
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

E�cient Stochastic Analysis of
Asynchronous Systems

Master’s thesis

Written by Supervisors

Attila Klenik András Vörös

dr. Miklós Telek

Vince Molnár

2016

v

Contents

Contents v

Kivonat xi

Abstract xiii

1 Introduction 1

2 Background 5
2.1 Petri net . 5

2.1.1 Petri nets extended with inhibitor arcs 7
2.2 Continuous-time Markov chains . 8

2.2.1 Markov reward models . 10
2.2.2 Sensitivity . 11
2.2.3 Time to first failure . 12

2.3 Stochastic Petri nets . 13
2.3.1 Stochastic reward nets . 16
2.3.2 Superposed stochastic Petri nets . 17

2.4 Kronecker algebra . 20

3 Overview of the approach 23
3.1 General workflow . 23

3.1.1 Challenges . 24
3.2 Our workflow . 25

3.2.1 Formalisms . 28
3.2.2 Analysis . 28

4 State space exploration 29
4.1 Explicit state space exploration . 29
4.2 Symbolic state space exploration . 31

4.2.1 Multivalued decision diagrams . 31

vi CONTENTS

4.2.2 Symbolic state spaces . 31
4.3 PetriDotNet integration . 33

5 E�cient generation and storage of continuous-time Markov chains 35
5.1 Explicit methods . 35

5.1.1 Explicit matrix construction . 35
5.1.2 Block Kronecker generator matrices 35

5.2 Symbolic methods . 42
5.2.1 Edge-valued multivalued decision diagrams 42
5.2.2 Symbolic state spaces . 43
5.2.3 Symbolic hierarchical state space decomposition 43

5.3 Matrix storage . 46

6 Algorithms for stochastic analysis 51
6.1 Direct linear equation solvers . 52

6.1.1 Explicit solution by LU decomposition 52
6.1.2 Improving LU decomposition with partial pivoting 53

6.2 Transient analysis . 54
6.2.1 Uniformization . 54

6.3 Mean time to first failure . 55
6.4 Efficient vector-matrix products . 56

7 Post-processing numerical results 59
7.1 Reward configurations . 59
7.2 Efficient reward calculation . 61
7.3 Sensitivity calculation . 63
7.4 Interval-based measure calculation . 63

8 Symbolic evaluation 65
8.1 Arithmetic grammar . 65
8.2 Symbolic measure computation . 66
8.3 Arbitrary precision evaluation . 67

9 Evaluation 69
9.1 Testing . 69

9.1.1 Combinatorial testing . 69
9.1.2 Software redundancy based testing 71

9.2 Measurements . 72
9.2.1 Shared resource . 72
9.2.2 Kanban . 72
9.2.3 Cloud performability . 72

vii

9.2.4 Industrial case study . 73
9.3 Results . 73

10 Conclusion and future work 75

References 77

HALLGATÓI NYILATKOZAT

Alulírott Klenik Attila, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg
nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat
(szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint,
vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a
forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar
nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan
hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső
hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem,
hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni enge-
déllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik
hozzáférhetővé.

Budapest, 2016. június 7.

Klenik Attila
hallgató

xi

Kivonat A kritikus rendszerek – biztonságkritikus, elosztott és felhőalkalmazások –
helyességének biztosításához szükséges a funkcionális és extra-funkcionális követel-
mények matematikai igényességű ellenőrzése. Számos, szolgáltatásbiztonsággal és
teljesítményvizsgálattal kapcsolatos tipikus kérdés általában sztochasztikus analízis
segítségével válaszolható meg.

A kritikus rendszerek elosztott és aszinkron tulajdonságai az állapottér-robbanás
jelenségéhez vezetnek. Emiatt méretük és komplexitásuk gyakran megakadályozza a
sikeres sztochasztikus analízist, melynek számításigénye nagyban függ a lehetséges
viselkedések számától. A modellek komponenseinek jellegzetes időbeli viselkedése a
számításigény további jelentős növekedését okozhatja.

A szolgáltatásbiztonsági és teljesítményjellemzők kiszámítása markovi modellek
állandósult állapotbeli és tranziens megoldását igényli. Számos eljárás ismert ezen
problémák kezelésére, melyek eltérő reprezentációkat és numerikus algoritmusokat
alkalmaznak ; ám a modellek változatos tulajdonságai miatt nem választható ki olyan
eljárás, amely minden esetben hatékony lenne.

A markovi analízishez szükséges a modell lehetséges viselkedéseinek, azaz álla-
potterének felderítése, illetve tárolása, mely szimbolikus módszerekkel hatékonyan
végezhető el. Ezzel szemben a sztochasztikus algoritmusokban használt vektor- és in-
dexműveletek szimbolikus megvalósítása nehézkes. Munkám célja egy olyan hatékony
sztochasztikus analízis keretrendszer és algoritmusok fejlesztése, amelyek lehetővé
teszik a komplex sztochasztikus rendszerek kezelését a szimbolikus módszerek és
hatékony mátrix-reprezentációk előnyeinek ötvözésével, továbbá lehetőséget adnak ki-
sebb rendszerek extra-funkcionális jellemzőinek tetszőleges pontosságú, zárt függvény
alakban történő meghatározására.

Egy teljesen szimbolikus algoritmust javaslunk a sztochasztikus viselkedéseket leíró
mátrix-dekompozíciók előállítására a szimbolikus formában adott állapottérből kiindul-
va. Ez az eljárás lehetővé teszi a temporális logikai kifejezéseken alapuló szimbolikus
technikák használatát.

A megvalósított algoritmusok lehetővé teszik a különböző mátrix és állapottér
reprezentációk kombinált használatát. Az implementált numerikus algoritmusokkal
tetszőleges pontosságú állandósult állapotbeli költség- és érzékenység analízis és első
hiba várható bekövetkezési idő analízis végezhető el sztochasztikus Petri-háló (SPN)
alapú markovi költségmodelleken. A számított metrikák meghatározására a numerikus
módszereken kívül szimbolikus kiértékelést is támogat az elkészített keretrendszer,
amely egy zárt függvényként állítja elő a kívánt metrikákat. A keretrendszert integráltuk
a PetriDotNet modellező szoftverrel. Az új módszer gyakorlati alkalmazhatóságát
szintetikus és ipari modelleken végzett mérésekkel igazoljuk.

Kulcsszavak aszinkron rendszerek, teljesítményvizsgálat, sztochasztikus modell, szim-
bolikus módszerek, szimbolikus kiértékelés, érzékenységvizsgálat

xiii

Abstract Ensuring the correctness of critical systems – such as safety-critical, dis-
tributed and cloud applications – requires the rigorous, mathematically precise analysis
of the functional and extra-functional properties of the system. Quantitative questions
regarding dependability and performability are usually addressed by stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevent the success of stochastic analysis due to the high sensitivity to the number
of possible behaviors. In addition, temporal characteristics of the components may also
lead to huge computational overhead.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known in the
literature for these problems differing in the representation of the stochastic behavior of
the models or in the applied numerical algorithms. The efficiency of these approaches
is influenced by various characteristics of the models, therefore no single best approach
is known.

