

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Combining testing and formal
verification in automotive

software development

Author:

Mihály Dobos-Kovács

Advisors:

Dr. András Vörös Dr. András Balogh

BME Fault-Tolerant Systems

Research Group
thyssenkrupp Components

Technology Hungary Kft.

2019

Table of contents

 - 1 -

Table of contents

Table of contents .. 1

Hallgatói nyilatkozat .. 4

Abstract ... 5

Összefoglaló .. 6

1. Introduction .. 7

2. Background ... 9

2.1. First-order logic .. 9

2.2. Formal representation of programs .. 10

2.2.1. Control Flow Automata ... 10

2.2.2. The state-space of a CFA .. 11

2.3. The abstract state-space of a program .. 13

2.3.1. Predicate abstraction .. 13

2.3.2. Explicit value abstraction .. 15

2.4. CEGAR .. 17

2.4.1. Model checking ... 17

2.4.2. CEGAR algorithm ... 19

2.4.3. Building the abstraction ... 20

2.4.4. Refining the abstraction ... 22

2.5. Testing ... 23

2.5.1. Basics of testing ... 23

2.5.2. Black box testing ... 24

2.5.3. White box testing ... 26

2.6. AUTOSAR .. 28

2.6.1. Application Software Components .. 29

2.6.2. Runtime Environment ... 30

2.6.3. Developing AUTOSAR components .. 31

3. CEGAR driven test generation in AUTOSAR components 33

3.1. Overview of approach ... 33

3.2. Application of the CEGAR algorithm .. 36

Table of contents

 - 2 -

3.2.1. Terminating the CEGAR loop ... 37

3.2.2. Extracting information from an ARG .. 38

3.3. Test generation .. 39

3.3.1. Symbolic execution of the abstract state-space representation .. 40

3.3.2. Robustness test generation for the untraversed state-space ... 41

3.3.3. Variable overflow in the state-space.. 44

3.4. Integrating formal verification in the AUTOSAR development process 47

3.4.1. Modeling the behavior of a component ... 48

3.4.2. Writing verifiable requirements... 49

3.4.3. Generating the verification environment ... 49

3.4.4. Transforming test cases ... 50

3.5. Related work .. 51

4. Implementation .. 52

4.1. Theta .. 52

4.2. The theta-llvm tool ... 53

4.3. CEGAR based test generation framework ... 54

4.3.1. The verification environment .. 54

4.3.2. The testing environment .. 56

4.4. LLVM frontend .. 57

4.4.1. Providing a CFA .. 58

4.4.2. Concretizing the test cases ... 59

4.4.3. Executing the tests ... 60

4.5. AUTOSAR frontend ... 61

4.5.1. Generating sources for verification ... 61

4.6. Limitations of the implementation ... 63

5. Evaluation ... 65

5.1. Case study.. 65

5.1.1. Providing the CFA ... 66

5.1.2. Executing the CEGAR algorithm .. 67

5.1.3. Test generation .. 68

5.1.4. Concretizing the test cases ... 70

5.2. Applying the approach to industrial code ... 70

6. Conclusion ... 72

Table of contents

 - 3 -

6.1. Future work ... 72

Acknowledgment .. 74

Bibliography ... 75

Hallgatói nyilatkozat

 - 4 -

Hallgatói nyilatkozat

Alulírott Dobos-Kovács Mihály, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot

meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat

(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,

vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan

hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső

hálózatán keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem,

hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel

titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik

hozzáférhetővé.

Kelt: Budapest, 2019. 12. 13.

 ...

 Dobos-Kovács Mihály

Abstract

 - 5 -

Abstract

Nowadays, different kinds of software are responsible for features in safety-critical

systems, like cars, airplanes, or nuclear powerplants. Often parts of the systems that used

to be mechanical or hydraulical are replaced by software-driven solutions, for example,

in the steering of vehicles.

These embedded software components are critical in terms of proper functioning of the

system, on the one hand, however, they are quite complex on the other. It follows that

certain measures have to be taken to identify and correct the faults of these systems and

to prove their correctness. Testing is an efficient way of finding faults, and it is part of

every major standard regulating the development of safety-critical systems. However,

testing alone cannot prove the absence of errors in a program. Another approach is formal

verification that takes the mathematical model of a given software and gives a

mathematical proof of correctness. It is a computationally intensive task, as it needs to

take all the possible states of a software into account, and even the simplest of programs

can have an infinite state space. During the past two decades, researchers have achieved

numerous breakthroughs in the field of formal verification; however, due to the

complexity of the underlying mathematical field, it is still too early for using formal

verification in the industry on a daily basis.

The goal of this paper is to combine these two different approaches in the AUTOSAR

environment used heavily in automotive software development. In this paper, an

algorithm is presented that uses the results of a verification process to generate tests while

taking into account the uniqueness of AUTOSAR components. If the verification

succeeds, either there is a mathematical proof of correctness about the software, or there

is a counterexample that makes the error reproducible. However, when formal

verification fails, tests will be generated using information extracted from the visited part

of the state space of the program. In connection with this, multiple strategies are

presented for test generation, that are efficient in finding different kinds of program

errors.

The algorithms proposed are validated with a custom implementation that is able to verify

computer programs written in C, using examples from the automotive industry.

Összefoglaló

 - 6 -

Összefoglaló

Szoftverek egyre több kritikus feladatot látnak el biztonságkritikus rendszerekben, mint

például autókban, repülőgépekben vagy erőművekben. Sokszor korábbi

mechanikus/hidraulikus megoldásokat is beágyazott szoftverrel váltanak ki vagy

szoftverrel támogatnak meg, például egy autó kormányművében.

Ezek a beágyazott szoftverek egyrészt kritikusak a rendszer működése szempontjából,

másrészt viszont egyre összetettebbek is. Emiatt különösen fontos olyan módszereket

használni, amelyek képesek ezen beágyazott szoftverek hibáit megtalálni vagy a

helyességüket bizonyítani. A tesztelés hatékonyan, alacsony számítási igény mellett

képes hibákat találni a meglévő rendszerekben, valamint a biztonságkritikus-rendszerek

fejlesztését szabályozó szabványok alapvető elvárásként tekintenek az mélyretekintő,

alaposan dokumentált tesztelésre. Azonban a tesztelés önmagában a helyesség

bizonyítására nem alkalmas. Ezzel szemben a formális verifikáció a szoftver matematikai

modelljét vizsgálja és matematikailag bizonyítja a különböző hibák elő nem fordulását.

A formális verifikáció egy számításigényes feladat, hiszen az algoritmusnak meg kell

vizsgálnia a program összes lehetséges viselkedését és állapotát, és még a legegyszerűbb

programoknak is könnyen lehet végtelen nagyságú állapottere. Az elmúlt két évtizedben

számos áttörést sikerült elérni a formális verifikáció területén, azonban a probléma

nehézsége miatt sok esetben nem nyújtanak megoldást.

A munkám célja, hogy ezt a két különböző megközelítést alkalmazzam kombinálva

autóiparban használt AUTOSAR környezetben, ötvözve a két módszer előnyeit.

Munkám során kidolgozok egy olyan algoritmust, amely a verifikáció eredményeit

kihasználja a teszgenerálás során, továbbá kihasználom az AUTOSAR

szoftverkomponensek sajátosságait. Sikeres verifikáció esetén a vizsgált komponens

helyessége eldöntött, és vagy egy bizonyítás áll rendelkezésre igazolva a helyességet,

vagy egy olyan ellenpélda, aminek segítségével a hiba reprodukálható. Amennyiben a

verifikáció sikertelen, teszteket generálok, felhasználva a formális verifikáció során a

bejárt állapottérből kinyert információt. Ennek kapcsán több különböző tesztgenerálási

stratégiát is kifejlesztettem, amelyek különböző típusú hibák megtalálására hatékonyak.

A megközelítésem megvalósíthatóságát egy implementációval igazolom, és azt

autóiparban használt szoftverekkel tesztelem.

1. Introduction

 - 7 -

1. Introduction

Nowadays, different kinds of software-driven solutions are becoming part of our lives.

Almost everyone carries a smartphone in his/her pocket, household applications are

gaining popularity with the smart home concept, and over the past couple of years, the

demand has risen for wearable electronics. Similarly, the industry is using software-

driven solutions more-and-more, as it usually tends to be more cost-efficient than the

traditional electro-mechanical solutions. It follows that software components became

part of almost every industrial system, even part of the so-called safety-critical systems.

As a result, ensuring the correctness of these systems is imperative, as a fault in them can

result in significant financial loss or fatal injuries.

A textbook example for an error leading to a financial catastrophe is the European Space

Agency’s (ESA) Ariane 5 rocket. Ariane 5’s first flight failed on the 4th of June 1996, as

the rocket self-destructed 37 seconds after launch. Investigation showed that one

component stored the velocity of the rocket as a 64-bit floating-point number, while

another component stored it as a 16-bit integer. The conversion between these two

formats failed, the rocket lost its ability to navigate, deviated from the route and self-

destructed. More than a decade of development, costing about 7 billion dollars was

destroyed along with cargo that was alone worth more than half a billion dollars.

Luckily, in the previous example, there was no human casualty. However, the scenario

could have been different if the error had happened to be in the central computer of an

airplane or a nuclear powerplant.

Safety-critical software components must behave correctly, and ensuring their

correctness is an essential factor during development. It follows that specific measures

have to be taken to identify and correct the faults of these systems and to prove their

correctness.

Testing is an efficient way of finding faults, and it is part of every major standard

regulating the development of safety-critical systems. However, testing alone cannot

prove the absence of errors in a program, only their presence.

Another approach is formal verification that takes the mathematical model of a given

software and gives a mathematical proof of correctness. It is a computationally intensive

task, as it needs to take all the possible states of the software into account, and even the

simplest programs can have an infinite state space. During the past two decades,

researchers have achieved numerous breakthroughs in the field of formal verification;

1. Introduction

 - 8 -

however, due to the complexity of the underlying mathematical field, it is still

computationally too heavy to use formal verification in the industry on a daily basis.

As can be seen, none of the methods above is perfect, and none of them can be used on

its own to prove correctness. As in the case of a safety-critical system, correctness is of

utmost importance, combining these two approaches is an exciting field of study.

The automotive industry has been using software-based solutions to replace the

traditionally electro-mechanical parts of the vehicle. One example is the array of sensors

and servo-motors that are present in the steering of the vehicle to enhance the driving

experience. As the automotive industry has numerous participants, standards have been

designed to help reusability and interoperability between the products of different

vendors. One of these standards is the AUTOSAR standard that defines a software

architecture and development methodology to design and develop automotive software.

The goal of this paper, in line with the author’s Scientific Student’s Association Report

in 2019 of the same topic, is to combine formal verification and test generation in the

AUTOSAR environment. It presents an algorithm that uses the results of a verification

process to generate tests while taking into account the characteristics of AUTOSAR

components. If the verification succeeds, either there is a mathematical proof of

correctness about the software, or there is a counterexample that makes the error

reproducible. However, when formal verification fails, tests will be generated using the

information extracted from the visited part of the state space of the program. In

connection with this, multiple strategies were developed for test generation that target

different kinds of errors.

The algorithms proposed are validated with a custom implementation that is able to verify

computer programs written in C, using industrial software provided by thyssenkrupp

Components Technology Hungary Kft.

2. Background

 - 9 -

2. Background

This chapter presents the necessary background to understand this paper, including the

formal background and algorithms that are used, and also the AUTOSAR system

supporting the development of critical automotive applications.

2.1. First-order logic

Although mathematical logic has several branches, this paper focuses on first-order logic

(FOL) [1]. First-order logic has great expressive power; however, the satisfiability of a

first-order formula is generally undecidable algorithmically. Nonetheless, there are

specific theories [2] (theory of integer arithmetic, theory of arrays, or theory of bit-

vectors, for example) that give interpretation to the symbols of a first-order formula, thus

loosening the underlying problem, and making the satisfiability problem decidable

(under certain circumstances).

An SMT-problem (Satisfiability Modulo Theory) [3] is a decision problem for logical

formulas, in which, when given a first-order formula and the theories used in it, a solver

can decide whether there exists a substitution of variables in the formula to concrete

values so after the substitution, the formula evaluates to true; or the formula is

unsatisfiable.

An assignment is a pair, in which the first component is a variable, and the second is an

element of the domain of the variable, also called the value of the variable.

The model of a first-order formula is a set of assignments, where there are no two

assignments for the same variable, there is an assignment for each variable, and after

substituting each variable for their value, the formula evaluates to true.

A first-order formula is satisfiable if it has at least one model, while a first-order formula

is unsatisfiable if it has no model satisfying it.

Specialized software, so-called SMT solvers [4] are developed to solve SMT problems.

Each SMT solver tends to use a different approach and excels in solving formulas

efficiently using a unique set of theories (linear arithmetics, non-linear arithmetics,

arrays, or bit-vectors, amongst others).

Example 2.1: Given a first-order formula (𝑥 < 5 ∧ 𝑥 ≥ 3 ∧ 𝑦 > 7) where 𝑥, 𝑦 ∈ ℤ.

An example of an assignment is (𝑥 = 4). An example model is {(𝑥 = 4); (𝑦 = 8)}, as

substituting these values into the formula, it evaluates to true: (4 < 5 ∧ 4 ≥ 3 ∧ 8 >

2. Background

 - 10 -

7) = ⊤. As there exists a model, the formula is satisfiable. It is worth to be noted that

multiple models may exist. For example {(𝑥 = 3); (𝑦 = 8)} is also a model of the

formula.

If the formula is (4 < 𝑥 ∧ 𝑥 < 5), where 𝑥, 𝑦 ∈ ℤ, then the formula is unsatisfiable,

as there is no integer between 4 and 5. However, if 𝑥, 𝑦 ∈ ℝ then it is satisfiable as

(𝑥 = 4.5) satisfies it.

2.2. Formal representation of programs

This chapter presents a formal representation of programs, upon which the formal

verification and test generation methods are based.

2.2.1. Control Flow Automata

Computer programs can appear in multiple different formats, for example, in the form of

source code. It is easy to read and understand, while on the other hand, the binary created

from the source code is not (easily) readable or understandable by a developer, but a

computer can execute it without problems. Formal representation is needed to be created

from programs to support the formal verification of computer programs.

One of the representations mentioned above is the Control Flow Automata (CFA) [5].

The CFA is a (𝑉, 𝐿, 𝑙0, 𝐸) tuple, where:

 𝑉 = {𝑣0, 𝑣1, … } is the set of variables that are present in the program. Each 𝑣𝑖 ∈

𝑉 variable has a 𝐷𝑣𝑖
 domain.

 𝐿 = {𝑙0, 𝑙1, … } is the set of control locations. It can be interpreted as the possible

values of the program counter.

 𝑙0 ∈ 𝐿 is the initial location, which is active at the start of the program.

 𝐸 ⊆ 𝐿 × 𝑂𝑝𝑠 × 𝐿 is the set of transitions, where 𝐿 is the set of control locations,

and 𝑂𝑝𝑠 is a set of operations. A transition is a directed edge between two control

locations, one or more operations labeling each of them. An operation can be:

o A deterministic assignment of a variable, where the value of the right-

hand side expression becomes the value of the left-hand-side variable.

o A non-deterministic assignment of a variable, where the value of the

variable can be anything valid based in its domain. Non-deterministic

assignments are useful for modeling data coming from the user or other

programs.

2. Background

 - 11 -

o A guard; a transition with a guard can only be executed if the expression

inside the guard evaluated to true.

In summary, a CFA can be represented as a directed graph, where the nodes are the

program locations, and the labeled edges are the transitions between the locations. The

labels stand for the operations during the transition.

Figure 2.1: The Euclidean algorithm written in C, and the corresponding CFA

Example 2.2: On the left side of Figure 2.1, there is an implementation of the

Euclidean algorithm written in C. On the right-hand side is a CFA that corresponds

to the program on the left. There are two examples of non-deterministic assignment

(ℎ𝑎𝑣𝑜𝑐 𝑎 and ℎ𝑎𝑣𝑜𝑐 𝑏), three examples of deterministic assignment (𝑐 ≔ 𝑎, 𝑎 ≔

𝑏 % 𝑎 and 𝑏 ∶= 𝑐), and two examples of a guard ([𝑎 ≠ 0] and [𝑎 = 0]).

