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Abstract 

Nowadays, different kinds of software are responsible for features in safety-critical 

systems, like cars, airplanes, or nuclear powerplants. Often parts of the systems that used 

to be mechanical or hydraulical are replaced by software-driven solutions, for example, 

in the steering of vehicles. 

These embedded software components are critical in terms of proper functioning of the 

system, on the one hand, however, they are quite complex on the other. It follows that 

certain measures have to be taken to identify and correct the faults of these systems and 

to prove their correctness. Testing is an efficient way of finding faults, and it is part of 

every major standard regulating the development of safety-critical systems. However, 

testing alone cannot prove the absence of errors in a program. Another approach is formal 

verification that takes the mathematical model of a given software and gives a 

mathematical proof of correctness. It is a computationally intensive task, as it needs to 

take all the possible states of a software into account, and even the simplest of programs 

can have an infinite state space. During the past two decades, researchers have achieved 

numerous breakthroughs in the field of formal verification; however, due to the 

complexity of the underlying mathematical field, it is still too early for using formal 

verification in the industry on a daily basis. 

The goal of this paper is to combine these two different approaches in the AUTOSAR 

environment used heavily in automotive software development. In this paper, an 

algorithm is presented that uses the results of a verification process to generate tests while 

taking into account the uniqueness of AUTOSAR components. If the verification 

succeeds, either there is a mathematical proof of correctness about the software, or there 

is a counterexample that makes the error reproducible. However, when formal 

verification fails, tests will be generated using information extracted from the visited part 

of the state space of the program. In connection with this, multiple strategies are 

presented for test generation, that are efficient in finding different kinds of program 

errors. 

The algorithms proposed are validated with a custom implementation that is able to verify 

computer programs written in C, using examples from the automotive industry. 
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Összefoglaló 

Szoftverek egyre több kritikus feladatot látnak el biztonságkritikus rendszerekben, mint 

például autókban, repülőgépekben vagy erőművekben. Sokszor korábbi 

mechanikus/hidraulikus megoldásokat is beágyazott szoftverrel váltanak ki vagy 

szoftverrel támogatnak meg, például egy autó kormányművében. 

Ezek a beágyazott szoftverek egyrészt kritikusak a rendszer működése szempontjából, 

másrészt viszont egyre összetettebbek is. Emiatt különösen fontos olyan módszereket 

használni, amelyek képesek ezen beágyazott szoftverek hibáit megtalálni vagy a 

helyességüket bizonyítani. A tesztelés hatékonyan, alacsony számítási igény mellett 

képes hibákat találni a meglévő rendszerekben, valamint a biztonságkritikus-rendszerek 

fejlesztését szabályozó szabványok alapvető elvárásként tekintenek az mélyretekintő, 

alaposan dokumentált tesztelésre. Azonban a tesztelés önmagában a helyesség 

bizonyítására nem alkalmas. Ezzel szemben a formális verifikáció a szoftver matematikai 

modelljét vizsgálja és matematikailag bizonyítja a különböző hibák elő nem fordulását. 

A formális verifikáció egy számításigényes feladat, hiszen az algoritmusnak meg kell 

vizsgálnia a program összes lehetséges viselkedését és állapotát, és még a legegyszerűbb 

programoknak is könnyen lehet végtelen nagyságú állapottere. Az elmúlt két évtizedben 

számos áttörést sikerült elérni a formális verifikáció területén, azonban a probléma 

nehézsége miatt sok esetben nem nyújtanak megoldást. 

A munkám célja, hogy ezt a két különböző megközelítést alkalmazzam kombinálva 

autóiparban használt AUTOSAR környezetben, ötvözve a két módszer előnyeit. 

Munkám során kidolgozok egy olyan algoritmust, amely a verifikáció eredményeit 

kihasználja a teszgenerálás során, továbbá kihasználom az AUTOSAR 

szoftverkomponensek sajátosságait. Sikeres verifikáció esetén a vizsgált komponens 

helyessége eldöntött, és vagy egy bizonyítás áll rendelkezésre igazolva a helyességet, 

vagy egy olyan ellenpélda, aminek segítségével a hiba reprodukálható. Amennyiben a 

verifikáció sikertelen, teszteket generálok, felhasználva a formális verifikáció során a 

bejárt állapottérből kinyert információt. Ennek kapcsán több különböző tesztgenerálási 

stratégiát is kifejlesztettem, amelyek különböző típusú hibák megtalálására hatékonyak.  

A megközelítésem megvalósíthatóságát egy implementációval igazolom, és azt 

autóiparban használt szoftverekkel tesztelem. 
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1. Introduction 

Nowadays, different kinds of software-driven solutions are becoming part of our lives. 

Almost everyone carries a smartphone in his/her pocket, household applications are 

gaining popularity with the smart home concept, and over the past couple of years, the 

demand has risen for wearable electronics. Similarly, the industry is using software-

driven solutions more-and-more, as it usually tends to be more cost-efficient than the 

traditional electro-mechanical solutions. It follows that software components became 

part of almost every industrial system, even part of the so-called safety-critical systems. 

As a result, ensuring the correctness of these systems is imperative, as a fault in them can 

result in significant financial loss or fatal injuries. 

A textbook example for an error leading to a financial catastrophe is the European Space 

Agency’s (ESA) Ariane 5 rocket. Ariane 5’s first flight failed on the 4th of June 1996, as 

the rocket self-destructed 37 seconds after launch. Investigation showed that one 

component stored the velocity of the rocket as a 64-bit floating-point number, while 

another component stored it as a 16-bit integer. The conversion between these two 

formats failed, the rocket lost its ability to navigate, deviated from the route and self-

destructed. More than a decade of development, costing about 7 billion dollars was 

destroyed along with cargo that was alone worth more than half a billion dollars. 

Luckily, in the previous example, there was no human casualty. However, the scenario 

could have been different if the error had happened to be in the central computer of an 

airplane or a nuclear powerplant. 

Safety-critical software components must behave correctly, and ensuring their 

correctness is an essential factor during development. It follows that specific measures 

have to be taken to identify and correct the faults of these systems and to prove their 

correctness. 

Testing is an efficient way of finding faults, and it is part of every major standard 

regulating the development of safety-critical systems. However, testing alone cannot 

prove the absence of errors in a program, only their presence. 

Another approach is formal verification that takes the mathematical model of a given 

software and gives a mathematical proof of correctness. It is a computationally intensive 

task, as it needs to take all the possible states of the software into account, and even the 

simplest programs can have an infinite state space. During the past two decades, 

researchers have achieved numerous breakthroughs in the field of formal verification; 
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however, due to the complexity of the underlying mathematical field, it is still 

computationally too heavy to use formal verification in the industry on a daily basis. 

As can be seen, none of the methods above is perfect, and none of them can be used on 

its own to prove correctness. As in the case of a safety-critical system, correctness is of 

utmost importance, combining these two approaches is an exciting field of study.  

The automotive industry has been using software-based solutions to replace the 

traditionally electro-mechanical parts of the vehicle. One example is the array of sensors 

and servo-motors that are present in the steering of the vehicle to enhance the driving 

experience. As the automotive industry has numerous participants, standards have been 

designed to help reusability and interoperability between the products of different 

vendors. One of these standards is the AUTOSAR standard that defines a software 

architecture and development methodology to design and develop automotive software. 

The goal of this paper, in line with the author’s Scientific Student’s Association Report 

in 2019 of the same topic, is to combine formal verification and test generation in the 

AUTOSAR environment. It presents an algorithm that uses the results of a verification 

process to generate tests while taking into account the characteristics of AUTOSAR 

components. If the verification succeeds, either there is a mathematical proof of 

correctness about the software, or there is a counterexample that makes the error 

reproducible. However, when formal verification fails, tests will be generated using the 

information extracted from the visited part of the state space of the program. In 

connection with this, multiple strategies were developed for test generation that target 

different kinds of errors. 

The algorithms proposed are validated with a custom implementation that is able to verify 

computer programs written in C, using industrial software provided by thyssenkrupp 

Components Technology Hungary Kft. 
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2. Background 

This chapter presents the necessary background to understand this paper, including the 

formal background and algorithms that are used, and also the AUTOSAR system 

supporting the development of critical automotive applications. 

2.1. First-order logic 

Although mathematical logic has several branches, this paper focuses on first-order logic 

(FOL) [1]. First-order logic has great expressive power; however, the satisfiability of a 

first-order formula is generally undecidable algorithmically. Nonetheless, there are 

specific theories [2] (theory of integer arithmetic, theory of arrays, or theory of bit-

vectors, for example) that give interpretation to the symbols of a first-order formula, thus 

loosening the underlying problem, and making the satisfiability problem decidable 

(under certain circumstances). 

An SMT-problem (Satisfiability Modulo Theory) [3] is a decision problem for logical 

formulas, in which, when given a first-order formula and the theories used in it, a solver 

can decide whether there exists a substitution of variables in the formula to concrete 

values so after the substitution, the formula evaluates to true; or the formula is 

unsatisfiable. 

An assignment is a pair, in which the first component is a variable, and the second is an 

element of the domain of the variable, also called the value of the variable. 

The model of a first-order formula is a set of assignments, where there are no two 

assignments for the same variable, there is an assignment for each variable, and after 

substituting each variable for their value, the formula evaluates to true. 

A first-order formula is satisfiable if it has at least one model, while a first-order formula 

is unsatisfiable if it has no model satisfying it. 

Specialized software, so-called SMT solvers [4] are developed to solve SMT problems. 

Each SMT solver tends to use a different approach and excels in solving formulas 

efficiently using a unique set of theories (linear arithmetics, non-linear arithmetics, 

arrays, or bit-vectors, amongst others).  

Example 2.1: Given a first-order formula (𝑥 < 5 ∧ 𝑥 ≥ 3 ∧ 𝑦 > 7) where 𝑥, 𝑦 ∈ ℤ. 

An example of an assignment is (𝑥 = 4). An example model is {(𝑥 = 4); (𝑦 = 8)}, as 

substituting these values into the formula, it evaluates to true: (4 < 5 ∧ 4 ≥ 3 ∧ 8 >
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7) = ⊤. As there exists a model, the formula is satisfiable. It is worth to be noted that 

multiple models may exist. For example {(𝑥 = 3); (𝑦 = 8)} is also a model of the 

formula. 

If the formula is (4 < 𝑥 ∧ 𝑥 < 5), where 𝑥, 𝑦 ∈ ℤ, then the formula is unsatisfiable, 

as there is no integer between 4 and 5. However, if 𝑥, 𝑦 ∈ ℝ then it is satisfiable as 

(𝑥 = 4.5) satisfies it. 

2.2. Formal representation of programs 

This chapter presents a formal representation of programs, upon which the formal 

verification and test generation methods are based. 

2.2.1. Control Flow Automata 

Computer programs can appear in multiple different formats, for example, in the form of 

source code. It is easy to read and understand, while on the other hand, the binary created 

from the source code is not (easily) readable or understandable by a developer, but a 

computer can execute it without problems. Formal representation is needed to be created 

from programs to support the formal verification of computer programs.  

One of the representations mentioned above is the Control Flow Automata (CFA) [5]. 

The CFA is a (𝑉, 𝐿, 𝑙0, 𝐸) tuple, where: 

 𝑉 = {𝑣0, 𝑣1, … } is the set of variables that are present in the program. Each 𝑣𝑖 ∈

𝑉 variable has a 𝐷𝑣𝑖
 domain. 

 𝐿 = {𝑙0, 𝑙1, … } is the set of control locations. It can be interpreted as the possible 

values of the program counter. 

 𝑙0 ∈ 𝐿 is the initial location, which is active at the start of the program. 

 𝐸 ⊆ 𝐿 × 𝑂𝑝𝑠 × 𝐿 is the set of transitions, where 𝐿 is the set of control locations, 

and 𝑂𝑝𝑠 is a set of operations. A transition is a directed edge between two control 

locations, one or more operations labeling each of them. An operation can be: 

o A deterministic assignment of a variable, where the value of the right-

hand side expression becomes the value of the left-hand-side variable. 

o A non-deterministic assignment of a variable, where the value of the 

variable can be anything valid based in its domain. Non-deterministic 

assignments are useful for modeling data coming from the user or other 

programs. 
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o A guard; a transition with a guard can only be executed if the expression 

inside the guard evaluated to true. 

In summary, a CFA can be represented as a directed graph, where the nodes are the 

program locations, and the labeled edges are the transitions between the locations. The 

labels stand for the operations during the transition. 

 

Figure 2.1: The Euclidean algorithm written in C, and the corresponding CFA 

Example 2.2: On the left side of Figure 2.1, there is an implementation of the 

Euclidean algorithm written in C. On the right-hand side is a CFA that corresponds 

to the program on the left. There are two examples of non-deterministic assignment 

(ℎ𝑎𝑣𝑜𝑐 𝑎 and ℎ𝑎𝑣𝑜𝑐 𝑏), three examples of deterministic assignment (𝑐 ≔ 𝑎, 𝑎 ≔

𝑏 % 𝑎 and 𝑏 ∶= 𝑐), and two examples of a guard ([𝑎 ≠ 0] and [𝑎 = 0]).  

2.2.2. The state-space of a CFA 

Each program has its state-space, which is the set of all the possible states, the program 

can reach and transitions between the states. A state represents a control location and the 

values of the variables at a certain point in the operation of the program, while the 

transitions the operations the program carries out. One (concrete) state of the program is 

a (𝑙𝑖, 𝑑1, 𝑑2, … , 𝑑𝑛) tuple, where 

 𝑙𝑖 ∈ 𝐿 is the current location 

 𝑑1, 𝑑2, … , 𝑑𝑛 are the values of the variables, where 𝑑𝑖 ∈ 𝐷𝑣𝑖
, 𝑛 = |𝑉| and 𝑣𝑖 =

𝑑𝑖. 

