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Kivonat

Napjainkban a formális verifikáció a hibamentesség igazolásának egyre gyakrabban alkal-
mazott módszere, különösen a biztonságkritikus rendszerek területén, ahol matematikailag
precíz módon kell bizonyítani a specifikációnak való megfelelést és a hibátlan működést. A
formális módszerek nagy hátránya azonban a nem triviális méretű problémáknál fellépő,
gyakran hatalmas számítási igényük. Ez a probléma az egyik legfontosabb formális verifi-
kációs módszernél, az elérhetőségi analízisnél is előjön: egészen kicsi modelleknek is lehet
óriási, vagy akár végtelen nagy állapottere. Ezen probléma leküzdésére mindig újabb és
hatékonyabb algoritmusokra van szükség, hiszen a módszerek fejlődésével párhuzamosan a
megoldandó problémák komplexitása is egyre nő. Az egyik ilyen algoritmus az úgynevezett
ellenpélda-alapú absztrakció finomítás (CEGAR) módszerét alkalmazza. Lényege, hogy az
eredeti modell egy absztrakcióján dolgozik, és igény esetén finomítja az absztrakciót az
állapottér bejárása során szerzett információk alapján. Az absztrakt modell állapotteré-
nek reprezentációja általában egyszerűbb, mint az eredeti modellé volt, így az absztrakt
probléma könnyebben megoldható.

Szakdolgozatomban egy, a közelmúltban publikált algoritmust vizsgálok, amely az ellen-
példa-alapú absztrakció finomítást a Petri-hálók elérhetőségi analízisére alkalmazza. Meg-
mutatom, hogy bizonyos speciális esetekben az algoritmus helytelen eredményt adhat, és
számos ellenpéldát mutatok be az algoritmus teljességére. Szakdolgozatomban új fejleszté-
seket dolgozok ki, amelyek biztosítják az algoritmus helyességét és szélesítik az eldönthető
problémák körét. Az algoritmust és az új fejlesztéseket implementáltam, dolgozatomban
mérésekkel vizsgálom meg a kidolgozott új eljárások teljesítményét.
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Abstract

Formal verification is becoming more prevalent, especially in the development of safety-
critical systems where mathematically precise proofs are required to ensure suitability and
faultlessness. The major drawback of formal methods is their computation intensive nature.
This also holds for one of the most important formal verification technique, the reachability
analysis: even a relatively small model can have a large or infinite state space. In order to
overcome this problem, new and efficient algorithms are required, since the complexity of
the models also tend to increase. One of these algorithms is the so called counterexample
guided abstraction refinement (CEGAR) method. The CEGAR approach works on an
abstraction of the original model and refines the abstraction using the information from
the explored part of the state space. The abstract model usually has a less detailed state
space representation. Therefore, the reachability analysis on the abstract model is easier.

In my work I examine a recently published algorithm, which applies the CEGAR ap-
proach on the reachability analysis of Petri nets. I show that the algorithm can give an
incorrect answer in some special cases and I also present counterexamples of the complete-
ness of the algorithm. I suggest new improvements to ensure correctness and to extend the
set of decidable problems. I also implemented the algorithm with the new contributions
and I analyze its performance by measurements.
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Chapter 1

Introduction

Development of complex, distributed and safety-critical systems require mathematically
precise verification techniques in order to ensure suitability and faultlessness. Formal mod-
eling and analysis provide such tools. However, a major drawback of formal methods is
their high computational complexity. Even for relatively small models, the set of possible
states and behaviors can be unmanageably large or even infinite.

This also holds for one of the most popular modeling formalisms, Petri nets. Petri
nets are widely used to model asynchronous, distributed, parallel and non-deterministic
systems. The behavior of a Petri net model is determined by the set of possible states and
transitions, i.e., the state space. One of the most important formal verification technique
involving Petri nets is the reachability analysis, which checks if a given state is reachable
from the initial state of the model. The reachability problem belongs to the mathematically
hard problems. It is decidable, but no upper bound of its complexity is known and the
lower bound is at least EXPSPACE-hard.

Counterexample guided abstraction refinement (CEGAR) is a general approach for
solving hard problems. It works on an abstraction of the original model, which has a less
detailed representation. Therefore, the abstract problem can be solved easier. However,
due to the abstraction, a behavior in the abstract model may not be realizable in the
original one. In this case the abstraction has to be refined using the information from
the explored part of the state space. Recently, a new algorithm was published [1], which
applies the CEGAR approach on the reachability problem of Petri nets.

In our previous work [2, 3] we examined the algorithm and proved that it is incorrect in
certain situations, and we provided a method to detect such situations. We also proved the
incompleteness of the algorithm by several examples, and suggested solutions to most of
them. However, there are some problems that even the improved algorithm cannot solve.

In my current work I did further examination of the correctness and completeness of
the improved algorithm. I show that one of the optimizations still creates a possibility
for the algorithm to be incorrect. I also present a subclass of problems, for which the
algorithm cannot decide reachability. I suggest new improvements that ensure correctness
and extend the set of decidable problems.

The thesis is structured as follows. In Chapter 2 I present the necessary background

7



knowledge of formal modeling, Petri nets and reachability analysis. Chapter 3 gives an
introduction to the general idea of the CEGAR approach and presents the CEGAR algo-
rithm for Petri nets [1]. In Chapter 4 I examine the correctness and completeness of the
algorithm and I suggest improvements. I also implemented the algorithm with the new
contributions. Chapter 5 gives a brief insight to the implementation and the usage of the
implemented tool. In Chapter 6 I present my measurement results on well-known models.
Finally, I conclude my work in Chapter 7.
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Chapter 2

Background

In this chapter I introduce the background knowledge required for understanding the topic
of my thesis. At first I present Petri nets (Section 2.1.1) as the modeling formalism used
in my work, and their extension with inhibitor arcs (Section 2.1.3). Then, I introduce the
reachability analysis of Petri nets (Section 2.2) and the relevant parts of (Integer) Linear
Programming (Section 2.3).

2.1 Petri nets

Petri nets are widely used for the modeling and analysis of asynchronous, parallel, dis-
tributed and non-deterministic systems [4], providing both structural and dynamical anal-
ysis techniques. Besides their mathematical formalism, they can also be represented graph-
ically. Petri nets have various extensions (e.g., inhibitor arcs, priorities), which improve
their modeling power, but the analysis techniques are usually limited for these extensions.

2.1.1 Definition

A Petri net is a directed, weighted bipartite graph. Nodes of the first set are called tran-
sitions, while nodes of the other set are called places. Each directed edge of the net
connects a place and a transition and has a positive weight. Formally a Petri net is a tuple
PN = (P, T,E,W ) [4], where:
P = {p1, p2, . . . , pk} is the finite set of places,
T = {t1, t2, . . . , tn} is the finite set of transitions,
E ⊆ (P × T ) ∪ (T × P ) is the set of edges,
W : E → Z+ is the function assigning weights to the edges.
A state of the net can be described by a function m : P → N assigning a non-negative

integer to each place. This mapping is called the marking of the net. A place p is said to
contain k tokens in a marking m if m(p) = k. The initial marking of the net is usually
denoted by m0.

In the graphical representation of a Petri net, places are denoted by circles, transitions
by rectangles and edges by arrows. If the weight of an edge is one, it is usually not labeled.
The token distribution is denoted by numbers or black dots inside the places. An example
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can be seen in Figure 2.1.
The input and output places of a transition t ∈ T are denoted by •t and t•, while the

input and output transitions of a place p ∈ P are denoted by •p and p•, formally:
•t = {p | (p, t) ∈ E},
t• = {p | (t, p) ∈ E},
•p = {t | (t, p) ∈ E},
p• = {t | (p, t) ∈ E}.

Dynamic behavior

The dynamic behavior of Petri nets is defined by the firing (or occurrence) of transitions.
The rules are the following:

• A transition t ∈ T is enabled under a marking m, if at least w−(p, t) tokens are
present in each of its input places p ∈ •t, where w−(p, t) is the weight of the edge
(p, t). An enabled transition t under a marking m is denoted by m[t〉.

• An enabled transition can fire, but it is not obligatory. If there are more than one
enabled transitions, any of them can fire, which gives the ability for Petri nets to
model non-determinism. The occurrence of a transition is an atomic event, so there
are no “parallel” firings.

• When an enabled transition t ∈ T fires, it consumes w−(p, t) tokens from its input
places p ∈ •t, and produces w+(p, t) tokens in its output places p ∈ t•, where w+(p, t)
is the weight of the edge (t, p). The firing of the transition t under a marking m is
denoted by m[t〉m′, where m′ is the marking after the occurrence of t.

The rules above hold for Petri nets without any extensions. The rules may be different for
extended Petri nets and new rules can also be added (e.g., inhibitor arcs).

A word σ ∈ Tn is called a firing sequence. A firing sequence is said to be realizable
under a marking m and leads to m′, if a sequence of markings m1,m2, . . . ,mn−1 exists,
for which m[σ(0)〉m1[σ(1)〉m2...mn−1[σ(n)〉m′ holds. This is denoted shortly by m[σ〉m′.
The Parikh image of a firing sequence σ is a vector ℘(σ) : T → N, where ℘(σ)(t) is the
number of occurrences of t in σ.

Example 1 A simple Petri net modeling a chemical process can be seen in Figure 2.1.
The net has three places (H2, O2, H2O) and two transitions (t0, t1). Figure 2.1(a) shows
the initial marking, where only t0 is enabled. If t0 fires, the marking seen in Figure 2.1(b)
is reached, where both t0 and t1 are enabled.

Reachability

A marking m′ is reachable from a marking m if a realizable firing sequence σ ∈ Tn exists,
for which m[σ〉m′ holds. The set of all reachable markings from the initial marking m0 of
a Petri net PN is denoted by R(PN,m0).
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H2

O2

H2Ot0

t1

2
2

2
2

(a) Initial marking

H2

O2

H2Ot0

t1

2
2

2
2

(b) Marking after firing t0

Figure 2.1: Example net modeling a chemical process

Boundedness

A Petri net is bounded if the number of tokens m(p) is bounded for each place p ∈ P and
each reachable marking m ∈ R(PN,m0).

2.1.2 Incidence matrix and state equation

The incidence matrix of a Petri net PN(P, T,E,W ) is a matrix C|P |×|T |, where C(i, j) =
w+(pi, tj) − w−(pi, tj), i.e., the difference between the number of tokens in the place pi

after firing the transition tj .

Example 2 The incidence matrix of the Petri net in Figure 2.2 is as follows.
2 0 0 0 0
−1 −1 1 1 −1

0 1 −1 0 0
0 0 0 −1 1


Note that the Petri net cannot always be restored from the incidence matrix, e.g., the two
edges between t0 and p2 appear as a zero in the matrix.

p0

p1

p2

p3

t0

t1t2

t3

t4

2

Figure 2.2: Example Petri net

A marking m of the Petri net PN = (P, T,E,W ) can be written as a column vector,
where the ith element is the token count of the place pi ∈ P . The firing vector u of a
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transition tj is a column vector filled with zeros, except for the jth place, which is one.
Due to the definition of the incidence matrix, if tj is enabled under a marking m, the
marking m′ after firing tj (m[tj〉m′) can be obtained using the following equation:

m+ Cu = m′.

This can be generalized for a firing sequence σ ∈ Tn, where the firing vectors of the
transitions are represented by u1, u2, . . . , un:

m+ Cu1 + Cu2 + . . .+ Cun = m′.

Since matrix-vector multiplication is distributive, substituting x = u1 + u2 + . . . + un

into the previous equation yields the following equation, which is called the state equation:

m+ Cx = m′.

The jth component of x is the number of occurrences of the transition tj in σ. A vector
x ∈ N|T | fulfilling the state equation is called a solution. Note that for any realizable firing
sequence σ with m[σ〉m′, the Parikh image ℘(σ) fulfills the state equation:

m+ C℘(σ) = m′.

On the other hand, not every solution of the state equation is a Parikh image of a realizable
firing sequence. A solution x is called realizable if a realizable firing sequence σ exists, with
℘(σ) = x.

Example 3 Consider the Petri net in Figure 2.3(a) with m1 = (0) and m′1 = (1). The
vector x1 = (1) fulfills the state equation, but firing t0 is not possible. Now consider the
Petri net in Figure 2.3(b) with m2 = (2, 0) and m′2 = (0, 4). The vector x2 = (2) fulfills
the state equation, and firing t0 two times is possible.

p0 t0
2

(a)

p0 p1t0

2

(b)

Figure 2.3: Example for an unrealizable and a realizable solution

T-invariants

A vector x ∈ N|T | is a T-invariant if Cx = 0 holds. The firing of a T-invariant does not
change the marking, since m + Cx = m + 0 = m. A T-invariant x is called realizable
if a realizable firing sequence σ exists, with ℘(σ) = x. T-invariants usually represent
the possibility of a cyclic behavior in the modeled system. The sum of two realizable T-
invariants is also realizable (by firing them after eachother), but a realizable T-invariant
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cannot always be split into a sum of two realizable T-invariants.