2.2.2. The state-space of a CFA

Each program has its state-space, which is the set of all the possible states, the program

can reach and transitions between the states. A state represents a control location and the

values of the variables at a certain point in the operation of the program, while the

transitions the operations the program carries out. One (concrete) state of the program is

a (𝑙𝑖, 𝑑1, 𝑑2, … , 𝑑𝑛) tuple, where

 𝑙𝑖 ∈ 𝐿 is the current location

 𝑑1, 𝑑2, … , 𝑑𝑛 are the values of the variables, where 𝑑𝑖 ∈ 𝐷𝑣𝑖
, 𝑛 = |𝑉| and 𝑣𝑖 =

𝑑𝑖.

As a CFA can represent a program, there needs to be a way to construct the state-space

of the program from the CFA. Given the current state is (𝑙𝑖, 𝑑1, 𝑑2, … , 𝑑𝑛), 𝑙𝑖 denotes a

1. void main() {

2. int a; scanf("%d", &a);

3. int b; scanf("%d", &b);

4. while(a != 0) {

5. int c = a;

6. a = b % a;

7. b = c;

8. }

9. }

𝑙1

𝑙2

𝑙3

ℎ𝑎𝑣𝑜𝑐 𝑎

ℎ𝑎𝑣𝑜𝑐 𝑏 [𝑎 ≠ 0]

𝑐 ≔ 𝑎

𝑎 ≔ 𝑏 % 𝑎

𝑏 ≔ 𝑐
[𝑎 = 0]

2. Background

 - 12 -

specific location in the CFA. Let us take a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) ∈ 𝐸 leaving this location

and modifying the state of the program. Based on 𝑜𝑝, the following state is:

 If 𝑜𝑝 is a deterministic assignment 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the following state is

(𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑑𝑘
′ is the value of 𝑒𝑥𝑝𝑟, in which all variables by

substituted by their 𝑑1, … , 𝑑𝑛 values. In short, the new value of 𝑣𝑘 becomes the

expression, while the other variables remain unchanged.

 If 𝑜𝑝 is a non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then the following state is

unambiguous. The following state can be (𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑑𝑘
′ ∈ 𝐷𝑣𝑘

.

In short the value of 𝑣𝑘 can be any value that is possible based on its domain,

while all other variables remain unchanged, so the number of following states is

the size of the domain.

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then the following state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑛), if 𝑐𝑜𝑛𝑑

evaluates to true based on the values 𝑑1, … , 𝑑𝑛. If it evaluates to false, the

transition cannot be executed. It follows that the construction of a CFA needs to

be careful, so for every state, a transition exists, for which all guards evaluate to

true, or else a deadlock occurs.

Example 2.3: Let the current state be (𝑙1, 3, 4), where 𝑙1 is the current location, while

3 and 4 are the respective values of variables 𝑥 and 𝑦. Moreover, let the transition be

(𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝:

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 2, then the following state is (𝑙2, 2, 4).

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑦, then the set of possible following

states is: {(𝑙2, 3, −∞), … , (𝑙2, 3, 0), … , (𝑙2, 3, 1), … , (𝑙2, 3, ∞)}, if 𝐷𝑦 = ℤ.

 If 𝑜𝑝 is guard [𝑦 = 4], then the following state is (𝑙2, 3, 4)

 If 𝑜𝑝 is guard [𝑦 ≠ 4], then the transition cannot be executed.

The only thing left to do is to determine the initial state of the state-space. The CFA has

an initial location which can be used, but the value of every variable must also be given.

For example, in programs where uninitialized variables contain memory garbage (usually

that are written in C, C++), there are multiple initial states, and it is non-deterministic,

which one will be chosen. On the other hand, if uninitialized variables are automatically

initialized to a specific value, often 0 (for programs written in a managed environment,

such as Java, C#), then there is only one initial state. As the automotive industry tends to

use native code, this paper uses the first approach.

2. Background

 - 13 -

2.3. The abstract state-space of a program

The size of a program’s state-space depends on the number of control locations, the

number of variables, and the size of those variables’ domain. Out of these, the domain-

size has the most significant impact on the final size. In case of two 32-bit integer

variables in a program, then at least 232232 = 264 ≈ 1019 states are needed to be

represented. If the program had at least eight integer variables with 32-bit integer

domains, then more states would be needed to store the possible values, than the number

of atoms in the universe. This phenomenon is called the state-space explosion, and

efficient algorithms are needed to handle it.

One possible solution is to use abstraction to remove unnecessary information from the

state-space. The abstract state-space of a program is the set of abstract states and

transitions between them. An abstract state is a set of concrete states, while a transition

is an operation between two abstract states. One concrete state can appear in at most one

abstract state, and every concrete state has to be part of at least one abstract state.

Multiple abstraction methods are used for CFAs. The most commonly used are predicate

abstraction [6] and explicit-value abstraction [5]. This chapter presents these particular

abstraction techniques to handle state space explosion.

2.3.1. Predicate abstraction

The technique of predicate abstraction [6] reduces the size of the abstract state-space by

not following the concrete value of every variable, instead following specific facts about

the variables, the so-called predicates.

A predicate is a logic formula over the set of variables of a program, and it denotes

certain relations between the variables. In the following, example predicates are shown:

𝑝0 = (𝑥 = 0) or 𝑝1 = (𝑦 + 2 < 𝑥). The set of all occurring predicates in the abstraction

is called precision, and denoted as 𝑃 = {𝑝1, 𝑝2, … , 𝑝𝑛}.

If using predicate abstraction, an abstract state is a tuple (𝑙𝑖, 𝑝1̂, 𝑝2̂, … , 𝑝�̂�), where 𝑙𝑖 ∈ 𝐿

is a control location, and 𝑝�̂� is either 𝑝𝑖, ¬𝑝𝑖 or 𝑡𝑟𝑢𝑒, based on whether the 𝑝𝑖 ∈ 𝑃

predicate is present in its original form, negated form, or not present at all in the state. In

short, an abstract state is a set of states, whose control location is the same, and the

predicates evaluate to true on the variables in the state. The predicates that are present in

the state are said to label the state.

Example 2.4: Let the state space of a program be (𝑙1, 𝑥), where 𝐷𝑥 ∈ [−∞; ∞]. Given

the abstract state:

2. Background

 - 14 -

 (𝑙1, 𝑥 < 0), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, −2), (𝑙1, −1)}.

 (𝑙1, ¬(𝑥 < 0)), the set of states it abstracts is {(𝑙1, 0), (𝑙1, 1), … , (𝑙1, ∞)}.

 (𝑙1, 𝑡𝑟𝑢𝑒), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, 0), … , (𝑙1, ∞)}.

The rules of constructing an abstract state-space based on a CFA differ slightly from the

rules of constructing a concrete state-space when using predicate abstraction. First of all,

if there are no variables with an assignment at the beginning of the program, all the

possible initial states can be abstracted into a single abstract state, as they all share their

control location (𝑙0), which is the initial location of the CFA.

Given that the current state is (𝑙𝑖, 𝑝1̂, … , 𝑝�̂�), and a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) that leaves the

control location 𝑙𝑖 in the CFA, then the following state can be calculated based on 𝑜𝑝:

 If 𝑜𝑝 is an assignment in the form of 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the control location of the

following state is 𝑙𝑖
′, and the predicates of the following states are those predicates

(or their negated form) from 𝑃, which are implied by the predicates of the current

state, and the assignment.

 If 𝑜𝑝 is a non-deterministic assignment in the form of ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then the control

location of the following state is 𝑙𝑖
′, and the predicates of the following states are

those predicates (or their negated form) from 𝑃, which are implied by the

predicates of the current state and the assignment. These predicates obviously

cannot contain information on 𝑣𝑘, as no data is available about the value except

its domain.

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then it should be first decided whether there is a

contradiction between the predicates of the current state and the condition. If there

is a contradiction, then the values of the variables cannot be chosen so that both

the condition and the predicates evaluate to true, thus, the transition cannot be

executed. If there is no contradiction, then the control location of the following

state is 𝑙𝑖
′, and the predicates of the following states are those predicates (or their

negated form) from 𝑃, which are implied by the predicates of the current state

and the guard.

In practice, as long as both the predicates and the operations on the CFA can be expressed

as first-order formulas, an SMT solver can be used to check for contradiction and to

calculate implications [7].

Example 2.5: Let the current abstract state be (𝑙1, 𝑥 > 0, 𝑦 < 4), where 𝐷𝑥, 𝐷𝑦 ∈ ℤ.

Moreover, let a transition be (𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝:

2. Background

 - 15 -

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 1, then the following state is (𝑙2, 𝑥 >

1, 𝑦 < 4), as (𝑥 > 0) ∧ (𝑥 ≔ 𝑥 + 1) → (𝑥 > 1).

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the following state is

(𝑙2, 𝑡𝑟𝑢𝑒, 𝑦 < 4), as no information is available about the new value of 𝑥.

 If 𝑜𝑝 is guard [𝑥 > 3], then the following state is (𝑙2, 𝑥 > 3, 𝑦 < 4), as (𝑥 > 0) ∧

(𝑥 > 3) → (𝑥 > 3).

 If 𝑜𝑝 is guard [𝑥 < 0], then the transition cannot be executed, as there is no integer

for which (𝑥 > 0) ∧ (𝑥 < 0).

All of the implications above are first-order formulas, so they can be fed to an SMT

solver which solves them.

2.3.2. Explicit value abstraction

Explicit value abstraction [5] or visibility based abstraction reduces the size of the

abstract state-space by only tracking the values of a subset of the variables.

The set of followed variables is called the set of explicitly tracked variables. Each

variable is either in the set of explicitly tracked variables, and their value is thereby

known, or they are not in the set, and their value is unknown. The unknown value is

denoted by ⊤. It is worth to be noted that variables in the set can also have unknown

value, for example, when they are not yet initialized, or they store user input. The set of

explicitly tracked variables is also called precision in this case and denoted with 𝑃 =

{𝑣1, 𝑣4, … , 𝑣𝑘 }.

When using explicit value abstraction, an abstract state is a (𝑙𝑖, 𝑑1, 𝑑, … , 𝑑) tuple, where

𝑙𝑖 ∈ 𝐿 is a control location, and 𝑑𝑖 is the current value of variable 𝑣𝑖, so 𝑑𝑖 ∈ 𝐷𝑣𝑖
∪ {⊤}.

 If 𝑑𝑖 ∈ 𝐷𝑣𝑖
 and 𝑣𝑖 ∈ 𝑃 then the variable is tracked, and the value of the variable

is 𝑑𝑖.

 If 𝑑𝑖 = ⊤ and 𝑣𝑖 ∈ 𝑃 then the variable is tracked, and the value of the variable is

not known.

 If 𝑣𝑖 ∉ 𝑃 then the variable is not tracked, implying that 𝑑𝑖 = ⊤.

A tracked variable is often also called a visible variable, while a not tracked variable is a

not visible variable. The visible variables are also said to label the state.

Example 2.6: Let the state space of a program be (𝑙1, 𝑥), where 𝐷𝑥 ∈ [−∞; ∞]. Given

the abstract state:

 (𝑙1, ⊤), the set of states it abstracts is {(𝑙1, −∞), … , (𝑙1, 0), … , (𝑙1, ∞)}

2. Background

 - 16 -

 (𝑙1, 0), the set of states it abstracts is {(𝑙1, 0)}

The rules of constructing an abstract state-space based on a CFA differ slightly from the

rules of constructing a concrete state-space or when using predicate abstraction. First of

all, at the start of the program, all variables have undefined value, so they can be

abstracted into a single abstract state, whose control location is the initial location of the

CFA.

Given that the current state is (𝑙𝑖, 𝑑1, … , 𝑑𝑛), and a transition (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) that leaves the

control location 𝑙𝑖 in the CFA, then the following state can be calculated based on 𝑜𝑝:

 If 𝑜𝑝 is an assignment in the form of 𝑣𝑘 ≔ 𝑒𝑥𝑝𝑟, then the following state is

(𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛). The value of 𝑑𝑘
′ is ⊤ if either 𝑣𝑘 ∉ 𝑃 or the value of 𝑒𝑥𝑝𝑟

depends on a variable with ⊤ value. Otherwise, 𝑑𝑘
′ is the evaluated value of 𝑒𝑥𝑝𝑟.

 If 𝑜𝑝 is a non-deterministic assignment in the form of ℎ𝑎𝑣𝑜𝑐 𝑣𝑘, then following

state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑘

′ , … , 𝑑𝑛), where 𝑣𝑘
′ is ⊤, as there is no information available

regarding the value of the variable.

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then it should be first decided whether there is a

contradiction between the current values of the variables and the condition. If

there is a contradiction because 𝑐𝑜𝑛𝑑 evaluates to false with the current variables,

then the values of the variables cannot be chosen, so the condition evaluates to

true; thus, the transition cannot be executed. If there is no contradiction, because

𝑐𝑜𝑛𝑑 evaluates to true, or it cannot be evaluated due to ⊤ values, then the

following state is (𝑙𝑖
′, 𝑑1, … , 𝑑𝑛).

In practice, as long as the operations on the CFA can be translated to first-order formulas,

an SMT solver can be used to check for contradictions in conditions and to evaluate

expressions.

Example 2.7: Let the current abstract state be (𝑙1, 0, ⊤), where 𝐷𝑥 , 𝐷𝑦 ∈ ℤ. Moreover,

let a transition be (𝑙1, 𝑜𝑝, 𝑙2). Based on 𝑜𝑝:

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 1, then the following state is (𝑙2, 1, ⊤).

 If 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑥 + 𝑦, then the following state is (𝑙2, ⊤, ⊤),

as 𝑥 + 𝑦 cannot be evaluated due to 𝑦 being ⊤.

 If 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the following state is

(𝑙2, ⊤, ⊤), as no information is available about the new value of 𝑥.

 If 𝑜𝑝 is guard [𝑥 > −3], then the following state is (𝑙2, 0, ⊤).

 If 𝑜𝑝 is guard [𝑥 > 5], then the transition cannot be executed, as 0 ≯ 5.

2. Background

 - 17 -

 If 𝑜𝑝 is guard [𝑥 + 𝑦 > 0], then the following state is (𝑙2, 0, ⊤), as 𝑥 + 𝑦 cannot

be evaluated due to 𝑦 being ⊤.

2.4. CEGAR

There are numerous algorithms and methods that can check a program in terms of

erroneous behavior. This section presents model checking as a general approach, and

Counterexample-Guided Abstraction Refinement (or CEGAR for short) as an algorithm

to help verifying computer software.

2.4.1. Model checking

Given a formal model and a formal requirement (or statement), model checking [8] [9]

will decide whether the given requirement holds for the given model. The model is

correct if mathematical proof exists that the requirement holds for the model. Also, the

model is incorrect, if mathematical proof exists that the requirement does not hold for

the model. It is worth to be noted that the proof of incorrectness is often an example, for

which the requirement fails.

Figure 2.2: The model checking procedure

Model checking is a general approach, and it is not used exclusively for software

verification. The notion of model, requirement, and checking needs to be given in terms

of a program, in order to apply model checking for computer software.

 Let the model be the CFA, as it is a formal representation of the program.

Requirement Model

Model

checking

Incorrect

Counterexample

Correct

Proof

2. Background

 - 18 -

 Let the requirement be that no error location is reachable. An error location is a

particular control location in the CFA, which yields error if the control ever

reaches it.

 An analysis algorithm is a method that can prove whether the control is able to

reach an error location or not. One possible method is a systematic traversal of

the state-space that checks whether a state with an error location for control

location or error-state is reachable in it; however, the complexity of the problem

often causes such algorithms to fail.

The model is said to be correct if the requirement holds, and incorrect if the requirement

does not hold.