The prerequisite of Markovian analysis is the exploration of the state space, i.e.,
the possible behaviors of the system. Symbolic approaches provide an efficient state
space exploration and storage technique, however their application to support the
vector operations and index manipulations extensively used by stochastic algorithms is
cumbersome. The goal of our work is to present an efficient framework with algorithms
facilitating the analysis of complex, stochastic systems by combining the advantages
of symbolic algorithms and compact matrix representations, and providing means to
compute extra-functional properties of smaller systems with arbitrary precision given
in a closed function form.

We propose a fully symbolic method to explore and describe the stochastic behavior
of a system. A new algorithm is introduced to transform the symbolic state space
representation into a decomposed linear algebraic representation. This approach allows
leveraging existing symbolic techniques, such as the specification of properties with
Computational Tree Logic (CTL) expressions.

The implemented algorithms provide means to combine the different matrix and
state space representations. Various algorithms are implemented for arbitrary precision
and/or symbolically evaluated steady-state reward and sensitivity analysis, transient
reward analysis and mean-time-to-first-failure analysis of stochastic Petri net (SPN)
based Markovian reward models. The framework is integrated into the PetriDotNet
modeling application. Benchmarks and industrial case studies are used to evaluate the
applicability of our approach.

Keywords asynchronous systems, performance analysis, stochastic model, symbolic
methods, symbolic evaluation, sensitivity analysis

1

Chapter 1

Introduction

The growing need for ensuring the correctness of critical systems – such as safety-
critical, distributed and cloud applications – requires the rigorous and mathematically
precise analysis of the functional and extra-functional properties. A large class of
typical quantitative questions regarding dependability and performability are usually
addressed with the help of stochastic analysis.

Recent critical systems are often distributed/asynchronous, leading to the well-
known phenomenon of state space explosion. The size and complexity of such systems
often prevents the success of stochastic analysis due to the high sensitivity to the number
of possible behaviors. In addition, temporal characteristics of the components can easily
lead to huge computational overhead or prevent algorithms from convergence.

Calculation of dependability and performability measures can be reduced to steady-
state and transient solutions of Markovian models. Various approaches are known
in the literature for these problems differing in the representation of the stochastic
behavior of the models or in the applied numerical algorithms. The efficiency of these
approaches are influenced by various characteristics of the models, therefore no single
best approach is known.

In this report our goal is to propose a framework that facilitates solving various
problems occurring in stochastic analysis of complex systems.

The first step in Markovian analysis is the exploration of the state space, i.e., the
possible behaviors of the system. Various algorithms exist for state space exploration. We
addressed the state space traversal problem with the development of both explicit state
space exploration algorithms and symbolic approaches. Explicit state space traversal
is fast in general and handles even systems with complex transition functions, while
symbolic state space traversal can handle even huge state spaces. While symbolic
approaches provide an efficient state space exploration and storage technique, their
application to support the vector operations and index manipulations extensively used
by stochastic algorithms is cumbersome. In this report we propose a fully symbolic

2 INTRODUCTION

algorithm to bridge the gap between symbolic state space representation and the data
structures intensively used by our stochastic analysis algorithms. The new algorithm
is introduced to transform the symbolic state space representation into a decomposed
linear algebraic representation. This approach allows leveraging existing symbolic
techniques, such as the specification of properties with Computational Tree Logic (CTL)
expressions.

The quantitative analysis of systems can be prone to numerical errors due to the
limitations of the floating point hardware arithmetic. These numerical errors usually
originate from the presence of special system events in the model (e.g., failure events)
whose rates are generally an order of magnitude lower (or higher) than the rest of
the event rates in the model. To alleviate this limitation we integrated arbitrary preci-
sion software arithmetic into the stochastic analysis framework. Software arithmetic
improves the precision of calculations by allocating more CPU time and memory to
the manipulation and storage of numbers during the analysis. The overhead caused
by this method is an acceptable trade-off when it comes to the calculation of critical
measures, e.g., measures of fault models of critical systems, which require the best
precision available.

We introduce the concept of configurable stochastic analysis. We developed a
framework to support the combination of:

• Various state space exploration techniques,

• With decomposition algorithms and representation techniques for the stochastic
behaviour of the systems,

• Various arbitrary precision numerical algorithms to solve the steady-state and
transient analysis problem,

• Computation of high level measures such as various reward, sensitivity and mean
time to first failure values,

• Symbolic evaluation of the aforementioned measures for smaller systems.

Several problems were solved during our work: an approach is introduced to
transform the different state space representations of models into stochastic behavior
descriptor matrices of various format. Algorithms are implemented for steady-state
reward and sensitivity analysis, transient reward analysis and mean-time-to-first-failure
analysis of stochastic models in the Stochastic Petri Net (SPN) Markov reward model
formalism. These algorithms provide arbitrary precision numerical computation for
said analysis types and even symbolic evaluation for most analysis types. Benchmarks
and industrial case studies are used to evaluate the applicability of our approach.

This report extends the research conducted in our previous report [46] and publica-
tions [52, 57, 77] by the addition of arbitrary precision and symbolic arithmetic to the

3

analysis types available in the framework. The parts of the framework that are not in
the scope of this work are covered in detail in [51].

The analysis framework is integrated into the PetriDotNet modeling applica-
tion. More than 78 000 unit tests are generated with a combinatorial interface testing
approach to ensure the correctness of the data structure. Software redundancy-based
testing is applied to validate the stochastic analysis pipeline and the implemented
algorithms: 588 mathematically consistent configurations of the pipeline are executed
and evaluated for several models.

The remainder of this work is structured as follows: Chapter 2 reviews the necessary
background for the stochastic analysis of stochastic Petri nets. Chapter 3 presents
the configurable stochastic analysis pipeline. Chapter 4 introduces the different state
space exploration techniques and the framework’s integration with the PetriDotNet
tool and the available features. Chapter 5 describes the decompositions of stochastic
behaviors, including the hierarchical decomposition algorithm for symbolic state spaces
in Section 5.2.3. Chapter 6 presents numerical steady-state and transient analysis
algorithms and their implementations in our framework. Chapter 7 overviews the
different methods for post-processing the numerical result that represents the state of
the system at a given time. Chapter 8 details the integration of symbolic evaluation into
our framework and the challenges it poses. After describing the testing and validation
methodologies applied to our framework in Chapter 9 as well as the benchmark results,
we conclude our paper in Chapter 10.

5

Chapter 2

Background

In this section we overview the basic formalisms and scope of our work. At first, Petri
net based formalisms are introduced, which is the modelling language supported by our
framework. Then the basic stochastic modelling background is discussed together with
Kronecker algebra to give a base for the later sections. This chapter heavily uses the
definitions and notations from our previous report [46] and other related works [58,
74].

2.1 Petri net

Petri net is a widely used graphical and mathematical modeling tool for systems which
are concurrent, asynchronous, distributed, parallel or nondeterministic.

Definition 2.1 A Petri net is a 5-tuple PN = (P, T, F, W, M0), where:
• P = {p0, p1, . . . , pn−1} is a finite, nonempty set of places;
• T = {t0, t1, . . . , tm−1} is a finite, nonempty set of transitions;
• F ⊆ (P × T)∪ (T × P) is a set of arcs, also called the flow relation;
• W : F → N+ is an arc weight function;
• M0 : P → N is the initial marking;
• P ∩ T = ; [58].

