithm 3

concretized path is not the same as the length of the abstract path, the concretization
failed, and the last configuration of the concretized path is a failure state that is passed
to a refiner.

The refiners are both implementing the interface Abstractor. (The reason behind this
convention that different abstractions have to be refined differently, thus the creator of the
abstraction can not be separated from the refiner of it.) The interface has two methods,
the createInitial, that returns an initial abstraction for a statechart, and the method
refine, that takes an abstraction and a concretized counterexample (for which the con-
cretization failed), and returns a refined abstraction.

There are two abstraction types, states-only abstraction and generic abstraction, the re-
finers for them are listed in Table 5.2. The ID column shows the values, by which they
can be referenced from the shell, and Abbreviation column assigns labels to methods, by
which they will be referenced in the tables of the evaluation chapter.

Table 5.2: Different abstraction and refinement modes for a CEGAR loop.

Name ID Abbreviation Details
Hierarchy only refinement 10 STT The implementation of the refinement method

presented in Section 4.6.1. Can only be used with
states-only abstraction.

Hierarchy first refinement 11 GEN The implementation of the lazy approach of the
refinement method presented in Section 4.6.2.
Can only be used with generic abstraction.

Note that refiners can be used with other abstractions, than the ones created by them,
however it is not recommended, as for example a hierarchy only refiner cannot refine the
initial abstraction for generic abstraction properly.

5.2.5 Encoder

The Encoder encodes states and events to bit vectors. The encoding is done by mapping
states to bit vectors. Bit vectors are represented with the pair of an id and a mask,
where both id and mask are bit sequences. The two can be combined into a bit vector, by
taking the id’s value where the masks corresponding bit is 1, otherwise taking a don’t care.
With the help of this id representation, complex operations, like checking ascendancy or
parallelity can be performed with bit operations.
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The state-bit vector encoding and event-bit vector mapping is duplex, meaning that both
bit vectors for objects and objects for bit vectors can be polled from the encoder. However
for a bit vector, there might be more states matching, so in that case, a set of states is
returned.

5.2.6 Formatter

The Formatter transforms the elements of a statechart to logical formulas of the theta
framework, using the bit vector mapping implemented by the encoder. The encoding based
on the algorithms presented in Section 3.2, however it lacks the support for transitions
into a state of a parallel region with the source out of the region. Differently said, the
execution of a parallel region always starts from its initial state.

5.3 Shell

In order to be able to change the parameters of tests without modifying the source code,
I created a shell, that parses commands from the console or from a text file, and performs
actions based on them.

The shell supports variables and loops. Variables can be assigned with the var [name] =

[value] command and referenced with a $ prefix. Loops are also supported, but they are
only limited to while loops. An example usage of the shell is presented in Listing 5.1.

load path/to/chart.statechart as sc
create conf scConf for sc
conf scConf state stateToReach
csv log/here.csv
var i = 0
while \$i < 4

check reachable scConf \$i 11 1800000
var i = \$i + 1

end

Listing 5.1: Example usage of the shell.

The main commands of the shell are detailed in Table 5.3.

The shell can be started as a Java program. If started with without any arguments, it
operates as a shell parsing commands from its standard input, and printing results to the
standard output. However it can also be started with positional parameters [input_path]

and [output_path]. This case, the program parses commands from the content of the file at
the input path, and prints its output to a file at the output path.
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Table 5.3: The shell commands.

Command Details
alias [name] [path] Set an alias (string reference) for path. If name and path is left

empty, all the all the currently assigned aliases are listed.
chart ([name]) Get the statechart with the given name. If name is left empty, all

the loaded statecharts are listed.
check reachable [conf_name]
[checker_mod] [refinement_mod]
([timeout])

Check if the configuration conf_name is reachable in the stat-
echart it was created for. The parameters checker_mod and
refinement_mod refers to different implementations, and their
value is described in Table 5.1 and Table 5.2. If timeout is set,
than if the verification does not terminate until the timeout in
milliseconds elapses, the execution is aborted.

