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Kivonat

Az elmúlt évek során az informatikai és azon belül is a biztonságkritikus rendszerek komp-
lexitása rohamosan növekedett. Az összetett rendszerek tervezésében a bonyolultságukból
adódóan meghatározó paradigmává vált a modell alapú megközelítés. Ennek során ma-
gasszintű modellekből kiindulva származtatjuk a rendszer konfigurációs beállításait, do-
kumentációt és akár forráskódját is. Így a magasszintű terveken különböző ellenőrzéseket
lehet végrehajtani, miközben a folyamatos konzisztenciát megtartva automatikusan gene-
rálhatóak a platform-specifikus megvalósítások.

A dolgozatomban a rendszerkomponensek kommunikációjának modellezésére gyakran
használt forgatókönyv-alapú specifikációs nyelv formalizmusokat vizsgálom. Ezek előnye,
hogy még a konkrét komponensek megvalósítása nélkül, csupán a komponens szintű ter-
vekből kiindulva vizsgálhatóak az egyes kommunikációs szekvenciák. Ezáltal korai fázis-
ban detektálhatóvá válnak az inkonzisztens viselkedések, melyek a specifikációban rejlő
hiányosságokra, ellentmondásokra vezethetőek vissza.

A dolgozatomban áttekintem a gyakran használt forgatókönyv-alapú specifikációs
nyelveket, kiértékelem a hozzájuk tartozó nyílt forráskódú tervezőszoftvereket is. A szoft-
vereket két szempontból hasonlítom össze: az általuk támogatott specifikációs nyelv szab-
ványossága, illetve az eszköz által megvalósított analízis és tervezési funkciók tekintetében.

Elosztott, beágyazott, biztonságkritikus rendszereket állapotgép formalizmussal is le-
het tervezni. A Gamma állapotgép kompozíciós keretrendszer [14, 15] egy eszköz, amely
támogatja a komponens alapú, hierarchikus, reaktív rendszerek tervezését és analízisét.
Ennek ellenére az eszközben jelenleg nem lehetséges egy adott komponens adott portjára
vonatkozó kommunikációt modellezni és megtervezni.

Ezért dolgozatomban kiegészítem a Gamma keretrendszert egy modell alapú forga-
tókönyv nyelvvel, a Gamma szkenárió nyelvvel (GSL). A formalizmus a Live Sequence
Chartokon alapul. A nyelv absztrakt és konkrét szintaxisát nyílt forráskódú modellezési
technológiákkal készítettem el. Ezenkívül definiáltam a GSL formális működési szemanti-
káját is azáltal, hogy az egyes szkenáriókat véges automatákra képzem le.

Ezután a dolgozatomban bemutatok egy eljárást forgatókönyvek egymással való kom-
patibilitásának ellenőrzésére. Az eljárás olyan eseménysorozatok keresésén alapul, amelyek
ellentmondásos döntésre juttatnak két forgatókönyvet. Azaz az eseménysorozatot az egyes
forgatókönyveken szimulálva az egyik elfogadja (érvényesnek jelöli meg), míg a másik el-
utasítja (érvénytelennek jelöli meg) azt. A validációs eljárás eredményét visszavetítem a
forgatókönyv szerkesztőbe azon célból, hogy a tervezőmérnök értesüljön az ellentmondásos
definíciókról.

Végül bemutatom a GSL-nek a Gamma keretrendszerrel való integrálhatóságát egy
modellvasút esettanulmányon keresztül. Ezenkívül méréseket is végeztem a szkenárió kom-
patibilitási eljárás futásidejének vizsgálatára.
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Abstract

The complexity of IT and safety-critical systems has increased rapidly in recent years.
Due to the complexity of the systems in system engineering, the model-based paradigm
has become the decisive approach. The goal of the approach is to automatically derive
configuration, documentation and implementation from high-level models. In this way
different analysis methods can be applied on the high-level models. Finally, consistency
can be checked and the platform-specific implementation can be generated automatically.

In the thesis, I analyze the often used scenario-based specification languages for mod-
eling communication of system components. The advantage of these languages is that the
communication sequences of different components can be analyzed without actual imple-
mentation details, using only the component-level design models. In this way inconsistent
behaviors and design flaws can be identified in the early design stages. These flaws are
usually due to ambiguous requirements and specification.

Besides the overview of the frequently used scenario-based specification languages,
I evaluate the existing tool support for them by comparing the tools from the level of
standardization of the modeling language, that is used by the tool, and the analysis and
design functionalities the tool offers.

Distributed embedded safety-critical systems can be developed by statechart formal-
ism. Gamma Statechart Composition Framework [14, 15] is a tool which supports the
model-driven design and analysis of hierarchical, component-based reactive systems. How-
ever, it is not possible to specify the communication through a given port of a component.

Hence I enrich the Gamma Framework with a model-based scenario language: Gamma
Scenario Language (GSL). The formalism of GSL is based on Live Sequence Charts. I
designed the abstract and concrete syntax of GSL using open-source modeling technologies.
I also defined the formal operational semantics of the language by transforming scenarios
into finite automata.

I propose and implement a scenario compatibility validation workflow which finds am-
biguous traces in scenario definitions and then back-annotates these traces to the scenario
editor to notify the engineer about the ambiguities.

Finally, in order to evaluate the applicability and the integrity of GSL to the Gamma
Framework, I apply the language on a model railway case study. Then I perform several
measurements, in order to get a preliminary overview for the runtime performance of the
scenario compatibility validation workflow.
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Chapter 1

Introduction

The complexity of software and safety-critical systems has increased rapidly in recent
years. In software engineering it led to the increasing number of lines of source code. For
example, on an Airbus A380 airplane several million lines of code are responsible for the
safety of the passengers. In addition to that, in order to be fault tolerant and handle
extra functional requirements, these systems have to be distributed which adds an extra
complexity to the system design.

Motivation Therefore in the latest years the model-based approach became an impor-
tant paradigm in the field of distributed and safety-critical systems. The goal of this
approach is to provide methods to develop models and to automatically generate imple-
mentation from them, thus eliminating the cost of bugs caused by manual implementation.

Such development methodology is the Y-model [6]. On each level of the Y design
method, the design plans and the details of the respective component are contained within
the models. In this way the platform-specific implementation, source codes and configu-
ration files, can be automatically derived using code-generators. Besides, from each V&V
model different test cases can be generated automatically, which can verify the correctness
of the code-generators.

Testing and analyzing the correct behavior of such systems with the conventional
approaches usually requires large amount of human effort. However, the model-driven
approach can also provide means to apply formal methods that allow the discovery of
both design and behavioral errors in an early stage of development.

Another advantage of model-driven development, besides the code generation and the
formal reasoning about correctness, is one can design models about every aspect of the
system, including the communication between the components.

Specification languages The modeling of communication originates from the telecom-
munication industry, where the first scenario based specification language, the Message
Sequence Chart (MSC), was standardized by the International Telecommunications Union
(ITU) in 1993 [35]. This language enabled the graphical representation of message ex-
changes and actions done by entities (instances) participating in the scenario.

Over the years, several other formalisms were derived from MSC. For example, Object
Management Group (OMG) [46] standardized UML Sequence Diagrams. It extends the
MSC with several new elements, thus enabling modeling more complex scenarios. Another
formalism, called Live Sequence Charts (LSC) was first published in 2001 [8]. LSC was
motivated by the fact that MSC and UML Sequence Diagrams cannot easily express
either mandatory or optional behavior. Hence LSC introduced message-level and chart-
level modalities. A fourth scenario based language is Modal Sequence Diagram (MSD). It
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is the combination of LSC with UML Sequence Diagram, because by applying stereotypes
it adds modalities to the elements of the UML Sequence Diagrams [24]. Thus the methods
which were developed for those formalisms can be also applied to MSD.

There are several open-source modeling tools which support designing scenario-based
specifications using the aforementioned languages. I compared several such tools and found
that usability, supported functionality and their popularity is changing from one tool to
another. Also the maturity of design analysis and validation capabilities these tools have
varies on a wide range. The results of the survey is detailed in the further chapters of the
Master Thesis.

Context Distributed embedded safety-critical systems can be developed by state-
chart formalism. Gamma Statechart Composition Framework (Gamma Framework in
short) [14, 15] is a tool which supports the model-driven design and analysis of hierarchical,
component-based reactive systems. Automatic transformation of individual statecharts,
as well as their composition to formal models, has been developed to support the formal
analysis of the design models. Additionally, the framework supports the back-annotation
of the analysis results to the compositional language enabling the users to analyze the
behavior of their models in a familiar domain.

Although with the Gamma Framework the engineer can compose composite models
from statecharts and formally prove their correctness, it still lacks a functionality to model
and specify communication scenarios between components. More specifically, it is not
possible to specify the communication through a given port of a given component.

Language development Hence the aim of my Master Thesis is to enrich the Gamma
Framework with a model-based scenario language. This scenario language, called Gamma
Scenario Language (GSL), has on hand practical syntax with modern tooling support to
ease its usage within the framework. On the other hand, it has formal semantics to support
formal validation of such scenarios. It validates the compatibility of scenario definitions
by finding ambiguous traces. Ambiguous traces are such traces that are accepted by one
scenario definition but rejected by another one. For implementation I used open-source
modeling technologies, such as Eclipse Modeling Framework [52], Xtext [12] and Xtend [4].

Finally, I evaluate the work from two perspectives. First, by introducing the appli-
cation of GSL on a model railway case study for designing and validating scenarios on
a port of a component. Second, by presenting the results for the preliminary runtime
performance of the scenario compatibility validation workflow implementation.

The rest of the work is structured as follows:

• Chapter 2 presents the concepts of model-driven engineering, the aforementioned
scenario-based specification languages, the Gamma Framework and the theoretical
concepts behind the formal semantics of GSL scenarios.

• Chapter 3 defines some aspects for analyzing scenario-based specifications and it
also compares existing modeling tools for scenario-based specification languages.

• Chapter 4 introduces the decisions that were considered during the design of GSL.

• Chapter 5 introduces GSL in details, including its abstract syntax, concrete syntax
and operational semantics, moreover it also details the validation of GSL scenarios.

• Chapter 6 evaluates the work through a case study and preliminary runtime perfor-
mance measurements.

• Chapter 7 concludes the work and provides ideas for future work.
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Chapter 2

Background

System engineering provides solutions for multidisciplinary problems. It includes the busi-
ness and technical processes, that are necessary to achieve the solutions and to eliminate
risks which affect the success of the project. The technical processes include both system
specification, design, engineering and the testing, validation and verification of the built
system [13, p. 15].

2.1 Model-Driven Systems Engineering

Definition 1 (Model). Model is the simplified representation of the real world. It keeps
information that is relevant from the design perspective, and abstracts or simplifies other,
irrelevant aspects and perspectives of reality [13]. �

Definition 2 (Model-Driven Systems Engineering). Model-Driven Systems Engi-
neering is a formalized application of modeling requirements, design, analysis, verification
and validation processes. The primary artifact is the model, that is the chief information
container medium [30]. �

In model-driven engineering the emphasis is put not on writing detailed electrical doc-
umentation but designing a coherent system model and automatically deriving platform-
dependent source code and configuration from it. Besides, component- and system-level
design models are created, that both contain the necessary information of the respective
aspect of the system with the related constraints as well.

The greatest advantage of the model-driven approach is the automatic transformation
of the platform-independent models to platform-dependent source code and configuration
files using code generators. In this way the consistency of model and the generated code
can be satisfied and the bugs from the manual implementation can be eliminated.

Besides source code, documentation can be automatically derived too. In this way it
will be maintained along with models, so they will be always consistent and up-to-date.

Model-driven engineering is primarily applied in safety-critical systems, e.g. air traffic
control and railway control systems, where the fault tolerant operation is essential. Thus
these software and hardware components of such systems should meet strict standards,
e.g. DO-178C [48], DO-278A [49], DO-331 [50], EN-50128 [36]. The EN-50128 standard
contains the model-driven and formal verification rules that should be applied in the
engineering of avionics systems.
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Figure 2.1: Y-Model of Model-Driven Systems Engineering [43]

2.2 Y-Model in Model-Driven Systems Engineering

The model-driven approach is usually applied in the engineering of safety-critical systems
where the validation and verification of the system is essential in all design phases. The
system, along with its components, should be compliant with the requirements and should
fulfill additional formal and informal safety rules. In order to help engineers design such
systems, the formerly used V Systems Engineering Process model [51, p. 40] has been
extended into a Y-model [6] depicted in Figure 2.1.

The Y-model is similar to the former V-model, because in order to fulfill the complex
requirements against the system, a hierarchical design process is elaborated. First, the
high-level requirements are collected, refined and analyzed. Then, the System Design
Model is elaborated from the requirement analysis artifacts. It contains the construction of
different architectures that build-up the entire system which conforms to the requirements.

On the third level the heterogenious interacting components are designed. The in-
ternal structure of these architectures can be different, the details are contained in each
Architecture Design Model.

By decomposing each layer to different components, the complexity of the initial
problem, the complex requirements which were set against the system, can be reduced
and the validation and verification of the system can be managed, if the Component
Design Models are small and simple enough.

In the Y-model, correspondingly to the V-model, on each design level a validation and
verification model can be derived through model transformation rules. Formal methods
can be applied on the validation and verification (V&V) models. Besides, verification
results from the lower levels can be reused on the higher levels, e.g. Architecture V&V
Model can reuse the verification results of its Components V&V Models.

The validation and verification information can be driven back to the design models
through back-annotation. In this way engineers can tell how the design models should be
modified in order to correct design flaws and errors.
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On each level of the Y design method, the design plans and the details of the re-
spective component are contained within the models. In this way the platform-specific
implementation, source code and configuration files, can be automatically derived using
code generators. Besides, from the each V&V model different test cases can be generated
automatically, which can verify the correctness of the code generators.

Extending the V-model with code generators and formal verification can eliminate
bugs which would be added by manual source code implementation. In this way the
design quality of the system and its components can be improved and the implementation
and maintenance costs can be greatly reduced.

2.3 Model-Driven Software Engineering
The model-driven approach can be applied not only for hardware systems, but for software
systems as well, and in this way for the software engineering field too. In order to elaborate
Model-Driven Software Engineering, standard modeling languages are required. They
have precise semantics that is essential for attaching formal meaning to the elements of
the language. A standard modeling language is defined by four attributes:

• Abstract syntax: describes the elements of the language and their relations. Abstract
syntax describes the language in a platform-independent way.

• Concrete syntax: concrete representation, denotation of the elements of the language.

• Formal semantics: semantics of the elements of the language.

• Well-formedness constraints: constraints of the language that cannot be described
by the abstract syntax.

The different modeling languages defined by the Object Management Group have
become the de-facto standards in software engineering. These languages include the
Unified Modeling Language (UML [46]), the Systems Modeling Language (SysML [45])
that can be used for Model-Driven Systems Engineering too.

The first, 1.0, version of UML was published in 1997. The most recent version of
the language is 2.5, that was published in 2015. The abstract syntax of the language
is its metamodel. The concrete syntax is defined by the different UML diagrams. The
well-formedness constraints are described in the Object Constraint Language (OCL [44]).
The formal semantics of UML was not defined. Instead, a derivation of UML exists that
is fUML [47] and it contains the formal semantics of UML activity diagrams.

2.3.1 Eclipse Modeling Framework
Eclipse is a free, open-source integrated software development environment that comes
with an extensible plug-in framework. One of the most widely used plug-in set is the
Eclipse Modeling Framework (EMF) [52], that has become one of the de-facto modeling
toolsets in Model-Driven Software and Systems Engineering.

Ecore is the metamodel of EMF. The most important concepts of Ecore, which resem-
bles to the UML metamodel since it uses similar concepts, are depicted in Figure 2.2. EMF
comes with a metamodel editor, which enables the engineer to design the domain-specific
metamodel, similarly to designing class diagrams.

Besides, an editor can be generated for creating models that conform the formerly
designed metamodel. The editor enables developing models in a tree-like structure. In
this way designing domain-specific metamodels and creating instance models can be done

5
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Figure 2.2: Core concepts of the EMF metamodel

in the same framework. It enables rapid design and platform independent development,
because both the model and metamodel are serialized in an XMI structure.

Platform-specific codes can be generated from the designed metamodel and the in-
stance model by using the built-in code generation facility. This facility is extensible with
new generators depending on the target platform where the final model or the system
should be deployed.

2.4 Scenario-based Specification Languages
The model-driven engineering process introduces scenario-based specification languages
to describe the collaboration of system components and inter-object communication. It
helps engineers to get a quick overview of how each part relates to the others, what
messages they exchange and which are the critical message sequences. Scenario-based
specification languages are designed to overcome these difficulties and help system and
software developers model the inter-object communication scenarios.

Scenario-based languages provide means to describe interactions between different
participants with individual lifelines to achieve a goal. Although a scenario can prescribe
mandatory, forbidden, or optional behavior, there are other possible behaviors of the
system which are not prescribed by either scenario.

Scenario-based Specification Languages can be used in the Model-Driven Systems
Engineering methodology, if these languages allow us to create different models which
describe scenarios. In this way the communication between the components or entities
of the system can be described at a high-level, if we only know what messages shall be
transferred between them. Besides, if we know what methods these entities have, then we
can describe lower-level behavior too, e.g. method calls, attribute constraints.

There are different scenario languages which have a common origin, the purpose of
describing high-level communication, but the details of each formalism are elaborated
differently. They are going to be introduced in the following sections.

Harel proposes a methodology [19, 20], that resembles Model-Driven Systems or Soft-
ware Engineering, which allows computer engineers to synthesize running code from high-
level use-case diagrams and intuitively designed scenarios. The consistency of the specifica-
tion can be verified with formal methods, and the synthesis can be done via automata and
statecharts. Final implementation code can be generated from statecharts by platform-
specific code generators.
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Although, as an evidence of feasibility the articles focus only on the Live Sequence
Chart formalism, there are some aspects which are disregarded in papers: e.g. applying
fault tolerant and safety methods on complex reactive systems, handling the complexity
during formal verification due to the state-space explosion problem.

2.4.1 Message Sequence Chart

Message Sequence Chart [29] was standardized by the International Telecommunications
Union (ITU) in 1993 [35]. The formalism was originally called Extended Sequence Chart, an
auxiliary notation for the Specification and Description Language [34] that is a standard
for the specification of telecommunication systems’ structure and behavior. The MSC
formalism is introduced below as it was by Klose [38, pp. 46–47]:

A possible graphical notation for MSC is similar to the ones for UML Sequence
Diagrams (as introduced in Section 2.4.3). The participating entities have vertical lifelines
(instance axis), the communication (messages) between them is represented by horizontal
lines with messages noted on the top of them, as depicted in Figure 2.3.

Every communication is asynchronous and (similar to UML Sequence Diagrams) con-
sists of two events: a send event and a receive event. The two restrictions for message
events are the following: the send event should be before the receive event, and only one
message may be sent or received by each entity at one point of time.

Besides communication, there can be actions done by the entities themselves and
conditions which may involve more entities. Conditions may include entities’ local variables
and value restrictions for message parameters.

The events (messages, actions, conditions) of an instance axis are ordered from top
to bottom, unless they are contained in a coregion. All events within a coregion are
completely unordered, i.e. they may occur in any order, but not simultaneously.
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2.4.2 Live Sequence Chart
Live Sequence Chart was first published in 2001 [8] and there are many tools which support
it. For example the Play-Engine [27] and its advanced version the PlayGo framework,
which provides a Play-In / Play-Out approach [28] through that LSCs can be both specified
and simulated.

The design of the LSC formalism was motivated by the fact that sequence charts, like
Message Sequence Chart and UML Sequence Diagrams, cannot make difference between
mandatory and optional behavior.

LSC resembles MSC in a lot of perspectives, but the biggest difference between them is
that LSC attaches modalities to scenarios and many researchers have defined its semantics
over the years [8, 21, 22, 23, 38]. Modality can be defined on two levels: the first level is
the whole scenario (chart), the second level is the level of messages.

Chart-level modality Chart is called universal if it consists of two parts: prechart
which describes the preconditions of the scenario. If the interactions in the prechart are
successfully executed, then the chart body, also called as mainchart has to be executed
successfully too. If the mainchart is not successfully executed, then the chart is violated,
unless the violation occurred because of a cold message (see message-level modality para-
graph for more details). Universal charts describe expected behavior over all possible
system traces.

