
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Verification of Timed Automata
by CEGAR-Based Algorithms

MSc Thesis

Author:

Rebeka Farkas

Supervisors:

András Vörös
Tamás Tóth
Ákos Hajdu

2016.

v

Contents

Contents v

Abstract vii

Kivonat ix

Hallgatói nyilatkozat xi

1 Introduction 1

2 Background 3
2.1 Mathematical logic . 3

2.1.1 Propositional logic . 3
2.1.2 First order logic . 4
2.1.3 Difference logic . 5

2.2 Formal verification . 5
2.2.1 Modelling formalisms . 5
2.2.2 Reachability analysis . 8
2.2.3 CEGAR . 10

2.3 Verification of timed systems . 14
2.3.1 Basic definitions . 14
2.3.2 Timed automaton reachability . 16

2.4 Objectives . 24

3 Configurable Timed CEGAR 25
3.1 Generic CEGAR framework . 25

3.1.1 Automaton-based refinement . 26
3.1.2 Predicate abstraction . 30
3.1.3 Zone-based refinement . 34

3.2 Result . 43

vi CONTENTS

4 Implementation 47
4.1 Environment . 47

4.1.1 The theta framework . 47
4.1.2 Achitecture . 47

4.2 Measurements . 48
4.2.1 Inputs . 48
4.2.2 Results . 50
4.2.3 Evaluation . 54

5 Conclusions 57
5.1 Contributions . 57
5.2 Future work . 58

References 59

vii

Abstract Nowadays safety-critical systems are becoming increasingly prevalent, how-
ever, faults in their behaviour can lead to serious damage. Therefore, it is extremely
important to use mathematically precise verification techniques during their develop-
ment. One of them is formal verification, that is able to find design problems from early
phases of the development. However, the complexity of safety-critical systems often
prevents successful verification. This is particularly true for real-time systems: the set
of possible states and transitions can be large or infinite, even for small timed systems.
Thus, selecting appropriate modelling formalisms and efficient verification algorithms
is very important. One of the most common formalisms for describing timed systems is
the timed automaton that extends finite automata with clock variables to represent the
elapse of time.

When applying formal verification, reachability becomes an important aspect – that
is, examining whether the system can reach a given erroneous state during its execution.
The complexity of the problem is exponential even for simple timed automata (without
discrete variables), thus it can rarely be solved for large models. A possible solution
to overcome this deficiency is to use abstraction, which simplifies the problem to be
solved by focusing on the relevant information. However, the main difficulty when
applying abstraction-based techniques is finding the appropriate precision, which is
coarse enough to reduce complexity but fine enough to be able to solve the problem.
Counterexample-guided abstraction refinement (CEGAR) is an iterative method starting
from a coarse abstraction and refining it until a sufficient precision is reached.

The goal of my work is to develop efficient algorithms for the verification of timed
automata. In my work I examine and develop CEGAR-based reachability algorithms
applied to timed automata and I integrate them to a common framework where com-
ponents of different algorithms are combined to form new and efficient verification
methods. The framework offers two realizations of the CEGAR approach: one of them
applies abstraction to the automaton in order to gain an overapproximation of the set
of reachable states (the state space), and the other applies abstraction directly to the
state space.

I demonstrate the efficiency of the developed algorithms by measurements on
examples that are commonly used to benchmark model checking algorithms for timed
automata.

ix

Kivonat A napjainkban egyre inkább elterjedő biztonságkritikus rendszerek hibás
működése súlyos károkat okozhat, emiatt kiemelkedően fontos a matematikailag precíz
ellenőrzési módszerek alkalmazása a fejlesztési folyamat során. Ennek egyik eszköze a
formális verifikáció, amely már a fejlesztés korai fázisaiban képes felfedezni tervezési hi-
bákat. A biztonságkritikus rendszerek komplexitása azonban gyakran megakadályozza a
sikeres ellenőrzést, ami különösen igaz az időzített rendszerekre : a lehetséges állapotok
és átmenetek halmaza (állapottér) akár kisméretű rendszerek esetén is hatalmas, vagy
akár végtelen nagy is lehet. Ezért kiemelkedően fontos a megfelelő modellezőeszköz
valamint hatékony verifikációs algoritmusok kiválasztása. Az egyik legelterjedtebb
formalizmus időzített rendszerek leírására az időzített automata, ami a véges automata
formalizmust óraváltozókkal egészíti ki, lehetővé téve az idő múlásának reprezentálását
a modellben.

A formális verifikáció egyik alapvető feladata az állapotelérhetőségi analízis, amely
során azt vizsgáljuk, hogy lehetséges-e, hogy a rendszer működése során elér egy
adott hibaállapotba. A probléma komplexitása már egyszerű (diszkrét változó nélküli)
időzített automaták esetén is exponenciális, így nagyméretű modellekre ritkán meg-
oldható. Ezen probléma leküzdésére nyújt egy lehetséges megoldást az absztrakció
módszere, amely a releváns információra koncentrálva próbál meg egyszerűsíteni a
megoldandó problémán. Az absztrakció-alapú technikák esetén azonban a fő problé-
ma a megfelelő pontosság megtalálása. Az ellenpélda vezérelt absztrakciófinomítás
(counterexample-guided abstraction refinement, CEGAR) iteratív módszer, amely a
rendszer komplexitásának kézben tartása érdekében egy durva absztrakcióból indul ki
és ezt finomítja a kellő pontosság eléréséig.

Munkám célja hatékony algoritmusok fejlesztése időzített rendszerek verifikációjára.
Munkám során időzített automatákra alkalmazott CEGAR-alapú elérhetőségi algoritmu-
sokat vizsgálok, fejlesztek és közös keretrendszerbe foglalom őket, ahol az algoritmusok
komponensei egymással kombinálva új, hatékony ellenőrzési módszerekké állnak össze.
A keretrendszer a CEGAR módszer kétféle megvalósítását is lehetővé teszi : az egyik
az elérhető állapotok halmazának (az állapottérnek) felülbecsléséhez az automatát
egyszerűsíti, míg a másik közvetlenül az állapottéren alkalmaz absztrakciót.

A kifejlesztett algoritmusok hatékonyságát méréseken keresztül demonstrálom,
amelyek bemeneteit időzített automáták modellellenőrzésére kifejlesztett algoritmusok
összehasonlító elemzéséhez gyakran használt modellek közül választottam.

xi

Hallgatói nyilatkozat

Alulírott Farkas Rebeka szigorló hallgató kijelentem, hogy ezt a diplomatervet meg
nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a
forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar
nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan
hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső
hálózatán keresztül (vagy hitelesített felhasználók számára) közzétegye. Kijelentem,
hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni enge-
déllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik
hozzáférhetővé.

Kelt : Budapest, 2016. december 18.

...
Farkas Rebeka

1

Chapter 1

Introduction

Safety critical systems, where failures can result in serious damage, e.g. death, are
becoming more and more ubiquitous. Consequently, the importance of using mathe-
matically precise verification techniques during their development is increasing.

Formal verification techniques are able to find design problems from early phases of
the development, however, the complexity of safety-critical systems often prevents their
successful application. The behaviour of a system is described by the set of states that
are reachable during execution (the state space) and formal verification techniques like
model checking examine correctness by exploring it explicitly or implicitly. However, the
state space can be large or infinite, even for small instances. Thus, selecting appropriate
modelling formalisms and efficient verification algorithms is very important. One of
the most common formalisms for describing timed systems is the formalism of timed
automata that extends finite automata with clock variables to represent the elapse of
time.

When applying formal verification, reachability becomes an important aspect – that
is, examining whether a given erroneous state is reachable from an initial state. The
complexity of the problem is exponential even for simple timed automata (without
discrete variables), thus it can rarely be solved for large models. A possible solution to
overcome this deficiency is to use abstraction, which simplifies the problem to be solved
by focusing on the relevant information. However, the main difficulty when applying
abstraction-based techniques is finding the appropriate precision: if an abstraction
is too coarse it may not provide enough information to prove the desired property,
whereas if an abstraction is too fine it may cause complexity problems. Counterexample-
guided abstraction refinement (CEGAR) is an iterative method starting from a coarse
abstraction and refining it until a sufficient precision is reached.

CEGAR [6] has been successfully applied to many modelling formalisms, such as
Markov Decision Processes [19], Hybrid Automata [22] and Petri Nets [14]. The goal
of my work is to develop efficient CEGAR-based algorithms for the verification of timed

2 INTRODUCTION

automata. There are several existing approaches in the literature for CEGAR-based
verification of timed automata, including [17] where the abstraction is applied on the
locations of the automaton, [20] where the abstraction of a timed automaton is an
untimed automaton and [11, 15], and [21] where abstraction is applied on the clock
variables of the automaton.

In my work I examine various CEGAR-based reachability algorithms applied to timed
automata and I integrate them to a common framework where components of different
algorithms are combined to form new and efficient verification methods. Many of the
implemented techniques are known from the literature, but most of them were invented
for other formalisms, and I had to adapt them to timed automata. Other implemented
techniques are my own contributions. The developed framework offers two realizations
of the CEGAR approach: one of them applies abstraction to the automaton in order to
gain an overapproximation of the set of reachable states (most known algorithms are
based on this approach), and the other applies abstraction directly to the state space.

The correctness and the efficiency of the created algorithms are demonstrated by
measurements. The inputs of the measurements are chosen from a set of example timed
automata that are widely used to compare model checking algorithms.

The paper is organized as follows. Chapter 2 provides basic knowledge about
mathematical logic, formal verification and timed automata, Chapter 3 explains the
implemented algorithms and the way they can be combined in the developed framework,
and Chapter 4 describes the implementation environment, and summarizes the results
of the measurements. Finally, Chapter 5 concludes my work.

3

Chapter 2

Background

2.1 Mathematical logic

Mathematical logic is useful for deciding correctness of systems. This section provides
some insight about propositional logic, first order logic, and the satisfiability problem.
Difference logic is also introduced.

2.1.1 Propositional logic

Propositional logic is concerned with the study of formulae of boolean variables, and
deciding whether they are true or false under a given assignment. Propositional
formulae are composed of truth symbols > (true) and ⊥ (false), and propositional
variables p, q, . . . with the use of logical connectives. A formula ϕ can be an atom (a
truth symbol or a variable) or can be constructed from other logical formulae with the
following connectives:

• negation: ¬ϕ is evaluated true iff ϕ is evaluated false (formal equivalent of ’not’),

• conjunction: ϕ1 ∧ ϕ2 is evaluated true iff both ϕ1 and ϕ2 are evaluated true
(formal equivalent of ’and’),

• disjunction: ϕ1 ∨ϕ2 is evaluated true iff at least one of ϕ1 and ϕ2 is evaluated
true (formal equivalent of ’or’),

• implication: ϕ1→ ϕ2 is evaluated true iff ϕ1 is evaluated false or both ϕ1 and
ϕ2 are evaluated true (formal equivalent of ’if . . . then’),

• equivalence: ϕ1↔ ϕ2 is evaluated true iff both ϕ1 and ϕ2 are evaluated true or
both ϕ1 and ϕ2 are evaluated false (formal equivalent of ’if and only if’).

4 BACKGROUND

Note: disjunction, implication, and equivalence can be expressed using negation
and conjunction. These operators are only defined to simplify usage.

The (boolean) satisfiability problem (SAT, for short) can be defined as follows [3].

Input : A propositional logic formula ϕ.

Output : Yes if ϕ is satisfiable (i.e. it is possible to ground the variables appearing in ϕ
to truth symbols so that ϕ is evaluated true), No otherwise.

Although SAT is NP-complete in theory [9], modern SAT solvers can solve large
problems in practical applications [16].

2.1.2 First order logic

Propositional logic is useful, however, sometimes its expressive power is not enough.
First order logic is a extends propositional logic with predicate symbols, function
symbols and quantifiers ∃ (existential quantifier) and ∀ (universal quantifier).

The basic elements of first order logic are terms. Variables and constant symbols
(0-ary function symbols) are terms, as well as n-ary functions applied to n terms. In
first order logic an atom can be >,⊥ or an a n-ary predicate symbol applied to n terms.
Formulae are constructed by applying connectives (the same as in case of propositional
logic) and quantifiers to atoms.

The satisfiability problem can be extended to first order logic formulae, but it is
undecidable [5, 23]. However, there is a variant of the problem that is applicable, and
solvable for most practical problems. The key idea is to formalize structures.

Definition 2.1 A first order theory T is a pair (Σ,A) [4] where

• Σ is the signature, i.e. the set of constant, function and predicate symbols and

• A is the set of axioms where an axiom is a first order logic formula that has
no quantifiers in it, and Σ contains all constants, functions and predicates
appearing in it.

The Satisfiability Modulo Theories problem (SMT for short) can be defined as follows.

Input : A theory T = (Σ,A), and Σ-formula ϕ.

Output : Yes if ϕ is satisfiable in T, No otherwise.

In many practical theories (e.g. linear arithmetic, that is often used in software
development) SMT becomes decidable [18]. In my work I use difference logic which is
one of the theories where satisfiability is decidable.

2.2. Formal verification 5

2.1.3 Di�erence logic

An atom in (integer) difference logic is a logical expression of the form x − y < n or
x − y ≤ n where x and y are variables defined over Z and n is a constant. A difference
logic formula ϕ is a conjunction of one ore more atoms. In case of difference logic,
satisfiability is not only decidable, but decidable in polynomial time [18].

Since the framework presented in this paper relies on a SAT (SMT) solver (as it
is explained in Chapter 4), this paper does not address the algorithms for deciding
satisfiability (if it is decidable). For more information on satisfiability, the reader is
referred to [4].

2.2 Formal verification

Formal verification is the act of proving the correctness or incorrectness of a system
in a mathematically precise way. Model checking is an automatic formal verification
technique based on systematic state space traversal of system, where the system has
to be represented by a formal model, and the requirements of the system has to be a
property of the system formally defined as logical formulae [8]. Verification can be
performed by proving that the system (represented by the formal model) satisfies that
property.

2.2.1 Modelling formalisms

It is important to find the appropriate representation of the model i.e. the appropriate
formalism in order to be able to model and check the property. This paper focuses on
behavior properties examined on behavioral models.

