
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

On Supporting Automatic Test
Generation

Master’s Thesis

Author Advisor
Dávid Honfi Zoltán Micskei, PhD

András Vörös

2015. május 24.

Contents

Kivonat i

Abstract ii

Introduction 1

1 Background 3
1.1 Software testing . 3

1.1.1 Overview . 3
1.1.2 Methods of testing . 4

1.2 Unit testing . 5
1.2.1 Isolated unit . 5
1.2.2 The importance of unit testing . 5

1.3 Symbolic execution . 6
1.4 An automated test input generator . 8

1.4.1 Parameterized unit tests . 8
1.4.2 Dynamic symbolic execution . 9
1.4.3 Internal functionality . 9
1.4.4 Analysis of extensibility . 10

2 Motivation 11
2.1 Related work . 11
2.2 Our previous case studies . 12

2.2.1 Petri net modeler . 12
2.2.2 Content management system . 13

2.3 Potential improvement areas . 14
2.4 Research questions . 14

3 Visualization of symbolic execution 16
3.1 Methodology . 16
3.2 Representation . 17

3.2.1 Nodes and edges . 17
3.2.2 Appearance of the nodes . 18
3.2.3 Source code mapping . 18
3.2.4 Path conditions . 19
3.2.5 Indicating unit isolation . 20

3.3 Implementation . 20
3.3.1 Tool architecture . 21
3.3.2 SEViz Monitoring . 21
3.3.3 SEViz Viewer . 23
3.3.4 SEViz Visual Studio Extension . 25

1

3.4 Introductory examples . 25
3.5 Evaluation . 29

3.5.1 Example use cases . 29
3.5.2 Experiments . 31
3.5.3 Limitations of the approach . 36

3.6 Related work . 37

4 Automated isolation environment generation 38
4.1 Basic notions . 38

4.1.1 Unit test isolation . 38
4.1.2 Isolation frameworks . 41
4.1.3 Microsoft Fakes . 42

4.2 Methodology . 43
4.2.1 Overview . 43
4.2.2 Detection . 43
4.2.3 Analysis . 44
4.2.4 Generation . 46

4.3 Implementation challenges . 47
4.3.1 Extending Microsoft Pex . 47
4.3.2 Using .NET Compiler Platform . 47
4.3.3 Generation with Microsoft Fakes . 48

4.4 Evaluation . 49
4.4.1 Basic examples . 49
4.4.2 Real-world examples . 52
4.4.3 Limitations . 56

4.5 Related work . 57

5 Summary 58
5.1 Results . 58
5.2 Future work . 59

Köszönetnyilvánítás iii

List of Figures v

Bibliography viii

Appendix ix
F.1 Source code of simple isolation examples . ix
F.2 Source code snippets of the examined CMS x
F.3 Source code of the method test in JustDecompile Engine xi

2

HALLGATÓI NYILATKOZAT

Alulírott Honfi Dávid, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyel-
vű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáfér-
hető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán
keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyúj-
tott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított
diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2015. május 24.

Honfi Dávid
hallgató

Kivonat

Manapság a szoftverek egyre komplexebb felépítése új kihívások elé állítják a mérnököket.
A verifikációs módszerek egyre fontosabb szerephez jutnak a tervezés és implementáció
fázisában, hiszen a növekvő méret és komplexitás nagyobb valószínűséggel előforduló hi-
bákhoz vezethet. A fejlesztés során végzett átfogó tesztelés kulcsfontosságú a szoftvermi-
nőségben, habár a megfelelő bemenetek kiválasztása a teszteléshez meglehetősen nehéz
feladat valós környezetekben.

Az automatikus tesztbemenet-generálás megkönnyítheti ezen bemenetkiválasztási fel-
adatot. A generálási folyamat építhet egy viselkedési modellre vagy akár magára a forrás-
kódra is. A dinamikus szimbolikus végrehajtás technikája ez utóbbiakhoz tartozik: a kódot
szimbolikus változók segítségével értelmezi és vezérli, majd az ezekből kapott eredménye-
ket konkrét végrehajtások segítségével finomítja. A módszer hatékonyan képes bonyolult
forráskódok végrehajtási útvonalait is feltérképezni. Mindezek ellenére a módszer ipari
alkalmazása a komplexitásából és a tesztgenerálást végző személy számára rendelkezésre
álló információk kis mennyisége miatt nehézkes válik. A dolgozatban két saját módszert
mutatok be a szimbolikus végrehajtás alapú tesztbemenet-generálás ipari alkalmazásának
megkönnyítéséhez.

Az első általam kidolgozott technika a szimbolikus végrehajtás vizualizációja, amely
képes a végrehajtás egyes lépéseit egy bejárási fa csomópontjaihoz társítani segédinformá-
ciók hozzáadásával (pl. forráskódhely, útvonalfeltétel). A technika a futás átláthatóságát
1) az útvonalfeltételek szétbontása, 2) a végrehajtási útvonalak osztályozása és a 3) tesztelt
komponensből való kilépések érzékelése segítségével biztosítja. A technika implementáció-
jaként elkészült egy eszköz is, amely nyílt forráskódú és online is elérhető.

A második kidolgozott technika az automatikus izolációs környezet generálása, amely
automatikusan képes a tesztelés alatt álló egység külső hívásait helyettesíteni. A dolgozat-
ban bemutatott módszer észleli a vizsgált egységből kifele történő hívásokat, majd több
szempont alapján megvizsgálja azokat. Az ebből kapott eredmények segítségével pedig
forráskódot generál az izolációs környezet felépítéséhez a külső hívások helyettesítésére.

Mindkét kidolgozott technikához elkészült egy-egy prototípus implementáció, amelye-
ket megvizsgáltam egyszerű és valós példákon keresztül is.

i

Abstract

Nowadays, complex software systems pose new challenges for engineers. Verification tech-
niques are getting an important role during the design and implementation phase, since
the increasing size and complexity of software leads to increased possibility of defects.
Thorough testing during development is a key for the improvement of software quality,
however choosing the appropriate test inputs can be a rather complex task in real-world
environments.

Automation of test input generation can support the task of selecting the proper inputs.
The test input generation procedure can be based on a behavioral model or on the source
code itself. Dynamic symbolic execution is one of the latter techniques: it executes the
source code symbolically (with symbolic variables and values) and refines the results with
constraints derived from concrete executions. The technique is able to effectively discover
execution traces of complicated software. However, its industrial application is hindered by
the complexity of the technique and the lack of provided information for the test engineer.
In this thesis, I present two techniques that are able to alleviate the work with automated
test input generation based on symbolic execution.

The first presented technique is the visualization of symbolic execution, which maps the
steps of the execution to nodes of an execution tree and enriches it with metadata infor-
mation (e.g. source code locations, path conditions). The technique supports the better
understanding of the execution by 1) decomposing the path conditions of each trace, 2)
classifying the execution paths and 3) identifying situations when a trace exits from the
unit under test. A tool was implemented and it is open-source and available online.

The second technique to support the industrial usage of symbolic execution is the auto-
mated isolation environment generation. Thus, it can automatically replace the external
dependencies with doubles. The presented technique discovers the calls going outside from
the unit under test, while analyzing them from several aspects. From the results of this
analysis, the technique is able to generate source code for unit isolation.

Prototype implementations of both of the techniques were developed and examined
through simple and also real-world examples.

ii

Introduction

Nowadays, testing of software is a basic concept of development processes and software
lifecycles. Testing is a verification technique that is able to discover defects that otherwise
would probably stay hidden. The need for quality and fault-tolerance required to enhance
techniques in this area. The current trends in software testing show that test automation
is getting more and more important due to the increasing complexity of software and the
costs of their development. Automation is spreading in different areas of testing, one of
them being test input generation from source code, where several methods and techniques
are available [1]. One of the techniques is symbolic execution that is a program analysis
technique first appeared in the 80s [27] and greatly enhanced in the last decade (e.g. [7, 8]).

Symbolic execution starts from an arbitrary entry point in the source code. During the
analysis, the technique interprets each statement while it also gather constraints. These
constraints can be passed to a solver in order to get concrete input values, which will
execute exactly the path, in which the constraint was gathered. A typical use case of this
technique is generating inputs for white-box testing to achieve high code coverage.

Several tools have been presented in the past decade that are able to generate test inputs
for white-box tests by using symbolic execution. Microsoft Pex [38] is one of them being,
which uses the enhanced variant called dynamic symbolic execution (DSE) that combines
concrete executions with the symbolic ones.

Challenges There are many challenges in the industrial adoption and application of
symbolic execution (e.g. problem identification of executions, efficient usage on large-
scale software) [35, 13, 4, 39]. We experimented previously with Pex in this area and our
previous experiences also confirmed these challenges. We generated test inputs for a model
checker tool developed at our research group and a content management system from one
of our industrial partners. Generating tests in complex software without any guidance for
the generator tool may result in low coverage at the first execution. Commonly, this is
caused by reaching timeouts, calls to external libraries and resources, or conditions that
cannot be solved by the solver. Identification of the root cause of these problems may
prove to be effort-intensive and may lead to deep analysis of generated logs. This analysis
could be a difficult and time-consuming task for developers and test engineers without
academic background. Thus currently, there is a gap between the academic practice of
test input generation and its industrial application. To overcome this gap and alleviate
the challenges occurred in large-scale software, I applied two techniques.

Contributions First is the idea of visualizing symbolic execution. Based on our previous
work and related research, I defined a visual representation that may be able to help
engineers identifying problems appeared during symbolic execution. The representation is
called a symbolic execution tree and I also defined other, related information that should

1

be attached to the tree visually and textually. The nodes provide information about
the test generation (e.g. path conditions, source code locations, selected inputs). The
visualized tree itself serves as an overview of the execution and may help enhancing the test
generation process. I implemented the visualization technique in a prototype tool called
SEViz (Symbolic Execution VisualiZer) that is able to collect information from monitoring
the executions and is able to interactively visualize the symbolic execution tree with source
code inspection. A thesis on this tool was written for the Conference of Association of
Scientific Students [22]. A tool paper was also published on the International Conference
of Software Testing (ICST) [21], which is one of the largest conferences in research of
software testing. The implemented tool is open source and available on GitHub with
documentation and demos 1.

The second idea to alleviate the industrial adoption of symbolic execution-based test
generation is the automated isolation environment generation. Our experiences confirmed
that one of the most effort-intensive task during test generation is isolation of the unit
under test from external units and libraries. If the source code is not designed to be
testable, this task gets more difficult and time-consuming due to the large number of
dependencies to handle. The idea uses the parameterized unit test that is the entry
point of a test input generation process. During the symbolic execution, the interpreted
statements are collected and analyzed by using code analysis dynamically in runtime.
From the results of the analysis, two actions are made: 1) the parameters of the unit
test are extended, 2) code of the isolation environment is generated that use the extended
parameters. I implemented the idea in an extension for Microsoft Pex, which is currently
capable of generating isolation code using Microsoft Fakes.

Structure of the thesis The thesis is organized as follows. Chapter 1 presents the
important and related notions in software testing to help understanding the rest of my
work. Chapter 2 describes the motivation of the work in detail and presents my previous
experiences and the related research. In Chapter 3, the visualization technique of sym-
bolic execution and the implementation details of SEViz are presented along with the
occurred challenges, which is followed by the evaluation of the tool being introduced with
some demonstrational use cases and experimental results. Chapter 4 presents the idea of
the automated isolation environment generation in detail and the lessons learned during
the implementation, which is followed by the evaluation and experimental results of the
technique and the implemented tool. Finally, Chapter 5 concludes my contribution to the
addressed challenges and presents the future work.

1http://ftsrg.github.io/seviz

2

http://ftsrg.github.io/seviz

Chapter 1

Background

Nowadays, the size and complexity of software is growing, thus errors are more easily made
during the development phase. This is one of the reasons, why software development cycle
models are applying a large variety of testing and verification techniques.

In the first part of this chapter, the basic notions and techniques of software testing are
introduced, which is followed by a deeper inspection of unit testing and its role in software
quality. The second part of this chapter introduces the symbolic execution-based test
input generation technique and Microsoft Pex, a tool that implements a variant of the
technique.

1.1 Software testing

This section gives a general overview of the basic definitions, notions and applied tech-
niques of software testing.

1.1.1 Overview

In terms of software anomalies, this thesis applies the IEEE (Institute of Electrical and
Electronics Engineers) terminology [23], that is the following.

∙ Defect: The software does not meet its requirements and specification.

∙ Error: A human-made mistake during the development.

∙ Fault: Anomaly in a program, which is caused by an error.

∙ Failure: Anomaly in the function of a program, that leads to a failure state.

However, these anomalies cover only a part of the potential problems around software
quality. Deficiencies such as inaccurate functionality are also included in this topic.

Notions and definitions in the area of software testing is yet not well standardized, although
there are some joint efforts to throughly sum up and standardize concepts, that have
connection to software testing. In the list below, two different definitions of software
testing are presented. The first one is made by IEEE, while the other one is connected to
ISTQB (International Software Qualification Board).

3

∙ IEEE: Testing is an activity, in which the examined system or component is executed,
and the results from the execution are analyzed in several aspects [24].

∙ ISTQB: Software testing is a static or dynamic process, that exists in all software
development phase, and relates to the design, implementation and evaluation of the
software product, which makes it able to decide if the software meets its requirements
and goals. Testing is responsible for finding the defects in the software product [26].

Consequently, software testing can be applied in any phase of development. The involved
methods and techniques can also be presented in other aspects as in the following section.

1.1.2 Methods of testing

In this section, dynamic testing techniques are presented based on the definition of ISTQB.
These methods execute the code.

Test design: There are three main groups of dynamic design techniques, which are the
following.

∙ Specification-based: Testing techniques, that are based on the specification, are able
to help deciding if the requirements are met. They are commonly called black-box
techniques due to the fact that the source code itself is seen as a black box.

∙ Structure-based: These techniques use only the source code as their basic knowledge,
thus their common name is white-box techniques. One of their main motivation is
to cover full source code in various aspects (e.g. statements, decision).

∙ Experience-based: These are less formal techniques, and their effectiveness largely
depends on the experience and knowledge of the person, who design them.

Observed attributes: The possibly observed attributes divide the techniques into two
groups that are well-isolated.

∙ Functional attributes: These describe the behavior and function of the analyzed
software. In general, the expected results are given with concrete values.

∙ Non-functional attributes: The characteristics of the functionality are described,
such as scalability and robustness. However, in several cases, concrete measurement
values can not be given here as expectation.

Level of testing: The currently wide-spread software development processes use testing
in almost every phase, thus techniques should also be grouped by the level of testing.
Models like the V-Model are good examples, because each step has its own verification
step, that verifies the assembled product. In this thesis, unit testing and its related
techniques play a main role. Unit test is the verification process of the detailed design
phase in the V-Model.

4

1.2 Unit testing

According to the ISTQB, a unit is the smallest, yet testable part of a program. Conse-
quently, unit testing is an activity to verify the behavior of a unit in a program.

In several cases, it can be hard to find the differences among unit testing and integration
testing. The latter one tries to verify the collaboration between units, however defining
the units with high granularity may obscure the borders between the two. Thus, it is
necessary to accurately define the units and their scope.

1.2.1 Isolated unit

A well-defined unit of a program should have its well-isolated external dependencies, which
reduces or even prevents the influence of errors from external components. The next
formalized definitions define the isolated units of an object-oriented program.

Definition 1. Let use the following:

∙ Let 𝐶 ∈ 𝒞𝒫 be a class, 𝒞𝒫 and 𝒫 is a set of classes found in the source code.