Example 4 [1] The Petri net in Figure 2.4 has three invariants1: T1 = {t0, t1}, T2 =
{t2, t3} and T3 = {t0, t1, t2, t3} with T3 = T1 + T2. T3 can be realized by the firing sequence
(t0, t2, t3, t1), but T2 is not realizable, since both t2 and t3 are disabled.

p0 p1 p2

t0

t1

t2

t3

Figure 2.4: Example for T-invariants

2.1.3 Inhibitor arcs

Petri nets have several extensions to improve their modeling power, including inhibitor
arcs, prioritized transitions and self-modifying nets [5], from which I use inhibitor arcs
in my work. With inhibitor arcs, it is possible to model that some action of the modeled
system cannot happen under some circumstances. The set of inhibitor arcs is denoted by
I ⊆ (P ×T ) and a Petri net extended with inhibitor arcs is a tuple PNI = (PN, I). There
is an extra rule for a transition t to be enabled using inhibitor arcs: each place connected
to a transition with an inhibitor arc must have zero tokens. Formally, a transition t ∈ T is
enabled in a Petri net PNI under a marking m if t is enabled in PN and for each p ∈ P ,
if (p, t) ∈ I, then m(p) = 0 must hold. In the graphical representation, inhibitor arcs have
a small circle instead of the arrowhead (Figure 2.5).

Example 5 An example net containing inhibitor arcs can be seen in Figure 2.5. Fig-
ure 2.5(a) shows the initial marking, where t0 is disabled by the inhibitor arc connecting t0
to p0. After firing t1 (Figure 2.5(b)) p0 has zero tokens, so t0 can now fire. The marking
in Figure 2.5(c) is reached after firing t0.

Petri nets extended with inhibitor arcs are Turing complete, but also have some dis-
advantages. Inhibitor arcs do not appear in any form in the state equation. Therefore, a
solution of the state equation can be unrealizable due to an inhibitor arc. A Petri net PNI

containing inhibitor arcs can be transformed into an equivalent PN net, but this method
only works for bounded nets [6]. Analysis methods are also limited when using inhibitor
arcs [7], e.g., the reachability analysis (Section 2.2) is undecidable in general [5].

1When a T-invariant x contains only zeros and ones, I denote x by the transitions corresponding to the
ones, e.g., (1, 0, 1, 0) = {t0, t2}
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p2

p1

p0 t0t1

(a) Initial marking

p2

p1

p0 t0t1

(b) Marking after firing t1

p2

p1

p0 t0t1

(c) Marking after firing t0

Figure 2.5: Example net with inhibitor arcs

2.2 Reachability analysis

One of the most important formal verification technique for Petri nets is the reachability
analysis. The aim of the reachability analysis is to check if a given marking is reachable
from the initial marking. A generalization of reachability is the submarking coverability
analysis, where linear conditions are given instead of the target marking.

2.2.1 Reachability problem

The reachability problem is a tuple (PN,m0,m
′), where m0 is the initial and m′ is the

target marking2. The answer to the reachability problem is “yes” if and only if m′ ∈
R(PN,m0), i.e., m′ can be reached from m by some realizable firing sequence.

2.2.2 Submarking coverability problem

The reachability of an exact target state may not be general enough. We may want to give
linear conditions on the marking to be reached. These conditions are called predicates, and
have the following form [8]:

P(m)⇔ Am ≥ b,

where P(m) represents the predicate, A is a matrix and b is a vector of coefficients.
The predicate P(m) holds if and only if Am ≥ b holds. The answer to the submarking
coverability problem (PN,m0,P) is “yes” if and only if a marking m′ can be reached from
m0, for which P(m′) holds.

Example 6 Consider the Petri net in Figure 2.6 and suppose that we want to reach a
marking m with m(p0) = 2. The firing sequence (t1, t3, t0) fulfills this criterion, but the
marking also changes in some of the other places. Using reachability analysis we must
give the marking of the other places as well, which we may not know in advance. Using
submarking coverability we can define only the marking of p0.

Example 7 Consider the Petri net in Figure 2.6 with the question whether we can have
two tokens in p0 while the sum of the tokens in p1 and p3 must be at least one. The
reachability analysis cannot answer this, but using submarking coverability we obtain the
firing sequence (t1, t3, t0, t2) as a solution.

2In my thesis I also use the notation m0 → m′ for the reachability problem.
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p0

p1

p2

p3

t0

t1t2

t3

t4

2

Figure 2.6: Submarking coverability example

2.2.3 Necessary and sufficient criteria

Both the reachability and the submarking coverability problems have necessary and suffi-
cient criteria.

Reachability problem

If the answer to the reachability problem m′ ∈ R(PN,m0) is “yes”, then m′ is reachable
from m0 by some firing sequence σ. The Parikh image ℘(σ) fulfills m0 + C℘(σ) = m′,
therefore the feasibility of the state equation is a necessary criterion for reachability. On
the other hand, this criterion is not sufficient, the Petri net in Figure 2.3(a) is a coun-
terexample. A sufficient criterion for reachability is showing a realizable firing sequence σ,
with m0[σ〉m′.

Submarking coverability

Similarly to the reachability problem, the feasibility of the state equation m0 + Cx = m′

and the predicate Am′ ≥ b is a necessary, but not sufficient criterion for submarking
coverability. A realizable firing sequence σ with m0[σ〉m′ and Am′ ≥ b is a sufficient
criterion.

2.2.4 Decidability and complexity

The reachability analysis of Petri nets belongs to the hard problems of mathematics. It is
decidable [9], but no upper bound of its complexity is known yet. R. J. Lipton proved that
the problem is at least EXPSPACE-hard [10]. This means that no algorithm can solve the
problem efficiently in the general case.

Petri nets containing inhibitor arcs can be transformed into equivalent PN nets by
splitting places, but this method only works for bounded nets [6]. It was proved (using
the 10th problem of Hilbert) that in general, reachability is undecidable for Petri nets
extended with inhibitor arcs [5].
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2.2.5 Existing methods for solving reachability

There are several methods for solving the reachability problem, each having its advantages
and disadvantages.

Naive approach

The most naive approach is to traverse the state space explicitly by breadth or depth first
search. This approach is useless for practical problems, since the state space can be very
large or even infinite3. Also, this method fails for proving that a marking is not reachable
in an infinite state space.

Symbolic algorithms

Symbolic representations try to overcome the state explosion problem by storing the states
in a compact, encoded form. Saturation [11] is a very effective iteration strategy realizing
this approach. However, it only works on finite state spaces, and can be slow if the target
marking is “far” from the initial marking.

Abstraction

The subject of my thesis is an algorithm that uses abstraction (Chapter 3). The state space
of the abstract model has a finite representation and it is usually less complex. However, a
state reached in the abstract model may not be reachable in the original one, due to some
details hidden by the abstraction. In such cases, the abstraction needs to be refined. The
major drawback of abstraction is that the completeness and correctness of the algorithm
is not trivial.

2.3 Linear programming (LP)

Solving the state equation and finding markings satisfying a predicate is a linear program-
ming problem. Linear programming is a mathematical approach for finding an optimal
solution in a given mathematical model and requirements [12]. Formally, the purpose of
linear programming is to minimize an objective function, subject to linear equalities and
linear inequalities. The canonical form of a linear programming problem is the follows:

minimize cTx,

subject to Ax ≤ b and x ≥ 0,

where x is the vector of variables, b, c are vectors and A is a matrix of coefficients.
The feasible region of the linear programming problem is a convex polyhedron, which
is determined as the intersection of finite number of half spaces. The aim of the linear
programming problem is to determine the point in the feasible region, where the objective
function is minimal (or maximal), if such point exists. Several algorithms can solve the
linear programming problem efficiently in polynomial time.

3This problem is often called the “state explosion” problem.
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2.3.1 Integer Linear Programming (ILP)

When all the variables are integers, the problem is called integer linear programming
problem. Despite linear programming, integer linear programming is an NP-hard problem.
Finding solutions for the state equation of Petri nets is an integer linear programming
problem, since the firing count of a transition must be integer.
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Chapter 3

CEGAR approach on Petri nets

In this chapter I introduce the basic concept of CounterExample Guided Abstraction
Refinement (CEGAR) and its application on the reachability problem of Petri nets [1].
Section 3.1 gives a short introduction on the general idea of CEGAR, while Section 3.2
presents the details of the CEGAR approach on the reachability problem.

3.1 The CEGAR approach

A major drawback of formal modeling and analysis is their high computational complexity.
Even for relatively small models the state space can be very large or infinite. Counterex-
ample guided abstraction refinement is a general approach, which can handle large and
infinite state spaces. The flowchart of the CEGAR approach can be seen in Figure 3.1.
The details of the process are explained in the following subsections.

Create initial
abstraction

Verify the
abstract model

Examine the
counterexample

Refine the
abstraction

Stop

Model,
formula

Abstract model

Formula holds

Formula does
not hold

Counterexample
not spurious

Spurious
counterexample

Figure 3.1: CEGAR flowchart

3.1.1 Abstraction

Abstraction is a mathematical approach, which is widely used to solve hard problems. It
hides the irrelevant details, so the abstract model can be handled easier than the original
one. If any important detail is lost, the abstraction has to be be refined. There are several
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types of abstraction methods, both for proving and disproving the feasibility of a given
condition. The general CEGAR approach uses existential abstraction, which means that
the abstract model is an over-approximation of the original one, i.e., the abstract model
has more behaviors, while no behavior of the original model is lost. Using existential
abstraction, a group of states in the original model is mapped to a single state of the
abstract model.

3.1.2 Counterexample guided refinement

The first step of the CEGAR approach is to create an initial abstraction using the model
and the formula. The next step is to verify the abstract model. If the formula holds in
the abstract model, it also holds in the original model due to the over-approximation. If
there is a counterexample, for which the formula does not hold, it might be caused by
the over-approximation of the abstraction. In this case the counterexample is examined,
whether it is also a counterexample in the original model.

If the counterexample is not spurious, the formula does not hold in the original model.
Otherwise, the abstraction has to be refined to exclude the previous counterexample, and
the verification is repeated.

3.2 Reachability analysis of Petri nets using CEGAR

This section introduces a recently published algorithm [1], which applies the CEGAR
approach on the reachability problem of Petri nets. The flowchart of the Petri net specific
CEGAR approach can be seen in Figure 3.2.

Create initial
abstraction

Solve the
state equation

Examine the
solution

Refine the
abstraction

Stop

Reachability
problem

State equation

No solution

Solution

Realizable

Not realizableConstraints

Figure 3.2: Petri net specific CEGAR flowchart

The initial abstraction of the reachability problem is the state equation (Section 2.1.2).
The feasibility of the state equation is a necessary, but not sufficient criterion for reacha-
bility. Therefore, it is an over-approximating abstraction of the reachability problem. The
abstract model can be verified by solving the state equation, which is an integer linear
programming problem. The ILP solver tool can yield one solution, optimizing a linear
function. Each coefficient of the optimized function is one, so the shortest solutions are
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produced1. Trying to solve the state equation, the following cases are possible:

• If the state equation is infeasible, the target marking is not reachable, since the
necessary criterion does not hold.

• If a solution x exists, it must be examined, whether there is a realizable firing se-
quence σ with ℘(σ) = x.

– If such firing sequence σ exists, the target marking is reachable.

– If no realizable firing sequence can be found, than the solution x is a counterex-
ample, and the abstraction has to be refined.

The purpose of the abstraction refinement is to exclude the counterexample from the
solution space without losing any realizable solution. This can be achieved by adding ad-
ditional linear inequalities (constraints) to the state equation. Due to the new constraints,
the state equation either becomes infeasible, or a different solution is produced by the ILP
solver. The following section introduces the form of the solution space and the constraints
used by the algorithm.

3.2.1 Solution space of the state equation

Each solution vector x fulfilling the state equationm0+Cx = m′ can be written as the sum
of a base vector and the linear combination of T-invariants [1]. Formally, x = bn +

∑
i niyi,

where bn is a vector from a finite set of pairwise incomparable2 base vectors and yi is a
minimal T-invariant with the coefficient ni ∈ N.

Constraints

Two types of constraints were defined in [1]:

• Jump constraints have the form |ti| < n, where ti ∈ T , n ∈ N and |ti| represents
the firing count of the transition ti. Jump constraints can be used to switch between
different base vectors, exploiting the fact that they are pairwise incomparable.

• Increment constraints have the form
∑

ti∈T ni|ti| ≥ n, where ni ∈ Z and n ∈ N.
Increment constraints can be used to reach non-base solutions, i.e., involving T-
invariants.

Example 8 Consider the Petri net in Figure 3.3(a) with the reachability problem (0, 0, 1,
0)→ (1, 0, 1, 0). There are two base vectors for this problem: (1, 0, 0) (firing t0) and (0, 1, 1)
(firing t1 and t2). Since the ILP solver minimizes the firing count of transitions, it yields
the solution (1, 0, 0) first, which is unrealizable. Using a jump constraint |t0| < 1, the ILP
solver can be forced to produce the realizable solution (0, 1, 1).