In formal verification behaviour is often represented with state-based formalisms:
the system’s behaviour is partitioned to a (not necessarily finite) set of states (the state
space), that is complete and excluding – i.e. at any given time the system is in exactly
one of the states. The state of the system determines the possible behaviours. Because
of this, it is important to choose the granularity of the state space in a way that it can
be decided what behaviour is possible and what is not, solely based on the system’s
current state.

Finite automata

The formalism of finite automata is one of the most common formalisms for modelling
behaviour. This way the system is described by a finite set of possible states, and a set
of steps defining the system’s state changes.

6 BACKGROUND

start loop end

Figure 2.1 Example of a finite automaton

Definition 2.2 Formally a finite automaton, or state machine A is a tuple 〈S, s0, T 〉
where

• S is a finite set of states,

• s0 ∈ S is the initial state and

• T ⊆ (S × S) is a set of transitions.

Structurally A can be represented as a directed graph GA where V (GA) = S and
E(GA) = T . The system’s operation is described as follows.

Initially, the system is in s0. The system can change its state to some other state s1

iff (s0, s1) ∈ T . from s1 it can change its state to s2 iff (s1, s2) ∈ T , and so on.

Example 2.1 Let A be a finite automaton with states start, loop, and end, and
transitions start→ loop, loop→ loop, and loop→ end, as depicted in Figure 2.1. The
initial state is start, denoted by double outline.

Operation starts form the initial state, start. The system can step to loop where it
can step to end or loop (itself). Since it is always a possibility to stay in the current
state, loop transitions don’t have importance in finite automata.

This formalism is easy to use and verify, but its expressive power is not sufficient:
there are many types of behaviours that can’t be modelled this way.

Finite automaton extended with variables

Many extensions of the finite automaton are known with various levels of expressive
power. The following extension lifts the level of expressive power to that of Turing-
machines: extending the automaton with variables.

Definition 2.3 A finite automaton extended by variables could be (briefly) defined
as a tuple 〈L, l0, v0, E, I〉 operating on a set of variables V where

• L is the set of control locations,

2.2. Formal verification 7

start
loop

end𝑙 ≤ 5
𝑥 ≔ 0
𝑙 ≔ 0

𝑥 ≔ 2

𝑥 ≔ 𝑥2

𝑙 ≔ 𝑙 + 1

𝑥 ≥ 16

Figure 2.2 Extended finite automaton

• l0 ∈ L is the initial location,

• v0 is a function assigning an initial value to each variable x ∈ V,

• E ⊆ L ×B×U× L is the set of edges (where B can be briefly described as the
set of bool valued first order logic formulae constructed from the variables of
V, and U can briefly defined as the set of unary functions operating on subsets
of V assigning new values to variables) and

• I : L→B is a function assigning invariants to locations.

Since these automata’s behaviour depends on the current values of the variables (the
current valuation), the basic parts of the model can not be called states. Instead, they
are called control locations. For similar reasons, the edges of the graph are now called
edges in the formalism as well, and they are more expressive: an edge e = (l, g, a, l ′)
represents a transition form l to l ′, with a guard g and an assignment function a. A
guard is a condition that has to be satisfied in order for the transition to be enabled. The
function a describes how the values of some variables are changed during the transition.
Locations can have invariants, that are conditions that have to be satisfied while the
system stays in that location.

The system’s operation starts from the control location l0, and the variables are
initialized as v0 defines. A system can transition from l to some l ′ if there exist an edge
e = (l, g, a, l ′) where g is satisfied by the variables current values, and I(l ′) is satisfied
by the values a assigns to the variables (or their current value if a is undefined on
them).

Example 2.2 Let A be an extended version of the automaton in Figure 2.1 as
depicted in Figure 2.2. The introduced variables are x and l. The variable l is used
as a loop counter. The edge start→ loop assigns 2 to x , loop→ loop squares x and
increases the value of the loop counter, loop→ end doesn’t affect the values of the
variables, but it is only enabled when x is a least 16. Location loop has an invariant
ensuring that the loop edge is taken at most 5 times.

8 BACKGROUND

Operation starts in state 〈start, x = 0, l = 0〉. When the system changes its
state it can only take edge start→ loop, resulting in state 〈loopx = 2, l = 0〉. Edge
loop→ end is not enabled, but the system can take the loop edge resulting in state
〈loopx = 4, l = 1〉. The edge to end is still not enabled, but after taking the loop edge
again (〈loopx = 16, l = 2〉) it becomes enabled. The system may keep taking the
loop edge up to three times (after which the invariant prohibits it, because it would
increase l), or transition to end.

2.2.2 Reachability analysis

During formal verification, one of the most important questions is reachability: deciding
whether a system can step into a given state. In many cases, the state in question
represents an erroneous state and the desired outcome of model checking is that it is
unreachable. The problem can be defined as follows.

Input : A system S and a state ser r .

Output : Yes if it is possible for S to operate in a way that it eventually steps in ser r , No
otherwise.

When the answer is Yes, it is useful to provide a counterexample: an execution trace
σ = s0 → s1 → ·· · → ser r setting the system’s state to ser r where si-s are states and
si → si+1 notations represent possible transitions of the system from si to si+1.

Each formalism has its own interpretation of the problem – regarding how erroneous
states and execution traces are described. For example, in case of finite automata, the
problem can be interpreted as follows.

Input : A finite automaton A= 〈S, s0, T 〉 and a state ser r ∈ S.

Output : A sequence of states and transitions σ = s0
t0−→ s1

t1−→ · · ·
tn−→ sn+1 = ser r

(si ∈ S, t i = (si , si+1) ∈ T for all 0≤ i ≤ n) if the A can reach ser r , No otherwise.

This problem can be solved by any pathfinding algorithm (e.g. breadth first search
or depth first search) executed on G(A), where G(A) denotes the graph representation
of a finite automaton A.

Example 2.3 Let the input be the previous automaton in Figure 2.1 and it’s state
end. A pathfinding algorithm finds a path, e.g. start→ loop→ end, proving the state
is reachable.

In case of extended finite automata the problem can be interpreted as follows.

Input : A finite automaton A= 〈L, l0, v0, E, I〉 and a control location ler r ∈ L.

2.2. Formal verification 9

start
loop

end𝑙 ≤ 5
𝑥 ≔ 0
𝑙 ≔ 0

𝑥 ≔ 2

𝑥 ≔ 𝑥2

𝑙 ≔ 𝑙 + 1

𝑥 ≥ 16 𝑥 ≥ 200

error

Figure 2.3 Automaton for checking reachability

Output : A sequence of locations and enabled transitions σ = l0
e0−→ l1

e1−→ · · ·
en−→ ln+1 =

ler r if the S can reach ser r , No otherwise.

Note, that in this case error states are defined solely by the location, however, it is
easy to reduce a problem where the values of the variables are also constrained into
this form.

Example 2.4 Consider the previous system A depicted in Figure 2.2 with the er-
roneous states defined as the set of states where the current location is end and
x ≥ 200.

A new automaton can be constructed by extending A’s set of location with a new
location error that is only reachable if A can reach location end with x ≥ 200. The
new automaton is depicted in Figure 2.3.

The described problem is unsolvable as well as the reachability problem for all other
Turing-complete formalisms. This is one of the reasons why the modelling formalism
has to be chosen carefully. A simple formalism may not have enough expressive power
to precisely model the system, while verification of more complex formalisms may be
ineffective or even impossible.

State space exploration

Even if reachability is undecidable (or just inefficient), there are many methods and
approaches on how to gain useful information on the problem. The most obvious
approach is state space exploration.

Definition 2.4 The state space of a system is the set of states that are reachable from
the initial state by a sequence of enabled transitions.

The idea of state space exploration is to systematically enumerate all possible states
in the state space. If the erroneous state is found, the system is proven to be incorrect.
Otherwise if all possible states are listed (in case of a finite state space) and no erroneous

10 BACKGROUND

Model-
checking

Analysis

Refinement

Initial
abstraction

[Unreachable]

Counterexample

[Reachable]

[Valid][Invalid]

Refined
system

Correct
system

Erroneous
system

Figure 2.4 Counterexample-guided abstraction refinement

state is found, the system is proven to be correct. (In case of an infinite state space this
naive procedure will never terminate.)

One of the simplest ways to explore the state space is to construct a search-tree.
The root of the tree is the initial state s0 of the system. The state space is explored by
iteratively choosing a leaf with a state s of the tree, and introducing a new edge for all
possible enabled transitions (s, s′) pointing to a new node with a state s′. This way, all
possible execution traces are explored, but states may appear more than once if there
are more execution traces to reach them.

It is also possible to construct a state graph, where the state space is explored
similarly, except one state can only appear once. This helps reducing the size of the
graph, however (in case of an infinite state space) it still might be infinite. Infinite state
spaces can never be completely explored this way (by explicit exploration), however,
sometimes, when small counterexamples are expected, it is not necessary.

Consider the bounded reachability problem.

Input : A system S, a state ser r , and a bound k.

Output : A counterexample, if S can reach ser r in at most k transitions, No otherwise.

This problem is decidable, even for finite automata with variables. Even so, explicit
state space exploration can not be considered an efficient method.

2.2.3 CEGAR

One of the possible approaches to perform model checking more efficiently is to use
abstraction [7]. A less detailed system model is constructed that hides unimportant
parts of the behavior providing a model of complex state space overapproximating the
original one. The idea of counterexample guided abstraction refinement (CEGAR) [6]
is to apply model checking to this simpler model, and then examine the results on the
original one. The idea is illustrated in Figure 2.4.

2.2. Formal verification 11

First, an abstract system is constructed. The key property of abstraction is that the
state space of the abstract system overapproximates that of the original one, but it is less
complex and thus model checking can be performed more efficiently on the abstract
system.

Model checking is performed on the abstract model. If the target state is unreachable
in the abstract model, it is unreachable in the original model as well. Otherwise the
model checker produces an abstract counterexample – an execution trace demonstrating
how the abstract system can reach the target state.

Overapproximation admits behaviours of the system that are not feasible in the
original one and the counterexample may not be a valid trace in the real system, so
it has to be examined. If it turns out to be a feasible counterexample, the target state
is reachable. Otherwise the abstract system has to be refined – hidden details of the
original system have to be reintroduced to the model. The goal of the refinement is to
modify the abstract system so that it remains an abstraction of the original one, but the
spurious counterexample is eliminated. Model checking is performed on the refined
system, and the CEGAR loop starts over.

The algorithm terminates when no more counterexamples are found or when a
feasible trace is presented leading to the erroneous state.

There are many ways CEGAR can be implemented. The most important difference
is the way abstraction is applied to the system. It determines the class of algorithms
that can be used for model checking, the nature of the counterexample, and how it can
be analyzed, and the possibilities for refinement. Two approaches are presented here
that can be applied to a wide range of formalisms.

Automaton abstraction example

An abstraction method commonly used for formalisms operating on variables is to
reduce the number of variables in the model, by simply ignoring some of them [7]. The
initial abstraction of the model can be the same model without any variables.

Example 2.5 Consider again automaton A depicted in Figure 2.2. Eliminating all
variables results in the previous finite automaton depicted in Figure 2.1.

Model checking can be performed by state space exploration for example, however,
there are several other ways.

Example 2.6 In the first iteration the state space exploration of A will result in
G(A), where the counterexample found can be e.g. σ = start→ loop→ end.

A common way of checking whether a counterexample is feasible is by transforming
it into a first order logic formula, and handing it to a solver [2]. If it is satisfiable, the

12 BACKGROUND

error location is reachable, and the system is incorrect. Consider for example the case
of the extended finite automaton. The counterexample is a trace σ = l0

e0−→ l1
e1−→ · · ·

en−→
ln+1 = ler r .

Variables have to be defined: for each x ∈ V variables x0, x1, . . . , xn and xer r are
defined – one for each state on the counterexample. Afer that a set of constraints is
constructed to define the automaton’s behaviour.

First, initial conditions are defined. In case of extended finite automata, the initial
constraints are the variables’ initial values. For each x ∈ V x0 = v0(x) is added to the
set of constraints. After that, constraints are added step by step.

It has to be checked if the guard is satisfied. For each ei = (li , gi , ai , li+1) 0≤ i ≤ n
a variation of gi is added to the set of constraints: all x ∈ V appearing in gi is replaced
by x i. After that, the assignment function is considered: for each x ∈ V x i+1 = ai(x)
is added to the set of constraint if ai(x) exists, and x i+1 = x i is added otherwise.
Invariants can be turned into constraints the same way as guards: all x ∈ V appearing
in I(li) is replaced by x i.

Example 2.7 The translation of the counterexample σ = start→ loop→ end to a
logic formula will contain variables x0, x1, x2, l0, l1 and l2. The initial constraints are
x0 = 0, l0 = 0. Edge start → loop assigns 2 to x , but leaves l unchanged, yielding
the constraints x1 = 2, l1 = l0. Location loop’s invariant l ≤ 5 can be transformed to
constraint l1 ≤ 5. The guard of loop→ end yields the constraint x1 ≥ 16.

The formula handed to the solver is ϕ = x0 = 0∧ l0 = 0∧ x1 = 2∧ l1 = l0 ∧ l1 ≤
5∧ x1 ≥ 16.

The conjunction of the resulting set of constraints is handed to a solver. If it is satis-
fiable, the counterexample is feasible, and the erroneous state is reachable. Otherwise
it is a spurious counterexample and the abstract system has to be refined. Solvers can
be used for refinement as well, because they often provide additional information that
helps choosing the hidden parts of the system that has to be reintroduced to the abstract
representation in order to eliminate the counterexample.

Example 2.8 The formula ϕ = x0 = 0∧ l0 = 0∧ x1 = 2∧ l1 = l0 ∧ l1 ≤ 5∧ x1 ≥ 16
is obviously unsatisfiable, because x1 = 2 ∧ x1 ≥ 16 is unsatisfiable in itself. If
the automaton’s current abstraction is extended with the variable x with all of its
assignments, and all constraints in guards and invariants that x appears but l doesn’t,
this counterexample won’t be found anymore.

2.2. Formal verification 13

State space abstraction example

Another possible approach is to apply the abstraction directly to the state space of the
model. The difficulty in this is that the state space is unknown and the abstraction of
the state space has to be yielded solely from the model and the examined property.
In case of automaton-based formalisms, a simple solution is to start from the location
graph of the automaton. This is an abstraction of the state space, because a node l of
the graph represents all states the system can take in location l, and an edge e(l, l ′) can
represents all transitions from the represented states of l to l ′ using e in the automaton.