An existential chart consists of only the mainchart part which describes scenarios
without preconditions, e.g. some exceptional behaviors which may occur by accident. How-
ever, existential charts should be satisfied by at least one trace.

Message-level modality On the message level, a message can be either cold (optional)
or hot (mandatory). A cold message is optional, if it does not arrive (due to the fact that
it is lost or an other message arrives instead of that [28]), then the scenario is exited and
the trace remains inconclusive. On the other hand, a hot message prescribes a mandatory
behavior, so the specified message must arrive, otherwise the whole chart is violated and
the trace is invalid.

A condition is a boolean expression which consists of logical and arithmetical opera-
tors, constants and attributes. In a chart a condition can be cold, meaning that it may
be true (otherwise control moves out of the current block or chart), or hot, meaning that
it must be true (otherwise the system aborts due to specification violation).

According to Damm et al. [8] locations carry a sequential annotation representing
progress within a lifeline. The annotation starts from 0 and incremented by 1 every time
the lifeline sends or receives a message, or a condition is progressed there. Locations in
a chart can be either cold or hot locations. Cold locations mean the run does not need
to move beyond the location, on the other hand hot locations mean the run must move
beyond the location.

The basic concepts of Live Sequence Charts with a simultaneous region are depicted
in Figure 2.4. The chart is a universal chart that has a prechart and a mainchart. The
prechart is activated, if a message m1 arrives from process A to B. After this message
arrives, the condition x < 2 must be true, otherwise the whole chart is violated.

After the condition became true, the mainchart is activated. First, process B sends
a message m2 to process C. Then, process B must send a message m3 to A, otherwise
the whole chart is violated. Finally, process A checks condition y >= 4. If the condition
is false then the mainchart is exited, otherwise the whole chart is successfully executed.

The following formal definitions of LSCs, simregion, partial-order semantics and cut
were translated from Horányi’s paper [31, pp. 12–14] and Larsen et al.’s paper [39].
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Figure 2.4: Basic concepts of Live Sequence Charts

Definition 3 (Live Sequence Chart). An L Live Sequence Chart describes the inter-
action among a finite set of processes denoted by I. On the lifeline of each i ∈ I process,
there are finite sets of positions (pos(i) = {0, 1, . . . p_maxi}), that denote the possible
locations of messages, interactions and conditions. The locations of L are defined as a set
L = {⟨i, p⟩|i ∈ I ∧ p ∈ pos(i)}.

A universal chart can be separated into two parts. The first one is the prechart,
which prescribes the preconditions of the scenario. If the interactions in the prechart are
successfully executed, then the chart body, also called as mainchart has to be executed
successfully too, otherwise the chart is violated. An existential chart usually consists of
only the mainchart.

A universal LSC is depicted with solid border lines, an existential LSC has dashed
borders.

Let Σ be the set of all possible messages. A message m = (⟨i, p⟩, σ, ⟨i′, p′⟩) ∈ L×Σ×L
is sent at the p position of process i with the label σ to the process i′ that is at position
p′.

From the delivery point of view, messages can be either synchronous or asynchronous.
Synchronous messages are denoted by filled arrowhead, asynchronous messages are denoted
by open arrowhead. From modality point of view, messages can be either hot (mandatory)
or cold (optional). Hot messages must be delivered successfully, while cold messages can
be either lost or delivered. �

Definition 4 (Simultaneous region (simregion)). The simregion s is a set, which
contains a message (m ∈ M) and a condition (c ∈ C), s ⊆ (M ∪ C):

• It is not empty: ∃e ∈ (M ∪ C) : e ∈ s

• Unique: ∀m,n ∈ M : (m ∈ s ∧ n ∈ s) ⇒ m = n

• Non-overlapping: ∀s, s′ : ∀e ∈ (M ∪ C) : (e ∈ s ∧ e ∈ s′) ⇒ s = s′

Let S ⊆ 2(M∪C). Simregions allow to group several elements, which should be ob-
served at the same time [38]. �

Definition 5 (Partial-order semantics of LSCs). The locations of an LSC are par-
tially ordered according to the following rules:
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• in the chart if l1 is above l2 , then l1 ≤ l2,

• all locations in the same simregion have the same order:
∀s ∈ S, ∀l, l′ ∈ L : (λ(l) = s) ∧ (λ(l′) = s) ⇒ (l ≤ l′) ∧ (l′ ≤ l)

where λ function assigns the locations to simregions. The partial-order relation
≼⊆ L× L can be defined as the transitive relation of ≤. �

Definition 6 (Cut in an LSC). The cut of an LSC is a bottom-closed set of locations
which go through on each lifeline of all processes. The bottom-closedness means if a
location is in a cut, then every other locations are in the cut too which are before the given
location owing to the partial-ordering relation: ∀c ⊆ L,∀l, l′ ∈ L : (l ∈ c ∧ l′ ≼ l) ⇒ l′ ∈ c.

In an LSC there is always a minimal and a maximal cut. The minimal cut is empty,
so it contains no location. On the other hand, the maximal cut contains all locations. If
the LSC has a non-empty prechart, then there is a cut in the beginning of the mainchart,
which contains all locations within the prechart. �

Definition 7 (Run in an LSC). According to Harel et al. [21] the sequence of cuts
constitutes a run, if all locations are enumerated in the same order as message sending
should happen, so:

1. The first element of the sequence is: (⟨i1, 0⟩, ⟨i2, 0⟩, . . . , ⟨in, 0⟩), where i ∈ I is a
process and |I| = n.

2. In the sequence that location is incremented which originates the next message deliv-
ery: (⟨i1, l1⟩, ⟨i2, l2⟩, . . . , ⟨ij , lj + 1⟩, . . . , ⟨in, ln⟩) where l1 denotes the latest location
in the lifeline of i1, according to the previous sequence element; and the id of the
sender of the next message is ij so its location is incremented by one.

3. The location of the latest message’s recipient is incremented in the recent cut:
(⟨i1, l1⟩, ⟨i2, l2⟩, . . . , ⟨ik, lk + 1⟩, . . . , ⟨in, ln⟩) where l1 denotes the latest location in
the lifeline of i1, according to the previous sequence element; and the receiver of the
last message was ik so its location is incremented by one. �

The sequence of cuts is constructed according to the enumeration above, repeating
phases 2 and 3 until all locations and message deliveries were exceeded.

Definition 8 (Trace of a run). According to Harel et al. [21] the trace of a run is the
sequence of processes and messages in the order they were delivered: ∀m ∈ M : (i,m)
where i ∈ I the sender of the message m.

To illustrate cuts, run and trace in an LSC, a sample LSC is depicted in Figure 2.5.
Cuts in the LSC are for example:

• minimal cut: ∅

• maximal cut of the prechart:

{(⟨A, 0⟩, ⟨B, 0⟩, ⟨C, 0⟩), (⟨A, 1⟩, ⟨B, 0⟩, ⟨C, 0⟩), (⟨A, 1⟩, ⟨B, 1⟩, ⟨C, 0⟩)}

• maximal cut of the LSC, including the prechart and mainchart:

{(⟨A, 0⟩, ⟨B, 0⟩, ⟨C, 0⟩), (⟨A, 1⟩, ⟨B, 0⟩, ⟨C, 0⟩), (⟨A, 1⟩, ⟨B, 1⟩, ⟨C, 0⟩),
(⟨A, 1⟩, ⟨B, 2⟩, ⟨C, 0⟩), (⟨A, 1⟩, ⟨B, 2⟩, ⟨C, 1⟩), (⟨A, 1⟩, ⟨B, 3⟩, ⟨C, 1⟩),
(⟨A, 2⟩, ⟨B, 3⟩, ⟨C, 1⟩)}
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Figure 2.5: Sample Live Sequence Chart with locations

The sequence of cuts in the maximal cut of the LSC above constitutes a run, according
to Definition 7. The trace of that run is:

(A,m1), (B,m2), (B,m3)

Simulating or executing an LSC can end in three results:

• The LSC is successfully executed, if all hot messages were delivered and all hot
conditions were true and all hot locations were exceeded.

• The LSC is exited, when either a cold condition or the prechart is violated. It is not
an error, it simply means the scenario cannot be fitted to the recent execution.

• The LSC is aborted, when a hot condition was violated or a hot location was not
reached. It means there was a serious deterrence from the specified behavior.

Live Sequence Chart formalism was successfully applied in telecommunication and
hardware domains.

Bunker et al. applied the LSC approach for high-level modeling of telecommunication
applications to help detecting feature interaction at early development stages [5]. They
introduced the results of applying the methodology to the specification, animation and
formal verification of a telecommunication service.

Combes et al. applied the formalism for hardware requirements specification where it
was used as a high-level visual notation for writing specification [7]. An automatic link
was developed that inputs an LSC specification and outputs temporal properties suitable
for model checking.

2.4.3 UML Sequence Diagram
Sequence Diagram is a notation in the Unified Modeling Language for modeling scenario-
based interactions which focuses on message interchange between a number of lifelines.
Similarly to Live Sequence Charts, Sequence Diagrams borrow some elements from Mes-
sage Sequence Charts [35], but it extends the latter language with new elements too.

Interactions chapter of UML specification defines the elements that constitute an
interaction, whose representation can be a Sequence Diagram [46]. Although there are
other notations with different purposes for modeling Interactions, e.g. Communication
Diagrams, Interaction Overview Diagrams, Timing Diagrams, I will use only Sequence
Diagrams in my thesis, because they are most widely used for modeling interactions.

First, I am going to highlight the concrete syntax of the most important parts of
the language, then give some references to semantic definitions of UML Interactions and
Sequence Diagrams in the following sections.
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Figure 2.6: Concepts of UML Sequence Diagram

Concrete Syntax The concrete syntax of UML Sequence Diagrams is depicted in Fig-
ure 2.6. Each Sequence Diagram should have a unique name. Entities who participate in
the interaction and communicate via Messages that are represented on Lifelines.

A Message can be either synchronous, depicted with filled arrowhead, or asyn-
chronous, depicted with empty arrowhead. Message can mean either a Call or a Signal
or a Reply. These properties are defined by a message’s MessageSort attribute. The Mes-
sageKind property of the message specifies, whether it is a lost message, whose receiver
is not know, or a found message, whose sender is unknown. If both the sender and the
receiver are known, then it is called a complete message.

Messages have two MessageEnds. Each MessageEnd is either a Gate or a MessageOc-
curenceSpecification. Gate links two parts of the message, e.g. a message crosses the
boundaries of a CombinedFragment, depicted in Figure 2.7. MessageOccurenceSpecifica-
tion represents a send event or a receive event associated with a message between two
lifelines [46].

ExecutionSpecification is represented as a gray rectangle on the lifeline and it specifies
the execution of a unit of behavior in a Lifeline [42]. The start event and the end event of
the ExecutionSpecification are marked with ExecutionOccurenceSpecifications.

GeneralOrdering is applied for ordering otherwise unrelated messages, e.g. a found
message.

Interactions can be composed together by referring from one to another via Interac-
tionUse elements. InteractionUse can have input parameters and return values, which can
be used in the referrer Interaction.

Interaction can contain StateInvariants, which are runtime constraints on participants
of the Interaction. They can refer to the state of an instance of the given Lifeline, or they
can be expressions constraining attributes and variables. Both variants are depicted in
Figure 2.7. StateInvariants are assumed to be true at runtime, otherwise the execution
trace is considered invalid.

More complex Interactions can be constructed with CombinedFragments. They con-
sist of one or more InteractionOperands, which can be guarded with InteractionCon-
straints, depending on the type of the CombinedFragment. Each CombinedFragment
contains an InteractionOperatorKind attribute that defines what kind of fragment it is.
The definitions are given according to the UML specification [46, pp. 581–582].
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Figure 2.7: Sequence Diagram with CombinedFragment [42]

• seq: the CombinedFragment represents a weak sequencing between the behaviors of
the operands.

• strict: the CombinedFragment represents a strong sequencing between the behaviors
of the operands.

• alt: the CombinedFragment have different operands, which are guarded with Inter-
actionConstraints. The first operand whose constraint is true, will be executed.

• opt: the execution of the CombinedFragment is optional.

• par: the operands of the CombinedFragment should be executed in parallel.

• loop: the CombinedFragment should be executed until the loop constraint is true.

• critical: the CombinedFragment represents a critical region, whose traces cannot be
interleaved by other OccurenceSpecifications on the same Lifeline as this region.

• neg: the trace represented by the CombinedFragment is negative, it must not occur,
otherwise the result is an invalid trace.

• assert: the possible sequences of the operand of the assertion are the only valid
continuations. All other continuations result in an invalid trace.

Semantics Although the semantics of model elements of UML Sequence Diagrams are
defined in text in the UML standard [46], it contains some flaws due to the complexity
and the increased expressive power of the language. The greatest problem is that the
semantics are not formally defined which allows the construction of ambiguous Sequence
Diagrams.

To increase the expressive power of the language, so that liveness and safety
properties can be formulated, assert and negate (neg) were introduced as types for
CombinedFragments. However, the semantics of assert and negate prevents their ap-
plicability, because of their ambiguous meanings. According to Harel et al. [24] applying
assert and negate can result in an ambiguous construction. It is due to the fact that ac-
cording to the UML standard, assert is “the sequences of the operand of the assertion are
the only valid continuations. All other continuations result in an invalid trace.” [46, p. 582]
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Figure 2.8: Concepts of Modal Sequence Diagram [24]

and “neg designates that the CombinedFragment represents traces that are defined to be
invalid” [46, p. 582]. It seems contradictory and ambiguous if assert or negate contains
the other. To address the problem, they proposed a new formalism, called Modal Sequence
Diagram that is introduced in Section 2.4.4.

What is not trivial either, how to calculate partial ordering of events in an Interaction
with complex CombinedFragments [42, p. 502].

To address the problem, several semantics definitions have been proposed by various
authors during the years. In a survey Micskei et al. [42] collected and categorized different
formal semantics and the semantic choices made in papers dealing with UML 2 Sequence
Diagrams. They present the different options for the collected choices and the relations
between them in a structured format. So one can get a broader overview how the semantics
of Sequence Diagrams can be defined based of the purpose of the diagram.

2.4.4 Modal Sequence Diagram
Harel et al. proposed a new formalism [24] to address the problem caused by assert and
negate CombinedFragments in UML Sequence Diagrams. The new formalism is called
Modal Sequence Diagram (MSD) that is on one hand the extension of the former formalism
with modalities, on the other hand the combination of Live Sequence Chart with UML
Sequence Diagram. Thus the methods which were worked out for those formalisms can
also be applied to MSD. The formalism and its operators are introduced in this section
according to the definition by Harel et al. [24].

To allow the specification of modalities over Interactions, Harel et al. defined a stereo-
type modal with an attribute interactionMode, which, in the case of LSC, can be either
hot (universal) or cold (existential). The new stereotype is introduced, depicted in Fig-
ure 2.8 based on [24, p. 240], as an extension of the abstract class InteractionFragment, and
hence also of its subclasses: Interaction, InteractionUse, ExecutionSpecification, Occur-
renceSpecification, CombinedFragment, InteractionOperand and StateInvariant. Techni-
cally, the modal stereotype is applied to messages too. The interactionMode of a message
is derived from the modes of the message’s send and receive MessageOccurrenceSpecifica-
tions. In general, a message is hot if at least one of its ends is hot, and is cold otherwise.

The semantics of MSD is roughly the same as LSC’s [8, 21, 23]: a system-model
satisfies an MSD specification if (1) every one of its runs satisfies each universal diagram
in the specification, and (2) every existential diagram is satisfied by at least one possible
system run. The semantics of an MSD interaction fragment depends both on the partial
order induced by its occurrence specifications and on its mode.

In order to support sequential composition of MSDs, Harel et al. leave out the prechart
construct from LSCs [24]. Instead, a general approach is taken, where cold fragments inside
universal interactions mean prechart-like purposes: a cold fragment does not have to be
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Figure 2.9: Assert and negate in MSD

satisfied in all runs but if it is satisfied then the subsequent hot fragment should also be
satisfied.

Because StateInvariant is an InteractionFragment that has a modality property, the
StateInvariant also inherits such property. Several cases can be differentiated, depending
on the StateInvariant (condition)’s modality as follows:

• A universal (hot) condition must evaluate to TRUE, otherwise the chart is violated.

• An existential (cold) condition can be evaluated to FALSE, then the chart fragment
is exited and the enclosing chart is continued. If the cold condition violation happens
in the topmost chart fragment, then the chart is exited and no error happens.

Assert is interpreted in MSD as assigning a hot mode to all the OccurrenceSpecifica-
tions inside the interaction fragment operand, as depicted in Figure 2.9b.

Negate is interpreted in MSD as adding a hot constant FALSE after the last Oc-
curenceSpecification, as the maximal location element in the fragment, as depicted in
Figure 2.9d. Thus the InteractionFragment specifies a forbidden scenario, because if the
fragment is satisfied and the hot FALSE constant is reached, then it is a contradiction
and the chart is violated.

Alt and loop in MSD, depicted in Figure 2.10a, have the same meaning as in Sequence
Diagrams. For the former one the operands of the CombinedFragment are executed, if the
condition belonging to that operand evaluates to TRUE. If there are multiple operands
which are enabled, then a nondeterministic choice is made to execute either operand. For
the latter one the operand is executed repeatedly until the condition is TRUE, and there
is no trace or condition within the loop that violates it.
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Figure 2.10: Alt, loop, consider fragments in MSD

Consider, and respectively its dual fragment ignore, allows to design messages which
must be considered, respectively ignored, during the execution of the interaction operand.
Adding more messages and conditions in the considered set results in more restrictive
specifications. A run not only needs to perform the occurrences in a matching order
specified by the interaction operand, but it also should not exhibit any of the additional
occurrences in the prohibited set.

In comparison with consider, ignore results in a more permissive specification, because
in the run besides the interactions of the operand, any other interactions from those, which
were specified in the ignore set, may be carried out.

For example, the consider fragment depicted in Figure 2.10b specifies that sending
m16 from b to a is a cold violation; sending m17 from a to b is a hot violation; b.y = 10
is a hot violation too, if they occur during the execution of the interactions m14, m15 in
the interaction operand of consider.

Should a cold violation occur, then only the consider, respectively ignore, fragment
is exited. However if a hot violation occurs then the chart is violated too.

According to Harel et al. [24] the use of InteractionFragments as operands for the con-
sider CombinedFragment, together with the general modal semantics provided for MSD,
significantly increase the expressive power of the language and allow more compact and
intuitive specification of complex behavior.

2.5 Gamma Framework
Gamma Statechart Composition Framework1 [14, 15] is an Eclipse Modeling Framework-
based tool which supports the model-driven design and analysis of hierarchical,
component-based reactive systems. The main functionality of the framework is supporting
the hierarchical composition of component-based models.

1https://inf.mit.bme.hu/en/gamma, last access: 29/11/2017
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Based on an intermediate statechart language, a new language is defined to facilitate
the composition of statechart models with precise semantics. To support the modeling
process, validation rules have been defined for the intermediate statechart language to find
design flaws as soon as possible. Furthermore, the automatic transformation of individual
statecharts as well as their composition to formal models has been developed to support
the formal analysis of the design models. Additionally, the framework supports the back-
annotation of the analysis results to the compositional language enabling the users to
analyze the behavior of their models in a familiar domain.

Finally, the framework includes a code generator that produces the implementation
of the composed system, assuming the implementation of the statechart models are given
and following the semantics of the compositional language.

At the time of writing the thesis, Gamma supports YAKINDU Statechart Tools2 as an
input modeling language for the state-based components and UPPAAL [3] as a verification
framework for formal analysis.

The relevant parts of the Gamma metamodel are depicted in Figure 2.11a. With the
framework the user can create ComponentDefinitions which can either be a Statechart-
Definition (that is basically a statechart in the Gamma’s internal statechart language) or
a CompositeDefinition.

A CompositeDefinition consists of multiple ComponentInstances that refer to a Com-
ponentDeclaration, which will refer to a ComponentDefinition or a StatechartSpecification.
A ComponentDeclaration can define several Ports which can be bound via PortBindings
to the border of the external (encapsulating) component. In this way component of com-
ponents (composite components) can be built.