Arcs from P to T are called input arcs. The input places of a transition t are denoted
by • t = {p : (p, t) ∈ F}. In contrast, arcs of the form (t, p) are called output arcs and
the output places of a transition t are denoted by t• = {p : (t, p) ∈ F}.

A marking M : P → N assigns a number of tokens to each place. The transition t is
enabled in the marking M (written as M [t〉) when M(p)≥W (p, t) for all p ∈ • t.

Petri nets are graphically represented as directed bipartite graphs with arc weights.

6 BACKGROUND

••

••

2
2pH2

pO2

pH2Ot
[t〉 ••

•

2
2pH2

pO2

pH2Ot

Figure 2.1 A Petri net model of the reaction of hydrogen and oxygen.

Places are drawn as circles, while transitions are drawn as bars or rectangles. Arc
weights of 1 are usually omitted from presentation for sake of clarity. Dots (or a
number) inside places correspond to tokens in the current marking.

If M [t〉 holds then the transition t can be fired to get a new marking M ′ (written
as M [t〉 M ′) by decreasing the token counts for each place p ∈ • t by W (p, t) and
increasing the token counts for each place p ∈ t• by W (t, p). Note that in general, • t
and t• need not be disjoint. Thus, the firing rule can be written as

M ′(p) = M(p)−W (p, t) +W (t, p), (2.1)

where we take W (x , y) = 0 if (x , y) /∈ F for brevity.
A marking M ′ is reachable from the marking M (written as M M ′) if there exists

a sequence of markings and transitions for some finite k such that

M = M1 [t i1〉M2 [t i2〉M3 [t i3〉 · · · [t ik−2
〉Mk−1 [t ik−1

〉Mk = M ′.

A marking M is in the reachable state space of the net if M0 M . The set of all markings
reachable from M0 is denoted by

RS = {M : M0 M}.

Definition 2.2 The Petri net PN is k-bounded if M(p)≤ k for all M ∈ RS and p ∈ P.
PN is bounded if it is k-bounded for some (finite) k.

The reachable state space RS is finite if and only if the Petri net is bounded.

Example 2.1 The Petri net in Figure 2.1 models the chemical reaction

2 H2 +O2→ 2 H2O.

In the initial marking (left) there are two hydrogen and two oxygen molecules,
represented by tokens on the places pH2

and pO2
, therefore the transition t is enabled.

Firing t yields the marking on the right where the two tokens on pH2O are the products
of the reaction. Now t is no longer enabled.

2.1. Petri net 7

pW1
ta1

pS1
td1

•

pC1
tr1

•

pW2
ta2

pS2
td2

•

pC2
tr2

pS

Figure 2.2 The SharedResource Petri net model.

Running example 2.2 In Figure 2.2 we introduce the SharedResource model which
will serve as a running example throughout this report.

The model consists of a single shared resource S and two consumers. Each
consumer can be in one of the following states: Ci (calculating locally), Wi (waiting
for resource) and Si (using shared resource). The transitions ri (request resource),
ai (acquire resource) and di (done) correspond to behaviors of the consumers. The
net is 1-bounded, therefore it has a finite RS.

The Petri net model allows the verification of safety properties, e.g., we can show
that there is mutual exclusion – M(S1) +M(S2)≤ 1 for all reachable markings – or
that deadlock cannot occur.

2.1.1 Petri nets extended with inhibitor arcs

Inhibitor arcs are widely used extensions of Petri nets that can disable transitions even
when the firing rule defined in Section 2.1 is satisfied. This modification gives Petri nets
expressive power equivalent to Turing machines [18].

Definition 2.3 A Petri net with inhibitor arcs is a 3-tuple PNI = (PN, I , WI), where
• PN = (P, T, F, W, M0) is a Petri net;
• I ⊆ P × T is the set of inhibitor arcs;
• WI : I → N+ is the inhibitor arc weight function.

Let ◦ t = {p : (p, t) ∈ I} denote the set of inhibitor places of the transition t. The
enablement rule for Petri nets with inhibitor arcs can be formalized as

M [t〉 ⇐⇒ M(p)≥W (p, t) for all p ∈ • t and M(p)<WI(p, t) for all p ∈ ◦ t.

8 BACKGROUND

The firing rule (2.1) remains unchanged in Petri nets with inhibitor arcs.

2.2 Continuous-time Markov chains

Continuous-time Markov chains are mathematical tools for describing the behavior of
systems in continuous time where the stochastic behavior of the system only depends
on its current state.

Definition 2.4 A Continuous-time Markov Chain (CTMC) X (t) ∈ S, t ≥ 0 over the
finite state space S = {0, 1, . . . , n− 1} is a continuous-time random process with the
Markovian or memoryless property:

P(X (tk) = xk | X (tk−1) = xk−1, X (tk−2) = xk−2, . . . , X (t0) = x0)

= P(X (tk) = xk | X (tk−1) = xk−1),

where t0 ≤ t1 ≤ · · · ≤ tk and X (t i) is a random variable denoting the current state
of the CTMC at time t i. A CTMC is said to be time-homogeneous if it satisfies the
following equation:

P(X (tk) = xk | X (tk−1) = xk−1) = P(X (tk − tk−1) = xk | X (0) = xk−1),

i.e., it is invariant to time shifting.

In this report we will restrict our attention to time-homogenous CTMCs over finite
state spaces. The state probabilities of these stochastic processes at time t form a
finite-dimensional vector π(t) ∈ Rn, where

π(t)[x] = P(X (t) = x)

and this vector satisfies the differential equation

dπ(t)
dt

= π(t)Q (2.2)

for some square matrix Q. The matrix Q is called the infinitesimal generator matrix of
the CTMC and can be interpreted as follows:

• The diagonal elements q[x , x] ≤ 0 describe the holding times of the CTMC. If
X (t) = x , the holding time hx = inf{h> 0 : X (t) = x , X (t + h) 6= x} spent in state
x is exponentially distributed with rate λx = −q[x , x]. If q[x , x] = 0, then no
transitions are possible from state x and it is said to be absorbing.

2.2. Continuous-time Markov chains 9

0 1 2

λ1 λ2

µ2µ1

µ3

0 1 2
 !0 −λ1 λ1 0

Q = 1 µ1 −λ2 −µ1 λ2
2 µ3 µ2 −µ2 −µ3

Figure 2.3 Example CTMC with 3 states and its generator matrix.

• The off-diagonal elements q[x , y] ≥ 0 describe the state transitions. In state x
the CTMC will jump to state y at the next state transition with probability
−q[x , y]/q[x , x]. Equivalently, there is an exponentially distributed countdown
in the state x for each y : q[x , y]> 0 with transition rate λx y = q[x , y]. The first
countdown to finish will trigger a state change to the corresponding destination
state y. Thus, the CTMC is a transition system with exponentially distributed
timed transitions.

• Elements in each row of Q sum to 0, hence it satisfies Q1T = 0T.