Example 2.9 Consider again automaton A depicted in Figure 2.2. The location
graph is the previous finite automaton depicted in Figure 2.1.

Note: The initial abstraction is graphically the same as in case of the previous
approach, but the interpretation is different.

Since this approach operates on an abstraction of the state graph, model checking
can be performed by a pathfinding algorithm. This will result in an execution trace,
that has to be examined to decide if it is feasible, and if it turns out to be a spurious
counterexample, the abstract state space has to be refined. Refinement divides the
abstract states to smaller parts. Graphically this means some node n representing the
states S are replicated (with each new node representing a subset of S), along with
their edges – but only if the represented transition is still valid. That is, when node
n representing states S is refined to nodes n1, n2, . . . representing states S1, S2, · · · ⊂ S
an edge n → n′, where n′ represents states S′ is only replicated to n1 → n′ if there
exists some s ∈ S1 and s′ ∈ S′ such that s′ can be reached from s through a transition
represented by the edge. (Incoming edges to n can be handled similarly).

A task of the analysis phase is to determine the information to refine the nodes,
based on the spurious counterexample, such that it is eliminated. A possible approach is
to find the invalid transition of the spurious counterexample and derive a predicate that
is true in the preceding state, and implies that the transition is invalid. (Solvers can be
useful for performing this automatically.) This approach is called predicate abstraction
[13].

Example 2.10 Consider the counterexample σ = start→ loop→ end. Transition
loop → end is obviously not satisfiable since in location loop x < 16. Dividing the
node loop by this results in two nodes: l1 = 〈loop, x < 16〉 (where the predicate
holds) and l2 = 〈loop, x ≥ 16〉 (where the predicate does not hold in any represented
states).

Trivially the edge start→ loop should only reappear pointing to l1, and edge loop
→ end should only reappear pointing to l2, but there are four ways the new versions
of the loop edge can be positioned (l1 → l1, l1 → l2,l2 → l1, and l2 → l2). Edge

14 BACKGROUND

l1→ l1 should appear since if x = 0 (note, at this point the only known fact about x
is that it is less than 16) x ′ = 0< 16 where x ′ is the value of x after the transition.
Similarly l2 → l2 is also valid since if x = 16, then x ′ = 256 ≥ 16. Edge l1 → l2 is
also valid, since if x = 4 < 16, then x ′ = 16 ≥ 16, but there is no such x ≥ 16 that
yields x ′ < 16, thus this edge should not be created.

2.3 Verification of timed systems

The timed automaton is a common formalism for modelling timed systems. It is an
extension of the finite automaton with clock variables. In this section clock variables
and timed automata are introduced, an algorithm is described (and the implementa-
tion briefly explained) for deciding reachability, and information is provided on the
complexity of the problem.

2.3.1 Basic definitions

In order to properly define timed automata, first the idea of clock variables must be
explained. In case of untimed systems, the values of the variables always remain the
same between two modifications. However, this is not the case for clock variables
(clocks, for short).

Definition 2.5 Clock variables are a special type of variables, whose value is con-
stantly and steadily increasing.

When a system stays in one state, the value of clocks are increasing. Naturally, their
values can be modified, but the only allowed operation on clock variables is to reset
them. Resetting a clock means assigning its value to 0. It’s an instantaneous operation,
after which the value of the clock will continue to increase.

Hereinafter follows some basic definitions that are closely related to clock variables
and timed automata.

Definition 2.6 A valuation v(C) assigns a non-negative real value to each clock
variable c ∈ C, where C denotes the set of clock variables.

In other words a valuation defines the values of the clocks at a given moment of
time, just like in case of discrete variables.

Definition 2.7 A clock constraint is a conjunctive formula of atomic constraints of
the form x ∼ n or x− y ∼ n (difference constraint), where x , y ∈ C are clock variables,
∼∈ {≤,<,=,>,≥} and n ∈ N. B(C) represents the set of clock constraints.

2.3. Verification of timed systems 15

6

off dim bright

𝑥 = 0

𝑥 > 10

𝑥 ≤ 10

Figure 2.5 Timed automaton model of a
lamp

In other words a clock constraint defines upper and lower bounds on the values of
clocks (or differences of clocks, in case of difference constraints). Bounds are always
integer numbers.

A timed automaton extends a finite automaton with clock variables. It can be defined
as follows.

Definition 2.8 A timed automaton A is a tuple 〈L, l0, E, I〉 where

• L is the set of locations,

• l0 ∈ L is the initial location,

• E ⊆ L ×B(C)× 2C × L is the set of edges and

• I : L→B(C) assigns invariants to locations. [1]

The automaton’s edges are defined by the source location, the guard (represented
by a clock constraint), the set of clocks to reset (the timed equivalent of the assignment
function), and the target location.

Example 2.11 The timed automaton depicted in Figure 2.5 models a lamp with
three levels of intensity: off (no light), dim, and bright. When it is turned off, one
push of the button turns the dim light on, two quick (within 10 time units) pushes of
the button turn the bright light on. When it is turned on, it can be switched off with
a push of the button.

Definition 2.9 A state of A is a pair 〈l, v〉 where l ∈ L is a location and v : C→R is
the current valuation satisfying I(l).

In the initial state 〈l0, v0〉 v0 assigns 0 to each clock variable.

Two kinds of operations are defined.

16 BACKGROUND

Definition 2.10 The state 〈l, v〉 has a discrete transition to 〈l ′, v′〉 if there is an edge
e(l, g, r, l ′) ∈ E in the automaton such that

• v satisfies g,

• v′ assigns 0 to any c ∈ r and assigns v(c) to any c 6∈ r, and

• v′ satisfies I(l ′).

Definition 2.11 The state 〈l, v〉 has a time transition (or delay, for short) to 〈l, v′〉 if

• v′ assigns v(c) + d for some non-negative d to each c ∈ C and

• v′ satisfies I(l).

Example 2.12 The automaton of the previously mentioned lamp operates on one
clock variable, x . Initially x = 0 but as long as the system stays in location off, its
value increases and it can reach any non-negative value. Once it steps to dim, x is
reset, and its value increases from 0 again. The next discrete transition is decided by
the amount of time the system spent in location dim. If it is at most ten time units,
the system steps into location bright and continues to increase from its last value in
dim, that can be any value between 0 and 10. Otherwise, the system steps back to
off and the value of x continues to increase from its last value in dim, that is more
than 10.

There are many extensions of the timed automata formalism. Most of them – such
as network automata, synchronization, and urgent locations – can be easily transformed
into conventional timed automata, but this is not always the case. The idea to allow
discrete variables as well as clock variables arises simply, but the same way as in case of
finite automaton, growing expressive power yields less efficient model checking.

2.3.2 Timed automaton reachability

In case of timed automata the reachability problem can be defined as follows.

Input : An automaton A= 〈L, l0, E, I〉, and a location ler r ∈ L.

Output : An execution trace σ = l0
t0−→ l1

t1−→ · · ·
tn−→ ler r from l0 to ler r or No, if it is

unreachable.

2.3. Verification of timed systems 17

S0

𝑦 ≔ 0
𝑥 < 𝑧 + 1
𝑧 < 𝑦 + 1

𝑧 ≔ 0 𝑦 > 2

S1 S2 S3

𝑆0, 𝑥 = 𝑦 = 𝑧 𝑆1, 𝑧 ≤ 𝑥 = 𝑦 𝑆2, 𝑧 ≤ 𝑥 ∧ 𝑦 ≤ 𝑧 ∧ 𝑥 − 𝑦 > 2

𝑆0, 𝑥 = 𝑦 = 𝑧

𝑆1, 𝑧 ≤ 𝑥 = 𝑦

 𝑆2, 𝑧 ≤ 𝑥 ∧
 𝑦 ≤ 𝑧 ∧ 𝑥 − 𝑦 > 2

Figure 2.6 Timed automaton

This problem is decidable. One of the most effective algorithms for deciding reacha-
bility is the algorithm used by Uppaal1, a model checker for timed automata. The core
of the algorithm is published in [1].

Algorithm

Before presenting the algorithm, some basic definitions have to be provided. First, zones
are introduced as an abstract domain for clock valuations.

Definition 2.12 A zone z is a set of non-negative clock valuations satisfying a clock
constraint.

Definition 2.13 A zone graph is a finite graph consisting of 〈l, z〉 pairs as nodes,
where l ∈ L refers to some location of a timed automaton and z is a zone. Edges of
the zone graph represent transitions.

A node 〈l, z〉 of a zone graph represents all states 〈l, v〉 where v ∈ z. Since edges
of the zone graph denote transitions, a zone graph can be considered as an (exact)
abstraction of the state space. The main idea of the algorithm is to explore the zone
graph of the timed automaton, and if a node 〈ler r , z〉 exists in the graph for some
z 6= ;, ler r is reachable, and the execution trace can be provided by some path-finding
algorithm.

The construction of the graph starts with the initial node 〈l0, z0〉, where l0 is the
initial location and z0 contains the valuations reachable in the initial location by time
transitions. Next, for each outgoing edge e of the initial location (in the automaton)
a new node 〈l, z〉 is created (in the zone graph) with an edge 〈l0, z0〉 → 〈l, z〉, where
〈l, z〉 contains the states to which the states in 〈l0, z0〉 have a discrete transition through
e. Afterwards z is replaced by z↑ where z↑ denotes the set of all valuations reachable
from a zone z by time transitions. The procedure is repeated on every newly introduced
node of the zone graph. If the states defined by a newly introduced node 〈l, z〉 are all
contained in an already existing node 〈l, z′〉 (z ⊆ z′), 〈l, z〉 can be removed, and the
incoming edge should be redirected to 〈l, z′〉.

1http://www.uppaal.org/

18 BACKGROUND

Example 2.13 For ease of understanding the algorithm is demonstrated on the
automaton in Figure 2.6. The initial state is 〈S0, z0〉 where z0 is a zone containing
only the initial valuation v0 ≡ 0. The initial node is 〈S0, z↑0〉, where z↑0 contains all
states reachable form the initial state by delay. Since as time passes, the values of
the three clocks will be incremented by the same value, x , y and z has the same
value in each valuation contained by z↑0. Since there is no invariant in location S0 the
clocks can take any positive value. Because of this z0 can be defined by the constraint
x = y = z (that is, x − y = 0 ∧ y − z = 0), and the initial node can be defined as
〈S0; x = y = z〉.

There is only one outgoing transition from the initial location and that resets z,
resulting in the zone defined by x = y ∧ z = 0, which transforms into z ≤ x = y
when delay is applied. This means the next node of the graph can be defined as
〈S1, z ≤ x = y〉. There is only one outgoing transition from the location S1 and it has
guard y > 2. This means the transition is only enabled in the subzone z ≤ x = y > 2
(that is z ≤ x ∧ x = y ∧ y > 2). The transition resets y resulting in the zone
y = 0∧ z ≤ x > 2. Delay can be applied and the next node of the graph turns out to
be 〈S2, z ≤ x ∧ y ≤ z ∧ x − y > 2〉.

The outgoing transition from location S2 has a guard x < z + 1∧ z < y + 1 from
which x < y + 2 can be derived contradicting the atomic constraint x − y > 2 in the
reachable zone of location S2. Thus the transition is never enabled, and location S3
is unreachable.

The zone graph of this automaton can be drawn as follows.

〈S0; x = y = z〉 → 〈S1, z ≤ x = y〉 → 〈S2, z ≤ x ∧ y ≤ z ∧ x − y > 2〉

Unfortunately, it is possible that the graph described by the previous algorithm
becomes infinite.

Example 2.14 Consider for example the automaton from [1] in Figure 2.7. Con-
structing the zone graph of this automaton starts similarly, with the node 〈start, x =
y〉. After that both x and y are reset resulting in the zone defined by x = y = 0.
Location loop has an invariant x ≤ 10 that limits the applicable delay to 10, resulting
in 〈loop, x = y ≤ 10〉, where only the loop-transition is enabled.

The transition resets x resulting in 〈loop, x = 0∧ y = 10〉. Still only 10 units of
delay is enabled, resulting in the node 〈loop, x ≤ 10∧ y − x = 10〉.

From this node, both transitions are enabled. The loop transition increases the
difference between x and y yielding the new node 〈loop, x ≤ 10∧y ≤ 30∧y−x = 20〉,
while the other transition resets both clocks, resulting in the new node 〈end, x = y〉.

As we take the new node containing the location loop, and apply the loop
transition over and over, a new node is always constructed with the difference

2.3. Verification of timed systems 19

init

working

error

𝑥 ≤ 10

𝑥 ≔ 0
𝑦 ≔ 0

𝑥 == 10
𝑥 ≔ 0

𝑦 ≥ 20
𝑥 ≔ 0
𝑦 ≔ 0

start

loop

end

𝑥 ≤ 10

𝑥 ≔ 0
𝑦 ≔ 0

𝑥 == 10
𝑥 ≔ 0
𝑦 ≔ 0

𝑦 ≥ 20
𝑥 ≔ 0
𝑦 ≔ 0

start

loop

end

𝑥 ≤ 10

𝑥 ≔ 0
𝑦 ≔ 0

𝑥 == 10
𝑥 ≔ 0

𝑦 ≥ 20
𝑥 ≔ 0
𝑦 ≔ 0

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

𝑙𝑜𝑜𝑝, 𝑥 = 𝑦 ≤ 10

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 10

𝑒𝑛𝑑, 𝑥 = 𝑦
 𝑙𝑜𝑜𝑝,

 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 20

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 > 20 ∧ 𝑦 − 𝑥 > 20

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

𝑙𝑜𝑜𝑝, 𝑥 = 𝑦 ≤ 10

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 10

𝑒𝑛𝑑, 𝑥 = 𝑦
 𝑙𝑜𝑜𝑝,

 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 20

 𝑙𝑜𝑜𝑝,
 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 30

⋮

Figure 2.7 Timed automaton with infinite zone graph

growing. On the other hand, the other transition always results in 〈end, x = y〉.
Hence the (infinite) zone graph in Figure 2.7.

In order for the zone graph to be finite, a concept called normalization is introduced
in [1].

Let k(c) denote the greatest value to which clock c is compared in the automaton.
For any valuation v such that v(c)> k(c) for some c, each constraint in the form c > n is
satisfied, and each constraint in the form c = n or c < n is unsatisfied, thus the interval
(k(c),∞) can be used as one abstract value for c.