Figure 2.3: The Euclidean algorithm with an assertion written in C, and the corresponding

CFA

Example 2.8: On the left side of Figure 2.3, there is the Euclidean algorithm written

in C. In line 9, there is an assertion. The corresponding CFA can be seen on the right

side. It can be observed that the assertion is mapped as two separate branches. The

first branch continues the normal flow of the program (𝑙4), while the other branch

marks it as an error location (𝑙𝑒). The error location is only entered, if the condition

in the assertion evaluates to false.

𝑙1

𝑙2

𝑙3

ℎ𝑎𝑣𝑜𝑐 𝑎

ℎ𝑎𝑣𝑜𝑐 𝑏 [𝑎 ≠ 0]

𝑐 ≔ 𝑎

𝑎 ≔ 𝑏 % 𝑎

𝑏 ≔ 𝑐 [𝑎 = 0]

1. void main() {

2. int a; scanf("%d", &a);

3. int b; scanf("%d", &b);

4. while(a != 0) {

5. int c = a;

6. a = b % a;

7. b = c;

8. }

9. assert(b != 0);

10. }

𝑙𝑒 𝑙4

[𝑏 = 0] [𝑏 ≠ 0]

2. Background

 - 19 -

2.4.2. CEGAR algorithm

The Counterexample-Guided Abstraction Refinement (CEGAR) [5] [10] [11] is an

abstraction-based model checking algorithm that has been effectively used to verify

computer software. It can use a CFA, among other formalisms, as an underlying model,

and it can check for reachability in the state-space, as a requirement.

The algorithm uses abstraction and operates on the abstract state-space. A (concrete) state

is an error-state if it has an error location as its control location. It follows that an abstract

state is an abstract error-state if it covers at least one concrete error-state.

Figure 2.4: The CEGAR-loop

The core of the algorithm is the so-called CEGAR-loop (Figure 2.4) that consists of two

distinct parts: the abstractor and the refiner. In the first part, the abstractor is responsible

for building the abstract state-space from the model and checking whether an abstract

error-state is reachable. As an abstract error-state is an over-approximation of the

possible error-states, if no abstract error-state is reachable, then no concrete error-state is

reachable; thus, the requirement holds for the model.

However, if an abstract error-state is reachable, the fact needs to be decided whether it is

feasible or spurious. If a concrete error-state inside of it is reachable, then the abstract

error-state is feasible, so the model fails the requirement. If a concrete error-state is not

reachable, then the abstract error-state is spurious, the reachability of the abstract error-

state is the result of the over-approximation. In this case, the abstraction needs to be

refined, so that the abstract error-state does not contain the unreachable error-state.

Checking the reachability of the concrete-error-state and refining is the task of the refiner

part of the CEGAR-loop.

Abstractor Refiner

Initial precision

Abstract counterexample

Refined precision

Correct

Proof

Incorrect

Counterexample

2. Background

 - 20 -

The loop keeps repeating itself until it either proves that no abstract error-state is

reachable, thus, the requirement holds or gives an example how a concrete error-state is

reachable, thus proving that the requirement does not hold. Each time an abstract error-

state is reachable and the refiner proves that the concrete error-state inside is unreachable,

the abstraction refines by separating the abstract error-state into at least two other parts.

With each refinement, the number of abstract states grows; however, it cannot grow

beyond the number of concrete states, which causes the algorithm to terminate at some

point.

It is worth noting that the CEGAR algorithm does not depend on the type of abstraction.

It can use predicate abstraction just as explicit-value abstraction. The following sections

present how abstraction and refinement work in the CEGAR framework.

2.4.3. Building the abstraction

The abstraction is built against the precision, which is denoted with 𝑃. Each abstract state

can be labeled by one or more first-order expressions, which contain additional

information about the state-space. An abstract state in this case is (𝑙𝑖, 𝐿1, … , 𝐿𝑛), where

𝑙𝑖 is the control location, and 𝐿𝑖 is a label, that labels the abstract state. In the case of

predicate abstraction, the predicates can be used as labels, while when using explicit

value analysis, for each 𝑣𝑖 ∈ 𝑃, a first-order expression (𝑣𝑖 = 𝑑𝑖) can be generated and

used as a label.

Building the abstraction requires two operations and multiple definitions.

Expand is an operation, which given an abstract state, calculates the set of following

abstract states. It takes the transitions that leave the control location of the given abstract

state and forms a set from the destination of those transitions.

An Abstract Reachability Tree (ART) is a tree in which the nodes represent abstract states,

and the edges denote the (abstract) transitions between them. The root of the tree is the

abstract state representing the initial location of the CFA, and every state is either a leaf

or the set of its children is the result of the expand operation executed on the state.

Given a not yet expanded node whose abstract state is 𝑆 = (𝑙𝑠, 𝐿𝑖 , … , 𝐿𝑗) in the ART, and

another node whose abstract state is 𝐷 = (𝑙𝑑, 𝐿𝑘, … , 𝐿𝑙) for which 𝑙𝑠 = 𝑙𝑑 and

(𝐿𝑖 , … , 𝐿𝑗) → (𝐿𝑘, … , 𝐿𝑙), where → stands for implication, then 𝐷 covers 𝑆 (or 𝑆 is

covered by 𝐷). Illustratively, it means that if a control location occurs at least twice in

abstract states of the ART (let us call these nodes 𝑆 and 𝐷), and one node, 𝑆 is not yet

expanded, but its states labels are stricter, fewer models satisfy it than the others, 𝐷’s,

that is expanded, then there is no state of the abstract state-space that is reachable from

𝑆, but not reachable from 𝐷. It also follows that 𝑆 does not need to be expanded.

2. Background

 - 21 -

An Abstract Reachability Graph (ARG) is a directed acyclic graph, whose nodes are the

nodes of an ART, and whose edges are the union of the edges of the ART, and the

covering edges. A covering edge from 𝑆 to 𝐷 nodes denote, that 𝑆 covers 𝐷. A node in

the ARG is complete if another node covers it, or it is expanded. All other nodes are

incomplete.

Cover is also an operation, which creates a covering edge in an ARG between 𝐿 and 𝑆 if

𝐿 covers 𝑆.

Figure 2.5: A CFA and a corresponding ARG

Example 2.9: On the left-hand side of Figure 2.5 is a CFA, and on the right-hand

side is (one of the many possible) corresponding ARGs. The result of the operation

expand on the abstract state 𝑙1 is {𝑙2}, as it has only one following state. On the other

hand, the result of operation expand on 𝑙2 is {𝑙3, 𝑙2}, as two different transitions are

possible. It can be seen, that both instances of 𝑙2 are labeled with (𝑎 = 1), and

because they share the same control location, and (𝑎 = 1) → (𝑎 = 1), the latter is

covered by the former, which is denoted by the dashed arrow. The state of 𝑙3 is an

abstract error state, and it is unreachable, as (𝑎 = 1) ∧ (𝑎 = 0) →⊥, so it should be

removed from the ARG. All of the nodes are complete because every one of them is

either expanded or covered, so no abstract error-state is reachable, so the model is

correct for the given requirement.

The abstraction building procedure (Listing 2.1) builds an ARG. It starts with a single

abstract state that represents the initial location in the CFA. In the followings, it calls the

expand and cover methods systematically, until either all the nodes are complete in the

ARG, or an abstract error-state is encountered in one of the nodes. In the former case,

the model is correct, as it contains no error-state, while in the latter case, it needs to be

𝑙1

𝑙2

𝑙3

𝑎 ≔ 1

𝑏 ≔ 1

[𝑎 ≠ 0]

𝑏 ≔ 𝑏 + 1

[𝑎 = 0]

𝑙1

𝑙2, 𝑎 = 1

𝑙3 𝑙2, 𝑎 = 1

𝑎 ≔ 1

𝑏 ≔ 1

[𝑎 ≠ 0]

𝑏 ≔ 𝑏 + 1

[𝑎 = 0]

2. Background

 - 22 -

determined whether the abstract error-state is feasible or spurious, but is the task of the

refiner.

1. Abstractor(𝐶𝐹𝐴, 𝑃):

2. 𝐴𝑅𝐺 ∶= ARG with initial location

3. FOREVER:

4. 𝑠 ∈ {incomplete nodes of 𝐴𝑅𝐺}

5. IF ∄𝑠 THEN:

6. ← CORRECT

7. ELSE IF ∃𝑠 and 𝑠 is an error location THEN:

8. ← COUNTEREXAMPLE(route from initial location to 𝑠)

9. ELSE:

10. IF ∃𝑟 ∈ {nodes of 𝐴𝑅𝐺}: 𝑟 covers 𝑠 THEN:

11. cover 𝑠 with 𝑟

12. ELSE:

13. expand 𝑠

Listing 2.1: The algorithm building the algorithm

The algorithm is highly customizable, as it can be seen in the listing above. It can apply

different strategies as to how to select the next candidate for expansion or the next

candidate to check for a covering relation, or different abstraction techniques as well.

Tuning these parameters is an active field of study.

2.4.4. Refining the abstraction

The procedure of refining (Listing 2.2) is executed for an abstract error-state and the

corresponding precision.

First, it needs to be checked, whether a concrete error-state is reachable. If it is, then the

error path is feasible, and there is an error in the model; otherwise, it is spurious, and the

error is a result of over-approximation.

One way to decide the reachability of the error-state is to form an SMT problem from the

assignments and guards on the route from the root of the ARG to the concrete error-state.

If this problem is satisfiable, then there is a substitution of variables to concrete values

that leads to this error, so the error-state is reachable; thus, the model fails the

requirement, and the example for that is the substitution.

However, if the problem is unsatisfiable, then the abstract error-state is spurious, and the

precision needs to be refined. There are multiple strategies to achieve it, one of these

2. Background

 - 23 -

strategies, for example, uses the proof of unsatisfiability (an interpolant) to deduce more

predicates [12], or to deduce which variables to include in the set of explicitly tracked

variables [5].

1. Refiner(𝐴𝑏𝑠𝑡𝑟𝑎𝑐𝑡 𝐶𝑜𝑢𝑛𝑡𝑒𝑟 𝐸𝑥𝑎𝑚𝑝𝑙𝑒, 𝑃):

2. 𝑅 ≔ concrete route from initial location to error

state

3. 𝑠 ≔ 𝑅 as SMT-problem

4. IF 𝑠 is satisfiable THEN:

5. ← INCORRECT(𝑅)

6. ELSE:

7. 𝑃′ ≔refined precision

8. ← REFINED PRECISION(𝑃′)

Listing 2.2: The refiner algorithm

As a final step, the states that are unreachable need to be removed from the state-space

and the ARG; in other words, the ARG has to be cut back. After finishing the refinement,

the abstraction needs to be rebuilt based on the new precision.

2.5. Testing

Testing is a generic method to check the validity of computer programs. Testing is widely

used by the industry, and it is required by almost all the standards regulating the

development of safety-critical systems. However, even a small program can have a

considerable number of possible executions, while one test case is only an arbitrary

choice of inputs, denoting one of them. So there need to be testing methods to choose

those inputs that lead to an error with the highest possibility.

2.5.1. Basics of testing

Testing [13] is a complex method. This section presents a simplified approach that fits

the goals of this paper. The program is tested by a single test suite that consists of multiple

test cases. This program is called software-under-testing (SUT). A test case is tuple of:

 Pre-conditions

 Input values and actions to take

 Target values

 Post-conditions

2. Background

 - 24 -

When executing a test case, first, the list of pre-conditions is checked, and the test case

is only executed if they hold. After the set of input, values are given to the SUT, then the

actions required to be carried out are run. After execution, the output of the program is

checked whether it matches the expected target values, and the post-conditions are

checked if they hold. The result of each test case can be:

 Successful: the run of the program is consistent with the expected results and post-

conditions

 Failure: the run of the program is inconsistent with either the expected results or

post-conditions

 Inconclusive: the run of the program is inconsistent with both the requirements of

a successful run and a failed run. One example is that it is given a set of both

successful and failing outputs, but the output of the program is not an element of

any of them.

 Error: there was an unexpected error while executing the test, so it cannot be

decided.

Coverage metrics often measure the quality of test-suites. These metrics measure the

number of lines of the code and branches that are executed during the test suite. It is often

a requirement by safety-critical standards that the test-suites have a near 100% coverage.

2.5.2. Black box testing

A black box testing technique is a method that derives test cases from solely the

specification of the program. There are several black box techniques, so only those are

presented that are used in this paper.

One example is the equivalence partitioning [13]. The domain of each variable is split

up to multiple intervals, or multiple sets of values so-called equivalence partitions. For

each interval or set, the program indeed behaves in a very similar way for every value in

it (assuming that all the other variables remain unchanged). When using equivalence

partitioning, one test case is derived for every interval by selecting a random value from

it.

Another common technique is robustness testing, which is an extension of boundary

value analysis [13]. It assumes that the faults in the program happen more often around

the boundaries because often, unique code or condition is required to handle them. Each

variable has a domain, which in turn have a minimum and a maximum value (the other

values are called nominal values). There are multiple methods as to what values are

usually useful for testing, but usually, the following values are chosen in robustness

testing:

2. Background

 - 25 -

 A bit below the minimum value (MIN-)

 The minimum value (MIN)

 A bit above the minimum value (MIN+)

 A nominal value (NOM)

 A bit below the maximum value (MAX-)

 The maximum value (MAX)

 A bit above the maximum value (MAX+)

With these seven cases, the domain of a variable is tested for all the possible kinds of

values in terms of robustness, assuming the software behaves similarly for all nominal

values.

However, usually, the two methods above are combined and used hand-in-hand. First of

all, there are variables with discrete domains (for example, enumerations), for which

boundary value analysis cannot be used, only equivalence partitioning. Moreover, an

equivalence partition is tested better, if its boundaries are also checked, so usually, five

test cases are generated for each of them: MIN, MIN+, NOM, MAX-, MAX+. The other

two test cases are only needed if there are gaps between the partitions, so a MIN- or a

MAX+ value does not belong to any of the partitions.

Example 2.10: A food delivery service allows the users to order up to 10 portions of

food. However, their website, on which the order is placed, the input filed accepts any

integer numbers. An additional code component checks whether the number of

portions is in the right range, and this component is tested with equivalence partitions

and boundary value analysis.

The set of integers can be split into three different equivalence partitions, based on

the requirement:

 Invalid 1: [−∞; 0], the order fails to complete

 Valid: [1; 10], the order is successful

 Invalid 2: [11; ∞], the order fails to complete

Applying boundary value analysis on the valid partitions results in the following

inputs: 1 (MIN), 2 (MIN+), 5 (NOM), 9 (MAX-), 10 (MAX).

Additionally, at least two other test cases are recommended from the invalid

partitions, 0 (MIN-), and 11 (MAX+). Of course, other invalid values supposed to be

tested as well.

2. Background

 - 26 -

2.5.3. White box testing

White box testing techniques know the internal structure of the SUT and derive test cases

solely based on the structure, ignoring the semantics of the variables. On the one hand,

this could prove to be a disadvantage; however, these kinds of methods can usually be

automated, so another tool generates the test cases, without human interaction. This way,

many more tests can be generated and executed, compared to merely human written tests.

One of the most widely known white box test generation technique is symbolic execution

[14] [15]. It executes the program, but instead of remembering the exact values of the

variables, it records symbolic values. All the expressions and operations are evaluated,

then with these symbolic values, rather than concrete ones.

A symbolic value represents a mathematical constant, that can have the value of anything

in the domain of the variable. Symbolic execution maintains two distinct data structures:

 A symbolic state (𝛿) that maps the variables of the program to their current

symbolic value.

 A path constraint (𝜋), that is a first-order formula over symbolic values and

decodes a path in the program.

Symbolic execution also takes a CFA as a starting point. In the beginning, the execution

starts at the initial location, and 𝛿 = {} and 𝜋 = ⊤. After that the algorithm takes all the

transitions from that location, using depth-first search and if in (𝑙𝑖, 𝑜𝑝, 𝑙𝑖
′) transition:

 𝑜𝑝 is non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then the value of 𝑥 in the symbolic

state must be a never before used symbolic value 𝑥𝑖, so 𝛿(𝑥) = 𝑥𝑖.