For more algebraic properties of infinitesimal generator matrices, we refer to Plem-
mons and Berman [64] and Stewart [74].

A state y is said to be reachable from the state x (x y) if there exists a sequence
of states

x = z1, z2, z3, . . . , zk−1, zk = y

such that q[zi , zi+1]> 0 for all i = 1, 2, . . . , k−1. If y is reachable from x for all x , y ∈ S,
the Markov chain is said to be irreducible.

The steady-state probability distribution π= limt→∞π(t) exists and is independent
from the initial distribution π(0) = π0 if and only if the finite CTMC is irreducible. The
steady-state distribution satisfies the linear equation

πQ = 0, π1T = 1. (2.3)

Example 2.3 Figure 2.3 shows a CTMC with 3 states. The transitions from state 0
to 1 and from state 1 to 2 are associated with exponentially distributed countdowns
with rates λ1 and λ2, respectively, while transitions in the reverse direction have rates
µ1 and µ2, respectively. The transition from state 2 to 0 is also possible with rate µ3.

The rows (corresponding to source states) and columns (destination states)
of the infinitesimal generator matrix Q are labeled with the state numbers. The
diagonal element q[1, 1] is−λ2−µ1, hence the holding time in state 1 is exponentially
distributed with rate λ2+µ1. The transition from state 1 to 0 is taken with probability

10 BACKGROUND

−q[1,0]/q[1,1] = µ1/(λ2 + µ1), while the transition to from state 1 to 2 is taken
with probability λ2/(λ2 +µ1).

The CTMC is irreducible, because every state is reachable from every other state.
Therefore, there exists a unique steady-state distribution π independent from the
initial distribution π0.

2.2.1 Markov reward models

Continuous-time Markov chains may be employed in the estimation of performance
measures of models by defining rewards that associate reward rates with the states of
a CTMC. The reward rate random variable R(t) can describe performance measures
defined at a single point of time, such as resource utilization or probability of failure,
while accumulated reward random variables may correspond to performance measures
associated with intervals of time, such as total downtime. Accumulated reward random
variables are not in the scope of this work. For details we refer to [51] and [70].

Definition 2.5 A Continuous-time Markov Reward Process over a finite state space
S = {0,1, . . . , n− 1} is a pair (X (t), r), where X (t) is a CTMC over S and r ∈ Rn is a
reward rate vector.

The element r[x] of the reward vector is a momentary reward rate in state x ,
therefore the reward rate random variable can be written as R(t) = r[X (t)].

The computation of the distribution function of R(t) is a computationally intensive
task (a summary is available at [68, Table 1]), while its mean value, ER(t), can be
computed efficiently as discussed below.

Given the initial probability distribution vector π(0) = π0 the expected value of the
reward rate at time t can be calculated as

ER(t) =
n−1
∑

i=0

π(t)[i]r[i] = π(t) rT, (2.4)

which requires the solution of the initial value problem [39, 70]

dπ(t)
dt

= π(t)Q, π(0) = π0 (2.5)

to form the inner product ER(t) = π(t) rT.
To obtain the expected steady-state reward rate (if it exists) the linear equation (2.3)

should be solved instead of eq. (2.5) in order to acquire the steady-state probability
vector π. The computation of the reward value during steady-state analysis proceeds
by eq. (2.4) in the same way.

2.2. Continuous-time Markov chains 11

Example 2.4 Let c0, c1 and c2 denote operating costs per unit time associated with
the states of the CTMC in Figure 2.3. Consider the Markov reward process (X (t), r)
with reward rate vector

r=
�

c0 c1 c2

�

.

The random variable R(t) describes the momentary operating cost at time t. The
steady-state expectation of R is the average maintenance cost per unit time of the
long-running system.

2.2.2 Sensitivity

Sensitivity analysis is widely used to assess the robustness of information systems.
Consider a reward process (X (t), r) where both the infinitesimal generator matrix Q(θ)
and the reward rate vector r(θ)may depend on some parameters θ ∈ Rm. The sensitivity
analysis of the rewards R(t) may reveal performance or reliability bottlenecks of the
modeled system and may help designers in achieving desired performance measures
and robustness values. For sake of clarity we will refer to the ith element of vector θ as
θi instead of θ[i].

Definition 2.6 The sensitivity of the expected reward rate ER(t) to the parameter θi

is the partial derivative
∂ ER(t)
∂ θi

.

The model reacts more prominently to the changes of parameters with high absolute
sensitivity, therefore they can be promising directions of system optimization.

To calculate the sensitivity of ER(t), the partial derivative of both sides of eq. (2.4)
is taken, yielding

∂ ER(t)
∂ θi

=
∂π(t)
∂ θi

rT +π(t)
�

∂ r
∂ θi

�T

= si(t) r
T +π(t)

�

∂ r
∂ θi

�T

, (2.6)

where si is the sensitivity of π to the parameter θi.
In transient analysis, the sensitivity vector si is the solution of the initial value

problem

dsi(t)
dt

= si(t)Q+π(t)Vi ,
dπ(t)

dt
= π(t)Q, si(0) = 0, π(0) = π0,

where Vi = ∂Q(θ)/∂ θi is the partial derivative of the generator matrix [69].

12 BACKGROUND

To obtain the sensitivity si of the steady-state probability vector π, the system of
linear equations

siQ = −πVi , si1
T = 0 (2.7)

is solved [7].
Another type of sensitivity analysis considers unstructured small perturbations of

the infinitesimal generator matrix Q instead of dependencies on parameters [35, 43].
This latter, unstructured analysis may be used to study the numerical stability and
conditioning of the solutions of the Markov chain.

2.2.3 Time to first failure

Computing the first time of a system failure (provided it was fully operational when it
was started) has many applications in reliability engineering.

Let D (S be a set of failure states of the CTMC X (t) and U = S \ D be a set of
operational states. We will assume without loss of generality that U = {0,1, . . . , nU −1}
and D = {nU , nU +1, . . . , n−1}. Using this state ordering we can write the infinitesimal
generator Q in the following form:

Q =

�

QUU QU D

QDU QDD

�

,

where submatrices QUU , QU D, QDU and QDD represent the transitions between opera-
tional states, from operational to failure states, from failure states to operational states
and between failure states, respectively.

The matrix

QUd =

�

QUU qUd
0 0

�

is the infinitesimal generator of a CTMC XUd(t) in which all the failures states D were
merged into a single state nU and all outgoing transitions from D were removed. The
column vector qUd ∈ RnU is defined as

qUd =QU D1T.

If the initial distribution π0 is 0 for all failure states (i.e., π0[x] = 0 for all x ∈ D),
the Time to First Failure

TFF = inf{t ≥ 0 : X (t) ∈ D}= inf{t ≥ 0 : XUd(t) = nU}

is phase-type distributed with parameters (πU ,QUU) [60], where πU is the vector con-
taining the first nU elements of π0. In particular, the Mean Time to First Failure is
computed as follows:

MTFF = E[TFF] = −πUQ−1
UU1T. (2.8)

2.3. Stochastic Petri nets 13

The probability of a D′-mode failure (D′ ⊂ D) is:

P(X (TFF+0) ∈ D′) = −πUQ−1
UUqT

U D′ , (2.9)

where qU D′ ∈ RnU , qU D′[x] =
∑

y∈D′ q[x , y] is the vector of transition rates from opera-
tional states to failure states D′.