conf(iguration) ([name]) Get the state configuration with the given name. If name is left
empty, all the created configurations are listed

conf(iguration) [conf_name] bool
[var_name] {0,1}

Bound the boolean variable var_name with the value 0 or 1 in
configuration conf_name.

conf(iguration) [conf_name] int
[var_name] [var_value]

Bound the integer variable var_name with the value var_value in
configuration conf_name.

conf(iguration) [conf_name] state
[state_name]

Add the state with the given name to the active states of the
configuration.

create conf(iguration) [conf_name]
for [statechart_name]

Get the state configuration with the given name. If name is left
empty, all the created configurations are listed

csv {off|[path]} Sets or turns off the logging of the checking results into the csv
file at path. If turned on, after each call of check, a new line is
appended with parameters and the result of the checking.

exit Exit the shell
help Get help about the shell and the commands.
load [path] (as [name])? Load a statechart from a .statechart file from the given path.

If name is not empty, the statechart will be assigned name as an
alias, and can be referred to with it later.

man Get help about the shell and the commands.
param add {int|bool} [name]
[value]

Add or update a parameter. Statecharts will be loaded with this
parameter value.

param remove [name] Remove the name parameter.
set output [path] Redirects the output to a text file at path. If path is not specified,

the output is set to the standard output.
verbose {on|off} Turn on/off the detailed printing of checking results. Default

value is on.
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Chapter 6

Evaluation

As a performance test for the comparison of the different implementations, I evaluated
each of them on a model of the PRISE (primary-to-secondary leaking) safety function of
the Paks nuclear power plant [17] [2].

6.1 The PRISE Logic

A PRISE event is one of the most serious failures in a nuclear power plant, that occurs if
there is a rupture or other leakage. The logic initiates an emergency procedure, based on
the parameters of the plant. The functional block diagram of the PRISE logic is presented
in Figure 6.1, for the detailed description of each input, output and the functionality of
the logic, the reader is referred to [17].

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

1

1

1

&
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OUTPUT-1

OUTPUT-2

t 0

Figure 6.1: The functional block diagram of PRISE logic.
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To be able to verify constraints about the logic, I transformed it to a statechart, however as
the state-space became unmanageably large for some implementations of the algorithm, I
reduced the model, only to the logic related to inputs 2-5, and the logic until the output of
the second SR latch was verified. The values of INPUT-6 and INPUT-7 are not taken into
consideration, however they serve as a transitive input for the second SR latch through
an AND gate. This problem is eliminated by taking that input of the gate as high (true),
since it reduces its functionality to an AND gate of 2 inputs.

The input values are the parameters of the system, and the logic performs a continuous
check for the PRISE event. This continuity is simulated by an infinite loop of execution.
Each functional block is dependent on the others, and their dependency determines their
order in the execution loop. The time in the system is modeled by the iterations of the
loop, an iteration being the time unit. The nondeterministic change of input is simulated
with the possible modification of the variables at the end of each loop.

The diagram contains 3 value holders, blocks, that hold their value for a given amount
of time, however, as it was mentioned before, in the statechart time is regarded as an
iteration in the loop of the execution. The number of loops regarded as time instead, so
the inner representation of holders is actually a counter. The maximum number of the
counter value, so the number of loops while the holder holds the signal can be regarded
as the parameter of the statechart. Let the limit for the counter that holds INPUT-2 be
H2, for the one that holds the output of H2 be HH , and the value that holds the value of
INPUT-5 be H5.

The size of the state space depends on these parameters, an increase in each increases the
state space as well. However, for different reachability requirements, they have different
impact on the performance. During the evaluation, the reachability of OUTPUT-2=1
(PRISE event) was tested. It turned out to be reachable, however it took several transi-
tions, and an exploration of a rather large number of configurations.

6.2 Metrics

The metrics measured during each verification turn is summarized in the list below. In
the tables summarizing the results, they are referred by their abbreviation, that is also
mentioned in the list.

• Time: The time elapsed between the start of the first CEGAR iteration and the
return of the result.