Normalization is performed on z↑ (before inclusion is checked) in two steps. The
first step is removing all constraints of the form x < m, x ≤ m, x − y < m, x − y ≤ m
where m > k(x) (so that x doesn’t have an upper bound), and the second step is
replacing constraints of the form x > m, x ≥ m, x − y > m, x − y ≥ m where m> k(x)
by x > k(x), x ≥ k(x), x − y > k(x), x − y ≥ k(x) respectively (to define the new lower
bounds).

Example 2.15 In the automaton depicted in Figure 2.7, k(y) = 20 (and k(x) = 10).
This means the exact value of y doesn’t really matter, as long as it is greater than
20 – the automaton will behave the exact same way if it is between 30 and 40, or
if it is between 40 and 50. If we take this into consideration when constructing
the zone graph, the zone x ≤ 10 ∧ y − x = 30 can be normalized. In this zone,
y ≥ 30> k(y) = 20, but x ≤ k(x). This means we only have to consider constraints
bounding y . Implicitly y ≤ 40 and y − x ≤ 30. These constraints have to be removed

20 BACKGROUND

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

𝑙𝑜𝑜𝑝, 𝑥 = 𝑦 ≤ 10

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 10

𝑒𝑛𝑑, 𝑥 = 𝑦
 𝑙𝑜𝑜𝑝,

 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 20

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 > 20 ∧ 𝑦 − 𝑥 > 20

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

𝑙𝑜𝑜𝑝, 𝑥 = 𝑦 ≤ 10

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 10

𝑒𝑛𝑑, 𝑥 = 𝑦
 𝑙𝑜𝑜𝑝,

 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 20

 𝑙𝑜𝑜𝑝,
 𝑥 ≤ 10 ∧ 𝑦 − 𝑥 = 30

⋮

Figure 2.8 Finite zone graph

from the zone. Similarly, y ≥ 30 and y − x ≥ 30 have to be replaced by y ≥ 20 and
y − x ≥ 20. The resulting zone is x ≤ 10∧ y ≥ 20∧ y − x ≥ 20. If we replace the
original zone x ≤ 10∧ y − x = 30 by this zone, and continue constructing the zone
graph, the resulting graph is depicted in Figure 2.8.

Using normalization the zone graph is finite, but unreachable states may appear
in it. If the automaton doesn’t have any guard or invariant of the form c1 − c2 < n,
the reachability of the location in question will be answered correctly. Otherwise, the
algorithm may terminate with a false positive result.

Example 2.16 To demonstrate the incorrectness of the algorithm, consider again
the automaton in Figure 2.6. Recall that the reachable states of the automaton (by our
calculations) were 〈S0, x = y = z〉, 〈S1, z ≤ x = y〉 and 〈S2, z ≤ y ≤ z ≤ y ∧ x − y >
2〉 – S3 is unreachable. Applying normalization leaves the states 〈S0, x = y = z〉 and
〈S1, z ≤ x = y〉 unchanged, but the normalizing the reachable state in S2 results in
〈S2, z ≤ y ≤ z ≤ y ∧ x − y > 1〉, where the guard can be satisfied, thus making S3
reachable.

The operation split [1] is introduced to assure correctness. Instead of normalizing
the complete zone, it is first split along the difference constraints, then each subzone is
normalized, and finally the initially satisfied constraints are reapplied to each normalized
subzone. The result is a set of zones (not just one zone like before), which means
multiple new nodes have to be introduced to the zone graph (all with edges representing
the same transition from the original node).

Example 2.17 To demonstrate the effects of split, let us construct the zone graph
of the automaton of Figure 2.6. The original node remains 〈S0, x = y = z〉, but

2.3. Verification of timed systems 21

the next node is first split along the difference constraint x − z < 1. Instead of the
node 〈S1, z ≤ x = y〉, this time there are two nodes: 〈S1, x = y ∧ x − z < 1〉 and
〈S1, x = y ∧ x − z ≥ 1〉.

From 〈S1, x = y ∧ x − z < 1〉, 〈S2, x − z ≤ 1∧ z − y ≤ 1〉 is reachable, where the
transition to location S3 is not enabled because of the guard x − z < 1.

From 〈S1, x = y ∧ x − z ≥ 1〉 the resulting zone after firing the transition is split
along the constraint z − y < 1, resulting in nodes 〈S2, x − z ≥ 1 ∧ z − y < 1〉, and
〈S2, x − z ≥ 1∧ z − y ≥ 1〉. The transition to S3 is not enabled in either nodes.

Applying split results in a zone graph, that is a correct and finite representation of
the state space [1].

Implementation

Paper [1] also provides an implementation of the zone domain, called Difference Bound
Matrix, or DBM for short. The idea of DBMs is based on transforming clock constraints
to difference logic formulae.

Difference constraints are easy to transform as c1−c2 ≥ n is equivalent to c2−c1 ≤ −n
(same goes for strict inequalities), and c1−c2 = n is equivalent to c1−c2 ≥ n∧c1−c2 ≤ n.
In order to transform constraints of the form x < n or x ≤ n, x ∈ C, n ∈Z a new variable
has to be introduced.

Definition 2.14 The variable denoted by 0 is a special variable that has a constant
value of 0. 0 is not a clock variable, but can appear in clock constraints.

Using 0 x ∼ n, ∼∈ {≤,<,=,>,≥} can be transformed into x − 0∼ n, and all clock
constraints can be transformed into the desired form.

Definition 2.15 A Difference Bound Matrix D of a zone z operating on C is a square
matrix of |C| + 1 rows (and columns). A row and a column is assigned to each
c ∈ (C∪ {0}). Each element Di, j of the matrix describes an upper bound on i − j, by
storing whether the inequality is strict (< or ≤) and the bound n. It is possible that
there is no upper bound on i − j, in this case Di, j =∞.

The DBM D of zone z stores all constraints bounding z.

In order for operations to be efficient it is required that the DBM is in a canonical
form.

Definition 2.16 A Difference Bound Matrix D of a zone z is in canonical form if for
all i, j ∈ (C∪{0}), Di, j denotes the strictest bound on i− j that can be derived from z.

22 BACKGROUND

As zones and DBMs are different representations of the same entity, this paper uses
the terms interchangeably.

Many operations are defined on DBMs. The most important ones are the following:

• consistent(D) is used to decide if D contains any states

• relation(D,D′) tells if one of D and D′ is contained in the other

• satisfied(D, m) where m is a difference constraint, tells if D contains any states
satisfying m without affecting D

• up(D) calculates D↑

• and(D, m) where m is a difference constraint, restricts D to the states satisfying
m

• free(D, c) where c ∈ C, removes all constraints on c

• reset(D, c) where c ∈ C, resets c

• norm(D, k) where k : C→Z, normalizes the zone based on k that assigns to each
c ∈ C the highest value they are compared to in an automaton

• split(D, G) where G ∈ B(C), splits the zone based on G that is the set of all
difference constraints appearing in an automaton.

Using these operations the calculation of the next zone in the zone graph can
be automated. Let n = (l, D) be an already calculated node of the zone graph, and
e = (l, g, r, l ′) an edge of the timed automaton. Calculating the next node n′ = (l ′, D)
(or next nodes) starts by checking guards. This can be performed by calling and(D,m)
for each atom m of the difference logic formula representation of g and then checking
consistent(D) to check if there are any states in D satisfying g. If there are, the transition
is enabled. In this case D has to be reset: for c ∈ r, reset(D,c). I(l ′) also has to be
satisfied in order for the transition to be enabled. This can be checked similarly to the
guard. After this up can be used to calculate D′, but and(D,m) has to be called again for
m ∈ I(l ′). After that split and norm are called to ensure correctness and termination.

Implementations (pseudocodes) of these operations are provided in [1]. Termina-
tion of the algorithm is also proven, but it’s complexity is exponential in the number of
clocks. Because of this it is essential to reduce the number of clocks as much as it is
possible, without changing the reachability property.

2.3. Verification of timed systems 23

Activity

In [10] abstractions of the automaton are proposed to reduce the number of clock
variables without affecting the operation of the automaton. The abstraction that will be
used later in this paper is called activity. A clock c is considered active at some location
l (denoted by c ∈ Act(l)) if its value at the location may influence the future evolution
of the system. It might be because the clock appears in the invariant of the location, or
in the guard of some outgoing edges of the location, or because it is active in one of the
posterior locations and its value is not reset until that location.

Example 2.18 In the automaton depicted in Figure 2.6 clock z is active at location
S2 because it appears in the guard of the outgoing edge. It is also active in S1 because
its value in S1 determines its value in S2 and it is active in S2, but it is not active in
S0 because its value is not important, since it is reset in the outgoing edge anyway.

The core of the algorithm for reducing the number of clock variables is to calculate
Act(l) for each l ∈ L, and if Act(l) < |C| holds for each l ∈ L, the automaton can be
reconstructed by renaming variables location by location (after renaming there will be
less clocks). This is true, even if all c ∈ C is active in at least one location, however,
clocks might be renamed differently in distinct locations.

Before presenting how activity is calculated some new notations are introduced.
Let clk : B(C)→ 2C and assign to each clock constraints the set of clocks appear in it.
Define clk : L→ 2C such that c ∈ clk(l) iff c ∈ clk(I(l)) or there exist an edge (l, g, r, l ′)
such that c ∈ clk(g).

Activity is calculated by an iterative algorithm starting from Act0(l) = clk(l) for
each l ∈ L. In the i th iteration Act i(l) is derived by extending Act i−1(l) by Act i−1(l ′) \ r
for each edge (l, g, r, l ′). The algorithm terminates when it reaches a fix point, i.e. when
Act i(l) = Act i−1(l) for each l ∈ L.

Example 2.19 Let us calculate activity for the complete automaton. Act0(l) = clk(l)
for each l ∈ L. Thus, iteration starts from Act0(S0) = ;, Act0(S1) = {y}, Act0(S2) =
{x , y, z}, and Act0(S3) = ;.

Since y is not reset on edge S0→ S1, Act1(S0) = {y}. Since x and z are not reset
on edge S1→ S2, Act1(S1) = {y, x , z}. Since Act0(S3) = ;, and S3 has no outgoing
edges Act1(S2) = {x , y, z} and Act1(S3) = ;.

Clock x is not reset on edge S0 → S1 but z is, thus Act2(S0) = {y, x}. Other
activities are unchanged in this iterations, thus Act2(S1) = {y, x , z}, Act2(S2) =
{x , y, z}, Act2(S3) = ; and the fix point is reached.

24 BACKGROUND

Complexity

As it was mentioned, reachability for timed automata without discrete variables is
decidable (but it it exponential). It was also mentioned before that reachability for
finite automata extended by (discrete) variables is undecidable. Obviously, reachability
of timed automata extended with discrete variables is also undecidable. However it is
decidable if the value sets of the discrete variables are finite, because in this case the
values can be encoded in the locations.

2.4 Objectives

The goal of this thesis is to provide an extensible framework for CEGAR-based al-
gorithms deciding reachability of timed automata extended with discrete variables.
Since reachability is undecidable for this type of timed automata, termination of the
algorithms is not always guaranteed.

25

Chapter 3

Configurable Timed CEGAR

This chapter presents a configurable framework for CEGAR-based reachability analysis
of timed automata. First, the goal of the framework is explained, than the used
algorithms and techniques are enumerated and finally, the extensibility of the framework
is presented.

3.1 Generic CEGAR framework

The key idea of the framework is to provide various techniques for each phases of the
CEGAR-loop, by using correspondent parts of CEGAR-based reachability algorithms.
Most of these algorithms already exist (mostly for other formalisms, and they have to
be adapted to timed automata), but some of them are new contributions. The created
modules can then be combined to form new algorithms (that is, the technique used in
each phase of CEGAR can be provided by different algorithms), and choosing the most
efficient parts of the original algorithms can result in an even more efficient algorithm
than the original ones.

The architecture of the framework is illustrated in Figures 3.1, 3.2 and 3.5. There
are three different realizations of the CEGAR-loop, because the framework supports
distinct ways to apply abstraction to timed automata. While the first approach (Fig-
ure 3.1) is based on eliminating clock variables (see Section 2.2.3): starting from a
finite automaton (without any clock variables) the current automaton gets extended
with some clocks in each iteration – and the automaton is the base of refinement, the
other approaches (Figures 3.2 and 3.5) are based on the refinement of the state space
itself (see Section 2.2.3), and include multiple types of abstract state space representa-
tions. Only techniques operating on the same abstract state space representation are
interchangeable – hence the different interpretations.

26 CONFIGURABLE TIMED CEGAR

Model-
checker

Solver

Adding clocks
to automaton

Untimed
automaton

[Unreachable]

Execution trace

[Reachable]

[SAT][Unsat]

Refined
automaton

Correct
system

Erroneous
systemSet of clocks

Figure 3.1 Automaton-based refinement

3.1.1 Automaton-based refinement

Figure 3.1 depicts the architecture of the automaton-based approach. The initial
abstraction is a finite automaton that is derived from the original timed automaton by
removing all clock variables and clock constraints.

In each iteration of the CEGAR-loop, the task of the model checking phase is to
determine whether the error location is reachable in the current automaton and provide
a trace (counterexample) if there is one. Therefore, this phase should be realized by a
reachability-checking algorithm for timed automata that can find a trace to the location.

The task of the analysis phase is to check if the trace found is feasible in the original
automaton and if it isn’t, provide a set of clock variables that can then be added to the
automaton (with the clock constraints they appear in) so that the model checker won’t
find this counterexample again. This can be calculated by a solver.

Finally, the only task of the refinement phase is to refine the current abstraction of
the automaton, by extending it with the given set of clock variables (and the constraints
they appear in). The task is straightforward, and so there is only one technique for this
phase of the CEGAR-loop (in case of automaton refinement).

Algorithm 3.1 provides pseudocode for the described approach. Functions reach-
able(), refinementset() and refine() are components that can be chosen from the tech-
niques described in the following sections, where two reachability algorithms, an
approach for calculating the clocks to include, and the algorithm for refining the au-
tomaton are presented. Algorithms are demonstrated on the automaton in Figure 2.7
with ler r = end to ease understanding. From now on A will refer to that particular
timed automaton.