Each Port is bound to an Interface, which has EventDeclarations (events) as depicted
in Figure 2.11b. Each EventDeclaration has a direction which defines if the respective
event is an incoming (IN), outgoing (OUT) or a bidirectional (INOUT) one. Incoming
events are received, outgoing events are sent, bidirectional events are received and sent by
the component which implements the Interface. Besides, each Port realizes the Interface,
it is bound to, either in provided or in required mode:

• provided mode means, the events of the realized interface are transferred and received
according to their specified directions.

• required mode means, the directions of the events are reversed, so that outgoing
events can be received, incoming events can be sent through the port.

A CompositeDefinition defines multiple Channels between the ComponentInstances.
Each Channel can either be a SimpleChannel or a BroadcastChannel:

• A SimpleChannel connects two Ports which realize the same Interface in different
modes so that they can be connected. This construction guarantees that each event
sent by either Port can be processed by the other one.

• In a BroadcastChannel one Port provides an Interface and multiple other Ports on
the Channel require that Interface. However, a restriction had to be introduced for
Interfaces. Only such Interfaces can be used here, whose events are outgoing, so
that those Ports which require the Interface cannot send events.

As an example for ComponentDeclaration, see the textual specification in Listing 2.1
or the graphical illustration is depicted in Figure 2.12. This example shows a compo-
nent which consists of two SectionDeclarations (the internal hidden elements) which are
connected to each other, however some of the ports are offered to the external world.

2https://www.itemis.com/en/yakindu/state-machine/, last access: 29/11/2017
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Figure 2.11: Relevant parts of the Gamma metamodel
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Figure 2.12: Graphical representation of component TwoSections

The TwoSections component declares two ports (ProvidedCCW,
RequiredCCW) which realize the same Protocol interface but with different real-
ization modes. These port realizations are then bound to the respective ports of
the section1 internal component, and they are offered to the outside world, to any
component which may use the services of the TwoSections component. Besides,
there are two SimpleChannels which connect section1 and section2 with each other.
Each channel connect those ports which are compatible with each other, in a sense
that they implement the same interface but with different realization modes. Thus the
section1.ProvidedCW and section2.RequiredCW ports form one Channel, and
section2.ProvidedCCW and section1.RequiredCW ports form another Channel.� �
import Sect ion

specification TwoSection {
component TwoSections := {

port ProvidedCCW : provides Protocol
port RequiredCCW : requires Protocol

{
components {

sec t i on1 : Sect ionDec larat ion
sec t i on2 : Sect ionDec larat ion

}

bindings {
ProvidedCCW −> sect i on1 .ProvidedCCW
RequiredCCW −> sect i on1 .RequiredCCW

}

channels {
[ s ec t i on1 . ProvidedCW ] −o )− [ s e c t i on2 .RequiredCCW]
[ s ec t i on2 .ProvidedCCW] −o )− [ s e c t i on1 .RequiredCW ]

}
}

}
}� �

Listing 2.1: Textual specification of a component in the Gamma Framework

2.6 Finite Automata

Finite Automata are such graphs which can recognize patterns in a sequence of input
events. There are many different types of Finite Automata from which three of them
are used in the Master Thesis: Nondeterministic Finite Automaton, Deterministic Fi-
nite Automaton and Minimal Deterministic Finite Automaton. All of them recognize the
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same class of languages, called regular languages. In the followings these automata will be
defined according to Ullman et al. [1].

Definition 9. A Nondeterministic Finite Automaton (NFA) is a tuple ⟨Q,Σ, δ, q0, F ⟩,
where:

• Q is a finite, non-empty set of states,

• Σ is a finite, non-empty set of input symbols, also called as the input alphabet or
events of the automaton. It is assumed that ϵ, which stands for an empty is string,
is never a member of Σ,

• δ : Q × Σ → Q is the state transition function, that gives for each q ∈ Q and for
each symbol in Σ ∪ ϵ a set of next states,

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of the accepting states (final state). �

Definition 10. A Deterministic Finite Automaton (DFA) is a tuple ⟨Q,Σ, δd, q0, F ⟩
where:

• Q is a finite, non-empty set of states,

• Σ is a finite, non-empty set, representing the event set of the automaton,

• δd is a subset of tuples ⟨Q × Σ × Q⟩, and the number of outgoing edges from each
state for each event is only one. So ∀si ∈ Q,∀ej ∈ Σ : |⟨si, ej , si+1⟩| = 1, where
i ∈ [0, n − 1] and j ∈ [0,m − 1] and n = |Q| and m = |Σ|. Edge labeled by event ϵ
is not allowed;

• q0 ∈ Q is the initial state,

• F ⊆ Q is the set of accepting states. �

Definition 11. A Minimal Deterministic Finite Automaton (MFA) is a DFA that accepts
the same language as the DFA, but it has minimum number of states. MFA minimizes
the computational cost for pattern matching as it contains the least number of states to
recognize a regular language. �

Definition 12. A synchronous product (A1 ×A2) of Finite Automata
A1 = ⟨Q1,Σ, δ1, qa1, F1⟩ and A2 = ⟨Q2,Σ, δ2, qa2, F2⟩, is a tuple ⟨Q,Σ, δ, q0, F ⟩ where:

• Q = Q1 ×Q2 is a finite, non-empty set of states,

• Σ is a finite, non-empty set, representing the event set of the automaton,

• δ : Q×Σ → Q is the state transition function:⟨⟨p, q⟩, ei, ⟨p′, q′⟩⟩ ∈ δ, iff ⟨p, ei, p′⟩ ∈ δ1
and ⟨q, ei, q′⟩ ∈ δ2, where ⟨p, q⟩, ⟨p′, q′⟩ ∈ Q and p, p′ ∈ Q1 and q, q′ ∈ Q2 and ei ∈ Σ;

• q0 ∈ Q is the initial state which is created from qa1 and qa2,

• F = F1 × F2 is the set of accepting states.

Such Synchronous Product Finite Automaton (SFA) accepts the language which is
accepted by both A1 and A2. Also marked as: L(A1 ×A2) = L(A1) ∩ L(A2). �
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Definition 13. A trace in a finite automaton is a sequence of states s0, s1, . . . , sn (where
∀i : si ∈ Q) for the input sequence e1, e2, . . . , en (where ∀j : ej ∈ Σ∪{ϵ}) if ∀si ∈ Q, ∀ej ∈ Σ
exists a transition between state si and si+1 with the label of ej , so ⟨si, ej , si+1⟩ ∈ δ, where
i ∈ [0, n − 1] and j ∈ [0,m − 1] and n = |Q| and m = |Σ ∪ {ϵ}| and ϵ is the empty event
that is never a member of Σ.

A trace is accepting if s0 = q0 and sn ∈ F . �

Definition 14. A finite automaton accepts an input sequence if exists an accepting trace
for the input sequence. �

Definition 15. The language defined (or accepted) by a finite automaton M is the set of
input sequences which are accepted by the automaton. Also marked as: L(M) �

2.6.1 Determinization of a Nondeterministic Finite Automaton
The algorithm introduced by Ullman et al. [1], is described in Algorithm 1. The general
idea behind the determinization of an NFA N is, each state of the constructed DFA D
corresponds to a set of states in N . After reading input e1, e2, . . . , en the D is in that
state which corresponds to the set of states that the N can reach, from its initial node,
following paths labeled by e1, e2, . . . , en.

The algorithm constructs a transition table Dtran for D. Each state of D is a set of
states in N . Dtran is constructed so that D will simulate “in parallel” all possible moves
N can make on a given input trace. However, ϵ-transitions of N have to be eliminated
according to in Algorithm 2.

The initial state of D is the ϵ-closure(s0), and the accepting states of D are all those
sets of states in N that include at least one accepting state of N .

Algorithm 1: The subset construction of a DFA from an NFA
input : an N NFA
output: a D DFA accepting the same language as N

1 initially, ϵ-closure(s0) is the only state in Dstates, and it is unmarked;
2 while there is an unmarked state T in Dstates do
3 mark T ;
4 foreach input symbol a do
5 U = ϵ-closure(move(T, a));
6 if U is not in Dstates then
7 add U as an unmarked state to Dstates;
8 end
9 Dtran[T, a] = U ;

10 end
11 end
12 Dstates is Qd, the finite, non-empty set of states of D
13 Dtran[T, a] is the value of the δd transition function for state T and event a in D
14 move(T, a) is the set of states that are reachable from state T for event a in N

2.6.2 Minimization of a Deterministic Finite Automaton
The prerequisites and steps of the minimization algorithm are defined according to the
papers by Ullman et al. [1] and Csima et al. [37].

In order to minimize a deterministic finite automaton, this automaton must be com-
plete, which formally means: ∀i, ∀j : ⟨si, ej+1, si+1⟩ ∈ δd, where si ∈ Q and ej ∈ Σ and
i ∈ [0, n− 1] and j ∈ [0,m− 1] and n = |Q| and m = |Σ|.
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Algorithm 2: Computing ϵ-closure(T )
input : a set of states T
output: a set of states ϵ-closure(T )

1 push all states of T onto stack;
2 initialize ϵ-closure(T ) to T ;
3 while stack is not empty do
4 pop t, the top element, of stack;
5 foreach state u with an edge from t to u labeled ϵ do
6 if u is not in ϵ-closure(T ) then
7 add u to ϵ-closure(T );
8 push u onto stack;
9 end

10 end
11 end

If DFA D is not complete, then it has to be made so by defining the missing transitions
in δd.

Then every state s has to be removed which is not reachable from initial state q0 via
any input sequence.

The states of D are partitioned into groups according to the following rule: two states
are in the same group if no trace exists that would distinguish those states from each other,
as defined in Definition 16, until the partitioning cannot be refined further by breaking
any group into smaller groups. These steps are detailed in Algorithm 3.

The complexity of the Algorithm 3 is quadratic in the number of states Q of the
automaton and linear in the size of the input alphabet Σ. The reason for the computatinal
complexity is the following: the size of the table is O(|Q|2) so less than |Q| rounds are
needed and in each round |Σ| transitions have to be checked [37].

Then we have the minimum-state DFA (MFA).

Definition 16. The input sequence x distinguishes state si ∈ Q from state sj ∈ Q if
exactly one of the states reached from si and sj by following the path with label x is an
accepting state ∀i, j : 1 ≤ i, j ≤ n, i ̸= j where n = |Q|.

State si is distinguishable from state sj if there is some input sequence that distin-
guishes them [1]. �

Algorithm 3: Computing MFA from DFA
input : a D DFA
output: an M MFA accepting the same language as D

1 let T be an empty array whose size is |Q| × |Q| that is indexed by the states;
2 let T [p, q] = 0, if (p ∈ F ∧ q /∈ F ) ∨ (p /∈ F ∧ q ∈ F );
3 while change in T occurs do
4 if T [p, q] is empty, but there is an a ∈ Σ and for p′ = δ(p, a) and q′ = δ(q, a),

p′, q′ ∈ Q, T [p′, q′] is not empty, then let T [p, q] = i;
5 end
6 Column-wise reading below the main diagonal of T , those T [p, q] cells belong to the
same partition which are empty in the end. These partitions will be the states of M .

7 M ’s δm can be constructed from D’s δ by looking at one of the states in each
partition and checking the transition in δ from this state for each e ∈ Σ.
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Figure 2.13: Sample Finite Automata for the same language

2.6.3 Examples
An NFA, DFA, MFA can be represented by a transition graph, where the nodes are states
and the labeled edges represent the transition function δ. There is an edge labeled by
e ∈ Σ from state si to state si+1 (where ∀i : si ∈ Q and 1 ≤ i ≤ n and n = |Q|) iff si+1 is
one of the next states for si and input e is received according to δ.

The transition graph for an NFA, DFA, MFA recognizing the language of regular
expression (a)*b(a|b)* is depicted in Figure 2.13. The inital state of the automata is
shown by an arrow with no trigger and no input state.

In Figure 2.14 the Synchronous Product Finite Automaton (SFA) of two Finite Au-
tomata over the same Σ is depicted. Automaton A1 recognizes the (b*a*)*a regular ex-
pression, A2 recognizes the (a|b)+ regular expression, so A1×A2 recognizes the (b*a*)*a
regular expression.
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Figure 2.14: Sample Synchronous Product Finite Automaton
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Chapter 3

Existing Tooling for
Scenario-based Specification
Languages

In order to support model-driven engineering of systems designed by scenario-based speci-
fication languages, modeling tools are required. In this chapter several tools will be studied
which support the design of scenario based system descriptions. It should be noted, that
for comparison only open-source and for academical and research purposes free softwares
were selected.

These tools are going to be compared regarding two aspects: level of standardization
of the modeling language and the functionality offered by the tool. These aspects are going
to be detailed in Section 3.1. Then in the following sections the existing tool support of
formalisms for scenario-based specification languages are compared.

3.1 Tool comparison aspects

The aspects for comparison have two different dimensions: one dimension is the level of
standardization of the modeling language which is used by the tool, the other aspect is
the functionalities the different tools have.

Based on these two dimensions, the different tools can be evaluated as shown in
Table 3.1 and as detailed in Section 3.2 – Section 3.5 of this chapter.

3.1.1 Standardization level of the modeling language

From this perspective one end of the scale is the de-facto standardized modeling language,
the other end is the non-standardized, custom modeling language.

The advantage of having a standardized language is, its concepts are reviewed by
many people, widely known, unambiguous and probably formalized which enables the
application of formal methods over the language. The disadvantage is, if something should
be changed in the language then it can be a rigorous and time-consuming procedure to
carry out due to the number of people being involved in the process.

On the other end of the standardization scale, the advantage of having a custom
modeling language is that language designer has higher level of freedom in building the
language. Since one can decide on its own concepts, they can be changed quickly. However,
the elements of the language might not be widely known, thus it may be ambiguous and the
whole tool support has to be implemented also since there is no de-facto implementation.
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In between the two ends, there are many stages which involve extending a standard
language with new elements whose semantics should be defined by the designer of the
language. Moreover, if the language would be used in a field then having a corresponding
tool which supports this formalism is advantageous to have.

3.1.2 Functionality of the tool

The tool’s functionality aspect mostly focuses on how much it supports the engineer to
design consistent models and what kind of functionality the tool provides for validating
such models and generating implementation artifacts from them.

The first and most important functionality is the editor, where the model can be
designed using the elements of the language. It is also advantageous if the editor has
analysis capabilities.

In analysis, I make a difference between structural and consistency analysis. The
former includes the ability to ensure the references between the objects exist and con-
form to the well-formedness constraints. In comparison with that, consistency analysis
means the model elements do not contradict to each other and has a consistent view of
the (sub)system as a whole. For example, if multiple communication sequences can be de-
signed then these sequences may have to consider each other so that they do not prescribe
ambiguous communication situations.

Besides the editor, a simulator is also good to be included, if the metamodel of the
language includes elements that can be dynamically executed and simulated in design time.
Thus the probable errors can be detected and fixed early in the development process, which
can result in lower costs.

The advantage of the model-driven methodology is, the platform-specific implemen-
tation, deployment and runtime artifacts can be automatically generated from the models,
thus eliminating the possibility of having code bugs, assuming the code generator and the
model are correct (Section 2.1). Thus it is very good if the tool has a code generator which
automatically generates the implementation from the models.

Model analysis and validation is usually not enough to ensure the error-freeness of the
design. Thus formal verification should be applied. Such methods check every possible
configuration and state which may occur during the lifetime of the system and warn the
system engineer to prepare for these situations. In general case the possible state space
might be infinite, thus these methods have difficulties in real world applications.

Although formal verification might not be applicable in every environment, the miti-
gation of runtime errors and failures is not impossible. Should the tool be able to generate
runtime monitors, the system can be prepared for these failures and act automatically
without human intervention, e.g. in safety-critical embedded systems.

3.1.3 Evaluation

As it can be seen in Table 3.1, even though Papyrus implements a standardized modeling
language (UML Sequence Diagram) and was claimed as having been used in numerous
industrial case studies [9, 10, 11], it still lacks basic analysis and simulation functionalities.

On the other hand, PlayGo which extends a subset of UML with custom metamodel
(LSC) has richer functionality. Even though there is there is no reference for industrial
case studies for this tool, numerous publications and PhD dissertations were inspired by it.

Although ScenarioTools MSD and ScenarioTools SML use rather different metamod-
els, they implement the same functionalities. Probably, it is due to the fact that the same
team implemented both tools. Comparing the last two tools, they use totally different
metamodels. The latter one has a custom metamodel which can express assumptions

27



about the (physical) environment much easier, than the first one. Moreover, the latter
one (SML) was under active development, at the time of writing the thesis, but the former
one (MSD) had been obsolete.

The conclusion regarding the tool comparison is, PhD dissertations and research
papers have higher motivation for implementing experimental features for modeling tools,
and having a custom metamodel gives higher flexibility in modeling and implementation.

In the following sections the aforementioned tools (Section 3.2 Papyrus, Section 3.3
PlayGo, Section 3.4 ScenarioTools MSD, Section 3.5 ScenarioTools SML) are going to be
presented, with respect to the comparison aspects.

3.2 Papyrus
Papyrus is a modeling environment that is constructed by sets of plug-ins in Eclipse.
The great advantage of Papyrus is that, it supports designing models that conform to
different modeling standards, e.g. UML, fUML, SysML, MARTE, EAST-ADL, RobotML,
UML-RT, ISO/IEC 42010.

Although the extent of the tool support for each standard varies, developers can
extend the different editors and create new views or enhance the model editors with
automatic code generators that create platform-specific implementation from the platform-
independent models.

Papyrus has been successfully applied in several industrial case studies, e.g. in the
avionics as a collaboration platform [9], in humanoid robot design [10], and in transition
from document-centric to model-centric design [11].

3.2.1 Design
As far as scenario-based modeling is concerned, Papyrus contains an editor that supports
designing UML-conformed Sequence Diagrams. The engineer can add different lifelines
that represent different entities that communicate with each other via messages. Diagrams
can contain all the elements that were introduced in Section 2.4.3.

3.2.2 Simulation
At the time of writing the thesis, Papyrus offers no simulation for Sequence Diagrams.
However, an extension called Moka1 provides an execution engine for fUML models which
are practically activity diagrams with formal semantics.

3.2.3 Consistency analysis
At the time of writing the thesis, Papyrus offers no consistency analysis of Sequence
Diagrams.

3.2.4 Structural analysis
Although Papyrus offers no built-in structural analysis for Sequence diagrams, it can be
extended with custom OCL constraints, that shall be registered in the Papyrus’s Validation
framework. A class model can be created, which contains the corresponding classes that
are represented in the sequence diagrams as lifelines. The classes store what operations
they can perform, and these operations can be directly referred from the sequence diagrams
as synchronous or asynchronous messages.

1https://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution, last access: 15/12/2017
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(a) Sample class model (b) Sample Sequence Diagram

Figure 3.1: Sample Papyrus diagrams

Due to the lack of built-in validation, such messages can be represented in the sequence
diagrams, which are not in the class model. What’s more, even those operations can be
referred by a message, which belong to the opposite class depicted in Figure 3.1.

3.2.5 Code generation
At the time of writing the thesis, Papyrus offers no code generation from Sequence Dia-
grams. However stub of Java classes and methods can be generated from the elements of
the class model.

3.2.6 Verification
At the time of writing the thesis, Papyrus offers no verification for Sequence Diagrams.

3.2.7 Runtime monitor
At the time of writing the thesis, Papyrus does not offer generating runtime monitors for
Sequence Diagrams.

3.3 PlayGo
PlayGo2 [26] is a comprehensive tool for behavioral, scenario-based programming, built
around the language of LSC. It is an Eclipse-based derivative of Play-Engine3 [27] that
was the first proof-of-concept tooling for Live Sequence Charts.

PlayGo supports designing, simulating LSCs, and generating Java code from them.
Besides, consistency analysis is applied during simulation via statechart synthesis and
model checkers.

3.3.1 Design
Designing Live Sequence Charts in PlayGo is done through the play-in process. It means
user can create charts by telling in controlled natural language sentences what the chart
should do: what objects shall be on the chart, how they should interact. The built-in nat-
ural language processor parses the sentence and constructs the chart automatically. The

2http://wiki.weizmann.ac.il/playgo/index.php/Main_Page, last access: 29/11/2017
3http://www.wisdom.weizmann.ac.il/~playbook/, last access: 29/11/2017
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Figure 3.2: Sample LSC via natural language specification

part-of-speech tagger can be helped by manually assigning tags (such as object, subject,
message, method) to the words.