 𝑜𝑝 is deterministic assignment 𝑥 ≔ 𝑒𝑥𝑝𝑟, then the symbolic state must be

updated with the new value, so 𝛿(𝑥) = 𝑒𝑥𝑝𝑟′, where 𝑒𝑥𝑝𝑟′ is expression 𝑒𝑥𝑝𝑟,

with all the variables substituted for their symbolic value.

 𝑜𝑝 is guard [𝑐𝑜𝑛𝑑], then the path constraint needs to be updated, so 𝜋′ = 𝜋 ∧

𝑐𝑜𝑛𝑑′, where 𝑐𝑜𝑛𝑑′ is expression 𝑐𝑜𝑛𝑑, with all the variables substituted for their

symbolic value.

The execution continues until it reaches the end of the execution. After that, by solving

the path constraint with an SMT solver, the result is either satisfiable or unsatisfiable. In

the former case, the input values of the program that guide the execution on the path

described by the path constraint can be extracted from the solution, and a test case can

be generated that tests this path. In the latter case, this path is unfeasible. After that, the

algorithm backtracks and tries other paths (for example, other branches of an if-then-else

structure).

2. Background

 - 27 -

This way, a test case can be derived for all possible paths that the execution can take.

However, this number can quickly become huge, even infinite, in case of cycles. This

phenomenon is called path-explosion and causes symbolic execution significant

difficulties against industry software. Path explosion is usually tackled by tricky heuristic

techniques that cut back the possible paths in case of a cycle, like pruning redundant

paths or interleaving random and symbolic execution [15].

Figure 2.6: A CFA with a branch

Example 2.11: Let us apply symbolic execution on the CFA in Figure 2.6. At the start

𝛿 = {}, 𝜋 = ⊤, and the execution is at 𝑙1. Then:

 Symbolic execution moves to 𝑙2 and executes the operations on the transitions. As

a result of the two non-deterministic assignments, two new symbolic values will be

introduced, 𝑥1 and 𝑦1. As a result of the deterministic assignment, the variable will

be associated with the symbolic value of the expression on the right-hand side. At

the end 𝛿 = {𝑥 → 𝑥1, 𝑦 → 𝑦1, 𝑧 → 2𝑥1}, 𝜋 = ⊤.

 First, the left branch is taken, and the symbolic execution takes 𝑙3. As there is only

one guard, only the path constraint is updated: 𝜋 = (2𝑥1 ≠ 𝑦1). The path ends

here, so the path constraint should be given to an SMT-solver. One possible model

is {(𝑥1 = 1), (𝑦1 = 1)}. So giving 𝑥 the value 1 and 𝑦 the value 1, the execution

follows this path.

 Next, the algorithm backtracks to the nearest decision and executes the other

branches, which is 𝑙𝑒 in this case. As there is only one guard, only the path

constraint is updated: 𝜋 = (2𝑥1 = 𝑦1). The path ends here, so the path constraint

should be given to an SMT-solver. One possible model is {(𝑥1 = 1), (𝑦1 = 2)}. So

giving 𝑥 the value 1 and 𝑦 the value 2, the execution follows this path.

𝑙1

𝑙2

ℎ𝑎𝑣𝑜𝑐 𝑥

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑧 ≔ 2𝑥

𝑙𝑒 𝑙3

[𝑧 = 𝑦] [𝑧 ≠ 𝑦]

2. Background

 - 28 -

 Then the algorithm backtracks, but there are no additional branches, so it

terminates while emitting two test cases.

2.6. AUTOSAR

Automotive software development is a diverse industry with many participants. To

improve interoperability and reusability, multiple interested parties, like BMW, Bosch,

or Volkswagen, founded a development partnership in 2003. This partnership created the

Automotive Open System Architecture (AUTOSAR) [16], which is open, and more

importantly, standardized software architecture for automotive electronic control units

(ECU). Besides the architecture, it also sets goals for reusability, availability, safety, and

maintainability reducing the costs of research and development.

Figure 2.7: The layers of AUTOSAR

Over the past two decades, the standard had multiple revisions and has been used all over

the world. AUTOSAR defines a software architecture with three layers (Figure 2.7):

 Basic Software (BS): it consists of standardized software components, that

provide functionalities to the upper layers

 Runtime Environment (RTE): it is a middleware that abstracts the hardware

topology, providing connections between application components disregarding if

they share the same ECU or not. It also provides an interface to BS components.

 Application Layer: these are application software components, that provide

unique functionality, and the focus of this paper.

ECU

Basic software

RTE

AUTOSAR

component

ECU

Basic software

RTE

AUTOSAR

component

AUTOSAR

component

2. Background

 - 29 -

The following sections present only the subset of the AUTOSAR standard, which is

required by this paper.

2.6.1. Application Software Components

An application software component or AUTOSAR component is a piece of software that

has a standardized interface and standardized structure. This chapter presents only the

part of the basic structure of a component that is used in the paper.

AUTOSAR components communicate with the rest of the world through well-defined

ports, that encapsulate interfaces, ensuring type-safety across components. There are

multiple types of ports, the two most important are:

 Client-server ports define a set of operations that can be invoked. Client-server

communications consist of a server component that defines the operations to be

invoked and multiple client components that invoke the functionality of the

server. It is worth to be noted that data can flow in both directions when invoking

an operation. This kind of communication is synchronous, as the clients wait for

the answer.

 Sender-receiver ports define an asynchronous type of communication between

components, where the sender port sends a message, and multiple receiver port

receives it.

Each component can have parameters that contain data that can be configured but does

not change during the lifetime of the component. Thereby parameters help to create

reusable code, as the same code or algorithm can be easily reused, but still configured

according to individual needs.

The main elements of the internal structure are the runnables. These are pieces of code

that realize the functionality of the component. Each runnable must be associated with at

least one event, that runs the runnable as an action when triggered. The trigger of an event

can be (amongst many other):

 Timed, which can trigger the event periodically, or after a specific time

 Calling an operation of a client-server port

AUTOSAR also requires to declare all the memory that stores data for persistency, which

is called per instance memory. It is required because, in safety-critical environment,

dynamic memory allocation is forbidden, so everything has to be declared that cannot be

stored on the stack because, for example, it needs to persist data between two executions

of a runnable.

2. Background

 - 30 -

Moreover, AUTOSAR expects the developer to annotate the component with metadata

that store (amongst others), which runnable can access which ports, parameters, and per

instance memories and the domain of every variable in the interface. This information

can be useful for verification if used correctly.

2.6.2. Runtime Environment

AUTOSAR components communicate with other components through their ports. It is

the task of the RTE as a middleware to connect communicating components and to

provide access to the functionality of the BS if needed. However, the main task of the

RTE is to hide the hardware-dependability of the communication. It also hides whether

the communicating parties share the same ECU or not.

Figure 2.8: The communication paths between components

This notion is called the Virtual Function Bus (VFB), that in short, is responsible for

connecting the communicating parties. There are two kinds of connections between

components that the VFB hides:

 Intra-ECU: the same ECU runs the communicating components, so the

components share the CPU and memory.

 Inter-ECU: different ECUs run the communicating components, so the

components do not share CPU or memory

ECU

Basic software

RTE

AUTOSAR

component

ECU

Basic software

RTE

AUTOSAR

component

AUTOSAR

component

2. Background

 - 31 -

Figure 2.9: The virtual function bus

The communication methods of components are depicted in Figure 2.8. In the case of

Intra-ECU communication (between red and purple components), the RTE of that

particular ECU is responsible for connecting the communicating parties. However, in the

case of Inter-ECU communication (between purple and green components), the RTE

forwards the communication to the BS, which puts it on the bus connecting the

communicating ECUs. The BS of the other ECU parses the communication from the bus,

and the RTE of the other ECU forwards it to the correct port.

The RTE completely masks this difference; the components perceive only the VFB,

which forwards all communication. This phenomenon is portrayed in Figure 2.9.

2.6.3. Developing AUTOSAR components

The development of an AUTOSAR component usually follows a rigid waterfall or

V-model methodology, as safety-critical systems often do. It has a distinct requirement

design and model design phase, then coding and testing.

The development process starts with creating an AUTOSAR model. The model describes

the defined ports, parameters, per instance, memories, events, runnables, system and

ECU configurations, and other metadata of the component.

Next, the source code of the runnables can be written in native C code. After that, the

testing phase can begin. Testing requires a testing environment, that can mock de

behavior of the RTE, by making the developer able to set and check the values of ports,

parameters, amongst others. This environment can easily be generated based on the

AUTOSAR model, so only the source code of the tests has to be written.

VFB

AUTOSAR

component

AUTOSAR

component

AUTOSAR

component

2. Background

 - 32 -

Figure 2.10: The (simplified) development process of an AUTOSAR component

After the testing phase is finished, the component is compiled and deployed to an ECU,

where additional testing takes place. Additional code that is required to configure the

ECU can also be generated from the model.

The development process can be seen in Figure 2.10. It shows that both the model, and

the test cases are derived from the requirements, the ECU and testing environments are

generated from the AUTOSAR model, and both environments run the same source code.

Requirements

AUTOSAR

model

Component

source code

Testing

environment

Test case 1

Test case 2

⁝

ECU

3. CEGAR driven test generation in AUTOSAR components

 - 33 -

3. CEGAR driven test generation in

AUTOSAR components

This chapter presents a method that combines formal verification and test generation. It

also elaborates the algorithms and methods required for that, such as the test generation

methods that use the formal representation acquired by the formal verification. This

chapter also presents how it fits into the development process of an AUTOSAR

component.

3.1. Overview of approach

In the real world, the cost of an algorithm is an imperative factor. The cost in this context

consists of the time it needs to complete, and the computational power it requires. The

budget allocated to determine the correctness of a software is always finite, and as a

result, it needs to take the costs of every algorithm into account.

Model checking is an approach that can formally decide whether a given requirement

holds on a given model. Although the previous sentence is correct in terms of

mathematics, it tends to fail in practical application. The phenomenon of state-space

explosion causes the model checking algorithm to examine an enormous state-space, and

even when using abstraction, the worst-case is to traverse the whole state-space.

However, this will not work for software with potentially infinite state space.

Having a finite budget, and an algorithm whose runtime cannot be predicted, a model

checking algorithm rather have three different outputs in practice (Figure 3.1), in

opposite to the two possible outputs in theory (Figure 2.2). The possible practical outputs

are:

 Correct, where the requirement provably holds.

 Incorrect, where the requirement provably fails.

 Undecided, when it cannot be determined under an assigned cost budget (and

using the given algorithm), whether the requirement holds or not.

However, if the result is undecided, the computations performed during the verification

usually go to waste. The novelty of this approach that it saves the state-space

representation of the verification and uses it to focus the test case generation.

3. CEGAR driven test generation in AUTOSAR components

 - 34 -

Figure 3.1: The practical method of model checking

The CEGAR algorithm introduced in Chapter 2.4 is a model checking algorithm that

uses abstraction to handle state-space explosion. It takes a CFA as its input, where the

model is the CFA itself, and the requirement is that no error locations are reachable. It

also has the three possible outputs mentioned above. In case the model is correct, it can

yield a proof, in case it is incorrect, it can emit a counterexample. Additionally, if the

algorithm is terminated early, and the result is undecided, the abstract state-space

representation can be extracted in the form of an ARG. Later on, the test generation

methods are using the ARG.

If the result of CEGAR is undecided, additional measures have to be taken to ensure

correctness. The obvious choice is testing, which can decide if the SUT contains errors.

Tests can be generated using traditional test generation methods, however, using the

abstract state-space representation left over by the model checker, more precise tests can

be generated, that traverse the untraversed part of the state-space.

Nevertheless, testing cannot prove that the SUT is correct. If no test in a test suite founds

an error, then the answer in terms of correctness is still undecided. On the other hand,

different coverage indicators can reflect on how well the test suite checks the state-space,

which is an assurance of the quality and exhaustiveness of the testing. Safety-critical

standards also require to achieve high coverage during testing.

If the test suit finds an error in the SUT, then an example is given for which the program

is faulty so that it can be fixed later. It is also worth to be noted that the counterexample

yielded by the model checker can also be used to generate a test, which will obviously

fail, but it makes it executable in the testing environment.

Requirement Model

Model

checking

Incorrect

Counterexample

Correct

Proof

Undecided

State-space

representation

3. CEGAR driven test generation in AUTOSAR components

 - 35 -

Figure 3.2: Combining CEGAR and test generation

The method described above is depicted in Figure 3.2. The CEGAR algorithm has three

possible outputs. If the verification cannot succeed, the test generation method generates

a test suite from the abstract state-space representation of the verifier. On the other hand,

if the result is incorrect, the test generation method generated a simple test case based on

the counterexample, that shows the error. While executing the test suite, either an error

is found, or coverage is calculated at the end.

The traditional approach of AUTOSAR component development requires the developers

to write test cases by hand. However, when using the method described above, the test

cases can be generated automatically after the formal verification. Moreover, if the

program is incorrect, and either testing or the formal verification provides a

counterexample, a test case can be derived from it, that the testing environment can

execute to show the fault.

CFA

Abstractor

Incorrect

Counterexample

Correct

Proof

Undecided

ARG

Test

generation

Test

execution

Undecided

Coverage

Incorrect

Example

Refiner

Abstract counterexample

Refined precision

3. CEGAR driven test generation in AUTOSAR components

 - 36 -

To support formal verification, another environment needs to be developed that provides

an interface to the formal verification tool, and mocks the behavior of the RTE so that a

formal method could verify the component in question for a given requirement, which

also needs to be formalized. Figure 3.3 describes the AUTOSAR component

development methodology that includes formal verification as well. The requirements

for the formal method come from the requirements of the component, while the test suite

of the testing environment is the result of the test generation if the model checker did not

yield correct.

Figure 3.3: The improved methodology of AUTOSAR component development

3.2. Application of the CEGAR algorithm

This section details how the CEGAR algorithm is used to generate test cases. First, it is

modified to terminate if given conditions hold, then the information is extracted from the

abstract state-space representation it has built.

Requirements

AUTOSAR

model

Component

source code

Testing

environment

Test case

counterex.

Test case 1

ECU
Verification

environment

Req. 1

Req. 2

Test case 2

⁝

⁝

3. CEGAR driven test generation in AUTOSAR components

 - 37 -

3.2.1. Terminating the CEGAR loop

As the time required for the termination of a model checking algorithm is not predictable,

the algorithm needs to be stopped in a state where it produces a consistent state-space

representation.

1. Abstractor(𝐶𝐹𝐴, 𝑃, 𝑇𝐸𝑅𝑀):

2. 𝐴𝑅𝐺 ∶= ARG with initial location

3. FOREVER:

4. 𝑠 ∈ {incomplete nodes of 𝐴𝑅𝐺}

5. IF ∄𝑠 THEN:

6. ← CORRECT

7. ELSE IF ∃𝑠 and 𝑠 is an error location THEN:

8. ← COUNTEREXAMPLE(route from initial location to 𝑠)

9. ELSE IF 𝑇𝐸𝑅𝑀(𝐴𝑅𝐺) THEN:

10. ← UNDECIDED(𝐴𝑅𝐺)

11. ELSE:

12. IF ∃𝑟 ∈ {nodes of 𝐴𝑅𝐺}: 𝑟 covers 𝑠 THEN:

13. cover 𝑠 with 𝑟

14. ELSE:

15. expand 𝑠

Listing 3.1: The modified CEGAR algorithm

The CEGAR algorithm terminates in two cases: either the abstractor builds an abstract

state-space representation that cannot be expanded further and has no abstract error-state,

or the refiner proves that an abstract counterexample is feasible. However, to terminate

the algorithm before either happens, it needs to be modified accordingly.

The algorithm of the abstractor part of the CEGAR loop does computationally-heavy

operations while it builds the abstract state-space. Moreover, it contains a cycle, which

repeats itself while either all the nodes in the built ARG are complete, or an abstract

error-state is encountered. However, neither of the previous conditions are predictable,

in terms of how much iteration a cycle needs to do so.