Zone graph exploration

The reachability-checking algorithm described in Section 2.3.2 is an obvious choice
for the model checking phase, however, it is important to note that the algorithm does
not handle discerete variables. The discrete valuation can be encoded into the location

3.1. Generic CEGAR framework 27

Algorithm 3.1 Automaton-based refinement

Input: AC = 〈L, l0, E, I〉, ler r ∈ L

Output: σ = l0
t0−→ l1

t1−→ · · ·
tn−→ ler r if ler r is reachable, No otherwise

1 A←AC \C /* initial abstraction */
2 while true do
3 σ← reachable(A, ler r) /* model checking */
4 if 6 ∃σ then /* no counterexample is found */
5 return No /* unreachable */
6 else
7 C ← refinementset(A,σ) /* analysis */
8 if c = ; then /* No refinement set, because feasible */
9 return σ

10 else
11 A← refine(A, C ,AC) /* automaton is refined by C */

Model checking

Timed
automaton

Execution
trace

Correct
system

State space
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
state space

Execution
trace

Correct
system

State space
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Analysis

Execution
trace

Node and
predicate

Erroneous
system

Interpolation

Refinement

Node and
predicate

Refined
automaton

Predicate
graph

refinement

(and calculated on the fly) but in this case termination is not ensured (as Section 2.2.1
explains).

Satisfiability-based model checker

Model checking

Timed
automaton

Execution
trace

Correct
system

Statespace
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
statespace

Execution
trace

Correct
system

Statespace
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Satisfiability-based model checking as introduced in Section 2.2.3 can be directly
applied to timed automata – the only necessary change is to define a transformation
that can turn a counterexample (an execution trace) into an SMT-problem.

The idea is to separate discrete transitions from time transitions. Consider a coun-

terexample sequence σ = l0
t0−→ l1

t1−→ · · ·
tn−→ ler r . This representation of σ hides the

28 CONFIGURABLE TIMED CEGAR

fact that it is important how much time the system spends in each location – i.e. delay
transitions. Let us denote the amount of time spent in li by di . This wayσ can be defined

by σ = l0
d0−→

t0−→ l1
d1−→

t1−→ · · ·
dn−→

tn−→ ler r . In this representation
di−→ can be considered a

special kind of transition that increases v(c) for each c ∈ C by di . Based on this the SMT
formula can be constructed.

First, let us assign a variable for each clock in each location, both before and after
the delay – that is, this means 2 · n ·|C| variables. Let us denote these variables by ci (for
the value of clock c in location li before the delay) and c′i (for the value of clock c in
location li after the delay). Let us also assign variables for each di . The first constraints
that have to be added is that each of the defined variables are greater or equal to 0.

The initial constraints can simply be described by c0 = 0 for each c ∈ C. Delay
transitions can be turned into constraints by the following equation ci + di = c′i for each
c ∈ C, 0≤ i ≤ n. In case of discrete transitions, guards (clock constraints) can be turned
into SMT constraints by replacing the clock variables with the defined variables. The
guard gi of a transition t i(li , gi , ri , li+1) can be transformed by replacing all clocks c
appearing in gi by c′i . Resets can also be simply transformed into constraints – for all
c ∈ ri ci+1 = 0 has to be added to the set of constraints. Note, that this way ci+1 is
only specified for the reset clocks. For all c 6∈ ri ci+1 = c′i has to be added to the set
of constraints. Invariants can be transformed into SMT constraints the same way as
guards.

Discrete variables can be mapped to SMT variables as before since discrete variables
and clock variables have no affect on each other.

Running example 3.1 Consider automaton A (recall, it is the automaton depicted
in Figure 2.7). Assume the counterexample is σ = start → loop → end. The new
variables are x0,y0,x

′
0,y
′
0,x1,y1,x

′
1,y
′
1,x2,y2,x

′
2,y
′
2,d0,d1 and d2. It is important to

define them to be non-negative since they represent the elapse of time. Initial
constraints are x0 = 0 and y0 = 0. Delay is described by constraints x ′0 = x0 + d0,
y ′0 = y0 + d0, x ′1 = x1 + d1, y ′1 = y1 + d1, x ′2 = x2 + d2 and y ′2 = y2 + d2.

There is no guard on edge start→ loop, but it resets both variables yielding the
constraints x1 = 0, y1 = 0. The invariant of location loop can be transformed to
x1 ≤ 10 and x ′1 ≤ 10. The next edge has a guard, y ≥ 20 that can be transformed
to y ′1 ≥ 20, and the resets to x2 = 0 and y2 = 0. This results in the formula
ϕ = x0 = 0∧ y0 = 0∧ x ′0 = x0+d0∧ y ′0 = y0+d0∧ x ′1 = x1+d1∧ y ′1 = y1+d1∧ x ′2 =
x2+d2∧ y ′2 = y2+d2∧ x1 = 0∧ y1 = 0∧ x1 ≤ 10∧ x ′1 ≤ 10∧ y ′1 ≥ 20∧ x2 = 0∧ y2 = 0.

This allows us to use a SMT-solver to decide if a possible execution trace of a timed
automaton is feasible. This can be used for model checking timed automata, by iterating
over all possible execution traces and if a trace σ is found from l0 to ler r , it can be
checked, and if the derived formula is satisfiable, σ is proposed as a counterexample.

3.1. Generic CEGAR framework 29

The problem with this model checker is that there may be infinitely many execution
traces. Thus, this model checker can only be used as a bounded model checker.

Unsat core-based clock selection

Model checking

Timed
automaton

Execution
trace

Correct
system

Statespace
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
statespace

Execution
trace

Correct
system

Statespace
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Solvers can be useful, not only to decide if a given set of constraints is satisfiable,
but also – if the answer is that the formula is unsatisfiable – solvers have various features
to show why they can not be satisfied. One of the possible helpful feature is deriving
the so called unsat core – that is, a minimal (not necessarily minimum1) set of the given
constraints that is unsatisfiable in itself. This set of constraints can be used to determine
the set of clock variables with what the current abstraction of the automaton has to be
extended. In order to define the refinement set, the variables appearing in the unsat
core have to be transformed back to the original variables. The set of original variables
appearing in the constraints is the result of the algorithm.

Running example 3.2 The result of checking satisfiability of ϕ is No, and the unsat
core is ϕunsat = x ′1 = x1 + d1 ∧ y ′1 = y1 + d1 ∧ x1 = 0 ∧ y1 = 0 ∧ x1 ≤ 10 ∧ x ′1 ≤
10∧ y ′1 ≥ 20. This means the automaton has to be refined with both x and y so that
the spurious counterexample is eliminated.

Automaton refinement

Model checking

Timed
automaton

Execution
trace

Correct
system

Statespace
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
statespace

Execution
trace

Correct
system

Statespace
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Given an original automatonA an abstract automatonA′ and a set of clock variables
to be added C ⊆ C, the task is to refine A′ so that each clock c ∈ C appears in it. The

1A minimal unsat core does not guarantee that it is the smallest possible unsatisfiable subset of the
given constraints, i.e. minimum. It only guarantees that the removal of any constraint would result in a
satisfiable formula.

30 CONFIGURABLE TIMED CEGAR

Pathfinding

Analysis + predicate
calculation

Node
refinement

Initial predicate
graph

[Unreachable]

Execution trace

[Reachable]

[Valid][Invalid]

Refined
predicate graph

Correct
system

Erroneous
systemPredicate

Figure 3.2 Predicate abstraction

task is to decide which of the guards, resets and invariants to include. Resets are easy
to add: the ones that reset clocks in C should be included, others don’t. Guards and
invariants are clock constraints – conjunctive formulae of atomic constraints bounding
the value of the clocks or the difference of two clocks. Decision can be made for each
atomic formula one by one: those in which only clocks in A′ or C appear – that is,
difference constraints are only included if both clocks appear in A′ or C .

3.1.2 Predicate abstraction

In case of state space-based refinement, the representation of the state space has a
defining role. In case of predicate abstraction [13] the state space is represented with
a graph where nodes contain a location and a finite set of (satisfiable) predicates
representing a set of states satisfying the predicates, and edges represent transitions of
the original automaton. From now on this graph shall be called the predicate graph.

In case of timed systems, the nodes of the predicate graph contain a location and
a set of valuations reachable in the location, similarly to the zone graph. Another
similarity is that the states represented by the nodes of the predicate graph also include
delay transitions – i.e. an edge n → n′ of a predicate graph means that for some
s ∈ S, s′ ∈ S′, d ∈ N, e ∈ E (where S and S′ are the states represented by n and n′,
respectively) applying the discrete transition represented by e to s and applying a delay
of d time units to the result, results in s′.

Figure 3.2 depicts the architecture of the algorithm discussed in this section. First,
an initial abstraction of the state space is created. Model checking can be applied by
searching for a path from the initial node to the node containing the error location
in the current abstraction of the state space. The found execution trace can then be
analysed. The task of this phase is to decide if it is valid and if it is not, to choose a node
and calculate a predicate to refine it, in order to eliminate the spurious counterexample.

As mentioned in Section 2.2.3 the initial predicate graph is the location graph of
the automaton. It is possible to start the algorithm with an empty set of predicates at

3.1. Generic CEGAR framework 31

𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10

𝑒𝑛𝑑

𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10, 𝑦 ≤ 10

𝑒𝑛𝑑

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10, 𝑦 > 10

Figure 3.3 Initial predicate graph

each node, however there are constraints that can be used as initial predicates: the
invariants of the locations.

Running example 3.3 The initial abstraction of A is depicted in Figure 3.3.

Pathfinding

Model checking

Timed
automaton

Execution
trace

Correct
system

State space
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
state space

Execution
trace

Correct
system

State space
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Analysis

Execution
trace

Node and
predicate

Erroneous
system

Interpolation

Refinement

Node and
predicate

Refined
automaton

Predicate
graph

refinement

The task of the model checking phase is to find traces from l0 to ler r . In case of
the graph representation, where ler r appears in the node 〈ler r , z;〉 even in the initial
abstraction, model checking becomes a pathfinding problem from 〈l0, z;〉 to 〈ler r , z;〉 in
the abstract zone graph. This can be performed by any pathfinding algorithm.

Running example 3.4 Pathfinding in A’s initial abstraction finds the previously
mentioned counterexample σ = start→ loop→ end.

Interpolant calculation

Model checking

Timed
automaton

Execution
trace

Correct
system

State space
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
state space

Execution
trace

Correct
system

State space
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Analysis

Execution
trace

Node and
predicate

Erroneous
system

Interpolation

Refinement

Node and
predicate

Refined
automaton

Predicate
graph

refinement

32 CONFIGURABLE TIMED CEGAR

As in case of automaton-based refinement SMT solvers can be used to decide if an
execution trace is valid. If it is not, the following task of the analysis phase is to choose
a node to refine, by finding out which is the first invalid transition on the trace. This
can be performed by iteratively giving a prefix of the formula to the solver, that only
represents the first i transitions (0≤ i ≤ n).

Running example 3.5 We have already seen that the formula ϕ is unsatisfiable.
Checking which of the transitions is the first invalid one can be performed by first
checking if the first transition is enabled. The formula ϕ0 = x0 = 0∧ y0 = 0∧ x ′0 =
x0+d0∧ y ′0 = y0+d0∧ x ′1 = x1+d1∧ y ′1 = y1+d1∧ x1 = 0∧ y1 = 0∧ x1 ≤ 10∧ x ′1 ≤
10∧ y ′1 ≥ 20 is handed to the solver and it turns out to be satisfiable. Thus, the first
transition is valid.

The next task is to check if the second transition is valid, but that would mean we
would have to hand ϕ1 = ϕ to the solver and we already know that it is unsatisfiable.
Hence, we know the second transition is the (first) invalid transition on this trace.

The next task is to calculate the predicate to refine. For this we can use another
function of an SMT solvers – the so-called interpolation. Let ϕs be a conjunctive formula
of logical constraints that are satisfiable and ϕu another formula of logical constraints
such that ϕs ∧ ϕu is unsatifiable. The solver can derive a formula I(ϕs,ϕu) that ϕs

implies but is in contradiction with ϕu, and only contains variables appearing in both
ϕs and ϕu – an interpolant.

If we set ϕs the longest fraction of ϕ that was satisfiable (ϕi) and ϕu the fraction
representing the next transition (with which it became unsatisfiable), I(ϕs,ϕu) will be
a formula only containing the common variables of the formula representing the first
i transitions and t i+1 – that is, the variables representing the values of the clocks at
node ni+1 of the trace. Thus, the node to refine is ni+1 and the predicate is the derived
interpolant (transformed back to the original clock variables).

Running example 3.6 The solver calculates I(ϕ0,ϕ) = y1 ≤ 10. Thus the node
loop has to be refined by predicate y ≤ 10.

It is important to know that this only works if the reason the transition was invalid
is because the guard wasn’t satisfied. Otherwise since ϕu is unsatisfied in itself and
I = ;. In this case the predicate graph can be refined by removing the corresponding
edge.

Predicate graph refinement

The task of the refinement is to refine the given node n of the graph based on the
predicate p. To perform this, n is divided into nodes ns and nu and p is added to the

3.1. Generic CEGAR framework 33

Model checking

Timed
automaton

Execution
trace

Correct
system

Statespace
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
statespace

Execution
trace

Correct
system

Statespace
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Analysis

Execution
trace

Node and
predicate

Erroneous
system

Interpolant

Refinement

Node and
predicate

Refined
automaton

Predicate
graph

refinement

𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10

𝑒𝑛𝑑

𝑠𝑡𝑎𝑟𝑡

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10, 𝑦 ≤ 10

𝑒𝑛𝑑

𝑙𝑜𝑜𝑝, 𝑥 ≤ 10, 𝑦 > 10

Figure 3.4 Refined predicate graph

set of predicates in ns and ¬p is added to the set of predicates in nu.
The next task is to check the edges of the original node and decide which of the new

nodes can they point to and from. This can also be performed using logical formulae.
Let p(n) denote the set of predicates of node n. An original edge with guard g and

reset r from node n to n′ can be checked similarly to when a transition in a trace is
checked: first, for each clock, three variable is defined – one for its value in n, one for
its value after the transition and one for its value after the delay. A variable for the
value of the delay should also be defined.