• Iter: The number of CEGAR iterations, denotes how many times the checker was
called. The number of refinements is fewer by one, as at first, the initial abstraction
is checked.

• Stt: The percentage of refined states in the abstraction.

• Var: The percentage of visible variables in the abstraction

• Confs(max): The maximum number of configurations explored during the check. It
might be different than number of explored states in the last iteration, as with each
refinement, the exploration starts over again. In case of the bounded model checker,
this metric can not be interpreted, as it explores states indirectly by using the solver.
An alternate metric could be the length of the path, however it only refers to the
depth of the search, not the breadth.
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• Conf(eve): The number of explored states at the last iteration of the algorithm.
Similar to the previous one, this metric also can not be interpreted for the CEGAR
methods using bounded model checkers.

6.3 Results

Recall, that Chapter 5 presented 4 different checker implementations and 2 different ab-
straction and refinement pairs were presented. For the parameters H2 = 2, HH = 1 and
H5 = 1, the results are presented in Table 6.1. For the resolution of checker ids, see Ta-
ble 5.1, and the refinement ids can be found in Table 5.2. In each case, the length of the
counterexample was 59, and the tests were run with a timeout of 1800s. For the bounded
model checker, the maximum length of the counterexample was set to 200.

Table 6.1: The results for parameters H2 = 2, HH = 1, H5 = 1.

Checker Refiner Time (s) Iter Stt (%) Var (%) Confs(max) Confs(eve)
MON STT timeout 2 25.93 100 8610 8610
MOP STT 1398.63 5 70.37 100 17036 2855
OAO STT 1250.226 5 70.37 100 17036 2855
BMC STT 211.499 5 70.37 100 - -
MON GEN 48.389 12 70.37 93.75 1484 1484
MOP GEN 37.817 12 70.37 93.75 1484 1484
OAO GEN 8.942 12 70.37 93.75 1484 1484
BMC GEN 77.478 12 70.37 93.75 - -

The table shows that the one-at-once state space explorer, which is based on the optimized
state space algorithm outperforms the other two state space explorers. Amongst the
implementations of Algorithm 1, the popping version performs slightly better than the
non-popping one, which even fails to terminate with the hierarchy-only refiners.

In case of the refiners, the hierarchy first refinement has better results regarding every
metric with every checker mode. The significant acceleration of the termination time is
related to the fact that hierarchy-only abstraction does not abstract any of the variables.

However it has to be noted that with the hierarchy first refinement mode, the bounded
model checker is the least effective, however with all the variables visible, it performs the
best. The improvement is relative though, as it is still loosely three times slower, than
with the hierarchy-first abstraction. The reason behind this is that the solver can perform
significantly efficient search in the state space than the exploring algorithms.

The percentage of states refined is the same for both refinement methods, however the
variable refinement varies. The hierarchy-only abstraction and refinement initially has
every variable refined, however in this special case, the states first algorithm also refined
93, 75% of the variables, 15 out of 16 in fact.

The hierarchy-only abstraction and refinement failed for the parameters (2,1,1), and with
the increase of the parameter H2, it turned out that every checker method timed out with
this refinement.

However, the hierarchy first abstraction provided promising results with parameters H2 =
5, HH = 1 and H5 = 1, as summarized in Table 6.2. The length of the counterexample,
found by the terminating methods, was 104. The verifications were run with a timeout of
1800 seconds. For the bounded model checker, the maximum length of the counterexample
was set to 200.
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Table 6.2: The results for parameters H2 = 5, HH = 1, H5 = 1.

Checker Time (s) Iter Stt (%) Var (%) Confs(max) Confs(eve)
MON 136.712 12 70.37 93.75 3667 3667
MOP 98.787 12 70.37 93.75 3667 3667
OAO 31.06 12 70.37 93.75 3667 3667
BMC timeout 11 70.37 81.25 - -

The one-at-once checker still outperforms the other two state space explorers, however
the bounded model checker reports time out after 11 iterations. It can be noted, that
independent to the parameters, the same percentage of states and variables are refined by
the refinement method.