Besides, according to the manual4 of the software, a complete requirements document
can be imported and transformed into LSCs in batch. Each sentence will be transformed
into a single LSC. Decisions are made by using a statistical model that is trained on
previously analyzed requirement documents.

An example Figure 3.2 taken from the manual of the software, depicts an LSC that was
specified via the natural language play-in method. Words of the sentence were underlined
according to their tags: red means subject (lifeline), blue means operation (message),
from purple brown and green words an attribute value change method call is generated. It
should be noted that although it is a universal chart that is depicted a bit strangely: the
prechart is indicated with the cold click() message and the Mainchart Start cold condition.

Although natural language processor could make it easier to design a chart, it has
some serious limitations. First, each chart has to be composed by one sentence. Second,
the parser is error prone: once it parsed the sentence it is not willing to change the tags
for the words, because the part-of-speech tagger is disabled.

3.3.2 Simulation

One big advantage of PlayGo is the simulation of Live Sequence Charts via the so-called
play-out process. According to Marelly et al. it is a process that is used for testing the
behavior of the system via firing user and system actions in any order, and checking the
ongoing responses of the system [28]. The process is depicted in Figure 3.3.

PlayGo engine has to monitor precharts of all universal charts to choose if there is
any whose prechart can be applied to the occurred input sequence. If there is any, then
that universal chart’s mainchart should be executed as well. If any hot message or hot
condition violation is occurred, then the system should abort, because a universal chart’s
hot messages should be delivered and their hot conditions should evaluate TRUE always.

It should be noted that during play-out existential charts are monitored, that means
the engine simply tracks the events in the chart as they occur.

4http://wiki.weizmann.ac.il/playgo/index.php/How_to_Play-In, last access: 29/11/2017

30

http://wiki.weizmann.ac.il/playgo/index.php/How_to_Play-In


Does any of them 
match the trace?

Monitor precharts of 
all universal charts

no

Is there a hot 
violation in any 

mainchart?

Execute maincharts of 
those universal charts

System abort

Is there a cold 
violation in any 

mainchart?

Quit that chart

Continue executing the 
active maincharts

Is any mainchart 
finished?

no

no

no

yes

yes

Figure 3.3: Play-out process in PlayGo

A network of LSCs satisfies a system run, iff (1) all universal charts were always
executed successfully, and (2) all existential charts were executed successfully at least
once in that run.

As it can be guessed, choosing the next method to be fired in the play-out is a
nontrivial task for simulating and testing LSCs, and it has great effect on the simulation
result. According to the PlayGo manual5, the tool has four built-in strategies for play-out:

• naïve: ”The naïve play-out strategy is the simplest one. It arbitrarily chooses a
non-violating method from among the current set of methods that are enabled for
execution in at least one chart, but which are not violating in any chart.”

• random: ”The random play-out strategy is similar to the naïve play-out strategy.
However, it chooses the next method to execute randomly, using a ’seed’ number.
The user can either choose a constant seed, in which case the same method will be
selected in repeated runs, or ask PlayGo to use random seed, thus causing different,
random method selection in each run.”

• interactive: ”The interactive play-out strategy allows the user to choose the next
method to execute. TA dialog is presented to the user that lists all the currently
enabled non-violating methods and the user is expected to select one of them. The
selected method is returned to the play-out mechanism for execution.”

• smart: ”Smart play-out is a smarter, safer way of choosing the next method to
execute. It considers not only the current set of enabled non-violating methods,
but also looks ahead and picks up a finite sequence of methods that will lead to
a successful (non-violating) superstep, if any such sequence exists. For details see
Section 3.3.6.”

A hot violation occurred during the play-out of the built-in Water Tap example,
depicted in Figure 3.4a. While the successful play-out of a universal chart of the built-in
Wrist Watch example is depicted in Figure 3.4b.

5http://wiki.weizmann.ac.il/playgo/index.php/PlayGo_Feature_List, last access: 29/11/2017
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(a) Hot violation via play-out (b) Successful play-out of a universal chart

Figure 3.4: Play-out examples in PlayGo

3.3.3 Consistency analysis
Harel et al. proposed a method [21] that checks the consistency of LSCs. First, they
formalized the LSC specification. Then they defined that a system satisfies an LSC spec-
ification, if for every universal chart and every run, whenever a message arrives the run
must satisfy the chart, and if, for every existential chart, there is at least one run in which
the message holds and then the chart is satisfied.

They stated that an LSC specification is satisfiable if there is a system that satisfies
it. After that they proved that LSC is satisfiable if it is consistent. The consistency
analysis is done through a translation from LSC to deterministic finite automaton (DFA)
accepting the language of a universal chart. For every universal chart a DFA is constructed,
then an automaton accepting exactly the runs that satisfy all the universal charts can be
constructed by intersecting these separate automata. This intersection automaton will be
used in the algorithm for deciding consistency.

Besides the consistency analysis process, they proposed an algorithm for synthesizing
a state-based object system, e.g. state machines or statecharts, from consistent LSCs.

Unfortunately these consistency analysis features were not implemented in PlayGo,
instead the smart play-out mechanism is used there.

3.3.4 Structural analysis
PlayGo provides structural analysis as well. It means the messages between the lifelines
should be consistent with the operations of the lifeline’s type. Thus only those methods
can be called in a message, which are explicitly set in the system object model. The
model stores what types in the system exist and what methods they have, as depicted in
Figure 3.2.

3.3.5 Code generation
Harel et al. proposed a compilation process that generates AspectJ code from LSC [40].
The idea came from the main similarity between the aspect-oriented programming
paradigm and the inter-object, scenario-based approach to specification, in order to con-
struct a new way of executing systems based on the latter. The translation process was
originally developed as a UML2-compliant tool, called S2A that was later integrated into
PlayGo.

3.3.6 Verification
As it was mentioned earlier in Section 3.3.2, a smart play-out strategy was implemented in
PlayGo and was originally proposed by Harel et al. [22]. It considers not only the current
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Figure 3.5: Process of smart play-out

set of enabled non-violating methods, but also looks ahead and picks up a finite sequence
of methods that will lead to a successful (non-violating) superstep, if any such sequence
exists.

Definition 17 (Superstep). A sequence of events carried out by the system as response
to the event input by the user. �

The approach that was proposed by Harel et al. is depicted in Figure 3.5 and is intro-
duced as follows [22]: they formulated the play-out task – including the charts, messages,
precharts, activation of charts, object properties and conditions, assignments, symbolic
messages, branching, loops – as a verification problem, and used a counterexample pro-
vided by model-checking as the desired superstep. The system on which they perform
model-checking is constructed according to the universal charts in the specification. The
transition relation is defined so that it allows progress of active universal charts but pre-
vents any violations. The system is initialized to reflect the status of the application just
after the last external event occurred, including the current values of object properties,
information on the universal charts that were activated as a result of the most recent
external events and the progress in all precharts.

The model-checker is then given a property claiming that always at least one of the
universal charts is active. In order to falsify the property, the model-checker searches for
a run in which eventually none of the universal charts is active; i.e. all active universal
charts completed successfully and by the definition of the transition relation no violations
occurred. Such a counterexample is exactly the desired superstep. If the model-checker
verifies the property then no correct superstep exists.

The smart play-out was originally implemented for the Weizmann Institute model-
checker TLV and the CMU SMV model-checker. Later it was adapted in JTLV6 to be
integrated with PlayGo.

3.3.7 Runtime monitor

At the time of writing the thesis, PlayGo offers no runtime monitor service. But the
framework could be extended with this feature via the generated AspectJ codes and the
model-based representation of the charts.

6http://jtlv.ysaar.net/, last access: 29/11/2017
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hot cold

executed
}liveness
violation

monitored

︸ ︷︷ ︸ ︸ ︷︷ ︸
safety violation cold violation

Table 3.2: Message with modalities and execution kinds

3.4 ScenarioTools MSD
ScenarioTools MSD7 [17] is a framework for design, analysis, and simulation of Modal
Sequence Diagrams. Although the framework mostly uses the same semantics for the
formalism as introduced in Section 2.4.4, but it was changed in some aspects.

First, besides the formerly used hot and cold attributes, so-called execution kinds
monitored and executed are introduced. Execution kinds are orthogonal properties for
messages, as shown in Table 3.2. Monitored messages are those, which may or may not
occur. On the other hand, if the message is executed it must eventually occur.

Second, the semantics of hot and cold messages was refined [17]. If the message is hot,
no message must occur that the scenario specifies to occur earlier or later. With other
words: only the referred hot message can occur next. If the message is cold and a message
occurs that is specified to occur earlier or later, the progress of the MSD is aborted. In
addition to that, messages which are not specified in the MSD are ignored.

Third, they make a difference between safety and liveness violations. The former
happens if the forthcoming message in the execution of the MSD is either an executed
or a monitored hot message, but instead of that message another one was sent between
the two lifelines. If this violation happens for a cold message, then it is called a cold
violation. Safety violation must never happen, while cold violation may occur and result
in terminating the active containing MSD.

Liveness violation happens, if the forthcoming message is an executed message that
cannot be progressed. On the other hand, an active MSD is not required to progress in a
monitored cut, that contains a monitored message as introduced in Section 2.4.2.

Fourth, besides the system operations and interactions, they model environment be-
havior so the engineer can make assumptions for that. It was necessary, because the
original play-out mechanism proposed by Marelly et al. did not make assumptions about
the environment and it was possible that the system had to wait endlessly for an event
before making any progress [28].

Thus assumption MSDs were proposed by Greenyer et al. [17]. Syntactically, assump-
tion MSDs are the same as other MSDs, but they are marked with stereotype «assumption
MSD». Semantically, a sequence of events satisfies an MSD specification if it does not
lead to a safety or liveness violation in any requirement MSD or if it leads to a safety or
liveness violation in at least one assumption MSD. So the system is only obliged to satisfy
the requirement MSDs if the environment satisfies all assumption MSDs.

However, there are some ambiguities in the semantics of the recently introduced exe-
cution kinds. The definition of monitored message requires that, it may or may not occur.
Besides the definition of monitored cut yields that the execution of the referred MSD is
not required to progress. Although the not-required-to-progress property allows the MSD

7http://scenariotools.org/projects2/msd/msd-specifications/, last access: 29/11/2017
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not to progress even a hot or a cold message occurs. But it can lead to a safety or a
liveness violation in the next execution step, unless the prescribed message arrives.

Another ambiguity comes from the definition of monitored message, because it resem-
bles the former definition of a cold message: it can be lost, which is similar to the message
not being occurred, introduced in Section 2.4.2. But if it is a monitored hot messages, then
it means the message must (not only may) occur otherwise it is a safety violation and the
system terminates.

3.4.1 Design
ScenarioTools MSD comes with a Papyrus-based Modal Sequence Diagram editor, that
extends the formerly introduced Sequence Diagram editor with new MSD-specific proper-
ties.

Similarly to Papyrus, it supports creating the system model (class model, and com-
posite diagrams), consisting of different classes which have different methods. Each lifeline
can refer to a class whom it will represent in the interaction. Although structural incon-
sistencies emerge because of the Papyrus editor.

3.4.2 Simulation
ScenarioTools MSD comes with an Eclipse-based debug feature, that enables the simula-
tion of the Modal Sequence Diagrams.

It extends the original play-out mechanism proposed by Marelly et al. [28]. That has
been extended by taking assumption MSDs into consideration as well. Plus the process
allows the user to choose the next message that is going to be sent and see its forthcoming
effects. So user can choose which message leads to hot or cold safety violations or liveness
violations. The assumption or the requirement MSDs leads to better understanding of
the causal relation between the different MSDs and helps the designer to make additional
assumptions about the environment.

3.4.3 Consistency analysis
ScenarioTools MSD comes with an extended play-out mechanism that determines and
offers the user to choose from the set of forthcoming enabled executable messages. If it
leads to a safety or liveness violation in any requirement MSD, then the MSD specification
is inconsistent and unsatisfiable by the environment.

Besides, ScenarioTools MSD can synthesize a global finite-state controller based on
Büchi automaton for an MSD specification if it is consistent. The construction of the
Büchi automaton is detailed in Joel Greenyer’s PhD Thesis on Scenario-based Design of
Mechatronic Systems [16, pp. 27–30].

3.4.4 Structural analysis
ScenarioTools MSD reuses the Papyrus sequence diagram editor for creating Modal Se-
quence Diagrams. As it was mentioned earlier the editor lacks structural analysis and
validation capabilities, because such messages can be represented in the MSDs, which are
not represented on the class model. What’s more, even those operations can be referred
by a message, which belong to the opposite lifeline’s class.

3.4.5 Code generation
At the time of writing the thesis, ScenarioTools MSD offers no code generation from Modal
Sequence Diagrams.
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3.4.6 Verification
At the time of writing the thesis, ScenarioTools MSD offers no verification for Modal
Sequence Diagrams.

3.4.7 Runtime monitor
At the time of writing the thesis, ScenarioTools MSD offers no runtime monitor for Modal
Sequence Diagrams.

3.5 ScenarioTools SML
ScenarioTools SML [18], where SML stands for Scenario Modeling Language, is a tool
suite for the scenario-based modeling and analysis of reactive systems. The tool is imple-
mented as a framework which consists of custom Eclipse plug-ins for design, analysis and
simulation of scenario-based specifications.

The metamodel of Scenario Modeling Language is depicted in Figure 3.6. A Scenario
that consists of an Interaction and has different role bindings (dynamic or static), which
can have a kind:

• assumption: that makes assumptions about the environment.

• requirement: that makes requirements about the system itself.

• specification: that specifies system behavior, similarly to the universal charts in
Modal Sequence Diagrams.

• existential: that specifies system behavior, similarly to the existential charts in
Modal Sequence Diagrams.

An Interaction consists of different Interaction Fragments which can be Loop, Alter-
native, Parallel, a Condition, a Modal Message or an Interaction itself. These fragments
are similar to the Sequence Diagram’s Combined Fragment concept in some respect.

A Modal Message can be strict, which means that it must be delivered and no other
messages can occur, while waiting or sending this message, as it was for hot messages in
case of LSC or MSD. Besides, a Modal Message can be requested that is similar to the
executed property of MSD messages. It is because, if a requested message does not occur
eventually, then it is a liveness violation for the system.

Besides, an Interaction may contain Constraint Blocks, e.g. interrupt, forbidden, ig-
nore, consider messages. If an interrupt message occurs, then the execution of the scenario
is interrupted and shall be continued from the last message that was executed. A forbid-
den message means that it should not occur during the execution, otherwise the scenario
is aborted. Ignore and consider messages are those that should be ignored and considered
during the execution of the scenario too.

From different Scenarios a Collaboration can be composed. A Collaboration contains
different Roles that can either be static or dynamic. As stated in the help pages of Sce-
narioTools SML8: ”static role can be bound to one specific object in the object system
of the runtime environment. It is a fixed role that can not be played by every object.
In comparison with that, dynamic role can be dynamically bound to any objects that is
compatible with the class of the role during runtime. Multiple objects can have this role.”

Consequently a Message has a sender and a receiver object, which are represented as
Roles in the metamodel of SML, as depicted in Figure 3.6.

8http://scenariotools.org/scenario-modeling-language/, last access: 29/11/2017
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Figure 3.6: Scenario Modeling Language metamodel

3.5.1 Design

The Scenario Modeling Language provides a textual editor via the Xtext Framework for
designing scenarios. The editor is based on a custom Domain Specific Language (DSL) for
modeling scenarios. It provides a user-friendly editor with syntax-highlighting, syntactical
and semantical analysis functionalities.

An object system model can be designed as a class diagram. The object system
describes the domain concepts: the elements of the domain concept will communicate
with each other and this communication is modeled by scenarios. Controllable and un-
controllable elements can be chosen from the set of elements in the object system model.
Controllable classes are part of the system, while uncontrollable classes are part of the
environment for which assumption scenarios can be prescribed.

Events can be spontaneous or non-spontaneous. Non-spontaneous events are events
that cannot occur randomly and are specified in some scenarios. On the other hand,
spontaneous events can occur at any time during the execution of the system.

3.5.2 Simulation

Although the homepage of the ScenarioTools SML9 outlines a play-out simulation, depicted
in Figure 3.7, that is similar to the one described formerly in Section 3.4.2 for Modal
Sequence Diagrams, it could not be made work in the Scenario Modeling Language tool,
at the time of writing the thesis.

3.5.3 Consistency analysis

Although the homepage of the ScenarioTools SML outlines a synthesized controller, that
is similar to the one described formerly in Section 3.4.3 for Modal Sequence Diagrams, it
is not clear whether it was also implemented for the Scenario Modeling Language tool.

9http://scenariotools.org/simulation/, last access: 29/11/2017
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Figure 3.7: Simulation in ScenarioTools SML

3.5.4 Structural analysis
As it was mentioned earlier, the custom DSL-based editor provides syntax-highlighting,
syntactical and semantical analysis functionalities. So in the collaboration-descriptor
model file, which contains the scenarios together with the roles of the referred elements
from the object system model, the referential consistency between the different objects is
guaranteed.

It means, only those methods of the objects can be called as messages that were
described in the object system model earlier. In this way the engineer can be sure that the
referred object expects for that message and may be able to handle that.

3.5.5 Code generation
At the time of writing the thesis, ScenarioTools SML offers no code generation from
scenarios that conform with the Scenario Modeling Langauge metamodel.

3.5.6 Verification
At the time of writing the thesis, ScenarioTools SML offers no verification for scenarios
that conform with the Scenario Modeling Langauge metamodel.

3.5.7 Runtime monitor
At the time of writing the thesis, ScenarioTools SML offers no runtime monitor for sce-
narios that conform with the Scenario Modeling Langauge metamodel.
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Chapter 4

Design of GSL

The aim of this Master Thesis is to design and implement a scenario-based specification
language, which supports the validation of scenarios. I wanted to integrate the scenario
language as a plug-in into an existing framework, that is:

• Eclipse Modeling Framework-based, so that Model-Driven Software and Systems
Engineering methodology and the related Eclipse-based modeling technologies can
be applied

• open-source and extensible, so that the framework is extensible with a plug-in that
can be attached to the original metamodel through some extension points

• under active development at the time of writing the thesis, so that the authors can
be reached and there might be a chance for future usage of the scenario language

Gamma Statechart Composition Framework seemed to be a suitable candidate for this,
as it was introduced in Section 2.5. The framework is developed at the Fault Tolerant
Systems Research Group (FTSRG1), where I do my Master Thesis.

Disclaimer: the language is called Gamma Scenario Language (GSL), because it is
going to be included in the next release of the framework. Although the design deci-
sions, which are detailed in the following sections, were discussed with the developers and
advisors of the framework, but I developed the GSL.

In order to define a scenario language, it has to be decided what the purpose of the
scenario definitions (Section 4.1) is, where those scenarios are used (Section 4.2) and what
their semantics (Section 4.3) is. In the following sections these aspects are going to be
discussed in details, including some examples of how a certain trace can be categorized
(Section 4.4) with respect to the scenario.

4.1 Purpose of the scenario definitions
In a state- and component-based system one may define scenarios with many different
purposes, e.g. validate the scenario against a given system trace, validate the scenario
against the internal behavior of a component, find traces which violate a scenario but
does not violate an other one etc. Different tooling is needed to support the different
purposes, so deciding on this point is essential in the further elaboration of the work.

In the following subsections several purposes will be discussed, comparing their
strengths (advantages) and difficulties (disadvantages) also.

1https://inf.mit.bme.hu/en, last access: 29/11/2017
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Describe the behavior of a component

In most cases scenario definitions are there to define the expected behavior of a component,
by regarding the component as a ’black box’ and only relying on how it will communicate
with other ones. If the component’s real (runtime) behavior deviates from this prescription,
then it might imply the component is faulty.

It should be noted that, not only the expected behavior can be specified in a scenario
definition but also the faulty behavior. But in this case it must be stated, which behavior
the scenario describes. It must be decided early if the scenario describes an expected or
an erroneous behavior, otherwise the interpretation can be confusing. See Section 4.3 for
more details.

The advantage of this approach is, these scenarios can define contracts which should
be adhered to. On the other hand, designing every possible scenario definitions can be a
tedious work and it might not be exhaustive with respect to every possible scenario. So
deriving them from automatically generated formal models might be easier.

Validate the conformity of the component’s internal behavior

Does the communication through the interface conform to the internal behavior of the
component? Are the incoming events always handled or is there any of them which gets
ignored, are the outgoing events sent at all? Should the component receive a signal through
a port, is the component able to send the response signal as it is described by the scenario?