As a CFA can represent a program, there needs to be a way to construct the state-space 

of the program from the CFA. Given the current state is (𝑙𝑖, 𝑑1, 𝑑2, … , 𝑑𝑛), 𝑙𝑖 denotes a 

1. void main() { 

2.   int a; scanf("%d", &a); 

3.   int b; scanf("%d", &b); 

4.   while(a != 0) { 

5.     int c = a; 

6.     a = b % a; 

7.     b = c; 

8.   } 

9. } 

𝑙1 

𝑙2 

𝑙3 

ℎ𝑎𝑣𝑜𝑐 𝑎 

ℎ𝑎𝑣𝑜𝑐 𝑏 [𝑎 ≠ 0] 

𝑐 ≔ 𝑎 

𝑎 ≔ 𝑏 % 𝑎 

𝑏 ≔ 𝑐 
[𝑎 = 0] 
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specific location in the CFA. Let us take a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) ∈ 𝐸 leaving this location 

and modifying the state of the program. Based on 𝑜𝑝, the following state is: 

 If 𝑜𝑝 is a deterministic assignment 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the following state is 

(𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑑𝑘
′  is the value of 𝑒𝑥𝑝𝑟, in which all variables by 

substituted by their 𝑑1, … , 𝑑𝑛 values. In short, the new value of 𝑣𝑘 becomes the 

expression, while the other variables remain unchanged. 

 If 𝑜𝑝 is a non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then the following state is 

unambiguous. The following state can be (𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑑𝑘
′ ∈ 𝐷𝑣𝑘

. 

In short the value of 𝑣𝑘 can be any value that is possible based on its domain, 

while all other variables remain unchanged, so the number of following states is 

the size of the domain. 

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then the following state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑛), if 𝑐𝑜𝑛𝑑 

evaluates to true based on the values 𝑑1, … , 𝑑𝑛. If it evaluates to false, the 

transition cannot be executed. It follows that the construction of a CFA needs to 

be careful, so for every state, a transition exists, for which all guards evaluate to 

true, or else a deadlock occurs. 

Example 2.3: Let the current state be (𝑙1, 3, 4), where 𝑙1 is the current location, while 

3 and 4 are the respective values of variables 𝑥 and 𝑦. Moreover, let the transition be 

(𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝: 

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 2, then the following state is (𝑙2, 2, 4). 

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑦, then the set of possible following 

states is: {(𝑙2, 3, −∞), … , (𝑙2, 3, 0), … , (𝑙2, 3, 1), … , (𝑙2, 3, ∞)}, if 𝐷𝑦 = ℤ. 

 If 𝑜𝑝 is guard [𝑦 = 4], then the following state is (𝑙2, 3, 4) 

 If 𝑜𝑝 is guard [𝑦 ≠ 4], then the transition cannot be executed. 

The only thing left to do is to determine the initial state of the state-space. The CFA has 

an initial location which can be used, but the value of every variable must also be given. 

For example, in programs where uninitialized variables contain memory garbage (usually 

that are written in C, C++), there are multiple initial states, and it is non-deterministic, 

which one will be chosen. On the other hand, if uninitialized variables are automatically 

initialized to a specific value, often 0 (for programs written in a managed environment, 

such as Java, C#), then there is only one initial state. As the automotive industry tends to 

use native code, this paper uses the first approach. 
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2.3. The abstract state-space of a program 

The size of a program’s state-space depends on the number of control locations, the 

number of variables, and the size of those variables’ domain. Out of these, the domain-

size has the most significant impact on the final size. In case of two 32-bit integer 

variables in a program, then at least 232232 = 264 ≈ 1019 states are needed to be 

represented. If the program had at least eight integer variables with 32-bit integer 

domains, then more states would be needed to store the possible values, than the number 

of atoms in the universe. This phenomenon is called the state-space explosion, and 

efficient algorithms are needed to handle it. 

One possible solution is to use abstraction to remove unnecessary information from the 

state-space. The abstract state-space of a program is the set of abstract states and 

transitions between them. An abstract state is a set of concrete states, while a transition 

is an operation between two abstract states. One concrete state can appear in at most one 

abstract state, and every concrete state has to be part of at least one abstract state. 

Multiple abstraction methods are used for CFAs. The most commonly used are predicate 

abstraction [6] and explicit-value abstraction [5]. This chapter presents these particular 

abstraction techniques to handle state space explosion. 

2.3.1. Predicate abstraction 

The technique of predicate abstraction [6] reduces the size of the abstract state-space by 

not following the concrete value of every variable, instead following specific facts about 

the variables, the so-called predicates. 

A predicate is a logic formula over the set of variables of a program, and it denotes 

certain relations between the variables. In the following, example predicates are shown: 

𝑝0 = (𝑥 = 0) or 𝑝1 = (𝑦 + 2 < 𝑥). The set of all occurring predicates in the abstraction 

is called precision, and denoted as 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}.  

If using predicate abstraction, an abstract state is a tuple (𝑙𝑖, 𝑝1̂, 𝑝2̂, … , 𝑝�̂�), where 𝑙𝑖 ∈ 𝐿 

is a control location, and  𝑝�̂� is either 𝑝𝑖, ¬𝑝𝑖 or 𝑡𝑟𝑢𝑒, based on whether the 𝑝𝑖 ∈ 𝑃 

predicate is present in its original form, negated form, or not present at all in the state. In 

short, an abstract state is a set of states, whose control location is the same, and the 

predicates evaluate to true on the variables in the state. The predicates that are present in 

the state are said to label the state. 

Example 2.4: Let the state space of a program be (𝑙1, 𝑥), where 𝐷𝑥 ∈ [−∞; ∞]. Given 

the abstract state: 
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 (𝑙1, 𝑥 < 0), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, −2), (𝑙1, −1)}. 

 (𝑙1, ¬(𝑥 < 0)), the set of states it abstracts is {(𝑙1, 0), (𝑙1, 1), … , (𝑙1, ∞)}. 

 (𝑙1, 𝑡𝑟𝑢𝑒), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, 0), … , (𝑙1, ∞)}. 

The rules of constructing an abstract state-space based on a CFA differ slightly from the 

rules of constructing a concrete state-space when using predicate abstraction. First of all, 

if there are no variables with an assignment at the beginning of the program, all the 

possible initial states can be abstracted into a single abstract state, as they all share their 

control location (𝑙0), which is the initial location of the CFA. 

Given that the current state is (𝑙𝑖, 𝑝1̂, … , 𝑝�̂�), and a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) that leaves the 

control location 𝑙𝑖 in the CFA, then the following state can be calculated based on 𝑜𝑝: 

 If 𝑜𝑝 is an assignment in the form of 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the control location of the 

following state is 𝑙𝑖
′, and the predicates of the following states are those predicates 

(or their negated form) from 𝑃, which are implied by the predicates of the current 

state, and the assignment. 

 If 𝑜𝑝 is a non-deterministic assignment in the form of ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then the control 

location of the following state is 𝑙𝑖
′, and the predicates of the following states are 

those predicates (or their negated form) from 𝑃, which are implied by the 

predicates of the current state and the assignment. These predicates obviously 

cannot contain information on 𝑣𝑘, as no data is available about the value except 

its domain. 

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then it should be first decided whether there is a 

contradiction between the predicates of the current state and the condition. If there 

is a contradiction, then the values of the variables cannot be chosen so that both 

the condition and the predicates evaluate to true, thus, the transition cannot be 

executed. If there is no contradiction, then the control location of the following 

state is 𝑙𝑖
′, and the predicates of the following states are those predicates (or their 

negated form) from 𝑃, which are implied by the predicates of the current state 

and the guard. 

In practice, as long as both the predicates and the operations on the CFA can be expressed 

as first-order formulas, an SMT solver can be used to check for contradiction and to 

calculate implications [7]. 

Example 2.5: Let the current abstract state be (𝑙1, 𝑥 > 0, 𝑦 < 4), where 𝐷𝑥, 𝐷𝑦 ∈ ℤ. 

Moreover, let a transition be (𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝: 
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 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 1, then the following state is (𝑙2, 𝑥 >

1, 𝑦 < 4), as (𝑥 > 0) ∧ (𝑥 ≔ 𝑥 + 1) → (𝑥 > 1). 

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the following state is 

(𝑙2, 𝑡𝑟𝑢𝑒, 𝑦 < 4), as no information is available about the new value of 𝑥. 

 If 𝑜𝑝 is guard [𝑥 > 3], then the following state is (𝑙2, 𝑥 > 3, 𝑦 < 4), as (𝑥 > 0) ∧

(𝑥 > 3) → (𝑥 > 3). 

 If 𝑜𝑝 is guard [𝑥 < 0], then the transition cannot be executed, as there is no integer 

for which (𝑥 > 0) ∧ (𝑥 < 0). 

All of the implications above are first-order formulas, so they can be fed to an SMT 

solver which solves them. 

2.3.2. Explicit value abstraction 

Explicit value abstraction [5] or visibility based abstraction reduces the size of the 

abstract state-space by only tracking the values of a subset of the variables.  

The set of followed variables is called the set of explicitly tracked variables. Each 

variable is either in the set of explicitly tracked variables, and their value is thereby 

known, or they are not in the set, and their value is unknown. The unknown value is 

denoted by ⊤. It is worth to be noted that variables in the set can also have unknown 

value, for example, when they are not yet initialized, or they store user input. The set of 

explicitly tracked variables is also called precision in this case and denoted with 𝑃 =

{𝑣1, 𝑣4, … , 𝑣𝑘 }. 

When using explicit value abstraction, an abstract state is a (𝑙𝑖, 𝑑1, 𝑑, … , 𝑑) tuple, where 

𝑙𝑖 ∈ 𝐿 is a control location, and 𝑑𝑖 is the current value of variable 𝑣𝑖, so 𝑑𝑖 ∈ 𝐷𝑣𝑖
∪ {⊤}.  

 If 𝑑𝑖 ∈ 𝐷𝑣𝑖
 and 𝑣𝑖 ∈ 𝑃 then the variable is tracked, and the value of the variable 

is 𝑑𝑖. 

 If 𝑑𝑖 = ⊤ and 𝑣𝑖 ∈ 𝑃 then the variable is tracked, and the value of the variable is 

not known. 

 If 𝑣𝑖 ∉ 𝑃 then the variable is not tracked, implying that 𝑑𝑖 = ⊤.  

A tracked variable is often also called a visible variable, while a not tracked variable is a 

not visible variable. The visible variables are also said to label the state. 

Example 2.6: Let the state space of a program be (𝑙1, 𝑥), where 𝐷𝑥 ∈ [−∞; ∞]. Given 

the abstract state: 

 (𝑙1, ⊤), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, 0), … , (𝑙1, ∞)} 
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 (𝑙1, 0), the set of states it abstracts is {(𝑙1, 0)} 

The rules of constructing an abstract state-space based on a CFA differ slightly from the 

rules of constructing a concrete state-space or when using predicate abstraction. First of 

all, at the start of the program, all variables have undefined value, so they can be 

abstracted into a single abstract state, whose control location is the initial location of the 

CFA. 

Given that the current state is (𝑙𝑖, 𝑑1, … , 𝑑𝑛), and a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) that leaves the 

control location 𝑙𝑖 in the CFA, then the following state can be calculated based on 𝑜𝑝: 

 If 𝑜𝑝 is an assignment in the form of 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the following state is 

(𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛). The value of 𝑑𝑘
′  is ⊤ if either 𝑣𝑘 ∉ 𝑃 or the value of 𝑒𝑥𝑝𝑟 

depends on a variable with ⊤ value. Otherwise, 𝑑𝑘
′  is the evaluated value of 𝑒𝑥𝑝𝑟. 

 If 𝑜𝑝 is a non-deterministic assignment in the form of ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then following 

state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑣𝑘
′  is ⊤, as there is no information available 

regarding the value of the variable. 

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then it should be first decided whether there is a 

contradiction between the current values of the variables and the condition. If 

there is a contradiction because 𝑐𝑜𝑛𝑑 evaluates to false with the current variables, 

then the values of the variables cannot be chosen, so the condition evaluates to 

true; thus, the transition cannot be executed. If there is no contradiction, because 

𝑐𝑜𝑛𝑑 evaluates to true, or it cannot be evaluated due to ⊤ values, then the 

following state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑛). 

In practice, as long as the operations on the CFA can be translated to first-order formulas, 

an SMT solver can be used to check for contradictions in conditions and to evaluate 

expressions. 

Example 2.7: Let the current abstract state be (𝑙1, 0, ⊤), where 𝐷𝑥 , 𝐷𝑦 ∈ ℤ. Moreover, 

let a transition be (𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝: 

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 1, then the following state is (𝑙2, 1, ⊤). 

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 𝑦, then the following state is (𝑙2, ⊤, ⊤), 

as 𝑥 + 𝑦 cannot be evaluated due to 𝑦 being ⊤. 

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the following state is 

(𝑙2, ⊤, ⊤), as no information is available about the new value of 𝑥. 

 If 𝑜𝑝 is guard [𝑥 > −3], then the following state is (𝑙2, 0, ⊤).  

 If 𝑜𝑝 is guard [𝑥 > 5], then the transition cannot be executed, as 0 ≯ 5. 
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 If 𝑜𝑝 is guard [𝑥 + 𝑦 > 0], then the following state is (𝑙2, 0, ⊤), as 𝑥 + 𝑦 cannot 

be evaluated due to 𝑦 being ⊤. 

2.4. CEGAR 

There are numerous algorithms and methods that can check a program in terms of 

erroneous behavior. This section presents model checking as a general approach, and 

Counterexample-Guided Abstraction Refinement (or CEGAR for short) as an algorithm 

to help verifying computer software.  

2.4.1. Model checking 

Given a formal model and a formal requirement (or statement), model checking [8] [9] 

will decide whether the given requirement holds for the given model. The model is 

correct if mathematical proof exists that the requirement holds for the model. Also, the 

model is incorrect, if mathematical proof exists that the requirement does not hold for 

the model. It is worth to be noted that the proof of incorrectness is often an example, for 

which the requirement fails. 