Let us introduce a third condition, which upon being true, exits the cycle of the abstractor,

and terminates the CEGAR algorithm with undecided as a result. This third condition

should be a predicate function that takes the ARG as a parameter and returns true if the

algorithm should terminate, as any information about the state-space representation can

3. CEGAR driven test generation in AUTOSAR components

 - 38 -

be extracted from the ARG. The modified version of the algorithm can be seen in Listing

3.1.

3.2.2. Extracting information from an ARG

In case, the result of the CEGAR algorithm is undecided, it yields the ARG, as the state

space representation. Information can be extracted from it that can be useful when

generating test cases. The goal of the generated test cases is to find errors in the program

by navigating through an error-state.

Nodes of an ARG

Unreachable Reachable

Complete Incomplete

Table 3.1: The different types of nodes in an ARG

In an ARG, each node is reachable or unreachable. If a node is unreachable, it means that

there are no such input values, so the execution path goes through an unreachable node.

The presence of unreachable nodes in an ARG is the result of using abstraction, as it

overapproximates the reachable state-space. For example, abstract error-states are only

reachable if the program is incorrect. As no execution goes through unreachable nodes,

they can be removed from the ARG.

If a node is reachable, it is safe to assume, that it is not an abstract error-state, because if

it were, the refiner would have concretized it, and it would have led to an incorrect

termination of CEGAR. If a node is reachable, it can be either complete or incomplete.

Concerning the reachability of error-states from them, a complete node is either:

 Expanded: in this case, every error-state reachable from this node is reachable

through one of its children; or

 Covered: in this case, the set of the reachable states from this node is a subset of

the set of reachable states from another node; it follows, that all error-states

reachable from this node are reachable from the other node.

It leads to the conclusion that in terms of reachability of error-states, no complete nodes

need to be examined, as every reachable error-state can be reached from another node as

well.

The only remaining nodes are the incomplete nodes. The node is incomplete because the

CEGAR algorithm was terminated before it could either expand or cover them. In other

words, these have not yet been traversed. As a result, they act as an entry point to the

3. CEGAR driven test generation in AUTOSAR components

 - 39 -

untraversed part of the state-space, every state and error-state of the state-space are

reachable through one of the incomplete nodes.

Figure 3.4: Part of an Abstract Reachability Graph

Additional information can be extracted from the ARG. The edges in an ARG describe

operations, and the labels contain information about the already traversed state-space.

Example 3.1: In Figure 3.4, an ARG can be seen. Only one node, 𝑙𝑒 is unreachable

(as (𝑦 > 0) ∧ (𝑦 < 0) →⊥). The rest of the nodes are reachable. The nodes 𝑙1, 𝑙2 and

𝑙3 are complete as all of them are expanded. The remaining nodes, 𝑙4 and 𝑙5 (denoted

by a grey background) are incomplete, because they are neither expanded nor

covered.

3.3. Test generation

This chapter presents the novel test generation approach introduced in the paper. It starts

with symbolic execution, then applies black box testing techniques, such as boundary

value analysis, and checks for variable overflows in the program.

𝑙1, 𝑦 > 0

𝑙2, 𝑦 > 0

𝑙𝑒 𝑙3, 𝑦 > 1

ℎ𝑎𝑣𝑜𝑐 𝑥

[𝑦 ≥ 0]

𝑦 ≔ 𝑦 + 1
[𝑦 < 0]

𝑙5, 𝑦 > 1, 𝑥 ≥ 0 𝑙4, 𝑦 > 1, 𝑥 < 0

[𝑥 ≥ 0]

[𝑥 < 0]

3. CEGAR driven test generation in AUTOSAR components

 - 40 -

3.3.1. Symbolic execution of the abstract state-space

representation

When CEGAR cannot verify the requirement and terminates early, abstract state-space

representation can be extracted from it. This ARG describes the already traversed part of

the state-space and denotes the doorways to the untraversed part. It follows that the start

of every possible path the program execution might take is described in the ARG.

The goal of symbolic execution is to traverse all possible execution paths in the program.

The main issue is that because of the path-explosion, it is usually impossible to generate

a test for every path under a finite budget and time. However, the abstract state-space

yielded by the formal method has finite size and eliminates the branches as well, so path-

explosion does not occur.

The ARG excluding the covering edges is a tree, in which the path from the root of the

tree (the initial location) to one of the leaves describes a unique path of execution. The

number of these paths can be reduced if those are excluded that traverse through an

unreachable node, or end in a complete node. Paths ending in complete nodes can be

eliminated because no error-state is reachable from them that is not reachable from at

least another node, and the task of testing is to find errors.

Figure 3.5: Symbolic execution of a path excerpt

It follows that only those paths should be focused on when generating tests that end in

an incomplete node. A path from the root to an incomplete node is a series of nodes and

transitions, which contain operations. A symbolic state (𝛿) and a path constraint (𝜋) must

be maintained to apply symbolic execution. The symbolic state requires each variable

always to have an associated symbolic value, which is used in the expressions.

Starting symbolic execution, 𝛿 = {}, 𝜋 = ⊤. Given two adjacent nodes, 𝑛𝑖 and 𝑛𝑗 , and

operation 𝑜𝑝 between them, the algorithm is:

 For every label 𝐿 of 𝑛𝑖, and for every variable 𝑣 in 𝐿, 𝑣 must be substituted with

𝛿(𝑣).

𝑙1, 𝑦 > 0

𝑙2, 𝑦 > 0, 𝑥 = 1

ℎ𝑎𝑣𝑜𝑐 𝑥

[𝑥 = 0]

𝑥 ≔ 𝑥 + 1

𝑙1, 𝑦1 > 0

𝑙2, 𝑦1 > 0, 𝑥2 = 1

ℎ𝑎𝑣𝑜𝑐 𝑥1

[𝑥1 = 0]

𝑥2 ≔ 𝑥1 + 1

3. CEGAR driven test generation in AUTOSAR components

 - 41 -

 If 𝑜𝑝 is a deterministic assignment 𝑥 ≔ 𝑒𝑥𝑝𝑟, different rules apply for the left

and the right-hand side:

o Every variable 𝑣 in 𝑒𝑥𝑝𝑟 side must be substituted with 𝛿(𝑣), leading to

𝑒𝑥𝑝𝑟′.

o The variable 𝑥 on the left-hand side must be replaced by a new symbolic

value that has never been used before, and the symbolic state updated

accordingly, so 𝛿(𝑥) = 𝑥𝑖, where 𝑥𝑖 has never been used before.

o 𝜋′ = 𝜋 ∧ (𝑥𝑖 = 𝑒𝑥𝑝𝑟′)

 If 𝑜𝑝 is a non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥, then 𝑥 must be replaced by a

new symbolic value that has never been used before, and the symbolic state

updated accordingly, so 𝛿(𝑥) = 𝑥𝑖, where 𝑥𝑖 has never been used before.

 If 𝑜𝑝 is a guard [𝑐𝑜𝑛𝑑], then for every variable 𝑣 in 𝑐𝑜𝑛𝑑, 𝑣 must be substituted

with 𝛿(𝑣), leading to 𝑐𝑜𝑛𝑑′. Also 𝜋′ = 𝜋 ∧ 𝑐𝑜𝑛𝑑′.

Example 3.2: An example of the algorithm described above can be seen in Figure

3.5. The left-hand side depicts a path, while the right-hand side depicts the same path

but with the variables substituted.

In the end, the path constraint is a first-order formula, that can be fed to an SMT-solver,

which will yield a model. The result cannot be unsatisfiable, as only reachable nodes are

part of the path. The values of the non-deterministic assignments or inputs can be

extracted from the model, and based on them, a test case can be generated that executes

the exact path the path constraint describes. The method above can be repeated for all

paths, resulting in the test suite.

3.3.2. Robustness test generation for the untraversed

state-space

The robustness of a program is its ability to handle errors during execution. It contains

the ability to cope with erroneous or unexpected inputs or generally a wide range of

inputs. There are multiple methods that support robustness testing, such as equivalence

partitioning and boundary value analysis.

When using equivalence partitions, the domain of every input variable is split into

multiple partitions. A test case takes a partition for each input variable and chooses a

value from them. When boundary value analysis is applied, the values taken from the

partitions are systematically the MIN-, MIN, MIN+, NOM, MAX-, MAX, MAX+

values.

3. CEGAR driven test generation in AUTOSAR components

 - 42 -

The untraversed part of the state-space can be thought of as a black box, whose input is

modifiable, and whose output is observable, but its inner workings are not transparent. It

follows that black box testing techniques can be applied. Black box techniques require a

specification, which should be the specification of the program refined by the data

gathered during the symbolic execution.

1. RobustnessTesting(𝐴𝑅𝐺):

2. 𝑇 ≔ {}

3. FORALL 𝑃 ∈ {possible combinations of equivalence

partitions} DO:

4. FORALL 𝑛 ∈ {incomplete nodes of 𝐴𝑅𝐺} DO:

5. 𝑃 ≔path from root to 𝑛

6. 𝐶 ≔path constraint of 𝑃

7. FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO:

8. 𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃)

9. FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO:

10. 𝑀1 ≔ model of SMT-problem 𝐶 while optimizing for

min(𝑣)

11. 𝑀2 ≔ model of SMT-problem 𝐶 while optimizing for

max(𝑣)

12. 𝑇 ≔ 𝑇 ∪ {test cases based on 𝑀1 and 𝑀2}

13. ⟵ 𝑇

Listing 3.2: The algorithm generating test cases with boundary value analysis

Taking a symbolic executed path, the end of the path denotes a doorway into the

untraversed state-space. The untraversed state-space has two kinds of input values: first,

the non-deterministic assignments inside, second the variables that have value in the

doorway, the so-called entry-variables.

However, the entry-variables are not input variables of the program, only of the black

box, so the specification of the program does not contain information regarding them. To

calculate their boundary, the symbolic execution algorithm should be modified. The

modified algorithm is depicted in Listing 3.2.

First, the path constraint should be calculated, as described in the previous chapter. Then

information about the equivalence partitions should be inserted. Based on the domain of

𝑥 in a partition, for which non-deterministic assignment ℎ𝑎𝑣𝑜𝑐 𝑥 is present on the path,

and the corresponding symbolic value is 𝛿(𝑥) = 𝑥1:

 If 𝐷𝑥 = [𝑎; 𝑏], then 𝜋′ = 𝜋 ∧ (𝑎 ≤ 𝑥1) ∧ (𝑥1 ≤ 𝑏).

3. CEGAR driven test generation in AUTOSAR components

 - 43 -

 If 𝐷𝑥 =]𝑎; 𝑏[, then 𝜋′ = 𝜋 ∧ (𝑎 < 𝑥1) ∧ (𝑥1 < 𝑏).

The steps above should be repeated for every non-deterministic assignment. Then, as

boundary value analysis requires one variable to be on minimal or maximal value, while

others are on nominal, one of the variables must be chosen. Following, the SMT-problem

must be fed to an SMT-solver with an optimization constraint. This constraint should

specify that the given variable should have a minimal or maximal value. As a result, such

a model is returned from the set of possible models for the SMT-problem, in which the

value of that particular variable is minimal or maximal, while the other variables have a

possible (not necessarily nominal) value.

The method above should be repeated for all the non-deterministic variables

systematically, resulting in a set of test cases.

Figure 3.6: Path in an ARG

These test cases differ from a traditional boundary value analysis presented test suite

because they are more precise. First, the formal method proves that the program is correct

for some part of the domain while undecided for another part. The path constraint

removes the correct part from the possible values, so in the resulting model, the minimal

value is the lowest possible value, the untraversed state-space is reachable with on that

path, while the maximal value is the highest possible.

Example 3.3: In Figure 3.6, there is a path in an ARG. The path goes from the initial

location 𝑙1 to the incomplete node 𝑙3 The domain of both its input variables is [0; 15],

so a 4-bit unsigned integer, and there are no equivalence partitions.

The path constraint derived from the path is 𝜋 = (𝑥1 > 0) ∧ (𝑦1 > 0) ∧ (𝑧1 = 𝑥1 +

𝑦1) ∧ (𝑧1 ≤ 5). The variables in non-deterministic assignments are 𝑥1 and 𝑦1. Adding

the domain of variables to the path constraints yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧

(𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). With two input variables, four optimization

constraints can be formed:

𝑙2, 𝑥 > 0, 𝑦 > 0

𝑙3, 𝑧 ≤ 5

ℎ𝑎𝑣𝑜𝑐 𝑥

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑧 ≔ 𝑥 + 𝑦

[𝑧 ≤ 5]

𝑙1

3. CEGAR driven test generation in AUTOSAR components

 - 44 -

 𝑚𝑖𝑛(𝑥1): one of the models is {(𝑥1 = 1), (𝑦1 = 1)}

 𝑚𝑎𝑥(𝑥1): the model is {(𝑥1 = 4), (𝑦1 = 1)}

 𝑚𝑖𝑛(𝑦1): one of the models is {(𝑥1 = 1), (𝑦1 = 1)}

 𝑚𝑎𝑥(𝑦1): the model is {(𝑥1 = 1), (𝑦1 = 4)}

Based on this information, four test cases can be generated, which are the four models

listed above.

3.3.3. Variable overflow in the state-space

Variable overflow is an exciting topic in formal verification because the SMT-solvers

usually work with mathematical variables with infinite domains. On the other hand, the

variables in programs are represented on a finite number of bits, so their domain is also

finite.

There are multiple methods to circumvent this phenomenon, for example:

 Define every arithmetical operation as an operation over bit-vectors. Although it

works, it has a significant drawback on the performance.

 Define every arithmetical operation as a modulo operation. This method has a

lesser drawback on the performance; however, this way, it cannot be determined

later that overflow occurred.

 Test for overflow after verification.

Although testing overflow does not prove its absence, this paper uses this approach,

because AUTOSAR development requires compliance with safety-critical standards,

such as MISRA C, and they always forbid using code that overflows. This rule eliminates

option two from the previous list, while the significant performance loss the first, leaving

only the third approach.

The overflow might occur in two situations: either in the traversed or in the untraversed

part, which requires different approaches. Overflow always occurs as a result of

arithmetical operations.

If the overflow happens in the traversed part, it means that the result of an arithmetic

variable is outside the domain of the target variable. Fortunately, this can easily be tested

by an SMT-solver, as done by the algorithm in Listing 3.3.

3. CEGAR driven test generation in AUTOSAR components

 - 45 -

1. OverflowInTraversed(𝐴𝑅𝐺):

2. 𝑇 ≔ {}

3. FORALL 𝑒 ∈ {edges of 𝐴𝑅𝐺 containing arithmetic operation}

DO:

4. 𝑥 ≔target variable of arithmetic operation in 𝑒

5. 𝑃 ≔path from root to destination of 𝑒

6. 𝐶 ≔path constraint of 𝑃

7. FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO:

8. 𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃)

9. 𝐶1 ≔ 𝐶 ∧ (𝛿(𝑥) > maximum of its domain)

10. IF SMT-problem 𝐶1 is satisfiable THEN:

11. ← OVERFLOW

12. 𝐶2 ≔ 𝐶 ∧ (𝛿(𝑥) < minimum of its domain)

13. IF SMT-problem 𝐶2 is satisfiable THEN:

14. ← OVERFLOW

15. ⟵ NO OVERFLOW

Listing 3.3: The algorithm checking overflow in traversed part if the state-space

First, every operation must be located that uses arithmetic operation. These are the

variables where overflow might occur. For each operation, a path must be generated that

leads from the root to the destination of that operation. Assignments on this path could

cause an overflow. Then the path constraint should be calculated, and the domain of

every non-deterministic variable should be added to the formula, similar to the method

in the previous section.

In the next step, a clause must be added to the path constraint that states that the value of

the variable (can be extracted from the symbolic state) is greater than the top part of its

domain. This modified SMT-formula can be only true, if the value of that variable is

outside of its domain, so an overflow occurs. This check can be repeated for a lower

bound check, as well.