1In my implementation, the coefficients can be set manually to arbitrary values.
2Two vectors are pairwise incomparable if both have a component that is lesser than the same component

of the other vector, e.g., (2, 0, 1) and (1, 2, 1).
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Example 9 Consider the Petri net in Figure 3.3(b) with the reachability problem (0, 0, 1)
→ (1, 0, 1). The only base vector for this problem is the vector (1, 0, 0) (firing t0), which
is unrealizable. Using an increment constraint |t1| ≥ 1, the ILP solver can be forced to
add the T-invariant {t1, t2} to the new solution (1, 1, 1), which is realizable by the firing
sequence σ = (t1, t0, t2).

p0

p1p2

p3 t0

t1t2

(a) Jump constraint example

p0p1p2 t0

t1

t2

(b) Increment constraint example

Figure 3.3: Example nets for jump and increment constraints

Figure 3.4 shows a visualization of the solution space [1]. Black dots represent solution
vectors, while cones represent the linear space formed by the T-invariants. Jumps are
denoted by dashed arcs and increments are denoted by normal arcs. The base solutions
are the ones on the bottom level. Note that jumps can occur on higher levels (dotted arc),
and can be used to switch between different T-invariants as well.

Figure 3.4: Solution space of the state equation

Section 3.2.3 explains how to create jump and increment constraints in order to reach a
realizable solution, but first the concept of partial solutions is introduced in the following
section.

3.2.2 Partial solutions

Partial solutions are generated from a solution of the state equation (and constraints) by
firing as many transitions of the solution vector as possible. Formally, a partial solution
of a Petri net PN = (P, T,E,W ) and a reachability problem m′ ∈ R(PN,m0) is a tuple
(C, x, σ, r), where:

• C is the set of jump and increment constraints that are added to the state equation,
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• x ∈ N|T | is the minimal3 solution satisfying both the state equation and the con-
straints of C,

• σ ∈ T ∗ is a maximal realizable firing sequence, with ℘(σ) ≤ x (i.e., each transition
can fire at most as many times as it is included in the solution vector),

• r = x− ℘(σ) is the remainder vector.

Since the firing sequence σ has to be maximal, all transitions ti with r(ti) > 0 are disabled
after firing σ.

Generating partial solutions

Partial solutions are obtained from a solution x and a constraint set C by firing as many
transitions as possible. The algorithm uses a “brute force” approach for this purpose: it
builds a tree with markings as nodes and transitions as edges. The root of the tree is
the initial marking m0 and an edge labeled ti is present between the nodes m′ and m′′ if
m′[ti〉m′′ holds. On each path leading from the root of the tree to a leaf, every transition
ti can occur at most x(ti) times. Each path to a leaf represents a maximal firing sequence
σ, therefore a partial solution (C, x, σ, r). Although the tree of the partial solutions can
be traversed only storing one path in the memory at a time, the size of the tree can grow
exponentially. Some optimization methods are presented in Section 3.2.5 to reduce the
branching factor of the tree.

Example 10 Consider the Petri net in Figure 3.5(a) with the solution vector x = (2, 1).
The tree of partial solutions for x can be seen in Figure 3.5(b). There are three different
maximal firing sequences, thus three partial solutions. Note that the length of the firing
sequences can be different.

p0

p1 p2

t0 t1

(a) Petri net

(0, 2, 1)

(1, 1, 1) (1, 2, 0)

(2, 0, 1) (2, 1, 0) (2, 1, 0)

(3, 0, 0) (3, 0, 0)

t0 t1

t0 t1

t0

t0

t0

(b) Tree of partial solutions

Figure 3.5: Partial solution tree example

3The vector x is minimal regarding the optimized function of the ILP solver.
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Examination of partial solutions

A partial solution is called a full solution if r = 0 holds. A full solution is a sufficient
criterion for reachability, since if r = 0, then ℘(σ) = x, which means that x is realizable
by the firing sequence σ.

We know that for each realizable solution x of the state equation, a full solution
({c}, x, σ, 0) exists, where ℘(σ) = x and c is a constraint of the form

∑
ti∈T x(ti)|ti| ≥∑

ti∈T x(ti), which ensures that x is the minimal solution produced by the ILP solver
[1]. Furthermore, full solutions can also be reached by continuously expanding the initial
(minimal) solution with (jump and increment) constraints [1].

Consider now a partial solution PS = (C, x, σ, r), which is not a full solution, i.e., r 6= 0.
This means that some transitions in the solution vector x could not fire enough times in
the firing sequence σ. The following cases are possible in this situation:

1. x may be realizable by another firing sequence σ′, thus a full solution PS′ =
(C, x, σ′, 0) can be found on an alternate path of the partial solution tree for x.

2. Greater, but pairwise incomparable solution vectors can be obtained using jump
constraints.

3. Increment constraints can be added to increase the token count in the input places of
transitions ti ∈ T with r(ti) > 0. Since the final marking must not change, this can
be achieved by adding T-invariants to the solution x. These invariants can “lend”
tokens in the input places of transitions with r(ti) > 0.

The following section introduces methods for generating jump and increment constraints
in order to reach a full solution.

3.2.3 Generating constraints

When a partial solution is not a full solution, both jump and increment constraints can
be added, but they are applied on a different level of the solution space:

• Jump constraints are generated from solution vectors of the state equation.

• Increment constraints are generated from partial solutions (which were obtained
from solution vectors).

Jump constraints

Given a solution vector x, jump constraints are used to obtain new, pairwise incomparable
solution vectors. For each transition ti ∈ T with x(ti) > 0 a jump constraint ci of the form
ci = |ti| < x(ti) can be added to the state equation. If a new solution vector yi is obtained
after adding one of the constraints ci, this process can be recursively repeated for yi. We
know that every base solution can be obtained using jump constraints [1].

Reaching non-base solutions require increment constraints, but they might contradict
with previous jump constraints. As an example, consider that the solution b1 = (2, 0, 0) is
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reached with the jump constraint |t1| < 1 from the minimal solution b0 = (0, 1, 0). If now
we want to add the T-invariant {t1, t2} to b1 three times that would contradict with the
previous constraint. Since jumps are only used to obtain pairwise incomparable solutions,
they can be transformed into equivalent increment constraints using the following method.

Transforming jumps

Suppose that C is a set of jump and increment constraints and z is the minimal solution
fulfilling the state equation and C. Let C′ include each increment constraint of C and an
additional increment constraint of the form |ti| > z(ti) for each transition ti ∈ T . Then,
a vector y ≥ z is a solution of the state equation plus C ∩ C′ if and only if y is a solution
of the state equation and C′ [1]. Furthermore, no solution smaller than z fulfills the state
equation and C′ [1]. This means that if we are interested in the solutions of the cone over
z, we can replace C with C′, which no longer contains jump constraints.

Increment constraints

Consider a partial solution PS = (C, x, σ, r), which is not full, i.e., some transitions could
not fire enough times. In this case, increment constraints can be used to extend the solution
vector x with T-invariants, which may help enabling transitions in the remainder r. In order
to get the proper invariants, we must determine the places that require additional tokens
and the number of required tokens. This problem is harder than testing if a solution is
realizable, i.e., testing if zero additional tokens are enough. A recursive approach would
be ineffective, since many different remainder vectors may belong to a solution vector.
Although the remainder is smaller than x, the number of recursion steps might grow
exponentially with the size of x [1].

The authors of the algorithm [1] use a heuristic to find the places and the required
number of tokens to enable transitions that could not fire. If a set of places actually
require n (n > 0) additional tokens, the heuristic gives an estimation between 1 and n. If
the estimation is too low, the heuristic can be applied again converging to n. The heuristic
consists of the following three steps:

1. Build a dependency graph between places and transitions to determine the set of
places that require additional tokens.

2. Calculate the number of tokens needed for each set of places.

3. Generate a constraint for each set of places using the information from the previous
steps.

The first step is to build a dependency graph known from partial order reduction
methods [13]. Let m̂ be the marking reached after firing σ of the partial solution PS =
(C, x, σ, r), i.e., m0[σ〉m̂. The dependency graph G = (P0 ∪ T0, E) can be constructed the
following way:

• T0 = {t ∈ T | r(t) > 0}.
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• P0 = {p ∈ P | ∃t ∈ T0 : w−(p, t) > m̂(p)}.

• E = {(p, t) ∈ P0 × T0 | w−(p, t) > m̂(p)} ∪ {(t, p) ∈ T0 × P0 | w+(p, t) > w−(p, t)}.

The graph consists of transitions that could not fire enough times (T0) and places (P0)
that disable these transitions under the marking m̂. The edges of the graph have a different
meaning regarding their direction. An edge (p, t) means that p disables t under m̂, while
an edge (t, p) means that firing t would increase the token count of p.

A strongly connected component (SCC) of the graph represents a set of transitions
that could mutually enable each other if some places of the SCC got additional tokens.
Consider now a source SCC, i.e., one with no incoming edges. The token requirement of
this SCC cannot be fulfilled by other SCCs, therefore transitions outside the remainder
(t ∈ T with r(t) = 0) must fire. For each source SCC the algorithm determines a tuple
(Pi, Ti, Xi), where:

• Pi = SCC ∩ P0 is the set of places of the SCC,

• Ti = SCC ∩ T0 is the set of transition of the SCC,

• Xi = {t ∈ T0 \ SCC | ∃p ∈ Pi : (p, t) ∈ E} is the set of transitions outside the SCC
that depend on the actual SCC.

The second step is to calculate the token requirement of each tuple (Pi, Ti, Xi). The exact
number is hard to determine, since a transition in Ti may enable all the other transitions
in Ti ∪Xi. The following heuristic [1] gives a good estimation for a tuple (Pi, Ti, Xi):

• If Ti 6= ∅, then enabling a transition ti ∈ Ti may enable all the other transitions, since
ti can produce additional tokens in some places of Pi. In this case n is the number
of tokens required by the transition missing the least tokens, which is formally n =
mint∈Ti(

∑
p∈Pi

max(0, w−(p, t)− m̂(p)).

• If Ti = ∅, then Pi can only consist of a single place pi. This means that the token
requirements of all the transitions in Xi must be fulfilled by pi. The transitions of
Xi can also produce tokens in pi, which has to be considered in the estimation.
Transitions therefore, are ordered in groups. Each group Gj consists of transitions
t ∈ Xi with w+(pi, t) = j. Firing the transitions of a group with the smallest value j
last minimizes the leftover at pi. Transitions in the same group Gj can be processed
at once, each using w−(pi, t) − j tokens, except for the first one, which requires j
additional tokens. The tokens produced by a group Gj can be consumed by the next
group Gj−1. After processing each group, we get the estimated number of tokens
required to fire each transition in Xi.

The third step is to calculate an increment constraint. Let Pi be a set of places, which
require n additional tokens and Ti = {t ∈ T | r(t) = 0 ∧

∑
p∈Pi

(w+(p, t)− w−(p, t)) > 0},
i.e., transitions outside the remainder vector that can produce tokens in the places of Pi.
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In this case the increment constraint c has the following form [1]:

∑
t∈Ti

∑
p∈Pi

(w+(p, t)− w−(p, t)) · |t| ≥ n+
∑
t∈Ti

∑
p∈Pi

(w+(p, t)− w−(p, t)) · ℘(σ)(t).

The left-hand side consists of transitions weighted with the number of tokens produced in
Pi. The formula on the right-hand side is the number of tokens already produced by the
transitions in the firing sequence σ.

The constraint c can now be added to the set of constraints C, forcing the ILP solver
to produce a solution x+ y (with y being an invariant).

3.2.4 Reachability of solutions

The following theorem [1] states that if the reachability problem has a solution, it can be
reached by the CEGAR method:

Theorem 1 If the reachability problem has a solution, a realizable solution of the state
equation can be reached by continuously expanding the minimal solution with jump and
increment constraints.

3.2.5 Optimizations

Some optimization methods were also presented in [1]. These methods reduce the search
space and can also prevent non-termination.

Stubborn set

The size of the partial solution tree can grow exponentially with the number of transitions
in the solution vector. There are several partial order reduction methods that can reduce
the branching factor of this tree. One of them is the so-called stubborn set method [14],
which is used by the CEGAR algorithm.

The stubborn set method investigates conflicts and dependencies between transitions
and cuts the state space without losing any state of interest. At each reached marking
m, a set of transitions, called the stubborn set (stub(m)) is determined, which is a subset
of the enabled transitions at m. The state space exploration continues from m only with
transitions t ∈ stub(m). This way, the size of the state space is smaller than continuing
with each enabled transition.

There are several stubborn set definitions for different properties investigated. The
CEGAR algorithm should not lose any reachable state, for which the following definitions
must hold [14]:

• D1: If t ∈ stub(m), t1, t2, . . . , tn /∈ stub(m),m[t1t2 . . . tn〉mn andmn[t〉m′n, then there
exists a marking m′ such that m[t〉m′ and m′[t1t2 . . . tn〉m′n.

• D2: If m has an enabled transition, then there must be at least one transition
tk ∈ stub(m) such that if t1, t2, . . . , tn /∈ stub(m) and m[t1t2 . . . tn〉mn then mn[tk〉.
Each transition with this property is called a key transition of stub(m).
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An algorithm is presented in [2] for determining the stubborn set at a marking m,
satisfying the previous criteria.