 

Figure 2.2: The model checking procedure 

Model checking is a general approach, and it is not used exclusively for software 

verification. The notion of model, requirement, and checking needs to be given in terms 

of a program, in order to apply model checking for computer software. 

 Let the model be the CFA, as it is a formal representation of the program. 

Requirement Model 

Model 

checking 

Incorrect 

Counterexample 

Correct 

Proof 
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 Let the requirement be that no error location is reachable. An error location is a 

particular control location in the CFA, which yields error if the control ever 

reaches it.  

 An analysis algorithm is a method that can prove whether the control is able to 

reach an error location or not. One possible method is a systematic traversal of 

the state-space that checks whether a state with an error location for control 

location or error-state is reachable in it; however, the complexity of the problem 

often causes such algorithms to fail. 

The model is said to be correct if the requirement holds, and incorrect if the requirement 

does not hold. 

 

Figure 2.3: The Euclidean algorithm with an assertion written in C, and the corresponding 

CFA 

Example 2.8: On the left side of Figure 2.3, there is the Euclidean algorithm written 

in C. In line 9, there is an assertion. The corresponding CFA can be seen on the right 

side. It can be observed that the assertion is mapped as two separate branches. The 

first branch continues the normal flow of the program (𝑙4), while the other branch 

marks it as an error location (𝑙𝑒). The error location is only entered, if the condition 

in the assertion evaluates to false. 

𝑙1 

𝑙2 

𝑙3 

ℎ𝑎𝑣𝑜𝑐 𝑎 

ℎ𝑎𝑣𝑜𝑐 𝑏 [𝑎 ≠ 0] 

𝑐 ≔ 𝑎 

𝑎 ≔ 𝑏 % 𝑎 

𝑏 ≔ 𝑐 [𝑎 = 0] 

1. void main() { 

2.   int a; scanf("%d", &a); 

3.   int b; scanf("%d", &b); 

4.   while(a != 0) { 

5.     int c = a; 

6.     a = b % a; 

7.     b = c; 

8.   } 

9.   assert(b != 0); 

10. } 

 
𝑙𝑒 𝑙4 

[𝑏 = 0] [𝑏 ≠ 0] 
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2.4.2. CEGAR algorithm 

The Counterexample-Guided Abstraction Refinement (CEGAR) [5] [10] [11] is an 

abstraction-based model checking algorithm that has been effectively used to verify 

computer software. It can use a CFA, among other formalisms, as an underlying model, 

and it can check for reachability in the state-space, as a requirement. 

The algorithm uses abstraction and operates on the abstract state-space. A (concrete) state 

is an error-state if it has an error location as its control location. It follows that an abstract 

state is an abstract error-state if it covers at least one concrete error-state. 

 

Figure 2.4: The CEGAR-loop 

The core of the algorithm is the so-called CEGAR-loop (Figure 2.4) that consists of two 

distinct parts: the abstractor and the refiner. In the first part, the abstractor is responsible 

for building the abstract state-space from the model and checking whether an abstract 

error-state is reachable. As an abstract error-state is an over-approximation of the 

possible error-states, if no abstract error-state is reachable, then no concrete error-state is 

reachable; thus, the requirement holds for the model. 

However, if an abstract error-state is reachable, the fact needs to be decided whether it is 

feasible or spurious. If a concrete error-state inside of it is reachable, then the abstract 

error-state is feasible, so the model fails the requirement. If a concrete error-state is not 

reachable, then the abstract error-state is spurious, the reachability of the abstract error-

state is the result of the over-approximation. In this case, the abstraction needs to be 

refined, so that the abstract error-state does not contain the unreachable error-state. 

Checking the reachability of the concrete-error-state and refining is the task of the refiner 

part of the CEGAR-loop. 

Abstractor Refiner 

Initial precision 

Abstract counterexample 

Refined precision 

Correct 

Proof 

Incorrect 

Counterexample 
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The loop keeps repeating itself until it either proves that no abstract error-state is 

reachable, thus, the requirement holds or gives an example how a concrete error-state is 

reachable, thus proving that the requirement does not hold. Each time an abstract error-

state is reachable and the refiner proves that the concrete error-state inside is unreachable, 

the abstraction refines by separating the abstract error-state into at least two other parts. 

With each refinement, the number of abstract states grows; however, it cannot grow 

beyond the number of concrete states, which causes the algorithm to terminate at some 

point. 

It is worth noting that the CEGAR algorithm does not depend on the type of abstraction. 

It can use predicate abstraction just as explicit-value abstraction. The following sections 

present how abstraction and refinement work in the CEGAR framework. 

2.4.3. Building the abstraction 

The abstraction is built against the precision, which is denoted with 𝑃. Each abstract state 

can be labeled by one or more first-order expressions, which contain additional 

information about the state-space. An abstract state in this case is (𝑙𝑖, 𝐿1, … , 𝐿𝑛), where 

𝑙𝑖 is the control location, and 𝐿𝑖 is a label, that labels the abstract state. In the case of 

predicate abstraction, the predicates can be used as labels, while when using explicit 

value analysis, for each 𝑣𝑖 ∈ 𝑃, a first-order expression (𝑣𝑖 = 𝑑𝑖) can be generated and 

used as a label. 

Building the abstraction requires two operations and multiple definitions. 

Expand is an operation, which given an abstract state, calculates the set of following 

abstract states. It takes the transitions that leave the control location of the given abstract 

state and forms a set from the destination of those transitions. 

An Abstract Reachability Tree (ART) is a tree in which the nodes represent abstract states, 

and the edges denote the (abstract) transitions between them. The root of the tree is the 

abstract state representing the initial location of the CFA, and every state is either a leaf 

or the set of its children is the result of the expand operation executed on the state. 

Given a not yet expanded node whose abstract state is 𝑆 = (𝑙𝑠, 𝐿𝑖 , … , 𝐿𝑗) in the ART, and 

another node whose abstract state is 𝐷 = (𝑙𝑑, 𝐿𝑘, … , 𝐿𝑙) for which 𝑙𝑠 = 𝑙𝑑 and 

(𝐿𝑖 , … , 𝐿𝑗) → (𝐿𝑘, … , 𝐿𝑙), where → stands for implication, then 𝐷 covers 𝑆 (or 𝑆 is 

covered by 𝐷). Illustratively, it means that if a control location occurs at least twice in 

abstract states of the ART (let us call these nodes 𝑆 and 𝐷), and one node, 𝑆 is not yet 

expanded, but its states labels are stricter, fewer models satisfy it than the others, 𝐷’s, 

that is expanded, then there is no state of the abstract state-space that is reachable from 

𝑆, but not reachable from 𝐷. It also follows that 𝑆 does not need to be expanded. 
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An Abstract Reachability Graph (ARG) is a directed acyclic graph, whose nodes are the 

nodes of an ART, and whose edges are the union of the edges of the ART, and the 

covering edges. A covering edge from 𝑆 to 𝐷 nodes denote, that 𝑆 covers 𝐷. A node in 

the ARG is complete if another node covers it, or it is expanded. All other nodes are 

incomplete. 

Cover is also an operation, which creates a covering edge in an ARG between 𝐿 and 𝑆 if 

𝐿 covers 𝑆. 

 

Figure 2.5: A CFA and a corresponding ARG 

Example 2.9: On the left-hand side of Figure 2.5 is a CFA, and on the right-hand 

side is (one of the many possible) corresponding ARGs. The result of the operation 

expand on the abstract state 𝑙1 is {𝑙2}, as it has only one following state. On the other 

hand, the result of operation expand on 𝑙2 is {𝑙3, 𝑙2}, as two different transitions are 

possible. It can be seen, that both instances of 𝑙2 are labeled with (𝑎 = 1), and 

because they share the same control location, and (𝑎 = 1) → (𝑎 = 1), the latter is 

covered by the former, which is denoted by the dashed arrow. The state of 𝑙3 is an 

abstract error state, and it is unreachable, as (𝑎 = 1) ∧ (𝑎 = 0) →⊥, so it should be 

removed from the ARG. All of the nodes are complete because every one of them is 

either expanded or covered, so no abstract error-state is reachable, so the model is 

correct for the given requirement. 

The abstraction building procedure (Listing 2.1) builds an ARG. It starts with a single 

abstract state that represents the initial location in the CFA. In the followings, it calls the 

expand and cover methods systematically, until either all the nodes are complete in the 

ARG, or an abstract error-state is encountered in one of the nodes. In the former case, 

the model is correct, as it contains no error-state, while in the latter case, it needs to be 

𝑙1 

𝑙2 

𝑙3 

𝑎 ≔ 1 

𝑏 ≔ 1 

[𝑎 ≠ 0] 

𝑏 ≔ 𝑏 + 1 

[𝑎 = 0] 

𝑙1 

𝑙2, 𝑎 = 1 

𝑙3 𝑙2, 𝑎 = 1 

𝑎 ≔ 1 

𝑏 ≔ 1 

[𝑎 ≠ 0] 

𝑏 ≔ 𝑏 + 1 

[𝑎 = 0] 
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determined whether the abstract error-state is feasible or spurious, but is the task of the 

refiner. 

1. Abstractor(𝐶𝐹𝐴, 𝑃): 

2.   𝐴𝑅𝐺 ∶= ARG with initial location 

3.   FOREVER:  

4.     𝑠 ∈ {incomplete nodes of 𝐴𝑅𝐺} 

5.     IF ∄𝑠 THEN: 

6.        ← CORRECT 

7.     ELSE IF ∃𝑠 and 𝑠 is an error location THEN: 

8.        ← COUNTEREXAMPLE(route from initial location to 𝑠) 

9.     ELSE: 

10.       IF ∃𝑟 ∈ {nodes of 𝐴𝑅𝐺}: 𝑟 covers 𝑠 THEN: 

11.         cover 𝑠 with 𝑟 

12.       ELSE: 

13.         expand 𝑠 

Listing 2.1: The algorithm building the algorithm 

The algorithm is highly customizable, as it can be seen in the listing above. It can apply 

different strategies as to how to select the next candidate for expansion or the next 

candidate to check for a covering relation, or different abstraction techniques as well. 

Tuning these parameters is an active field of study.  

2.4.4. Refining the abstraction 

The procedure of refining (Listing 2.2) is executed for an abstract error-state and the 

corresponding precision. 

First, it needs to be checked, whether a concrete error-state is reachable. If it is, then the 

error path is feasible, and there is an error in the model; otherwise, it is spurious, and the 

error is a result of over-approximation. 

One way to decide the reachability of the error-state is to form an SMT problem from the 

assignments and guards on the route from the root of the ARG to the concrete error-state. 

If this problem is satisfiable, then there is a substitution of variables to concrete values 

that leads to this error, so the error-state is reachable; thus, the model fails the 

requirement, and the example for that is the substitution. 

However, if the problem is unsatisfiable, then the abstract error-state is spurious, and the 

precision needs to be refined. There are multiple strategies to achieve it, one of these 
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strategies, for example, uses the proof of unsatisfiability (an interpolant) to deduce more 

predicates [12], or to deduce which variables to include in the set of explicitly tracked 

variables [5].  

1. Refiner(𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒, 𝑃): 

2. 𝑅 ≔ concrete route from initial location to error 

state 

3.   𝑠 ≔ 𝑅 as SMT-problem 

4.   IF 𝑠 is satisfiable THEN: 

5.     ←  INCORRECT(𝑅) 

6.   ELSE: 

7.     𝑃′ ≔refined precision 

8.     ← REFINED PRECISION(𝑃′) 

Listing 2.2: The refiner algorithm 

As a final step, the states that are unreachable need to be removed from the state-space 

and the ARG; in other words, the ARG has to be cut back. After finishing the refinement, 

the abstraction needs to be rebuilt based on the new precision. 

2.5. Testing 

Testing is a generic method to check the validity of computer programs. Testing is widely 

used by the industry, and it is required by almost all the standards regulating the 

development of safety-critical systems. However, even a small program can have a 

considerable number of possible executions, while one test case is only an arbitrary 

choice of inputs, denoting one of them. So there need to be testing methods to choose 

those inputs that lead to an error with the highest possibility. 

2.5.1. Basics of testing 

Testing [13] is a complex method. This section presents a simplified approach that fits 

the goals of this paper. The program is tested by a single test suite that consists of multiple 

test cases. This program is called software-under-testing (SUT). A test case is tuple of: 

 Pre-conditions 

 Input values and actions to take 

 Target values 

 Post-conditions 
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When executing a test case, first, the list of pre-conditions is checked, and the test case 

is only executed if they hold. After the set of input, values are given to the SUT, then the 

actions required to be carried out are run. After execution, the output of the program is 

checked whether it matches the expected target values, and the post-conditions are 

checked if they hold. The result of each test case can be: 

 Successful: the run of the program is consistent with the expected results and post-

conditions 

 Failure: the run of the program is inconsistent with either the expected results or 

post-conditions 

 Inconclusive: the run of the program is inconsistent with both the requirements of 

a successful run and a failed run. One example is that it is given a set of both 

successful and failing outputs, but the output of the program is not an element of 

any of them. 

 Error: there was an unexpected error while executing the test, so it cannot be 

decided. 

Coverage metrics often measure the quality of test-suites. These metrics measure the 

number of lines of the code and branches that are executed during the test suite. It is often 

a requirement by safety-critical standards that the test-suites have a near 100% coverage.  

2.5.2. Black box testing 

A black box testing technique is a method that derives test cases from solely the 

specification of the program. There are several black box techniques, so only those are 

presented that are used in this paper. 

One example is the equivalence partitioning [13]. The domain of each variable is split 

up to multiple intervals, or multiple sets of values so-called equivalence partitions. For 

each interval or set, the program indeed behaves in a very similar way for every value in 

it (assuming that all the other variables remain unchanged). When using equivalence 

partitioning, one test case is derived for every interval by selecting a random value from 

it. 