2.3 Stochastic Petri nets

While reward processes based on continuous-time Markov chains allow the study
of dependability or reliability, the explicit specification of stochastic processes and
rewards is often cumbersome. More expressive formalisms include queueing networks,
stochastic process algebras such as PEPA [29, 37], Stochastic Automata Networks [32]
and Stochastic Petri Nets (SPN).

Stochastic Petri Nets extend Petri nets by assigning exponentially distributed random
delays to transitions [48]. After the delay associated with an enabled transition is
elapsed the transition fires atomically and transition delays are reset.

Definition 2.7 A Stochastic Petri Net is a pair SPN = (PN,Λ), where PN is a Petri
net (P, T, F, W, M0) and Λ : T → R+ is a transition rate function.

Likewise, a stochastic Petri net with inhibitor arcs is a pair SPNI = (PNI ,Λ),
where PNI is a Petri net with inhibitor arcs.

A finite CTMC can be associated with a bounded stochastic Petri net (with inhibitor
arcs) as follows:

1. The reachable state space of the Petri net is explored. We associate consecutive
natural numbers with the states such that the state space is

RS = {M0, M1, M2, . . . , Mn−1},

where M0 is the initial marking. From now on, we will use markings Mx ∈ RS and
natural numbers x ∈ {0, 1, . . . , n− 1} to refer to markings (in SPN terminology)
and states (in CTMC terminology) of the model interchangeably.

2. We define a CTMC X (t) over the finite state space

S = {0, 1,2, . . . , n− 1}.

The initial distribution vector will be set to

π(0) = π0 =
�

1 0 0 · · · 0
�

in the analysis step (i.e., π0[x] = δ0,x).

14 BACKGROUND

pW1
ta1

pS1
td1

•

pC1
tr1

•

pW2
ta2

pS2
td2

•

pC2
tr2

pS

1.0 0.5 1
θ[0] = 1.6

1.0 1.1
1
θ[1] = 0.8

Figure 2.4 Example stochastic Petri net for the SharedResource model.

RS =































































P: S C1 W1 S1 C2 W2 S2

M0 1 1 0 0 1 0 0 initial
M1 1 0 1 0 1 0 0 client 1 waiting
M2 1 1 0 0 0 1 0 client 2 waiting
M3 1 0 1 0 0 1 0 1 waiting, 2 waiting
M4 0 0 0 1 1 0 0 client 1 shared working
M5 0 0 0 1 0 1 0 1 shared working, 2 waiting
M6 0 1 0 0 0 0 1 client 2 shared working
M7 0 0 1 0 0 0 1 1 waiting, 2 shared working































































Table 2.1 Reachable state space of the SharedResource model.

3. The generator matrix Q ∈ Rn×n encodes the possible state transitions of the Petri
net and the associated transition rates Λ(·) as

qO[x , y] =
∑

t∈T
Mx [t〉My

Λ(t) if x 6= y, (2.10)

qO[x , x] = 0,

Q =QO +QD},

where the summation is done over all transitions from the marking Mx to My ,
while QO and QD = −diag{QO1T} are the off-diagonal and diagonal parts of Q,
respectively.

2.3. Stochastic Petri nets 15

M0 M1 M4

M2 M3 M5

M6 M7

1
θ[0] 1

0.5

1
θ[1]

1
θ[1]

1
θ[1]

1
θ[0] 1

0.5

1 1
1
θ[0]

1.1 1.1

Figure 2.5 The CTMC associated with the SharedResource SPN model.

Running example 2.5 Figure 2.4 shows the SPN model for SharedResouce, which
is the Petri net from Figure 2.2 on page 7 extended with exponential transition rates.

The transitions a1, d1, a2 and d2 have rates 1.0, 0.5, 1.0 and 1.1, respectively.
The vector θ= (0.625,1.25) ∈ R2 of model parameters is introduced such that the
transitions r1 and r2 have rates 1/θ[0] and 1/θ[1].

The reachable state space (Table 2.1) contains 8 markings which are mapped to
the integers S = {0,1, . . . , 7}. The state space graph along with the transition rates
of the CTMC is shown in Figure 2.5. The generator matrix is (also depicting state
indices):

Q =

0 1 2 3 4 5 6 7
















































0 ∗ 1
θ[0]

1
θ[1] 0 0 0 0 0

1 0 ∗ 0 1
θ[1] 1 0 0 0

2 0 0 ∗ 1
θ[0] 0 0 1 0

3 0 0 0 ∗ 0 1 0 1
4 0.5 0 0 0 ∗ 1

θ[1] 0 0
5 0 0 0.5 0 0 ∗ 0 0
6 1.1 0 0 0 0 0 ∗ 1

θ[0]
7 0 1.1 0 0 0 0 0 ∗

,

where in each row the diagonal element is the negative of the sum of the other
elements in the corresponding row so that Q1T = 0T. The CTMC is irreducible,
therefore it has a well-defined steady-state distribution.

16 BACKGROUND

Extensions of stochastic Petri nets include transitions with general or phase-type
delay distributions [47, 49], Generalized Stochastic Petri Nets (GSPN) with immediate
transitions [50, 75] and Deterministic Stochastic Petri Nets (DSPN) with deterministic
firing delays [72]. Among these, only phase-type distributed delays and GSPNs can
be handled with purely Markovian analysis. Stochastic Well-formed Nets (SWN) are a
class of colored Petri nets especially amenable to stochastic analysis [17]. Stochastic
Activity Networks (SAN) also allow colored places, moreover, they introduce input and
output gates for more flexible modeling [42].

2.3.1 Stochastic reward nets

The stochastic reward net formalism is an extension of stochastic Petri nets that allows
the definition of performance measures on the net level for use in the stochastic analysis
workflow.

Definition 2.8 A Stochastic Reward Net is a triple SRN = (SPN, rr, ir), where SPN is
a stochastic Petri net, rr : NP → R is a rate reward function and ir : T ×NP → R is
an impulse reward function. A stochastic reward net with inhibitor arcs is a triple
SRNI = (SPNI , rr, ir), where SPNI is a stochastic Petri net with inhibitor arcs.

The rate reward rr(M) is the reward gained per unit time in marking M , while
ir(t, M) is the reward gained when the transition t fires in marking M .

If ir(t, M)≡ 0 for all t ∈ T and M ∈ RS, the SRN is equivalent to the Markov reward
process (X (t), r), where X (t) is the CTMC associated with the stochastic Petri net and

r ∈ Rn, r[x] = rr(Mx).

If there are impulse rewards, exact calculation of the expected reward rate ER(t)
can be performed on reward process (X , r),

r[x] = rr(Mx) +
∑

t∈T,Mx [t〉

Λ(t) ir(t, Mx),

where the summation is taken over all enabled transitions [23].

Running example 2.6 The SRN model

rr1(M) = M(pS1
) +M(pS2

), ir1(t, M)≡ 0 (2.11)

describes the utilization of the shared resouce in the SharedResouce SPN (Figure 2.4
on page 14). R1(t) = 1 if the resource is allocated, hence ER1(t) is the probability
that the resource is in use at time t.