Although some of these questions might be addressed by static analysis too, but it
might be interesting to see in what cases the internal behavior deviates from the expected
one.

The advantage of this approach is, the component’s conformity to the port’s interface
can be validated.

On the other hand the disadvantages include:

• the internal behavior of each component can be different from component to com-
ponent, so the reusability of these scenario definitions is questionable.

• more specific to the internal behavior, than to the communication itself. The em-
phasis is more put on the communication between the port and the internal behavior,
than on the communication between the components.

• validation might be dependent on the representation of the internal behavior. How-
ever, this representation can be transformed to another one. For instance, if the
internal component is a YAKINDU statechart, then it can be transformed to a
timed automaton, by the Gamma framework, and the questions raised above can be
answered there.

Generate runtime monitors from the scenario definitions

One may generate runtime monitors from scenario definitions, in order to alert if the
system’s runtime behavior deviates from the predefined correct behaviour [31, 32]. It is
essential in safety-critical embedded domain, because a malfunctioning system may threat
human lives and cause harm to them, e.g. in a nuclear power plant, in a railway interlocking
system or in the control system of an airplane.

The advantage of the runtime monitors is that the user can get an instant notifica-
tion if the system deviates from its acceptable behavior and the safety system can react
automatically to solve the problem as quick as possible. Supposing that the safety system
is functioning well and the notification can be received.
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The disadvantage of runtime monitor is that the tools which help identifying deviating
behavior, e.g. timed automaton, might not scale very well if the system has many different
configurations and states.

Generating traces for model-based testing

In the Model-Based Testing methodology a simplified representation of the System Under
Test is created, where each configuration of the system is represented. Different traces
(event sequences or change sequences) are generated from this model which can be used
as test scenarios to validate the system.

The advantage of this approach is that traces can be generated from a representation
which is independent from the test framework. On the other hand, manually designing
scenarios from which traces can be generated is a tedious work and it might not be ex-
haustive with respect to the transition coverage that could be more easily achieved by
other formal representations (e.g. timed automaton or Petri nets).

Log validation

Log validation means that given trace can be verified if it conforms to a predefined sce-
nario, in order to classify the trace as erroneous or acceptable. This purpose is similar
to generating traces for model-based testing, but here the direction is inverse: a scenario
definition has to be found in a log, which decides if the trace is an erroneous or accept-
able one. The advantages and disadvantages of this purpose is similar to aforementioned
approach of generating traces for model-based testing.

Decision

From the possible purposes above the describe the behavior of a component was chosen,
because it is the most general one, In the future, building on top of my work, one may
define scenarios from which runtime monitors or test traces can be generated.

There is another usage of the scenarios in this approach. Scenarios can be validated
in a sense that if there is a trace for which two scenario definitions end up in an ambiguous
decision, one of them says it is an accepted behavior while the other one says it is erroneous,
then a feedback can be given to the user. So the contradiction between scenarios can be
already found at design time.

4.2 Places for scenario definitions

section1: 
SectionDeclaration

section2: 
SectionDeclarationRequiredCCW

on a specific port

on multiple channelson a specific channel

Figure 4.1: Places for scenario definitions
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Scenarios can be defined at various points in the system design as it is depicted in
Figure 4.1. In the following sections the possible places will be discussed by comparing
their advantages and disadvantages.

On a specific port

Defining many scenarios for a particular port that realizes an interface in either provided
or required mode, and validating the scenarios’ compatibility with each other as introduced
in Section 4.1.
The advantages of this approach are:

• scenario definitions could be reused on other ports also, which realize the same
interface in the same mode.

• it can be also reused on ports that are either on the border of the internal component
or a composite system.

• existing scenarios can be extended to more specific ones on a particular port and in
this case the compatibility of that specialization with the other scenario definitions
might be also examined.

• compatibility of scenario definitions, depending on the realization mode, can be also
examined. Can two definitions be compatible with each other if the port’s realization
mode is changed for the other one (from provided to required or vice versa)?

However, a big disadvantage of this approach is that the scenario definition does not
include the other port in any way, because it just refers to one particular port. It might
have a drawback when other end (port) of the communication also has to be considered.

On a specific channel

Defining scenarios for a channel, by explicitly marking the two (or more) endpoints. It is
similar to the previous subsection, but now the channel is defined.

The advantage of this approach is that scenario definitions might be also reused on
other channels if ports realize the same interface in the same mode and the channel type
is the same as in the previous scenario.

On the other hand the disadvantages include:

• the channel type might have an implication for the scenario definition, because in
broadcast channels the receiver ports must require the specific interface and they
cannot have any outgoing event (due to the semantics of Gamma Framework).

• every possible combination of realization modes (provided, required) should be de-
fined by the user in the scenarios.

• if a specific port of a specific component expects the scenario to be different from the
other ones, then it should explicitly say how it expects the other port to “behave”.
Compared to the previous subsection, where the only thing the user has to define
is that particular port in which he is interested in and does not have to explicitly
model the other port.

42



On multiple channels

Defining scenarios for multiple channels at once in a composite component. It is similar
to the previous subsection, but on the diagram multiple interfaces and events would be
presented.

The advantage of this approach is that the user will get an overview of the whole
communication in the composite component.

On the other hand, the disadvantages include:

• defining a new scenario might be cumbersome, if many channels are involved.

• since the communications on different channels might be independent from each
other, parallel regions should be introduced early.

• tooling has to be implemented well, especially the editor so that the scenario is easily
comprehensible.

• additional complexity for validating the compatibility of the scenarios in the same
composite component.

• scenario definitions might not be reusable in other composite component, unless
the internal components and their port connections are the same as in an other
composite component.

Decision

From the possible places itemized above, scenario definitions on a particular port was
chosen, because this is the base for every other case and many things can be validated
already that would also have to be validated in the other cases. For example, are the
scenario definitions compatible with each other, does it conform to the port declaration.

4.3 Interpretation of a basic scenario
In order to design a scenario-based specification language, its expressive power and inter-
pretation have to be decided. In this section the formalism of the scenario language is
introduced on a high level. Then the interpretation of a scenario is discussed, following
the aspects raised by Micskei et al. in the Interpretation of a basic Interaction section
of their survey [42]. Since GSL has some similarities with UML Sequence Diagrams, the
same aspects should be discussed also.

Finally in Table 4.1 several example scenarios are shown together with traces in order
to decide when will the trace be valid, invalid or inconclusive for the given scenario.

Formalism

Regarding the expressive power, in order to include explicit modality that is easier to be
expressed by the nature of the language, than in UML Sequence Diagrams, I extended
the Live Sequence Charts (LSC, introduced in Section 2.4.2) formalism with some extra
elements, detailed in Section 5.1.

Harel et al. compared papers on the expressive power of the LSC formalism in their
survey [25]. Some papers were referred in the aforementioned survey, which suggested
translations from fragments of the language into temporal logics. A first embedding of
a kernel subset of the language (which omits variables and some other elements) into a
CTL* was given. It was shown that existential charts can be expressed using CTL, while
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universal charts are in the intersection of linear temporal logic and computation tree logic:
LTL ∩ CTL.

In the Gamma Scenario Language (GSL), only universal charts are supported, with
non-empty prechart which contains only cold messages (signals). The mainchart cannot
be empty either, but it can contain cold and hot messages also. In this way, the scenario’s
‘activation’ can be specified by preconditions and it prescribes a certain behavior.

Representing signals

Signals are identified by a tuple ⟨modality, direction, interface, interface event name⟩, and
a unique sequence number, which shows the place of the signal in the sequence of signals.
The problem of overlapping signals is circumvented, because (1) the editor only supports
defining non-interleaving signal sequences and (2) in the validation phase no new signal
can be sent (in any direction) until the one that is being processed is not finished yet.

In a trace, that is a sequence of signals, a particular message may be sent multiple
times, in the same direction, between the same participants. However, in the sequence of
signals, the signal’s sending occurrence is always before its reception occurrence and no
other signal can be sent / received in the meantime. It means, there is a strict ordering
of signals.

Categorizing traces

Combining the message-level modality with the chart-level modality results in having three
different conclusions for the trace (sequence of signals), against which the scenario was
running:

• The trace is valid, if in the scenario all the hot messages were delivered and all the
hot conditions were true and all the hot locations were exceeded.

• The trace is invalid, if in the scenario, a hot condition was violated or a hot loca-
tion was not exceeded. It means there was a serious deterrence from the specified
behavior.

• The trace is inconclusive, if in the scenario either a cold condition or a cold location
was not exceeded. It is not an error, it simply means the scenario cannot be fitted
to the recent execution.

Complete or partial traces

Due to the semantics of the precharts of the LSCs, there can be any prefix in the system
trace, before the behavior specified by the scenario occurs. If the prechart is a succeeded,
then the mainchart must also either succeed or end in a cold violation. If so, then any
signals can arrive, but the analysis starts the matching process from the beginning of the
scenario. If the mainchart ends in a hot violation, then it will stay in this location for the
whole suffix of the trace.

So the scenario language supports matching partial traces until this subtrace ends
in either success or in cold violation. As soon as there is a subtrace which ends in a hot
violation, the whole trace is invalid (see the previous section on categorizing traces).

4.4 Example traces against scenarios
In the following table several scenarios are shown, along with some traces. The category
(valid, invalid, inconclusive) for the trace is decided, based on the scenario definition.
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In the scenario definition it is assumed that there is only one sender, who may send
signals. Sending a signal called a is denoted by !a, receiving this signal is denoted by ?a. A
period (.) between the signals is just a concatenation character in the trace. ⟨?a⟩ denotes
that receiving an a is in a prechart. Cold signals are written in italics, hot signals are
written in bold.

Scenario Trace Trace category
?a.?b.!c ?a.?b.!c valid

?a.?b.!c ?a.?a.?b.!c if at least ?a is in prechart → valid
if there is no prechart → invalid

?a.?b.!c ?d.!c if at least ?a is in prechart → inconclusive
otherwise → invalid

⟨?a⟩.?b.!c ?a.!b if ?b → inconclusive
if ?b → invalid

⟨?a⟩.?b.!c ?a.?b.!c.!d valid, but another scenario
may decide it is invalid, due to !d

Table 4.1: Example trace categorizations based on scenarios

So any prefix is allowed until the prechart matches, after that any cold violation results
in an inconclusive trace, any hot violation results in an invalid trace, no violation results
in a valid trace for the scenario.
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Chapter 5

Language Development

The aim of this Master Thesis is to design and implement a scenario-based specification
language, which supports the validation of scenarios. This chapter introduces the imple-
mentation of the Gamma Scenario Language’s (GSL).

In Section 5.1 the abstract syntax of the LSC-based scenario language is given, then
in Section 5.2 the concrete syntax of the language is defined along with the structural
validation rules which are necessary to ensure correct models.

In Section 5.3 the operational semantics of GSL is defined by giving a mapping be-
tween the elements of the language and a finite automaton. Then this semantics is com-
pared to the one introduced by Maoz et al. [40].

Finally, in Section 5.4–Section 5.6 the compatibility validation of scenarios is ex-
plained. First, the concept of scenario compatibility is defined, then a workflow is proposed
and implemented for validating scenarios from their compatibility point of view.

5.1 Abstract syntax

As it was introduced in Section 4.3, GSL is an extension of the Live Sequence Chart (LSC)
formalism. The abstract syntax (metamodel) of the language is depicted in Figure 5.1.

The ScenarioDefinition depends on a StatechartSpecification (Section 2.5) and a
PortReference. A PortReference refers to a ComponentInstance and to one of its Ports
in the previously stated StatechartSpecification. In this way several scenarios can be de-
fined (ScenarioDefinition) on the same port of a certain component, as it was decided in
Section 4.2.

A ScenarioDefinition consists of a Prechart and a Mainchart. A Chart is a non-empty
list of Interactions. The concept of InteractionFragment was introduced for the list of
Interactions in order to allow their reuse, see CombinedFragment.

An Interaction can be either a ModalInteraction, or an InteractionDefinition or a
CombinedFragment.

A ModalInteraction is the representation of the message-level modality in LSC. It
encapsulates a Signal which can be a mandatory (hot) or an optional (cold) one.

An InteractionDefinition represents an interaction between the Port, that was re-
ferred by the PortReference and some other ports which are not represented at all. The
InteractionDefinition is abstract, because the concrete interaction depends on its seman-
tics. For example, is it a Signal, a Message, a synchronous or asynchronous Function
Invocation, etc.

The only extension of an InteractionDefinition is a Signal, which refers to Interface
that is realized by the Port and to an Event from the ones declared by the interface.
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The CombinedFragment is an extension of the LSC formalism. The semantics of
this concept is similar to the semantics of CombinedFragments in the context of UML
Sequence Diagrams as depicted in Figure 2.7 in Section 2.4.3. However, there are some
differences between the two. In the context of GSL, the CombinedFragments do not have
a dedicated InteractionOperatorKind, but there is a separate concrete class for every
implementation (AlternativeCombinedFragment, UnorderedCombinedFragment, Parallel-
CombinedFragment) whose semantics are covered in the corresponding sections. Moreover,
the InteractionOperands in this context are non-empty InteractionFragments and there is
no InteractionConstraint implemented yet which could be used as guard condition for each
InteractionFragment.

An AlternativeCombinedFragment contains at least two non-empty InteractionFrag-
ments from which any of the them can occur in the trace as the next Interaction. For its
semantics see Section 5.3.

An UnorderedCombinedFragment contains at least two non-empty InteractionFrag-
ments whose contents are concatenated after each other in every possible combinations,
but each InteractionFragment is handled atomically. It means (1) the order of Interactions
in the InteractionFragment is preserved and (2) between two Interactions from the same
InteractionFragment no other Interaction can come from the other InteractionFragments.
For its semantics see Section 5.3.

A ParallelCombinedFragment contains at least two non-empty InteractionFragments
whose contents are combined in every possible combinations. The only property that
is preserved in ordering is the happens-before relation (Definition 19 in Section 5.3.2).
It means, the order of Interactions in the combined InteractionFragment has to respect
their original ordering within their original InteractionFragment, but between two Inter-
actions from the same InteractionFragment any other Interaction can come from the other
InteractionFragments, assuming their ordering is also preserved. Compared to Unordered-
CombinedFragment, in this case the atomicity of InteractionFragments is not required,
only the happens-before relation of events within the same InteractionFragment has to be
preserved. For its semantics see Section 5.3.

5.2 Concrete syntax
In order to support the model-driven engineering and the easy usage of the scenario lan-
guage, an Xtext1-based [12] textual editor was developed. Xtext is a framework for devel-
oping Domain-Specific Languages.

From the language designer’s perspective, the only thing he has to design is the
grammar of the language, the other classes (e.g. editor with syntax highlighting and auto-
complete, lexer, tokenizer, parser) will be automatically generated by the framework. On
the other hand, these classes can be customized if necessary (e.g. scope provider, model
validation).

From the perspective of the language user the text that is typed into the editor
will be parsed, based on the grammar rules, and a model will be automatically created
which conforms the grammar. Should a parsing or a custom validation error occur, an
error notification will appear in the editor and the user can either automatically fix the
problem, by predefined auto-fixes, or manually find a solution. It is very convenient both
from the perspective of the language designer and the user.

Although the complete grammar of the scenario language is included in the appendices
in Listing A.1, a short excerpt is shown in Listing 5.6 how a ScenarioDeclaration refers to a
StatechartSpecification and a PortReference; and how a ScenarioDefinition is constructed

1http://www.eclipse.org/Xtext/, last access: 15/12/2017
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� �
cold receives Protocol . r e s e rve
hot receives Protocol . cannotGo
hot sends Protocol . canGo
cold sends Protocol . r e l e a s e� �
Listing 5.1: Modal Interactions

� �
alternative {

hot sends Protocol . canGo
} or {

hot receives Protocol . r e l e a s e
hot sends Protocol . canGo

}� �
Listing 5.2: Alternative Combined Fragment

� �
unordered {

hot sends Protocol . canGo
} and {

hot receives Protocol . r e l e a s e
hot sends Protocol . canGo

}� �
Listing 5.3: Unordered Combined Fragment

� �
parallel {

hot sends Protocol . canGo
} and {

hot receives Protocol . r e l e a s e
hot sends Protocol . canGo

}� �
Listing 5.4: Parallel Combined Fragment

� �
import FourSection
port s ec t i on1 . ProtocolProvidedCW

scenario A {
[

cold receives Protocol . r e s e rve
cold receives Protocol . cannotGo

]
{

hot sends Protocol . canGo
hot receives Protocol . r e l e a s e
hot sends Protocol . canGo

}

scenario B {
[

cold sends Protocol . r e s e rve
cold receives Protocol . canGo

]
{

alternative {
hot sends Protocol . cannotGo

} or {
hot receives Protocol . canGo
cold sends Protocol . cannotGo

}
}� �

Listing 5.5: Multiple Scenario Definitions for a Port

Figure 5.2: Scenario Concrete Syntax Examples
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from a Prechart and a Mainchart. Besides, in Figure 5.2 several examples illustrate the
outlook of the syntax of the elements in an editor. For clarity purposes, the PortReference
is not shown in the short examples, only in Listing 5.5.

Several structural validation rules were implemented for scenarios to ensure the cor-
rectness and well-formedness of the created models. In Section 5.2.1 these rules are item-
ized and categorized by severity.� �

Scenar ioDec larat ion returns ScenarioModel : : Scenar ioDec larat ion :
’import’ s ta t echar t = [ StatechartModel : : S t a t e cha r tSpe c i f i c a t i on ]
port = PortReferenceDef in i t ion
( s c ena r i o s += Scenar i oDe f in i t i on )+

;

PortReferenceDef in i t ion returns ScenarioModel : : PortReference :
’port’ component = [ CompositeModel : : ComponentInstance ] ’ . ’ port = [
StatechartModel : : Port ]

;

Scenar i oDe f in i t i on returns ScenarioModel : : Scenar i oDe f in i t i on :
’scenario’ name = ID ’ { ’

prechart = PrechartDe f in i t ion
mainchart = MainchartDef in it ion

’ } ’
;

PrechartDe f in i t i on returns ScenarioModel : : Prechart :
’ [ ’

^fragment = FragmentDefinit ion
’ ] ’

;

MainchartDef in it ion returns ScenarioModel : : Mainchart :
’ { ’

^fragment = FragmentDefinit ion
’ } ’

;� �
Listing 5.6: Gamma Scenario Language (GSL) Grammar (excerpt)

5.2.1 Scenario validation rules

In order to ensure the correctness and well-formedness of the created models, several
structural validation rules were implemented for the scenarios. These are categorized by
ascending severity as follows:

Info

• If there is a ParallelCombinedFragment in the InteractionFragment, then a marker
is put there in order to notify the user about the complexity of generating every
possible partial orderings of the fragments.

Warning

• The modality of each ModalInteraction in a Prechart should be cold. Precharts filter
the traces before the Mainchart is evaluated, so using the hot modality does not
make sense in this setting.
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• There should be at least one ModalInteraction with hot (mandatory) modality in
the Mainchart, otherwise the respective ScenarioDefinition does not prescribe any
compulsory behavior and every trace which runs against the scenario will eventually
be either valid or inconclusive as it was introduced in Section 4.3.

Error
• ComponentInstance referred by the PortReference should exist in the respective Stat-

echartSpecification, otherwise there is no such component whose Port could be re-
ferred.

• Port referred by the PortReference should belong to the respective ComponentIn-
stance that was referred by the same PortReference, otherwise there is no Port for
which the ScenarioDefinitions could be defined.

• ScenarioDefinitions should have unique names, otherwise the result of the compati-
bility validation cannot be back-annotated correctly into the editor. See Section 5.4.

• Every Signal’s direction should conform to the referred Event’s direction with respect
to the Port’s realization mode. For instance, if the Port realizes the Interface in
provided mode and the Interface contains the respective outgoing Event, then the
Signal should send this event. However, if everything remains the same as before,
but the Signal receives the respective Event, then it is wrong.

• First Interactions modality (hot or cold) in the InteractionFragments which belong
to the same CombinedFragment has to be the same, otherwise the violation locations
cannot be generated correctly as it is detailed in Section 5.3.

• There cannot be two ScenarioDefinitions which are structurally the same even if
they have different names.

• For those interaction fragments which have a common prefix that consists of the
same Interactions, the next Interaction after the common prefix must have the same
modality, otherwise the violation locations cannot be generated correctly.