Another common technique is robustness testing, which is an extension of boundary 

value analysis [13]. It assumes that the faults in the program happen more often around 

the boundaries because often, unique code or condition is required to handle them. Each 

variable has a domain, which in turn have a minimum and a maximum value (the other 

values are called nominal values). There are multiple methods as to what values are 

usually useful for testing, but usually, the following values are chosen in robustness 

testing: 
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 A bit below the minimum value (MIN-) 

 The minimum value (MIN) 

 A bit above the minimum value (MIN+) 

 A nominal value (NOM) 

 A bit below the maximum value (MAX-) 

 The maximum value (MAX) 

 A bit above the maximum value (MAX+) 

With these seven cases, the domain of a variable is tested for all the possible kinds of 

values in terms of robustness, assuming the software behaves similarly for all nominal 

values. 

However, usually, the two methods above are combined and used hand-in-hand. First of 

all, there are variables with discrete domains (for example, enumerations), for which 

boundary value analysis cannot be used, only equivalence partitioning. Moreover, an 

equivalence partition is tested better, if its boundaries are also checked, so usually, five 

test cases are generated for each of them: MIN, MIN+, NOM, MAX-, MAX+. The other 

two test cases are only needed if there are gaps between the partitions, so a MIN- or a 

MAX+ value does not belong to any of the partitions. 

Example 2.10: A food delivery service allows the users to order up to 10 portions of 

food. However, their website, on which the order is placed, the input filed accepts any 

integer numbers. An additional code component checks whether the number of 

portions is in the right range, and this component is tested with equivalence partitions 

and boundary value analysis. 

The set of integers can be split into three different equivalence partitions, based on 

the requirement: 

 Invalid 1: [−∞; 0], the order fails to complete 

 Valid: [1; 10], the order is successful 

 Invalid 2: [11; ∞], the order fails to complete 

Applying boundary value analysis on the valid partitions results in the following 

inputs: 1 (MIN), 2 (MIN+), 5 (NOM), 9 (MAX-), 10 (MAX). 

Additionally, at least two other test cases are recommended from the invalid 

partitions, 0 (MIN-), and 11 (MAX+). Of course, other invalid values supposed to be 

tested as well. 
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2.5.3. White box testing 

White box testing techniques know the internal structure of the SUT and derive test cases 

solely based on the structure, ignoring the semantics of the variables. On the one hand, 

this could prove to be a disadvantage; however, these kinds of methods can usually be 

automated, so another tool generates the test cases, without human interaction. This way, 

many more tests can be generated and executed, compared to merely human written tests. 

One of the most widely known white box test generation technique is symbolic execution 

[14] [15]. It executes the program, but instead of remembering the exact values of the 

variables, it records symbolic values. All the expressions and operations are evaluated, 

then with these symbolic values, rather than concrete ones.  

A symbolic value represents a mathematical constant, that can have the value of anything 

in the domain of the variable. Symbolic execution maintains two distinct data structures: 

 A symbolic state (𝛿) that maps the variables of the program to their current 

symbolic value. 

 A path constraint (𝜋), that is a first-order formula over symbolic values and 

decodes a path in the program. 

Symbolic execution also takes a CFA as a starting point. In the beginning, the execution 

starts at the initial location, and 𝛿 = {} and 𝜋 = ⊤. After that the algorithm takes all the 

transitions from that location, using depth-first search and if in (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) transition: 

 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the value of 𝑥 in the symbolic 

state must be a never before used symbolic value 𝑥𝑖, so 𝛿(𝑥) = 𝑥𝑖. 

 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑒𝑥𝑝𝑟, then the symbolic state must be 

updated with the new value, so 𝛿(𝑥) = 𝑒𝑥𝑝𝑟′, where 𝑒𝑥𝑝𝑟′ is expression 𝑒𝑥𝑝𝑟, 

with all the variables substituted for their symbolic value. 

 𝑜𝑝 is guard [𝑐𝑜𝑛𝑑], then the path constraint needs to be updated, so 𝜋′ = 𝜋 ∧

𝑐𝑜𝑛𝑑′, where 𝑐𝑜𝑛𝑑′ is expression 𝑐𝑜𝑛𝑑, with all the variables substituted for their 

symbolic value. 

The execution continues until it reaches the end of the execution. After that, by solving 

the path constraint with an SMT solver, the result is either satisfiable or unsatisfiable. In 

the former case, the input values of the program that guide the execution on the path 

described by the path constraint can be extracted from the solution, and a test case can 

be generated that tests this path. In the latter case, this path is unfeasible. After that, the 

algorithm backtracks and tries other paths (for example, other branches of an if-then-else 

structure). 
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This way, a test case can be derived for all possible paths that the execution can take. 

However, this number can quickly become huge, even infinite, in case of cycles. This 

phenomenon is called path-explosion and causes symbolic execution significant 

difficulties against industry software. Path explosion is usually tackled by tricky heuristic 

techniques that cut back the possible paths in case of a cycle, like pruning redundant 

paths or interleaving random and symbolic execution [15]. 

 

Figure 2.6: A CFA with a branch 

Example 2.11: Let us apply symbolic execution on the CFA in Figure 2.6. At the start 

𝛿 = {}, 𝜋 = ⊤, and the execution is at 𝑙1. Then: 

 Symbolic execution moves to 𝑙2 and executes the operations on the transitions. As 

a result of the two non-deterministic assignments, two new symbolic values will be 

introduced, 𝑥1 and 𝑦1. As a result of the deterministic assignment, the variable will 

be associated with the symbolic value of the expression on the right-hand side. At 

the end 𝛿 = {𝑥 → 𝑥1, 𝑦 → 𝑦1, 𝑧 → 2𝑥1}, 𝜋 = ⊤. 

 First, the left branch is taken, and the symbolic execution takes 𝑙3. As there is only 

one guard, only the path constraint is updated: 𝜋 = (2𝑥1 ≠ 𝑦1). The path ends 

here, so the path constraint should be given to an SMT-solver. One possible model 

is {(𝑥1 = 1), (𝑦1 = 1)}. So giving 𝑥 the value 1 and 𝑦 the value 1, the execution 

follows this path. 

 Next, the algorithm backtracks to the nearest decision and executes the other 

branches, which is 𝑙𝑒 in this case. As there is only one guard, only the path 

constraint is updated: 𝜋 = (2𝑥1 = 𝑦1). The path ends here, so the path constraint 

should be given to an SMT-solver. One possible model is {(𝑥1 = 1), (𝑦1 = 2)}. So 

giving 𝑥 the value 1 and 𝑦 the value 2, the execution follows this path. 

𝑙1 

𝑙2 

ℎ𝑎𝑣𝑜𝑐 𝑥 

ℎ𝑎𝑣𝑜𝑐 𝑦 

𝑧 ≔ 2𝑥 

𝑙𝑒 𝑙3 

[𝑧 = 𝑦] [𝑧 ≠ 𝑦] 
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 Then the algorithm backtracks, but there are no additional branches, so it 

terminates while emitting two test cases. 

2.6. AUTOSAR 

Automotive software development is a diverse industry with many participants. To 

improve interoperability and reusability, multiple interested parties, like BMW, Bosch, 

or Volkswagen, founded a development partnership in 2003. This partnership created the 

Automotive Open System Architecture (AUTOSAR) [16], which is open, and more 

importantly, standardized software architecture for automotive electronic control units 

(ECU). Besides the architecture, it also sets goals for reusability, availability, safety, and 

maintainability reducing the costs of research and development. 

 

Figure 2.7: The layers of AUTOSAR 

Over the past two decades, the standard had multiple revisions and has been used all over 

the world. AUTOSAR defines a software architecture with three layers (Figure 2.7): 

 Basic Software (BS): it consists of standardized software components, that 

provide functionalities to the upper layers 

 Runtime Environment (RTE): it is a middleware that abstracts the hardware 

topology, providing connections between application components disregarding if 

they share the same ECU or not. It also provides an interface to BS components. 

 Application Layer: these are application software components, that provide 

unique functionality, and the focus of this paper. 
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The following sections present only the subset of the AUTOSAR standard, which is 

required by this paper. 

2.6.1. Application Software Components 

An application software component or AUTOSAR component is a piece of software that 

has a standardized interface and standardized structure. This chapter presents only the 

part of the basic structure of a component that is used in the paper. 

AUTOSAR components communicate with the rest of the world through well-defined 

ports, that encapsulate interfaces, ensuring type-safety across components. There are 

multiple types of ports, the two most important are: 

 Client-server ports define a set of operations that can be invoked. Client-server 

communications consist of a server component that defines the operations to be 

invoked and multiple client components that invoke the functionality of the 

server. It is worth to be noted that data can flow in both directions when invoking 

an operation. This kind of communication is synchronous, as the clients wait for 

the answer.  

 Sender-receiver ports define an asynchronous type of communication between 

components, where the sender port sends a message, and multiple receiver port 

receives it. 

Each component can have parameters that contain data that can be configured but does 

not change during the lifetime of the component. Thereby parameters help to create 

reusable code, as the same code or algorithm can be easily reused, but still configured 

according to individual needs. 

The main elements of the internal structure are the runnables. These are pieces of code 

that realize the functionality of the component. Each runnable must be associated with at 

least one event, that runs the runnable as an action when triggered. The trigger of an event 

can be (amongst many other): 

 Timed, which can trigger the event periodically, or after a specific time 

 Calling an operation of a client-server port 

AUTOSAR also requires to declare all the memory that stores data for persistency, which 

is called per instance memory. It is required because, in safety-critical environment, 

dynamic memory allocation is forbidden, so everything has to be declared that cannot be 

stored on the stack because, for example, it needs to persist data between two executions 

of a runnable. 
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Moreover, AUTOSAR expects the developer to annotate the component with metadata 

that store (amongst others), which runnable can access which ports, parameters, and per 

instance memories and the domain of every variable in the interface. This information 

can be useful for verification if used correctly. 

2.6.2. Runtime Environment 

AUTOSAR components communicate with other components through their ports. It is 

the task of the RTE as a middleware to connect communicating components and to 

provide access to the functionality of the BS if needed. However, the main task of the 

RTE is to hide the hardware-dependability of the communication. It also hides whether 

the communicating parties share the same ECU or not. 

 

Figure 2.8: The communication paths between components 

This notion is called the Virtual Function Bus (VFB), that in short, is responsible for 

connecting the communicating parties. There are two kinds of connections between 

components that the VFB hides: 

 Intra-ECU: the same ECU runs the communicating components, so the 

components share the CPU and memory. 

 Inter-ECU: different ECUs run the communicating components, so the 

components do not share CPU or memory 
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Figure 2.9: The virtual function bus 

The communication methods of components are depicted in Figure 2.8. In the case of 

Intra-ECU communication (between red and purple components), the RTE of that 

particular ECU is responsible for connecting the communicating parties. However, in the 

case of Inter-ECU communication (between purple and green components), the RTE 

forwards the communication to the BS, which puts it on the bus connecting the 

communicating ECUs. The BS of the other ECU parses the communication from the bus, 

and the RTE of the other ECU forwards it to the correct port. 

The RTE completely masks this difference; the components perceive only the VFB, 

which forwards all communication. This phenomenon is portrayed in Figure 2.9. 

2.6.3. Developing AUTOSAR components 

The development of an AUTOSAR component usually follows a rigid waterfall or 

V-model methodology, as safety-critical systems often do. It has a distinct requirement 

design and model design phase, then coding and testing.  

The development process starts with creating an AUTOSAR model. The model describes 

the defined ports, parameters, per instance, memories, events, runnables, system and 

ECU configurations, and other metadata of the component.  

Next, the source code of the runnables can be written in native C code. After that, the 

testing phase can begin. Testing requires a testing environment, that can mock de 

behavior of the RTE, by making the developer able to set and check the values of ports, 

parameters, amongst others. This environment can easily be generated based on the 

AUTOSAR model, so only the source code of the tests has to be written. 
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Figure 2.10: The (simplified) development process of an AUTOSAR component 

After the testing phase is finished, the component is compiled and deployed to an ECU, 

where additional testing takes place. Additional code that is required to configure the 

ECU can also be generated from the model. 

The development process can be seen in Figure 2.10. It shows that both the model, and 

the test cases are derived from the requirements, the ECU and testing environments are 

generated from the AUTOSAR model, and both environments run the same source code. 
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3. CEGAR driven test generation in 

AUTOSAR components 

This chapter presents a method that combines formal verification and test generation. It 

also elaborates the algorithms and methods required for that, such as the test generation 

methods that use the formal representation acquired by the formal verification. This 

chapter also presents how it fits into the development process of an AUTOSAR 

component. 

3.1. Overview of approach 

In the real world, the cost of an algorithm is an imperative factor. The cost in this context 

consists of the time it needs to complete, and the computational power it requires. The 

budget allocated to determine the correctness of a software is always finite, and as a 

result, it needs to take the costs of every algorithm into account. 

Model checking is an approach that can formally decide whether a given requirement 

holds on a given model. Although the previous sentence is correct in terms of 

mathematics, it tends to fail in practical application. The phenomenon of state-space 

explosion causes the model checking algorithm to examine an enormous state-space, and 

even when using abstraction, the worst-case is to traverse the whole state-space. 

However, this will not work for software with potentially infinite state space. 

Having a finite budget, and an algorithm whose runtime cannot be predicted, a model 

checking algorithm rather have three different outputs in practice (Figure 3.1), in 

opposite to the two possible outputs in theory (Figure 2.2). The possible practical outputs 

are: 

 Correct, where the requirement provably holds. 

 Incorrect, where the requirement provably fails. 

 Undecided, when it cannot be determined under an assigned cost budget (and 

using the given algorithm), whether the requirement holds or not. 

However, if the result is undecided, the computations performed during the verification 

usually go to waste. The novelty of this approach that it saves the state-space 

representation of the verification and uses it to focus the test case generation.  
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Figure 3.1: The practical method of model checking 

The CEGAR algorithm introduced in Chapter 2.4 is a model checking algorithm that 

uses abstraction to handle state-space explosion. It takes a CFA as its input, where the 

model is the CFA itself, and the requirement is that no error locations are reachable. It 

also has the three possible outputs mentioned above. In case the model is correct, it can 

yield a proof, in case it is incorrect, it can emit a counterexample. Additionally, if the 

algorithm is terminated early, and the result is undecided, the abstract state-space 

representation can be extracted in the form of an ARG. Later on, the test generation 

methods are using the ARG. 