2.3. Stochastic Petri nets 17

Another reward structure

rr2(M)≡ 0, ir2(t, M) =

¨

1 if t ∈ {tr1
, tr2
},

0 otherwise
(2.12)

counts the completed calculations, which are modeled by tokens leaving the places
C1 and C2. The expected steady-state reward rate limt→∞ER(t) equals the number
of calculations per unit time in a long-running system.

The reward vectors associated with these SRNs are

0 1 2 3 4 5 6 7
� �

r1 = 0 0 0 0 1 1 1 1 ,
� �

r2 =
1
θ[0] +

1
θ[1]

1
θ[1]

1
θ[0] 0 1

θ[1] 0 1
θ[0] 0 .

2.3.2 Superposed stochastic Petri nets

In this section we define the base formalism of the decomposition algorithm introduced
in Chapter 5.

Definition 2.9 A Superposed Stochastic Petri Net (SSPN) is a pair SSPN = (SPN,P),
where P = {P(0), P(1), . . . , P(J−1)} is the partitioning of the set of places and P =
P(0) ∪ P(1) ∪ · · · ∪ P(J−1) [28]. Superposed stochastic Petri nets with inhibitor arcs
SSPNI = (SPNI ,P) are defined analogously.

The jth local net LN(j) = ((P(j), T (j) = T (j)L ∪ T (j)S , F (j), W (j), M (j)0),Λ
(j)) can be con-

structed as follows:

• P(j) is the corresponding set from the partitioning of the original net.

• T (j) contains the local transition T (j)L and synchronization transitions T (j)S .

A transition is local to LN(j) if it only affects places in P(j), that is,

T (j)L = {t ∈ T : • t ∪ t• ⊆ P(j)}. (2.13)

No transition may be local to more than one local net.

A transition synchronizes with LN(j) if it affects some places in P(j) but it is not
local to LN(j),

T (j)S = {t ∈ T : (• t ∪ t•)∩ P(j) 6= ;} \ T (j)L . (2.14)

18 BACKGROUND

P(2)
P(1)

P(0)

pW1
ta1

pS1
td1

•

pC1
tr1

•

pW2
ta2

pS2
td2

•

pC2
tr2

pS

Figure 2.6 A partitioning of the SharedResource Petri net.

• The relation F (j) and the functions W (j), M (j)0 , Λ(j) are the appropriate restrictions
of the original structures, F (j) = F ∩ ((P(j) × T (j))∪ (T (j) × J (j))), W (j) =W |F (j) ,
M (j)0 = M0|P(j) , Λ(j) = M0|T (j) .

If there are inhibitor arcs in SSPNI , inhibitor arcs must be considered when a local
net LN(j)I is constructed. The set • t ∪ t• is replaced with • t ∪ t• ∪ ◦ t in eqs. (2.13)
and (2.14) so that the enablement of local transitions only depends on the marking
of places in P(j) and only places in P(j) may be affected upon firing. In addition,
the inhibitor arc relation and weight function are restricted as I (j) = I ∩ (P(j) ∩ T (j)),
W (j)

I =WI |I (j) .
The set of all synchronization transitions is denoted as TS =

⋃J−1
j=0 T (j)S . The support

of the transition t ∈ T is the set of components it is adjacent to, supp t = { j : t ∈ T (j)}.

Running example 2.7 Figure 2.6 shows a possible partitioning of the Shared-
Resource SPN into a SSPN. The components P(0) and P(1) model the two consumers,
while P(2) contains the unallocated resource S.

The transitions r1 and r2 are local to LN(0) and LN(1), respectively, while a1, d1,
a2 and d2 synchronize LN(2) and the local net associated with their consumers.

The local reachable state space RS(j) of LN(j) is the set of markings belonging to the
state space RS of the original net restricted to the places P(j) (duplicates removed),

RS(j) = {M (j) : M ∈ RS, M (j) = M |P(j)}.

This is a subset of the reachable state space of LN(j), in particular, RS(j) is always finite
if RS is finite, even if LN(j) is not bounded. Analysis techniques for generating local

2.3. Stochastic Petri nets 19

RS(0) =























P: C1 W1 S1

M (0)
0 1 0 0

M (0)
1 0 1 0

M (0)
2 0 0 1























,

RS(1) =























P: C2 W2 S2

M (1)
0 1 0 0

M (1)
1 0 1 0

M (1)
2 0 0 1























, RS(2) =















P: S

M (2)
0 1

M (2)
1 0















Table 2.2 Local reachable markings of the SharedResouce SSPN from Figure 2.6.

state spaces include partial P-invariants [13] and explicit projection of global reachable
markings [10].

The potential state space PS of an SSPN is the Cartesian product of the local reachable
state spaces of its components

PS = RS(0) × RS(1) × · · · × RS(J−1),

which is a (generally proper) superset of the global reachable state space RS.
We will associate the natural numbers S(j) = {0,1, . . . , n j−1}with the local reachable

markings RS(j) = {M0, M1, . . . , Mn j−1} to aid the construction of Markov chains and use
them interchangably. The notation

M = x= (x (0), x (1), . . . , x (J−1)) (2.15)

refers to the global state x composed from the local markings x (j), i.e., the marking

M(p) = M (j)
x (j)
(p), if p ∈ P(j),

which is the union of the local markings M (0)
x (0)

, M (1)
x (1)

, . . . , M (J−1)
x (J−1) .

Running example 2.8 The local reachable markings of the SharedResource SSPN
are enumerated in Table 2.2.

The transitions d1 and d2 are always enabled in LN(2) because all their input
places are located in other components, thus LN(2) is an unbounded Petri net. Despite
this, RS(2) is finite, because it only contains the local markings which are reachable
in the original net.

The potential state space PS contains 3 · 3 · 2= 18 potential markings, although
only 8 are reachable (Table 2.1 on page 14). For example, the marking (2, 2,0) is
not reachable, and it would violate mutual exclusion.

20 BACKGROUND

2.4 Kronecker algebra

Kronecker algebra defines the building blocks of the decomposition algorithm being
introduced in Chapter 5. With its help we can represent a large matrix as the function
of smaller matrices, without explicitly generating the large matrix (and storing it in
memory for example).

Definition 2.10 The Kronecker product of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is
the matrix C = A⊗ B ∈ Rn1n2×m1m2 , where

c[i1n1 + i2, j1m1 + j2] = a[i1, j1]b[i2, j2].

Some properties of the Kronecker product are

1. Associativity:
A⊗ (B ⊗ C) = (A⊗ B)⊗ C ,

which makes Kronecker products of the form A(0)⊗A(1)⊗ · · ·⊗A(J−1) well-defined.

2. Distributivity over matrix addition:

(A+ B)⊗ (C + D) = A⊗ C + B ⊗ C + A⊗ D+ B ⊗ D,

3. Compatibility with ordinary matrix multiplication:

(AB)⊗ (C D) = (A⊗ C)(B ⊗ D),

in particular,

A⊗ B = (A⊗ I2)(I1 ⊗ B)

for identity matrices I1 and I2 with appropriate dimensions.