Subtree omission

When a transition t of the solution vector x has to fire more than once (i.e., x(t) > 1),
the stubborn set method alone is not efficient. The same state is often reached by firing
sequences only different in the order of transitions. An example can be seen in Figure 3.6.
Suppose that a marking m̃ is reached from m0 (by a firing sequence α), where both
transitions t and u are enabled. Furthermore, suppose that a marking m̂ is reachable by
two firing sequences tσu and uσt only different in the order of transitions. If the subtree
after αtσu is already processed, then the subtree after αuσt can be omitted, since the
order of the transitions does not matter for the abstraction refinement.

m0 m̃

m1a

m2a

m1b

m2b

m̂

m̂

α

σ

σ

t
u

u

t

Figure 3.6: If αtσu and αuσt can both fire, then only one of the subtrees after
m̂ needs to be processed.

Filtering T-invariants

Suppose that the abstraction refinement adds the T-invariant y to the solution vector x
of a partial solution PS = (C, x, σ, r) in order to enable transitions with r(t) > 0. If y can
be fired without enabling any transition in r, a partial solution PS′ = (C′, x + y, σ′, r) is
found. This means that the algorithm did not get any closer to finding a full solution by
PS′: the same transitions have to fire under the same marking, like in PS. The abstraction
refinement therefore, adds y again, which can prevent the algorithm from terminating. Such
situations should be detected, and PS′ has to be skipped. However, it is possible that at
some marking during the firing of y, the algorithm was closer to enabling a transition t

with r(t) > 0, i.e., less tokens were missing from the input places of t at an intermediate
marking than at the final marking. These intermediate markings should be detected and
used as new partial solutions, otherwise full solutions can be lost.

Storing partial solutions

Some partial solutions may occur many times (e.g., by adding the same constraints in a
different order). As long as we have enough memory, partial solutions should be stored to
avoid doing the abstraction refinement multiple times.
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3.2.6 A complex example

This section presents a complex example, which shows how the algorithm traverses the
solution space, including the T-invariant filtering optimization. The Petri net can be seen
in Figure 3.7 and the reachability problem is (0, 0, 0, 2) → (1, 0, 0, 2), i.e., to produce a
token in p0. The solution space is presented in Figure 3.9 and it is explained thoroughly
in this section.

p0

p1

p2

p3

t0

t1 t2

t3 t4

Figure 3.7: A complex example showing several aspects of the algorithm

The root of the solution space is the minimal solution vector (1, 0, 0, 0, 0), denoted by
SV0 (i.e., firing t0). Since t0 is not enabled, the only partial solution is PS0, with the empty
firing sequence σ0. The algorithm builds a dependency graph (Figure 3.8(a)) to determine
the increment constraints. The graph has edges from p1 and p2 to t0 because they disable
t0. Edges in the opposite direction are not present, since firing t0 does not increase the
token count of p1 or p2.

There are two source SCCs for PS0:

• SCC1({p1}, ∅, {t0}): One token is required in p1, where t2 can produce tokens, so
the constraint is |t2| ≥ 1.

• SCC2({p2}, ∅, {t0}): One token is required in p2, where t1 and t4 can produce tokens,
so the constraint is |t1|+ |t4| ≥ 1.

The new minimal solution fulfilling the state equation and the constraints is (1, 1, 1, 0, 0),
labeled by SV1 (i.e., the T-invariant {t1, t2} is added). Since none of the transitions t0, t1, t2
is enabled, the only partial solution is PS1 with the empty firing sequence σ1. The depen-
dency graph for PS1 can be seen in Figure 3.8(b).

There are two edges going from transitions to places as well, since t1 and t2 can increase
the token count of p2 and p1. The only source SCC is SCC({p1, p2}, {t1, t2}, {t0}). One
token in p1 or p2 might enable all the transitions of the SCC. The increment constraint
takes the form |t4| ≥ 1, since t4 is the only transition outside the remainder that can
produce tokens in the SCC.

The new solution vector is (1, 1, 1, 1, 1), denoted by SV2 (i.e., the T-invariant {t3, t4} is
added). Two partial solutions can be found for SV2:
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t0
p1 p2

(a) Dependency graph of PS0

t0

p1 p2t1

t2

(b) Dependency graph of PS1

Figure 3.8: Dependency graphs of PS0 and PS1

• PS21 has the firing sequence σ21 = (t4, t3), but it is skipped by the T-invariant
filtering optimization: it has the same remainder as PS1 and the firing sequences
are only different in the T-invariant {t3, t4}4. However, if only t4 is fired from σ21 =
(t4, t3), we are closer to enabling t0, since it misses only one token. This better
intermediate state is denoted by BS1. In BS1, one token is missing from p1, where
only t2 could produce tokens, but r(t2) > 0, so this partial solution cannot be
extended with constraints.

• The other partial solution is PS22 with the firing sequence σ22 = (t4, t2, t1, t3). PS22

is also skipped by the T-invariant filtering optimization: it has the same remainder
as PS0 and the firing sequences are only different in the T-invariant {t1, t2, t3, t4}.
However, there is a better intermediate state BS2, where only t4 and t2 is fired from
σ22. This intermediate state misses a token from p2, where t1 and t4 can produce
tokens. Since r(t1) > 0, the constraint is |t4| ≥ 2.

The new solution vector is (1, 1, 1, 2, 2), denoted by SV3 (i.e., the T-invariant {t3, t4} is
added). SV3 has many partial solutions, but there is a full solution as well: PS3 with the
firing sequence (t4, t4, t2, t0, t1, t3, t3).

4Without the optimization, the algorithm would add the T-invariant {t3, t4} to the solution vector
again and again. In this particular case, this would lead to a full solution, but in general, adding the same
invariant infinitely many times can lead to non termination.
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SV0: (1, 0, 0, 0, 0)

PS0: σ0 = ()
r0 = (1, 0, 0, 0, 0)

SV1: (1, 1, 1, 0, 0)

|t2| ≥ 1
|t1|+ |t4| ≥ 1

PS1: σ1 = ()
r1 = (1, 1, 1, 0, 0)

SV2: (1, 1, 1, 1, 1)

|t4| ≥ 1

PS21: σ21 = (t4, t3)
r21 = (1, 1, 1, 0, 0)

PS22: σ22 = (t4, t2, t1, t3)
r22 = (1, 0, 0, 0, 0)

Skip

Skip

BS1: σB1 = (t4)
rB1 = (1, 1, 1, 1, 0)

Better state

No constraint

BS2: σB2 = (t4, t2)
rB2 = (1, 1, 0, 1, 0)

Better state

SV3: (1, 1, 1, 2, 2)

|t4| ≥ 2

PS3: σ3 = (t4, t4, t2, t0, t1, t3, t3)
Full solution

. . .. . .

Figure 3.9: Solution space of the example seen in Figure 3.7
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Chapter 4

Algorithmic contributions

In this chapter I present my work regarding the correctness (Section 4.2) and completeness
(Section 4.3) of the algorithm. I also give a brief introduction to our previous findings [2, 3],
which serve as a basis for my new contributions. We extended the algorithm to be able
to solve new types of problems (Section 4.1) and we also had some results about the
correctness and completeness of the algorithm. At the end of the chapter I present my
formalization of the whole algorithm and the new contributions (Section 4.4).

4.1 Extensions of the algorithm

In our previous work [2, 3] we extended the algorithm to be able to handle two new types
of problems: solving submarking coverability and handling Petri nets with inhibitor arcs.

4.1.1 Solving submarking coverability

In Section 2.2.2 I introduced the submarking coverability problem and its usefulness. In
order to handle predicates of the form Am ≥ b in the CEGAR approach, we have to
transform these conditions on places into conditions on transitions. This can be done by
substituting m in the predicate with the state equation m0 + Cx = m. This yields the
inequality of the form

A(m0 + Cx) ≥ b,

which can be reordered in the form

(AC)x ≥ b−Am0.

This inequality can now be solved as an ILP problem for the firing count of transitions (x).
The algorithm uses this inequality as the initial abstraction, and extends it with further
(jump or increment) constraints.

4.1.2 Handling inhibitor arcs

The main problem with inhibitor arcs (Section 2.1.3) is that they do not appear in the
incidence matrix (and thus, in the state equation) in any form. Therefore, a solution vector
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of the state equation may not be realizable due to inhibitor arcs disabling some transitions.
This means that tokens must be removed from some places. Our strategy in this case is
to add such transitions to the solution that consume tokens from these places. We use
increment constraints for this purpose, but generate them with a modified form of the
three step algorithm (presented in Section 3.2.3):

• The first step is to build a dependency graph with transitions that could not fire due
to inhibitor arcs and places disabling them. An arc from a place p to a transition t
means that t is disabled by an inhibitor arc connecting to p, while the other direction
indicates that firing t would consume tokens from p. Each source SCC of the graph
is important, because tokens cannot be removed from them by other SCCs.

• The second step is to estimate the number of tokens to be removed. If Ti of the tuple
(Pi, Ti, Xi) is not empty, any transition in Ti may enable all the others, so we find
the transition that needs the least tokens to be removed. Otherwise, Pi contains only
a single place, therefore the needs of the transitions in Xi must be fulfilled at once.
This means that all the tokens have to be removed from the place of Pi.

• The third step is to construct a constraint for each SCC, by adding transitions to
the solution vector that consume tokens from the places of the SCC.

4.2 Correctness of the algorithm

In our previous work [2, 3] we proved that the algorithm is incorrect due to the heuristic
used for generating increment constraints, and we presented a method to detect such
situations (Section 4.2.1). However, we were not able to provide a solution if the heuristic
fails and in some special cases (using optimizations) we could not detect the problem.
In this section I present my new contributions to detect the problem of the heuristic in
every case (Section 4.2.3), and to be able to provide solutions even if the heuristic fails
(Section 4.2.2).

4.2.1 Proof of the incorrectness

Although Theorem 1 states that a realizable solution can be reached by the CEGAR
method, we found that the original algorithm [1] can give an incorrect answer in some
special cases. The reason is that the heuristic used for generating increment constraints
can over-estimate the number of required tokens. We proved this with the Petri net in
Figure 4.1 and the reachability problem (1, 0, 0, 0, 0, 0, 0, 2) → (0, 1, 0, 0, 1, 0, 0, 2), i.e., a
token is moved from p0 to p1, and a token is produced in p4 [2, 3].

We know that the vector xs = (1, 1, 1, 1, 1, 1, 1, 1) is a solution realizable by the firing
sequence σs = (t1, t2, t0, t5, t6, t3, t7, t4). However, the original algorithm does the following
steps. At first, the minimal solution is x = (1, 0, 1, 1, 1, 0, 0, 0), i.e., firing t0, t2, t3, t4. Only
t0 is enabled from these transitions, so the only partial solution is PS = (∅, x, σ = (t0), r =
(0, 0, 1, 1, 1, 0, 0, 0)). Then, the algorithm tries to find an increment constraint, for which
the dependency graph can be seen in Figure 4.2.
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Figure 4.1: Proof of the incorrectness of the algorithm

t2 t3 t4p0 p2 p3

Figure 4.2: Dependency graph of the partial solution PS

The only source SCC is SCC({p0}, ∅, {t2}), with zero tokens in p0 (since firing t0 con-
sumed a token from there). The heuristic now estimates that three tokens are required in
p0, where t1 can produce tokens, so the increment constraint takes the form 2|t1| ≥ 3. As
a consequence, the T-invariant {t1, t5, t6, t7} (gray transitions in Figure 4.1) is added to
the solution vector twice. However, the previous invariant is constructed so that for each
of its occurrence, a token has to be present in p2 and p3 in order to enable t6 and t7. Note
that these tokens can only be shifted towards p4, but in the target marking p4 can hold
only one token. Therefore, the problem can no longer be solved by the algorithm, so it
gives the incorrect answer “not reachable”.

The problem here is that the heuristic over-estimated the tokens required in p0. Without
firing t0, only two tokens would be missing from p0, which would mean that the T-invariant
{t1, t5, t6, t7} is added only once to the solution vector, resulting in the realizable solution
xs. This is a general problem of the original algorithm: it always tries to produce maxi-
mal firing sequences, although some transitions would not be practical to fire (t0 in our
example). Due to this, the estimated number of tokens in the final marking of the firing
sequence can be higher than actually required.

Detecting over-estimation

In our improved algorithm [2, 3] we count the maximal number of tokens in each place
during the firing sequence of a partial solution. If the final marking is not the maximal re-
garding any SCC, the heuristic might have over-estimated the number of tokens required1.
If such situation occurs and we do not find a full solution, we say that the problem cannot

1For inhibitor SCCs, the minimal number of tokens is counted in each place. If the final marking is not
the minimal regarding an inhibitor SCC, over-estimation may occur.
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be decided.
The main goals of my thesis regarding the correctness of the algorithm are

• to find the solution even if the heuristic fails (Section 4.2.2)

• and to check if the previous method can always detect over-estimation (Section 4.2.3).

4.2.2 Providing a solution in case of over-estimation

I developed a new method that tries to find a solution in case of an over-estimation by
the following way. Suppose that the heuristic estimated that n tokens are required in
an SCC and I detected over-estimation. My first idea was to forget n, and estimate one
instead. However, over-estimation is not a problem in most cases: the algorithm still finds
a realizable solution, but not the minimal. Estimating one means a slow convergence to
the actual number of missing tokens, so at first I always estimate n (even if I detect over-
estimation). If no realizable solution can be found in that subtree, I backtrack and start
a new search with n = 1.