If the result of CEGAR is undecided, additional measures have to be taken to ensure 

correctness. The obvious choice is testing, which can decide if the SUT contains errors. 

Tests can be generated using traditional test generation methods, however, using the 

abstract state-space representation left over by the model checker, more precise tests can 

be generated, that traverse the untraversed part of the state-space. 

Nevertheless, testing cannot prove that the SUT is correct. If no test in a test suite founds 

an error, then the answer in terms of correctness is still undecided. On the other hand, 

different coverage indicators can reflect on how well the test suite checks the state-space, 

which is an assurance of the quality and exhaustiveness of the testing. Safety-critical 

standards also require to achieve high coverage during testing. 

If the test suit finds an error in the SUT, then an example is given for which the program 

is faulty so that it can be fixed later. It is also worth to be noted that the counterexample 

yielded by the model checker can also be used to generate a test, which will obviously 

fail, but it makes it executable in the testing environment. 
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Figure 3.2: Combining CEGAR and test generation 

The method described above is depicted in Figure 3.2. The CEGAR algorithm has three 

possible outputs. If the verification cannot succeed, the test generation method generates 

a test suite from the abstract state-space representation of the verifier. On the other hand, 

if the result is incorrect, the test generation method generated a simple test case based on 

the counterexample, that shows the error. While executing the test suite, either an error 

is found, or coverage is calculated at the end. 

The traditional approach of AUTOSAR component development requires the developers 

to write test cases by hand. However, when using the method described above, the test 

cases can be generated automatically after the formal verification. Moreover, if the 

program is incorrect, and either testing or the formal verification provides a 

counterexample, a test case can be derived from it, that the testing environment can 

execute to show the fault. 
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To support formal verification, another environment needs to be developed that provides 

an interface to the formal verification tool, and mocks the behavior of the RTE so that a 

formal method could verify the component in question for a given requirement, which 

also needs to be formalized. Figure 3.3 describes the AUTOSAR component 

development methodology that includes formal verification as well. The requirements 

for the formal method come from the requirements of the component, while the test suite 

of the testing environment is the result of the test generation if the model checker did not 

yield correct. 

 

Figure 3.3: The improved methodology of AUTOSAR component development 

3.2. Application of the CEGAR algorithm 

This section details how the CEGAR algorithm is used to generate test cases. First, it is 

modified to terminate if given conditions hold, then the information is extracted from the 

abstract state-space representation it has built. 
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3.2.1. Terminating the CEGAR loop 

As the time required for the termination of a model checking algorithm is not predictable, 

the algorithm needs to be stopped in a state where it produces a consistent state-space 

representation. 

1. Abstractor(𝐶𝐹𝐴, 𝑃, 𝑇𝐸𝑅𝑀): 

2.   𝐴𝑅𝐺 ∶= ARG with initial location 

3.   FOREVER:  

4.     𝑠 ∈ {incomplete nodes of 𝐴𝑅𝐺} 

5.     IF ∄𝑠 THEN: 

6.        ← CORRECT 

7.     ELSE IF ∃𝑠 and 𝑠 is an error location THEN: 

8.        ← COUNTEREXAMPLE(route from initial location to 𝑠) 

9.     ELSE IF 𝑇𝐸𝑅𝑀(𝐴𝑅𝐺) THEN: 

10.        ← UNDECIDED(𝐴𝑅𝐺) 

11.     ELSE: 

12.       IF ∃𝑟 ∈ {nodes of 𝐴𝑅𝐺}: 𝑟 covers 𝑠 THEN: 

13.         cover 𝑠 with 𝑟 

14.       ELSE: 

15.         expand 𝑠 

Listing 3.1: The modified CEGAR algorithm 

The CEGAR algorithm terminates in two cases: either the abstractor builds an abstract 

state-space representation that cannot be expanded further and has no abstract error-state, 

or the refiner proves that an abstract counterexample is feasible. However, to terminate 

the algorithm before either happens, it needs to be modified accordingly. 

The algorithm of the abstractor part of the CEGAR loop does computationally-heavy 

operations while it builds the abstract state-space. Moreover, it contains a cycle, which 

repeats itself while either all the nodes in the built ARG are complete, or an abstract 

error-state is encountered. However, neither of the previous conditions are predictable, 

in terms of how much iteration a cycle needs to do so.  

Let us introduce a third condition, which upon being true, exits the cycle of the abstractor, 

and terminates the CEGAR algorithm with undecided as a result. This third condition 

should be a predicate function that takes the ARG as a parameter and returns true if the 

algorithm should terminate, as any information about the state-space representation can 
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be extracted from the ARG. The modified version of the algorithm can be seen in Listing 

3.1. 

3.2.2. Extracting information from an ARG 

In case, the result of the CEGAR algorithm is undecided, it yields the ARG, as the state 

space representation. Information can be extracted from it that can be useful when 

generating test cases. The goal of the generated test cases is to find errors in the program 

by navigating through an error-state. 

Nodes of an ARG 

Unreachable Reachable 

Complete Incomplete 

Table 3.1: The different types of nodes in an ARG 

In an ARG, each node is reachable or unreachable. If a node is unreachable, it means that 

there are no such input values, so the execution path goes through an unreachable node. 

The presence of unreachable nodes in an ARG is the result of using abstraction, as it 

overapproximates the reachable state-space. For example, abstract error-states are only 

reachable if the program is incorrect. As no execution goes through unreachable nodes, 

they can be removed from the ARG.  

If a node is reachable, it is safe to assume, that it is not an abstract error-state, because if 

it were, the refiner would have concretized it, and it would have led to an incorrect 

termination of CEGAR. If a node is reachable, it can be either complete or incomplete. 

Concerning the reachability of error-states from them, a complete node is either: 

 Expanded: in this case, every error-state reachable from this node is reachable 

through one of its children; or 

 Covered: in this case, the set of the reachable states from this node is a subset of 

the set of reachable states from another node; it follows, that all error-states 

reachable from this node are reachable from the other node. 

It leads to the conclusion that in terms of reachability of error-states, no complete nodes 

need to be examined, as every reachable error-state can be reached from another node as 

well. 

The only remaining nodes are the incomplete nodes. The node is incomplete because the 

CEGAR algorithm was terminated before it could either expand or cover them. In other 

words, these have not yet been traversed. As a result, they act as an entry point to the 
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untraversed part of the state-space, every state and error-state of the state-space are 

reachable through one of the incomplete nodes. 

 

Figure 3.4: Part of an Abstract Reachability Graph 

Additional information can be extracted from the ARG. The edges in an ARG describe 

operations, and the labels contain information about the already traversed state-space. 

Example 3.1: In Figure 3.4, an ARG can be seen. Only one node, 𝑙𝑒 is unreachable 

(as (𝑦 > 0) ∧ (𝑦 < 0) →⊥). The rest of the nodes are reachable. The nodes 𝑙1, 𝑙2 and  

𝑙3 are complete as all of them are expanded. The remaining nodes, 𝑙4 and 𝑙5 (denoted 

by a grey background) are incomplete, because they are neither expanded nor 

covered. 

3.3. Test generation 

This chapter presents the novel test generation approach introduced in the paper. It starts 

with symbolic execution, then applies black box testing techniques, such as boundary 

value analysis, and checks for variable overflows in the program. 
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[𝑦 < 0] 
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3.3.1. Symbolic execution of the abstract state-space 

representation 

When CEGAR cannot verify the requirement and terminates early, abstract state-space 

representation can be extracted from it. This ARG describes the already traversed part of 

the state-space and denotes the doorways to the untraversed part. It follows that the start 

of every possible path the program execution might take is described in the ARG. 

The goal of symbolic execution is to traverse all possible execution paths in the program. 

The main issue is that because of the path-explosion, it is usually impossible to generate 

a test for every path under a finite budget and time. However, the abstract state-space 

yielded by the formal method has finite size and eliminates the branches as well, so path-

explosion does not occur. 

The ARG excluding the covering edges is a tree, in which the path from the root of the 

tree (the initial location) to one of the leaves describes a unique path of execution. The 

number of these paths can be reduced if those are excluded that traverse through an 

unreachable node, or end in a complete node. Paths ending in complete nodes can be 

eliminated because no error-state is reachable from them that is not reachable from at 

least another node, and the task of testing is to find errors. 

 

Figure 3.5: Symbolic execution of a path excerpt 

It follows that only those paths should be focused on when generating tests that end in 

an incomplete node. A path from the root to an incomplete node is a series of nodes and 

transitions, which contain operations. A symbolic state (𝛿) and a path constraint (𝜋) must 

be maintained to apply symbolic execution. The symbolic state requires each variable 

always to have an associated symbolic value, which is used in the expressions. 

Starting symbolic execution, 𝛿 = {}, 𝜋 = ⊤.  Given two adjacent nodes, 𝑛𝑖 and 𝑛𝑗 , and 

operation 𝑜𝑝 between them, the algorithm is: 

 For every label 𝐿 of 𝑛𝑖, and for every variable 𝑣 in 𝐿, 𝑣 must be substituted with 

𝛿(𝑣). 

𝑙1, 𝑦 > 0 

𝑙2, 𝑦 > 0, 𝑥 = 1 

ℎ𝑎𝑣𝑜𝑐 𝑥 

[𝑥 = 0] 

𝑥 ≔ 𝑥 + 1 

𝑙1, 𝑦1 > 0 

𝑙2, 𝑦1 > 0, 𝑥2 = 1 

ℎ𝑎𝑣𝑜𝑐 𝑥1 

[𝑥1 = 0] 

𝑥2 ≔ 𝑥1 + 1 
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 If 𝑜𝑝 is a deterministic assignment 𝑥 ≔ 𝑒𝑥𝑝𝑟, different rules apply for the left 

and the right-hand side: 

o Every variable 𝑣 in 𝑒𝑥𝑝𝑟 side must be substituted with 𝛿(𝑣), leading to 

𝑒𝑥𝑝𝑟′. 

o The variable 𝑥 on the left-hand side must be replaced by a new symbolic 

value that has never been used before, and the symbolic state updated 

accordingly, so 𝛿(𝑥) = 𝑥𝑖, where 𝑥𝑖 has never been used before. 

o 𝜋′ = 𝜋 ∧ (𝑥𝑖 = 𝑒𝑥𝑝𝑟′) 

 If 𝑜𝑝 is a non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then 𝑥 must be replaced by a 

new symbolic value that has never been used before, and the symbolic state 

updated accordingly, so 𝛿(𝑥) = 𝑥𝑖, where 𝑥𝑖 has never been used before. 

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then for every variable 𝑣 in 𝑐𝑜𝑛𝑑, 𝑣 must be substituted 

with 𝛿(𝑣), leading to 𝑐𝑜𝑛𝑑′. Also 𝜋′ = 𝜋 ∧ 𝑐𝑜𝑛𝑑′. 

Example 3.2: An example of the algorithm described above can be seen in Figure 

3.5. The left-hand side depicts a path, while the right-hand side depicts the same path 

but with the variables substituted. 

In the end, the path constraint is a first-order formula, that can be fed to an SMT-solver, 

which will yield a model. The result cannot be unsatisfiable, as only reachable nodes are 

part of the path. The values of the non-deterministic assignments or inputs can be 

extracted from the model, and based on them, a test case can be generated that executes 

the exact path the path constraint describes. The method above can be repeated for all 

paths, resulting in the test suite. 

3.3.2. Robustness test generation for the untraversed 

state-space 

The robustness of a program is its ability to handle errors during execution. It contains 

the ability to cope with erroneous or unexpected inputs or generally a wide range of 

inputs. There are multiple methods that support robustness testing, such as equivalence 

partitioning and boundary value analysis. 

When using equivalence partitions, the domain of every input variable is split into 

multiple partitions. A test case takes a partition for each input variable and chooses a 

value from them. When boundary value analysis is applied, the values taken from the 

partitions are systematically the MIN-, MIN, MIN+, NOM, MAX-, MAX, MAX+ 

values. 
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The untraversed part of the state-space can be thought of as a black box, whose input is 

modifiable, and whose output is observable, but its inner workings are not transparent. It 

follows that black box testing techniques can be applied. Black box techniques require a 

specification, which should be the specification of the program refined by the data 

gathered during the symbolic execution. 

1. RobustnessTesting(𝐴𝑅𝐺): 

2.   𝑇 ≔ {} 

3. FORALL 𝑃 ∈ {possible combinations of equivalence 

partitions} DO: 

4.     FORALL 𝑛 ∈ {incomplete nodes of 𝐴𝑅𝐺} DO: 

5.       𝑃 ≔path from root to 𝑛 

6.       𝐶 ≔path constraint of 𝑃 

7.       FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO: 

8.         𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃) 

9.       FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO: 

10. 𝑀1 ≔ model of SMT-problem 𝐶 while optimizing for 

min(𝑣) 

11. 𝑀2 ≔ model of SMT-problem 𝐶 while optimizing for 

max(𝑣) 

12. 𝑇 ≔ 𝑇 ∪ {test cases based on 𝑀1 and 𝑀2} 

13.   ⟵ 𝑇 

Listing 3.2: The algorithm generating test cases with boundary value analysis 

Taking a symbolic executed path, the end of the path denotes a doorway into the 

untraversed state-space. The untraversed state-space has two kinds of input values: first, 

the non-deterministic assignments inside, second the variables that have value in the 

doorway, the so-called entry-variables. 

However, the entry-variables are not input variables of the program, only of the black 

box, so the specification of the program does not contain information regarding them. To 

calculate their boundary, the symbolic execution algorithm should be modified. The 

modified algorithm is depicted in Listing 3.2. 