The other case, when the overflow is in the untraversed part, is slightly more complicated

than the first scenario. However, it is worth to be noted, that overflow usually occurs

when one or more variables are near their upper limit and do arithmetic operations. Based

on this observation, a method very similar to the one described in the previous section

can be designed to test the untraversed part for overflows.

3. CEGAR driven test generation in AUTOSAR components

 - 46 -

1. OverflowInUntraversed(𝐴𝑅𝐺):

2. 𝑇 ≔ {}

3. FORALL 𝑛 ∈ {incomplete nodes of 𝐴𝑅𝐺} DO:

4. 𝑃 ≔path from root to 𝑛

5. 𝐶 ≔path constraint of 𝑃

6. FORALL 𝑣 ∈ {non-deterministic variables in 𝐶} DO:

7. 𝐶 ≔ 𝐶 ∧ (domain of 𝑣 in 𝑃)

8. FORALL 𝑣 ∈ {variables valid in 𝑛} DO:

9. 𝑀1 ≔ model of SMT-problem 𝐶 while optimizing for

min(𝑣)

10. 𝑀2 ≔ model of SMT-problem 𝐶 while optimizing for

max(𝑣)

11. 𝑇 ≔ 𝑇 ∪ {test cases based on 𝑀1 and 𝑀2}

12. ⟵ 𝑇

Listing 3.4: The algorithm generating test cases to test overflow in untraversed part

The algorithm (described in Listing 3.4) should navigate to each incomplete node, as in

the previous case. Also, the path constrained must be constructed, and the domain

information should be added. However, the optimization constraint should be the

minimization and maximization of each variable that is valid in the current incomplete

node. This way, the variables at the entry of the untraversed state-space have their lowest

or highest possible value and are likely to overflow if they indeed do.

Figure 3.7: Two paths of an ARG

Example 3.4: On both sides of Figure 3.7, there is a path in an ARG. The paths go

from the initial location 𝑙1 to the incomplete node 𝑙3.

𝑙2, 𝑥 > 0, 𝑦 > 0

𝑙3, 𝑧 ≤ 5

ℎ𝑎𝑣𝑜𝑐 𝑥

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑧 ≔ 𝑥 + 𝑦

[𝑧 ≤ 5]

𝑙1

𝑙2, 𝑥 > 0, 𝑦 > 0

𝑙3, 𝑧 > 5

ℎ𝑎𝑣𝑜𝑐 𝑥

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑧 ≔ 𝑥 + 𝑦

[𝑧 > 5]

𝑙1

3. CEGAR driven test generation in AUTOSAR components

 - 47 -

The domain of both its input variables and 𝑧 is [0; 15], so a 4-bit unsigned integer.

The path constraint derived from the left-hand side of the path is 𝜋 = (𝑥1 > 0) ∧

(𝑦1 > 0) ∧ (𝑧1 = 𝑥1 + 𝑦1) ∧ (𝑧1 > 5). The variables in non-deterministic

assignments are 𝑥1 and 𝑦1. Adding the domain of variables to the path constraints

yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧ (𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). Assuming that 𝑧 is

under- or overflowing, the SMT-solver is fed with the following problems:

 𝜋′ ∧ (𝑧1 < 0): it is unsatisfiable, so 𝑧 does not underflow

 𝜋′ ∧ (𝑧1 > 15): it is satisfiable, so 𝑧 overflows (for inputs {(𝑥1 = 15), (𝑦1 = 15)})

Based on this information, one test case can be generated, which causes the program

to overflow.

On the other hand, the path constraint derived from the right-hand side of the path is

𝜋 = (𝑥1 > 0) ∧ (𝑦1 > 0) ∧ (𝑧1 = 𝑥1 + 𝑦1) ∧ (𝑧1 ≤ 5). The variables in non-

deterministic assignments are 𝑥1 and 𝑦1. Adding the domain of variables to the path

constraints yields 𝜋′ = 𝜋 ∧ (𝑥1 ≥ 0) ∧ (𝑥1 ≤ 15) ∧ (𝑦1 ≥ 0) ∧ (𝑦1 ≤ 15). Aiming

for the overflow of 𝑧, the SMT-solver is fed with the path constraint, with the following

optimization constraint:

 𝑚𝑖𝑛 (𝑧1): the model is {(𝑥1 = 1), (𝑦1 = 1)}

 𝑚𝑎𝑥 (𝑧1): one of the possible models are {(𝑥1 = 3), (𝑦1 = 2)}

Based on this information, two test cases can be generated, which might lead to

overflow.

3.4. Integrating formal verification in the

AUTOSAR development process

AUTOSAR already has development environments to build and test components. To

develop a verification environment, first, a verification environment must be generated.

This environment must mock the behavior of the RTE and model the behavior of the

component as well. After the verification and test generation is finished, the test cases

emitted by the test generator must be transformed so that they can be fed to the testing

environment.

3. CEGAR driven test generation in AUTOSAR components

 - 48 -

Figure 3.8: Integrating verification in the AUTOSAR methodology

The methodology described above can be observed in Figure 3.8. It depicts three

different operations. First, the operation that generates the testing environment from the

model, which is assumed to be developed and fully functional. Second, the operation that

generates the verification environment from the model. Finally, the operation that

transforms a test case emitted by the verification environment to fit the needs of the

testing environment.

3.4.1. Modeling the behavior of a component

An AUTOSAR component runs on a single ECU, which has implications. It is single-

threaded, so no two operations using the same memory can overlap in time. The RTE

also buffers all the messages, requests to the component, so every message is handled

when all other operations are finished. It leads to the realization that an AUTOSAR

component can be modeled as a statechart with only one state. The structure of the

statechart is:

 It has only one state, which denotes that the component is waiting for an input or

an event.

 The initial location and the state are connected by a transition, whose action

initializes the parameters and per instance memories of the component.

AUTOSAR

model

Component

source code

Testing

environment

Test case

counterex.

Test case 1

...

Verification

environment

Req. 1

Req. 2

...
Test case 2

3. CEGAR driven test generation in AUTOSAR components

 - 49 -

 For every input sender-receiver port, a loop transition is created, that reads the

value of the port. These reads are non-deterministic assignments, as there is no

information on what the result will be.

 For every providing client-server port, a loop transition is created, that reads the

value of the input parameters, fires the corresponding event and runnable, and

writes the value of the output parameters.

 For every timed event, a loop transition is created, that fires the corresponding

runnable.

This statechart can easily be transformed into a C code that interacts with the

implementation of the component.

3.4.2. Writing verifiable requirements

To run verification, the requirements must be entered to the verifier as well. As it was

described in earlier chapters, in case of software components, the easiest way to do so is

to write assertions, and the requirement is that the assertions never fail.

These assertions can be placed in the code by the developer, similarly to how fault

injection is usually handled [17].

3.4.3. Generating the verification environment

The verification environment mocks the behavior of the RTE and the behavior of the

component. To mock the RTE, an implementation must be generated that has the same

standard interface that is required, but its inner workings are compatible with the

verification tool.

First of all, a method should be devised for the RTE. The component using the mock-

RTE should be able to read from ports and write to ports, should be able to read parameter

data, should be able to read and write per instance memories, and the component must

handle if the RTE fires events.

The AUTOSAR standard fixes how the RTE should interface to the source code of the

component: it specifies functions for each scenario, where the name of the function can

be derived from the name of the component and the port; and the parameters of the

functions are specified by the data that is passed in that scenario. This fixed interface is

called the contract of the component and can be generated from the AUTOSAR model.

The implementation of the contract consists of function definitions, which can also be

generated. In case of a port, the corresponding functions should provide persistent storage

of the value of the port, and the functions should be able to read and write the data. The

3. CEGAR driven test generation in AUTOSAR components

 - 50 -

same is true for the per instance memories. However, in case of events, the

implementation should fire the runnables it is bound to.

Example 3.5: Given a component with name SampleComponent. It has:

 Input sender-receiver port named InPort, with payload named inData with type

dInData

 Output sender-receiver port named OutPor, with payload named outData with type

dOutData

 Runnable named SampleRunnable

 Timed event named SampleEvent, which fires SampleRunnable

The contract and the RTE has the following functions defined:

 Std_ReturnType

Rte_Read_SampleComponent_InPort_inData(dInData* data)

 Std_ReturnType

Rte_Read_SampleComponent_OutPort_outData(dOutData const*

data)

 void SampleComponent_SampleRunnable(void)

 void SampleComponent_SampleEvent(void)

3.4.4. Transforming test cases

The test cases outputted by the verification environment must be transformed so they can

be fed to the testing environment. While the input of the transformation heavily depends

on the formal model and the structure of the generated test cases, the output heavily

depends on the format required by the testing environment.

Fortunately, the testing environment uses the contract of the model as well to provide

mocking functionality of the RTE, so the assignments of the test case have to be matched

to function parameters and the order in which the functions are called.

Another exciting aspect is the coverage of the test cases. Although the testing

environment can measure the coverage of the test cases, some part of the code will not

be covered. The reason is that it has been proved to be correct by the formal verification,

thereby no test case was targeting that part of the state-space. There are different

approaches as to how to measure coverage during formal verification [18] [19]. The

result of one such metrics can be merged by the coverage of testing, resulting in a unified

coverage indicator, but this process is not the target of investigation of this paper.

3. CEGAR driven test generation in AUTOSAR components

 - 51 -

3.5. Related work

The algorithm proposed in this chapter can be approached from different perspectives.

First, it is an attempt to combine formal verification with test generation, and second, it

is an attempt to apply formal verification tools for automotive software.

This main idea of this paper idea is based on the author’s Scientific Students’ Association

Report in 2018 [20]. That approach presented a working solution for combining formal

verification and test generation. Compared to that approach, this paper presents different,

more precise test generation techniques, as well as its integration with AUTOSAR.

One of the attempts by Maria Christakis et al. in 2016 [21] tried guiding dynamic

symbolic execution towards unverified program paths and achieved impressive results.

In contrast, this paper uses symbolic execution rather than dynamic symbolic execution,

as the latter often requires special instrumentation. Moreover, that approach did not focus

on the type of verification algorithm.

Another approach was published by Mike Czech et al. in 2015 [22] that combined formal

verification with testing. Their approach tried running a formal method on a program

than tried to generate another program, that only represented the unverified part of the

state-space. Later on, the newly generated software was fed to test generation tools. In

contrast to that approach, this paper does not generate intermediate software, as it

possibly could lead to losing information about the state-space. Instead, it uses the state-

space representation directly to generate tests, requiring new kinds of test generation

methods.

In terms of verifying automotive software, there are numerous attempts [23] [24] [25].

The main drawbacks mentioned by these attempts is that an automotive system is a

massively distributed, concurrent system, which causes significant difficulties during

verification. However, the approach of this paper significantly simplifies the underlying

problem, as it tries to verify only one component.

4. Implementation

 - 52 -

4. Implementation

This chapter presents an implementation based on the approach introduced earlier in this

paper. It uses the open-source Theta framework as the base of its functionality, while it

uses the LLVM framework to provide a frontend for C programs.

4.1. Theta

Theta [26] is a model checking framework developed and maintained by the Fault-

Tolerant Systems Research Group of Budapest University of Technology and

Economics. It is a highly modular and configurable framework and provides abstraction

refinement-based algorithms for reachability analysis of multiple formalisms. Theta

provides an architecture that enables the definition of formal input formalisms, that might

have a higher level frontend, and applies an abstraction-based, highly configurable model

checking algorithms on them.

The formalisms in Theta model real-life systems, for example, different kinds of

software, hardware, or communication protocols. These are low-level, first-order logic,

and graph-based representations of their respected real-life counterpart. These

formalisms tend to have a high-level language front-end, which maps a user-friendly text

or model-based language to the low-level formalism. Theta currently supports symbolic

transition systems (STS) [27], control flow automata (CFA) [5], and timed automata

(XTA) [28].

Theta provides an analysis back-end that provides a highly configurable CEGAR

algorithm. It also defines various abstraction domains, abstraction and refinement

strategies, different ART-building methods, and algorithms based on these components.

The back-end is general, as most of its components work for all formalisms. However, it

requires the formalisms to provide an interpreter that performs the formalism specific

steps of the model checking procedure.

Finally, Theta defines an interface to an SMT-solver, as most of its components and

algorithms rely on the satisfiability of first-order formulas. The solver interface supports

various solving or interpolation techniques. Theta also provides a binding to the Z3 SMT-

solver, which implements this interface.

The overview architecture of Theta can be seen in Figure 4.1. The CEGAR algorithm

can be initialized with multiple parameters that modify its behavior. The chosen

formalisms define the interpreter that the abstractor uses to build the abstract state-space.

4. Implementation

 - 53 -

Moreover, the interpreters and the refiner are using the functionality of the SMT-solver.

The abstract state-space is built in the form of an abstract reachability graph, and it can

be extracted after the verification ended, making it ideal for the implementation of the

approach introduced in the previous chapter.

Figure 4.1: The overview architecture of Theta

4.2. The theta-llvm tool

One of the critical aspects of this implementation that the source code of an AUTOSAR

component needs to be transpiled to a CFA before the formal verification or the test

generation might begin. Theta provides a tool named theta-llvm [29] for that, which

utilizes the LLVM framework [30], and is able to generate a CFA from C source files.

The tool is able to compile and link multiple C source files and generate one single CFA

from them. The AUTOSAR architecture requires that the source code is separated into

Language front-ends

Analysis back-end

SMT-solver interface

CEGAR

Z3

Abstractor Refiner

Interpreter

ARG

Parameters

Domain Abstraction Refinement

CFA STS XTA …

…

4. Implementation

 - 54 -

multiple source files (component source, helper functions, main function), so this feature

is heavily used.

Another non-trivial feature is the support of pointers. As of today, theta-llvm only

supports pointers to primitive values but not to composites. As it was demonstrated

earlier, the AUTOSAR ports and parameters are mapped to functions that take pointers

to composite data structures as their arguments. These composite structures can be

flattened to primitive values, making theta-llvm able to cope with them.

4.3. CEGAR based test generation framework

The core of the implementation is a configurable and extensible framework that executes

the approach described in Figure 3.2. It is built on top of Theta and uses the algorithms

and formalisms defined in it.

The framework provides two environments:

 The verification environment, that when given a CFA, executes a CEGAR

algorithm on it, and then generates formal test cases based on the result.

 The testing environment, that when given a formal test case, it first concretizes it

and executes it.

4.3.1. The verification environment

The verification environment aims to verify a CFA representation of a program, and

when that fails, it generates test cases based on the abstract state-space representation

extracted from the formal method. The overview of the verification environment can be

seen in Figure 4.2.

The environment takes a CFA provider and configuration parameters as input. Then the

CFA provider produces a CFA, and the CEGAR algorithm in Theta is executed on it.

The configuration parameters contain the information about the abstraction domain, the

abstraction or refinement strategies, and contain the conditions upon which the CEGAR

algorithm terminates early yielding an undecided result.

The Theta framework was modified to include termination conditions in the CEGAR

loop. Four termination conditions were implemented:

 Never: This condition does not terminate the algorithm early; it only stops when

the verification succeeds.

 Max 𝑁 nodes: This condition allows the expanding of nodes in the abstract

reachability graph as long as the total number of nodes in the graph is at most 𝑁.

4. Implementation

 - 55 -

 Max 𝑁 depth: This condition allows the expanding of nodes in the abstract

reachability graph as long as no routes between the root of the graph, and a leaf

is longer than 𝑁.

 Max 𝑇 seconds: This condition allows the expanding of nodes in the abstract

reachability graph until 𝑇 seconds elapses.

Moreover, two meta-conditions were implemented to allow the arbitrary combination of

the terminating conditions above:

 Any of these: This condition gets one or more termination conditions as

parameter, and allows the expanding of the reachability graph until one of its

parameters signal the algorithm to terminate.

 All of these: This condition gets one or more termination conditions as

parameter, and allows the expanding of the reachability graph until all of its

parameters signal the algorithm to terminate.