Using this new method, the Petri net in Figure 4.1 can now be solved with the reacha-
bility problem (1, 0, 0, 0, 0, 0, 0, 2)→ (0, 1, 0, 0, 1, 0, 0, 2). Figure 4.3 shows the relevant part
of the solution space of this problem, illustrating how the new method works.

PS0: σ0 = (t0)
r0 = (0, 0, 1, 1, 1, 0, 0, 0)

. . .

SV1: (1, 2, 1, 1, 1, 2, 2, 2)

2|t1| ≥ 3

SV2: (1, 1, 1, 1, 1, 1, 1, 1)

2|t1| ≥ 1

. . .

No full solution
PSF : σF = (t1, t2, t0, t5, t6, t3, t7, t4)

Full solution

. . .. . .

Figure 4.3: Part of the solution space showing how solutions can be found in
case of over-estimation

The partial solution where the over-estimation occurs is labeled by PS0. At first I try
the original estimation (n = 3), yielding a new solution vector SV1 : (1, 2, 1, 1, 1, 2, 2, 2).
Since there are no full solutions in this subtree, I backtrack to PS0 and now estimate
n = 1. This way, the realizable solution vector SV2 : (1, 1, 1, 1, 1, 1, 1, 1) is found, with a
full solution PSF .

Limitations, future work

During my work I found that the heuristic may not only over-estimate the required tokens,
it may also determine wrong places to put tokens in. As an example, consider the Petri net
in Figure 4.4 with the reachability problem (0, 1, 0, 1) → (1, 0, 1, 1), i.e., move the token

34



from p1 to p2, and produce a token in p0. A possible solution is the vector xs = (1, 1, 1, 1),
realized by the firing sequence σs = (t3, t0, t1, t2).

p0p1

p2p3

t0t1

t2

t3

Figure 4.4: In some special cases, even estimating n = 1 does not help finding
a solution.

The algorithm does the following steps. The minimal solution is x0 = (1, 1, 0, 0), i.e.,
firing t0 and t1. Only t1 is enabled, thus one partial solution PS0 = (∅, x0, σ0 = (t1), r0 =
(1, 0, 0, 0)) can be found. The marking reached by σ0 is (0, 0, 1, 1), where n = 1 token is
missing from p1 to enable t0. None of the transitions can produce tokens in p1, so the
algorithm cannot find any constraint. Before firing t1, p1 had one token, so the algorithm
detects over-estimation. However, a new search cannot be started, since the original esti-
mation is also n = 1.

Without firing t1, a token would be missing from p2, where the T-invariant {t2, t3} could
help. The problem is that the heuristic tries to produce tokens in a place (p1), which lacks
tokens in the final marking, but had the required number of tokens at some point of the
firing sequence (σ0). Finding a solution in such situations is an aim of my future work.

4.2.3 Detecting over-estimation structurally

The over-estimation detecting method presented before is correct as long as every inter-
mediate marking of a partial solution is observed. However, using the subtree omission
optimization (Section 3.2.5), firing sequences only different in the order of transitions are
skipped, thus some intermediate markings are lost.

As an example, consider the Petri net in Figure 4.5 with the submarking coverability
problem to reach a marking m with m(p1) = 1, m(p3) = 1.

The minimal solution is x0 = (1, 0, 1), i.e., firing t0 and t2. Since only t0 is enabled, the
only partial solution is PS0 = (∅, x0, σ0 = (t0), r = (0, 0, 1)). The algorithm finds that t2
is disabled by p0, where three tokens are required (t0 consumed one token from p0). This
is an over-estimation, because p0 had more tokens at the initial marking. The constraint
|t1| ≥ 3 makes the state equation infeasible, but a new search is started with a constraint
c1 = |t1| ≥ 1, leading to a new solution x1 = (1, 1, 1). There are two partial solutions
now, where t0 and t1 fire in a different order. In both cases, t2 is disabled by p0 with two
tokens missing at the final marking (t0 consumes, but t1 produces a token in p0). This
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Figure 4.5: A net, where over-estimation cannot be detected if subtree omis-
sion is used

would imply that t1 is added twice to the solution vector, but p2 has only one token left,
so no solution would be found. When the algorithm tries to detect over-estimation, the
following happens for the two partial solutions:

• PS11 = ({c1}, x1, σ11 = (t0, t1), r11 = (0, 0, 1)): p0 has one token at the initial and
final marking, and zero tokens after firing t0. The over-estimation detection method
fails, since the final marking of p0 is not less than any other marking.

• PS12 = ({c1}, x1, σ12 = (t1, t0), r12 = (0, 0, 1)): p0 has one token at the initial and
final marking, and two tokens after firing t1. This is an over-estimation, so t1 is
added only once, yielding a realizable solution xs = (1, 2, 1).

Note that PS11 and PS12 are only different in the order of transitions. Using the subtree
omission, we do not know, which of them is skipped. If PS12 is skipped, the algorithm
gives an incorrect answer.

To overcome this problem, I developed a method that can detect over-estimation in-
dependent from the order of transitions, using only structural information from the Petri
net. The maximal possible token count of a place p in a partial solution PS = (C, x, σ, r)
is determined by the following formula2:

mmax(p) = m0(p) +
∑

t∈T,C(p,t)>0
(℘(σ)(t)) · C(p, t).

The formula assumes an ideal case, where only transitions t with C(p, t) > 0 (i.e.,
that produce tokens in p) fire from σ. The product (℘(σ)(t)) · C(p, t) represents the total
number of tokens produced by t in p in the firing sequence σ. Assuming an ideal case can
sometimes lead to false detections. This may yield some computational overhead, but the
result of the algorithm is correct.

Using this new approach, the algorithm can solve the previous example. Since this
method is independent from the order of transitions, it can detect the over-estimation
both at PS11 and PS12.

2For inhibitor SCCs, transitions t with C(p, t) < 0 should be counted.

36



4.3 Completeness of the algorithm

In our previous work [2, 3] we found several problems that the original algorithm [1] could
not solve. We developed some extensions to overcome these problems, but we proved that
even the improved algorithm [2, 3] is incomplete. In this section I briefly introduce our
previous work (Section 4.3.1) and present my new extension to the iteration strategy of
the algorithm (Section 4.3.2). I also improve the T-invariant filtering optimization with
an extra criterion (Section 4.3.3).

4.3.1 Previous work

This section briefly introduces our previous results [2, 3] regarding the completeness of
the algorithm.

Total ordering of the intermediate markings

When a partial solution PS = (C, x, σ, r) is skipped by the T-invariant filtering optimiza-
tion, the algorithm checks if it was closer to enabling a transition t (with r(t) > 0) during
the firing of σ. The original algorithm does this by “counting the minimal number of
missing tokens for firing t in the intermediate markings occurring” [1].

In our previous work we found that this criterion is not general enough: in some cases the
total number of missing tokens may not be less, but different places are lacking tokens,
where additional ones could be produced. In our improved algorithm, an intermediate
marking mi is considered better than the final marking m′ of the firing sequence σ, if
there is a transition t ∈ T with r(t) > 0 and a place p ∈ P with (p, t) ∈ E, for which
m′(p) < w−(p, t) ∧ mi(p) > m′(p) holds [3]. This means that t is disabled by p at the
final marking m′ and less tokens are missing to enable t in the intermediate marking mi.
Figure 3 of [3] is an example where the previous definition helps to extend the set of
decidable problems.

T-invariant filtering and subtree omission

As I already stated in Section 4.2.3, intermediate markings can be lost using the subtree
omission optimization. This is not only a problem for over-estimation detection, but also
for finding better intermediate markings in case of a skipped partial solution. In such
situations we rebuild the partial solution tree without subtree omission. Note that this
was not an acceptable option for detecting over-estimation, since it must be done for
every partial solution. However, it a reasonable option if a partial solution gets skipped
by the T-invariant filtering optimization. Figure 4 of [3] is an example where the order
of transitions matters for finding better markings. This approach yields a computational
overhead in some cases, but full solutions can be lost otherwise.
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New termination criterion

We also developed a new criterion for termination, which is proved to keep all full solutions
[2, 3]. This new criterion is applied during the increment constraint generating process.
Suppose that the algorithm found a set of places P ′ ⊆ P with the estimated number of
required tokens n (for some partial solution PS). Before trying to generate a constraint,
we can check if the following inequalities hold for some marking m′:∑

pi∈P ′

m′(pi) ≥ n

∀pj ∈ P : m′(pj) ≥ 0.

The first inequality ensures that at least n tokens are produced in the places of P ′

and the others guarantee that each place has non-negative number of tokens under m′.
These inequalities define a submarking coverability problem, which can be solved easily
by the ILP solver. If there is no solution, the necessary criterion for reachability does not
hold, thus n tokens cannot be produced in the places of P ′. In this case PS can be skipped
without losing any full solution. This new approach can cut the search space efficiently and
it can prevent non-termination. It also extends the set of decidable problems. especially
where the target marking is not reachable. Figure 5 of [3] presents such an example.

Proof of the incompleteness

Despite the previous extensions, we proved that the algorithm is still incomplete due
to its iteration strategy. A proof can be found in [2] and [3], but I present a new and
simpler proof on a smaller Petri net here. Consider the Petri net in Figure 4.6 with the
reachability problem (0, 1, 0)→ (1, 1, 0), i.e., I want to produce a token in p0. The vector
xs = (1, 1, 1, 1, 1) is a solution, realized by the firing sequence σs = (t3, t1, t0, t2, t4).

p0 p1 p2t0

t1

t2

t3

t4

2

2

Figure 4.6: A counterexample of completeness

The algorithm does the following steps. The minimal solution vector is x0 = (1, 0, 0, 0, 0),
i.e., firing t0. Since t0 is not enabled, the only partial solution is PS0 = (∅, x0, σ0 = (), r0 =
(1, 0, 0, 0, 0)). The algorithm finds that an additional token is required in p1 and only t1
can satisfy this need. With an increment constraint c1 : |t1| ≥ 1, the T-invariant {t1, t2} is
added to the new solution vector x1 = (1, 1, 1, 0, 0). Only t2 and t1 can fire (in this order),
thus the only partial solution for x1 is PS1 = ({c1}, x1, σ1 = (t2, t1), r1 = r0).

This partial solution is skipped by the T-invariant filtering optimization, since the dif-
ference of σ0 and σ1 is a T-invariant ({t1, t2}) and r1 = r0. Furthermore, there are no
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better intermediate states, since no additional token was “borrowed” from the T-invariant
{t1, t2}. The algorithm terminates at this point, leaving the problem undecided.

The problem is that the algorithm does not recognize that although {t1, t2} can fire, it
only circulates the same token, instead of “lending” a new one. An extra token could be
produced in p2 (and then moved in p1) using the T-invariant {t3, t4}. However, {t3, t4} is
not connected directly to p1 (where the tokens are missing), so the iteration strategy of the
algorithm does not try to involve it. In the following subsection I propose an extension to
the iteration strategy in order to involve such “distant” invariants into the solution vector.

4.3.2 Involving distant T-invariants

Definition 1 (Distant invariant) A T-invariant x is a distant invariant for a set of
places Pi of an SCC if there are no edges between the transitions of x and the places of
Pi, but they are connected indirectly through other places and transitions.

When a partial solution is skipped due to a T-invariant, it means that this invariant
was fired, but it could not “lend” enough tokens. The basic idea of involving distant T-
invariants is quite simple: try to produce tokens in any place connected to the filtered
T-invariant. If some tokens can be produced, the filtered invariant will then be able to
transfer them indirectly to the place that lacks tokens. However, there are two problems
to be solved:

• How many tokens should be produced in the places of the filtered invariant?

• When should this process terminate? If the distant invariant cannot help, adding it
again will lead to non-termination.

Number of tokens produced in the invariant

There are two possibilities for the number of tokens produced in a T-invariant:

• Produce one token at a time, and repeat this process if it was not enough.

• Estimate the required number of tokens.

Estimating the required number of tokens is a hard problem, since the sum of the tokens
in the places of an invariant may change during firing. As an example, consider the T-
invariant {t1, t2} in Figure 4.7. One token in p2 yields two tokens in p1. Over-estimation
can also be a problem: the final marking of the T-invariant may not be the “best” state
regarding the number of tokens. Therefore, I adapt the former strategy, namely producing
one token at a time.

Termination criterion

Suppose that a partial solution PS was skipped and the algorithm tried to produce tokens
using distant invariants. If the distant invariant can also not help, adding it again can
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Figure 4.7: T-invariant example

lead to non-termination. I developed a new algorithm (Algorithm 1) to decide if a distant
T-invariant should be added or not.

The input of the algorithm is a partial solution PS′ that was skipped due to another
partial solution PS. The number of better intermediate states is also an input, since it
indicates whether the distant invariant helped. Each partial solution stores a list of T-
invariants. This list keeps track of the invariants, in which the partial solution and its
ancestors tried to put tokens.

At first, I calculate the difference between the firing sequences of PS and PS′ (ActTinv),
i.e., the invariant that actually caused filtering PS′. Then, I initialize the actual list of
invariants to put tokens in (ActDistantInvariants) with an empty list. At this point, there
are two possible cases:

• If PS was also skipped that means some distant invariants were already involved. If
these invariants helped getting closer to enable a transition in the remainder, then
there are better intermediate markings (bs > 0). In this case these invariants should
be added again, so the actual list of invariants (and also the list of PS′) is the same
as the list of PS.