Most of the validation rules were implemented in an extension of the auto-generated
language validator class of Xtext. These validation rules are executed upon every model
change, so they have to be completed quickly, otherwise the editor may be frozen which
causes a not-so-good user experience. Thus the redundancy and the common prefix val-
idation rules are implemented in a separate validator that is only triggered before the
scenario transformations, which are detailed in Section 5.4.

5.3 Formal semantics
Harel et al. defined the formal operational semantics of LSCs using formal expressions [22].
Moreover, they synthesized state-based object systems and state machines from LSC spec-
ifications [21, 23]. However, for my Master Thesis and for scenario compatibility validation
an automaton based approach would be more suitable.

Thus in Section 5.3.1 I shortly describe the approach introduced by Maoz et al. [40]
where they transformed multimodal scenario-based specification into scenario aspects.
Then in Section 5.3.2 I describe my contribution, the scenario analysis approach in
Gamma. It is based on the work of Maoz et al., but was simplified and modified to
fit our needs.

Finally in Section 5.3.3 I give a few examples for how the examples of the concrete
syntax, depicted in Figure 5.2, look like as automata.
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5.3.1 Semantics given by automaton – S2A approach
Maoz et al. [40] translate each LSC into a scenario aspect which is responsible for mon-
itoring relevant events by simulating an abstract automaton whose states represent cuts
(see Section 2.4.2) along the LSC lifeline and whose transitions represent enabled events.

The automaton representation of an LSC is built by doing static analysis over the
LSC. The analysis involves simulating a run over the LSC, to capture all its possible cuts.
Each cut is represented by a state. Transitions between states correspond to enabled
events. An additional transition from each cold cut state to a designated completion state
corresponds to all possible (cold) violations at the cut. An additional transition from each
hot cut state to a designated error state corresponds to all possible (hot) violations at the
cut. The scenario ends in a non-cold-violation completion state if it accepts the given run.

For each LSC in the specification, following the construction of the automaton of the
LSC, AspectJ code is derived from the respective automamton.

This approach is very similar to the one proposed by Harel et al. [24], where the
construction yields an alternating weak word automaton (AWW) to define the semantics
of LSC. In the AWW the partition of the states is induced by the partial-order of events
specified in the LSC.

5.3.2 Semantics given by automaton – Gamma approach
In this subsection I define the transformation algorithm which translates each Scenario
Definition into a separate finite automaton, along with those extra elements (various spe-
cializations of a CombinedFragment) that were not part of the original LSC specification.

The high-level transformation algorithm is defined in Algorithm 6 in Section A.2,
some necessary concepts are also formulated in Definition 21. In the following paragraphs
the transformation of each model element will be introduced, together with the states
naming conventions and the handling of violations and error states. Finally, my approach
and the one proposed by Maoz et al. [40] is compared.

Due to space limitations all algorithms of this subsection is defined in Section A.2 of
the Appendix, together with Definition 21.

Naming convention for states The initial state of the automaton is always named as
initial. Every other state’s name has a prefix which depends on if the respective signal is
in the prechart or the mainchart (prechart_ and mainchart_ respectively) and a sequence
number appended to it (which is unique with respect to a Chart).
Violation and accepting states are exceptions in the naming convention. Violation state
represents cold or hot violation which is denoted by its name’s postfix (coldViolation and
hotViolation respectively). The only accepting state can be in the end of the mainchart,
thus it is always called as mainchart_end.

Violation states and error state The violation states are always reused in each Chart
of the same ScenarioDefinition. So there is only one instance of coldViolation state in the
Prechart and there is only one coldViolation and hotViolation state in the Mainchart.
There is no hot violation state in the Prechart, as it is discussed in Section 5.2.1.

Besides, only the mainchart_hotViolation violation state is regarded as an error (trap)
state, which means for every Event on the Interface of the Port referred by the Scenari-
oDeclaration and for every InteractionDirection a loop transition is created in this state,
so it cannot proceed. The reason for this construction is that the trace which runs against
the ScenarioDefinition can be regarded as invalid and any continuation of this trace will
be invalid also.
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However, every other violation state is connected to the initial state via an ϵ transition.
In this way the universal scenarios can continue until the corresponding trace is regarded
as invalid.

Accepting state The only state which accepts the trace is the one that is created in the
end of the ScenarioDefinition after the last ModalInteraction is transformed. Although
this state is an accepting state, it is connected to the initial state via an ϵ transition.

In order to clarify the previous two paragraphs, see Section 5.4 where it is explained
why only mainchart_hotViolation state has to be differentiated from the other violation
states and accepting state.

ModalInteraction Every ModalInteraction mi is transformed into a transition between
two states as in Algorithm 9.

Should the Signal referred by mi happen, then a new state and transition is created
from the last state before mi and the new state. The trigger of the transition contains the
direction and the Signal of mi.

For every Event and InteractionDirection which are not the ones referred by the mi,
transitions are generated from the last state before mi and the corresponding violation
state. The chosen violation state depends on the modality of mi and the type of the Chart
which contains it.

Signal Every Signal s is transformed as introduced in the ModalInteraction paragraph.
The difference is that a Signal does not have modality. So it is never transformed alone,
but always as part of a ModalInteraction.

InteractionDefinition There is no other InterationDefinition than Signal yet, so see
the corresponding paragraph for the transformation.

AlternativeCombinedFragment Every fragments of an AlternativeCombinedFrag-
ment acf are transformed into separated branches starting from the last state before
acf. For those fragments which have a common prefix, the prefix is transformed only once
and the corresponding fragments continuations are attached to that state of the common
prefix where they start from as in Algorithm 12. In this way there is no unnecessary
repetition of interactions in the beginning of branches.

The continuations are transformed as a list of Interactions. The end states of the
continuations are finally connected via ϵ transitions to a new state, so that every possible
branch of acf is finally connected together into one state so that continuous semantics of
the transformed Interactions is preserved.

In the following there is a short explanation for connecting the last state of each
branch to the same state: looking at the Interactions from a very high-level, they should
look similar to a transition between two states with a trigger as the Interaction. However
it is too general, so it has to be refined for each concrete Interaction. But irrespectively
of their complexity, finally each of them should preserve a continuation of the control
flow. So connecting the transformation of the next Interaction should be made as easy as
possible. Thus having only one former state to connect to is the easiest way possible. So
every continuation and every branch which does not lead to a violation state should be
connected by ϵ transitions to the same state in the end.

Besides the behaviors prescribed by the fragments, the necessary transitions are also
generated if the first ModalInteraction in each InteractionFragment, let they be firstModal-
Interactions as defined in Definition 21, does not occur in the runtime trace. So for every
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Event and InteractionDirection which are not the ones referred by the firstModalInterac-
tions in each fragment, transitions are generated from the last state before acf and the
corresponding violation state. It should be considered that the triggers of these transi-
tions cannot contain those Signals which are referred by the firstModalInteractions. The
chosen violation state depends on the modality of firstModalInteractions and the Chart
type of acf. Thus the firstModalInteractions should have the same modality thus exists
the corresponding validation rule in Section 5.2.1.

UnorderedCombinedFragment Every UnorderedCombinedFragment ucf, as defined
in Definition 18, is transformed into a corresponding AlternativeCombinedFragment acf,
then acf is transformed as defined in the corresponding paragraph in Algorithm 10.

Definition 18. An UnorderedCombinedFragment ucf can be regarded as an Alternative-
CombinedFragment, whose fragments are the permutations of ucf ’s fragments. In each
permutation each original fragment of ucf is regarded atomic, so the Interactions of dif-
ferent fragments are not mixed together, only the fragments are appended as a whole. �

ParallelCombinedFragment Every ParallelCombinedFragment pcf, as defined in Def-
inition 19, is transformed into a corresponding AlternativeCombinedFragment acf, then
acf is transformed as defined in the corresponding paragraph in Algorithm 11.

Definition 19. A ParallelCombinedFragment pcf can be regarded as an AlternativeCom-
binedFragment acf, whose fragments are the permutations of interactions in the fragments
of pcf by taking every Interaction together and preserving the partial order between only
those Interactions which belong to the same fragment.

With other words: the partial order of those Interactions is preserved which belong
to the same fragment, but the InteractionFragments themselves are not regarded atomic.
So between two Interactions from the same fragment another Interactions can come from
different InteractionFragments considering they also obey to their partial ordering.

It should be noted that it has a higher computational complexity, than transforming
an UnorderedCombinedFragment, because now another fragments’ Interactions can be in-
jected also into each InteractionFragment. Thus there is an info-level marker in the editor
for such elements, as shown in the validation rules in Section 5.2.1. �

In the following, several differences and the similarities between the approach pro-
posed by Maoz et al. and the one introduced by me are the followings [40]:

• in [40] cold violation states are regarded as accepting states, but a trap state is
created from each of them. In this way they do not reconnect these states to the
initial state via an ϵ transition. Compared to them, I regard cold violation states as
normal states, so the trace which ends in them is not accepted.

• in [40] in the graphical representation of the LSC the first interactions with dashed
arrows and conditional expressions are regarded as cold modalities which form a
prechart together. Compared to [40] in my LSC formalism there is an explicit nota-
tion for prechart and for cold interactions. However, conditional expressions are not
supported yet.

• in [40] those states which are transformed from the LSC’s prechart-like structure
are regarded as accepting states. These states are trap states for every interaction
that is not the one prescribed by the LSC. Compared to them, I do not treat those
states which are transformed from the prechart as accepting states. However, should
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a cold violation occur, then there is a transition to the corresponding violation state
from which an ϵ transition takes back to the initial state. The only similarity of the
approaches is that the initial state is a trap state for every Signal that is different
from the first Signal of the prechart. But the initial state is not an accepting state.

• in [40] an accepting state is regarded as a trap state for every interaction that occurs
after the last one. Compared to them, I do not regard accepting state as a trap state,
but it is connected via an ϵ transition back to the initial state. See Section 5.4 why
it is done so.

• although I have an explicit naming convention for each state in the automaton, as
described in the State’s naming convention paragraph above, it is not clear if Maoz
et al. also have such a convention.

• both approaches regard hot violation states as trap states for every interaction fol-
lowing the hot violation.

• both approaches have an accepting state in the end of the transformation, after the
last interaction of the mainchart. What is not clear if Maoz et al. also have only one
accepting state or multiple of them, in case there is an alternative way to end the
scenario for a trace to be accepted.

5.3.3 Examples

An example for the difference between an UnorderedCombinedFragment and a Parallel-
CombinedFragment is depicted in Figure 5.3 together with their ScenarioDefinitions.

Due to space limitations, the mainchart_hotViolation state and the corresponding
transitions, as defined in the previous section above, are not depicted.

Moreover, on the figures Σ symbol represents the set of every possi-
ble combination of InteractionDirections and Events of the Interface referred by
section1.ProtocolProvidedCW port (both ScenarioDefinition refer to the same
port). The Σ\{receive Protocol.reserve} expression is a shorthand for enumerating every
transition whose trigger is from the specified set.

In Figure 5.3b it can be seen, that taking the permutations of Interactions but pre-
serving their partial ordering in the same InteractionFragment yields more states, than
just simply appending each fragment as a whole after the others.

It can be also noted in Figure 5.3b that the branch which starts from
mainchart_s1 consists of two sub-branches which originally had a common prefix
(send Protocol.cannotGo) that was transformed only once, so they start from this state.

5.4 Compatibility validation of scenarios
A central aim of the Master Thesis is deciding which ScenarioDefinitions are incompatible
with each other from the ones specified for a certain Port. If there is a trace for which
two scenario definitions end up in an ambiguous decision, then there is a contradiction
between scenarios that should be found at design time. For example, one of the scenarios
say it is an accepted behavior while the other one says it is erroneous.

In order to do so, first in Section 5.4.1 I define Scenario compatibility which is il-
lustrated in Table 5.1. Then in Section 5.4.2 I introduce the workflow which validates
scenarios from their compatibility perspective.
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� �
scenario A {

[
cold receives Protocol . r e s e rve

]
{

unordered {
hot sends Protocol . cannotGo
hot sends Protocol . r e s e rve

} and {
hot sends Protocol . canGo

}
}

}� �
Listing 5.7: Scenario S1

� �
scenario B {

[
cold receives Protocol . r e s e rve

]
{

parallel {
hot sends Protocol . cannotGo
hot sends Protocol . r e s e rve

} and {
hot sends Protocol . canGo

}
}

}� �
Listing 5.8: Scenario S2

mainchart_end

initial

  ɛ

  Σ\{receive Protocol.reserve}

prechart_s1

  receive Protocol.reserve

mainchart_s1

  send Protocol.cannotGo

mainchart_s4

  send Protocol.canGo

mainchart_s2

  send Protocol.reserve

mainchart_s3

  send Protocol.canGo

  ɛ

mainchart_s5

  send Protocol.cannotGo

mainchart_s6

  send Protocol.reserve

  ɛ

(a) Automaton of S1

mainchart_end

initial

  ɛ

  Σ\{receive Protocol.reserve}

prechart_s1

  receive Protocol.reserve

mainchart_s1

  send Protocol.cannotGo

mainchart_s4

  send Protocol.canGo

mainchart_s2

  send Protocol.reserve

mainchart_s7

  send Protocol.canGo

mainchart_s5

  send Protocol.cannotGo

mainchart_s3

  send Protocol.canGo

mainchart_s8

  send Protocol.reserve

  ɛ

mainchart_s6

  send Protocol.reserve

  ɛ  ɛ

(b) Automaton of S2

Figure 5.3: Automaton of scenarios without hot violation state
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`````````````̀Scenario1

Scenario2 accept hot violation cold violation

accept 4 7 4

hot violation 7 4 4

cold violation 4 4 4

Table 5.1: Scenario compatibility table

5.4.1 Scenario compatibility definition
Definition 20 (Scenario compatibility). Two ScenarioDefinitions are incompatible
with each other, if there is a trace which drives one automaton to a hot violation state
and the other to an accepting state.

Two ScenarioDefinitions are compatible with each other if they are not incompatible.�

The concept was defined according to Definition 20, because a trace can be either valid
(ends in an accepting state), or invalid (ends in a hot violation), or inconclusive (ends in a
cold violation) with respect to the ScenarioDefinition and its automaton representation.

So, if there is a ScenarioDefinition (scenario) for which the trace is accepted (valid)
but in the meantime there is another scenario for which the respective trace ends in a
hot violation (invalid), then the scenarios are not compatible with each other, because
they end in an contradictory conclusion for the trace. Both scenarios are universal for the
respective Port as defined in Section 4.3.

5.4.2 Compatibility validation workflow
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Figure 5.4: Scenario compatibility validation worklfow

In this section I propose a workflow, depicted in Figure 5.4, which decides if there is
a trace for which two ScenarioDefinitions (scenarios) on the same Port are incompatible
with each other according to Definition 20.
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It transforms every scenario to their nondeterministic finite automaton (NFA) rep-
resentation by the transformation rules introduced in Section 5.3.2. After that, in order
to remove the ϵ transitions and the nondeterminism from the automata, each of them
is determinized and minimized so the unnecessary states are removed, thus the size of
the automaton is reduced but its accepted language (traces accepted by the automaton)
remains the same. This transformation chain (scenario → MFA) for each scenario can
be done independently from each other. They are done concurrently on separate threads,
each scenario → MFA transformation is executed on a different thread.

Then every possible pairwise ordered combinations (permutations) of the minimized
DFAs (MFAs) are taken, because the scenarios are pairwise validated. In the pairwise
combinations each automaton is paired with every other automaton but itself, and the
permutation preserves the ordering of the elements. So for k MFAs, the considered number
of pairwise combinations are: k·(k−1)

2 . The ordering of the automata in the pairwise
combination is randomly decided.

Then from every pairing a synchronous product finite automaton (SFA) is created.
For every transformation phase between the automata representations (NFA → DFA

→ MFA → SFA) a mapping is created to store the traceability relation. The role of the
traceability relation is to support the interpretation of the analysis results at the high-
level models. The mapping is created between each transformation phase, and it can be
traversed in both directions.

Let mfa1 × mfa2 = sfa be the SFA, where mfa1,mfa2 ∈ MFA. The order of the
automata in synchronous product is important. Because for the mfa1 automaton those
states of the SFA are searched, which are created from the accepting state of the NFA
from which the corresponding mfa1 was created. For mfa2 similarly those states of the
SFA are searched, which are created from the mainchart_hotViolation state of the NFA
from which the corresponding mfa2 was created. Then the intersection of these two sets of
states in the SFA is calculated, let’s call this set of states ErroneousStates. If there is an
intersection, then it means there is a trace that mfa1 accepts but mfa2 rejects. So those
scenarios from which mfa1 and mfa2 were created respectively, are incompatible with each
other. The process is depicted in Figure 5.5.

This shortest trace is created by traversing the sfa from the initial state until either
state in the ErroneousStates is found by Breadth-First-Search algorithm. The trace is
generated by recording the triggers of the transitions during the traversal.

MFA1 MFA2

Create synchronous 
product automaton 

SFA = MFA1 X MFA2

Find the shortest path 
from the inital state of SFA 
to one of the states in the 

ERRONEOUSSTATES set

set of 
ERRONEOUS

STATES

create

Find states in SFA 
which were created 

from accepting 
states of MFA1

Find states in SFA which 
were created from 

MAINCHART_HOTVIOLATION 
state of MFA2

Calculate the 
intersection of the 
previous two result 

sets

Figure 5.5: Process of finding the error trace in an sfa
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Plug-in name Description Xtend
SLOC

Java
SLOC

automaton.model Finite State Automaton metamodel 0 1063
automaton.model.validation VIATRA validation rules for automata 153 7016

automaton.util Automata transformation,
construction and traversal algorithms 1305 2053

automaton.util.tests Automaton transformation tests 1326 1580
language GSL grammar and Xtext tooling 675 3881
language.ide Xtext tooling for GSL 31 4744
language.ui Xtext tooling for GSL 119 405
model GSL (scenario) metamodel 0 2102
model.util GSL error trace back-annotation 485 814
transformation Scenario compatibility validation workflow 639 955
ui Eclipse GUI dialog feedback 60 102
ui.contribution Eclipse menu contribution 76 85

util Custom extension methods for collections,
scenario equality validator 210 325

5079 25125

Table 5.2: Plug-in project source lines of code

Finally, this error trace is back-annotated into the scenario editor as a validation
report. The back-annotation of the trace is done by mapping this trace to a corresponding
scenario in mfa2 and finding the first ModalInteraction for which the scenario goes to a
hot violation.

The back-annotation algorithm handles CombinedFragments which consist of multiple
interaction fragments. In case of a CombinedFragment cf the back-annotation algorithm
is looking for an interaction fragment of cf which matches the trace. If it finds a matching
fragment and the trace is not over yet, then it continues matching the remaining modal
interactions in the error trace after cf. If there is no matching fragment or the trace is
shorter than the number of modal interactions in the fragments, then the algorithm puts
a warning marker to the first fragment of cf. The warning marker shows the whole error
trace to the user.

5.5 Technical implementation
I implemented the proposed workflow as a set of plug-ins in Eclipse which will be included
in the next release of the Gamma Framework. I used the Eclipse Modeling Framework
(EMF) for creating the metamodel of the scenario language, depicted in Figure 5.2, and
the automaton language depicted in Figure 5.6. I used Xtext to implement a grammar
which gave a concrete syntax and an editor for the scenario language, as it was introduced
in Section 5.2. Besides the grammar I also implemented structural validation rules for the
scenario models. Validation rules ensure that the transformations start with a structurally
correct model.
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AutomatonDefinition

State

NamedElement

name : EString

Transition

AcceptingState InitialState

EpsilonTransitionInteractionDefinition

direction : InteractionDirection = SEND

[0..*] states

[0..1] initialState

[0..*] acceptingStates

[0..*] transitions

[0..*] incomings

[0..*] outgoings

[1..1] source

[1..1] target

[0..1] trigger

Figure 5.6: Automaton metamodel

As an implementation language I used Xtend2 [4], that is a more flexible and ex-
pressive dialect of Java which compiles into readable Java 5 compatible source code. The
advantage of this language is, it utilizes the advantages of Java 8 streaming API with more
convenient extension methods. Moreover it reduces the verbosity of the Java language.
What I mean by this expression is, the type informations are automatically inferred and
in most cases there is no need for explicit type declaration for variable initialization. Thus
the code is less verbose and more readable.