∙ Let 𝑀𝐶 ∈ ℳ𝐶 be a method, where ℳ𝐶 is the methods of an arbitrary 𝐶 ∈ 𝒞𝒫 class

∙ Let 𝒟𝐸,𝐼 ⊆ 𝒟𝐸 be a set of dependencies between elements 𝐸, 𝐼 ∈ ℳ ∪ 𝒞𝒫 (𝐸 ̸= 𝐼)
(class or method) so that 𝐸 → 𝐼, namely 𝐸 depends on 𝐼. A very common example
of a type dependency is a usage in the parameters in of the methods. �

Definition 2. Let the unit under test be a set 𝒰 ⊂ ℳ ∪ 𝒞𝒫 , so that every 𝑈 ∈ 𝒰
element fulfills for any 𝐼: every 𝐷 ∈ 𝒟𝑈,𝐼 dependency is isolated. �

Example 1. An example system 𝒫 consists of classes A, B, C ∈ 𝒞𝒫 , that are the follow-
ing:

∙ A: ℳ𝐴 := {m1(),m2()}, 𝒟𝐴 := {∅}

∙ B: ℳ𝐵 := {m3()}, 𝒟𝐵,𝐴 := {m3() → m2()}

∙ C: ℳ𝐶 := {m4(),m5()}, 𝒟𝐶,𝐴 := {m4() → m2()}, 𝒟𝐶,𝐵 := {m5() → m3()}

Let there be chosen class 𝐶 and 𝑚2() method of class 𝐴 as the 𝒰 unit under test, thus
𝑈 := { 𝐶, 𝑚2() }. Consequently the only dependency to be isolated is 𝑚5() → 𝑚3(), as
shown on Fig 1.1, where the unit under test is marked with green, while the dependency
to be isolated is shown with a red cross.

1.2.2 The importance of unit testing

The importance lies in the well-known fact, that unit testing plays a key role in the
quality assurance of software by reducing the number of bugs (e.g. unhandled exceptions
or erroneous runs) in a very early stage of development.

The basic principle of unit testing is choosing the smallest unit size as possible. However
it is not a trivial decision due to the various complexity of the components of systems,
since some components can be very straightforward, but large in size and vice versa. This

5

P

A

m1()
m2()

B

m3()

C

m4()
m5()

m3() m2()

m4() m2() m5() m3()

Figure 1.1: Overview of Example 1.

principle ensures more deeper analysis of the unit under test, because basic level bugs (e.g.
uncaught exceptions, wrong condition in branching) may remain uncovered with higher
granularity levels of units.

In summary, unit testing has several advantages, when it is applied in the correct time
and place. These non-exhaustive advantages are the following.

∙ Number of discovered anomalies: Due to the lower level of granularity (e.g. compared
to integration testing), an anomalies can be discovered earlier, which may reduce the
costs of development.

∙ Deeper analysis: Some external application programming interfaces (APIs) may
restrict access to the inner logic of the unit without a maintenance interface. Unit
testing is applied within the unit, thus may interact with the logic without using
any programming interface.

∙ Improvement of maintainability: Unit testing requires well-defined components and
dependencies yet in the early stages of development, thereby it helps the developer
to write well-structured, clear source code.

∙ Reduction of costs: Discovering anomalies in earlier stages reduces the costs of their
correction. Unit testing is applied in parallel or even before (e.g. in Test Driven
Development – TDD) the implementation phase, which can be thought as an early
stage in the whole software development process.

∙ Possibility of parallelization: With a well-built structure of the source code, unit
testing may be applied in parallel in each of the isolated components. This can
reduce the time and thereby the costs of quality assurance.

1.3 Symbolic execution

Symbolic execution is a program analysis technique, that uses symbolic variables as the
inputs of the program instead of concrete values. During this process, the program itself
is not executed, but a symbolic interpreter interprets each statement, then evaluates the
effect of the statement of the symbolic variables. This process goes until every feasible
path is analyzed or a predefined boundary is reached. It is important to emphasize that
in general case, the feasibility of a path is undecidable in general. [18].

6

The interpreter forms constraints over the symbolic variables, that are commonly called
path conditions (PC). They indicate the feasibility of each discovered and interpreted path
and its statements. Example 2. shows the main steps of the whole symbolic execution
technique.

Example 2. Let 𝐹𝑜𝑜 be a method with an integer return value and two input parameters.
The method returns a value based on the two inputs as shown below:

int Foo(bool a, int b) { return a ? (b > 0? 1 : 0) : -1; }

The logic of the code itself is two branches nested into each other. The symbolic interpreter
firstly substitutes variables a and b with symbolic variables ã, b̃. Then, the interpreter starts
the analysis from statement to statement and if it discovers a branching, it decomposes the
symbolic execution for each branch. In this concrete case, the steps are the followings:

1. Discovering the first branch, where a condition for variable a is present. Here, the
symbolic execution goes into two different execution with the conditions ¬ã and ã.

2. The arbitrary chosen branch to be executed is now ¬ã. The interpreter finds the
𝑟𝑒𝑡𝑢𝑟𝑛 statements, which indicates the end of the path (because we have no external
methods here). Thereby the newly discovered path has the condition ¬ã.

3. The interpreter chooses the next branch to be executed, which is the only remain-
ing: ã. Here, a new branching is discovered, that also divides the execution into to
branches: b̃ ≤ 0 and b̃ > 0.

4. Here, another branch is selected to be executed symbolically, however in this spe-
cial example, both of them terminates with a 𝑟𝑒𝑡𝑢𝑟𝑛 statement. Thus, their path
conditions are the following: ã ∧ b̃ > 0, ã ∧ b̃ ≤ 0.

true
a?

b > 0

false
1.

2.
3.

true false

4.4.

return 1 return 0

return -1

Figure 1.2: A possible visual representation of the symbolic execution.

These path conditions can not be used directly for creating tests, however with the ap-
plication of a constraint solver the test generation may be carried out. Constraint solvers
are able to solve these conditions and they provide concrete values to fulfill them. These
values are used as test inputs, which can be extended to become test cases.

Several logical formulas are described by SAT (Boolean SATisfiability Problem), though
their solution use only true or false values. Symbolic execution however collects constraints,
that are interpreted over variables, thus they need to have values from the value set of its

7

type. This leads to a more general problem called SMT (Satisfiability Modulo Theories).
An SMT problem is an extended form of boolean satisfiability where background theories
are used to define problems encapsulated into a SAT.

The rapid improvements of computational capacity in the past decade and the develop-
ment of novel algorithms enabled to solve practical SMT problems, like path conditions
collected during symbolic execution. This improvement affected the research around sym-
bolic execution, which led to e.g. an effective collaboration between an SMT solver and
the symbolic execution interpreter. This architecture is able to automatically generate
test inputs based only on the source code.

1.4 An automated test input generator

Due to the rapid improvement described in the previous section, more and more tools
using symbolic execution. Nowadays, several promising tools (e.g. [38, 17, 5, 34]) are
under continuous development. The goals of these tools are common: getting into the
phase of industrial applicability. One of the most promising tools is Pex developed by
Microsoft Research. Currently, Pex is included in the release candidate version of Visual
Studio 2015 with the name IntelliTest.

Pex is an automated white-box test generation tool for .NET. The tool uses dynamic
symbolic execution (DSE, see 1.4.2), an enhanced version of symbolic execution, to collect
the path constraints. The input values are passed to parameterized unit tests (see 1.4.1.),
that are able to derive concrete test cases with extended implementation. Pex uses the Z3
theorem prover [11] to efficiently solve the path constraints and generate concrete input
values from them.

1.4.1 Parameterized unit tests

Parameterized unit tests (PUTs) provides input the symbolic execution engine of Pex.
The whole idea is described in [10].

A concrete representation of a PUT is a method with a predefined list of parameters, thus
it can be seen as a wrapper interface for the test inputs. PUTs not only contain the calls
to the unit under test, but initialization, isolation and assertion logic are also placed here.

Example 3. The following code snippet shows an example Parameterized Unit Test.
class TestClass
{

// Parameters corresponding to the method under test
int PutTestMethod(bool a, int b)
{

A testObj = new A(); // Arrange - instantiating the unit under test
int result = testObj.Method(); // Act - calling the method under test
Assert.IsTrue(result > 0) // Assert - assertions on the result
return result;

}
}

8

1.4.2 Dynamic symbolic execution

DSE is a technique (also applied by Pex), that combines symbolic execution with concrete
execution. Executions run in parallel, which enables the support and guidance of symbolic
execution by the information gained from concrete executions.

Concrete
values

Logical
formulas

1.

Constraint
solver

Logical
formulas

2.

Symbolic
interpretation

Execution
results

Path
execution

Concrete
values

Figure 1.3: A simple overview of the steps applied in DSE.

DSE starts from simple, concrete inputs (e.g. zero in case of integers), then collects
the constraints along this execution path. In the next step, a search strategy chooses a
branching to unfold: the algorithm negates or extends the constraint and passes it to a
constraint solver to gain concrete input values. These values provide a new execution path,
which is executed next. The algorithm continues this loop until new execution paths are
reachable (the new constraint is satisfiable) or the execution reaches a predefined boundary
(e.g. time, memory or even the number of discovered branches).

1.4.3 Internal functionality

Pex uses the term exploration for the analysis of exactly one PUT. In each step of the
exploration, as described in the previous section, the tool starts a concrete execution
called runs. During the whole exploration process, the tool stores an execution tree, which
represents the discovered paths built from code blocks. Code blocks are the smallest part
of source code that are handled by Pex, because it uses the intermediate language of .NET
during the interpretation. A node in this tree represents a block of program statements
or a branching in the source code. Every node is labeled with its path condition called
prefix, which holds the constraints that have to be fulfilled to reach the node.

The tool selects a node to be unfolded according to a search strategy. When a node is
selected, Pex analyzes its prefix and conjugates it with the negated disjunction of the
conditions of all discovered outgoing branches. This step is called flipping. The newly
formed constraint is passed to Z3, which provides concrete values if the SMT formula is
satisfiable. It is important to mention, that Pex has an abstract representation for every
type in .NET to form SMT problems from the collected path conditions, thereby Z3 is able
to process them. Figure 1.4 shows an example (based on Figure 1.2) of the functionality.

9

In the third step of the example, the search strategy has two nodes to choose from (𝑎?
and 𝑏 > 0), however Pex immediately discovers that 𝑎? is fully discovered, thus it chooses
to the only remaining node (𝑏 > 0).

a?

return -1

false
a?

return -1

falsetrue

b > 0
false

return 0

a?

return -1

falsetrue

b > 0
false

return 0

true

return 1

Got input from Z3 to constraint a!=false,
but b remained a random value.

Started with simple values, here:
a:=false and b is random

Flipped condition a!=false && b<=0, which
resulted in a concrete value for b from Z3.

Figure 1.4: Example of the Pex functionality.

It can be seen that the search strategy could be the key for effective functionality in
complex programs. Choosing an inappropriate strategy may easily lead to reaching a
boundary of the execution. To overcome this, Pex uses a so called meta-strategy, which
changes the used strategy in each step to adapt the environment and avoid reaching
boundaries of symbolic execution.

1.4.4 Analysis of extensibility

The default extensibility mechanism of Pex is working with the help of .NET attributes
provided by the framework built around the tool. The tool publishes three main abstract
attributes that can be implemented. Besides, several other interface exist, however the
lack of documentation makes the development very difficult. The three attributes are
called by Pex in different points of time, therefore they have different kind of information
to process.

∙ Execution: Components that use this attribute are working during the whole time
when Pex is running (even when multiple PUTs are analyzed).

∙ Exploration: These components are active, when Pex is making an exploration of a
PUT. They are recreated when another PUT is executed.

∙ Run: These components are activated before and after a concrete run of Pex.

10

Chapter 2

Motivation

In this chapter, the motivation of the work is presented. The first section introduces the
motivation and results of related researches, which is followed by our own results based
on previous case studies. In the end, the potential improvement areas are discussed, then
the research questions close this chapter.

Nowadays source code of industrial software get more and more complex, while the de-
velopment costs are also high. This principle may lead to quality defects, because testing
is one of the most expensive tasks during development, and the only one, which could
be skipped. For this reason, today many software lack of testing and have defects, which
could be eliminated with testing. As it was mentioned in Section 1.2.2, unit tests may
provide at least a partly solution for early detection of severe software defects.

Although unit tests may play a key role in software quality and therefore can reduce costs,
the testing process itself could be also expensive and take large amount of time (even
more than the 50% of development time) if done exhaustively. Besides this, automated
testing in complex, industrial-sized software has several challenges, due to their severe
complexity, that must be solved in order to apply testing effectively. This motivated the
early researches for the automation of software testing.

2.1 Related work

Bertolino has described the dream of 100% automated testing in [3]. In her paper, she
mentioned that this dream would be a fully automatic test environment, in which the
source code is deployed and testing would begin immediately without the guidance and
supervision of the developer. This testing environment would take care of every related
task, like the development of test drivers and mocks too. This dream for unit testing has
a promising research track, including general techniques like the XUnit frameworks, the
Parameterized Unit Tests and technologies in the field of test input generation. The paper
also mentions the idea of “concolic“ testing, the combination of symbolic and concrete
execution (which was mentioned before with the notion DSE in 1.4.2).

A testing research travelogue from 2014 by Orso and Rothermel [30] summarizes the
research around automated test input generation in detail. The paper starts from symbolic
execution and mentions DSE as one of the most successful variants of symbolic execution,
however the authors state that “practical impact of these techniques are still unclear“.
Symbolic execution has several heavy limitations to come across, for example in programs
with complex structures, large-sized source code and environment interaction. These

11

limitations must be eliminated in order to improve the usability of symbolic execution
in industrial software.

Other researches have also found symbolic execution as one of the most promising tech-
niques in the area of test generation [1]. Several tools exist, that implement symbolic
execution, therefore some research address the problem of selecting among them [6, 7, 35].
Xiao et al. also discussed [35] the task overhead of using symbolic execution in industrial
software, in which they mentioned the isolation of dependencies and the pursuit for proper
search strategies in individual situations.

In terms of Microsoft Pex, the research is still active. Tillmann et al., the developers of
the tool recently analyzed the industrial usage and the transfer from research to practice
[39]. The first challenge they met was the problem of early acceptors 1, which needs large
efforts from both the developers and the users. The paper also notices that a successful
case study in a large-scale software does not mean that the technique is ready for wide-
spread usage, thus it is an important task to bring closer the research and the engineering
application of a novel technique, like symbolic execution-based test input generation.

2.2 Our previous case studies

Our previous results in this area have showed the same as the related bibliography, namely
the problems during the industrial application of symbolic execution-based test generation.
We experienced with two, near industrial-sized software. The first one is a Petri net
modeling tool developed at our research group, the other one is a content management
system of one of our industrial partners. In this section, the experiences from these case
studies are presented.

2.2.1 Petri net modeler

This modeler tool developed at our research group is able to model Petri nets and ver-
ify different attributes on them. We examined the second version of this tool, which is
currently under development and not available publicly yet. During the test generation
process for the modeler tool (ca. 3000 LOC), the following use cases of Pex were applied.

∙ Exploration: The simplest use case of Pex, that allows minimal intervention to the
test generation process, thus it can be applied only in a couple of situations.

∙ Parameterized Unit Tests: Gives the ability to fill in the body of the parameterized
unit tests, thus concrete test cases can be created and saved for later usage. Further-
more, this use case allows creating the isolated environment around the unit under
test, and also allows implementing factory methods for creating complex objects,
that are not trivial to instantiate.

∙ Extended Parameterized Unit Tests: By applying this use case, the ability of func-
tional test generation is provided due to the special statements of Pex, which can
guide and steer the exploration into predefined directions (e.g. specific inputs for
functional testing based on the specification).

One of the most important aspects during the test generation was to create a basic test
case set for the developers that they can extend later as the development goes further.

1A group in innovation acceptance theory, who comprehensively use the novelty, unlike the innovators.

12

We managed to generate 371 test cases, which covered 99% of the code blocks. 100 out
of them caused exceptions to be thrown, and – based on the feedback of the developers –
around half of them were false defects. The other half contained defects that were caused
by lack of defensive programming, namely the unprepared code for malicious input values.
Moreover, we were able to discover inconsistent modifications throughout the code, which
were unreachable during any concrete execution.

We created ten test cases manually for functional testing based on the specification of the
modeler. Then, we wrote an extended PUT to cover these manual tests. Pex was able to
generate 9 out of the 10 cases, which was a great motivation for further research in the
area of applying test generation in industrial-scale software.

However, it is important to emphasize that the first steps of the test generation process
took a considerable amount of time due to the complex dependencies among the compo-
nents, which had to be isolated. We also invested huge efforts to find the reason for the
lack of test in some parts of the system. Pex did not provide proper information about
the failing of the test generation.

2.2.2 Content management system

One of our industrial partners provided the possibility to examine their software. We
selected an application, which is a server-side part of a huge content management system.
This software component (ca. 10000 LOC) served as the second case study in our research.
We gathered very useful and valuable experiences during the analysis and testing process
with the usage of Pex.