• Otherwise, (if PS was not skipped or bs = 0) I try to involve a new distant invariant.
At first I get the latest invariant that PS tried to help (or an empty set, if PS was
not skipped). If the actually filtered invariant is not a subset of the latest invariant
of PS, I take their union and put them in the actual list of invariants. However, for
PS′ I store both the previous invariants and the actual (the union).

These conditions ensure that a distant invariant is only added as long as it has positive
effect (bs > 0) and when a new distant invariant is involved, it must be greater than the
previous (union with non-subset).

If the actual list of invariants is not an empty list, I take each invariant and get the
places connected to the transitions of the invariant. Creating a constraint for these places
is done by the third step of the increment constraint generating heuristic. If no constraint
can be found (i.e., no transitions can produce tokens in an invariant), the algorithm returns
no new solution vector. Otherwise the new constraints (ci) are added to the constraints of
PS′ and I solve the ILP problem for a new solution vector.

The example in Figure 4.6 can now be trivially solved: PS1 is filtered due to PS0

and the T-invariant {t1, t2}. Since PS0 was not filtered, the algorithm produces tokens in
places connected to {t1, t2}. These are places p1 and p2, where only t3 can increase the
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token count. Thus, the distant T-invariant {t3, t4} is added and the realizable solution
xs = (1, 1, 1, 1, 1) is found.

Algorithm 1: Distant invariant algorithm
Input : PS′: Partial solution skipped

PS: Partial solution that caused skipping PS′
bs: Number of better intermediate markings for PS′

Output : x: New solution vector found by involving distant invariants
1 ActTinv ← difference invariant between PS and PS′ ;
2 ActDistantInvariants ← ∅;
3 if PS was already skipped ∧ bs > 0 then
4 ActDistantInvariants ← Distant invariants of PS;
5 Distant invariants of PS′ ← ActDistantInvariants;
6 end
7 else if ActTinv * Latest distant invariant of PS then
8 ActDistantInvariants ← {Latest distant invariant of PS ∪ ActTinv};
9 Distant invariants of PS′ ← Distant invariants of PS ∪ {ActDistantInvariants};

10 end
11 if ActDistantInvariants 6= ∅ then
12 ConstrList ← constraints of PS′;
13 for each T-Invariant Ti ∈ ActDistantInvariants do
14 ci ← constraint to produce one token in places connected to Ti;
15 if no constraint can be found then no new solution vector is returned;
16 ConstrList ← Constrlist ∪ {ci};
17 end
18 x← solve the state equation with ConstrList;
19 end

A complex example

I present here a complex example, showing all aspects of the new algorithm. Consider
the Petri net in Figure 4.8 with the reachability problem (0, 1, 0, 0, 2)→ (1, 1, 0, 0, 2), i.e.,
producing a token in p0.

p0 p1 p2 p3 p4t0

t1

t2

t3

t4

t5

t6

3

3

Figure 4.8: A complex example for involving distant invariants

The relevant part of the solution space can be seen in Figure 4.9. The minimal solution
is x0 = (1, 0, 0, 0, 0, 0, 0), i.e., firing t0, with a single partial solution PS0 = (∅, x0, σ0 =
(), r0 = x0). The algorithm finds that two tokens are missing from p1, thus the invariant
{t1, t2} is added twice by the constraint c1 : |t1| ≥ 2. The new solution vector is x1 =
(1, 2, 2, 0, 0, 0, 0) with one partial solution PS1 = ({c1}, x1, σ1 = (t2, t1, t2, t1), r1 = r0).
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The invariant {t1, t2} could fire, but did not enable t0 so PS1 is skipped due to PS0. Also,
there are no better intermediate markings, since {t1, t2} did not produce any extra tokens.

At this point, the new algorithm tries to produce a token in p1 and p2 by distant
invariants. This implies that the T-invariant {t3, t4} is added once to the new solution
x2 = (1, 2, 2, 1, 1, 0, 0) by the constraint c2 : |t3| ≥ 1. There are several partial solutions
for x2, since {t3, t4} can be fired or not, and the order of transitions can also be different,
which is irrelevant now.

SV0: (1, 0, 0, 0, 0, 0, 0)

PS0: σ0 = ()
r0 = (1, 0, 0, 0, 0, 0, 0)

SV1: (1, 2, 2, 0, 0, 0, 0)
|t1| ≥ 2

PS1: σ1 = (t2, t1, t2, t1)
r1 = (1, 0, 0, 0, 0, 0, 0)
Filtered inv.: {t1, t2}

Skip

SV2: (1, 2, 2, 1, 1, 0, 0)

|t3| ≥ 1

PS2: σ2 = (t2, t1, t2, t4, t3, t1)
r2 = (1, 0, 0, 0, 0, 0, 0)

Filtered inv.: {t1, t2}, {t1, t2, t3, t4}

Skip

. . .. . .

SV3: (1, 2, 2, 1, 1, 1, 1)

|t5| ≥ 1

PS3: σ3 = (t2, t1, t5, t3, t1, t2, t4, t6)
r3 = (1, 0, 0, 0, 0, 0, 0)

Filtered inv.: {t1, t2}, {t1, t2, t3, t4}

Skip

. . .. . .

SV4: (1, 2, 2, 2, 2, 2, 2)

|t3| ≥ 2, |t5| ≥ 2

PS4: σ4 = (t5, t5, t3, t3, t1, t1, t0, t2, t2, t4, t4, t6, t6)
Full solution

. . .. . .

Figure 4.9: Solution space of the example on distant invariants

Suppose that we proceed the partial solution PS2 = ({c1, c2}, x2, σ2 = (t2, t1, t2, t4, t3,
t1), r2 = r1) where the distant invariant {t3, t4} could fire but did not enable t0. Thus,
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PS2 is skipped due to PS1. PS1 was already skipped and there are no better intermediate
markings ({t3, t4} did not “lend” any extra tokens). However, {t3, t4} * {t1, t2} so now
the algorithm tries to produce a token in {t1, t2} ∪ {t3, t4}, i.e., places p1, p2, p3. In the
new solution vector x3 = (1, 2, 2, 1, 1, 1, 1) another distant invariant {t5, t6} is added by
the constraint c3 : |t5| ≥ 1.

There are several partial solutions as well, but suppose that we proceed to PS3 =
({c1, . . . , c3}, x3, σ3 = (t2, t1, t5, t3, t1, t2, t4, t6), r3 = r2). The distant invariant {t5, t6}
fired, but it did not enable t0. Therefore, PS3 is skipped due to PS2. Although PS2

was already skipped, involving {t5, t6} resulted in an extra token, so there are better in-
termediate states. The algorithm therefore, tries to produce tokens in the invariants of
PS2, which are {t1, t2} and {t1, t2, t3, t4}. The constraints c4 : |t3| ≥ 2 and c5 : |t5| ≥ 2
yield a new solution x4 = (1, 2, 2, 2, 2, 2, 2), which can be realized by the full solution
PS4 = ({c1, . . . , c5}, x4, σ4 = (t5, t5, t3, t3, t1, t1, t0, t2, t2, t4, t4, t6, t6), 0).

Limitations, future work

This new approach also has some limitations. If the T-invariants have edge weights greater
than one, producing one token at a time may not help. As an example, consider the Petri
net in Figure 4.10 with the reachability problem (0, 1, 0)→ (1, 1, 0). After {t1, t2} is added
and filtered, the new approach involves {t3, t4} once, which yields one token in p2. However,
t1 requires two tokens to fire, so this token cannot be moved in p1. There are no better
intermediate markings, since we only consider enabling t0.

p0 p1 p2t0

t1

t2

t3

t4

2

2 2

2

Figure 4.10: Limitations of the new approach on distant invariants

There are two possible solutions to overcome this problem:

• Count the arc weights and estimate the required number of tokens instead of pro-
ducing one token at a time.

• Better intermediate markings can be considered not only for the disabled transition,
but for the invariant as well.

My future plan is to investigate these methods in order to extend the new approach.

4.3.3 Extending the filtering optimization

The T-invariant filtering optimization is an important part of the algorithm, since it can
prevent non-termination. However, I found some cases, where the definition is not general
enough and therefore, it cannot detect infinite loops of T-invariants.
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Remainder based filtering

There are special cases, where T-invariants may either fire or not. As an example consider
the Petri net in Figure 2.4 and suppose that each transition must fire once. This is realizable
with the firing sequence σ0 = (t0, t2, t3, t1). However, σ1 = (t0, t1) is also a maximal firing
sequence for this problem, since t2 and t3 are disabled after σ1. In such cases both partial
solutions are found and processed. To differentiate between the two cases, I say that the
invariant is added to the firing sequence or to the remainder. The first case can be detected
by the T-invariant filtering optimization. However, I found that the second case can also
lead to non-termination if there are at least two T-invariants (T1, T2) with this property.
At first, T1 is added without firing. Then T2 is also added without firing, but now T1 is
fired. Finally T1 is added again without firing, but now T2 fires and this process is repeated.
The T-invariant filtering optimization cannot detect this, since the remainder vector also
changes in every step.

To overcome this problem, I detect when a T-invariant is added to the remainder, i.e.,
a partial solution PS = (C, x, σ, r) was found between the ancestors of PS′ = (C′, x +
y, σ, r + y). However, PS′ cannot be filtered immediately, since the remainder is different
and the abstraction refinement may add new invariants that can help. I found that in most
of the cases where PS′ yielded non-termination, PS was a partial solution that could also
be filtered by the original criterion for filtering. Therefore, I only skip the partial solution
PS′ based on the remainder vector, if PS can also be skipped based on the firing sequence.

Breadth first search between the SCCs

The extended filtering criterion can now detect if T-invariants are added either to the firing
sequence or to the remainder without helping a transition in the remainder. However, when
there are more than one SCCs, multiple T-invariants can be added in one step. If one of
them is added to the firing sequence and the other is added to the remainder it cannot
be detected, since both the firing sequence and the remainder changes. Therefore, I only
deal with one SCC at a time. If an SCC does not lead to a full solution, I backtrack to
the others.

4.4 Pseudo code

In this section I present my formalization of the algorithm and the new contributions with
pseudo codes. The algorithm is split into several parts in order to be more understandable.
Sub-algorithms are denoted by underlining in the pseudo code.

Algorithm 2 shows the main iteration loop of the CEGAR approach. The solution
space is traversed using depth first search with a stack for backtracking purposes. The
partial solution storing optimization is implemented with a set of partial solutions called
“PScatalog”. The stack and the catalog are both accessible for the sub-algorithms.

At first, the state equation is solved without constraints and the solution is pushed in
the stack. While the stack is not empty I take the top element, which is either a partial
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solution or a solution vector. In both cases this element is processed by sub-algorithms
(Algorithm 3 and 4). These sub-algorithms put new solution vectors or partial solutions
in the stack (if they find any). The loop continues until a full solution is found or there is
no possibility to backtrack.

Algorithm 3 shows how a partial solution is processed. At first I check whether it can
be skipped by the T-invariant filtering optimization (Algorithm 5):

• If the partial solution is skipped, I search for better intermediate states (Algorithm 6)
and try to involve distant invariants (Algorithm 1).

• Otherwise, I try to obtain new solution vectors by increment constraints (Algo-
rithm 7).

Algorithm 2: Main loop of the CEGAR algorithm
Input : PN or PNI : Petri net

RP : Parameters of the reachability (or submarking coverability) problem
Output : Result: “Reachable” | “Not reachable” | “Not decidable”

1 Stack: Stack of solution vectors and partial solutions ;
2 PScatalog: Set of all partial solutions that occured ;
3 Stack ← ∅ ;
4 PScatalog ← ∅ ;
5 if The state equation has a solution x0 then Stack ← x0;
6 while Stack 6= ∅ do
7 S ← Pop an item from the stack ;
8 if S is a partial solution then Process partial solution S;
9 else if S is a solution vector then

10 Process solution vector S;
11 if A full solution is found for S then Result ← “Reachable”;
12 end
13 end
14 if A partial solution was skipped or over-estimation occured then
15 Result ← “Not decidable”;
16 end
17 else Result ← “Not reachable”;

Algorithm 3: Partial solution processing algorithm
Input : PS: Partial solution to be processed

1 if PS can be skipped due to a partial solution PS0 then
2 Stack, PScatalog ← Better intermediate states for PS;
3 Stack ← Solution vectors by involving distant invariants for PS;
4 end
5 else
6 Stack ← Solution vectors with increment constraints for PS;
7 end

Algorithm 4 presents how solution vectors are processed. At first, I try to find pairwise
incomparable solutions by jump constraints. Then, I build the tree of partial solutions
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with the optimization methods. If a full solution is found, it is returned, otherwise all the
partial solutions are pushed in the stack for further processing.

Algorithm 5 presents the formalization of the T-invariant filtering optimization. I loop
through each partial solution PSE of each ancestor solution vector of PS. At first I check
whether PS can be skipped based on the firing sequence. If not, the remainder vector is
also checked.