After defining the variables, the trivial constrains must be defined: all of the defined
variables are at least 0 and the value of a clock after the delay equals the sum of its
value before the delay and the value of the delay. Similarly as before the guard can
be turned to an SMT constraint as well as the reset, operating on the corresponding
SMT variables. This time it is not necessary to check if the valuation after the transition
satisfies the invariant (since the analysis phase can check that), instead it should be
checked if the valuation before transition satisfies p(n) an if the valuation after the
delay satisfies p(n′). If the created formula is satisfiable, the edge is valid.

Running example 3.7 First the node 〈loop, x ≤ 10〉 is divided into nodes n≤ =
〈loop, x ≤ 10∧ y ≤ 10〉 and n> = 〈loop, x ≤ 10∧ y > 10〉.

After this, the edges can be checked. The new version of edge start→ loop can
only point to n≤ and the new version of edge loop → end can only point from n>,
eliminating the spurious counterexample.

The loop edge can point from n≤ to itself (if the value of the delay is 0), or to n>

34 CONFIGURABLE TIMED CEGAR

Pathfinding

Precision + zone
calculation

Subtree integration
to statespace

Statespace
abstraction

[Unreachable]

Execution trace

[Reachable]

[Valid][Invalid]

Refined
statespace

Correct
system

Erroneous
systemSubtree

Figure 3.5 Zone-based refinement

(if the value of the delay is greater than 0) and from n> to itself, but not to n≤, since
the transition never decreases the value of y.

The result can be seen in Figure 3.4.

3.1.3 Zone-based refinement

In this approach, the state space is represented by zone graphs – this is common for
all algorithms. However, the abstraction of the zone graph can be performed various
ways. In this framework, the main idea is to explore the state space without considering
clock variables (and in some cases discrete variables, too), and to refine the state space
– trace by trace – by deciding which of the clock variables to include for each of the
zones on that path. After that the graph is refined (clocks are included in the zones),
and during the refinement it turns out whether the counterexample is feasible or not.
Figure 3.5 depicts the architecture of this approach.

Because of the different approaches of abstraction, constructing the initial abstrac-
tion is not as straightforward as it was in case of automaton-refinement. All that can be
said is that it is some sort of abstraction of the state space derived from the automaton
without including clock variables.

The task of the model checking phase is to find a path from the initial location to the
error location in the current abstraction of the zone graph. Because of this, the model
checking phase of state space-based refinement is performed by pathfinding algorithms.

The task of the analysis phase can be divided into two parts: decide which of the
clock variables to include in the zones (i.e. the precision of the zone) and calculate the
zones on the trace (up to the given precision) and find out if it is feasible or not.

When performing the first part it is important to find precisions (that might change
along the trace) that is not too big (does not include too much variables) to be calculated
efficiently, but includes all variables that are necessary to find out if he trace is feasible
or not. The result of this part should be a function P : V (G)→ 2C assigning precisions
to the nodes of the current abstraction of zone graph.

3.1. Generic CEGAR framework 35

Algorithm 3.2 State space-based refinement

Input: A= 〈L, l0, E, I〉, ler r ∈ L

Output: σ = l0
t0−→ l1

t1−→ · · ·
tn−→ ler r if ler r is reachable, No otherwise

1 G← inital(A) /* initial abstraction */
2 while true do
3 σ← path(G, l0, ler r ,A) /* model checking */
4 if 6 ∃σ then /* no counterexample is found */
5 return No /* unreachable */
6 else
7 P ← prec(A,σ)
8 T ← calculateTrace(σ, P) /* analysis */
9 if ∃〈ler r , z〉 ∈ nodes(T) for some z 6= ; then /* feasible trace */

10 return σ
11 else
12 G← refine(G, T) /* state space is refined accoring to T */

As for the second part, calculating the correct zones can be performed by the steps
of the algorithm presented in Section 2.3.2 with some modifications that help with
handling the changes of precision along the zones in counterexample. If the error
location is unreachable, a guard or invariant will eventually prove to one of the edges
on the trace that it represents a transition that is not enabled.

The task of the refinement phase is to modify the current abstraction of the zone
graph according to the states calculated in the analysis phase.

Algorithm 3.2 provides pseudocode for the described approach. Function initial,
path and refine are state space representation-dependent. Functions prec(), and cal-
culateTrace() are components that can be chosen from the techniques described in
the following sections, where two abstractions of the zone graph are presented, and
algorithms are shown, mentioning the state space representation-dependent behaviours
of model checking and refinement. Only those of the presented techniques can be used
interchangeably, that are defined for the same representation.

Graph representation

The first representation of the abstract zone graph is another zone graph, with zones of
varied precisions. To avoid confusion, from now on precisions of zones will always be
shown: zones will be denoted by zC where C ⊆ C is the precision of the zone. Zones of
the real zone graph (without abstraction) are denoted by zC.

36 CONFIGURABLE TIMED CEGAR
≪ 𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦 ≫

< 𝑙𝑜𝑜𝑝,
𝑥 = 𝑦 ∧ 𝑥 < 10 >

𝑠𝑡𝑎𝑟𝑡, 𝑧∅

𝑙𝑜𝑜𝑝, 𝑧∅

𝑒𝑛𝑑, 𝑧∅

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

 𝑙𝑜𝑜𝑝,
 𝑥 = 𝑦 ≤ 10

𝑠𝑡𝑎𝑟𝑡, 𝑥 = 𝑦

𝑙𝑜𝑜𝑝, 𝑧∞

𝑒𝑛𝑑, 𝑧∞

 𝑙𝑜𝑜𝑝,
 𝑥 = 𝑦 ∧ 𝑥 ≤ 10

Figure 3.6 Initial abstraction of A

A node 〈l, zC〉 of the abstract zone graph can represent any nodes 〈l, z′
C
〉 of the real

zone graph, that contains the same location l, and some zone z′
C
for which z′C ⊆ zC

holds (where z′C means a spatial projection of z′
C
to the subspace spanned by the clocks

in C). This means 〈l, z;〉 can represent any nodes of the real zone graph containing l.
Based on this, the initial abstraction can be constructed by assigning a node 〈l, z;〉

to each location l ∈ L. The graph can then be completed with edges: for each e =
(l, g, r, l ′) ∈ E a new edge of the zone graph should be included pointing from 〈l, z;〉 to
〈l ′, z;〉.

Running example 3.8 The initial abstraction for A is depicted in Figure 3.6.

During the algorithm this graph will be refined by the zones calculated in the
refinement phase. Sometimes nodes will get replicated, or edges deleted (the precise
algorithm will be described later), but it will remain an abstraction of the concrete zone
graph.

Tree representation

The other representation of the abstract zone graph is based on the idea of search trees.
Instead of keeping track of the full (abstract) zone graph (like we did with the other
representation) details of the tree will be uncovered in the model checking phase of the
CEGAR loop. However, one thing is common in both representations: the abstraction
of the nodes is based on a set of clocks (precision) to include (just like in case of the
automaton-based refinement) and initially all precisions are empty. The state space
exploration will also operate on empty precision sets, and the zones will be calculated
in the refinement phase. In this case, discrete valuations can be calculated during state
space exploration (but it is not necessary).

3.1. Generic CEGAR framework 37

Let us define the formalism to represent the abstract tree.

Definition 3.1 The auxiliary graph can be defined as a tuple 〈Ne, Nu, E↑, E↓〉 where

• Ne ⊆ L ×B(C) is the set of explored nodes,

• Nu ⊆ L ×B(C) is the set of unexplored nodes,

• E↑ ⊆ (Ne × N), where N = Ne ∪ Nu is the set of upward edges and

• E↓ ⊆ (Ne × N) is the set of downward edges.

The sets Ne and Nu as well as the sets E↑ and E↓ are disjoint. T ↓ = (N , E↓) is a tree.

Nodes are built from a location and a zone like in the zone graph but in this case
nodes are distinguished by their trace leading to them from the initial node. This means
the graph can contain multiple nodes with the same zone and the same location, if the
represented states can be reached through different traces. The root of T is the initial
node of the (abstract) zone graph. A downward edge e points from node n to n′ if n′

can be reached from n in one step in the zone graph.
Upward edges are used to collapse infinite traces of the representation, when the

states are explored in former iterations. An upward edge from a node n to a previously
explored node n′ means that the states represented by n are a subset of the states
represented by n′, thus it is unnecessary to keep searching for a counterexample from
n, because if there exists one, another one will exist from n′. Searching for new traces
is only continued on nodes without an upward edge. This way, the graph can be kept
finite, unless the discrete variables of the automaton prevent it.

Initially, the graph contains only one, unexplored node 〈l, z;〉, and as the state space
is explored, unexplored nodes become explored nodes, new unexplored nodes and
edges appear, until a counterexample is found. During the refinement phase zones are
calculated, new nodes and edges appear and complete subtrees disappear. State space
exploration will then be continued from the unexplored nodes, and so on. Discrete
valuation can be calculated during state space exploration.

Running example 3.9 The initial abstraction for A is a single unexplored node
n0 = 〈start, z;〉.

State space exploration

In case of the graph representation, state space exploration can be performed by a
pathfinding algorithm, similarly to the predicate graph.

In case of the tree representation, ler r does not appear in the graph and the state

38 CONFIGURABLE TIMED CEGAR

Model checking

Timed
automaton

Execution
trace

Correct
system

State space
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
state space

Execution
trace

Correct
system

State space
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

Analysis

Execution
trace

Node and
predicate

Erroneous
system

Interpolation

Refinement

Node and
predicate

Refined
automaton

Predicate
graph

refinement

space exploration has to be continued until a node 〈ler r , z;〉 appears. State space
exploration has to be performed the following way.

In each iteration a node n = 〈l, zC〉 ∈ Nu for some C is chosen. First, it is checked
if the states n represents are included in some other node n′ = 〈l, z′C〉 with a zone of
the same precision. If this is the case an upward edge is introduced from n to n′ and
n becomes explored. Otherwise, n has yet to be explored. For each outgoing edge
e(l, g, r, l ′) of l in the automaton a new unexplored node 〈l, z;〉 is introduced with an
edge pointing to it from n, which becomes explored. If any of the new nodes contains
ler r , the algorithm terminates. Otherwise, another unexplored node is chosen, and so
on.

Running example 3.10 Exploration of A’s abstract state space starts by exploring
n0, that is performed by introducing a new (unexplored node) n1 = 〈loop, z;〉 with a
downward edge n0→ n1. The erroneous location is not explored yet so the iteration
continues. Location loop has two outgoing edges. The loop edge introduces n2 =
〈loop, z;〉 with a downward edge n1→ n2. Edge loop→ end introduces n3 = 〈end, z;〉
with n1→ n3. The erroneous location is found and σ = n0→ n1→ n3 is proposed as
a counterexample.

Algorithm 3.3 provides pseudocode for the presented method. Function trace
calculates the sequence of downwards arrows through wich the node is reached from
the root of T.

Trace activity-based precision calculation

Analysis

Execution
trace Precision

Erroneous
systemUnsat core-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
systemTrace activity-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
system

Subtree
Precision
calculation

Zone
calculation

3.1. Generic CEGAR framework 39

Algorithm 3.3 An implementation of of function path

Input: T = 〈Ne, Nu, E↑, E↓〉, ler r ,A

Output: σ = l0
t0−→ l1

t1−→ · · ·
tn−→ ler r if ler r is reachable in the abstract statespace, ø

otherwise

1 for n= 〈l, zC〉 ∈ Nu do
2 newnodes← ; /* set of successor nodes */
3 Nu← Nu \ {n}
4 Ne← Ne ∪ {n} /* node marked as explored */
5 if ∃n′ = 〈l, z′C〉 ∈ Ne such that zC ⊆ z′C then /* n′ contains all states of n */
6 E↑← E↑ ∪ {(n, n′)}
7 else
8 for e = (l, a, g, l ′) ∈ E(A) do
9 n′← 〈l ′, z;〉

10 newnodes← newnodes ∪{n′}
11 Nu← Nu ∪ {n′}
12 E↓← E↓ ∪ {(n, n′)}

13 if ∃n′ = 〈ler r , z;〉 ∈ newnodes then /* ler r reached */
14 return trace(n′)

15 return ø /* ler r is unreachable */

The task of the analysis phase is to determine the precision of each zones on a given
counterexample. The abstraction activity as described in Section 2.3.2 is able to assign
a set of clocks for each locations of the automaton, without affecting its behaviour.
Assigning act(l) for each node n= 〈l, zC〉 would be a good solution of the task, however
it can be made more efficient by considering the fact that we are only examining an
execution trace, and we only need to know if it is feasible.

Based on activity a new abstraction can be introduced, called trace activity Actσ(n) :
N → 2C which does the same thing as activity, except for a trace: it assigns precisions to
nodes (not locations in this case, because the same location may appear multiple times
ion a trace with different activity). The algorithm calculating trace activity operates
the following way.

The algorithm iterates over the counterexample trace, but backwards. In the final
node ner r = 〈ler r , z;〉 it is not important to know the valuations, as the only important
thing to know if it is reachable. Therefore Actσ(ner r) = ;. After that Actσ(ni) can be
calculated from Actσ(ni+1) and the edge ei(li , gi , ri , li+1) used by transition t i . Since ri

resets clocks, their values in li will have no efficient on the systems behaviour in li+1.
Thus clocks in ri can be excluded. It is necessary to know if t i is enabled, so clk(gi)

40 CONFIGURABLE TIMED CEGAR

must be active in ni . It is also important to satisfy the invariant of li thus clk(I(li)) must
be included. This gives us the formula Actσ(ni) = (Actσ(ni+1) \ ri)∪ clk(gi)∪ clk(I(li)).

Running example 3.11 Calculating trace activity of σ = n0→ n1→ n3 starts from
the erroneous node n3 by Actσ(n3) = ;. Both x and y are reset on edge loop→ end
and only y is tested, but x appears in loop’s invariant, thus Actσ(n1) = {x , y}. Since
both clocks are reset on edge start→ loop, Actσ(n0) = ;.

Unsat core-based precision calculation

Analysis

Execution
trace Precision

Erroneous
systemUnsat core-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
systemTrace activity-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
system

Subtree
Precision
calculation

Zone
calculation

Unsat core can also be used to determine the necessary precision of a given coun-
terexample. First, the SMT formula described in Section 11 is checked by a solver. If it
is satisfiable, the counterexample is feasible. Thus, there is no need to refine the graph,
the CEGAR algorithm can terminate (or ; can be assigned to all nodes as a precision
and the algorithm will terminate in the refinement phase). Otherwise, unsat core has to
be examined. When constructing the SMT formula, variables were introduced for each
step. Thus precision can be obtained from the unsat core by step: if ci or c′i appears in
the unsat core c must be included in the precision assigned to ni.