Since the source code was unknown for us, the preparation steps for the test generation
took more time and effort. Moreover, it needed far more time, than we expected based on
the previous case study. We divided the analysis into two main phases.

1. Analysis without size restriction: We ran Pex without any isolation environment,
thus this was not a real unit testing.

2. Analysis with small-sized units: We defined units with only a few classes per unit,
which makes the whole testing problem easier and also alleviates the test generation
process due to the restricted number of test inputs.

The goal of the first analysis was to unfold the weaknesses and boundaries of Pex in such
complex and large-sized software. In the first few runs of Pex, only a little number of
test cases were generated, that provided very low statement coverage. A severe hindering
factor was that the explorations of Pex was practically chaotic and could not be grasped
by the human eye, because each run could run through even 10 method calls. As it was in
the previous case study, in this case it also required huge efforts to precisely identify the
reasons of reaching the boundaries of the symbolic execution-based test generation.

Despite we have managed to get relatively clear explorations during the second phase, it
was also not trivial to identify why Pex failed generating tests sometimes. The discovered
defects in the examined methods included a functional bug between the data access and
the business logic layer, that resulted in an exception. Furthermore, several defects were
discovered around parameter handling and a potential security leak in the system was also
recognized.

In the second phase, we had to take the same effort and time, as in the previous case
study, to isolate the unit from the environment by creating mocks. The identification of

13

all exiting method calls from the unit is a very effort-intensive and time-consuming task,
thus it could be a potential area of automation.

2.3 Potential improvement areas

The previous two sections summarized the research and their potential problems to be
solved for symbolic execution-based test generation.

Firstly, the related researches have found out that complex data structures and large-scale
source code may hinder the effectiveness and usability of the technique. Researches has
emphasized the problem of environment interaction and isolation as a closely related task.
The former hinders the execution and may lead to reaching boundaries, while the latter is
a time-consuming task. Some researches mention the fine-tuning of the symbolic execution
as a problematic task, because it depends on the system under test and should be reviewed
in every new environment (e.g. the selection of the search strategy). The problem of the
learning curve during the industrial adoption was also mentioned in these researches.

Secondly, our case studies showed two hindering factors, that certainly negatively affects
the test generation process. The first one was the precise problem identification of reaching
boundaries during the symbolic execution, since there was no useful information about the
problems and no usable guidelines how to solve them. The other problem was caused by
the interaction with the environment and the effort-intensive task of building the mock
environment around the unit under test.

It can be seen, that our findings of the hindering factors and the problems mentioned by
related researches greatly overlap. The problem identification task and the complex data
structure and large-scale source code problem derives from a common deficiency, which is
the lack of perspicuity of the symbolic execution itself. The other common problem was
the environment interaction and mock implementation.

2.4 Research questions

The related researches and our earlier results also clearly show that symbolic execution
and its related techniques are getting nowadays to the adoption phase in industrial en-
vironments. If the common problems mentioned in the previous section would have a
solution or would be alleviated at least, the symbolic execution could be more easily used
in the industrial practice and large-scale software. Currently, one of the most important
task in the area of symbolic execution-based test generation is to find the balance between
industrial usage and the effectiveness, in order to solve the early adoption problem.

Based on these, the answers and solutions of the following main- and subquestions are
presented in the remaining chapters of the thesis.

How can the industrial application of symbolic execution-based test
generation be supported?

1. What type of representation can help reduce the lack of perspicuity?

2. What kind of information can be obtained during symbolic execution?

3. What type of information can be represented for the explorations?

14

4. How the problem of isolation can be alleviated or solved in order to support test
generation?
To answer the questions above, I propose the following extensions of Pex.

∙ Visual representation of the exploration process to help the lack of perspicuity.
∙ More precise problem identification for the test engineers in order to diagnose

the reason of execution boundaries.
∙ Representation of the path conditions to identify the unsolvable SMT problems.
∙ Automated isolation, that can automatically generate isolation environment for

the unit under test in order to spare time and effort during testing.

15

Chapter 3

Visualization of symbolic
execution

In this chapter, a method is presented, that is able to support symbolic execution during
industrial usage.

3.1 Methodology

I have created a visualization technique extended with several metainformation, that may
be able to alleviate the problems, which occur during the industrial application of sym-
bolic execution-based test generation. Furthermore, the method serves as a basis of the
automated isolation technique (see Chapter 4).

Visualization may be a proper procedure to help test engineers, who have less knowledge
about applying symbolic execution in practice. However, this requires such information
attached, that is able to increase the perspicuity. Figure 3.1 introduces the basic notions
of the technique, where my contribution is filled with orange color.

Symbolic execution

VisualizationTest input generation Runtime monitoring

Figure 3.1: Basic notions of the approach.

The working of the technique is the following. First, it monitors the symbolic execution
during runtime and collects all the related information. Then, this collected data can be
visualized in a clear form which helps engineers to have a general overview of the execution
and to identify defects of the execution. Thus, the technique also supports the decision
process of further steps during testing.

The following sections presents the background of the methodology from the representation
to the concrete visualization.

16

3.2 Representation

The required information for visualization must be collected during the symbolic execution
in a usable representation. This section presents its details.

3.2.1 Nodes and edges

Branches and branchings were already mentioned when symbolic execution was introduces
(1.3). These two notions helped to have an idea for the representation of the execution. I
chose a tree-structured graph as it is well-known by engineers and ensures a clear overview.
However, from the description of symbolic execution, the meaning of nodes and edges may
be not obvious. The following two definitions clear the ambiguities.

Definition 3. Let the symbolic execution graph be a 𝐺 = (𝑉, 𝐸) directed tree1, so
that it represent a set of run from an analysis of an arbitrary unit 𝒰 of any program 𝒫.

∙ The set of vertices 𝑉 may represent the followings.

∘ Branching: Any branching in the source code should be a branching in the tree,
e.g. a simple if-else, or even the branching in the condition analysis of a for
loop.

∘ Start of a code block: Every start of a source code block should be represented
with a vertex in the tree to vindicate the executions.

∘ End of a code block: Similarly, every finish of a source code block should be a
vertex.

∙ An edge exists between two arbitrary 𝑣1, 𝑣2 ∈ 𝑉 vertex in 𝐺, if they were consecutive
steps in a run during the symbolic execution. This ensures the correct shape of the
tree, which clearly represents the characteristics of execution. �

However, the definition does not restrict, that every source code element listed above
should be represented in the symbolic execution tree. Thus, for example a method call
may not be shown as an individual node in the tree, although the first branching in that
method is represented.

The nodes are collected and stored in parallel with the symbolic execution, and done as
follows.

1. Discovery of a new node

2. Attachment of a unique identifier and its depth

3. Determining the path condition

4. Assignment of source code mapping

5. Storage with attached data by their unique identifier

Clear visualization moreover requires the detailed information about each run, which is
able to increase perspicuity. The following data should be collected during runtime in
order to present the required information.

1A graph, that has only one path between each pair of its vertices, thus it is acyclic and connected.

17

∙ Ordinal number of the run

∙ Identifiers of the nodes that are visited during a run

∙ Reason of the run termination (e.g. passed, erroneous, timeout).

3.2.2 Appearance of the nodes

The attached information of each node is required for the simple usage and application
in industry. The next sections present two main attributes, but before that, the following
definitions give clear description of the visualized attributes.

∙ The shape of node depends on calls to the constraint solver. If there was a call
during the execution of the code block or the branching, the node is ellipse shaped,
otherwise it is rectangular.

∙ If the node has concrete source code mapping, the node has doubled border, other-
wise it has single.

∙ The default background of nodes is white.

∙ A node has orange background if it is found at the end of a run, but no concrete
test case was derived from it.

∙ A node has green background if it is found at the end of a run and there is a passed
test derived from it.

∙ A node has red background if it is found at the end of a run and there is a failed
test derived from it.

3.2.3 Source code mapping

The mapping between the source code and the symbolic execution tree is required to help
having a clear overview of the execution. The two-way mapping can be defined in two
levels.

∙ Line-level: A node has concrete source lines attached, which has the advantage of
precision and accuracy. The disadvantage is that, in cases of intermediate languages2

it is difficult or even not even possible to implement it.

∙ Block-level: A node in the execution tree has only a block of code attached. The
advantage is the simplicity of the implementation, however the representation of the
execution is more abstract, than with line-level mapping.

In general, the source mapping should be implemented as precisely as possible in order to
increase perspicuity of the symbolic execution tree. Furthermore, every node should have
the fully qualified name of their method attached.

2E.g. Java bytecode or the IL of .NET.

18

3.2.4 Path conditions

Definition 4. Let 𝐺 = (𝑉, 𝐸) be a symbolic execution graph, where a path condition in
a 𝑣 ∈ 𝑉 vertex is represented by constraints that are collected during the execution. The
conjunction in a node 𝑣 ∈ 𝑉 can be divided into a set of individual formulas 𝑃𝐶𝑣. �

Taking a look back to Example 2, the path conditions of the two leaf nodes in the fourth
step are ã ∧ b̃ > 0 and ã ∧ b̃ ≤ 0.

The path conditions should be mapped to each node in the symbolic execution tree in
order to trace the executions. The formulas are written in first-order logic, however the
operators should be replaced with operators known from programming languages in order
to bring closer the visualization and the source code. It is also important to identify the
variables in path conditions with the same name as in the source code.

However, deep traversal of source code may build huge path conditions that is hard to
interpret for humans. One of the goals was to help the work of test engineers, thus in
order to alleviate this hindering factor, I proposed the following solution.

Definition 5. Let 𝐺 = (𝑉, 𝐸) be a symbolic execution graph. The path condition of a
vertex 𝑣 ∈ 𝑉 can be built as follows.

∙ Full mapping: Every node in the graph has its own, full 𝑃𝐶𝑣 set of individual
formulas.

∙ Incremental mapping: In every 𝑣1, 𝑣2 ∈ 𝑉 pair of nodes, where 𝑣2 is the parent of
𝑣1, 𝑣2 has only a 𝑃𝐶𝑣2 ∖ 𝑃𝐶𝑣1 subset of path conditions attached. This set can be
thought as a Δ𝑃𝐶 compared to its parent node. �

Example 4. The symbolic execution of the source code below, should produce a symbolic
execution tree very similar to the tree depicted in Figure 3.2.

Consider the following object-oriented code snippet.
class A
{

// method Foo
int Foo(bool a, int b)
{

if(a) return Bar(b);
else return -1;

}

// method Bar
int Bar(bool b)
{

if(b) return 1;
else return 0;

}
}

It can be seen, that the path conditions are mapped to the nodes both in full and in-
cremental form. The unique identifier of the nodes are their traverse order numbers. In
the figure, PC denotes the full form, while ΔPC is the incremental form. The figure also
shows the name of the methods.

19

1

3

5 4

2

0

ATests.FooTest
PC: -

∆PC: -
A.Foo:2
PC: -
∆PC: - A.Foo:3

PC: a==false
∆PC: a==false

A.Bar:3
PC: a==true && b=<0
∆PC: b=<0

A.Bar:2
PC: a==true
∆PC: a==true

A.Bar:2
PC: a==true && b>0

∆PC: b>0

Figure 3.2: The symbolic execution tree extended with path conditions.

3.2.5 Indicating unit isolation

During sections 1.2.2 and 1.2.1 the importance of isolated unit testing was introduced.
This isolation can also be used with symbolic execution in order to reduce the complexity
of the unit under test, however it is a rather complex task.

The visualization of symbolic execution can also help test engineers determining the bor-
ders of the unit to be isolated. To support this, the symbolic execution can be extended
as follows.
Definition 6. Let there be a symbolic execution tree 𝐺 = (𝑉, 𝐸) derived from the sym-
bolic execution of an arbitrary unit under test 𝑈 . Every node 𝑣1, 𝑣2 ∈ 𝑉 for the following
holds:

∙ a 𝑣1 → 𝑣2 directed edge exists,

∙ 𝑣1 is derived from a method found in 𝑈 ,

∙ 𝑣2 is derived from a method outside 𝑈 ,

then the 𝑣1 → 𝑣2 edge should be highlighted in the visualization, thus it can indicate an
exit point from the unit. �

Using this technique, the test engineer can identify the method to be mocked. The fol-
lowing example introduces the function of the unit border marking.
Example 5. Consider the code snippet in Example 4. Let the 𝒰 unit under test consist
only of method Foo, formally 𝒰 := {Foo(int,int)} and 𝒟𝒰 := {Bar(bool)}. Thus, only
method Bar is an external dependency.

Then a symbolic execution started from a PUT, where method Foo is called, the following
symbolic execution tree can be obtained. Figure 3.3 clearly shows the red directed edge,
which is a call to an external dependency.

3.3 Implementation

This section introduces the problems appeared and their solutions during the implemen-
tation of the visualization technique.

20

1

3

5 4

2

0

ATests.FooTest
PC: -

∆PC: -
A.Foo:2
PC: -
∆PC: - A.Foo:3

PC: a==false
∆PC: a==false

A.Bar:3
PC: a==true && b=<0
∆PC: b=<0

A.Bar:2
PC: a==true
∆PC: a==true

A.Bar:2
PC: a==true && b>0

∆PC: b>0

Figure 3.3: An example of marking the exit points from the unit in a symbolic execution
tree.

3.3.1 Tool architecture

I created a tool, called SEViz (Symbolic Execution VIsualiZation), that currently works
with data collected from Pex, however the intention was to design a tool, which could
be used with a wide range of symbolic execution-based tools. Thus,vI separated the
architecture into three loosely-coupled components. Each of them has well-defined tasks
to support maintainability. Fig. 3.4 shows an overview of the structure of the tool.

Microsoft Visual Studio

SEViz VS Extension

Microsoft Pex

SEViz Monitoring

SEViz Viewer

mapping between
source code and
execution tree

i) saving .sviz file
ii) opening file in

the viewer

Figure 3.4: Architecture of the SEViz tool

3.3.2 SEViz Monitoring

The component collects the information from the executions of Pex through the provided
Pex extension API. Several extension points are present in Pex, thus I had to decide, that
which one affects the executions the least. I gathered ideas for the implementation from
existing, open-source Pex extensions (e.g. [9, 42, 43]).

Pex uses search frontiers during the symbolic execution to choose which code location
(execution node) is going to be explored next. The tool allows the definition of search
frontiers in order to alter the strategy of the code exploration. A monitoring search
frontier, based on the default one, would have been a straightforward solution. However,
during the implementation of the monitoring search frontier, I discovered that Pex only

21

attaches the metadata to the nodes after the executions, which cannot be reached through
this API. Thus, I searched for another solution.

The architecture type of Pex offers extensibility in each of its layer (which is execution,
exploration and path). The path layer defines callbacks before and after each execution
path. Firstly, I analyzed these path-based operations with test extensions to determine if
the layer fits the requirements. After an execution of a path, Pex provides the list of the
executed nodes with all the required metadata attached. Nevertheless, other information
is needed, which can only be extracted after the whole exploration (e.g. generated tests,
Z3 [11] calls).

Algorithm 1 Collecting the nodes and edges.
1: for each node in nodesInPath.ExcludeFirst() do ◁ iterating without root
2: prevNode := nodesInPath[node.Index -1]; ◁ getting the previous
3: if !prevNode.KnownSuccessors.Contains(node) then
4: PrintEdge(); ◁ printing the edge
5: prevNode.KnownSuccessors.Add(node); ◁ now we know about it
6: end if
7: nodeStorage.Add(node); ◁ storing the node
8: end for

This monitoring component stores the execution nodes in an internal storage (Algo-
rithm 1), which plugs itself into Pex. After the exploration ends, SEViz flushes the
collected nodes into a GraphViz [15] file and all of its related metadata into data files.
Then, SEViz calls GraphViz to compile its source to create a layout for the graph. Fi-
nally, the generated files are zipped into a SEViz (.sviz) file, which can be opened with
the SEViz Viewer.

Constraint solver calls The implementation of the monitoring component however had
several challenges to solve. Firstly, the calls to the constraint solver have to be tracked
in order to show them on the symbolic execution tree. After a deep search in the API of
Pex, I discovered an event, which is fired, when a logical formula is passed for solution,
thus I used this event by attaching an event handler to indicate the calls.