We will occasionally employ multi-index notation to refer to elements of Kronecker
product matrices. For example, we will write

b[x,y] = b[(x (0), x (1), . . . , x (J−1)), (y(0), y(1), . . . , y(J−1))] =

A(0)[x (0), y(0)]A(1)[x (1), y(1)] · · ·A(J−1)[x (J−1), y(J−1)],

where x = (x (0), x (1), . . . , x (J−1)), y = (y(0), y(1), . . . , y(J−1)) and B is the J-way Kro-
necker product A(0) ⊗ A(1) ⊗ · · · ⊗ A(J−1).

2.4. Kronecker algebra 21

Definition 2.11 The Kronecker sum of matrices A ∈ Rn1×m1 and B ∈ Rn2×m2 is the
matrix C = A⊕ B ∈ Rn1n2×m1m2 , where

C = A⊗ I2 + I1 ⊗ B,

where I1 ∈ Rn1×m1 and I2 ∈ Rn2×m2 are identity matrices.

Example 2.9 Consider the matrices

A=

�

1 2
3 4

�

, B =

�

0 1
2 0

�

.

Their Kronecker product is

A⊗ B =









1 · 0 1 · 1 2 · 0 2 · 1
1 · 2 1 · 0 2 · 2 2 · 0
3 · 0 3 · 1 4 · 0 4 · 1
3 · 2 3 · 0 4 · 2 4 · 0









=









0 1 0 2
2 0 4 0
0 3 0 4
6 0 8 0









,

while their Kronecker sum is

A⊕ B =









1 0 2 0
0 1 0 2
3 0 4 0
0 3 0 4









+









0 1 0 0
2 0 0 0
0 0 0 1
0 0 2 0









=









1 1 2 0
2 1 0 2
3 0 4 1
0 3 2 4









.

23

Chapter 3

Overview of the approach

In this chapter we provide a brief overview about the general workflow of stochastic
analysis, the arising challenges during the workflow and our approach to address these
challenges.

3.1 General workflow

The tasks performed by stochastic analysis tools that operate on higher level formalisms
can be often structured as follows (Figure 3.1):

1. State space exploration. The reachable state space RS of the higher level model,
for example stochastic automata network or stochastic Petri net, is explored to
enumerate the possible behaviors of the model. If the model is hierarchically
partitioned, this step includes the exploration of the local state spaces of the
component as well as the possible global combinations of local states.

If the set of reachable states is infinite, only special algorithms, e.g., matrix
geometric methods [41], may be employed later in the workflow. In this work we
focus our attention to finite state spaces.

2. Descriptor generation. The infinitesimal generator matrix Q of the Markov chain
X (t) defined over RS is built. If the analyzed formalism is a Markov chain, Q
is readily given. Otherwise, this matrix contains the transition rates between

State space
exploration

Descriptor
generation

Numerical
solution

Reward
calculation

Figure 3.1 The general stochastic analysis workflow.

24 OVERVIEW OF THE APPROACH

reachable states, which are obtained by evaluating rate expressions given in the
model.

3. Numerical solution. Numerical algorithms are executed on the matrix Q to calcu-
late steady-state solutions π, transient solutions π(t) or MTFF measures.

4. Reward calculations. The studied performance measures are calculated from the
output of the previous step. This includes calculation of steady-state and transient
rewards and sensitivity of the rewards. Additional algebraic manipulations (for
example, the calculation of the ratio of two instantaneous rewards) may be
provided to the modeler for convenience.

In stochastic model checking, where the desired system behaviors are expressed
with the help of stochastic temporal logics [1, 6], these analytic steps are called as
subrouties to evaluate propositions. In the synthesis and optimization of stochastic
models [16], the workflow is executed as part of the fitness function computation.

3.1.1 Challenges

The implementation of the stochastic analysis workflow poses several challenges.

State space size. It is difficult to handle large models due to the phenomenon of “state
space explosion”. As the size of the model grows (for example with the addition of more
components) the number of reachable states can grow exponentially. Methods such as
the saturation algorithm [21] were developed to efficiently explore and represent large
state spaces. However, in stochastic analysis, the generator matrix Q and several vectors
of real numbers with lengths equal to the state space size must be stored in addition to
the state space. This necessitates the use of further decomposition techniques for data
storage.

Convergence properties. The convergence of the numerical methods depends on the
structure of the model and the applied matrix decomposition. In addition, the memory
requirements of the algorithms may constrain the methods that can be employed. As
various numerical algorithms for stochastic analysis tasks are known with different
characteristics, it is important to allow the modeler to select the algorithm that is most
suitable for the properties of the model, as well as the decomposition method and
hardware environment (like architectures with multiple physical cores).

Numerical precision. Sometimes it is preferable (or even necessary) to employ higher
precision arithmetic calculations during the analysis. This could result in improved
convergence properties of algorithms and reduced numerical errors that would otherwise

3.2. Our workflow 25

Stochastic
Petri Net

State space
exploration

Descriptor
generation

Data
structure

Superposed
SPN

partition

Numerical
algorithms

Reward
calculation

Reward
config.

Sensitivity
parameters

Configurable operations

Figure 3.2 Configurable stochastic analysis workflow.

arise due to the limitations of the floating point hardware arithmetic. The execution
time and memory usage of the analysis workflow may increase greatly depending on
the used arithmetic precision. This further constrains the set of applicable algorithms
during the analysis and has to be taken into account when configuring the workflow.

Scalability. The vector operations and vector-matrix products that are performed
by the numerical algorithms can also be performed in multiple ways. For example,
multiplications with matrices can be implemented either sequentially or in parallel.
Large matrices benefit from parallelization, while for small matrices managing multiple
tasks yields overhead. Distributed or GPU implementations are also possible, albeit
they are missing from the current version of our framework.

3.2 Our workflow

Our implementation of the general stochastic analysis workflow is illustrated in Fig-
ure 3.2.

The workflow is fully configurable, which means that the modeler may combine
the available algorithms for the analysis steps arbitrarily. This is achieved by a layered
architecture as shown in Figure 3.3.

• Themodel state spacemay be explored either by an explicit state space traversal, or
by symbolic saturation [21]. As symbolic methods are usually much faster and use

26 OVERVIEW OF THE APPROACH

State space exploration

State space storage

Matrix representation

Steady-state solution algorithms Transient solution algorithms

Engineering measure calculation

Explicit Symbolic

Explicit MDD / EDD

Dense
matrix

Sparse
matrix

Block
Kronecker

LU decom-
position

Pivoted LU
decomp.

Power
method

Jacobi
Gauss–
Seidel

Group
Jacobi

Group G–S BiCGSTAB

Unifor-
mization

TR-BDF2

Accumulated
reward

Reward rate Sensitivity MTFF

Figure 3.3 Architecture of the configurable stochastic analysis framework.

3.2. Our workflow 27

significantly less memory than explicit enumeration, they are the recommended
approach for stochastic analysis. However, the explicit algorithms are less sensitive
to the structure of the model, so they provide a robust solution as long as the
state space fits into memory. In addition, they are implemented for benchmarking
and software redundancy reasons, too.