Running example 3.12 As it was mentioned, the unsat core of ϕ is ϕunsat = x ′1 =
x1+ d1 ∧ y ′1 = y1+ d1 ∧ x1 = 0∧ y1 = 0∧ x1 ≤ 10∧ x ′1 ≤ 10∧ y ′1 ≥ 20. The included
variables representing clock variables are x ′1, x1, y ′1 and y1. This results in precision
; for n0, {x , y} for n1 and ; for n3.

State space calculation

Analysis

Execution
trace Precision

Erroneous
systemUnsat core-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
systemTrace activity-

based
precision
calculaion

Statespace
calculation

Subtree

Analysis

Execution
trace Precision

Erroneous
system

Subtree
Precision
calculation

Zone
calculation

3.1. Generic CEGAR framework 41

The task of the refinement phase is to assign correct zones of the given precision
for each node in the trace. It is important to mention that the zones on the trace may
already be refined to some precision C ′ that is independent from the new precision
C . In this case the zone has to be refined to the precision C ∪ C ′. The initial zone can
be calculated as described in Section 2.3.2, except this time not all variables have to
be included. After that for each edge in the trace, the zone in the next node can be
calculated with some little modifications of the corresponding part of the zone graph
exploration algorithm regarding the precision change.

Assume the zone zi of node ni is refined to precision Ci and the next zone zi+1

in node ni+1 has to be refined to Ci+1. Consider the DBM implementation of zones.
Variables Cold = Ci \ Ci+1 have to be excluded from the precision. This can be done
by performing free(c) for each c ∈ Cold , but in [1] the operation free(c) only affects
the row and the column belonging to c. Thus, for space saving purposes, the row and
column of c can simply be deleted from the DBM.

Variables Cnew = Ci+1 \ Ci have to be introduced. This is a more complex task, since
the value is necessary to know. Trace activity is constructed in a way that new clocks can
only appear when they are reset. In this case, introducing the new variable is simple:
add a new row and column to the DBM, belonging to c and call reset(c). However this is
not always the case for unsat core. It is possible that some constraints only appear in the
unsat core, because they contradict each other, or a variable c may appear in the unsat
core, because several constraints combined can result in an unsatisfiable constraint that
does not include c.

Example 3.13 Consider the automaton in Figure 2.6. The unsat core-based preci-
sion of S1 is {x , y}, and {x , y, z} of S2, but z is not reset on S1→ S2. In the unsat
core it appears in x < z + 1 and z < y + 1 that imply x < y + 2.

It is clear that in this case the concrete value of the variable z doesn’t matter, it is
only there so that the constraints it appears in are considered. Because of this, there is
no need to assign a precise value to z – introduce a row and a column belonging to z
and then call free(z).

The correct zones on the trace are calculated. It is important to consider that some-
times the split() operation results in more than one zones. In this case the corresponding
node is replicated and one of the result zones is assigned to each versions of the node.
Exploration has to be continued from that node, thus the refinement of a trace may
result in a tree.

Running example 3.14 The refinement of trace σ results in 〈start, z;〉 → 〈loop, x =
y ≤ 10〉.

42 CONFIGURABLE TIMED CEGAR

State space refinement

Model checking

Timed
automaton

Execution
trace

Correct
system

Statespace
exploration

Model checking

Timed
automaton

Execution
trace

Correct
systemSAT-based

bounded
model checker

Analysis

Execution
trace

Set of
clocks

Erroneous
system

Unsat core

Refinement

Set of clocks
Refined

automaton
Automaton

extension with
clocks

Model checking

Abstract
statespace

Execution
trace

Correct
system

Statespace
exploration

Refinement

Subtree
Refined

automaton

Subtree
integration to

statespace

The next important question is how to integrate the refined tree to the graph. The
answer depends on which representation is used.

In case of the graph representation integrating has to be done carefully. Before
changing the abstract zone to the refined one we must consider the other incoming
edges of the node. The states reachable from that edge may not be contained in the
refined zone, and thus if there is an an edge pointing to the node to refine other than
the one in the trace, the node should be duplicated, and the other incoming edges
should be pointing to the new node (that doesn’t get refined). Also, if the result of
split() is multiple zones, the node has to be replicated, but this time no edges has to be
redirected, and one of the refined zones can be assigned to each nodes.

Discrete valuation also has to be calculated at this point. The same discrete valuation
has to be assigned for each replicas of the node.

The next step is checking containment. Suppose at one point of the algorithm
the zone zC in node n is refined to zC ′ which is a subzone of a zone z′C ′ in a node n′

containing the same location. In this case any state that is reachable from n is also
reachable from n′, thus any edge leading to n can be redirected to n′, and n can be
removed.

If the erroneous location is reachable through this path, the procedure finds it, and
the CEGAR algorithm terminates. Otherwise, at some point a guard or a target invariant
is not satisfied – the transition is not enabled. The corresponding edge is removed and
the analysis of the path terminates.

Running example 3.15 Integration of the refined trace to the abstraction of the
zone graph starts from the first node. Since the zone is still z;, there is not much to
be done. The next node on the trace is 〈loop, z;〉. The loop edge is an incoming edge
to the node itself. Thus, the node is duplicated and the loop-edge from the original
one is redirected to the new one. Now the zone in the original node can be refined
to x = y ≤ 10. Since loop→ end is not enabled on the trace, the outgoing edge from
〈loop, x = y ≤ 10〉 is removed from the graph.

The graph after the process looks as follows.

〈start, z;〉 → 〈loop, x = y ≤ 10〉 → 〈loop, z;〉 → 〈end, z;〉

3.2. Result 43

Model-
checker

Solver

Adding clocks
to automaton

Zone
exploration

SAT-based
model checker

Unsat core

Automaton
extension

Figure 3.7 Automaton-based refinement

Incoming edges that are not on the trace are also important in case of tree represen-
tation, however, because of the tree nature of T , the other incoming edges of a node n
can only be upwards edges, representing that all states represented by some node n′

are also represented by n. Obviously, this may not be true, after refining the zone in the
node, and because of this the edge n′→ n is removed, and n′ is marked as unexplored.

Since T is already a tree, it does not cause problems to attach new subtrees to it
(because of split), but all new nodes have to be marked as unexplored, since only one
outgoing edge (of the automaton) were considered when calculating the new subtree,
and there could be more.

Containment can also be checked here, just as in case of the graph representation,
but it only matters for the leaves of the tree (since the other nodes are already explored).
The other possibility is to mark the leaves unexplored and state space exploration will
search for containment.

Running example 3.16 Since there are no upwards edges in the current tree, re-
finement can be performed by replacing the zone in n1 with the refined one and
removing edge n1→ n3 resulting in the following graph.

〈start, z;〉 → 〈loop, x = y ≤ 10〉 → 〈loop, z;〉

3.2 Result

Figure 3.7 depicts the presented techniques for automaton-based refinement, Figure 3.8
depicts the presented techniques for predicate abstraction, and Figure 3.9 depicts the

44 CONFIGURABLE TIMED CEGAR

Pathfinding

Analysis + predicate
calculation

Node
refinement

Predicate graph
exploration

Interpolant

Predicate graph
refinement

Figure 3.8 Predicate abstraction

Pathfinding

Precision
calculation

Subtree integration
to statespace

Zone calculation

Graph
exploration

Tree
exploration

Unsat core

Trace
Activity

Zone exploration
with precision

Graph
refinement

Tree
refinement

Figure 3.9 Zone-based refinement

3.2. Result 45

presented techniques for zone refinement. In the latter case state space representation-
dependent modules are marked with the same colours. Precision and zone calculation
are not state space representation-dependent algorithms and can be combined with
any of the other colours.

The presented framework is extensible in may ways. New techniques can be added
to the framework and combined with existing ones, e.g. an online pathfinding algorithm
can be studied in place of the current depth first search algorithm represented by the
graph exploration module. New representations can be defined for state space-based
refinement (e.g. zones can be represented by potential graphs [12]), and even a new
aspect of abstraction can be introduced with it’s own CEGAR-loop realization (e.g.
abstraction can be applied to locations [17]).

A total of seven algorithms can be composed of the presented techniques. Two
of them apply abstraction to the clock variables of the automaton, similarly to the
algorithms presented in papers [11, 15, 21], one of them uses predicate abstraction,
while the remaining four apply abstraction to the zone graph.

47

Chapter 4

Implementation

4.1 Environment

4.1.1 The theta framework

theta is an extensible, configurable verification framework developed by the Department
of Measurement and Information Systems that offers model checking algorithms for
various models, such as programs and statecharts. The models are described by domain
specific languages, and translated to common formalisms, including the state transition
system, the control flow automaton, and the timed automaton. Besides formalisms,
abstract domains and frameworks for common model checking approaches are also
implemented. theta uses an SMT solver called Z31, that is able to recognize various
first order theories, such as difference logic.

I have decided to extend the theta framework with the presented configurable
framework for model checking timed automata. The implemented framework relies on
the model checker’s extended timed automaton representation: the Timed Control Flow
Automaton, Z3 interface, and a modified version (modifications described in Chapter 3)
of the zone implementation described in [1].

4.1.2 Achitecture

The basic architecture of the framework presented in Chapter 3 is shown in Figure 4.1.
The input of the algorithm consists of an input of the problem (a timed automaton

A and a location ler r ∈ L(A)), and a configuration of the algorithm: compatible imple-
mentations of the CEGAR phases, and their parameters (e.g. the bound of the bounded
model checker).

The output of the algorithm can be an execution trace by which ler r is reachable,
No if ler r is unreachable, or Undecided. The latter case can happen for two causes:

1https://github.com/Z3Prover

48 IMPLEMENTATION

σ

𝑁𝑜

?

𝒜, 𝑙𝑒𝑟𝑟
THETA.TIMED

Z3

Configuration

Reachable

Unreachable

Undecidable

Figure 4.1 Basic architecture of the framework

either the computations on the discrete variables make the problem undecidable, or the
bounded model checker proved that ler r is unreachable in the given number of steps.

4.2 Measurements

The goal of the measurements is to evaluate the designed algorithm’s performance and
scalability, and draw conclusions about what combination of algorithms are efficient. The
inputs are scalable automata chosen from Uppaal’s benchmark data2. Uppaal supports
extensions of the timed automaton formalism (network automata with synchronization
channels) that are not implemented in the theta framework, but can be transformed to
the timed control flow automata formalism. This transformation was performed before
the measurements.

Measurements were performed on a personal computer with a 2.60 GHz Core i5
processor. The program was operating on a maximum of 4GB memory, however, this
was not fully used, as it was the solver that run out of memory in most cases.

4.2.1 Inputs

This section describes the input models used for measurements. These models are
widely used in benchmarks of timed automata-related algorithms.

Fischer’s protocol

Fischer’s protocol assures mutual exclusion by bounding the execution times of the
instructions. It can be applied to a number of processes accessing a shared variable.
Figure 4.2 shows the operation of a process. The location critical indicates that the
process is in the critical section. The value of the shared variable id ranges between

2https://www.it.uu.se/research/group/darts/uppaal/benchmarks/

4.2. Measurements 49

6

sleeping request

waiting

𝑥𝑖 = 0
𝑖𝑑 == 0

𝑥𝑖 ≤ 𝑘

critical

𝑥𝑖 ≤ 𝑘
𝑥𝑖 = 0
𝑖𝑑 = 𝑖

𝑖𝑑 == 0
𝑥𝑖 = 0

𝑥𝑖 > 𝑘

𝑖𝑑 == 𝑖

𝑖𝑑 = 0

Figure 4.2 Fischer’s protocol

0 and n, where n denotes the number of processes. The model also contains a clock
variable x i for each process where i ∈ {1 . . . n} denotes the identifier of the process. The
constant k is a parameter of the automaton.

The examined property (mutual exclusion) can be formulated as an input of the
reachability problem, where the system is network of n instances of the depicted
automata and the reachable states are when at least two of them are in the critical
section.

CSMA/CD protocol

Carrier sense multiple access with collision detection (CSMA/CD) is a media access
control method used in Ethernet technology. The stations are communicating through a
medium that can only maintain one transmission. They can sense if the medium is busy,
but there is a certain amount of propagation delay (denoted with σ), so it is possible
that another station started transmission since the last information, and collision can
occur. In this case the medium broadcasts a jam signal, and the stations pick a random
time between 0 and 2σ time units to try transmission again.

The examined property (collision detection) can be formulated as an input of the
reachability problem, where the system consists of one medium and n stations (n≥ 2)
and the reachable states are when at least two of them are transmitting and at least
one of them has been transmitting since at least 2σ time units – i.e. the collision was
not detected.

Token ring FDDI protocol

Token ring and FDDI protocal are actually two distinct protocols, that are based on
the same idea: a ring network of server stations, with a token travelling around the
ring. The server owning the token is allowed to communicate, but only within certain
time limits to ensure fairness: first, synchronous transmission happens, that is only
allowed for at most sa time limits (sa is the previously agreed timebound of synchronous

50 IMPLEMENTATION

communication) and then assynchronous transmission can happen until the station
exceeds ttrt, which is the tartget token rotation time: the time passed since the previous
transmission of the same station.

The examined property (token exclusiveness) can be formulated as an input of the
reachability problem, where the system consists of one token ring and n stations (n≥ 2)
and the reachable states are when at least two of them are owning the token.

4.2.2 Results

This section presents the performed measurements and their results.

Token ring FDDI measurements

The Token ring protocol is a special input, since the examined safety property can be
proven solely based on the structure of the automaton, thus the analysis of the initial
abstraction is able to prove the property and refinement is not necessary. This proves
how useful abstraction is, but the measurements on this automaton can only compare
the efficiency of the pathfinding algorithms, that are almost the same in all presented
algorithms (breadth-first search and depth-first search).

The algorithms were executed on the timed automata representations of token rings
consisting of 2n stations (2≤ n≤ 11), and their execution times were measured. Each
algorithms on each input was run 15 times and the average of the execution times was
calculated. The results are depicted in Figure 4.3. The execution times were roughly
the same, all in O(n2), as it is expected from pathfinding algorithms (note, the scale on
the horizontal axis is logarithmic), however, these measurements did not include the
algorithm that uses a bounded model checker.