Source code mapping The implementation of the source code mapping was another
huge challenge. In the first step, it should be verified that a node in the tree has information
about its place in the code, since external libraries lack this information. Next, it should
be checked that the source code file exists in the file system that was retrieved before. The
mapping can be carried out only if this file is found. The functionality of the mapping is
shown in Algorithm 2. Method MapToFile and MapToLine was implemented by us. The
former maps to the file in the system, while the latter maps .NET IL to source code lines
using the so called sequence points.

Path conditions Each node has its path condition attached, which is one of the most
valuable information for a test engineer for problem identification. Pex uses its own
representation to store the formulas, thus when the Monitoring component extracts them
it needs to present it in a clear, readable form. This transformation is called pretty printing,
and I implemented the technique using the services provided by Pex, which were discovered
with reverse engineering tools.

22

Algorithm 2 Algorithm of source code mapping.
1: function MapToSourceCode(ExecutionNode node)
2: if node.Location then ◁ if source info exists
3: file := MapToFile(node.Location); ◁ mapping to file
4: if Exists(file) then ◁ if file exists
5: line := MapToLine(node.Location.Offset); ◁ mapping to lines
6: return file + line; ◁ return with file and lines
7: end if
8: end if
9: return null; ◁ otherwise return nothing

10: end function

Figure 3.5: Symbolic execution trees in SEViz

(a) Visualization example (b) String example

SEViz Monitoring is compatible with the public version of Microsoft Pex (v0.94.51023.0),
and also successfully collaborates with the recently released IntelliTest integrated in Visual
Studio 2015 RC.

3.3.3 SEViz Viewer

The main component of the architecture is based on GraphViz files. I used an open-source
project (DotViewer [36]) to visualize the compiled graph data. The Viewer opens SEViz
(.sviz) files, extracts its content, and builds up the graph. The DotViewer WPF control
enables to zoom in and out, and also allows to select one or multiple nodes. The main
features besides the visualization are the following. Figure 3.5 shows two examples opened
in the Viewer.

∙ Zoom and scroll: Users are able to zoom into large graphs to search for details, and
it is also allowed to scroll in two dimensions.

∙ Node selection: Users can select one or multiple nodes for analysis. These are high-
lighted in the visualized graph.

23

∙ Node details: Detailed metadata of the nodes are presented in two forms. 1) When
the cursor hovers a node, then a tooltip appears with the incremental path condition,
the method of the node and the code location mapping (if it exists). 2) When a
node is selected, all of its metadata is presented in the node details section of the
UI, which can be opened in a new window too. This enables users to compare the
data of different nodes.

∙ Run selection: SEViz enables users to select a run from a list and the tool highlights
the corresponding nodes in the visualized graph.

Node 607 Node 608

uint s2 = (ushort)(param1[2])-48u;
int s1 = (int)s2 >> 1;
int s0 = s1 >> 1;
...

uint s3 = (ushort)(param1[2])–48u;
int s2 = (int)s3 >> 1;
int s1 = s2 >> 1;
...

Figure 3.6: Example of the incremental path condition problem.

Incremental path conditions The Viewer component is responsible for dividing the
full path conditions into a clearer, incremental form. The implementation however had
some difficulties to come across. When Pex explores complex programs and structures,
the tool introduces variables in the path conditions, which makes it more difficult to read.
When this happens, the path condition of a node consists of two parts: 1) initialization,
2) conjuction. The former includes the declaration and initialization of logical variables,
while the latter contains the conjucted set of conditions. The main difficulty is that
Pex names these variables in a non-deterministic way3 for each node, thus the conditions
in a children-parent pair of nodes can be mapped into each other, however the textual
representations do not match. Figure 3.6 introduces an example of this problem. There
are two possibilities to solve this.

1. Comparing the two logical formulas using a constraint solver, which can results in
the difference if the constraints are well-composed.

2. Comparing the textual representation of the formulas using text-based pattern
matching, which can resolve the variable name problem.

The first alternative may seem the obvious one, however it must be emphasized, that the
path conditions obtained from Pex must be transformed back to the original representation
or into SMT-LIB [2] to pass them for Z3. This would raise multiple, complex problems
and may reduce the effectiveness of Pex due to the increased computational need.

Thus, I applied the second alternative to implement the incremental path conditions. The
algorithm of the obtaining technique for the increment is presented in Algorithm 3. The
algorithm assumes that number in the variable names have a difference not greater than
three in each consecutive pair of nodes. I derived this assumption from a large number of
observations.

3The variables have 𝑠𝑖 form, where 𝑖 is a non-deterministic number.

24

Algorithm 3 The incremental path condition algorithm
1: function GetIncrementalPathCondition(ExecutionNode node)
2: remainedPC[];
3: nodePC[] := SplitByLine(node.PathCondition); ◁ splitting into lines
4: OrderByLetter(nodePC); ◁ ordering the conditions
5: prevNode := FindParent(node); ◁ search for parent
6: prevNodePC[] := SplitByLine(prevNode.PathCondition); ◁ splitting into lines
7: OrderByLetter(prevNodePC); ◁ ordering the conditions
8: if !HasInitializations(prevNodePC) then ◁ no initialization exist
9: for each s in NodePC do

10: if !prevNodePC.Contains(s) then
11: remainedPC.Add(s); ◁ adding, if previous did not contained it
12: end if
13: end for
14: else
15: remainedPC := nodePC; ◁ otherwise processing it
16: end if
17: for i = 1 to 3 do ◁ assumption for difference
18: for each line in prevNodePC do
19: incrementedLine := IncrementVariableName(line,i);
20: remainedPC.Remove(incrementedLine); ◁ removing it if contained
21: end for
22: end for
23: end function

3.3.4 SEViz Visual Studio Extension

The third component, an extension for Visual Studio, is responsible for ensuring the two-
way mapping between the source code to visualized nodes in SEViz Viewer.

The component uses pipes to implement inter-process communication with the Viewer. I
created a pipe server in the Viewer and also in the Visual Studio extension for ensuring
two-way communication. Thus, when a user selects a source code line the corresponding
node is selected in the symbolic execution graph. Furthermore in the other direction,
when a user selects a node in the graph, the corresponding source code line is selected in
a predefined Visual Studio instance.

The difficulty of the implementation was that Pex uses IL, the intermediate language of
.NET, for symbolic execution. To implement this mapping, I relied on the internal services
of Pex, which are made available through its API. First, I get the instrumentation info
about the method of the currently analyzed node. Then, the offset of the node in this
method is extracted, which results in a sequence point. Finally, this can be used in the
translation to the source code. However, this multi level mapping does have some potential
inaccuracy, which can be optimized in future works.

3.4 Introductory examples

In this section I introduce three examples with their code snippets and symbolic execution
trees in order to present a better overview of the technique.

25

Example 6. In this example, an array and an index is given to the method under test.
The logic of the method is the following: it return true if the array contains the number
99 at the index 1, otherwise it returns false. The source code is the following.
public bool ArraySample_02(int[] array, int index)
{

var element = array[index];
if(index == 1)
{

if (element == 99)
{

return true;
}

}
return false;

}

Pex generated five test cases, that are detailed in the table below. SEViz generated the
symbolic execution tree seen on Figure 3.7. It can be seen, that tree has each of the test
cases represented including the two failing one. It is also interesting that it was the last
run, which covered the return true statement.

array index Result Summary
null 0 - NullReferenceException
{} 0 - IndexOutOfRangeException
{0} 0 false -

{0, 0} 1 false -
{0, 99} 1 true -

Figure 3.7: Symbolic execution tree of method ArraySample_02.

Example 7. The example method gets three inputs: a string and two integer values. The
functionality of the method is the following. The input string should contain the substring
“ThisIsATest“ and after from the index given by the first integer, characters are deleted

26

from the string, where the number of deleted characters is determined by the second integer
input. If this string remains “ThisIs“ and the original contained “ThisIsATest“, then
the method return true, otherwise it returns false. The source code of the method is the
following.
public bool StringSample_05(string s, int index, int count)
{

var temp = s.ToString();
s = s.Remove(indexToDelete, count);
if (temp.Contains("ThisIsATest") && s == "ThisIs")
{

return true;
}
return false;

}

Pex generated eight test cases, from where two fail with exception. It can be also seen
how Pex tried to increase the coverage by changing the value of the input string. The
generated symbolic execution tree can be seen on Figure 3.8.

s index count Result Summary
null 0 0 - NullReferenceException
““ 0 0 false -

new string(‘\0‘, 11) 0 11 false -
“ThisIsATest“ 0 11 false -

““ 1 0 - ArgumentOutOfRangeException
“\0“ 0 0 false -

“\0\0\0“ 2 1 false -
“ThisIsATest“ 3 6 true -

Figure 3.8: Symbolic execution tree of method StringSample_05.

27

Example 8. The last example is based on a method, which calculates the Fibonacci num-
bers by using a loop instead of recursion. These kinds of structures are well-known hin-
dering factors of effective symbolic execution. The implementation of the method is the
following.
public int[] ForLoop_Fibonacci(int length)
{

int a = 0;
int b = 1;
int c = 0;
int[] numbers = new int[length];
numbers[0] = a;
numbers[1] = b;
for (int i = 2; i < length; i++)
{

c = a + b;
numbers[i] = c;
a = b;
b = c;

}
return numbers;

}

Pex generated six test cases, and three of them failed with exception. One of them raised
an OverflowException that can point to potential defects of the source code, which is
not inspected by the engineer in detail. The tree of symbolic execution is able to point to
these parts and with the help of the branchings (e.g. finding a missing branch), the test
engineer may be able to uncover new cases too. The upper part of the tree is shown on
Figure 3.9.

Figure 3.9: Symbolic execution tree of method ForLoop_Fibonacci.

28

length Result Summary
0 - IndexOutOfRangeException
1 - IndexOutOfRangeException

int.MinValue - OverflowException
2 {0, 1} -
3 {0, 1, 1} -
7 {0, 1, 1, 2, 3, 5, 8} -

3.5 Evaluation

I used the tool to generate visualization for complex programs, where test generation was
hindered by problems, that are difficult to identify. In this section, some examples are
presented for use cases of the tool, which is followed by the experiments that were made
to evaluate the effectiveness of the tool. Finally, the limitations of the approach and the
tool are summarized.

3.5.1 Example use cases

This section presents the two main use cases of the tool. First, by visualizing the symbolic
execution of simple programs with basic language elements (branches, loops, etc.), users
can get familiar with the technique. Secondly, it is able help test engineers and developers
to make the correct decisions to enhance test generation.

The typical usage workflow of SEViz is rather straightforward. Currently, it collaborates
with Microsoft Pex, therefore I introduce the workflow using it.

1. Attributing: The user should specify two attributes for the unit test method in order
to start monitoring during the execution of Pex. These attributes define the output
file location and the unit under test.

2. Execution: During the execution of Microsoft Pex, the monitoring is active and data
is collected.

3. Analysis: When the execution finishes, SEViz creates a file, which contains all the
collected information. This can be opened with the tool and a symbolic execution
tree is drawn from the data.

4. Mapping: Each node, which has source code metadata, can be mapped to a source
code file and line in a user specified Visual Studio instance.

Educational and Training Usage

The motivation of this work was to support engineers using symbolic execution for test
generation in large-scale, complex software cases. However, SEViz, the implemented tool
has another use case, which is to support the learning curve of the usage of symbolic
execution. From simple to rather complex cases, the implemented tool is able to visualize
the executions, therefore it is able to help understanding the working of symbolic execution
and SEViz to support the teaching of symbolic execution based test generation.

Users can easily extract the path conditions and observe the executions as the contained
constraints are incremented with literals from node to node (by using the incremental

29

Figure 3.10: Analysis steps of the GitSharp example in SEViz

(a) Overview of the tree (b) Loop identification (c) Path condition of a selected node

path conditions). Especially, cases with complex objects are challenging, since the path
condition constructs are can grow into rather complex constraints.

Source code mapping and the overall view of the symbolic execution tree can help un-
derstanding and comparing the search strategy used during the execution. For example,
as the sequence numbers inside the nodes show the order of execution, the user can ex-
periment with different strategies (e.g. BFS, random, fitness-guided) to understand the
traversal of different constructs in the code for example loops or recursion.

Let us see the example source code from the previous section along with the manually
drawn symbolic execution tree. Microsoft Pex was run on the code, and SEViz monitored
the execution. Fig. 3.6a shows the symbolic execution tree. SEViz shows how Pex explored
the code. The shape of the nodes illustrate that the constraint solver was called three times
(node 0, 1 and 3). Pex selected three test inputs (node 2, 4 and 5). The edge from node 1
to 3 is colored, because that edge corresponds to calling the Bar method, and I specified
method Foo as the unit under test. By selecting the nodes, all the path conditions can be
examined in the details panel.

Fig. 3.6b presents a real-world example from a method that manipulates strings. The
node with purple selection has its details opened, while the orange nodes show the path,
which should be traversed to get there.

Engineering Usage

The implemented tool supports test engineers, who are familiar with test input generation
and use it on complex software. Their workflow (generate tests for code, examine generated
test inputs and coverage, improve generation) can be supported by visualization.

30

In general, the visualization of the symbolic execution with the tool can help identifying
problems, which prevent achieving higher code coverage. The following list summarizes
the most important characteristics to analyze in common situations.

∙ Shape of the tree: It shows the effectiveness of the traversal strategy. Too deep
branches could mean that the search strategy was not efficient or a loop or recursive
structure was not properly handled.

∙ Generated tests: If there are many leaf nodes with no corresponding generated tests,
those can be unnecessary runs. Either they should be cut off to avoid repeat traversal
or guidance should be provided to help selecting test more relevant inputs.

∙ Path constraints: Complex constraints blocking the progress of symbolic execution
can be identified by analyzing the path conditions.

∙ Unit borders: Those traversals which pass through the boundary of a unit reached
code regions, which are not in scope of the testing. Indicating these exit points
supports finding proper position for isolation.

Let us introduce a real-world example from the project called GitSharp [12] to show how
visualization can be used to increase coverage. With SEViz the issues can be more quickly
identify (e.g. reaching boundaries of the execution, lack of coverage) in the generation and
the detailed analysis of the reports and logs can be avoided using the following steps. My
first steps with this GitSharp example showed that Pex was not able to produce the correct
format of a string in a resolver method.

1. Execution identification (Fig. 3.11a): By just looking at the tree at a high level, the
test inputs can be identified that were only selected in the runs at the right side of
the tree, and there is a large, deep portion of the tree where Pex spent considerable
time, but was not able to select any tests.

2. Loop identification (Fig. 3.11b): In the next step, I took a look at the source code
mappings of the nodes in this deep branch. I discovered, that the nodes are mapped
to a loop, which causes the tree to be deep. Now it should be investigated why the
execution did not quit from the loop.

3. Path condition identification (Fig. 3.11c): The answer lies in the path conditions of
the nodes. It can be seen, that Pex could not guess the correct condition to exit the
loop, it tried to add the same characters until reaching its execution boundary.

By going through these three steps, the problem (format of the string) can be discovered
just by working with the data presented by SEViz, and there is no need for further analysis
or debugging.

3.5.2 Experiments

The basic conditions of the visualization technique and tool are: 1) execution time should
not be greatly affected by the visualization monitoring, 2) the solution should be scalable
to larger, complex source codes. This section introduces the quantitative measurement
results by following these two guidelines.

31

Besides efficiency, usability is an important factor in engineer application. However, mea-
surement of usability requires preplanned, step-by-step process with at least ten test en-
gineers involved. Fraser et al. elaborated a similar process to measure the usability of
their test generator tool [13]. However, during my work, I had no opportunity to conduct
a similar process to evaluate the technique and tool.

I executed the measures in the following environment: Intel Core i7 @ 3,1 GHz, 8 GB DDR
@ 1333 MHz, Windows 8.1 Pro, .NET v.4.5.51641, Microsoft Visual Studio Ultimate 2013
v12.0.30501 Update 2, Microsoft Pex v0.94.51006.1.

Analysis of execution time

I divided the measurement into two parts: 1) artificial examples, 2) real-world examples.
Thus, the tool can be analyzed in two aspects, on one hand the tool can be verified against
its minimal requirements (e.g. visualization of basic structures), on the other hand the
effectiveness in the intended usage environment of the tool can be verified. I measured the
following attributes during the analysis.