Figure 4.2: The overview architecture of the verification environment

CFA provider

CEGAR

Incorrect test

generator

Test

generator 1

Test

generator 2

Parameters

CFA

Counter-

example
ARG

Safety result
List of test

cases 1

List of test

cases 2

Incorrect test

case

…

4. Implementation

 - 56 -

After the CEGAR algorithm terminates, test generation is performed conditionally, based

on the correctness. The result of the test generators is a list of test cases. A test case on

this level is a map that maps the input variables of the program to a concrete value.

When the CEGAR algorithm terminates, if the result is incorrect, the counterexample is

extracted and passed to an incorrect test generator. The counterexample is a path in the

state-space of the program, with the values of the variables on the path bound to a

concrete value. A test case can easily be generated from this path by collecting the values

of the input variables.

When the result is undecided after termination, multiple test generators are executed.

These test generators take the abstract reachability graph extracted from the CEGAR

algorithm and generate test cases based on it. Three test generation strategies were

implemented:

 Robustness testing: It generates test cases based on the technique described in

Section 3.3.2.

 Overflow testing of the untraversed state-space: It generates test cases based on

the technique described in Section 3.3.3.

 Overflow testing of the traversed state-space: It generates test cases based on the

technique described in Section 3.3.3.

These implementations required an SMT-solver that is capable of optimization

constraints. Z3 is able to use them, however, Theta did not have an interface to call this

part of Z3. The Theta framework was modified to include an interface that abstracts

solvers with optimization constraints, and the Z3 binder was extended to implement this

interface as well.

The output of the verification environment is the result of the CEGAR algorithm and the

list of the test cases generated by the executed test generators.

4.3.2. The testing environment

The goal of the testing environment is to execute the tests generated by the verification

environment. The overview of the testing environment can be seen in Figure 4.3.

The environment takes the CFA provider and the list of generated test cases as inputs.

The first step is to concretize the test cases to make them executable, then execute them

to evaluate the result.

The verification environment results in formal test cases that define the designated value

of each input variable. The goal of the test concretizers is to map these formal test cases

to a language that is able to test the program. To do so, information about the CFA, and

4. Implementation

 - 57 -

information about the CFA generation process might be extracted from the CFA

provider. This process depends on a concrete CFA provider, as it might contain language-

specific information.

Figure 4.3: The overview architecture of the testing environment

After the concrete tests were generated, they can be executed. The test executors execute

the tests optionally using information provided by the CFA provider. This process also

depends on a concrete CFA provider, as it might contain language-specific information.

As can be seen, the testing environment is a generic environment that depends on the

CFA generator, so it depends on the input language. For each language, the framework

tries to verify, a CFA provider and a testing environment need to be provided; however,

the verification algorithms are general, independent of the language.

4.4. LLVM frontend

The implementation also contains a frontend to apply formal verification driven test

generation on C programs. To do so, it utilizes the LLVM framework and the theta-llvm

toolchain. The LLVM frontend is based on the framework introduced in the previous

chapter, so it defines a CFA provider and a testing environment.

CFA provider

Incorrect test

concretizer

Test

concretizer 1

Test

concretizer 2

List of test

cases 1

List of test

cases 2

Incorrect test

case

...

Test

executor 1

Test

executor 2

Incorrect test

executor

Concrete

tests 1

Concrete

tests 2

Concrete

incorrect test

Safety result

...

4. Implementation

 - 58 -

An overview of the LLVM-based testing environment can be seen in Figure 4.4. The

result of the test concretization process is a C file that can be linked against the rest of

the source code, making an executable.

Figure 4.4: The LLVM-based testing environment

4.4.1. Providing a CFA

The formal verification method requires a formal model of the software. This formal

model is the CFA, so there needs to be a way to transform C programs to CFA. The

conversion requires a three-step process:

 First, each C file must be compiled to LLVM bitcode. Since the language used is

C, the Clang compiler can achieve this.

 Then, the generated LLVM bitcode files need to be merged into a single bitcode

file for theta-llvm. The tool llvm-link can complete this task.

 Finally, the LLVM bytecode can be converted to a CFA using the theta-llvm tool.

It is worth to be noted, that the more assertion in a code is, the harder it is for the

verification algorithm to prove correctness. As a countermeasure, formal methods often

rely on slicing, which leaves only one assertion in the code to verify, but emits multiple

CFAs, one for each assertion. Although the tool theta-llvm supports slicing, it is not yet

CFA provider

theta-llvm

Test

concretizer

List of test

cases

Test executor

LLVM

Test executor

LLVM, UBSan

C file

Safety result

C files

4. Implementation

 - 59 -

utilized by the implementation due to difficulties concretizing the test cases in this

scenario.

There are certain features that must be present in the CFA. First, the nondeterministic

assignments need to appear in the source code, and the error locations as well. To do so,

theta-llvm also defines three special functions:

 int __theta_nondet_int(): It denotes a non-deterministic assignment of a

32-bit integer.

 void __theta_assert(bool): It denotes an assertion. The failure of an

assertion is mapped to an error location in the CFA.

 void __theta_exit(int): It denotes an exit point in the program.

These functions should be used in the source code: all non-deterministic assignments

must be mapped using __theta_nondet_int(), and the developer should write the

assertions using __theta_assert(bool).

4.4.2. Concretizing the test cases

To execute the C source, an implementation must be supplied for all undefined functions.

The undefined functions are the three functions theta-llvm requires, and their

implementation should be the following:

 int __theta_nondet_int(): The implementation should return the results

of non-deterministic assignments in the correct order. This behavior can be

achieved by a static array that contains the values in order.

 void __theta_assert(bool): If its parameter evaluates to false, it should

signal a failing test.

 void __theta_exit(int): It should terminate the test, and signal a

successful test.

This implementation only drives the test case to the doorway to the untraversed part;

however, it does not specify what should happen if another non-deterministic value is

required in the untraversed part. Since the main function uses an infinite cycle at its core,

this scenario is bound to happen. Thereby the implementation provides random values if

additional non-deterministic values are required until a certain number of requests are

made, then terminates the test and marks it successful (unless there was a failing

assertion).

The output of the test concretizing process is a C file that can be linked against the rest

of the source files to build an executable.

4. Implementation

 - 60 -

1. void __theta_exit(int n) {

2. exit(n);

3. }

4.

5. void __theta_assert(bool b) {

6. if(!b) exit(INCORRECT);

7. }

8.

9. int __theta_nondet_int() {

10. static int callNum = 0;

11. static int callMax = 2;

12. static int tests[] = {

13. 1,

14. 2,

15. 0

16. };

17. if(callNum == callMax) exit(UNKNOWN);

18. return tests[callNum++];

19. }

Listing 4.1: Mapping a test case to C

Example 4.1: An example for the concretizing process can be seen in Listing 4.1. In

this case the program takes two inputs from the user on the path to the unverified

state-space.

The value of the first variable will be the return value of __theta_nondet_int()

upon its first call, so 1. The value of the second variable will be the return value of

__theta_nondet_int() upon its second call, so 2. Any subsequent calls to

__theta_nondet_int() will terminate the test. In this case, the program yields the

constant UNKNOWN as a return value.

If an assertion fails during the execution of the test (__theta_assert), the program

yields the constant INCORRECT as a return value, and the test is terminated.

4.4.3. Executing the tests

The output of the test concretizing process is a C file. The source C files can be accessed

through the CFA provider, and an executable can be compiled and linked using these

files. As all files are standard C files, the Clang compiler can compile and link it. After

linking, an executable can be created and executed as a test case.

4. Implementation

 - 61 -

There are scenarios when variable overflow needs to be tested. The LLVM framework

provides the Undefined Behavior Sanitizer (UBSan) [31], which is capable of capturing

overflows. The executable must be compiled and linked using the UBSan as well, so the

compilation process must be configurable.

4.5. AUTOSAR frontend

The implementation is also able to use AUTOSAR components as source, run formal

verification on it, and generate test cases. The AUTOSAR environment chosen was

AUTOSAR Architect, as a courtesy of thyssenkrupp. The verification and testing

environment was chosen to be the LLVM frontend introduced earlier due to the

limitations of the underlying tools.

To be able to feed an AUTOSAR components to the LLVM frontend, additional sources

need to be generated that model the component as a complete C program. This process

consists of providing implementation for the contract. After generating these sources, the

component can be compiled and linked, and be given as input to the LLVM frontend.

4.5.1. Generating sources for verification

Additional source code required by the verification process van be generated based on

the AUTOSAR model. It contains information on the parameters, ports, per instance

memories, events, and runnables of the component. Each parameter, port, and per

instance memory has a type, and the type has an associated range info, which describes

the domain of that value.

AUTOSAR Architect represents the AUTOSAR model as an EMF model [32], and

thereby it can be processed in an Eclipse environment using Java or Xtend. Based on

that, the implementations of the contract can be generated easily.

In terms of the C code, the persistent behavior of parameters, ports, and per instance

memories is realized with global, static variables.

Additionally, a main function must be generated, that mocks the behavior of the

component as a statechart, and references the implementation through the contract.

4. Implementation

 - 62 -

1. /* Variable declarations */

2. dInData VAR_SampleComponent_InPort_InData;

3. dOutData VAR_SampleComponent_OutPort_OutData;

4. dParamData VAR_SampleComponent_SampleParameter;

5.

6. /* Event declarations */

7. extern void SampleComponent_SampleEvent();

8.

9. int main(void) {

10. /* Initial values */

11. VAR_SampleComponent_InPort_InData = 0;

12. VAR_SampleComponent_OutPort_OutData = 0;

13.

14. /* Parameter values */

15. VAR_SampleComponent_SampleParameter =

__theta_nondet_int();

16.

17. while(1) {

18. int event = __theta_nondet_int();

19. switch(event) {

20. case 0: {

21. /* Input variables */

22. VAR_SampleComponent_InPort_InData =

__theta_nondet_int();

23. break;

24. }

25. case 1: {

26. /* Firing event */

27. SampleComponent_SampleEvent();

28. break;

29. }

30. default:

31. break;

32. }

33. }

34. }

Listing 4.2: A generated main function

Example 4.2: An example of the result of the main function generation can be seen in

Listing 4.2. The component in question (SampleComponent) has one input sender-

receiver port (InPort), one output sender-receiver port (OutPort), one parameter

4. Implementation

 - 63 -

(SampleParameter), and one timed event (SampleEvent), with an associated

runnable.

The core of the program is the infinite while cycle. Before that, all the values are

initialized, and the parameters are assigned a non-deterministic value.

In the cycle, first, a non-deterministic assignment decides which event occurs. In this

case, there are only two possibilities: either the input port receives a new message, or

the timed event is fired.

If a new value is received, non-deterministic assignments model the new value. On the

other hand, if the timed event is fired, the corresponding function is called.

The assertions are placed in the source code of the runnable that the event invokes.

The assertions should reference the static variables that store the data. For example,

if the requirement is that the output port always has a value greater than 0, then the

following assertion should be placed at the end of the runnable:

assert(VAR_SampleComponent_OutPort_OutData > 0);

4.6. Limitations of the implementation

This implementation depends on multiple software components, which also have

limitations. First of all, only a part of the AUTOSAR standard is supported, namely:

 Sender-receiver ports

 Client-server ports

 Parameters

 Per instance memories

 Timed events

 Client-server port bound events

 Runnables

The tool theta-llvm has its limitations as well:

 It supports function invocations by inlining only, so recursion is not supported.

 Only boolean and signed integer numbers are supported as primitive types (no

floating-point numbers, unsigned integers).

 Pointer arithmetic is not supported.

 Bitwise operations are not supported.

 Only pointers to primitive values are supported (no pointer to structs or unions).

 No debugging information is preserved.

4. Implementation

 - 64 -

The second to last limitation has other consequences. As the contract uses pointers to

structs whenever passing objects to functions, the transformation of test cases is not

possible to the testing environment, because the structs had to be flattened, and replaced

by only numeric fields, which violates the contract.

Also, the last limitation is a severe hindrance as well, as it makes it impossible to

transform the test cases properly, why the LLVM frontend was used instead. When the

test generation tool emits the list of values to pass the program, the test case transformer

cannot determine which value belongs to which parameter or port.

5. Evaluation

 - 65 -

5. Evaluation

This chapter presents the evaluation of the algorithms described in this paper. It is first

evaluated with a case study, then on industrial code using the implementation described

in the previous chapter. The industrial software was provided by thyssenkrupp

Components Technology Hungary Kft.

5.1. Case study

This section presents a case study to showcase the test generation algorithms. It follows

the process from a simple C program through generating the CFA and executing the test

generation algorithms then concludes by concretizing the generated test cases.

1. int main(void) {

2. int x = __theta_nondet_int();

3. if(x > 0) {

4. int y = __theta_nondet_int();

5. while(y > 0) {

6. int z = x + y;

7. if(z <= 5) {

8. y = 0;

9. z++;

10. }

11. else {

12. z--;

13. }

14. __theta_assert(z != 6);

15. }

16. }

17. else {

18. __theta_assert(x <= 0);

19. }

20. return 0;

21. }

Listing 5.1: An example C program

5. Evaluation

 - 66 -

5.1.1. Providing the CFA

An example C program is provided in Listing 5.1. It takes two integer inputs, 𝑥 ,and 𝑦.

If 𝑥 is less then or equals to 0, then an assertion checks this criterion. This assertion

obviously always passes (line 18). If it is greater than 0, then the value of 𝑦 will be the

input value, and while 𝑦 is greater than 0, a cycle will iterate.

Figure 5.1: The CFA of the example

𝑙1

𝑙2

𝑙3

ℎ𝑎𝑣𝑜𝑐 𝑥

𝑙4

[𝑥 ≤ 0] [𝑥 > 0]

𝑙5 𝑙𝑒

𝑙𝑓

[𝑥 ≤ 0] [𝑥 > 0]

𝑙6

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑙7 𝑙8

[𝑦 ≤ 0] [𝑦 > 0]

𝑙9 𝑙𝑓

𝑧 ≔ 𝑥 + 𝑦

𝑙10 𝑙11

𝑙12

[𝑧 ≤ 5] [𝑧 > 5]

𝑦 ≔ 𝑦 − 1 𝑧 ≔ 𝑧 + 1

𝑦 ≔ 0

𝑙13 𝑙𝑒

[𝑧 = 6] [𝑧 ≠ 6]

5. Evaluation

 - 67 -

In each iteration of the cycle, the sum of 𝑥 and 𝑦, 𝑧 is calculated. If 𝑧 is smaller than or

equals 5, than 𝑦 will be 0 terminating the cycle, and the value of 𝑧 will be incremented.

On the other hand, if 𝑧 is greater than 5, it will be decreased by one. The assertion on

line 14 will fail if 𝑧 equals 6, which occurs if the sum of 𝑥 and 𝑦 is 5.

Next, the CFA is generated from the C source. The generated CFA is in Figure 5.1. The

error locations are denoted with 𝑙𝑒 while the locations 𝑙𝑓 represent the end of the program.

The cycle is clearly observable (between 𝑙6 and 𝑙13), so is the different branches.

Figure 5.2: The ARG of the example

5.1.2. Executing the CEGAR algorithm

The model checking algorithm used to verify this model is a CEGAR algorithm with

predicate abstraction, breadth-first search, and with the termination condition being a

maximum depth constraint of 6. The result of that process can be seen in Figure 5.2. Up

until to depth 6, only one error-location is encountered. However, this is not reachable,

𝑙1

𝑙2

𝑙3

ℎ𝑎𝑣𝑜𝑐 𝑥

𝑙4, 𝑥 ≤ 0

[𝑥 ≤ 0] [𝑥 > 0]

𝑙5

𝑙𝑓

[𝑥 ≤ 0]

𝑙6

ℎ𝑎𝑣𝑜𝑐 𝑦

𝑙7 𝑙8

[𝑦 ≤ 0] [𝑦 > 0]

𝑙9 𝑙𝑓

𝑧 ≔ 𝑥 + 𝑦

𝑙10 𝑙11

[𝑧 ≤ 5] [𝑧 > 5]

5. Evaluation

 - 68 -

as the route there states that 𝑥 ≤ 0, while the edge into that node states that 𝑥 > 0 which

is a contradiction. Thereby this location can be removed from the graph, as it is

unreachable.