Bounded model checker measurements

The algorithm that uses a bounded model checker can not be compared to the other
algorithms, because it scales with different characteristics. To demonstrate this I have
executed the algorithm on the token ring protocol of different sizes, 15 times each and
calculated the average runtime. The bound was set to 50 each time.

Figure 4.4 depicts the result of the measurements. It can be seen, that the execution
times do not grow (although it is interesting how the execution times decrease – this
is probably caused by some environmental characteristics or some inner heuristics of
the solver). On the other hand, the bound has a great influence on the runtime. To
demonstrate this, I have executed the algorithm with different bound values on the
timed automaton model of the token ring of three stations – 15 times each. The bound
varied between 5 and 50.

4.2. Measurements 51

1

5001

10001

15001

20001

25001

30001

35001

CSMA2 CSMA3 CSMA4 Fisch2 Fisch3

R
u

n
ti

m
e(

m
s)

Example

STU SGU STT SGT AZ

0

20000

40000

60000

80000

100000

120000

140000

1 4 16 64 256 1024 4096

Ti
m

e
(µ

s)

Stations

0

200000

400000

600000

800000

1000000

1200000

1 10 100 1000 10000

Figure 4.3 Results of measurements on the token ring example

The results of the measurements are depicted in Figure 4.5. The scale on the vertical
axis is logarithmic, and the trendline is parabolic. This means that the complexity of
this algorithm is greater, than exponential in the value of the bound.

Measurements on Fischer and CSMA/CD protocols

The other algorithms were measured on timed automata representations of Fischer and
CSMA/CD protocols, six times each. Memory problems occured at the Fischer protocol
of four processes and the CSMA/CD protocol of five stations. One of the algorithms
couldn’t run on the CSMA/CD protocol of four stations either.

The results of the measurements are depicted in Figure 4.6. The models are de-
noted by Fischn and CSMAn for the Fischer protocol and the CSMA/CD protocol of n
participants, respectively. The abbreviations denote the algorithms, that are composed
the following way:

• STU denotes zone-based state space refinement operating on the tree representa-
tion of the abstract zone graph where the precisions of the zones are based on
the unsat core of the trace,

52 IMPLEMENTATION

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4 16 64 256 1024

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

of stations

0,1

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Bound

Figure 4.4 Results of measurements with different number of stations

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

4 16 64 256 1024

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

of stations

0,1

1

10

100

1000

10000

100000

5 10 15 20 25 30 35 40 45 50

Ex
ec

u
ti

o
n

 t
im

e
(m

s)

Bound

Figure 4.5 Results of measurements with different bounds

4.2. Measurements 53

0

5000

10000

15000

20000

25000

30000

35000

CSMA2 CSMA3 CSMA4 Fisch2 Fisch3

STU SGU STT SGT SP AZ

Figure 4.6 Results of measurements on Fischer and CSMA/CD protocols

54 IMPLEMENTATION

• SGU denotes zone-based state space refinement operating on the graph represen-
tation of the abstract zone graph where the precisions of the zones are based on
the unsat core of the trace,

• STT denotes zone-based state space refinement operating on the tree representa-
tion of the abstract zone graph where the precisions of the zones are based on
the trace activity,

• SGT denotes zone-based state space refinement operating on the graph represen-
tation of the abstract zone graph where the precisions of the zones are based on
the trace activity,

• SP denotes predicate abstraction-based state space refinement, and

• AZ denotes automaton-based refinement with zone graph exploration.

The algorithm denoted by SGU run out of memory when executed on the timed
automaton representation of four stations communicating with CSMA/CD protocol –
hence the red colour.

4.2.3 Evaluation

The performed measurements are not exhaustive, thus one should not come to far-
reaching conclusions. However, there are some observations worth mentioning.

From the measurements it can be concluded that automaton-based refinement
(algorithm AZ) does not scale well. The cause of this can be explained by considering
automaton based refinement as a special case of state space-based refinement where
the calculated precision assigns the same set of clock variables to each node, and that
refines the complete graph not just a trace. Automaton based-refinement recovers so
much of the hidden information that it prevents efficient model checking.

Out of the algorithms with zone-based refinement, the ones denoted by STT and
SGT seem to perform better than the others. STT may be a bit more efficient, but
their results are roughly the same. This is surprising, because the abstract state space
representation is different in the two algorithms, and many of the techniques used in
the algorithm are representation-dependent. It is interesting that the efficiency of two
algorithms using different graph representations is almost the same.

Algorithm STU performs well on the CSMA/CD inputs, but this does not seem to be
the case for the Fischer examples. On the other hand, algorithm SGU did not perform
well on either type of the test cases.

The performance of algorithm SP is worse than that of AZ in the CSMA/CD protocol,
but it runs the most efficiently on the Fischer examples (this algorithm terminated on
Fisch4 in 50 seconds). This seems to be the most interesting result.

4.2. Measurements 55

In conclusion, out of the presented algorithms STT seems to be the most efficient,
and SGU seems to be the least efficient one. Measurements also suggest that state space
based refinement may be generally more efficient than automaton based refinement.

57

Chapter 5

Conclusions

This chapter concludes the contributions of this thesis and presents my future goals.

5.1 Contributions

In this thesis I have provided some background knowledge on various areas, including
the CEGAR algorithm, the timed automaton formalism, and the reachability algorithm
for timed automata. I have presented a framework for CEGAR-based reachability
analysis of timed automata, that combines many different techniques which I have
demonstrated on examples. I also have enumerated ways the framework can be ex-
tended, and evaluated the developed algorithms by measurements.

In mywork I have developed a configurable framework for CEGAR-based reachability
analysis of timed automata extended with discrete variables. The framework provides
three different realizations of the CEGAR-loop: one, where the refinement is based
on the automaton, one, where predicate abstraction is used, and one, where the zone
graph is being abstracted and refined.

In the framework I have collected various techniques that can be used during the
described realizations of the CEGAR-loop. My algorithmic contributions include

• a boundedmodel checker for reachability analysis of timed automata with discrete
variables,

• a method for transforming execution traces of timed automata to SMT formulae,

• a method for applying predicate abstraction to timed automata,

• two representations of an abstract zone graph that can be calculated form the
automaton, with operations for state space exploration and refinement, that are
guaranteed to keep the graph an abstraction of the zone graph,

58 CONCLUSIONS

• two methods for calculating the precision to refine the zones on an execution
trace in order to decide if it is feasible:

– one, that is based on the unsat core function of SMT solvers and

– one, that is based on the activity property of clock variables and

• a method for calculating the state space of a timed automaton with different
precisions along the zones.

As a result the framework currently provides seven different algorithms for reacha-
bility analysis of timed automata, but it is extensible.

I have implemented the presented framework in the theta framework and I have
demonstrated the efficiency of the implemented algorithms with measurements.

5.2 Future work

The first and most obvious improvement option is to extend the framework with new
modules, abstract zone graph representations and abstraction techniques. I would also
like to introduce algorithms that apply abstraction to the discrete variables as well as the
clock variables and I would like to create algorithms, that combine different abstraction
techniques, to eliminate spurious counterexamples in early phases of the verification.

I would also like to perform exhaustive benchmarking to see what combination of
techniques is the most efficient for different kinds of timed automata and I would like
to measure the performance of the algorithms on industrially relevant examples.

Acknowledgement

This work was partially supported by MTA-BME Lendület Research Group on Cyber-
Physical Systems.

59

References

[1] Johan Bengtsson and Wang Yi. “Timed Automata: Semantics, Algorithms and
Tools”. In: Lectures on Concurrency and Petri Nets. Vol. 3098. LNCS. Springer
Berlin Heidelberg, 2004, pp. 87–124.

[2] Armin Biere, Alessandro Cimatti, Edmund Clarke, and Yunshan Zhu. “Symbolic
Model Checking without BDDs”. In: Tools and Algorithms for the Construction
and Analysis of Systems. Part of European Conferences on Theory and Practice
of Software, ETAPS’99, Amsterdam. Vol. 1579. LNCS. Springer-Verlag, 1999,
pp. 193–207.

[3] Armin Biere, Marijn J. H. Heule, Hans van Maaren, and Toby Walsh. Handbook
of Satisfiability. Vol. 185. Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009. isbn: 978-1-58603-929-5. url: http://www.iospress.nl/
loadtop/load.php?isbn=9781586039295.

[4] Aaron R. Bradley and Zohar Manna. The calculus of computation - decision pro-
cedures with applications to verification. Springer, 2007, pp. I–XV, 1–366. url:
http://dx.doi.org/10.1007/978-3-540-74113-8.

[5] A. Church. “A note on the Entscheidungsproblem”. In: The J. of Symbolic Logic
1.1 (1936), pp. 40–41.

[6] Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.
“Counterexample-guided abstraction refinement for symbolic model checking”.
In: Journal of the ACM (JACM) 50.5 (2003), pp. 752–794.

[7] Edmund M. Clarke, Orna Grumberg, and David E. Long. “Model Checking and
Abstraction”. In: ACM Transactions on Programming Languages and Systems 16.5
(1994), pp. 1512–1542. issn: 0164-0925 (print), 1558-4593 (electronic). url:
http://www.acm.org/pubs/toc/Abstracts/0164-0925/186051.html.

[8] Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking. The
MIT Press, 1999. isbn: 0262032708.

[9] S. Cook. “The complexity of theorem-proving procedures”. In: Proc. 3rd Annual
ACM Symposium on Theory of Computing. 1971, pp. 151–158.

http://www.iospress.nl/loadtop/load.php?isbn=9781586039295
http://www.iospress.nl/loadtop/load.php?isbn=9781586039295
http://dx.doi.org/10.1007/978-3-540-74113-8
http://www.acm.org/pubs/toc/Abstracts/0164-0925/186051.html

60 REFERENCES

[10] C. Daws and S. Yovine. “Reducing the number of clock variables of timed au-
tomata”. In: Proceedings of the 17th IEEE Real-Time Systems Symposium (RSS ’96.
IEEE, 1996, pp. 73–81. isbn: 0-8186-7689-2.

[11] Henning Dierks, Sebastian Kupferschmid, and Kim Guldstrand Larsen. “Auto-
matic abstraction refinement for timed automata”. In: Formal Modeling and Anal-
ysis of Timed Systems, FORMATS’07. Vol. 4763. LNCS. Springer, 2007, pp. 114–
129.

[12] Graeme Gange, Jorge A. Navas, Peter Schachte, Harald Søndergaard, and Peter J.
Stuckey. “Exploiting Sparsity in Difference-Bound Matrices”. In: Static Analysis -
23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016,
Proceedings. Vol. 9837. Lecture Notes in Computer Science. Springer, 2016,
pp. 189–211. isbn: 978-3-662-53412-0. url: http://dx.doi.org/10.1007/
978-3-662-53413-7.

[13] S. Graf and H. Saidi. “Construction of Abstract State Graphs with PVS”. In: Proc.
9th International Computer Aided Verification Conference. 1997, pp. 72–83.

[14] Ákos Hajdu, András Vörös, Tamás Bartha, and Zoltán Mártonka. “Extensions
to the CEGAR Approach on Petri Nets”. In: Acta Cybern 21.3 (2014), pp. 401–
417. url: http://www.inf.u-szeged.hu/actacybernetica/edb/vol21n3/
Hajdu_2014_ActaCybernetica.xml.

[15] Fei He, He Zhu, William N. N. Hung, Xiaoyu Song, and Ming Gu. “Compositional
abstraction refinement for timed systems”. In: Theoretical Aspects of Software
Engineering. IEEE Computer Society, 2010, pp. 168–176.

[16] Matti Jarvisalo, Daniel Le Berre, Olivier Roussel, and Laurent Simon. “The
International SAT Solver Competitions”. ENG. In: (2012). url: http://hal.
archives-ouvertes.fr/hal-00868244.

[17] Stephanie Kemper and André Platzer. “SAT-based abstraction refinement for real-
time systems”. In: Electronic Notes in Theoretical Computer Science 182 (2007),
pp. 107–122.

[18] Daniel Kroening and Ofer Strichman. Decision Procedures - An Algorithmic Point
of View. Texts in Theoretical Computer Science. An EATCS Series. Springer,
2008, pp. 1–304. isbn: 978-3-540-74104-6; 978-3-540-74105-3. url: http:
//dx.doi.org/10.1007/978-3-540-74105-3.

[19] Marlena Kwiatkowska, Gethin Norman, and Dennis Parker. “Game-based ab-
straction for Markov decision processes”. In: Quantitative Evaluation of Systems,
2006. QEST 2006. Third International Conference on. IEEE. 2006, pp. 157–166.

http://dx.doi.org/10.1007/978-3-662-53413-7
http://dx.doi.org/10.1007/978-3-662-53413-7
http://www.inf.u-szeged.hu/actacybernetica/edb/vol21n3/Hajdu_2014_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol21n3/Hajdu_2014_ActaCybernetica.xml
http://hal.archives-ouvertes.fr/hal-00868244
http://hal.archives-ouvertes.fr/hal-00868244
http://dx.doi.org/10.1007/978-3-540-74105-3
http://dx.doi.org/10.1007/978-3-540-74105-3

REFERENCES 61

[20] Takeshi Nagaoka, Kozo Okano, and Shinji Kusumoto. “An abstraction refinement
technique for timed automata based on counterexample-guided abstraction
refinement loop”. In: IEICE Transactions 93-D.5 (2010), pp. 994–1005.

[21] Kozo Okano, Behzad Bordbar, and Takeshi Nagaoka. “Clock Number Reduction
Abstraction on CEGAR Loop Approach to Timed Automaton”. In: Second Inter-
national Conference on Networking and Computing, ICNC 2011. IEEE Computer
Society, 2011, pp. 235–241.

[22] Pavithra Prabhakar, Parasara Sridhar Duggirala, SayanMitra, andMahesh Viswanathan
0001. “Hybrid automata-based CEGAR for rectangular hybrid systems”. In: For-
mal Methods in System Design 46.2 (2015), pp. 105–134. url: http://dx.doi.
org/10.1007/s10703-015-0225-4.

[23] A. M. Turing. “On computable numbers, with an application to the entschei-
dungsproblem”. In: Proc., London Mathematical Society 2.42 (1936), pp. 230–
265.

http://dx.doi.org/10.1007/s10703-015-0225-4
http://dx.doi.org/10.1007/s10703-015-0225-4