First, the path constraint should be calculated, as described in the previous chapter. Then 

information about the equivalence partitions should be inserted. Based on the domain of 

𝑥 in a partition, for which non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥 is present on the path, 

and the corresponding symbolic value is 𝛿(𝑥) = 𝑥1: 

 If 𝐷𝑥 = [𝑎; 𝑏], then 𝜋′ = 𝜋 ∧ (𝑎 ≤ 𝑥1) ∧ (𝑥1 ≤ 𝑏). 
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 If 𝐷𝑥 = ]𝑎; 𝑏[, then 𝜋′ = 𝜋 ∧ (𝑎 < 𝑥1) ∧ (𝑥1 < 𝑏).  

The steps above should be repeated for every non-deterministic assignment. Then, as 

boundary value analysis requires one variable to be on minimal or maximal value, while 

others are on nominal, one of the variables must be chosen. Following, the SMT-problem 

must be fed to an SMT-solver with an optimization constraint. This constraint should 

specify that the given variable should have a minimal or maximal value. As a result, such 

a model is returned from the set of possible models for the SMT-problem, in which the 

value of that particular variable is minimal or maximal, while the other variables have a 

possible (not necessarily nominal) value. 

The method above should be repeated for all the non-deterministic variables 

systematically, resulting in a set of test cases. 

 

Figure 3.6: Path in an ARG 

These test cases differ from a traditional boundary value analysis presented test suite 

because they are more precise. First, the formal method proves that the program is correct 

for some part of the domain while undecided for another part. The path constraint 

removes the correct part from the possible values, so in the resulting model, the minimal 

value is the lowest possible value, the untraversed state-space is reachable with on that 

path, while the maximal value is the highest possible. 

Example 3.3: In Figure 3.6, there is a path in an ARG. The path goes from the initial 

location 𝑙1 to the incomplete node 𝑙3  The domain of both its input variables is [0; 15], 

so a 4-bit unsigned integer, and there are no equivalence partitions. 

The path constraint derived from the path is 𝜋 = (𝑥1 > 0) ∧ (𝑦1 > 0) ∧ (𝑧1 = 𝑥1 +

𝑦1) ∧ (𝑧1 ≤ 5). The variables in non-deterministic assignments are 𝑥1 and 𝑦1. Adding 

the domain of variables to the path constraints yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧

(𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). With two input variables, four optimization 

constraints can be formed: 

𝑙2, 𝑥 > 0, 𝑦 > 0 

𝑙3, 𝑧 ≤ 5 

ℎ𝑎𝑣𝑜𝑐 𝑥 

ℎ𝑎𝑣𝑜𝑐 𝑦 

𝑧 ≔ 𝑥 + 𝑦 

[𝑧 ≤ 5] 

𝑙1 



3. CEGAR driven test generation in AUTOSAR components 

 - 44 - 

 𝑚𝑖𝑛(𝑥1): one of the models is {(𝑥1 = 1), (𝑦1 = 1)} 

 𝑚𝑎𝑥(𝑥1): the model is {(𝑥1 = 4), (𝑦1 = 1)} 

 𝑚𝑖𝑛(𝑦1): one of the models is {(𝑥1 = 1), (𝑦1 = 1)} 

 𝑚𝑎𝑥(𝑦1): the model is {(𝑥1 = 1), (𝑦1 = 4)} 

Based on this information, four test cases can be generated, which are the four models 

listed above. 

3.3.3. Variable overflow in the state-space 

Variable overflow is an exciting topic in formal verification because the SMT-solvers 

usually work with mathematical variables with infinite domains. On the other hand, the 

variables in programs are represented on a finite number of bits, so their domain is also 

finite. 

There are multiple methods to circumvent this phenomenon, for example: 

 Define every arithmetical operation as an operation over bit-vectors. Although it 

works, it has a significant drawback on the performance. 

 Define every arithmetical operation as a modulo operation. This method has a 

lesser drawback on the performance; however, this way, it cannot be determined 

later that overflow occurred. 

 Test for overflow after verification. 

Although testing overflow does not prove its absence, this paper uses this approach, 

because AUTOSAR development requires compliance with safety-critical standards, 

such as MISRA C, and they always forbid using code that overflows. This rule eliminates 

option two from the previous list, while the significant performance loss the first, leaving 

only the third approach. 

The overflow might occur in two situations: either in the traversed or in the untraversed 

part, which requires different approaches. Overflow always occurs as a result of 

arithmetical operations. 

If the overflow happens in the traversed part, it means that the result of an arithmetic 

variable is outside the domain of the target variable. Fortunately, this can easily be tested 

by an SMT-solver, as done by the algorithm in Listing 3.3. 
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1. OverflowInTraversed(𝐴𝑅𝐺): 

2.   𝑇 ≔ {} 

3. FORALL 𝑒 ∈ {edges of 𝐴𝑅𝐺 containing arithmetic operation} 

DO: 

4.     𝑥 ≔target variable of arithmetic operation in 𝑒 

5.     𝑃 ≔path from root to destination of 𝑒 

6.     𝐶 ≔path constraint of 𝑃 

7.     FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO: 

8.       𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃) 

9.     𝐶1 ≔ 𝐶 ∧ (𝛿(𝑥) > maximum of its domain) 

10.     IF SMT-problem 𝐶1 is satisfiable THEN: 

11.       ← OVERFLOW 

12.     𝐶2 ≔ 𝐶 ∧ (𝛿(𝑥) < minimum of its domain)  

13.     IF SMT-problem 𝐶2 is satisfiable THEN: 

14.       ← OVERFLOW 

15.   ⟵ NO OVERFLOW 

Listing 3.3: The algorithm checking overflow in traversed part if the state-space 

First, every operation must be located that uses arithmetic operation. These are the 

variables where overflow might occur. For each operation, a path must be generated that 

leads from the root to the destination of that operation. Assignments on this path could 

cause an overflow. Then the path constraint should be calculated, and the domain of 

every non-deterministic variable should be added to the formula, similar to the method 

in the previous section. 

In the next step, a clause must be added to the path constraint that states that the value of 

the variable (can be extracted from the symbolic state) is greater than the top part of its 

domain. This modified SMT-formula can be only true, if the value of that variable is 

outside of its domain, so an overflow occurs. This check can be repeated for a lower 

bound check, as well. 

The other case, when the overflow is in the untraversed part, is slightly more complicated 

than the first scenario. However, it is worth to be noted, that overflow usually occurs 

when one or more variables are near their upper limit and do arithmetic operations. Based 

on this observation, a method very similar to the one described in the previous section 

can be designed to test the untraversed part for overflows. 
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1. OverflowInUntraversed(𝐴𝑅𝐺): 

2.   𝑇 ≔ {} 

3.   FORALL 𝑛 ∈ {incomplete nodes of 𝐴𝑅𝐺} DO: 

4.     𝑃 ≔path from root to 𝑛 

5.     𝐶 ≔path constraint of 𝑃 

6.     FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO: 

7.       𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃) 

8.     FORALL 𝑣 ∈ {variables valid in 𝑛} DO: 

9. 𝑀1 ≔ model of SMT-problem 𝐶 while optimizing for 

min(𝑣) 

10. 𝑀2 ≔ model of SMT-problem 𝐶 while optimizing for 

max(𝑣) 

11.       𝑇 ≔ 𝑇 ∪ {test cases based on 𝑀1 and 𝑀2} 

12.   ⟵ 𝑇 

Listing 3.4: The algorithm generating test cases to test overflow in untraversed part 

The algorithm (described in Listing 3.4) should navigate to each incomplete node, as in 

the previous case. Also, the path constrained must be constructed, and the domain 

information should be added. However, the optimization constraint should be the 

minimization and maximization of each variable that is valid in the current incomplete 

node. This way, the variables at the entry of the untraversed state-space have their lowest 

or highest possible value and are likely to overflow if they indeed do. 

 

Figure 3.7: Two paths of an ARG 

Example 3.4: On both sides of Figure 3.7, there is a path in an ARG. The paths go 

from the initial location 𝑙1 to the incomplete node 𝑙3.  

𝑙2, 𝑥 > 0, 𝑦 > 0 

𝑙3, 𝑧 ≤ 5 

ℎ𝑎𝑣𝑜𝑐 𝑥 

ℎ𝑎𝑣𝑜𝑐 𝑦 

𝑧 ≔ 𝑥 + 𝑦 

[𝑧 ≤ 5] 

𝑙1 

𝑙2, 𝑥 > 0, 𝑦 > 0 

𝑙3, 𝑧 > 5 

ℎ𝑎𝑣𝑜𝑐 𝑥 

ℎ𝑎𝑣𝑜𝑐 𝑦 

𝑧 ≔ 𝑥 + 𝑦 

[𝑧 > 5] 

𝑙1 
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The domain of both its input variables and 𝑧 is [0; 15], so a 4-bit unsigned integer. 

The path constraint derived from the left-hand side of the path is 𝜋 = (𝑥1 > 0) ∧

(𝑦1 > 0) ∧ (𝑧1 = 𝑥1 + 𝑦1) ∧ (𝑧1 > 5). The variables in non-deterministic 

assignments are 𝑥1 and 𝑦1. Adding the domain of variables to the path constraints 

yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧ (𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). Assuming that 𝑧 is 

under- or overflowing, the SMT-solver is fed with the following problems: 

 𝜋′ ∧ (𝑧1 < 0): it is unsatisfiable, so 𝑧 does not underflow 

 𝜋′ ∧ (𝑧1 > 15): it is satisfiable, so 𝑧 overflows (for inputs {(𝑥1 = 15), (𝑦1 = 15)}) 

Based on this information, one test case can be generated, which causes the program 

to overflow. 

On the other hand, the path constraint derived from the right-hand side of the path is 

𝜋 = (𝑥1 > 0) ∧ (𝑦1 > 0) ∧ (𝑧1 = 𝑥1 + 𝑦1) ∧ (𝑧1 ≤ 5). The variables in non-

deterministic assignments are 𝑥1 and 𝑦1. Adding the domain of variables to the path 

constraints yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧ (𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). Aiming 

for the overflow of  𝑧, the SMT-solver is fed with the path constraint, with the following 

optimization constraint: 

 𝑚𝑖𝑛 (𝑧1): the model is {(𝑥1 = 1), (𝑦1 = 1)} 

 𝑚𝑎𝑥 (𝑧1): one of the possible models are {(𝑥1 = 3), (𝑦1 = 2)} 

Based on this information, two test cases can be generated, which might lead to 

overflow. 

3.4. Integrating formal verification in the 

AUTOSAR development process 

AUTOSAR already has development environments to build and test components. To 

develop a verification environment, first, a verification environment must be generated. 

This environment must mock the behavior of the RTE and model the behavior of the 

component as well. After the verification and test generation is finished, the test cases 

emitted by the test generator must be transformed so that they can be fed to the testing 

environment. 
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Figure 3.8: Integrating verification in the AUTOSAR methodology 

The methodology described above can be observed in Figure 3.8. It depicts three 

different operations. First, the operation that generates the testing environment from the 

model, which is assumed to be developed and fully functional. Second, the operation that 

generates the verification environment from the model. Finally, the operation that 

transforms a test case emitted by the verification environment to fit the needs of the 

testing environment. 

3.4.1. Modeling the behavior of a component 

An AUTOSAR component runs on a single ECU, which has implications. It is single-

threaded, so no two operations using the same memory can overlap in time. The RTE 

also buffers all the messages, requests to the component, so every message is handled 

when all other operations are finished. It leads to the realization that an AUTOSAR 

component can be modeled as a statechart with only one state. The structure of the 

statechart is: 

 It has only one state, which denotes that the component is waiting for an input or 

an event. 

 The initial location and the state are connected by a transition, whose action 

initializes the parameters and per instance memories of the component. 

AUTOSAR 

model 

Component 

source code 

Testing  

environment 

Test case 

counterex. 

Test case 1 
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Verification  

environment 

Req. 1 

Req. 2 

...  
Test case 2 
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 For every input sender-receiver port, a loop transition is created, that reads the 

value of the port. These reads are non-deterministic assignments, as there is no 

information on what the result will be. 

 For every providing client-server port, a loop transition is created, that reads the 

value of the input parameters, fires the corresponding event and runnable, and 

writes the value of the output parameters. 

 For every timed event, a loop transition is created, that fires the corresponding 

runnable. 

This statechart can easily be transformed into a C code that interacts with the 

implementation of the component. 

3.4.2. Writing verifiable requirements 

To run verification, the requirements must be entered to the verifier as well. As it was 

described in earlier chapters, in case of software components, the easiest way to do so is 

to write assertions, and the requirement is that the assertions never fail. 

These assertions can be placed in the code by the developer, similarly to how fault 

injection is usually handled [17]. 

3.4.3. Generating the verification environment 

The verification environment mocks the behavior of the RTE and the behavior of the 

component. To mock the RTE, an implementation must be generated that has the same 

standard interface that is required, but its inner workings are compatible with the 

verification tool.  

First of all, a method should be devised for the RTE. The component using the mock-

RTE should be able to read from ports and write to ports, should be able to read parameter 

data, should be able to read and write per instance memories, and the component must 

handle if the RTE fires events. 

The AUTOSAR standard fixes how the RTE should interface to the source code of the 

component: it specifies functions for each scenario, where the name of the function can 

be derived from the name of the component and the port; and the parameters of the 

functions are specified by the data that is passed in that scenario. This fixed interface is 

called the contract of the component and can be generated from the AUTOSAR model. 

The implementation of the contract consists of function definitions, which can also be 

generated. In case of a port, the corresponding functions should provide persistent storage 

of the value of the port, and the functions should be able to read and write the data. The 
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same is true for the per instance memories. However, in case of events, the 

implementation should fire the runnables it is bound to. 