Algorithm 6 finds better intermediate states for a skipped partial solution PS. I build
the tree of partial solutions again, but this time without optimizations. Since I only want
firing sequences different in the order of transitions, I work with ℘(σ) instead of x. Then,
for each intermediate marking I check the criteria presented in Section 4.3.1. I also check
whether this intermediate marking has already been found.

Algorithm 7 is used to generate increment constraints for partial solutions that were not
skipped. It is the three step algorithm presented in Section 3.2.3 extended with the new
contributions. At first I build the dependency graph and find the source SCCs. Then, for
each SCC I estimate the number of tokens and construct a constraint. If over-estimation
is detected, another constraint is generated with n = 1. Then I add the constraints to the
previous ones and solve the ILP problem. This way, the number of new solution vectors
is between zero and twice the number of SCCs.

Algorithm 4: Solution vector processing algorithm
Input : x: Solution vector
Output : FS: Full solution (if found)

1 Stack ← Solution vectors with jumps;
2 Build the tree of partial solutions for x using stubborn sets and subtree omission;
3 if A full solution PSF ULL is found then FS = PSF ULL;
4 else Stack, PScatalog ← Partial solutions for x;

Algorithm 5: Checking if a partial solution can be skipped
Input : PS(C, x, σ, r): Partial solution
Output : PS0: Partial solution that caused filtering PS (if such PS0 exists)

1 for Each solution vector SV from the ancestors of PS do
2 for Each partial solution PSE(CE , xE , σE , rE) of SV do
3 if ℘(σ)− ℘(σE) is a T-invariant and r = rE then
4 PS can be skipped;
5 PS0 = PSE ;
6 end
7 else if ℘(σ) = ℘(σE) and r − rE is a T-invariant then
8 if PSE can be skipped based on the firing sequence then
9 PS can be skipped;

10 PS0 = PSE ;
11 end
12 end
13 end
14 end
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Algorithm 6: Finding better intermediate states
Input : PS(C, x, σ, r): Partial solution
Output : BSs: Set of better intermediate states

1 m′ ← marking reached by firing σ;
2 Build the partial solution tree for ℘(σ) without optimizations;
3 for Each intermediate marking mi do
4 if ∃t, p with r(t) > 0 and m′(p) < w−(p, t) ∧mi(p) > m′(p) then
5 mi is a better state;
6 if mi was not yet found then BSs← mi;
7 end
8 end

Algorithm 7: Finding increment constraints
Input : PS(C, x, σ, r): Partial solution
Output : SV s: New solution vectors (if found)

1 Build the dependency graph;
2 Find source SCCs (normal and inhibitor as well);
3 for Each SCC do
4 n← estimated number of tokens required for this SCC;
5 if The necessary criterion holds then
6 c← constraint to produce/remove n tokens from this SCC;
7 SV s← solve the state equation with C ∪ {c};
8 end
9 if Over-estimation is detected and n 6= 1 then

10 c′ ← constraint to produce/remove 1 token from this SCC;
11 SV s← solve the state equation with C ∪ {c′};
12 end
13 end
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Chapter 5

Implementation

In this chapter I present my implementation of the CEGAR algorithm including my new
contributions. At first I present the framework used for the development (Section 5.1)
and the architecture (Section 5.2) of the components. Then, I give a brief introduction on
the functionality of the tool (Section 5.3). At the end of this chapter, the details of the
implementation are presented (Section 5.4).

5.1 The PetriDotNet framework

I implemented the algorithm as a plug-in for the PetriDotNet framework1 [15], which
is an application for editing, simulating and analyzing Petri nets. Figure 5.1 shows the
main screen of the framework. It is written in C# programming language, and it can be
extended with plug-ins easily through its public interface.

Public interface

Each plug-in must contain a class implementing the interface IPDNPlugin. This class gets a
reference of the application (PDNAppDescriptor). The actual Petri net of the editor can be
obtained by the CurrentPetriNet property. The algorithm creates its own representation
of the net (Section 5.4.2) using the following methods of the PetriNet class:

• The method GetNonVisualPlaces() returns a list of Places. The algorithm stores
the names of the places and assigns a unique ID to each of them.

• The method GetTransitions() returns a list of Transitions. The algorithm stores
the transitions similar to the places.

• The method GetNonVisualEdges() returns a list of Edges. Each edge has a Source

and Target property, which is either a place or a transition. Edges also have an
integer Weight and a boolean Inhibitor property. The algorithm stores the edges
in matrices.

1PetriDotNet Version 1.3.4804.24282
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Figure 5.1: Main screen of PetriDotNet

5.2 Architecture

An overview of the architecture can be seen in Figure 5.2. The Petri net can be created and
edited graphically in the PetriDotNet framework. When the CEGAR plug-in is started, it
gets a reference of the current Petri net. After setting the parameters of the reachability
(or submarking coverability) problem, the plug-in starts to explore the solution space
using an ILP solver. For this purpose I used the lpsolve tool [16], which is presented in
Section 5.4.1. The abstraction is refined in an iterative process, so the CEGAR plug-in
may call the solver several times. If a full solution is found, the firing sequence can be
simulated graphically in PetriDotNet.

PetriDotNet CEGAR plug-in ILP solver
Petri net

Simulate result

ILP problem

Result

ILP problem

Result

...
Ax ≤ b
x ≥ 0

min(cTx)

Figure 5.2: Overview of the architecture

5.3 Functionality

This section gives a brief introduction on installing and using the plug-in. It was an im-
portant aspect to create a convenient tool that can be used easily without deep knowledge
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about the algorithm.

5.3.1 Deployment

The plug-in consist of three files and three directories (see Figure 5.3). These files and
directories should be copied in the same structure under the “add-in” folder of PetriDotNet.

Figure 5.3: Files and directories of the plug-in

5.3.2 Overview of the GUI

The plug-in can be started from PetriDotNet with the “Reachability (CEGAR)” item of
the “Add-in” menu. The main window of the plug-in can be seen in Figure 5.4.

Figure 5.4: Main window of the CEGAR plug-in
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The window is divided into the following three sections:

• information about the net,

• parameters of the reachability problem,

• result of the analysis.

5.3.3 Information about the net

The top section displays information about the currently loaded Petri net. If the net is
changed in the editor, it must be reloaded manually with the “Reload active net from edi-
tor” button. The number of places, transitions and edges is also displayed. If the “Places”
or “Transitions” label is clicked, the plug-in displays the ID and name of each place or
transition in a pop-up dialog (Figure 5.5).

Figure 5.5: Place names with IDs

5.3.4 Parameters of the reachability problem

The type of the problem (reachability or submarking coverability) can be set at the top
of the section “Reachability problem parameters” with the radio buttons. Each parame-
ter (initial marking, target marking or predicates, conditions on transitions2, optimized
function) can be edited on a separate tab.

There are several options to enter the initial and target marking:

• They can be entered in the text boxes as a vector of integers separated with spaces.

• Using the “Options” button they can be edited in a separate window (Figure 5.6)
where the ID, name and token count of each place is displayed.

• The actual token distribution of the net can be loaded from or into the PetriDotNet
framework with the “Load from PDN” and “Show in PDN” buttons.

If the type of the problem is submarking coverability, the tab for predicates is visible
(Figure 5.7) instead of the tab for the target marking. A new predicate can be added with
the “Add predicate” button. The dialog seen in Figure 5.8 helps entering a predicate. The
coefficient of each place can by set by selecting the name of the place in the combo box and
entering the coefficient in the text box below. The type of the predicate (“≥”,“=”,“≤”)
can be set with the combo box in the top right corner. The right-hand side value can be

2The conditions on transitions are added directly to the ILP problem as a row.
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Figure 5.6: Marking editor dialog

entered in the text box below the type. The selected predicates can be removed with the
“Remove” button. The list can be cleared by the “Remove all” button under “Options”.
The option “Load tokens from PDN” under “Options” does the following: for each place
pi of the Petri net with m(pi) > 0 a predicate of the form m′(pi) = m(pi) is created, i.e.,
places with no tokens are ignored.

The conditions on transitions can be added similarly to predicates. The only difference
is that these conditions correspond to transitions instead of places.

The optimized function of the ILP solver can be edited as a vector or with a helper
dialog similar to the marking editor (Figure 5.6).

Figure 5.7: Predicates tab

Figure 5.8: Predicate editor

All parameters can be written into an XML file with the “Save” button and loaded from
an XML file with the “Load from file” button.
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5.3.5 Configuration of the algorithm

The optimizations and the logging level of the algorithm can be configured by clicking the
“Configuration” button. The following options are available (Figure 5.9):

• Level of logging: Sets the detailedness of logging. At level 0, only the solution is
displayed, while at level 4, each detail is logged into the “Output” tab of the “Result”
section.

• Generate state space: Sets whether the state space should be generated in the file
“statespace.dot” in GraphViz format [17].

• Use stubborn sets: Enables the stubborn set optimization, which reduces the number
of partial solutions by investigating dependencies and conflicts between transitions
(Section 3.2.5).

• Store partial solutions: Enables the partial solution storing optimization, avoiding a
partial solution to be processed multiple times (Section 3.2.5).

• Use subtree omission: Enables the subtree omission optimization, which reduces
the number of partial solutions by ignoring the different order of transitions (Sec-
tion 3.2.5).

• Filter partial solutions by T-invariants: Enables the T-invariant filtering optimiza-
tion, which can avoid non-termination by detecting infinite loops in the abstraction
refinement (Section 3.2.5).

• Try to involve distant T-invariants: Enables my new extension that tries to involve
distant invariants when a partial solution is skipped by the filtering optimization
(Section 4.3.2).

• Check state equation before finding increment constraints: Enables the new filtering
criterion developed during our previous work (Section 4.3.1).

• Filter dead transitions: Enables filtering transitions that can never fire at the begin-
ning of the algorithm3.

The reachability analysis can be started with the “Reachable?” button. It runs on a
background thread and it can also be interrupted with the “Stop” button.

5.3.6 Examination of the result of the algorithm

The algorithm prints information depending on the level of logging in the “Output” tab
of the result section. When the reachability analysis finished, detailed information can be
seen in the “Result” tab. If a realizable solution is found, the plug-in displays the following
items (Figure 5.10):

3Developed by Pál András Papp
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• the initial marking,

• the marking reached by the solution,

• the solution vector,

• and the firing sequence realizing the solution.

Figure 5.9: Configuration dialog

Figure 5.10: Result of a reachable problem

The firing sequence can be simulated automatically or manually with the playback
controls in the “Simulate sequence” group. The result can also be exported into a CSV file
with the “Export CSV” button. Clicking the button, a place selector dialog (Figure 5.11)
appears. Each step of the firing sequence is written in the CSV file with the actual marking
of the selected places.

If no full solution was found, the following cases are possible:

1. If some solutions were skipped by the T-invariant filtering optimization, the result
is “Not decidable”.
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2. If over-estimation occurred, the result is also “Not decidable”.

3. Otherwise, the result is “Not reachable”.

Figure 5.11: Place selector dialog

5.4 Development

In this section I introduce the ILP solver tool that I used (Section 5.4.1) and I present the
details of the implementation (Section 5.4.2).

5.4.1 lpsolve

I solve the ILP problems using the open source lpsolve tool4 [16]. It has a C# interface,
which can be downloaded from its website [16]. I only present the important parts in my
work, a detailed documentation is available at the website [16].

The functionalities are provided in the static class lpsolve of the lpsolve55 names-
pace. At first lpsolve has to be initialized with the method init, setting the path of the file
lpsolve55.dll, which contains the implementation. A new LP problem can be created with
the method make_lp. An LP problem is described by linear equalities or inequalities (con-
straints) over the variables. The first parameter of make_lp is the number of constraints
(initially zero), while the second parameter is the number of variables (transitions in my
case). The method returns the ID of the created problem (as an integer).

Constraints can be added to an LP problem with the method add_constraint, which
has the following parameters:

• lp: ID of the LP problem, for which the constraint has to be added.

• row: Coefficients of the constraint in an array.

• constr_type: Type of the constraint. Possible values: equal (EQ), less-or-equal (LE),
greater-or-equal (GE).

• rh: Right-hand side value of the constraint.
4lpsolve Version 5.5
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The next step is to set the optimized function with the method set_obj_fun, taking
the coefficients in an array. The algorithm wants to minimize the optimized function,
which can be set by the method set_minim. Also, variables must be integer, which can be
achieved by calling the method set_int on each variable.

The problem can be solved using the method solve, which returns whether it could
solve the problem. If the method was successful, the result can be obtained by the func-
tion get_variables. After solving the problem, it must be deleted using the method
delete_lp.

5.4.2 Classes

The plug-in (including the algorithm) is implemented in C# language. When creating the
classes related to the algorithm, the main objective was not to strictly observe the basic
principals of object oriented programming, but to let them easily represent a mathematic
concept. The classes are categorized by their functionality and responsibility.

Main classes

• CEGARplugin: Connects the plug-in to the PetriDotNet framework by implementing
the required interface of plug-ins.

• Reachability: Main class that solves the reachability problem. It gets the parame-
ters of the problem and a reference of the caller in its constructor. The reachability
analysis can be started with the method IsReachable. When the analysis is com-
pleted, the callback function of the caller is called.

• ICaller: Required interface for calling the algorithm. It has a callback function,
which is called when the algorithm finishes the analysis.