∙ Execution time

∙ Execution time with visualization

∙ Number of traversed nodes

∙ Deepest node

∙ Lines of code

Pex has a built in watch to measure execution times, however it counts needless times,
like generating the log file. In order to have accurate measurements, I implemented a
component for Pex, that uses a stopwatch for this functionality.

In this thesis, I only present the results of the real-world examples and the summary of
the execution time analysis. The rest of the results can be found in [22].

I chose nine methods from different open-source projects and one method inspired by the
CMS system presented in Section 2.2.2. Five out of them are from projects, that have
been analyzed with Pex before [41], therefore they also serve as a good basis for evaluation
of the visualization [12, 32]. Two of the four remaining methods come from a project, that
implements biological algorithms and data structures [33], while the other two is from
the .NET version of the Couchbase NoSQL database management system. I selected the
methods with variable complexity, however each of them may be a challenge for the tool.

I used the same steps for the two analysis, thus I examined the relation between the
ratio of execution times (with/without visualization), the height of the deepest node, the
number of nodes and the lines of code. The results of the experiment is summarized in
the table below, where T denotes the time without visualization, TV denotes the time
with visualization, R is the ratio of the two times, N is the number of nodes and D is the
height of the deepest node.

32

Project Method T [s] TV [s] R N D LOC
Couchbase AppendData 11,994 54,082 4,509 676 52 49
Couchbase Compare 6,102 47,527 7,789 989 32 54

CMS CreateUser 9,991 135,954 13,61 2104 238 5
Bio MapAcid 244,678 377,82 1,544 717 149 11
Bio Compare 2,697 4,033 1,495 65 14 8

DSA IsPrime 3,114 10,135 3,255 36 16 9
DSA Avl.Remove 2,491 8,668 3,48 21 13 6
DSA Heap.Remove 0,529 6,478 12,25 40 13 20

GitSharp Merge 173,493 1334,22 7,69 7322 1073 62
GitSharp MyersDiff 37,965 440,4 11,6 3197 488 23

Let us look at Figure 3.11, which presents the connection between the height of the deepest
node and the execution times. It can be seen, that several ratio of execution times went
over five, which is due to the large number of loops and iterations on data structures.
Some executions had the same deepest node, but the times were different. The reason of
this is that one of the two had more, similarly deep branches than the other, which slows
down the process.

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

D
ep

th
 o

f
d
ee

p
es

t
n
o
d
e

Ratio of execution times (with / without visualization)

Figure 3.11: Relation between depth and execution time.

Figure 3.12 presents the results for the analysis between number of nodes and execution
times. It can be discovered, that while the number of nodes grow from ten to tens of thou-
sands, the execution times may only grow two times larger. Taking the average execution
times into account, these scale of growth can be acceptable in industrial environments.

I also experimented with the connection between the lines of code and the execution time,
however the results showed no correlation, thus I do not discuss it here.

Based on the results, I can state the the visualization greatly affect the execution time,
however there are two reasons I must mention: 1) long loops, 2) hash functions. Both of
them are the consequences of the symbolic execution approach, thus I do not discuss these
in detail.

In summary, the results of real-world examples did not contain extremely high increase
of execution time, because there were no unbounded loops or recursions. Moreover, the

33

1

10

100

1000

10000

0 2 4 6 8 10 12 14 16

N
u
m

b
er

 o
f
n
o
d
es

Ratio of execution times (with / without visualization)

Figure 3.12: Relation between number of nodes and execution time.

experienced growth of execution time may be acceptable in engineering usage compared
to their average length (can be measured in seconds or some minutes).

Analysis of scalability

I implemented a parameterizable code generator, in order to influence the depth and width
of the symbolic execution tree, which can help evaluating the scalability quantitatively.
The generated code contains a switch and for loops in each of the branches. This
supports the analysis process, because the structure of the tree remains the same, however
its size (width and depth) increase. I analyzed the following attributes in connection with
scalability: depth of the tree, width of the tree, execution time with visualization, number
of nodes. I set the depth between 5 and 250, while the width was set between 5 and 25.
This resulted in 25 measurements.

Let us take a look at Figure 3.13, which presents the connection between execution time
and the width of the tree in cases of different depths. The results show that the degree of
growth of execution time depends on the depth, which can be seen in cases of depth 100
and 250. An interesting observation is that with 100 node depth (which could mean 2500
nodes), the execution time stays under 200 seconds.

Figure 3.14 shows the connection between depth and execution times with different widths.
Based on the results, less deeper trees don’t have extremely increased execution times in
different widths, however with 250 depth there is a big jump. In this case, the width
also greatly affect the execution times, since there is a large number (width) of very deep
(height) branches. This explains why did the execution times grow in previous cases,
where the depth and the number of nodes stayed the same.

Based on these results, an interesting experiment is the relational analysis between the
number of nodes and the execution time, which is shown in Figure 3.15. As it can be easily
seen, the values of the two variables are strongly correlated, since there is a quadratic poly-
nomial trend line, that fits really well on the data. In this case, the quadratic scalability
factor could be good in real-world applications.

34

0

200

400

600

800

1000

1200

1400

1600

5 10 15 20 25

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Width of symbolic execution tree

5 25 50 100 250

Figure 3.13: Relation between width (x) and execution time (y) in different depths (color).

0

200

400

600

800

1000

1200

1400

1600

5 25 50 100 250

E
x
ec

u
ti
o
n
 t

im
e

(s
ec

on
d
s)

Depth of symbolic execution tree

5 10 15 20 25

Figure 3.14: Relation between depth (x) and execution time (y) in different widths (color).

Summary of experiments

Two statements can be made from the results: 1) the visualization component affects the
execution times in a variable manner, 2) the component scales very good even for large
trees.

Unacceptable, extremely high growth of execution times were only experienced in cases
of unbounded loops, recursions and hash functions. A solution could be to handle these
branches with abstraction: detecting them during the execution, stopping the analysis
until they are ended, then present it visually with abstraction (e.g. collapsed branch).

The quadratic scalability factor could be acceptable in real-world examples, since unit
testing restricts the space to explored, and symbolic execution trees larger than 7000
nodes are less likely to be generated.

35

R² = 0,9886

0

200

400

600

800

1000

1200

1400

1600

0 1000 2000 3000 4000 5000 6000 7000

E
x
ec

u
ti

o
n
 t

im
e

(s
ec

o
n
d
s)

Number of nodes

Figure 3.15: Scalability relation between number of nodes and time.

It is important to have the threats to validity of the experiments discussed, which could
be the following.

∙ The experiments were manually, however I repeated each of them three times and
presented their average, in order to have valid results.

∙ The artificial examples used in the experiments with execution time, are from an
other research, thus its errors could affect also the results. To prevent this, I scruti-
nized the source code of each selected method.

∙ Although the cautious selection of real-world examples, they have the possibility to
represent cases, that are not common in real-world applications. Therefore, I chose
the examples from projects that were used by also other researches related to Pex.

∙ The low number of real-world examples may have the possibility, that a different set
of selected methods could produce different results. That is the reason why I chose
example methods from open-source projects beside the above mentioned ones.

3.5.3 Limitations of the approach

In this section, the potential limitations of the tool are collected and presented.

In its current form, the visualization technique cannot recognize and abstract loops, re-
cursions and repeated statements. Thus, the symbolic execution can grow very huge and
may have very deep branches, which can hinder the effective usage of the tool (there is a
related research that addresses this problem).

Another limit of the usability of to tool is the integration into the testing process, since the
ineffective use of the tool may also hinder and slow down the process instead of supporting
it.

There are other hindering factors, that are related to the symbolic execution itself. Most
important of them are the following [8].

36

∙ Handling multi-threaded environments

∙ Interaction with environment

∙ Handling external calls (e.g. external libraries)

∙ Handling floating point number representations

∙ State space explosion

∙ Optimization of constraint solvers

My implementation is currently lacking of optimization. The measurements also confirmed
the hypothesis, that the monitoring of symbolic execution affects its execution time, thus
the solution may requires deep analysis of the internal functionality of Pex.

Another limitation could be, that the Monitoring component only knows about the infor-
mation provided by Pex through its API, which leads to three disadvantages: 1) hugely
depends on Pex API and its further development, 2) it has restricted access to the exe-
cuted source code, thus mapping is not always precise as possible, 3) new versions of Pex
may break the interfaces used by the tool.

3.6 Related work

Several research have addressed the visualization of symbolic execution, however the moti-
vation was different in each. Hentschel et al. gave a solution [20] for unbounded symbolic
execution by abstracting the branches in cases of unbounded loops and recursions. Their
tool (SED) is a symbolic execution-based debugger, that is able to visually represent the
steps during tracing. They also mention the clear relation between control flow graphs
and symbolic execution trees. The motivation of their research however was to increase
the usability of their debugger.

Another, earlier research also approaches the visualization in the field of debugging.
Hähnle et al., precisely described [19] the visualization and the meaning of each attributes.
Nevertheless, their motivation was the extension of their tool, in spite of my motivation
that was the support of test generation in complex environments.

In summary, the research around is the visualization of symbolic execution is active, but
not well-known. The motivation of the researches could be different, however the solutions
from different aspects can help each other to support the applicability.

37

Chapter 4

Automated isolation environment
generation

In this chapter, I present the idea of automated isolation environment generation. Firstly,
the basic notions are presented, which are needed to understand the idea. Then, the
technique is introduced in detail including an overview and its three main steps. Finally,
during the evaluation, several examples and limitations are presented along with the re-
lated research.

4.1 Basic notions

To throughly understand our idea of automated isolation, I introduce the most important
notions around this topic first.

4.1.1 Unit test isolation

As it was mentioned in Section 1.2.1, unit testing should be done in isolation, thus all
the external dependencies of the unit should be removed or replaced. Naturally, removal
of a call to a dependency is not an option, since it would alter the function of the code.
Another solution could be to replace the external dependency with a replacement object,
and a call is made into it. Decades ago, this idea and the increasing importance of unit
testing led to a whole new area in software test engineering called test doubles.

Definition 7. Test doubles is the common name of static or dynamic objects, that can
be used as a replacement of real objects during test executions, in order to handle the
problem of isolation in unit testing. �

There are many types of test doubles, however the naming conventions can be different
across publications. To overcome this, Meszaros wrote a summarizing book [29], that
assesses the notions and patterns around unit testing, including test doubles too. I also
applied the notions of this book in the area of test doubles, which are the following.

∙ Dummy: An object that only created to be passed, but has no effect on the results
of the test execution, no values are calculated from it and its methods are called if
they do not affect any result. A good example for this is a simple object that is
passed as an argument for a method call that is outside of the testing scope.

38

∙ Stub: A replacement object with methods that return constant values for usage
during test execution, however the values should not affect the success of the test
case.

∙ Mock: Their return values are included in the test input data, therefore they can
influence the success of a test case. One of their main property is that the calls (and
their parameters and count) made to the object can be verified against the expected.

Test doubles can be formally defined as rules with LHS (left-hand side) and RHS (right-
hand side). However, at first a relation between two methods must be defined to express
the rules.

Definition 8. Let 𝑚1 and 𝑚2 two arbitrary methods. We say 𝑚1 ∼ 𝑚2 (one is similar
to the other), if the signatures of the methods are equal to each other. �

Now, the rule form of a test double can be defined.

Definition 9. Let 𝐴 be an arbitrary class and 𝐹𝐴 be its test double containing all the
𝑚 ∈ ℳ𝐴 methods (𝑚𝐹𝐴

∈ ℳ𝐹𝐴
). When 𝐹𝐴 is used instead of 𝐴 during testing, then the

following exists for any call to method 𝑚, if 𝑚 ∼ 𝑚𝐹𝐴
:

𝑚𝐴 ⇒ 𝑚𝐹𝐴
,

that is any call to method 𝑚 (LHS) is detoured to 𝑚𝐹𝐴
(RHS), so the latter will be

called transparently with getting all the argument values of the call, that can be used for
verification. �

Testing with doubles may seem very easy, but many challenges exist in complex software
environments, which must be solved in order to have effective unit testing. The most
important factor is the design for testability, which enables easy implementation of test
doubles. Let us take a look at the following example that introduces the problem of lack
of testability in the design.

Example 9. Let 𝐴 be a class with method 𝑚1(𝑖𝑛𝑡) : 𝑖𝑛𝑡, while let 𝐵 be a class with
method 𝑚2() : 𝑏𝑜𝑜𝑙. The following source code shows a testability problem.

class A
{

private B b;

A(int a)
{

b = new B(a);
}

int m1(int a)
{

if(b.m2()) return 10*a;
else return 0;

}
}

class B
{

private int a;

B(int a)
{

this.a = a;
}

bool m2()
{

if(a > 10) return true;
else return false;

}
}

The problem

occurs when the unit 𝑈 is defined as 𝑈 := { 𝐴 }, thus the external dependency that must
be isolated is 𝐴.𝑚1() → 𝐵.𝑚2(). This means that a double 𝐹𝐵 is needed, that replaces the
object 𝐵 used in class 𝐴 and 𝑚2 ⇒ 𝑚2𝐹𝐴

is true.

39

It can be seen, that the tester of class 𝐴 has no access to the field 𝑏. Moreover, the field has
no possibility to be set or instantiated from outside, thus the object cannot be replaced
with a double from outside. This is one of the biggest problems among testing of industrial
software, since design for testability is not a common directive. Below, I introduce several
solutions that can alleviate this problem.

Application of dependency injection pattern

Dependency injection is a software architecture design pattern, which ensures that a de-
pendency of a software module can be replaced with another. This may be useful when
working with replaceable units (e.g. different version of components or other functional-
ity), moreover this pattern introduces maintainability, thus also testability to the source
code.

In concrete implementation, as in the example, the problem occurs when a dependency
is created (either with instantiation or using a factory) inside the component, and is not
passed to it. This pattern solves this by requiring the dependencies to be passed through
parameters or fields that are visible from outside. Certainly, this invokes several questions,
like security in an API. The following idea solves this problem too.

Creating testing and maintenance interface

Instead of providing the ability to inject dependencies via parameters, an internal interface
should be created for this purpose for each component. This interface can be only visible
to testers in order to inject the dependencies and replace the desired objects during testing.

The concrete representation of a maintenance interface would be one or a set of internal
(visible only inside the library) methods, that are able to alter the behavior of the com-
ponent. This introduces some implementation overhead, although there are almost no
security risks of publishing the rest of the component as an API.

Nonetheless, there are several situations when the source code cannot be altered, or the
user of the library does not have access into it. In these cases, the third and most powerful
solution comes into view.

Replacing in runtime

An interesting approach is replacing the dependencies and detouring the calls in a lower
layer during runtime without altering the original source code. This method does not
introduce any implementation overhead, does not have any security risks, however it may
make developers feel comfortable, which can lead to have testability disrespected.

The concrete implementation of this idea raises some questions in detail due to its func-
tionality. In managed environments like .NET and Java, it is possible to create detours
runtime with their special programming interfaces. On the other hand, when one has to
work in unmanaged environment, the source code is compiled directly to machine code,
this solution will not work (due to e.g. accessing to running machine code, altering binary
code).

40

4.1.2 Isolation frameworks

The implementation of test doubles is a time consuming task which is not always acceptable
during development. Therefore, several supporting tools exist, one of them is isolation
frameworks. These are software, that are able to automatically create double objects
from analyzed methods. The user of the tool should only define the logic for the doubles
(e.g. what to constantly return, what to assert), and in most of the tools, the user
should also take care of injecting this object into the unit under test. Some isolation
frameworks however provide the function of replacing objects in runtime. According to
this functionality of the test framework, they can be categorized into two main groups.

Proxy-based

Component
with

dependency

Double object
(proxy)

Logic of
double

(included in
test method)

injected

calls

invokes

Figure 4.1: Overview of proxy-based isolation technique.

The proxy-based isolation frameworks are built on the idea of dependency injection. A
double object is used to replace the original dependency, however the framework itself
ensures that the user-specified logic can be defined anywhere, and is executed when the
double object is called. In terms of implementation, the usage of the proxy pattern is the
common technique to handle and detour the calls made to the double.

Most of the commonly used isolation frameworks are proxy-based, due to the relatively
easy implementation and efficiency.