The expansion of the state-space also stops at locations 𝑙𝑓, as they have no children in

the CFA. It follows that only 𝑙10 and 𝑙11 are nodes that are not expanded (nor covered),

so they are the incomplete nodes of the abstract reachability graph, that will be used for

test generation.

5.1.3. Test generation

First, the application of robustness testing is demonstrated on the path from 𝑙1 to 𝑙10. The

path has two input variables. Each can be maximized and minimized, so 4 test cases will

be generated. The value of the minimized, maximized variables will be minimal or

maximal, while the value of all other variables will be an arbitrary value from their

domain. The test cases are respectively:

 min(𝑥) : 𝑥 = 1, 𝑦 = 1

 max(𝑥) : 𝑥 = 4, 𝑦 = 1

 min(𝑦) : 𝑥 = 1, 𝑦 = 1

 max(𝑦) : 𝑥 = 1, 𝑦 = 4

Out of these test cases the max(𝑥) and max (𝑦) test cases cause the assertion to fail.

Next, the variable overflow testing in the untraversed state-space will be demonstrated

on the path from 𝑙1 to 𝑙10. The variables existing at the unfinished 𝑙10 node are 𝑥, 𝑦, and

𝑧. Each of them is minimized and maximized, so the generated test cases respectively:

 min(𝑥) , max(𝑥) , min(𝑦) , max(𝑦) are the same as above

 min(𝑧) : 𝑥 = 1, 𝑦 = 1

 max(𝑧) : 𝑥 = 3, 𝑦 = 2

Out of these test cases, the max (𝑥), max (𝑦), and max (𝑧) test cases cause error, however

not because of overflow, instead because of failing the assertion.

Finally, the overflow testing in the traversed state-space will be exhibited, however on

the path from 𝑙1 to 𝑙11, taking the other branch at the end. The only nondeterministic

assignment in the path is that of 𝑧, so its domain will be checked.

As on this path, there is no constraint for the upper value of either variable, the input

variables will take their maximal value during overflow checking. However, when

calculating the sum of two maximal values (2 147 483 647 in case of a signed 32-bit

5. Evaluation

 - 69 -

integer), the result will be greater than the maximal value of 𝑧’s domain (2 147 483 647

in case of a signed 32-bit integer). Thereby for maximal inputs, the program overflows.

Similarly, the underflow can be checked, as well. However, there are lower limits for the

variables on this path, so 𝑥 and 𝑦 are at least 1, their sum is at least 6, which yields that

the result will be inside the domain of 𝑧.

Likewise, the robustness testing and overflow testing of the untraversed state-space for

path 𝑙1 − 𝑙11, and the overflow testing of the traversed state-space for path 𝑙1 − 𝑙10 can

be performed the same way.

Summarizing test generation, the following unique test cases will be:

 𝑥 = 1, 𝑦 = 1

 𝑥 = 4, 𝑦 = 1

 𝑥 = 1, 𝑦 = 4

 𝑥 = 3, 𝑦 = 2

 𝑥 = 2 147 483 647, 𝑦 = 2 147 483 647

1. void __theta_exit(int n) {

2. exit(n);

3. }

4.

5. void __theta_assert(bool b) {

6. if(!b) exit(INCORRECT);

7. }

8.

9. int __theta_nondet_int() {

10. static int callNum = 0;

11. static int callMax = 2;

12. static int tests[] = {

13. 4,

14. 1,

15. 0

16. };

17. if(callNum == callMax) exit(UNKNOWN);

18. return tests[callNum++];

19. }

Listing 5.2: An example for a mapped-back test case

5. Evaluation

 - 70 -

5.1.4. Concretizing the test cases

The generated test cases will be mapped back to C. The result of mapping back the 𝑥 =

4, 𝑦 = 1 test case is in Listing 5.2. The other test cases can be concretized the same way.

If these definitions are linked with the source in Listing 5.1, the outcome is an executable

program that represents the test.

5.2. Applying the approach to industrial code

The proposed algorithm and the implementation were tested using AUTOSAR

components provided by thyssenkrupp Components Technology Hungary Kft. They

provided two components, one simpler, and one a bit more complex.

ComponentA, is the simpler component: it has multiple parameters, multiple sender-

receiver ports, and a timed event that fires the single runnable. This component does not

contain per-instance memory, so no persistence needed.

ComponentB, on the other hand, is a bit more complicated, as it has multiple parameters,

sender-receiver ports, provides multiple client-server ports, has per-instance memory,

has one timed event, multiple events for the client-server ports, and multiple runnables.

The features of the components that violated one of the limitations of the tool were

removed. The removed features were mainly bitwise operations.

ComponentA ComponentB

require-

ments

verified

requirem

ents

test

cases

require-

ments

verified

requirem

ents

test

cases

Sequential,

conditional
4 4 - 5 5 -

Deterministic

cycles
3 3 - 2 2 -

Non-deterministic

cycles
0 - - 3 1 45

Table 5.1: The results of applying the algorithm on AUTOSAR components

The requirements given to them can be categorized +according to what kind of program

structure is required to realize them. The categories were the following:

 Simple sequential or conditional calculation: to realize the feature, no cycle is

needed.

5. Evaluation

 - 71 -

 Calculations using deterministic cycles: the iteration count of every cycle is

deterministic; it does not depend on input.

Calculations using non-deterministic cycles: the iteration count of at least one cycle

depends on non-deterministic value (input value).

The algorithm was run on several requirements. The formal method was limited to

running at most one hour. The results can be seen in Table 5.1. As it can be seen, the

formal method could easily handle the situations when only simple sequential or

conditional code was required to realize the feature. It also was able to complete the

verification if it relied on deterministic cycles. However, when the result depended on

calculations done in non-deterministic cycles, the formal method mostly failed, and tests

were generated. These tests did not find any error, which is not surprising, given that

these components are used daily.

6. Conclusion

 - 72 -

6. Conclusion

This paper presented an approach to support formal verification guided test generation

in AUTOSAR components and presented an implementation based on the described

ideas.

The algorithm used an abstraction based formal method to verify requirements and used

the information extracted from the state-space representation of the verifier to generate

test cases based on if the verification failed to complete. The test generation methods

were based on symbolic execution, and used boundary value analysis, and checked the

robustness of the software as well.

Moreover, methods were devised to apply formal verification on safety-critical

AUTOSAR components, heavily used by the automotive industry. The test cases were

generated by an algorithm, rather than written by a developer, which could lead to

shortened product-to-market time.

An implementation was developed as a prototype that is capable of using C programs as

input, and it was tested on AUTOSAR components used by the automotive industry.

Altogether, a novel algorithm was developed that successfully verified automotive codes,

and generated tests, and this algorithm was proved to be working on industrial code.

6.1. Future work

In the future, I plan to solve the limitations of the implementation and examine more test

generation methods.

 First of all, the support of bitwise operations must be developed, as it is heavily

used in the source code of the automotive industry. This requires support from

both Theta and the CFA generator tool.

 Then the theta-llvm tool must be developed to support the subset of C used in

AUTOSAR components fully. An early prototype already exists called Gazer,

upon which the implementation should build in the future.

 Multiple abstraction techniques, particularly product-abstraction methods, should

be examined, whether they provide a better verification result.

 More test generation strategies should be examined. One interesting approach is

to utilize KLEE, which is a symbolic virtual machine built on top of LLVM and

is capable of advanced symbolic and dynamic symbolic execution test generation.

6. Conclusion

 - 73 -

 The test generation methods should be evaluated, and compared to traditional

source code-based test generation methods.

Acknowledgment

 - 74 -

Acknowledgment

I would like to thank thyssenkrupp Components Technology Hungary Kft. For

supporting my work and providing me with the resources necessary for my research,

including tools and components, to test my algorithms on.

Also, I would like to thank Ákos Hajdu, and Tamás Tóth personally for the professional

support I got from them during my work, and the knowledge I learned from them in the

fields of formal verification.

The research was supported by the EFOP-3.6.2-16-2017-00013 grant of the European

Union, co-financed by the European Social Fund.

Bibliography

 - 75 -

Bibliography

[1] “First-Order Logic,” in The Calculus of Computation, Berlin, Heidelberg: Springer Berlin

Heidelberg, pp. 35–68.

[2] T. Biere, A. and Biere, A. and Heule, M. and van Maaren, H. and Walsh, Handbook of

Satisfiability. 2009.

[3] L. De Moura and N. Bjørner, “Satisfiability modulo theories,” Commun. ACM, vol. 54,

no. 9, p. 69, Sep. 2011.

[4] “SMT-LIB The Satisfiability Modulo Theories Library.” [Online]. Available:

http://smtlib.cs.uiowa.edu/solvers.shtml. [Accessed: 27-Oct-2019].

[5] D. Beyer and S. Löwe, “Explicit-State Software Model Checking Based on CEGAR and

Interpolation,” in Proceedings of the 16th international conference on Fundamental

Approaches to Software Engineering, Springer-Verlag, 2013, pp. 146–162.

[6] S. Graf and H. Saïdi, “Construction of Abstract State Graphs with PVS,” in Proceedings

of the 9th International Conference on Computer Aided Verification, 1997, pp. 72–83.

[7] D. Beyer and M. Dangl, “SMT-based Software Model Checking: An Experimental

Comparison of Four Algorithms,” Springer, Cham, 2016, pp. 181–198.

[8] C. Baier and J.-P. Katoen, Principles of model checking. MIT Press, 2008.

[9] E. M. Clarke, T. A. Henzinger, and H. Veith, “Introduction to Model Checking,” in

Handbook of Model Checking, Cham: Springer International Publishing, 2018, pp. 1–26.

[10] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith, “Counterexample-guided abstraction

refinement for symbolic model checking,” J. ACM, vol. 50, no. 5, pp. 752–794, Sep. 2003.

[11] Á. Hajdu, T. Tóth, A. Vörös, and I. Majzik, “A Configurable CEGAR Framework with

Interpolation-Based Refinements,” 2016, pp. 158–174.

[12] K. L. McMillan, “Applications of Craig Interpolants in Model Checking,” Springer,

Berlin, Heidelberg, 2005, pp. 1–12.

[13] International Software Testing Qualifications Board, “Foundation Level Syllabus.” 2018.

[14] J. C. King and J. C., “Symbolic execution and program testing,” Commun. ACM, vol. 19,

no. 7, pp. 385–394, Jul. 1976.

[15] C. Cadar and K. Sen, “Symbolic execution for software testing,” Commun. ACM, vol. 56,

no. 2, p. 82, Feb. 2013.

[16] “AUTOSAR standard.” [Online]. Available: https://www.autosar.org/standards/.

[Accessed: 28-Oct-2019].

[17] Mei-Chen Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”

Computer (Long. Beach. Calif)., vol. 30, no. 4, pp. 75–82, Apr. 1997.

[18] Y. Hoskote, T. Kam, Pei-Hsin Ho, and Xudong Zhao, “Coverage estimation for symbolic

model checking,” in Proceedings 1999 Design Automation Conference (Cat. No.

99CH36361), pp. 300–305.

Bibliography

 - 76 -

[19] H. Chockler, O. Kupferman, and M. Y. Vardi, “Coverage Metrics for Formal

Verification,” Springer, Berlin, Heidelberg, 2003, pp. 111–125.

[20] M. Dobos-Kovács, A. Vörös, and Á. Hajdu, “Modellellenőrzés és tesztelés: egy

kombinált megközelítés szoftverek verifikálására,” 2018.

[21] M. Christakis, P. Müller, and V. Wüstholz, “Guiding dynamic symbolic execution toward

unverified program executions,” in Proceedings of the 38th International Conference on

Software Engineering - ICSE ’16, 2016, pp. 144–155.

[22] M. Czech, M.-C. Jakobs, and H. Wehrheim, “Just Test What You Cannot Verify!,”

Springer, Berlin, Heidelberg, 2015, pp. 100–114.

[23] J. Botaschanjan et al., “Towards verified automotive software,” in Proceedings of the

second international workshop on Software engineering for automotive systems - SEAS

’05, 2005, vol. 30, no. 4, pp. 1–6.

[24] M. H. ter Beek, S. Gnesi, N. Koch, and F. Mazzanti, “Formal verification of an automotive

scenario in service-oriented computing,” in Proceedings of the 13th international

conference on Software engineering - ICSE ’08, 2008, p. 613.

[25] S. Beyer et al., “Towards the formal verification of lower system layers in automotive

systems,” in 2005 International Conference on Computer Design, pp. 317–324.

[26] T. Toth, A. Hajdu, A. Vorcos, Z. Micskei, and I. Majzik, “Theta: A framework for

abstraction refinement-based model checking,” in 2017 Formal Methods in Computer

Aided Design (FMCAD), 2017, pp. 176–179.

[27] L. Frantzen, J. Tretmans, and T. A. C. Willemse, “Test Generation Based on Symbolic

Specifications,” Springer, Berlin, Heidelberg, 2005, pp. 1–15.

[28] C. M. 1981- Robson, “TIOA and UPPAAL,” 2004.

[29] G. Sallai, T. Tóth, Á. Hajdu, and A. Vörös, “Development of a Verification Compiler for

C Programs,” 2016.

[30] C. Lattner and V. Adve, “The LLVM Compiler Framework and Infrastructure Tutorial,”

Springer, Berlin, Heidelberg, 2005, pp. 15–16.

[31] The Clang Team, “UndefinedBehaviorSanitizer — Clang 10 documentation.” [Online].

Available: https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html. [Accessed: 27-

Oct-2019].

[32] D. Steinberg, F. Budinsky, E. Merks, and M. Paternostro, EMF: Eclipse Modeling

Framework. Pearson Education, 2008.

	Table of contents
	Hallgatói nyilatkozat
	Abstract
	Összefoglaló
	1. Introduction
	2. Background
	2.1. First-order logic
	2.2. Formal representation of programs
	2.2.1. Control Flow Automata
	2.2.2. The state-space of a CFA

	2.3. The abstract state-space of a program
	2.3.1. Predicate abstraction
	2.3.2. Explicit value abstraction

	2.4. CEGAR
	2.4.1. Model checking
	2.4.2. CEGAR algorithm
	2.4.3. Building the abstraction
	2.4.4. Refining the abstraction

	2.5. Testing
	2.5.1. Basics of testing
	2.5.2. Black box testing
	2.5.3. White box testing

	2.6. AUTOSAR
	2.6.1. Application Software Components
	2.6.2. Runtime Environment
	2.6.3. Developing AUTOSAR components

	3. CEGAR driven test generation in AUTOSAR components
	3.1. Overview of approach
	3.2. Application of the CEGAR algorithm
	3.2.1. Terminating the CEGAR loop
	3.2.2. Extracting information from an ARG

	3.3. Test generation
	3.3.1. Symbolic execution of the abstract state-space representation
	3.3.2. Robustness test generation for the untraversed state-space
	3.3.3. Variable overflow in the state-space

	3.4. Integrating formal verification in the AUTOSAR development process
	3.4.1. Modeling the behavior of a component
	3.4.2. Writing verifiable requirements
	3.4.3. Generating the verification environment
	3.4.4. Transforming test cases

	3.5. Related work

	4. Implementation
	4.1. Theta
	4.2. The theta-llvm tool
	4.3. CEGAR based test generation framework
	4.3.1. The verification environment
	4.3.2. The testing environment

	4.4. LLVM frontend
	4.4.1. Providing a CFA
	4.4.2. Concretizing the test cases
	4.4.3. Executing the tests

	4.5. AUTOSAR frontend
	4.5.1. Generating sources for verification

	4.6. Limitations of the implementation

	5. Evaluation
	5.1. Case study
	5.1.1. Providing the CFA
	5.1.2. Executing the CEGAR algorithm
	5.1.3. Test generation
	5.1.4. Concretizing the test cases

	5.2. Applying the approach to industrial code

	6. Conclusion
	6.1. Future work

	Acknowledgment
	Bibliography