Example 3.5: Given a component with name SampleComponent. It has: 

 Input sender-receiver port named InPort, with payload named inData with type 

dInData 

 Output sender-receiver port named OutPor, with payload named outData with type 

dOutData 

 Runnable named SampleRunnable 

 Timed event named SampleEvent, which fires SampleRunnable 

The contract and the RTE has the following functions defined: 

 Std_ReturnType 

Rte_Read_SampleComponent_InPort_inData(dInData* data) 

 Std_ReturnType 

Rte_Read_SampleComponent_OutPort_outData(dOutData const* 

data) 

 void SampleComponent_SampleRunnable(void) 

 void SampleComponent_SampleEvent(void) 

3.4.4. Transforming test cases 

The test cases outputted by the verification environment must be transformed so they can 

be fed to the testing environment. While the input of the transformation heavily depends 

on the formal model and the structure of the generated test cases, the output heavily 

depends on the format required by the testing environment. 

Fortunately, the testing environment uses the contract of the model as well to provide 

mocking functionality of the RTE, so the assignments of the test case have to be matched 

to function parameters and the order in which the functions are called. 

Another exciting aspect is the coverage of the test cases. Although the testing 

environment can measure the coverage of the test cases, some part of the code will not 

be covered. The reason is that it has been proved to be correct by the formal verification, 

thereby no test case was targeting that part of the state-space. There are different 

approaches as to how to measure coverage during formal verification [18] [19]. The 

result of one such metrics can be merged by the coverage of testing, resulting in a unified 

coverage indicator, but this process is not the target of investigation of this paper. 
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3.5. Related work 

The algorithm proposed in this chapter can be approached from different perspectives. 

First, it is an attempt to combine formal verification with test generation, and second, it 

is an attempt to apply formal verification tools for automotive software. 

This main idea of this paper idea is based on the author’s Scientific Students’ Association 

Report in 2018 [20]. That approach presented a working solution for combining formal 

verification and test generation. Compared to that approach, this paper presents different, 

more precise test generation techniques, as well as its integration with AUTOSAR. 

One of the attempts by Maria Christakis et al. in 2016 [21] tried guiding dynamic 

symbolic execution towards unverified program paths and achieved impressive results. 

In contrast, this paper uses symbolic execution rather than dynamic symbolic execution, 

as the latter often requires special instrumentation. Moreover, that approach did not focus 

on the type of verification algorithm. 

Another approach was published by Mike Czech et al. in 2015 [22] that combined formal 

verification with testing. Their approach tried running a formal method on a program 

than tried to generate another program, that only represented the unverified part of the 

state-space. Later on, the newly generated software was fed to test generation tools. In 

contrast to that approach, this paper does not generate intermediate software, as it 

possibly could lead to losing information about the state-space. Instead, it uses the state-

space representation directly to generate tests, requiring new kinds of test generation 

methods. 

In terms of verifying automotive software, there are numerous attempts [23] [24] [25]. 

The main drawbacks mentioned by these attempts is that an automotive system is a 

massively distributed, concurrent system, which causes significant difficulties during 

verification. However, the approach of this paper significantly simplifies the underlying 

problem, as it tries to verify only one component.  
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4. Implementation 

This chapter presents an implementation based on the approach introduced earlier in this 

paper. It uses the open-source Theta framework as the base of its functionality, while it 

uses the LLVM framework to provide a frontend for C programs. 

4.1. Theta 

Theta [26] is a model checking framework developed and maintained by the Fault-

Tolerant Systems Research Group of Budapest University of Technology and 

Economics. It is a highly modular and configurable framework and provides abstraction 

refinement-based algorithms for reachability analysis of multiple formalisms. Theta 

provides an architecture that enables the definition of formal input formalisms, that might 

have a higher level frontend, and applies an abstraction-based, highly configurable model 

checking algorithms on them. 

The formalisms in Theta model real-life systems, for example, different kinds of 

software, hardware, or communication protocols. These are low-level, first-order logic, 

and graph-based representations of their respected real-life counterpart. These 

formalisms tend to have a high-level language front-end, which maps a user-friendly text 

or model-based language to the low-level formalism. Theta currently supports symbolic 

transition systems (STS) [27], control flow automata (CFA) [5], and timed automata 

(XTA) [28]. 

Theta provides an analysis back-end that provides a highly configurable CEGAR 

algorithm. It also defines various abstraction domains, abstraction and refinement 

strategies, different ART-building methods, and algorithms based on these components. 

The back-end is general, as most of its components work for all formalisms. However, it 

requires the formalisms to provide an interpreter that performs the formalism specific 

steps of the model checking procedure. 

Finally, Theta defines an interface to an SMT-solver, as most of its components and 

algorithms rely on the satisfiability of first-order formulas. The solver interface supports 

various solving or interpolation techniques. Theta also provides a binding to the Z3 SMT-

solver, which implements this interface. 

The overview architecture of Theta can be seen in Figure 4.1. The CEGAR algorithm 

can be initialized with multiple parameters that modify its behavior. The chosen 

formalisms define the interpreter that the abstractor uses to build the abstract state-space. 
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Moreover, the interpreters and the refiner are using the functionality of the SMT-solver. 

The abstract state-space is built in the form of an abstract reachability graph, and it can 

be extracted after the verification ended, making it ideal for the implementation of the 

approach introduced in the previous chapter. 

 

Figure 4.1: The overview architecture of Theta 
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One of the critical aspects of this implementation that the source code of an AUTOSAR 

component needs to be transpiled to a CFA before the formal verification or the test 
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multiple source files (component source, helper functions, main function), so this feature 

is heavily used. 

Another non-trivial feature is the support of pointers. As of today, theta-llvm only 

supports pointers to primitive values but not to composites. As it was demonstrated 

earlier, the AUTOSAR ports and parameters are mapped to functions that take pointers 

to composite data structures as their arguments. These composite structures can be 

flattened to primitive values, making theta-llvm able to cope with them.  

4.3. CEGAR based test generation framework 

The core of the implementation is a configurable and extensible framework that executes 

the approach described in Figure 3.2. It is built on top of Theta and uses the algorithms 

and formalisms defined in it. 

The framework provides two environments: 

 The verification environment, that when given a CFA, executes a CEGAR 

algorithm on it, and then generates formal test cases based on the result. 

 The testing environment, that when given a formal test case, it first concretizes it 

and executes it.  

4.3.1. The verification environment 

The verification environment aims to verify a CFA representation of a program, and 

when that fails, it generates test cases based on the abstract state-space representation 

extracted from the formal method. The overview of the verification environment can be 

seen in Figure 4.2.  

The environment takes a CFA provider and configuration parameters as input. Then the 

CFA provider produces a CFA, and the CEGAR algorithm in Theta is executed on it. 

The configuration parameters contain the information about the abstraction domain, the 

abstraction or refinement strategies, and contain the conditions upon which the CEGAR 

algorithm terminates early yielding an undecided result. 

The Theta framework was modified to include termination conditions in the CEGAR 

loop. Four termination conditions were implemented: 

 Never: This condition does not terminate the algorithm early; it only stops when 

the verification succeeds. 

 Max 𝑁 nodes: This condition allows the expanding of nodes in the abstract 

reachability graph as long as the total number of nodes in the graph is at most 𝑁. 
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 Max 𝑁 depth: This condition allows the expanding of nodes in the abstract 

reachability graph as long as no routes between the root of the graph, and a leaf 

is longer than 𝑁. 

 Max 𝑇 seconds: This condition allows the expanding of nodes in the abstract 

reachability graph until 𝑇 seconds elapses.  

Moreover, two meta-conditions were implemented to allow the arbitrary combination of 

the terminating conditions above: 

 Any of these: This condition gets one or more termination conditions as 

parameter, and allows the expanding of the reachability graph until one of its 

parameters signal the algorithm to terminate. 

 All of these: This condition gets one or more termination conditions as 

parameter, and allows the expanding of the reachability graph until all of its 

parameters signal the algorithm to terminate. 

 

Figure 4.2: The overview architecture of the verification environment 
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After the CEGAR algorithm terminates, test generation is performed conditionally, based 

on the correctness. The result of the test generators is a list of test cases. A test case on 

this level is a map that maps the input variables of the program to a concrete value. 

When the CEGAR algorithm terminates, if the result is incorrect, the counterexample is 

extracted and passed to an incorrect test generator. The counterexample is a path in the 

state-space of the program, with the values of the variables on the path bound to a 

concrete value. A test case can easily be generated from this path by collecting the values 

of the input variables. 

When the result is undecided after termination, multiple test generators are executed. 

These test generators take the abstract reachability graph extracted from the CEGAR 

algorithm and generate test cases based on it. Three test generation strategies were 

implemented: 

 Robustness testing: It generates test cases based on the technique described in 

Section 3.3.2. 

 Overflow testing of the untraversed state-space: It generates test cases based on 

the technique described in Section 3.3.3. 

 Overflow testing of the traversed state-space: It generates test cases based on the 

technique described in Section 3.3.3. 

These implementations required an SMT-solver that is capable of optimization 

constraints. Z3 is able to use them, however, Theta did not have an interface to call this 

part of Z3. The Theta framework was modified to include an interface that abstracts 

solvers with optimization constraints, and the Z3 binder was extended to implement this 

interface as well. 

The output of the verification environment is the result of the CEGAR algorithm and the 

list of the test cases generated by the executed test generators. 

4.3.2. The testing environment 

The goal of the testing environment is to execute the tests generated by the verification 

environment. The overview of the testing environment can be seen in Figure 4.3. 

The environment takes the CFA provider and the list of generated test cases as inputs. 

The first step is to concretize the test cases to make them executable, then execute them 

to evaluate the result. 

The verification environment results in formal test cases that define the designated value 

of each input variable. The goal of the test concretizers is to map these formal test cases 

to a language that is able to test the program. To do so, information about the CFA, and 
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information about the CFA generation process might be extracted from the CFA 

provider. This process depends on a concrete CFA provider, as it might contain language-

specific information. 

 

Figure 4.3: The overview architecture of the testing environment 
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An overview of the LLVM-based testing environment can be seen in Figure 4.4. The 

result of the test concretization process is a C file that can be linked against the rest of 

the source code, making an executable. 

 

Figure 4.4: The LLVM-based testing environment 
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utilized by the implementation due to difficulties concretizing the test cases in this 

scenario. 

There are certain features that must be present in the CFA. First, the nondeterministic 

assignments need to appear in the source code, and the error locations as well. To do so, 

theta-llvm also defines three special functions: 

 int __theta_nondet_int(): It denotes a non-deterministic assignment of a 

32-bit integer. 

 void __theta_assert(bool): It denotes an assertion. The failure of an 

assertion is mapped to an error location in the CFA. 

 void __theta_exit(int): It denotes an exit point in the program. 

These functions should be used in the source code: all non-deterministic assignments 

must be mapped using __theta_nondet_int(), and the developer should write the 

assertions using __theta_assert(bool). 

4.4.2. Concretizing the test cases 

To execute the C source, an implementation must be supplied for all undefined functions. 

The undefined functions are the three functions theta-llvm requires, and their 

implementation should be the following: 

 int __theta_nondet_int(): The implementation should return the results 

of non-deterministic assignments in the correct order. This behavior can be 

achieved by a static array that contains the values in order. 

 void __theta_assert(bool): If its parameter evaluates to false, it should 

signal a failing test. 

 void __theta_exit(int): It should terminate the test, and signal a 

successful test. 

This implementation only drives the test case to the doorway to the untraversed part; 

however, it does not specify what should happen if another non-deterministic value is 

required in the untraversed part. Since the main function uses an infinite cycle at its core, 

this scenario is bound to happen. Thereby the implementation provides random values if 

additional non-deterministic values are required until a certain number of requests are 

made, then terminates the test and marks it successful (unless there was a failing 

assertion). 

The output of the test concretizing process is a C file that can be linked against the rest 

of the source files to build an executable. 
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1. void __theta_exit(int n) { 

2.   exit(n); 

3. } 

4.  

5. void __theta_assert(bool b) { 

6.   if(!b) exit(INCORRECT); 

7. } 

8.  

9. int __theta_nondet_int() { 

10.   static int callNum = 0; 

11.   static int callMax = 2; 

12.   static int tests[] = { 

13.     1, 

14.     2, 

15.     0 

16.   }; 

17.   if(callNum == callMax) exit(UNKNOWN); 

18.   return tests[callNum++]; 

19. } 

Listing 4.1: Mapping a test case to C 

Example 4.1: An example for the concretizing process can be seen in Listing 4.1. In 

this case the program takes two inputs from the user on the path to the unverified 

state-space. 

The value of the first variable will be the return value of __theta_nondet_int() 

upon its first call, so 1. The value of the second variable will be the return value of 

__theta_nondet_int() upon its second call, so 2. Any subsequent calls to 

__theta_nondet_int() will terminate the test. In this case, the program yields the 

constant UNKNOWN as a return value. 

If an assertion fails during the execution of the test (__theta_assert), the program 

yields the constant INCORRECT as a return value, and the test is terminated. 

4.4.3. Executing the tests 

The output of the test concretizing process is a C file. The source C files can be accessed 

through the CFA provider, and an executable can be compiled and linked using these 

files. As all files are standard C files, the Clang compiler can compile and link it. After 

linking, an executable can be created and executed as a test case. 
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There are scenarios when variable overflow needs to be tested. The LLVM framework 

provides the Undefined Behavior Sanitizer (UBSan) [31], which is capable of capturing 

overflows. The executable must be compiled and linked using the UBSan as well, so the 

compilation process must be configurable. 

4.5. AUTOSAR frontend 

The implementation is also able to use AUTOSAR components as source, run formal 

verification on it, and generate test cases. The AUTOSAR environment chosen was 

AUTOSAR Architect, as a courtesy of thyssenkrupp. The verification and testing 

environment was chosen to be the LLVM frontend introduced earlier due to the 

limitations of the underlying tools. 

To be able to feed an AUTOSAR components to the LLVM frontend, additional sources 

need to be generated that model the component as a complete C program. This process 

consists of providing implementation for the contract. After generating these sources, the 

component can be compiled and linked, and be given as input to the LLVM frontend. 

4.5.1. Generating sources for verification 

Additional source code required by the verification process van be generated based on 

the AUTOSAR model. It contains information on the parameters, ports, per instance 

memories, events, and runnables of the component. Each parameter, port, and per 

instance memory has a type, and the type has an associated range info, which describes 

the domain of that value. 