Profiler-based

Profiler-based frameworks use runtime detours in order to execute logic implemented inside
double objects. Thus, the injection is not needed, however the implementation of this
technique is far from trivial, since a lower layer is needed during runtime, where calls to
methods can be caught and analyzed for further processing. This is can be relatively easily
achieved in environments like Java and .NET, where the managed runtime is available for
access. Unmanaged code however must be detoured in the lowest levels of runtime, which
may not worth the effort due to the complexity of the problem.

In managed environments, a concrete solution could be to watch the stack frames, that
are put onto the call stack. When an external dependency is called, it is detected and the
call is detoured (the stack frame is popped and a fake is pushed onto). Certainly, there
are other implementation possibilities, but I do not consider them here.

41

Managed runtime

Component
under test

External
component

User-defined
double

X

Managed runtime API

Isolation framework

Runtime detour

Figure 4.2: Overview of profiler-based isolation technique.

There are only a few isolation frameworks, that are profiler based, because the implemen-
tation requires deep knowledge of the environment in focus. However these tools are the
most powerful, since they can be used to test legacy code or used to double all created
instances of a type. Fakes is one of them, developed by Microsoft and is part of specific
versions of Visual Studio.

4.1.3 Microsoft Fakes

Microsoft Fakes uses two main concepts, that should be clarified first.

∙ Stub: Stubs are lightweight double objects, that are used like an injected dependency.
It requires testable structure of the source code and an interface for each objects that
is used as dependency. The stub will implement this interface in order to replace
the original object. In this case, Fakes works as a proxy-based framework. A great
advantage is that, this technique works really fast compared to the other one.

∙ Shim: Shims are powerful doubles, which detour the code during runtime. They
work with the CLR profiler API, and are able to fake almost everything, including
internal and private methods. The main advantage of this approach is the ability to
fake all instances of a type.

The usage of Fakes is very straightforward. If a double of an object is needed, a "fake"
assembly should be created first from the original. Here, Fakes creates stub interfaces and
shim types that can be used for making test doubles.

The next step is to implement a stub or a shim. Here, I introduce a simple example, where
the methods of Example 9 are used.

Example 10. As in the previous example, the unit 𝑈 is defined as 𝑈 := { 𝐴 }, thus the
external dependency that must be isolated is 𝐴.𝑚1() → 𝐵.𝑚2(). This can not be achieved
by using dependency injection, so shims are needed with using Fakes.
class ATest
{

public void m1Test(A targetToTest, int a, bool m2Return)
{

// Definition of the sim with C# lambda expression
ShimB.AllInstances.m2 = () => { return m2Return; };

42

// Calling the method under test
targetToTest.m1(a);

}
}

In this example, a parameterized unit test is used, where I extended the list of parameters
with the return value of the shim of method m2().

4.2 Methodology

In order to support symbolic execution-based test generation, my idea is to generate
the isolation environment automatically. The process uses the collected data from the
symbolic execution. This section firstly gives an overview of the technique, then each step
is described in detail.

4.2.1 Overview

The techniques build on top of parameterized unit tests in order to have test doubles, that
can give back values, that are relevant to the component under test. A quick overview of
the approach is presented in Figure 4.3.

Component
under test

External
component

invocationDETECTION

A B.Foo(C c, int i)

ANALYSIS

B.Foo := (c,i) => {…}

GENERATION

Figure 4.3: Overview of the automated isolation technique.

The automated generation of isolation environment relies on an analysis process, which is
conducted when an invocation to a predefined external dependency is reached during the
symbolic execution. Then, based on the results of the analysis, the generation step creates
double objects that are able to replace the original ones.

4.2.2 Detection

Detection is the first phase of the isolation process. Firstly, the test engineer defines
the unit or namespace under test with giving its fully qualified name (FQN). During the
symbolic execution, this FQN is used for detecting an external call.

When an external invocation is detected, all the information regarding this call is collected
and stored and used by the analysis step. The most important data are the followings.

∙ Name of method: The fully qualified name in order to be able to create the double
method with the correct name.

43

∙ Source of class: Based on the FQN of the method, the source code of the container
class should be gathered for later analysis. This is only done, when the class is
unknown, otherwise the following is done.

∙ Known methods of class: If a new method is detected for an already known class,
then the list of contained methods is extended with it.

The following algorithm gives an overview of the detection and storage step.

Algorithm 4 External call detection and data collection algorithm
1: function DetectionAndDataCollection(string unitUnderTest, Call call, KB kb)
2: if !call.Method.StartsWith(unitUnderTest) then
3: var document := GetSourceDocument(call.Method);
4: if document then
5: if kb.Contains(document) then
6: kb[document].Methods.Add(call.Method);
7: else
8: kb.Add(document, new MethodList(cal.Method));
9: end if

10: end if
11: end if
12: end function

4.2.3 Analysis

The analysis step is the most important of the three, since the decisions are made here,
which decide how the double objects are generated. This step can be divided into three
substeps, that are the analysis of return value, the analysis of parameters and the assess-
ment of the scrutiny.

Return value analysis

In the first step, the return value of the invoked external method is analyzed, which is one
of the most important information in a double object. The return value can be used in
the unit under test as a branch condition or other statements, thus execution paths exists,
which rely on this value. In order to cover these paths, the correct value must be selected.

If a path relies on the variable created from the return value, the symbolic execution
interprets it as a term in the path condition. Problems occur, when the analysis can not
provide proper inputs through this dependency (e.g. not yet implemented, gets value from
database or file system), thus the coverage does not depend on it. This can be alleviated
if the solver of symbolic execution can give concrete values for the variable that represents
the return value. By this way, arbitrary values can be assigned to this variable and the
coverage criteria (e.g. an execution path) can be satisfied that depends on the variable.
The arbitrary values can be passed to the concrete execution through the parameters of
the unit test. Example 11 shows a simple scenario of the idea.

Example 11. Let us look at Figure 4.4, where an example scenario of the analysis is intro-
duced. Let there be a class A and the class Manager, which reaches a database (DB). Method
Foo of class A invokes GetData of the Manager. In this example, the 𝑈 unit under test is
𝑈 := {𝐴}, thus the dependency to be isolated is 𝐴.𝐹𝑜𝑜(𝑏𝑜𝑜𝑙) → 𝑀𝑎𝑛𝑎𝑔𝑒𝑟.𝐺𝑒𝑡𝐷𝑎𝑡𝑎(𝑏𝑜𝑜𝑙).

44

The symbolic execution starts from a parameterized unit test (FooTest) in a test class
called ATest.

Manager.GetData(bool b):int

DB

ATest.FooTest(bool b):bool

A.Foo(bool b):bool
bool Foo(bool b)
{
 int i = Manager.GetData(b);
 return i > 0 ? true : false;
}

Symbolic
Execution

ATest.FooTest(bool b):bool

// PUT with extended parameters
bool FooTest(bool b, int i)
{
 // Definition of the double object
 Manager.GetData := (b) =>
 { return int i; };
 return A.Foo(b);
}

Figure 4.4: An example scenario of return value analysis.

As described previously, a problem occurs during symbolic execution, when a value from
an external dependency affects the coverage in the unit. In this example, the problematic
branching is marked with red, since it relies on the value returned from the database (DB).

My idea provides a solution with the analysis of the return value. Two actions are done.

∙ The parameters of the PUT is extended with the return value of the external depen-
dency (here int i, marked with red).

∙ A double is created (also marked with red) in order to replace the behavior of the
original Manager class. In the body of the double, the extension of the PUT parameter
is returned, which gives the ability to symbolic execution to handle it as a free variable
that can have arbitrary values.

Parameter analysis

The analysis of parameters is the second step of my idea, however not all types of pa-
rameters are in focus. Method parameters can be primitive or complex types. In the two
popular managed environments (.NET, Java) every complex type is handled as reference
and the parameters are passed by value by default. Thus, when using reference type pa-
rameters, the reference itself is passed to the method as value, which means it is copied
and refers to the same object. This enables the called method to modify the pointed
object, which modifications can be also seen in the caller. However, the original reference
cannot be modified. Note that .NET also provides the ability to pass the reference itself
by using the ref keyword.

The reference type parameters lead to a problem in isolation scenarios, when the called
method is an external dependency, because the passed object can be modified inside the
dependency and therefore it can affect the coverage (as seen in the case of return values)
in the unit under test. Example 12 shows a scenario for this problem.

Example 12. The example shows the complex type parameter problem when the state of
the object may be altered in the external method ModifyB. Then, the part of the object is
used in a branching inside the unit which may not be covered during symbolic execution
(due to e.g. file, database or cloud service access).

45

class A
{

public void Foo()
{

B b = new B();
C.ModifyB(b);
return b.data > 0 ? true : false;

}
}

My idea to alleviate this is similar as in the case of return values, but the scenario is
more complex. The first step is the same: extending the parameters of the PUT with
the complex type parameter under analysis and handle it in the created double object.
However, due to the complex type, there are numerous possibilities to modify the state
of the object outside the unit. The idea is to explore the publicly available fields and
properties of the object and use them to alter its state. By this way, I can simulate the
actions made inside the external dependency that can be required to increase the coverage
inside the unit under test. Figure 4.5 shows an overview of our idea.

C.ModifyB(B b):void

ATest.FooTest():bool A.Foo():bool
bool Foo()
{
 B b = new B();
 C.ModifyB(b);
 return b.data > 0 ?

true : false;
}

Symbolic
Execution ATest.FooTest(bool b):bool

// PUT with extended parameters
bool FooTest(bool b, int bData)
{
 // Definition of the double object
 C.ModifyB := (b) =>
 { b = bData; };
 return A.Foo(b);
}

class B
public int data;

Figure 4.5: An example scenario of parameter analysis.

Assessment

During the last step of the analysis all the collected information about the return values and
parameters are filtered for duplications, then stored, which is used for double generation.
Every method should contain the information that describe what to emit, when they are in
the focus of code generation. This also includes the doubles of complex type parameters.

4.2.4 Generation

The generation is the last step of processing an external dependency, which can be divided
into substeps. Firstly, the newly created parameters of the parameterized unit tests is
emitted and appended to the original one. Then, the double of the method is assembled
and emitted into the body of the PUT. This emission includes the name of the double
method, which can be specific to isolation frameworks and also includes the inner body
that can include setting of state modification for parameters and verification too. Finally,
the doubles of the complex type parameters are generated that are property or field setter
methods.

46

4.3 Implementation challenges

In order to implement the idea described in the previous section, I needed technologies
that are able to traverse and analyze source code for exploring the external dependencies.
Since I wanted the implementation as an extension for Microsoft Pex and Fakes, I searched
for tools in .NET environment. Currently the Roslyn project also developed by Microsoft,
is available for code analysis of .NET languages and it is considered as one of the most
suitable tools for this purpose. The project itself recently went from community preview to
a renewed open-source version and got the name .NET Compiler Platform. The platform
itself consists of two main parts: 1) compiler as a service, 2) APIs for code analysis. Both
of them were used to implement the idea of automated generation of isolation environment.

4.3.1 Extending Microsoft Pex

During the symbolic execution, the detection phase needs access to the currently invoked
methods to decide whether it is an external call or not. Thus, I created an exploration
extension package for Pex (as described in Section 1.4.4). Before the exploration I attach a
handler to the event, which indicates that the symbolic execution entered into a new stack
frame. This is a data structure that is put onto the call stack and contains information
about the currently called method and its arguments.

When the event is fired, the required information is stored about the current stack frame,
which includes the name of the method and its class, their source code document and the
list of known methods. However, getting these information is not trivial, since file system
access is needed. Thus, I used the services provided by the API of Pex to implement these
functions. The process of obtaining the source code is very similar to the source code
mapping described in Chapter 3 and Algorithm 2.

After the exploration is finished, the collected information is sent to analysis with the .NET
Compiler Platform, then the desired code is generated from the assessed information.

4.3.2 Using .NET Compiler Platform

Naturally, the largest part of the implementation is related to Roslyn due to need for
deep code analysis. In the following algorithms, the information assessment is described
in detail.

The code analysis in Algorithm 5 contains many important steps. Firstly, the inclusion
in the unit is examined. If the namespace of the currently visited source document is
included in the unit, then a syntax tree is created with the help of Roslyn. This is
followed by a runtime compilation in order to get the semantic model, which contains
type information of the types included in the source code. By this way it can be decided
whether a type is a primitive or reference type. Then, the algorithm iterates through the
parameters and inspects if it has formerly stored information from the analysis phase. If
yes, the source code is parsed and walked through to get the required information for the
generation. Finally, the whole set of fakes along with the extension parameters to the
PUT are generated. It can be seen that the two most important methods are the method-
and property-walkers that are analyzing the source. Algorithm 6 and Algorithm 7 shows
the data collection procedures for the methods and properties of complex type parameters
respectively.

47

Algorithm 5 Overview algorithm of the code analysis process.
1: function AnalyzeCode(KB knowledgeBase)
2: for each doc in knowledgeBase do
3: if IsIncludedInUnit(doc) then
4: var syntaxTree := Parse(doc);
5: var semanticModel := syntaxTree.Compile().GetSemanticModel();
6: var methodData := WalkMethods(syntaxTree, semanticModel);
7: for each method in methodData do
8: var propertyGetters := new[];
9: for each param in method.Parameters do

10: if !IsPrimitive(param) then
11: var foundClass := knowledgeBase.GetClass(param.Class);
12: if foundClass then
13: var paramClassTree := Parse(foundClass.SourceDocument);
14: var propertyData := WalkProperties(paramClassTree);
15: for each property in propertyData do
16: EmitPUTExtension(property);
17: propertyGetters.Add(property);
18: end for
19: end if
20: end if
21: end for
22: Generate(method,propertyGetters);
23: end for
24: end if
25: end for
26: end function

The discovery of the properties that can be set from outside is far from trivial. Firstly,
the algorithm has to check if the property itself is visible from outside. Then, the setter
of the property is checked if it exists, and if yes, the algorithm makes sure that it has no
accessibility modifiers (e.g. a private setter). A very similar algorithm can be applied to
fields, that are not visible from outside only through getter and setter methods. The only
complexity is the discovery of the methods that are able to set and get the values for the
field. Since our current prototype implementation do not support fields, I do not discuss
this here in detail.

The analysis can get more complicated if the parameters or the types are static, generic
or have some special visibility attributes. These corner-cases must be handled correctly
in order to have a set of efficiently working doubles.

4.3.3 Generation with Microsoft Fakes

Generating doubles for Microsoft Fakes requires sticking to strict guidelines, since the
framework has precisely defined name of double objects and methods that are put together
from the parameter types, the name of the method and the special attributes (e.g. static,
generic). The mocks generated by the tool must use these names to avoid the intervention
of the user, which is one of the goals of the tool.

48

Algorithm 6 Algorithm of walking over the method declarations.
1: function VisitMethodDeclaration(MethodDeclaration node)
2: var name := node.GetFullName();
3: var type := node.GetTypeName();
4: var typeInfo := semanticModel.GetTypeInfo(type);
5: var paramTypeInfo := new[];
6: for each var param in node.parameters do
7: paramTypeInfo.Add(semanticModel.GetTypeInfo(param.Type));
8: end for
9: knowledgeBase.Add(name,type,typeInfo,paramTypeInfo[]);

10: end function

Algorithm 7 Algorithm of walking over the property declarations.
1: function VisitPropertyDeclaration(PropertyDeclaration node)
2: if node.Modifiers.Contains("public") then
3: var setter := node.Accessors.Get("set");
4: if setter then
5: if setter.Modifiers.Count == 0 then visibleProperties.Add(node);
6: end if
7: end if
8: end if
9: end function

Currently, the tool supports the generation only with Microsoft Fakes, however I created
the architecture of the tool to be capable of using other isolation frameworks. Naturally
in these cases, the generator phase must be rewritten.

4.4 Evaluation

As described in the previous sections, the problem to solve is the low coverage due to
the large number of dependencies in real-world applications. In the following examples,
I introduce some use cases where the automated isolation environment generation can
alleviate the problem. Firstly, three basic examples are presented, which is followed by
two real-world examples.

4.4.1 Basic examples

In the following three examples, three classes are used to demonstrate the usage of the
implemented tool in different basic scenarios. Class A is the unit under test, class B is the
external dependency of class A and it is not currently implemented, thus they cannot be
used during testing the unit. Class C is the common part (used by both class A and B), and
can be thought as also part of the unit under test. Figure 4.6 overviews the scenario. The
source code of class B and C can be found in F.1, while the source of class A is introduced
in the examples.