The set of plug-ins which realize the workflow are itemized in Table 5.2 together with
the total number of source lines of code (SLOC) in those plug-ins. As it can be seen
there is much less Xtend code, than generated Java code. It is due to the fact that on
one hand Xtend is more compact, on the other hand there are two projects which contain
the metamodels of the scenarios (model) and the automata (automaton.model). These
metamodels are in ecore files which are XML and from these serialized formats EMF
automatically generates the Java implementations, hence the relatively many Java SLOC.

As it can be seen in the aforementioned table, the projects that are necessary for
the GSL grammar and its editor and validation consist of relatively few lines of Xtend
code, but there are much more generated Java code. It is due to the fact that most of
the work is done by Xtext. However, I had to implement the grammar (87 lines which are
accumulated into the Xtend SLOC for language plug-in) and the validation rules.

In order to have the finite state automata in models also, I designed a simple au-
tomaton metamodel, as depicted in Figure 5.6. An automaton consists of States and
Transitions. There are two special states, the InitialState and the AcceptingState.
Each Transition is activated by a trigger, that is an InteractionDefinition in the
corresponding ScenarioDefinition model, from which the initial NFA in the transfor-
mation workflow is created as depicted in Figure 5.4. An EpsilonTransition is a special
transition, because it does not have any trigger.

2http://www.eclipse.org/xtend/, last access: 15/12/2017
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automaton.model

model

automaton.model.validation

ui

automaton.util

util

automaton.util.testslanguage

language.ide

language.ui

model.util

transformation

ui.contribution

Figure 5.7: Plug-in dependencies diagram

Since every automaton in the workflow conforms to the same automaton metamodel,
but they have semantically different rules, I had to implement structural validation rules
for them too. These rules are in the automaton.util plug-in. Some of these structural
validation rules are implemented as graph patterns in VIATRA3 (formerly known as
EMF-IncQuery [53]) framework. Other rules are implemented as imperative Xtend code.

The scenario to automata transformation workflow is implemented according to the
algorithms in Section 2.6. Although the whole workflow is implemented as a batch trans-
formation in the transformation plug-in, each step of the transformation is implemented
in different classes. For example the automata related transformations and traversals, in-
cluding finding the accepting-rejecting trace in the synchronous product finite automaton,
are implemented in the automaton.util project.

In order to ensure that the automata transformations are correct, the output automa-
ton of a transformation is validated against these patterns. By collecting the matches of
these validation patterns on the respective automaton models, it can be ensured that the
transformation is done correctly and the created automata meet their formal specifica-
tion’s rules. Should a transformation error occur, the user will get a corresponding error
message which says which validation rule was violated.

For the back-annotation of the error traces, I implemented a feedback mechanism
which puts warning markers for those places in the editor, where the deviation from the
behavior prescribed by the scenario happens according to the error trace. The back-
annotation is implemented in the model.util plug-in.

In order to integrate these plug-ins into Eclipse, I had to implement two projects. The
first one is the ui.contribution that adds a menu contribution to the Project Explorer
and Package Explorer views of Eclipse. The other UI contribution to Eclipse is the ui
project, in which the info and error dialogs are shown to inform the user about the progress
of the workflow.

Dependencies among theses plug-ins are depicted in Figure 5.7, except the ones for
the Gamma Framework and for Xtext and Eclipse plug-ins for clarity purposes.

3http://www.eclipse.org/viatra/, last access: 29/11/2017
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5.6 Testing the implementation
I implemented unit tests (automaton.util.tests plug-in) to validate the automata de-
terminization, minimization and synchronous product algorithms. In the unit tests the
input automata are built from code, by using the factory methods of the metamodel gener-
ated by the Eclipse Modeling Framework. The output automata are validated by invoking
JUnit4 assertions which is a tedious work. This should be changed for Model Based Test-
ing and the input models should be in resource files as objects, instead of constructing
them via code.

Other parts of the workflow were tested by running sample ScenarioDefinitions
through it and inspecting the back-annotated error trace manually.

4http://junit.org, last access: 15/12/2017
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Chapter 6

Evaluation

As part of the Master Thesis, I intended to evaluate my work from the following aspects:

Q1: How can scenario definitions be used for specifying the communication through a
port of a given component?

Q2: How can these scenario specifications be validated regarding their compatibility with
each other?

Q3: How much time does the scenario compatibility validation workflow take, depending
on the number of interactions in the scenarios?

In order to address Q1 and Q2 I applied Gamma Scenario Language (GSL) in a case
study in Section 6.1. In order to address Q3, I performed measurements on execution
time with various model sizes. The methodology that was applied for preliminary runtime
measurement of the compatibility validation workflow, together with evaluation of the
measurements results, are detailed in Section 6.2.

6.1 Case study
In this section, I am going to introduce, how scenarios designed by GSL can complement
composite statecharts in a model based demonstrator. In Section 6.1.1 and Section 6.1.2
MoDeS3is going to be introduced together with a simplified component model of composite
statecharts, designed in the Gamma Framework.

Then in Section 6.1.3 some sample scenarios are defined and evaluated in order to
examine the scenario editor’s and the scenario compatibility validation algorithm’s capa-
bilities on increasingly more complex scenario definitions.

6.1.1 MoDeS3

MoDeS3(Model-based Demonstrator for Smart and Safe Systems1), is a complex research
and educational demonstrator, which, at the time of writing the thesis, is being developed
by students and researchers at the Fault Tolerant Systems Research Group.

The demonstrator presents the combined use of model-driven and safety engineering
with IoT technologies for smart and safe cyber-physical systems. MoDeS3 is a model
railway network where the system has to fulfill both functional and safety requirements.
Safe behavior is aimed to be ensured by the combined use of design-time and runtime
verification and validation techniques [2, 33].

There is a multilayer safety system which supervises the train tack. The top layer of
the system processes a camera stream by marker recognition, in order to map locomotives

1https://modes3.inf.mit.bme.hu, last access: 29/11/2017
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section1: 
SectionDeclaration

section2: 
SectionDeclarationRequiredCCW

Figure 6.1: Graphical representation of TwoSections component

to trail segments. Then the changes in the segment occupancy are propagated as incre-
mental graph pattern changes which are recognized and the necessary measures are taken
in order to prevent train collision [2].

Although this solution recognizes dangerous patterns quickly, but the drawback is
that it is a centralized, monolithic safety system which is not tolerant to outages.

Thus a lower-level safety system was developed by using distributed statecharts. The
distributed statechart consists of a statechart for segments, turnouts (switch) which com-
municate with each other via events. For each physical switch a composite statechart is
deployed, that consists of a turnout and three or four segment statecharts. The statecharts
can communicate with each other either via direct method calls, if they belong to the same
physical component, or via a communication network if they belong to different physical
components [33]. Statecharts are prepared for network failures in a fail-safe way: should
a response not arrive in time, a default response is constructed which is always assumed
to be a negative response. Thus the trains would stop, even if there no real dangerous
situation.

This fault-tolerant distributed composite statechart system was originally designed
in xtUML [41] in my previous work [33]. It was later refined in YAKINDU Statechart
Tools together with the textual composition specification as a case study for the Gamma
Framework (Section 2.5) by Bence Graics.� �

interface Protocol {
inout event r e s e rve ;
inout event r e l e a s e ;
inout event canGo ;
inout event cannotGo ;

}� �
Listing 6.1: Interface event directions

6.1.2 Component model
I designed a simplified component model which consists of two segment statecharts. The
component model was introduced by a textual specification (Listing 2.1) in Section 2.5.
In order to recap, only the component’s graphical representation is depicted in Figure 6.1.

The statechart model is the SectionDeclaration, that was designed by Bence Graics.
The declaration of the Protocol interface, which represents the events of the safety protocol,
is in Listing 6.1. Every event of the interface is bidirectional (inout), thus they can be
both sent and received, irrespective from the corresponding port’s realization mode.

The semantical meaning of the events is the following:

• reserve: represents a request, that a train would like to reserve the next track element
(segment or switch) on its trajectory.

• release: represents a request, that the train on the recipient track element is allowed
to go.
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• canGo: represents a response, that the train that is on the recipient track element
can go to the sender track element

• cannotGo: represents a response, that the train that is on the recipient track element
cannot go to the sender track element

6.1.3 Scenarios
As a case study, I defined several scenarios for the TwoSections component’s
section1.ProvidedCCW port which realizes the Protocol interface in provided mode.

The scenario definitions were implemented in more rounds with different purposes.
In the first round with simple scenarios I would like to illustrate the usage of the editor.

Then with scenarios derived from statecharts I would like to illustrate that scenario
definitions for a given port can be derived from a statechart, and how can the scenarios’
compatibility be validated.

Finally with complex scenarios I would like to illustrate the express power of GSL by
combining the complicated elements of the language.

Simple scenarios � �
import TwoSection
port s ec t i on1 .ProvidedCCW

scenario A {
[

cold receives Protocol . r e l e a s e
cold sends Protocol . canGo

]
{

alternative {
hot sends Protocol . canGo

} or {
hot sends Protocol . r e s e rve
hot receives Protocol . cannotGo

}
cold receives Protocol . r e l e a s e

}
}

scenario B {
[

cold receives Protocol . r e l e a s e
cold sends Protocol . canGo

]
{

hot sends Protocol . canGo
cold receives Protocol . r e l e a s e

}
}� �

Listing 6.2: Simple scenarios

The purpose of the simple scenarios is to illustrate how the different scenario defini-
tions can be created in an editor for the same port in GSL. The questions which I would
like to answer are the followings:

Q1: How easy is the editor to be used?
Q2: What kind of structural analysis does it provide?
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(a) Keyword suggestion (b) Structural validation with automatic fixes

Figure 6.2: Some features of the GSL editor

(a) Scenario A vs Scenario B vali-
dation

(b) Scenario B vs Scenario A vali-
dation

Figure 6.3: Back-annotation of the scenario compatibility valida-
tion

Q3: How easily can the results of the scenario compatibility validation be back-annotated
into the editor?

Scenario A and B under study are illustrated in Listing 6.2. They are defined
for the same port and their prechart is the same, thus finding a common prefix for the
error trace is relatively easy. Although their maincharts are different, Scenario B’s
mainchart is the subgraph of Scenario A’s mainchart regarding their finite automata
representations. It is due to the fact that the AlternativeCombinedFragment in Scenario
A contains a fragment whose only interaction is hot sends Protocol.canGo which is
the first interaction in Scenario B’s mainchart, and their continuation is the same.

Designing the scenario in the editor is relatively easy since the editor provides keyword
and object suggestions based on the GSL grammar, that is detailed in Listing A.1. If
there are automatic problem resolutions (fixes) then the editor suggests some as depicted
in Figure 6.2.

There are two possible permutations in which Scenario A and Scenario B
can be validated against each other regarding compatibility. In the first permutation,
where Scenario A’s accepting states (accepting states in MFAA, Minimal DFA for
Scenario A) and Scenario B’s hot violation states (error states in MFAB) are in-
tersected, the result is a trace for Scenario B which takes this scenario to hot violation.

The error trace is: receive Protocol.release; send Protocol.canGo;
send Protocol.reserve that continues as receive Protocol.cannotGo; receive
Protocol.release to be accepted by Scenario A. This trace is depicted in Figure 6.3a
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and shows that the warning marker is put on the first interaction of Scenario B’s main-
chart, because that is the point when the scenario deviates from the prescribed trace.

On the other hand, when Scenario B’s accepting states and Scenario A’s hot
violation states are intersected, then the two scenarios are always compatible, because for
every trace that is accepted by Scenario B is also accepted by Scenario A as depicted
in Figure 6.3b. Thus there is no warning marker for the scenarios, but an info-level marker
is put on both scenarios to indicate this fact.

As it is depicted in Figure 6.3, the back-annotation of the error trace into the editor is
easily done for elements that do not have to be unfolded, unlike UnorderedCombinedFrag-
ment and ParallelCombinedFragment. However, for more complicated elements, the back-
annotation is more difficult as it is detailed in the corresponding example Section 6.1.3.

Scenarios derived from statechart

� �
import TwoSection
port s ec t i on1 .ProvidedCCW

scenario A {
[

cold sends Protocol . r e s e rve
cold receives Protocol . cannotGo

]
{

cold receives Protocol . r e s e rve
hot sends Protocol . cannotGo

}
}

scenario B {
[

cold receives Protocol . r e s e rve
cold sends Protocol . canGo

]
{

hot receives Protocol . r e s e rve
hot sends Protocol . canGo

}
}

scenario C {
[

cold receives Protocol . r e l e a s e
cold sends Protocol . r e s e rve

]
{

hot receives Protocol . canGo
hot sends Protocol . cannotGo

}
}

scenario D {
[

cold receives Protocol . cannotGo
cold receives Protocol . r e s e rve

]
{

hot sends Protocol . cannotGo
}

}� �
Listing 6.3: Scenarios derived from

statechart

By inspecting the SectionDeclaration statechart with respect to the ProvidedCCW
port, several scenario definitions can be derived. The procedure of inspection is by looking
for references of the respective port inside the statechart. The port is usually mentioned in
transitions’ triggers, actions or in states’ entry and exit actions. By checking consecutive
runs, event sequences can be collected from which the scenario definitions can be designed.

However, doing this process manually is error prone and it is not formally proved that
every possible consecutive run is found in this way. Moreover, in YAKINDU statecharts
have interfaces instead of ports, so name of the interface must be unambiguously mappable
to the name of the ports and vice versa.

Despite the drawbacks mentioned before, the questions I try to answer in this case
are the followings:

Q1: How meaningful scenarios can be derived from statecharts by manual inspection?
Q2: How does the validation algorithm handle if the precharts are different?
Q3: How does the error trace back-annotation scale when many scenarios are validated

against each other?
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hhhhhhhhhhhhhhhhhhAccepting trace in
Error trace in

ScenarioA ScenarioB ScenarioC ScenarioD

ScenarioA — 7 7 7

ScenarioB 7 — 7 7

ScenarioC 7 7 — 7

ScenarioD 4 7 7 —

Table 6.1: Multiple scenario validation results

Figure 6.4: Multiple warning markers on the same element

Several scenario definitions were derived based on the SectionDeclaration statechart
and the ProvidedCCW port. The definitions, which are illustrated in Listing 6.3, are much
simpler than the ones in Section 6.1.3. It is due to the fact that I could only derive such
from the event sequences in the statechart.

On one hand these scenarios are simpler, on the other hand their meaning, with
respect to the statechart, is sometimes questionable, e.g. prechart and mainchart of
Scenario B are repetitive, and a similar property holds for Scenario A as well. An
automatic transition traversal and scenario derivation would address this problem, be-
cause then the scenarios would surely be derived from event sequences which occur in the
statechart.

In order to avoid the unnecessary complexity of illustrating every incompatible sce-
nario combination with an error trace, I would like to highlight only that combination
which is compatible with each other, at least from one side. The validation results are in
Table 6.1. The rows of the table show the scenarios reaching an accepting state, and in
the columns the scenarios are shown that reach a hot violation. Every scenario is vali-
dated against every other scenario except from itself, thus the ’main diagonal’ is empty.
Compatible combinations are illustrated by a 4 in the corresponding cell, incompatible
ones are illustrated by a 7 in the corresponding cell.

So the compatible scenario combination is the Scenario D vs Scenario A, because
for every trace that passes their precharts and is accepted by Scenario D is also ac-
cepted by Scenario A. Such trace is for example, send Protocol.reserve; receive
Protocol.cannotGo; receive Protocol.reserve; send Protocol.cannotGo.

On the other hand, the pair of Scenario A vs Scenario D is incompati-
ble, because receive Protocol.cannotGo; receive Protocol.reserve; send
Protocol.reserve leads to a hot violation in Scenario D, but the error trace’s
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continuation receive Protocol.cannotGo; receive Protocol.reserve; send
Protocol.cannotGo leads to an accepting state in Scenario A.

As it can be seen in the previous paragraph, the different prefixes of the scenarios
are combined in such a way that in the error traces the hot violation scenario’s prechart
is usually the prefix of the trace. As soon as the prechart is succeeded then the accepting
scenario’s prechart is combined into the trace so that the hot violation scenario gets to
the error state as soon as possible. To conclude, always the shortest possible error trace
is generated.

The back-annotation of the scenario compatibility validation results to the editor is
overlapping. Hence the individual combinations are not always visible, if two warning
markers from two different error traces are put on the same interaction as depicted in
Figure 6.4, or two info markers are put on the same scenarios.

Complex scenarios

� �
import TwoSection
port s ec t i on1 .ProvidedCCW

scenario A {
[

cold receives Protocol . r e l e a s e
cold sends Protocol . canGo

]
{

hot sends Protocol . cannotGo
alternative {

cold receives Protocol . canGo
cold sends Protocol . canGo

} or {
cold receives Protocol . cannotGo
hot sends Protocol . canGo

} or {
unordered {

cold receives Protocol . canGo
} and {

cold receives Protocol . r e l e a s e
}

}
hot sends Protocol . canGo

}
}

scenario B {
[

cold receives Protocol . r e l e a s e
cold sends Protocol . canGo

]
{

hot sends Protocol . cannotGo
parallel {

cold receives Protocol . canGo
cold sends Protocol . canGo

} and {
cold receives Protocol . cannotGo
hot sends Protocol . canGo

} and {
unordered {

cold receives Protocol . canGo
} and {

cold receives Protocol . r e l e a s e
}

}
hot sends Protocol . canGo

}
}� �
Listing 6.4: Complex scenario definitions

In this example I would like to illustrate the expressive power of GSL by combining
the complicated elements (e.g. UnorderedCombinedFragment, ParallelCombinedFragment)
of the language. The sample scenario definition is illustrated in Listing 6.4. With this
example I would like to answer the following questions:

Q1: How does the validation algorithm handle multiple complicated elements that are
embedded into each other?

Q2: How does the error trace back-annotation look when such scenario definitions are
validated?

In order to reduce complexity and to obey length limitations, the two scenario
definitions are very similar to each other. The only difference between them is that
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in Scenario A the mainchart contains an AlternativeCombinedFragment, while in
Scenario B the mainchart contains a ParallelCombinedFragment (PCF), that has to
be unfolded to an AlternativeCombinedFragment according to Section 5.3.2. However, the
UnorderedCombinedFragment inside the PCF in Scenario B adds an extra complexity
in unfolding.

The result of the Scenario B vs Scenario A validation is that they are incom-
patible, Scenario A reaches a hot violation state through the error trace: receive
Protocol.release; send Protocol.canGo; send Protocol.cannotGo; receive
Protocol.cannotGo; send Protocol.canGo; receive Protocol.cannotGo
(the last interaction in the mainchart is violated); and the following continuation of the
trace is accepted by Scenario B: send Protocol.canGo; send Protocol.canGo.

The result of the Scenario A vs Scenario B validation is that they are always
compatible with each other, because every trace that is accepted by Scenario A is also
accepted by Scenario B.

Although, the validation algorithm handles complicated elements that are embedded
into each other, their representation in the editor is simplified. It is because unfolding a
PCF implies creating new virtual elements that are originally not present in the scenario,
thus warning markers cannot be placed on them. Hence as a simplification, the warning
marker is put on the first interaction of the mainchart along with the error trace feedback.

6.2 Preliminary performance evaluation
In order to get a preliminary overview for the runtime performance of the scenario com-
patibility validation workflow, I carried out several measurements. In this section the
research questions and the measurement environment will be introduced first. Then I will
evaluate the results. Finally the threats to validity will be addressed.

6.2.1 Research questions
The purpose of the Gamma Scenario Language (GSL) is to support engineers in creating
communication scenarios for a given port of a component.

Similarly to Section 6.1, the proposed use case is that the engineer creates several
scenarios, each scenario has 10–100 modal interactions at most. Besides simple modal
interactions in the interaction fragment, the engineer may would like to use alternative,
unordered, or parallel combined fragments as well. Parallel or unordered combined frag-
ments in the scenarios may influence the runtime significantly, because they have to be
unfolded for the corresponding alternative combined fragments.

Thus the research questions which the preliminary measurements try to address are:

Q3.1: How does the naïve implementation of the proposed workflow scale for 10–100
modal interactions without any combined fragment?

Q3.2: How does the naïve implementation of the proposed workflow scale for 10–100
modal interactions with combined fragment?