The same examinations can be performed with parameters H2 = 10, HH = 1, H5 = 1,
but now excluding the bounded model checker, as it timed out for cases with smaller state
space. This case, the length of the counterexample was 179.

Table 6.3: The results for parameters H2 = 10, HH = 1, H5 = 1.

Checker Time (s) Iter Stt (%) Var (%) Confs(max) Confs(eve)
MON 421.485 12 70.37 93.75 7324 7324
MOP 210.640 12 70.37 93.75 7324 7324
OAO 112.897 12 70.37 93.75 7324 7324

In order to examine the scalability of the algorithms, checking has been run with different
values of parameter H2. The comparison of execution times for the different checker
methods with generic abstraction is presented in Figure 6.2.

It can be noted, that the state space exploration based algorithms perform better.
Amongst those three, the many-at-once implementation, that does not use the push-
pop functionnality of the solver is the least effective, as it is remarkably slower for every
parameter value than the other two, and fails to terminate for every H2 > 10.

For small parameter values, the Algorithm 2-based one-at-once explorer performs better,
however for bigger parameter values, the many-at-once implementation, that uses the
solver’s pop-push functionality performs better.

In order to examine the effect of other parameters to the performance of the methods with
generic abstraction, further evaluation tests have been carried out. The tests were only
ran with the one-at-once checker method. The results of the evaluation is summarized in
Table 6.4.

Table 6.4: Further evaluation results.

H2 HH H5 Time (s) Iter Stt (%) Var (%) Confs(max) Confs(eve)
10 1 1 112.897 12 70.37 93.75 7324 7324
10 2 1 119.432 12 70.37 93.75 7324 7324
20 1 1 565.461 12 70.37 93.75 14595 14595
10 1 4 1181.499 12 70.37 93.75 22152 22152
20 1 2 1443.350 12 70.37 93.75 24357 24357

It can be seen in the table, that not all parameters have impact on the number of explored
configurations, however with greater state space, the algorithm terminates slower.
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Figure 6.2: Comparison of execution time for different checker
methods.
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Chapter 7

Conclusions

In my work, I examined the possibilities for verifying hierarchical statecharts, focusing on
abstraction-based methods.

From the theoretical point of view, I developed encoding methods for statecharts with
hierarchically nested states to transform them into logical formulas. I also presented pro-
cedures to use the previously defined encodings for the verification of statecharts against
reachability requirements. I introduced two hierarchy-based abstraction algorithms for
statecharts one applying the abstraction only to the hierarchy, whereas the second ap-
proach extends the former with visibility-based abstraction of variables. I also introduced
a CEGAR-based algorithm for the verification of statecharts, on top of the previous tech-
niques. My work includes

• techniques to create initial abstractions for statecharts,

• algorithms to check abstract models against reachability requirements,

• a method to concretize the abstract result of the model checking,

• and strategies to refine the abstraction in case of spurious counterexamples.

From the practical point of view, I implemented the encoding and verification algorithm
for statecharts in the theta framework. I also implemented CEGAR algorithms, including
four model checkers for abstract models and two refinement strategies, one for each of the
defined abstractions. The algorithms successfully checked a non-trivial industrial model
within reasonable time.

During my work, I successfully completed all of the objectives.

• I presented hierarchical statecharts and their elements in Section 2.2.

• I developed an algorithm to transform statecharts to logical formulas in order to be
able to verify them in Chapter 3.

• I created a hierarchy-based statechart abstraction and a CEGAR-based verification
algorithm to support reachability analysis of statecharts in Chapter 4.

• I implemented the defined methods, as detailed in Chapter 5, and in Chapter 6 I
also evaluated the implemented algorithms.

Although, the algorithms proved to be applicable for practical examples, there are several
opportunities for improvement.
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• The set of the supported statechart elements can be extended with the history in-
dicator and proper handling of the active event set, allowing more that one active
event to be in the event queue.

• Further abstractions can be introduced, for example predicate-based abstraction [11]
of variables in the statechart.

• The refinement methods could be further improved, for example with unsat core-
based variable refinement [15].

• Evaluate the performance of different algorithms on further models.
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