49

A

m11(int a, int b):int

m12(C c):int

m31(int i):bool

B

m12(int a):bool

m13(int b):int

m22(C c):void

m32(C c):int

C

Value:int

Figure 4.6: The architecture of the simple example.

Multiple dependencies

Preamble In the first basic example, the unit under test 𝑈 can be defined as 𝑈 := {𝐴}.
The source code of the method under test (m11(int,int)) can be found below. It can
be seen that two external calls are made to the dependency, thus the dependencies are:
𝒟𝐴,𝐵 := {𝐴.𝑚11(𝑖𝑛𝑡, 𝑖𝑛𝑡) → 𝐵.𝑚12(𝑖𝑛𝑡), 𝐴.𝑚11(𝑖𝑛𝑡, 𝑖𝑛𝑡) → 𝐵.𝑚13(𝑖𝑛𝑡)}. Both of them
should be isolated in order to do clear unit testing and have tests that do not depend on
the implementation state of class B.

public int m11(int a, int b)
{

if (B.m12(a)) return 0;
if (B.m13(b) < 10) return 1;
return 2;

}

First execution Since method m12(int) currently returns always true, thus the only
branch that is covered in the first execution is the first one, where the return value is 0. I
applied the isolation package for the parameterized unit test and defined the unit as class
A.

Generated isolation environment The tool was able to generate the mock for method
m12(int). However, when I ran Pex again, the coverage was not 100% due to the second
external call, where m13(int) always returns 100. I attributed the PUT once more to
detect the second dependency. Then, I achieved the full coverage with the two mocks.
The generated extension parameters for the PUT and the mocks can be found below.

∙ bool returnm12

∙ int returnm13

ShimB.m12Int32 = (p0) =>
{

return returnm12;

50

};

ShimB.m13Int32 = (p0) =>
{

return returnm13;
};

Results and summary With the help of both of the mocks I achieved 100% code block
coverage, which was the goal in the testing this unit. It must be noted however that the
scenarios like this may require multiple executions to have all of the dependencies isolated.
This is due to the fact that the tool relies on the steps of Pex: if Pex does not traverse a
statement, the tool cannot detect the dependency there.

Depending on object state

Preamble The second example is about the state of the external objects that are passed
to external dependencies. These are interesting because their state can be modified inside
the dependency and then used again by the unit under test. The source code below shows
that the C-typed object has a Value property, which is examined before and after the
external call. If modifications are made to the state of the object, the method returns 2.

public int m21(C c)
{

int i = 0;
if (c.Value < 10) i = 1;
B.m22(c);
if (c.Value > 10 && i == 1) i = 2;
return i;

}

First execution As expected, the first execution gave test cases that were not able to
cover the second branching, because method m22 is not implemented yet and cannot alter
the state of the object passed as the argument. Thus, mocks are needed to cover the
missing branch.

Generated isolation environment I attributed the PUT with the tool, and chose unit
𝑈 as 𝑈 := {𝐴, 𝐶}. Thus the dependency that must be mocked is 𝒟𝐴,𝐵 := {𝐴.𝑚21(𝐶) →
𝐵.𝑚22(𝐶)}. The tool generated the following isolation environment and PUT parameter
with only one execution.

∙ C cPropValue

ShimB.m22C = (p0) => {
p0.Value = cPropValue;

};

Results and summary By using the generated mock, Pex was able to generate full
code block coverage for the method with the test cases. This is achieved by altering the
state of the object in the dependency, by modifying the value of its property.

51

Complex usage of dependency

Preamble In the last simple example, I introduce a method, where the return value and
the state of the object is also used as a branching condition in a more complex arithmetic.
Namely, the method returns true if the parameter i multiplied by the sum of the return
value and the value property of the object c is larger than 100, otherwise it returns false.
The source code of the method is found below. It can be seen that if the unit is defined
as 𝑈 := {𝐴, 𝐶}, then the dependency to be isolated is 𝒟𝐴,𝐵 := {𝐴.𝑚31(𝑖𝑛𝑡) → 𝐵.32(𝐶)}.

public bool m31(int i)
{

C c = new C();
c.Value = 0;
int ret = B.m32(c);
if ((ret + c.Value) * i > 100) return true;
else return false;

}

First execution In the first execution, Pex could not cover the branch, where the
method return true, since the external dependency always returns true and the value of
object c is always 0. The mock to be used should return a value and alter the Value
property of object c so that with the multiplication by i, it is larger than 100.

Generated isolation environment The tool generated two parameters for the PUT,
that must be inserted into to its list of parameters. Furthermore, a mock was generated
to method m2(C), which sets a value to the property Value. The generated code and the
parameters of the isolation environment is the following.

∙ int cPropValue

∙ int returnm32

ShimB.m32C = (p0) => {
p0.Value = cPropValue;
return returnm32;

};

Results and summary By using the newly generated isolation environment, Pex was
able to generate the missing test case to cover the branch with the return true statement.
It generated 999 for cPropValue and 976 for returnm32 parameters.

4.4.2 Real-world examples

In order to have an overview of the usage of the tool in real-world environments I present
two examples from industrial software, where the tool was able to help increasing coverage
in the first executions without the guidance of the test engineer.

52

Content management system

The following example, inspired by the system presented in Section 2.2.2, mimics the
server-side components of typical business applications.

The architecture of the software is similar to a simple three-layered application. It has a
database, which is accessed by the data access layer (DAL) through a stored procedure
executor. One layer above the service layer is found, which contains the business logic,
and accesses the DAL with the help of a manager object that folds the concrete calls to
the other layer. Naturally, the top layer is the graphical user interface, however in this
experiment it is out of the scope, thus I do not discuss it here. Figure 4.7 shows the
overview of the architecture and the scope of testing marked with orange.

Data Access Layer

DB

Business Logic Layer

DataManager

DBExecutor

BasicServices

Data
Access
Object

Figure 4.7: The architecture of the CMS software.

Preamble The BasicServices class contains a method, which modifies a user of the
system with some predefined values that are passed via arguments. This is the entry
point for the symbolic execution. In this method, the DataManager is invoked with method
ModifyUser(UserDAO) to execute an action to the database. In this scenario, the database
executor has a return value. If it is positive, the action was successful, otherwise it was not.
It is important to cover the two cases, because when the action is invalid, the code throws
an exception, which must be handled. Furthermore, by specification, the method uses the
same object during the operation, thus when it finishes, the reference for the object should
contain the modifications. This is used, when the logic checks if the identifier of the user
stayed 0 after the action. If yes, it means a problem, since the modified user cannot have
the id of 0. In these situations, an exception is thrown with indicating the invalid user.
Naturally, during testing, I did not use any database, I supposed instead that the data
access layer is yet incomplete. The important code snippets can be found in F.2.

First execution The first execution generated 1 test case covering 15 out of 23 code
blocks. This means that the two branchings after the call to the database were not fully
covered. In order to increase this coverage, I applied the Pex package for automated
isolation environment generation by attributing the parameterized unit test. I defined the
unit under test as the scope of testing shown in Figure 4.7.

53

Generated isolation environment The prototype implementation generated the fol-
lowing. One mock for the DBExecutor.ModifyUser method and five settings for the
properties of UserDAO class, which is the only parameter of the executor: it is a reference
type and it is out of the unit under test. Their code to be inserted into the PUT can be
found below. Furthermore, to have mocks working, the tool generated that the following
parameters should be added to the PUT.

∙ long userdaoPropId

∙ string userdaoPropEmailAddress

∙ string userdaoPropFullName

∙ DateTime userdaoPropDateOfBirth

∙ List<string> userdaoPropInterests

∙ int returnModifyUser

ShimDBExecutor.ModifyUserUserDAO = (p0) => {
p0.Id = userdaoPropId;
p0.EmailAddress = userdaoPropEmailAddress;
p0.FullName = userdaoPropFullName;
p0.DateOfBirth = userdaoPropDateOfBirth;
p0.Interests = userdaoPropInterests;

return returnModifyUser;
};

Results and summary With the newly generated isolation environment Pex was exe-
cuted again. The results showed that 2 new test cases were generated being able to cover
the branches that were not covered before. Thus, the coverage increased from 15 to 18
code blocks out of 23. In summary, the prototype tool was able to increase the coverage
and provided two new test cases with only one discovery execution.

JustDecompile Engine

The second real-world example is from a commercial product, which recently went open-
source. It is a .NET assembly decompiler called JustDecompile and developed by Telerik
[37]. I selected a method to test and demonstrate the usage and benefits of the tool. The
architecture of the tested component (Utilities) can be seen on Figure 4.8, where the
method under test is marked with orange.

Preamble The method under test is IsTypeNameInCollisionOnAssemblyLevel(
string,AssemblySpecificContext,ModuleSpecificContext) and its source code can be
found in F.3. The task is to decide if the currently analyzed type during the decompi-
lation collides with an other type in the same assembly. The method uses two external
dependencies: AssemblySpecificContext, ModuleSpecificContext. Both of them are
used as parameters to decide if the using statements in the decompiled assembly cause
type ambiguity on assembly level. I chose this method, because it has two dependencies,
that can be injected and the logic of the method relies on their state. However, the state
of these two object cannot be set from outside, because they have private setters. The tool
can help discover these problematic dependencies. It must be stated that I made a small

54

Utilities

IsTypeNameInCollisionOnAssemblyLevel(string typeName,
AssemblySpecificContext assemblyContext,

ModuleSpecificContext mainModuleContext):bool

AssemblySpecificContext ModuleSpecificContext

Figure 4.8: The architecture of the tested part of JustDecompile Engine.

modification to the code due to the prototype state of the tool: I replaced the property
getters with getter methods (the logic stayed the same).

First execution With the first execution Pex generated 14 test cases, however the
coverage of the method stayed very low, since all of the test cases failed due to ex-
ceptions. 11 of them raised NullReferenceException, while the remaining caused
ArgumentNullException to occur. Let us take a look at the source code of the method:
the test cases were only able to reach the set intersection call. The statements followed
by this line were not covered at all.

Generated isolation environment The tool generated the mocks and parameters
found just below. It can be noticed that all of the external calls were caught and a mock
was created for them. Running the test in this isolated environment did not lead to
increase of coverage, since Pex insisted on null inputs. Thus, I had to make assumptions
that restrict the range of values, which can be returned by the mocks. I excluded null
values and also required to have not null elements of certain collections in order to avoid
ArgumentNullExceptions.

∙ ICollection<string> returnGetAssemblyNamespaceUsings

∙ ICollection<string> returnGetModuleNamespaceUsings

∙ Dictionary<string, List<string>> returnGetCollisionTypesDatae

ShimAssemblySpecificContext.AllInstances.GetAssemblyNamespaceUsings = (p0) =>
{ return returnGetAssemblyNamespaceUsings; };

ShimModuleSpecificContext.AllInstances.GetModuleNamespaceUsings = (p0) =>
{ return returnGetModuleNamespaceUsings; };

ShimModuleSpecificContext.AllInstances.GetCollisionTypesData = (p0) =>
{ return returnGetCollisionTypesData; };

Results and summary After introducing the modifications that were mentioned above,
Pex generated 5 test cases, which were able to cover all of the code blocks in the method
including the two different return values too. This coverage could be only achieved by

55

mocking due to the private setter problem, however in this example, the tool generated
the required mocks automatically, thus alleviated the work during testing.

4.4.3 Limitations

Currently, the approach has two kinds of main limitations: limitations of the algorithms
and approach itself. Both of them are discussed below.

Limitations of the approach

Firstly, the idea has scalability limitations due to the underlying techniques. When a mock
is created, my technique extends the list of parameters by one or more, which increases
the state space for symbolic execution. This may largely affect and harden the task for
the underlying solver, which generates concrete values. However, this also means that as
the underlying techniques evolve, my approach is also alleviated to be applied.

Secondly, there are several cases in a source code that must be handled, which hinder the
implementation to prepare for all of them. This includes e.g. generic and static types or
different visibility questions.

Finally, a hindering factor of the approach could be that in large software systems, the
technique does not fulfill its requirements, so that it may require human intervention
and manual inspection of the generated mocks. This can be due to the large number of
generated mocks, which unambiguously leads back to the previous limitation.

Limitations of the algorithms

The following limitations are concerned with the current, proof of concept version of the
implementation, but they can be important due to the underlying challenges.

One of the main limitation is that currently the tool only handles external dependencies
that have source code attached. The challenge here is to analyze an interface with the
Roslyn API without parsing the code into a syntax tree and without runtime compilation
which provides type information. Thus, in these cases I will need to get these information
from the compiled assembly.

Another limitation is the problem of interfaces and abstract classes that cannot be in-
stantiated, when they are put onto the parameters of the parameterized unit test. This
problem also hinders the state modification of complex type parameters in the body of
the double object, since the tool do not have access to these. An interesting approach
would be to inspect the types during symbolic execution and analyze the superclasses and
interfaces of them. Thus, if a suitable class is found then the technique would use that
instead of the interface or abstract class.

Currently, this proof of concept implementation does not handle corner cases like static
or generic types and also avoids discovering fields instead of properties. These are very
common scenarios in real-world software, thus for effective industrial application of this
technique, these cases must be covered with solutions.

56

4.5 Related work

My idea originally derives from a paper written by Tillmann et al. [40], where the idea
of mock object generation is described. They also created a case study for file-system
dependent software [28], which showed promising results. Their technique is able to au-
tomatically create mock objects with behavior and ability to return symbolic variables,
which is used during the symbolic execution to increase the coverage of the unit under test.
However, their solution needs the external interfaces explicitly added to the parameterized
unit tests, moreover they did not care about reference type parameters that can affect the
coverage. Thus, my solution covers more wider area of scenarios and needs rather less user
interaction for the automated generation (my idea only requires the namespace of the unit
under test).

The idea of Galler et al. is to generate mock objects from predefined design by contract
specifications [14]. These contracts describe preconditions of method, thus the derived
mocks are also sticking to them, which makes them able to avoid false behavior. However,
their approach does not relate to symbolic execution, and it may also introduce work
overhead to create contracts. A similar approach is introduces along with a symbolic
execution engine to Java by Islam et al. [25]. The difference is that they build on interfaces
as specifications instead of contracts.

An other approach of mock generation was presented by Pasternak et al. [31]. They
created a tool called GenUTest, which is able to generate unit tests and so-called mock
aspects from previously monitored concrete executions. However, the effectiveness of the
approach largely relies on the completeness of previous concrete executions, while my
approach relies on the symbolic execution.

A very interesting approach is presented by Godefroid in [16]. He introduced the idea of
micro execution, where parts of an arbitrary x86 program can be executed independently,
while the memory operations are monitored and caught before they occur. The values
to be returned for these operations are generated by other tools or randomly. This can
be thought as a form of unit isolation in the lowest level as possible. I mentioned in
Section 4.1.1 that an approach like this creates several challenges and raises countless
questions, but micro execution may be able to provide solutions to some of them according
to the preliminary results.

57

Chapter 5

Summary

In this chapter, the summary of the results is introduced, and the related future work is
also presented.

5.1 Results

In this thesis, the topic of supporting automated test input generation was analyzed. The
main research question was the following:

How can the industrial application of symbolic execution-based test
generation be supported?

Identification of challenges

I managed to identify several challenges in industrial usage of symbolic execution-based
automated test input generation. One of the most significant is its application in the real-
world software due to the large complexity of the source codes. I experimented with two
case studies from which the results supported the statements of the related research in this
topic. Namely, test input generation requires support in order to improve its applicability
in real-world scenarios. I analyzed two techniques in detail, which can be able to fulfill
the supporting requirements and thus able to alleviate the test input generation in such
complex software. I stated the following research questions, which are answered in the
thesis.

1. What type of representation can help reduce the lack of perspicuity?

2. What kind of information can be obtained during symbolic execution?

3. What type of information can be represented for the explorations?

4. How the problem of isolation can be alleviated or solved in order to support test
generation?

Visualization

The visualization of symbolic execution is an active research topic, however I applied
the visualization to alleviate the work with symbolic execution. The first three research

58

question could be answered with the definition of the visualization technique. I chose a
graph representation for the visualization for which the appearance is described in detail.
Furthermore, I defined and selected the most valuable metadata that can be acquired
during symbolic execution and are able to support the work of test engineers. I also
described the appearance of these metadata for the graph.