• ReachabilityFacade: Facade class for using the plug-in without the graphical user
interface.

• Config: Static class that stores the settings of the optimizations and the output.

Data structures

• PetriNetMatrix: Represents a Petri net with the following matrices: edge weights,
incidence matrix, inhibitor arcs. In the inner representation, places and transitions
are identified with a unique index starting from zero. This class provides several
functions to retrieve information about the structure of the net. It can determine
the set of enabled transitions under a given marking, and it can also calculate the
marking when a transition or a sequence of transitions is fired. The stubborn set
optimization is also implemented in this class: beneath the set of enabled transitions,
the stubborn set of a marking can also be determined.

• Vector: Wrapper class for an array. Represents a mathematical vector. It has several
helper methods, e.g., printing the vector and comparing it to another one.
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• MarkingRemainderPair: A pair of two vectors: a marking and a remainder. Used by
the subtree omission to detect markings reached by firing sequences only different
in the order of transitions.

• Predicate: A class representing a row of a predicate of the form Am ≥ b. It stores
the coefficients of the row, the operator (≥,=,≤) and the right-hand side value.

• ReachabilityParams: Class for storing the parameters of the reachability problem:
type (reachability or submarking coverability), initial marking, target marking or
predicates, conditions on transitions, coefficients of the optimized function.

• ReachabilityResult: Class for storing the result of the reachability analysis: “reach-
able”, “not reachable” or “not decidable”. If the answer is “reachable”, the firing
sequence is also provided.

• SolSpaceLevel: Represents a level of the solution space. Stores solutions of the state
equation and partial solutions in a stack for backtrack purposes.

• StEqSolution: Represents a solution of the state equation. It also stores the con-
straints and the partial solutions generated from this solution.

Classes handling partial solutions

• PartialSolution: Represents a partial solution. It has a reference of the solu-
tion vector (with the constraints) and stores the firing sequence and the remain-
der vector. It also implements the T-invariant filtering optimization by the method
CanBeFilteredByTinvariants.

• MarkingTreeNode: Represents a node in the tree for generating partial solutions.

• PartialSolutionCatalog: Implements the partial solution storing optimization.

• TinvChain: Represents a list of T-invariants, which is used by the new extension
that involves distant invariants.

Classes handling constraints

• IConstraint: Common interface for constraints. Provides the array of coefficients,
the operator and the right-hand side value for lpsolve.

• IncrementConstraint: Represents an increment constraint of the form
∑
ni·|ti| ≥ n,

implementing the interface IConstraint. Stores the coefficients and the right-hand
side value. The operator is always “≥”.

• JumpConstraint: Represents a jump constraint of the form |ti| < n, implementing
the interface IConstraint. Stores the index of the transition ti and the right-hand
side value. The operator is always “≤”.
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• PredicateConstraint: Represents the transformed version of a Predicate. Stores
the coefficients of the transitions, the operator and the right-hand side value.

• ConstrList: Represents a list of constraints. It can transform jumps into increments
and can also filter redundant constraints5.

• IncrementBuilder: Implements the increment constraint generating heuristic (Sec-
tion 3.2.3). It uses the class Graph to build the dependency graph.

Dependency graph

• Graph: Represents the dependency graph used for generating increment constraints.
It can store places and transitions as nodes and can find the source SCCs.

• GraphNode: Represents a node of the dependency graph. Stores the index of the
place or transition and its neighbors.

• STXtuple: Represents a tuple of the form (Pi, Ti, Xi).

Helper classes for lpsolve

• lpsolve55: Provides the interface of lpsolve and delegates the calls to the native
implementation.

• LpSolveException: Custom class representing a possible exception by lpsolve.

• LpSolveTool: Helper class for using lpsolve. The function Solve builds the ILP
problem using the incidence matrix and target marking (or predicates) and returns
the solution if the problem is feasible. The function StateEquationTest implements
the new filtering criterion discussed in Section 4.3.1.

Graphical User Interface

• PluginForm: Main window of the plug-in. It is divided into three sections: infor-
mation about the net, parameters of the reachability problem and the result (Fig-
ure 5.4).

• AboutCegarTool: Displays information about the authors and version of the plug-in.

• AddCondTrans: Dialog for adding conditions on transitions.

• AddPredicate: Dialog for adding predicates (Figure 5.8).

• ConfigForm: Dialog for configuring the plug-in (Figure 5.9).

• ConsoleHandler: Helper class for logging information in the main window during
the execution of the algorithm.

5E.g., the constraint |t1| < 3 is redundant when a constraint |t1| < 2 is also present.
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• DisplayNames: Displays places and transitions with their IDs and names (Fig-
ure 5.5). The algorithm uses IDs in the inner representation, but the user can give
names to the places or transitions.

• GraphViz: Helper class for creating solution space graphs for GraphViz [17].

• MarkingEditor: Dialog for editing the initial and target marking (Figure 5.6).

• PlaceSelector: Dialog for selecting places that should be included in the exported
statistics (Figure 5.11).

• IOHelper: Helper class for I/O operations such as reading or writing the parameters
of the reachability problem from or into files and the user interface.
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Chapter 6

Evaluation

In this chapter I present my measurement results for well-known models. Section 6.1
shows how the runtime of the algorithm scales for several models with a given parameter.
In Section 6.2 I compare my algorithm to a different type of verification algorithm, namely
the saturation method.

The tests were taken with the following configuration:

• Hardware: Intel Core i5 M430 2,27Ghz processor and 3 GB RAM

• Operating system: Windows 7 x32

• .NET Framework version 4.0

• PetriDotNet framework version 1.3.4804

6.1 Scalability

In this section I present measurement results for well-known models. The measurements
focused on the scalability of the runtime with a given parameter of the model. In some
cases the parameter affects only the token distribution of the net, while in other cases it
also affects the structure of the model.

6.1.1 Counter

The Counter model represents a simple n bit binary counter. The model contains inhibitor
arcs. The problem solved by the algorithm is to count from 0 to 2n − 1, where n is the
parameter. The results can be seen in Table 6.1 and Figure 6.1. The runtime clearly scales
exponentially with the parameter, which is not surprising, since the length of the firing
sequence solving the problem is also exponential of n.

6.1.2 Dining philosophers

The Dining philosophers model [18] is often used to illustrate the problems of parallel
programming and mutual exclusion. There are n philosophers around a circular table.
Each philosopher has a plate and there is a fork between each two plates. A philosopher
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can eat if he has a fork in both hands. Since two neighbors share a fork, at most n/2
philosophers can eat at the same time. Each philosopher is either thinking or eating. If a
philosopher gets hungry, he grabs the forks next to him and eats. After eating, he puts
back the forks. There is a possibility for deadlock if all the philosophers get hungry at the
same time and they all grab one fork. In this case none of them can eat, therefore they
will not put back the forks.

The problem solved by the algorithm is to reach a state, where every second philosopher
is eating. The results can be seen in Table 6.2 and Figure 6.2. This model has a very large
structure (the incidence matrix has 24n2 elements) therefore, finding the solution vector
with the ILP solver is already a hard problem.

Parameter Runtime
4 0,011 s
8 0,02 s
12 0,038 s
14 0,096 s
16 0,195 s
18 0,994 s
20 3,726 s

Table 6.1: Measurement results for the Counter model
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Figure 6.1: Measurement results for the Counter model

Parameter Runtime
10 0,092 s
20 0,241 s
30 0,488 s
50 1,468 s
100 9,754 s
200 83,357 s

Table 6.2: Measurement results for the Dining philosophers model
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Figure 6.2: Measurement results for the Dining philosophers model

6.1.3 FMS

The FMS model [19] represents a flexible manufacturing system where different types of
parts are assembled together. The parameter of this model is the number of parts to be
assembled (n), which determines the initial marking. The structure of the net is the same
for all n. The results can be seen in Table 6.3 and Figure 6.3. Since the structure of the
net does not change, the size of the abstract model is constant. However, the length of the
firing sequence solving the problem grows linearly, which yields a linear scalability of the
runtime.

Parameter Runtime
10 0,046 s
50 0,053 s
100 0,058 s
200 0,078 s
400 0,115 s
800 0,191 s
1600 0,321 s
3200 0,638 s
6400 1,28 s
12800 2,571 s

Table 6.3: Measurement results for the FMS model
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Figure 6.3: Measurement results for the FMS model
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6.1.4 Kanban

The Kanban model represents a production scheduling method. The parameter of this
model determines the initial marking, the structure is the same for all n. The results can
be seen in Table 6.4 and Figure 6.4. Although the size of the model does not change, the
runtime scales exponentially with the parameter. I experienced that the algorithm can
find a realizable solution vector quickly, but it examines many partial solutions before it
finds a full solution, i.e., there are many dead-ends in the partial solution tree.

Parameter Runtime
10 0,352 s
13 1,147 s
16 3,424 s
19 8,040 s
22 17,51 s
25 35,061 s
28 64,947 s

Table 6.4: Measurement results for the Kanban model

10 12 14 16 18 20 22 24 26 28
0

20

40

60

Parameter

R
un

tim
e
(s
)

Figure 6.4: Measurement results for the Kanban model

6.1.5 Slotted ring

The Slotted ring model represents a network protocol. The parameter is the number of
participants in the network. The results can be seen in Table 6.5 and Figure 6.5. Although
the size of the model grows, the ILP solver can handle this model well and this yields a
polynomial runtime.

Parameter Runtime
10 0,207 s
20 0,571 s
30 1,206 s
35 1,585 s
50 3.461 s

Table 6.5: Measurement results for the Slotted ring model
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Figure 6.5: Measurement results for the Slotted ring model

6.2 Comparison to the saturation algorithm

In this section I compare my implementation of the CEGAR algorithm to the saturation
method, which is also implemented in the PetriDotNet framework [20]. The results can be
seen in Table 6.6. “TO” refers to an unacceptable runtime (> 600s).

Model and parameter CEGAR Saturation
Philosophers-10 0,092 0,01 s
Philosophers-20 0,241 0,02 s
Philosophers-30 0,488 0,03 s
Philosophers-50 1,468 0,03 s
FMS-10 0,046 s 0,06 s
FMS-50 0,053 s 1,09 s
FMS-100 0,058 s 8,03 s
FMS-200 0,078 s 69,72 s
FMS-400 0,115 s TO
FMS-800 0,191 s TO
Kanban-10 0,352 s 0 s
Kanban-16 3,424 s 0,01 s
Kanban-19 8,040 s 0,03 s
Kanban-25 35,061 s 0,05 s
SlottedRing-10 0,207 s 0,06 s
SlottedRing-20 0,571 s 0,042 s
SlottedRing-30 1,206 s 1,47 s
SlottedRing-35 1,585 s 2,43 s
SlottedRing-50 3.461 s 6,82 s

Table 6.6: Comparison of the CEGAR and saturation algorithm

The two algorithms are complementers: saturation performs better for models with
large structures, since solving the ILP problem has a big cost. However, for models with
simple structure and large state space, the CEGAR approach is more effective. Moreover,
CEGAR can also handle infinite problems.
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Chapter 7

Conclusions

The counterexample guided abstraction refinement (CEGAR) is a new and promising for-
mal analysis technique. In this thesis I developed and evaluated improvements to a recently
published CEGAR algorithm for the reachability analysis of Petri nets. These improve-
ments have both theoretical and practical importance. On the theoretical side, I have
continued my previous work, where I (together with my colleagues) proved the incorrect-
ness and incompleteness of the algorithm and suggested improvements to overcome some
of the problems. On the practical side, the developed extensions significantly widen the
applicability of the CEGAR approach, as well as improve its performance.

In my thesis work I studied the correctness and completeness of the CEGAR algorithm
further, and proved that one of the optimizations still creates the possibility of incorrect-
ness. I suggested a structural method for detecting such situations, which is independent
from the optimizations. Furthermore, I developed a new method that can not only de-
tect incorrectness, but can also help to find a solution in such cases. I also improved the
iteration strategy of the algorithm in order to extend the set of decidable problems.

I implemented the algorithm with the new contributions in the PetriDotNet framework
and measured its performance on well-known models. I compared my implementation of
the CEGAR algorithm to the so-called saturation method, which is also a new and very
efficient analysis technique. The results have shown that the two algorithms can comple-
ment each other: saturation performs better for models with large structures, however,
for models with simple structure and large state space, the CEGAR approach is more
effective. Another important advantage of CEGAR over saturation is that it can handle
even infinite problems.

During my preparation of this thesis I successfully completed all of the specified ob-
jectives. I presented the CEGAR algorithm for Petri nets (see Section 3.2). I examined
the shortcomings of the algorithm, and suggested improvements (see Sections 4.2 and
4.3). I implemented the algorithm and evaluated its performance by measurements (see
Chapters 5 and 6).

Even though all the objectives were met, there are still several opportunities for further
research. In some special situations, the algorithm can detect incorrectness, but cannot
decide the problem. There are also problems that even the extended iteration strategy
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cannot solve. Thus, an important result would be if either the algorithm could be extended
to handle these situations, or the impossibility of making the algorithm complete could be
formally proven. Another promising research direction is indicated by the measurement
results. They show that the algorithm performs poorly for certain models, therefore new
optimizations are required to improve the performance of the CEGAR approach.
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