Q3.3: How much does the continuous validation of automata via VIATRA influence the
runtime?

6.2.2 Measurement planning
I wanted to measure the runtime of the two main phases of the validation workflow: first,
the runtime of scenario to automata transformation, starting from the scenario ending
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up with the Synchronous Product Automata (SFA). Second, the runtime of finding the
accepting-error trace in the SFA.

Environment

The measurements were carried out on a Lenovo™ IdeaPad Y510P notebook with a 4-core
Intel® Core™ i7 4700MQ CPU, 8 GB RAM and Windows® 8.1 operating system. During
the measurements the internet was blocked on the machine, the anti-virus scanner and
every user application was shut down except from the measurement-runner Eclipses.

Due to technical difficulties with resolving cross-model references in the Eclipse Mod-
eling Framework, the measurements were run in Eclipse 4.7.1.a. There were two Eclipses
open, one was the host Eclipse, where the source codes of the plug-ins were, the other one
was a runtime Eclipse, where the measurements were run. The host Eclipse had 1 GB
heap memory, the runtime one had 4 GB.

Measurement process

The source code was instrumented by custom timer which measured the elapsed time
between its start and stop invocation. There were three places where these timers were
instantiated: (1) around the scenario to automata transformation (the whole transforma-
tion chain until the Synchronous Product Automaton), (2) construction of Synchronous
Product Automaton (SFA) from two Minimal DFA, (3) finding the accepting-error trace
in the SFA.

As it was mentioned in Section 5.4.2 each scenario to automata transformation is done
on separate threads concurrently. Thus for the transformation runtime, the construction
time was added to the maximal runtime value of the concurrent transformations.

The aforementioned runtime was measured for each model size and each complexity
(see Section 6.2.2) in 12 runs. The first two runs were the ’warm-up’ ones for the Java
Virtual Machine (JVM), the other 10 runs were measured. After each run the garbage
collector (gc) was invoked three times and then the thread slept for 3 seconds before
starting the next run in order to let the gc do its work and let the JVM cool down.
Finally, the median of the 10 runtime measurements was considered into a data point in
the figure. Data points which belong to the same model complexity fit to a hypothetical
curve in the figure, from which only one of them is represented in the result figure.

Due to Q3.3, each measurement campaign (each model size with each complexity)
was run twice. Once with having the VIATRA validations between the automata trans-
formations enabled and once without these validations.

Models

I measured the aforementioned runtime for different model sizes (10, 50, 100, 500) with
different complexities (simpler, unfolded). For each complexity there were two Scenario
Definitions (scenarios) whose compatibilities were validated. The Scenario Definitions
were designed in the Xtext-based editor.

In the simpler complexity each scenario contained only modal interactions. The
precharts of these scenarios only contained one modal interaction which was the same
for both of them and their maincharts only differed by the last modal interaction.

In the more complex (unfolded model) one of the scenarios contained an alternative
combined fragment with three interaction fragments, the other scenario contained the
same interaction fragments but in an unordered combined fragment. Both scenarios only
contained the respective combined fragments in their maincharts, and their precharts were
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the same as in the simpler model. The interaction fragments did not have any common
prefix among each other in order to avoid merging the common prefixes.

As far as model sizes are concerned, in case of a simpler model, the number of modal
interactions are the ones in the mainchart, while for the more complex models the total
number of modal interactions in the mainchart should be counted as the model size. For the
more complex models, these modal interactions were divided equally into the interaction
fragments, sometimes +/- 1 modal interaction in each fragment, due to dividing even
numbers by three.

Both in simpler and more complex models, the two scenario definitions usually differed
only by the last modal interaction in their maincharts. In case of more complex models it
means the last interaction fragment in the corresponding combined fragment.

6.2.3 Measurement results
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Figure 6.5: Preliminary runtime measurements

The results of the preliminary performance measurements are depicted in Figure 6.5
which address the research questions as follows:

A3.1: The scenario transformations run under 10 seconds for 200 modal interactions and
even less for 10–100 elements (12 ms and 1.5 seconds respecitvely). Finding the
accepting-error trace is performed in 3 ms for the same model size (9 µs for 100
elements).

A3.2: In the figures the transformation runtime is for the unordered combined fragment
(the SFA is included in that time). The transformation runtime is 16 seconds for 100
modal interactions altogether. The error trace find runtime is 3 ms for 100 elements.

A3.3: Compared to the total runtime, the VIATRA validations have negligible influence.
In case of the transformations they may have an effect, but it was only visible from
500 model elements. In case of finding the error trace, they have negligible effect
since they are not used in that phase at all.

Evaluation As it can be seen in the figures, the naïve implementation performs within
acceptable time for the target model sizes (10–100), both for the simple and the unfolded
model. It could be used also in the proposed use case: designing several scenarios for the
same port, validating them in batch and refining the scenario specifications based on the
results of the validation.
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6.2.4 Threats to validity
Although the VIATRA validation rules did not influence the measurements, there are
several other factors which might have an influence for the results.

First, as it was mentioned in the performance environment subsection, the measure-
ments were run in a runtime Eclipse and a host Eclipse was also running on the machine.

Second, the scenario to automata transformations were run on separate threads, until
the creation of SFA automaton, since these threads were created and destroyed by the
ExecutorService of Java.

Third, both the simple and the unfolded models were synthetically created by copy-
pasting the same modal interaction sequences in order to design the models quickly. More-
over, scenarios with the same model sizes and same complexity only differed by the last
modal interaction.
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Chapter 7

Conclusion and Future Work

7.1 Conclusion
In the beginning of the Master Thesis I overviewed different scenario languages. Then
I compared several model-based scenario engineering tools, which support the design,
analysis, validation and further usage of scenario-based specifications.

Then I introduced the Gamma Framework that is a tool which supports the model-
driven design and analysis of hierarchical, component and statechart-based reactive sys-
tems. Since the framework lacks a functionality to model and specify communication
scenarios between components, I designed and developed the Gamma Scenario Language
(GSL). Finally, I showed the applicability of GSL in a case study and I performed mea-
surements on execution time with various model sizes.

I achieved several theoretical and practical results through the Thesis. These results
are the followings:

Theoretical results
• The conclusion of the survey of the model-driven scenario engineering tools was that

PhD dissertations and research papers have higher motivation for implementing
experimental features for modeling tools, and having a custom metamodel gives
higher flexibility in modeling and implementation.

• Then I designed a scenario-based specification language (GSL) by the following as-
pects:

– The purpose of the language is to enable the engineer to describe communication
scenarios over a port of a components.

– The formalism is based on LSC, enriched by some elements that are used in
UML Sequence Diagrams. Thus the abstract and concrete syntax are based on
this formalism.

– The formal operational semantics is defined by transforming scenarios into finite
automata.

• Building upon the operational semantics, I proposed a procedure for validating sce-
narios against each other. The approach is based on combining the scenarios into
pairs, and finding such traces which are accepted by one of the scenarios in the
pairing but at the same they are rejected by the other scenario in the same pair-
ing. If such conflicting trace exists, then it implies the two scenario definitions are
incompatible with each other.
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Practical results
In order to support the applicability of GSL in a model-driven framework, I implemented
the abstract syntax of GSL using Eclipse Modeling Framework. To the abstract syntax
I created a concrete syntax by defining its grammar in the Xtext framework. Scenarios
can be designed in a textual editor that was generated by Xtext. In order to ensure the
structural correctness of the model, I implemented several structural validation rules with
different severities in Xtext. In this way it can be ensured that the model under design is
structurally valid and meet the presumptions of the scenario validation workflow.

I also implemented the scenario validation workflow which transforms the scenarios
into finite automata and find conflicting traces in these automata. These conflicting traces
are then back-annotated to the editor and warning markers are put to the model to show
the engineer where the scenarios end-up in an ambiguous decision for the trace.

In order to evaluate the applicability and the integrity of GSL to the Gamma Frame-
work, I applied the language on a model railway case study. It should be admitted that
these scenario definitions were neither industrially proven nor validated by railway domain
experts. Moreover, theses scenarios were rather simple, since the most complicated one
contained 10 signals, but in its unfolded representation there were 184 signals.

In order to get a preliminary overview for the runtime performance of the scenario
compatibility validation workflow, I performed several measurements. In these experi-
ments I measured the runtime both for the scenario to automata transformations and for
finding the error trace. The recent implementation had an acceptable runtime performance
for the proposed model sizes and complexities.

7.2 Future work
Although the foundations of the GSL language and the scenario validation framework are
laid down, they are extensible in many ways. Regarding the GSL itself it can be extended
with new elements, such as variables and constants with basic types, in order to intro-
duce alternative fragments based on conditional guard expressions. Moreover, variable
assignment and operational expressions could be also introduced. What’s more, common
scenario definitions could be refactored and referenced from other scenarios, so that the
common parts of the behavior could be defined only once, but reused in many places.

The back-annotation that is proposed in the workflow is error prone, those scenario
elements which were created by unfolding are not physically present in the model. Thus a
better approach would be to have a direct traceability between the scenario and the first
automaton transformation. Then in the back-annotation phase the modal interactions
could be found more easily even if they are not physically present in the model.

Owing to the preliminary performance results, although the naïve implementation had
an acceptable runtime performance for the proposed model sizes, it could be improved to
handle auto-generated models with thousands of modal interactions and combined frag-
ments with many hundred modal interactions. Moreover, effectively unfolding a parallel
combined fragment into an alternative combined fragment can be also improved.
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Appendix

A.1 Gamma Scenario Language – Concrete Syntax

� �
Scenar ioDec larat ion returns ScenarioModel : : Scenar ioDec larat ion :

’import’ s ta t echar t = [ StatechartModel : : S t a t e cha r tSpe c i f i c a t i on ]
port = PortReferenceDef in i t ion
( s c ena r i o s += Scenar i oDe f in i t i on )+

;

PortReferenceDef in i t ion returns ScenarioModel : : PortReference :
’port’ component = [ CompositeModel : : ComponentInstance ] ’ . ’ port = [
StatechartModel : : Port ]

;

Scenar i oDe f in i t i on returns ScenarioModel : : Scenar i oDe f in i t i on :
’scenario’ name = ID ’ { ’

prechart = PrechartDe f in i t i on
mainchart = MainchartDef in it ion

’ } ’
;

PrechartDe f in i t i on returns ScenarioModel : : Prechart :
’ [ ’

^fragment = FragmentDefinit ion
’ ] ’

;

MainchartDef in it ion returns ScenarioModel : : Mainchart :
’ { ’

^fragment = FragmentDefinit ion
’ } ’

;

FragmentDefinit ion returns ScenarioModel : : InteractionFragment :
( i n t e r a c t i on s += Abst rac t In te rac t i onDe f in i t i on )+

;

Abs t rac t In t e rac t i onDe f in i t i on returns ScenarioModel : : I n t e rac t i on :
AlternativeCombinedFragmentDefinition | UnorderedCombinedFragmentDefinition |

ParallelCombinedFragmentDefinition | Modal Interact ionDef in i t ion
;

AlternativeCombinedFragmentDefinition returns ScenarioModel : :
AlternativeCombinedFragment :

’alternative’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ ( ’or ’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ )+
;
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UnorderedCombinedFragmentDefinition returns ScenarioModel : :
UnorderedCombinedFragment :

’unordered’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ ( ’and’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ )+
;

ParallelCombinedFragmentDefinition returns ScenarioModel : :
ParallelCombinedFragment :

’para l le l ’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ ( ’and’ ’ { ’
fragments += FragmentDefinit ion

’ } ’ )+
;

Modal Interact ionDef in i t ion returns ScenarioModel : : ModalInteract ion :
modality = Modal i tyDef in i t ion
in t e r a c t i on = S igna lDe f i n i t i on

;

S i gna lDe f i n i t i on returns ScenarioModel : : S igna l :
d i r e c t i on = Di r e c t i onDe f in i t i on
i n t e r f = [ Inter faceModel : : I n t e r f a c e ] ’ . ’ event = [ Inter faceModel : : Event ]

;

enum Dire c t i onDe f in i t i on returns ScenarioModel : : I n t e rac t i onDi r e c t i on :
SEND = ’sends’ | RECEIVE = ’receives’

;

enum Modal i tyDef in i t ion returns ScenarioModel : : ModalityType :
COLD = ’cold’ | HOT = ’hot’

;

terminal ID : ’ ^ ’ ?( ’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’_’ ) ( ’ a ’ . . ’ z ’ | ’ A ’ . . ’ Z ’ | ’_’ | ’ 0 ’ . . ’ 9 ’ ) * ;� �
Listing A.1: Gamma Scenario Language Grammar

A.2 Gamma Scenario Language – Semantics given by au-
tomaton

Definition 21. Some definitions which are reused in the latter algorithms. Concepts in
italics are the same as in the Abstract syntax 5.1.

• Direction is a set of InteractionDirections, where Direction(d) means
d ∈ {send, receive}

• Interface is a set of Interfaces, where Interface(i) means i is an Interface

• Event is a set of Events which belong to the same Interface, where Event(e, i) means
e is the event of Interface i

• EverySignalExceptThis(m) is a set of Signals which are constructed from the respec-
tive ModalInteractionm’s Signal s as follows: ∀dk, ek : Direction(dk)∧Event(ek, i)∧
dk ̸= d ∧ ek ̸= e where d is the direction, e is the Event and i is the Interface of s;
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and dk, ek are the respective fields of the new Signal whose Interface is the same as
s’s.

• EverySignalExceptThese(Set(m)) is a set of Signals which are constructed from the
set ofModalInteraction(m). The semantics is similar to EverySignalExceptThis(m),
but now the generated Signals cannot be the ones which are referred in Set(m).

• LongestCommonPrefixesOf(Set(iFragment)) is a map of the n-wise longest common
prefixes of the iFragment instances of InteractionFragment that are in the set. Each
entry of the map is a key-value pair: the key is the longest common prefix, and value
is set of InteractionFragments who has this common prefix. Common prefix is a
k-long sequence of Interactions which are in the same location and are the same in
the corresponding InteractionFragments starting from the beginning. �

Algorithm 4: createState()
output: a new state in D NFA

1 let state be a new State in D;
2 let state.name be according to the Chart in which this method was invoked, see in
Section 5.3.2;

3 return state;

Algorithm 5: createTransition(source, target, trigger)
input : source: State, target: State, trigger: InteractionDefinition
output: a new state in D NFA

1 let transition be a new Transition in D;
2 transition.source = source;
3 transition.target = target;
4 transition.trigger = trigger;
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Algorithm 6: Transforming a ScenarioDefinition to a NFA
input : a S ScenarioDefinition
output: a D NFA accepting the traces prescribed by S

1 let initialState be the initial state of D;
2 let latestState be the latest location in the accepting run;
3 latestState = initialState;

4 firstModalInteraction = S.prechart.head;
5 firstInteraction = firstModalInteraction.interaction;
6 foreach signal ∈ EverySignalExceptThis(firstModalInteraction) do
7 createTransition(initialState, initialState, signal);
8 end
9 latestState = transformInteraction(firstModalInteraction, latestState);

10 foreach interaction ∈ S.prechart.tail do
11 createTransitionsToViolationStates(interaction, latestState);
12 latestState = transformInteraction(interaction, latestState);
13 end

14 foreach interaction ∈ S.mainchart do
15 createTransitionsToViolationStates(interaction, latestState);
16 latestState = transformInteraction(interaction, latestState);
17 end
18 convert latestState to accepting state;

19 let ViolationStates be the set of every hot or cold violation state in D;
20 foreach state ∈ {ViolationStates ∪ {latestState}} do
21 let interf be the Interface of the corresponding Port in S;
22 let Events be every Event that is available on interf ;
23 foreach d ∈ Direction(d) and e ∈ Events do
24 create signal Signal;
25 signal.interface = interf;
26 signal.event = e;
27 signal.direction = d;
28 createTransition(state, initialState, signal);
29 end
30 end

Algorithm 7: createTransitionsToViolationStates(mi, latestState)
input : mi : ModalInteraction, latestState : State
output: a corresponding fragment of the D NFA

1 let violationState be a violation state based on mi.modality and on the Chart in
which mi is;

2 foreach signal ∈ EverySignalExceptThis(mi) do
3 createTransition(latestState, violationState, signal);
4 end
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Algorithm 8: createTransitionsToViolationStates(cf, latestState)
input : cf : CombinedFragment, latestState : State
output: a corresponding fragment of the D NFA

1 let firstModalInteractions be a set of the first ModalInteractions in each
InteractionFragment of cf ;

2 let firstModality be the modality of firstModalInteractions’s elements;
3 let violationState be a violation state based on firstModality and on the Chart in
which cf is;

4 foreach signal ∈ EverySignalExceptThese(firstModalInteractions) do
5 createTransition(latestState, violationState, signal);
6 end

Algorithm 9: transformInteraction(mi, latestState)
input : mi : ModalInteraction, latestState : State
output: a new state in the D NFA

1 newState = createState();
2 createTransition(latestState, newState, mi.interaction);
3 return newState;

Algorithm 10: transformInteraction(ucf, latestState)
input : ucf : UnorderedCombinedFragment, latestState : State
output: corresponding fragments of the D NFA and newState as a continuation of

the accepting run
1 fragments = ucf.fragments;
2 let permutationsOfFragments be a list of InteractionFragments from fragments
according to Definition 18

3 let acf be an AlternativeCombinedFragment whose fragments are the permutations
in permutationsOfFragments;

4 newState = transformInteraction(acf, latestState);
5 return newState;

Algorithm 11: transformInteraction(pcf, latestState)
input : pcf : ParallelCombinedFragment, latestState : State
output: corresponding fragments of the D NFA and newState as a continuation of

the accepting run
1 fragments = pcf.fragments;
2 let partialOrderedPermutationsOfFragments be a list of InteractionFragments from

fragments according to Definition 19

3 let acf be an AlternativeCombinedFragment whose fragments are the permutations
in partialOrderedPermutationsOfFragments;

4 newState = transformInteraction(acf, latestState);
5 return newState;
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Algorithm 12: transformInteraction(acf, latestState)
input : acf : AlternativeCombinedFragment, latestState : State
output: corresponding fragments of the D NFA and newState as a continuation of

the accepting run
1 fragments = acf.fragments;
2 // collect and transform the n-wise common prefixes of fragments,
3 // the algorithm is extracted to Algorithm 13

4 // transform the continuation of each fragment from the common prefix by saving
the last states of each fragment path

5 let newStates be an empty set of States in D; foreach fragment in fragments do
6 if fragment has a common prefix with any other fragment then
7 foreach prefix in which fragment is effected do
8 let state be the latest state that represents the end of prefix;
9 foreach interaction ∈ fragment after the prefix do

10 if interaction is null then
11 newState = createState();
12 createTransition(state, newState, ϵ);
13 newStates.add(newState);
14 else
15 createTransitionsToViolationStates(interaction, state);
16 newState = transformInteraction(interaction, state);
17 newStates.add(newState);
18 end
19 end
20 end
21 else
22 foreach interaction ∈ fragment do
23 createTransitionsToViolationStates(interaction, state);
24 newState = transformInteraction(interaction, state);
25 newStates.add(newState);
26 end
27 end
28 end

29 newLatestState = createState();
30 foreach state ∈ newStates do
31 createTransition(state, newState, ϵ);
32 end

33 return newLatestState;
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Algorithm 13: Transform common prefixes of an AlternativeCombinedFragment’s
InteractionFragments
input : acf : AlternativeCombinedFragment
output: a map which contains the common prefixes and their transformed paths

states
1 fragments = acf.fragments;
2 longestCommonPrefixes = LongestCommonPrefixesOf(fragments);
3 sortedLongestCommonPrefixes = sort(longestCommonPrefixes by key.length);

4 let transformedPrefixPaths be a map of prefixes and their intermediate states;
5 foreach entry ∈ sortedLongestCommonPrefixes do
6 prefix = entry.key;
7 effectedFragments = entry.value;
8 if no longer prefix is transformed yet between the effectedFragments then
9 firstInteraction = prefix.head;

10 let intermediateStates be an empty list of States in D;
11 tempState = transformInteraction(firstInteraction, latestState);
12 intermediateStates.add(tempState);
13 foreach interaction ∈ prefix.tail do
14 createTransitionsToViolationStates(interaction, tempState);
15 tempState = transformInteraction(interaction, tempState);
16 intermediateStates.add(tempState);
17 end
18 end
19 end

20 return transformedPrefixPaths;
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