AUTOSAR Architect represents the AUTOSAR model as an EMF model [32], and 

thereby it can be processed in an Eclipse environment using Java or Xtend. Based on 

that, the implementations of the contract can be generated easily. 

In terms of the C code, the persistent behavior of parameters, ports, and per instance 

memories is realized with global, static variables.  

Additionally, a main function must be generated, that mocks the behavior of the 

component as a statechart, and references the implementation through the contract. 
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1. /* Variable declarations */ 

2. dInData VAR_SampleComponent_InPort_InData; 

3. dOutData VAR_SampleComponent_OutPort_OutData; 

4. dParamData VAR_SampleComponent_SampleParameter; 

5.  

6. /* Event declarations */ 

7. extern void SampleComponent_SampleEvent(); 

8.  

9. int main(void) { 

10.   /* Initial values */ 

11.   VAR_SampleComponent_InPort_InData = 0; 

12.   VAR_SampleComponent_OutPort_OutData = 0; 

13.    

14.   /* Parameter values */ 

15. VAR_SampleComponent_SampleParameter = 

__theta_nondet_int(); 

16.    

17.   while(1) { 

18.     int event = __theta_nondet_int(); 

19.     switch(event) { 

20.       case 0: { 

21.         /* Input variables */ 

22. VAR_SampleComponent_InPort_InData = 

__theta_nondet_int(); 

23.         break; 

24.       } 

25.       case 1: { 

26.         /* Firing event */ 

27.         SampleComponent_SampleEvent(); 

28.         break; 

29.       } 

30.       default: 

31.         break; 

32.     } 

33.   } 

34. } 

Listing 4.2: A generated main function 

Example 4.2: An example of the result of the main function generation can be seen in 

Listing 4.2. The component in question (SampleComponent) has one input sender-

receiver port (InPort), one output sender-receiver port (OutPort), one parameter 
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(SampleParameter), and one timed event (SampleEvent), with an associated 

runnable. 

The core of the program is the infinite while cycle. Before that, all the values are 

initialized, and the parameters are assigned a non-deterministic value. 

In the cycle, first, a non-deterministic assignment decides which event occurs. In this 

case, there are only two possibilities: either the input port receives a new message, or 

the timed event is fired. 

If a new value is received, non-deterministic assignments model the new value. On the 

other hand, if the timed event is fired, the corresponding function is called. 

The assertions are placed in the source code of the runnable that the event invokes. 

The assertions should reference the static variables that store the data. For example, 

if the requirement is that the output port always has a value greater than 0, then the 

following assertion should be placed at the end of the runnable:  

assert(VAR_SampleComponent_OutPort_OutData > 0); 

4.6. Limitations of the implementation 

This implementation depends on multiple software components, which also have 

limitations. First of all, only a part of the AUTOSAR standard is supported, namely: 

 Sender-receiver ports 

 Client-server ports 

 Parameters 

 Per instance memories 

 Timed events 

 Client-server port bound events 

 Runnables 

The tool theta-llvm has its limitations as well: 

 It supports function invocations by inlining only, so recursion is not supported. 

 Only boolean and signed integer numbers are supported as primitive types (no 

floating-point numbers, unsigned integers). 

 Pointer arithmetic is not supported. 

 Bitwise operations are not supported. 

 Only pointers to primitive values are supported (no pointer to structs or unions). 

 No debugging information is preserved. 
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The second to last limitation has other consequences. As the contract uses pointers to 

structs whenever passing objects to functions, the transformation of test cases is not 

possible to the testing environment, because the structs had to be flattened, and replaced 

by only numeric fields, which violates the contract.  

Also, the last limitation is a severe hindrance as well, as it makes it impossible to 

transform the test cases properly, why the LLVM frontend was used instead. When the 

test generation tool emits the list of values to pass the program, the test case transformer 

cannot determine which value belongs to which parameter or port. 
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5. Evaluation 

This chapter presents the evaluation of the algorithms described in this paper. It is first 

evaluated with a case study, then on industrial code using the implementation described 

in the previous chapter. The industrial software was provided by thyssenkrupp 

Components Technology Hungary Kft. 

5.1. Case study 

This section presents a case study to showcase the test generation algorithms. It follows 

the process from a simple C program through generating the CFA and executing the test 

generation algorithms then concludes by concretizing the generated test cases.  

1. int main(void) { 

2.   int x = __theta_nondet_int(); 

3.   if(x > 0) { 

4.     int y = __theta_nondet_int(); 

5.     while(y > 0) { 

6.       int z = x + y; 

7.       if(z <= 5) { 

8.         y = 0; 

9.         z++; 

10.       } 

11.       else { 

12.         z--; 

13.       } 

14.       __theta_assert(z != 6); 

15.     } 

16.   } 

17.   else { 

18.     __theta_assert(x <= 0); 

19.   } 

20.   return 0; 

21. } 

Listing 5.1: An example C program 
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5.1.1. Providing the CFA 

An example C program is provided in Listing 5.1. It takes two integer inputs, 𝑥 ,and 𝑦. 

If 𝑥 is less then or equals to 0, then an assertion checks this criterion. This assertion 

obviously always passes (line 18). If it is greater than 0, then the value of 𝑦 will be the 

input value, and while 𝑦 is greater than 0, a cycle will iterate.  

 

Figure 5.1: The CFA of the example 
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In each iteration of the cycle, the sum of 𝑥 and 𝑦, 𝑧 is calculated. If 𝑧 is smaller than or 

equals 5, than 𝑦 will be 0 terminating the cycle, and the value of 𝑧 will be incremented. 

On the other hand, if 𝑧 is greater than 5, it will be decreased by one. The assertion on 

line 14 will fail if 𝑧 equals 6, which occurs if the sum of 𝑥 and 𝑦 is 5.  

Next, the CFA is generated from the C source. The generated CFA is in Figure 5.1. The 

error locations are denoted with 𝑙𝑒 while the locations 𝑙𝑓 represent the end of the program. 

The cycle is clearly observable (between 𝑙6 and 𝑙13), so is the different branches.  

 

Figure 5.2: The ARG of the example 
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as the route there states that 𝑥 ≤ 0, while the edge into that node states that 𝑥 > 0 which 

is a contradiction. Thereby this location can be removed from the graph, as it is 

unreachable. 

The expansion of the state-space also stops at locations 𝑙𝑓, as they have no children in 

the CFA. It follows that only 𝑙10 and 𝑙11 are nodes that are not expanded (nor covered), 

so they are the incomplete nodes of the abstract reachability graph, that will be used for 

test generation. 

5.1.3. Test generation 

First, the application of robustness testing is demonstrated on the path from 𝑙1 to 𝑙10. The 

path has two input variables. Each can be maximized and minimized, so 4 test cases will 

be generated. The value of the minimized, maximized variables will be minimal or 

maximal, while the value of all other variables will be an arbitrary value from their 

domain. The test cases are respectively: 

 min(𝑥) : 𝑥 = 1, 𝑦 = 1 

 max(𝑥) : 𝑥 = 4, 𝑦 = 1 

 min(𝑦) : 𝑥 = 1, 𝑦 = 1 

 max(𝑦) : 𝑥 = 1, 𝑦 = 4 

Out of these test cases the max(𝑥) and max (𝑦) test cases cause the assertion to fail.  

Next, the variable overflow testing in the untraversed state-space will be demonstrated 

on the path from 𝑙1 to 𝑙10. The variables existing at the unfinished 𝑙10 node are 𝑥, 𝑦, and 

𝑧. Each of them is minimized and maximized, so the generated test cases respectively:  

 min(𝑥) , max(𝑥) , min(𝑦) , max(𝑦) are the same as above 

 min(𝑧) : 𝑥 = 1, 𝑦 = 1 

 max(𝑧) : 𝑥 = 3, 𝑦 = 2 

Out of these test cases, the max (𝑥), max (𝑦), and max (𝑧) test cases cause error, however 

not because of overflow, instead because of failing the assertion. 

Finally, the overflow testing in the traversed state-space will be exhibited, however on 

the path from 𝑙1 to 𝑙11, taking the other branch at the end. The only nondeterministic 

assignment in the path is that of 𝑧, so its domain will be checked. 

As on this path, there is no constraint for the upper value of either variable, the input 

variables will take their maximal value during overflow checking. However, when 

calculating the sum of two maximal values (2 147 483  647 in case of a signed 32-bit 



5. Evaluation 

 - 69 - 

integer), the result will be greater than the maximal value of 𝑧’s domain  (2 147 483  647 

in case of a signed 32-bit integer). Thereby for maximal inputs, the program overflows. 

Similarly, the underflow can be checked, as well. However, there are lower limits for the 

variables on this path, so 𝑥 and 𝑦 are at least 1, their sum is at least 6, which yields that 

the result will be inside the domain of 𝑧. 

Likewise, the robustness testing and overflow testing of the untraversed state-space for 

path 𝑙1 − 𝑙11, and the overflow testing of the traversed state-space for path 𝑙1 − 𝑙10 can 

be performed the same way. 

Summarizing test generation, the following unique test cases will be: 

 𝑥 = 1, 𝑦 = 1 

 𝑥 = 4, 𝑦 = 1 

 𝑥 = 1, 𝑦 = 4 

 𝑥 = 3, 𝑦 = 2 

 𝑥 = 2 147 483 647, 𝑦 = 2 147 483 647 

1. void __theta_exit(int n) { 

2.   exit(n); 

3. } 

4.  

5. void __theta_assert(bool b) { 

6.   if(!b) exit(INCORRECT); 

7. } 

8.  

9. int __theta_nondet_int() { 

10.   static int callNum = 0; 

11.   static int callMax = 2; 

12.   static int tests[] = { 

13.     4, 

14.     1, 

15.     0 

16.   }; 

17.   if(callNum == callMax) exit(UNKNOWN); 

18.   return tests[callNum++]; 

19. } 

Listing 5.2: An example for a mapped-back test case 
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5.1.4. Concretizing the test cases 

The generated test cases will be mapped back to C. The result of mapping back the 𝑥 =

4, 𝑦 = 1 test case is in Listing 5.2. The other test cases can be concretized the same way. 

If these definitions are linked with the source in Listing 5.1, the outcome is an executable 

program that represents the test. 

5.2. Applying the approach to industrial code 

The proposed algorithm and the implementation were tested using AUTOSAR 

components provided by thyssenkrupp Components Technology Hungary Kft. They 

provided two components, one simpler, and one a bit more complex. 

ComponentA, is the simpler component: it has multiple parameters, multiple sender-

receiver ports, and a timed event that fires the single runnable. This component does not 

contain per-instance memory, so no persistence needed. 

ComponentB, on the other hand, is a bit more complicated, as it has multiple parameters, 

sender-receiver ports, provides multiple client-server ports, has per-instance memory, 

has one timed event, multiple events for the client-server ports, and multiple runnables. 

The features of the components that violated one of the limitations of the tool were 

removed. The removed features were mainly bitwise operations.  

 

ComponentA ComponentB 

require-

ments 

verified 

requirem

ents 

test 

cases 

require-

ments 

verified 

requirem

ents 

test 

cases 

Sequential, 

conditional 
4 4 - 5 5 - 

Deterministic 

cycles 
3 3 - 2 2 - 

Non-deterministic 

cycles 
0 - - 3 1 45 

Table 5.1: The results of applying the algorithm on AUTOSAR components 

The requirements given to them can be categorized +according to what kind of program 

structure is required to realize them. The categories were the following: 

 Simple sequential or conditional calculation: to realize the feature, no cycle is 

needed. 
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 Calculations using deterministic cycles: the iteration count of every cycle is 

deterministic; it does not depend on input. 

Calculations using non-deterministic cycles: the iteration count of at least one cycle 

depends on non-deterministic value (input value). 

The algorithm was run on several requirements. The formal method was limited to 

running at most one hour. The results can be seen in Table 5.1. As it can be seen, the 

formal method could easily handle the situations when only simple sequential or 

conditional code was required to realize the feature. It also was able to complete the 

verification if it relied on deterministic cycles. However, when the result depended on 

calculations done in non-deterministic cycles, the formal method mostly failed, and tests 

were generated. These tests did not find any error, which is not surprising, given that 

these components are used daily. 
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6. Conclusion 

This paper presented an approach to support formal verification guided test generation 

in AUTOSAR components and presented an implementation based on the described 

ideas. 

The algorithm used an abstraction based formal method to verify requirements and used 

the information extracted from the state-space representation of the verifier to generate 

test cases based on if the verification failed to complete. The test generation methods 

were based on symbolic execution, and used boundary value analysis, and checked the 

robustness of the software as well.  

Moreover, methods were devised to apply formal verification on safety-critical 

AUTOSAR components, heavily used by the automotive industry. The test cases were 

generated by an algorithm, rather than written by a developer, which could lead to 

shortened product-to-market time. 

An implementation was developed as a prototype that is capable of using C programs as 

input, and it was tested on AUTOSAR components used by the automotive industry. 

Altogether, a novel algorithm was developed that successfully verified automotive codes, 

and generated tests, and this algorithm was proved to be working on industrial code. 

6.1. Future work 

In the future, I plan to solve the limitations of the implementation and examine more test 

generation methods. 

 First of all, the support of bitwise operations must be developed, as it is heavily 

used in the source code of the automotive industry. This requires support from 

both Theta and the CFA generator tool. 

 Then the theta-llvm tool must be developed to support the subset of C used in 

AUTOSAR components fully. An early prototype already exists called Gazer, 

upon which the implementation should build in the future. 

 Multiple abstraction techniques, particularly product-abstraction methods, should 

be examined, whether they provide a better verification result. 

 More test generation strategies should be examined. One interesting approach is 

to utilize KLEE, which is a symbolic virtual machine built on top of LLVM and 

is capable of advanced symbolic and dynamic symbolic execution test generation. 
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 The test generation methods should be evaluated, and compared to traditional 

source code-based test generation methods.
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