The visualization technique was implemented in a form of a tool, which is open-source and
publicly available on GitHub. I experimented with the tool, and the results showed that
it may be applied in real-world scenarios, since it does not introduce tremendous overhead
for the symbolic execution.

Automated isolation

One of the discovered challenges in real-world scenarios was the unit isolation for unit
testing, since these applications have several external dependencies in each of their com-
ponents (e.g. databases, external services or even lack of design for testability). Isolating
the dependencies requires large amount of time, which can be reduced by automation.

The described isolation technique in this thesis could answer the last research question.
During my work, I defined the technique in detail including its basic ideas and algorithms.
The main idea is to detect the dependencies during the symbolic execution and automat-
ically generate the isolation environment for the unit under test from the collected data.
I also presented the capabilities through a prototype implementation by using three basic
and two real-world examples.

The results showed that there is great potential in the idea and may be able to alleviate
the work with symbolic execution-based test input generation in real-world scenarios and
environments.

5.2 Future work

During my research and experiments I managed to reveal new limits and challenges among
the analyzed topics. The following future works may be able to increase the usability of
symbolic execution for engineering applications.

∙ Handling loops, recursions and deep execution traces in the symbolic execution tree
(e.g. with collapsing branches), which can make the represented graph clearer.

∙ Optimization of the data collection algorithm may be able to reduce the monitoring
overhead of the generation of visualization.

∙ Detailed case studies of the applicability of visualization in order to support the
preliminary results.

∙ Expanding the implementation of the automated isolation environment generation
to cover all the corner cases mentioned in the thesis.

∙ Real-world experiments and measurements for the automated isolation technique to
confirm the usability of the technique.

∙ Combination of automated isolation and compositional symbolic execution may lead
to a new level of automated test input generation, where the work of test engineers
can be greatly alleviated.

59

Köszönetnyilvánítás

Ezúton is szeretném kifejezni hálámat konzulenseimnek Dr. Micskei Zoltánnak és Vörös
Andrásnak, akik közös erővel támogattak az utóbbi három év munkája során. Az ő út-
mutatásuknak köszönhetem az elmúlt időszakban elért sikereimet, amelyek megalapozták
szakmai pályafutásomat.

Köszönettel tartozom továbbá Theisz Zoltánnak, aki munkámat szakmai megbeszéléseink
során ötletekkel és tanácsokkal segítette.

iii

List of Figures

1.1 Overview of Example 1. 6

1.2 A possible visual representation of the symbolic execution. 7

1.3 A simple overview of the steps applied in DSE. 9

1.4 Example of the Pex functionality. 10

3.1 Basic notions of the approach. 16

3.2 The symbolic execution tree extended with path conditions. 20

3.3 An example of marking the exit points from the unit in a symbolic execution
tree. 21

3.4 Architecture of the SEViz tool . 21

3.5 Symbolic execution trees in SEViz . 23

3.6 Example of the incremental path condition problem. 24

3.7 Symbolic execution tree of method ArraySample_02. 26

3.8 Symbolic execution tree of method StringSample_05. 27

3.9 Symbolic execution tree of method ForLoop_Fibonacci. 28

3.10 Analysis steps of the GitSharp example in SEViz 30

3.11 Relation between depth and execution time. 33

3.12 Relation between number of nodes and execution time. 34

3.13 Relation between width (x) and execution time (y) in different depths (color). 35

3.14 Relation between depth (x) and execution time (y) in different widths (color). 35

3.15 Scalability relation between number of nodes and time. 36

4.1 Overview of proxy-based isolation technique. 41

4.2 Overview of profiler-based isolation technique. 42

4.3 Overview of the automated isolation technique. 43

4.4 An example scenario of return value analysis. 45

4.5 An example scenario of parameter analysis. 46

4.6 The architecture of the simple example. 50

4.7 The architecture of the CMS software. 53

4.8 The architecture of the tested part of JustDecompile Engine. 55

iv

Bibliography

[1] Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John Clark, Myra B. Cohen,
Wolfgang Grieskamp, Mark Harman, Mary Jean Harrold, and Phil Mcminn. An
Orchestrated Survey of Methodologies for Automated Software Test Case Generation.
J. Syst. Softw., 86(8):1978–2001, August 2013.

[2] Clark Barrett, Aaron Stump, and Cesare Tinelli. The Satisfiability Modulo Theories
Library (SMT-LIB). www.SMT-LIB.org, 2010.

[3] Antonia Bertolino. Software Testing Research: Achievements, Challenges, Dreams.
In Future of Software Engineering, 2007. FOSE ’07, pages 85–103, May 2007.

[4] Pietro Braione, Giovanni Denaro, Andrea Mattavelli, Mattia Vivanti, and Ali
Muhammad. Software Testing with Code-based Test Generators: Data and Lessons
Learned from a Case Study with an Industrial Software Component. Software Quality
Journal, 22(2):1–23, 2013.

[5] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and Auto-
matic Generation of High–coverage tests for Complex Systems Programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

[6] Cristian Cadar, Patrice Godefroid, Sarfraz Khurshid, Corina S. Păsăreanu, Koushik
Sen, Nikolai Tillmann, and Willem Visser. Symbolic Execution for Software Testing
in Practice: Preliminary Assessment. In Proceedings of the 33rd International Con-
ference on Software Engineering, ICSE ’11, pages 1066–1071, New York, NY, USA,
2011. ACM.

[7] Cristian Cadar and Koushik Sen. Symbolic Execution for Software Testing: Three
Decades Later. Commun. ACM, 56(2):82–90, February 2013.

[8] Ting Chen, Xiao song Zhang, Shi ze Guo, Hong yuan Li, and Yue Wu. State of the Art:
Dynamic Symbolic Execution for Automated Test Generation. Future Generation
Computer Systems, 29(7):1758 – 1773, 2013.

[9] Christoph Csallner, Nikolai Tillmann, and Yannis Smaragdakis. DySy: Dynamic
Symbolic Execution for Invariant Inference. In Proc. of the 13th international con-
ference on Software engineering - ICSE ’08, pages 281–290, 2008.

[10] Jonathan de Halleux and Nikolai Tillmann. Parameterized Unit Testing with Pex.
In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, volume 4966 of
Lecture Notes in Computer Science, pages 171–181. Springer Berlin Heidelberg, 2008.

[11] Leonardo de Moura and Nikolaj Bjorner. Z3: An Efficient SMT Solver. In C.R.
Ramakrishnan and Jakob Rehof, editors, Tools and Algorithms for the Construction

v

and Analysis of Systems, volume 4963 of Lecture Notes in Computer Science, pages
337–340. Springer Berlin Heidelberg, 2008.

[12] eqqon GmbH. GitSharp. http://www.eqqon.com/index.php/GitSharp, 2013.

[13] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg. Does
Automated White-box Test Generation Really Help Software Testers? In Proceedings
of the 2013 International Symposium on Software Testing and Analysis, ISSTA 2013,
pages 291–301, New York, NY, USA, 2013. ACM.

[14] Stefan J Galler, Andreas Maller, and Franz Wotawa. Automatically Extracting Mock
Object Behavior from Design by ContractTM Specification for Test Data Generation.
In Proceedings of the 5th Workshop on Automation of Software Test, pages 43–50.
ACM, 2010.

[15] Emden R. Gansner and Stephen C. North. An Open Graph Visualization System
and its Applications to Software Engineering. SOFTWARE - PRACTICE AND EX-
PERIENCE, 30(11):1203–1233, 2000.

[16] Patrice Godefroid. Micro Execution. In Proceedings of the 36th International Con-
ference on Software Engineering, pages 539–549. ACM, 2014.

[17] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: Whitebox Fuzzing
for Security Testing. Queue, 10(1):20:20–20:27, January 2012.

[18] Gotlieb, Arnaud and Botella, Bernard and Rueher, Michel. Automatic Test Data
Generation using Constraint Solving Techniques. In ACM SIGSOFT Software Engi-
neering Notes, volume 23, pages 53–62. ACM, 1998.

[19] Reiner Hähnle, Marcus Baum, Richard Bubel, and Marcel Rothe. A Visual Interactive
Debugger Based on Symbolic Execution. In Proceedings of the IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’10, pages 143–146, New
York, NY, USA, 2010. ACM.

[20] Martin Hentschel, Reiner Hähnle, and Richard Bubel. Visualizing Unbounded Sym-
bolic Execution. In Martina Seidl and Nikolai Tillmann, editors, Tests and Proofs,
volume 8570 of Lecture Notes in Computer Science, pages 82–98. Springer Interna-
tional Publishing, 2014.

[21] David Honfi, Andras Voros, and Zoltan Micskei. SEViz: A Tool for Visualizing
Symbolic Execution. In Software Testing, Verification and Validation (ICST), 2015
IEEE 8th International Conference on, pages 1–8, April 2015.

[22] Dávid Honfi, Zoltán Micskei, and András Vörös. Support and Analysis of Symbolic
Execution-based Test Generation, TDK thesis, BME. 2014.

[23] IEEE. IEEE Standard Classification for Software Anomalies. IEEE Std 1044-1993,
pages i–, 1994.

[24] IEEE. IEEE Standard for Software and System Test Documentation. IEEE Std.
829-2008, 2008.

[25] Mainul Islam and Christoph Csallner. Dsc+Mock: A Test Case + Mock Class Genera-
tor in Support of Coding against Interfaces. In Proceedings of the Eighth International
Workshop on Dynamic Analysis, pages 26–31. ACM, 2010.

vi

[26] ISTQB. Foundation Level Syllabus, 2011.

[27] James C. King. Symbolic Execution and Program Testing. Commun. ACM,
19(7):385–394, 1976.

[28] Madhuri R. Marri, Tao Xie, Nikolai Tillmann, Jonathan De Halleux, and Wolfram
Schulte. An Empirical Study of Testing File-System-Dependent Software with Mock
Objects. Proceedings of the 2009 ICSE Workshop on Automation of Software Test,
AST 2009, pages 149–153, 2009.

[29] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Prentice Hall PTR,
Upper Saddle River, NJ, USA, 2006.

[30] Alessandro Orso and Gregg Rothermel. Software Testing: A Research Travelogue
(2000–2014). In Proceedings of the on Future of Software Engineering, FOSE
2014, pages 117–132, New York, NY, USA, 2014. ACM.

[31] Benny Pasternak, Shmuel Tyszberowicz, and Amiram Yehudai. GenUTest: a Unit
Test and Mock Aspect Generation Tool. International journal on software tools for
technology transfer, 11(4):273–290, 2009.

[32] CodePlex project. Data Structures and Algorithms. https://dsa.codeplex.com/, 2008.

[33] CodePlex project. .NET Bio. http://bio.codeplex.com/, 2013.

[34] Corina S. Păsăreanu, Willem Visser, David Bushnell, Jaco Geldenhuys, Peter Mehlitz,
and Neha Rungta. Symbolic PathFinder: Integrating Symbolic Sxecution with Model
Checking for Java Bytecode Analysis. Automated Software Engineering, 20(3):391–
425, 2013.

[35] Xiao Qu and B. Robinson. A Case Study of Concolic Testing Tools and their Lim-
itations. In Empirical Software Engineering and Measurement (ESEM), 2011 Inter-
national Symposium on, pages 117–126, Sept 2011.

[36] Christian Rodemeyer. Dot2WPF - a WPF Control for Viewing Dot Graphs, 2007.

[37] Telerik. JustDecompile Engine. https://github.com/telerik/justdecompileengine,
2015.

[38] Nikolai Tillmann and Jonathan de Halleux. Pex–White Box Test Generation for
.NET. In Bernhard Beckert and Reiner Hähnle, editors, Tests and Proofs, volume 4966
of Lecture Notes in Computer Science, pages 134–153. Springer Berlin Heidelberg,
2008.

[39] Nikolai Tillmann, Jonathan de Halleux, and Tao Xie. Transferring an Automated Test
Generation Tool to Practice: From Pex to Fakes and Code Digger. In Proceedings of
the 29th ACM/IEEE International Conference on Automated Software Engineering,
ASE ’14, pages 385–396, New York, NY, USA, 2014. ACM.

[40] Nikolai Tillmann and Wolfram Schulte. Mock-Object Generation with Behavior.
Proceedings - 21st IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2006, pages 365–366, 2006.

[41] Xusheng Xiao, Sihan Li, Tao Xie, and Nikolai Tillmann. Characteristic Studies of
Loop Problems for Structural Test Generation via Symbolic Execution. In Proc.
28th IEEE/ACM International Conference on Automated Software Engineering (ASE
2013), November 2013.

vii

[42] Xusheng Xiao, Tao Xie, Nikolai Tillmann, and Jonathan De Halleux. Covana : Pre-
cise Identification of Problems in Pex. In Software Engineering (ICSE), 2011 33rd
International Conference on, pages 1004–1006, 2011.

[43] Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte. Fitness-
Guided Path Exploration in Dynamic Symbolic Execution. In Dependable Systems
Networks, 2009. DSN ’09. IEEE/IFIP Int. Conf. on, pages 359–368, 2009.

viii

Appendix

F.1 Source code of simple isolation examples

// To be implemented...
public static class B
{

public static bool m12(int a)
{

return true;
}

public static int m13(int b)
{

return 100;
}

public static void m22(C c) { // To be implemented... }

public static int m32(C c)
{

return 0;
}

}

public class C
{

public int Value { get; set; }
}

ix

F.2 Source code snippets of the examined CMS

public void BasicServices.ModifyUser(string emailAddress, string fullName, DateTime
dateOfBirth, List<string> interests)

{
var user = new UserDAO()
{

Id = 0,
EmailAddress = emailAddress,
FullName = fullName,
DateOfBirth = dateOfBirth,
Interests = interests

};

dataManager.ModifyUser(user);
}

public void DataManager.ModifyUser(UserDAO user)
{

var tempId = user.Id;
if (DBExecutor.ModifyUser(user) <= 0)
{

throw new Exception("Operation was not successful.");
}

if (user.Id == tempId)
{

throw new Exception("The user is invalid.");
}

}

x

F.3 Source code of the method test in JustDecompile Engine

public static bool IsTypeNameInCollisionOnAssemblyLevel(string typeName,
AssemblySpecificContext assemblyContext, ModuleSpecificContext mainModuleContext)

{
HashSet<string> usedNamespaces = new HashSet<string>();

foreach (string usedNamespace in assemblyContext.GetAssemblyNamespaceUsings())
{

usedNamespaces.Add(usedNamespace);
}

usedNamespaces.UnionWith(mainModuleContext.GetModuleNamespaceUsings());

List<string> typeCollisionNamespaces;
if (mainModuleContext.GetCollisionTypesData().TryGetValue(typeName, out

typeCollisionNamespaces))
{

IEnumerable<string> namespacesIntersection = typeCollisionNamespaces.Intersect(
usedNamespaces);

if (namespacesIntersection.Count() > 1)
{

return true;
}

}

return false;
}

xi

	Kivonat
	Abstract
	Introduction
	Background
	Software testing
	Overview
	Methods of testing

	Unit testing
	Isolated unit
	The importance of unit testing

	Symbolic execution
	An automated test input generator
	Parameterized unit tests
	Dynamic symbolic execution
	Internal functionality
	Analysis of extensibility

	Motivation
	Related work
	Our previous case studies
	Petri net modeler
	Content management system

	Potential improvement areas
	Research questions

	Visualization of symbolic execution
	Methodology
	Representation
	Nodes and edges
	Appearance of the nodes
	Source code mapping
	Path conditions
	Indicating unit isolation

	Implementation
	Tool architecture
	SEViz Monitoring
	SEViz Viewer
	SEViz Visual Studio Extension

	Introductory examples
	Evaluation
	Example use cases
	Experiments
	Limitations of the approach

	Related work

	Automated isolation environment generation
	Basic notions
	Unit test isolation
	Isolation frameworks
	Microsoft Fakes

	Methodology
	Overview
	Detection
	Analysis
	Generation

	Implementation challenges
	Extending Microsoft Pex
	Using .NET Compiler Platform
	Generation with Microsoft Fakes

	Evaluation
	Basic examples
	Real-world examples
	Limitations

	Related work

	Summary
	Results
	Future work

	Köszönetnyilvánítás
	List of Figures
	Bibliography
	Appendix
	Source code of simple isolation examples
	Source code snippets of the examined CMS
	Source code of the method test in JustDecompile Engine