The algorithms operating on a superposed SPN receive the model and a parti-
tioning as an input. Partitions needed for the decomposition may be provided
by the user as part of the model or generated on the fly. The given partitioning
can greatly affect the performance of some algorithms like symbolic state space
exploration or the properties of the resulting hierarchical stochastic descriptor
matrix.

• The generator matrix may be stored in sparse matrix representation or decom-
posed into block Kronecker form [13]. The matrix can be built from both explicitly
or symbolically stored state spaces.

To facilitate block Kronecker matrix generation, we propose a purely symbolic
algorithm. The developed solution avoids any overhead of explicit state space
operations.

• The resulting matrices (in a possibly decomposed form) are part of a special-
ized data structure. Extremely large matrices may be stored with the developed
decomposition algorithms (e.g., linear combinations, Kronecker products, con-
catenations into block structures). The data structure defines generic vector and
matrix operations, as well as more specific manipulations performed by stochastic
analysis algorithms.

State space exploration and generator matrix decomposition methods are pre-
sented in Chapters 4 and 5, respectively, including our theoretical and algorithmic
contribution for block Kronecker decomposition.

• Several numerical algorithms are provided for steady-state and transient analysis
of Markov chains. The user can select the algorithm most suitable for the model
under study. The algorithm library supports the combination of the algorithms
and data structures at different levels of computations. This allows us to fine-
tune the numerical solution and solve every component with the most suitable
algorithm. The algorithms with grey background in Figure 3.3 are not in the
scope of this work. For details we refer to [51].

Important considerations in solver selection are convergence properties and
memory requirements. Matrix decompositions can reduce the storage space
needed by the matrix Q by orders of magnitudes. We store all elements of
probability vectors explicitly. Therefore, one should pay close attention to the

28 OVERVIEW OF THE APPROACH

number of temporary vectors used in the selected solver algorithm in order to
avoid excessive memory consumption.

Numerical algorithms that are in the scope of this work are discussed in Chapter 6.

3.2.1 Formalisms

Our stochastic analysis framework supports models in the Stochastic Petri Net with
inhibitor arcs formalism (see Definition 2.7 on page 13). Structured models are han-
dled as Superposed Stochastic Petri Nets (see Definition 2.9 on page 17). However,
any modeling formalism can be processed by integrating the appropriate state space
exploration algorithm with the workflow.

Transition rates in the SPNs can be arbitrary algebraic expressions (detailed in
Chapter 8) containing references to sensitivity variables. These variables correspond to
the parameter vector θ of the Markov chain sensitivity analysis. However, currently the
rate expression may not depend on the marking of the net.

Reward structures are defined as Stochastic Reward Nets (see Definition 2.8 on
page 16). An SRN reward structure may be specified by composing any reward expres-
sions in the forms detailed in Chapter 7.

3.2.2 Analysis

The framework introduced in this paper supports the configurable stochastic analysis of
the following problems:

• expected steady-state reward rates ER for any reward structure defined by reward
expressions,

• expected transient reward rates ER(t) and accumulated rewards (detailed in
[51]),

• composite rewards, which are algebraic expressions composed of previously calcu-
lated reward rates (e.g., 1+ER1(t)/ER2(t)),

• sensitivity of mean steady-state reward rates and composite rewards involving
steady-state rates,

• mean-time to failure MTFF and associated failure mode probabilities,
• calculating the aforementioned measures with arbitrary precision, and
• calculating the aforementioned measures in closed function form for smaller

systems, except for transient reward rates and accumulated rewards.

Configurable stochastic analysis provides the combination of multiple solver algorithms
and representations for the efficient computation of the introduced properties.

29

Chapter 4

State space exploration

In order to perform qualitative or quantitative analyses on Petri net models, first we
need to explore the possible behaviors, i.e. , the state space of the modelled system. In
this chapter we provide a brief overview of state space exploration methods, which is
the first step in our stochastic analysis workflow. Besides state space exploration we
also cover the changes we made to the PetriDotNet tool in order to prepare it for
performing stochastic analysis of SPN models.

4.1 Explicit state space exploration

Explicit state space enumeration for Petri nets repeatedly applies the firing rule eq. (2.1)
on the set of reachable states (starting from the initial marking M0) until no new
marking can be generated. At the end of the enumeration of the finite state space, all
reachable markings M0 M are discovered. We implemented detection of already
encountered markings by hashing, while new markings are generated by breath-first
search.

The pseudocode of the implemented algorithm for explicit state space exploration
is shown in Algorithm 4.1. Executing it on the SharedResource Petri net example model
yields the reachable state space in Table 4.1, previously presented in Section 2.1.

Advantages Using explicit state space exploration and storage techniques has many
advantages. The simplicity of the algorithm makes it easier to understand and maintain
(and in case of errors, debug) the implementation. Due to the explicit (i.e complete)
storage of markings the firing function at line 5 can be implemented to handle Petri net
transitions even with complex properties like priority and/or guard condition.

Disadvantages In spite of the simplicity of the algorithm some parts of it can quickly
became a bottleneck while trying to explore the state spaces of larger models. The

30 STATE SPACE EXPLORATION

Algorithm 4.1 Explicit state space exploration.
Input: transitions T , initial marking M0
Output: explicit state space RS

1 allocate set RS = {M0}, FIFO queue Q = {M0}
2 while Q 6= ; do
3 M = dequeue(Q)
4 foreach t ∈ T , where M [t〉 do
5 M∗ = fire(M , t)
6 if M∗ ∈ RS then
7 continue

8 RS← RS ∪ {M∗}
9 enqueue(Q, M∗)

10 return RS

RS =































































P: S C1 W1 S1 C2 W2 S2

M0 1 1 0 0 1 0 0 initial
M1 1 0 1 0 1 0 0 client 1 waiting
M2 1 1 0 0 0 1 0 client 2 waiting
M3 1 0 1 0 0 1 0 1 waiting, 2 waiting
M4 0 0 0 1 1 0 0 client 1 shared working
M5 0 0 0 1 0 1 0 1 shared working, 2 waiting
M6 0 1 0 0 0 0 1 client 2 shared working
M7 0 0 1 0 0 0 1 1 waiting, 2 shared working































































Table 4.1 Reachable state space of the SharedResource model.

firing function at line 5 creates the marking M∗ that was reached by firing transition t
in marking M . Storing the marking of every place in every state of a complex system
leads to high memory usage. The other bottleneck manifests itself at line 6 where
we check whether the acquired marking M∗ was already explored (part of RS) or not.
Even by using hash-like storage schemes for RS we still need to calculate, store and
look up hash values among a large number of markings which can severely impact the
performance of the algorithm.

4.2. Symbolic state space exploration 31

4.2 Symbolic state space exploration

To alleviate the memory and performance limitations of explicit state space exploration,
more efficient, albeit more complex methods were introduced. In this section we provide
a brief background for symbolic methods that use decision diagrams to efficiently
enumerate and encode the reachable state space of a system.

4.2.1 Multivalued decision diagrams

Multivalued decision diagrams (MDDs) [21] provide a compact, graph-based represen-
tation for functions of the form NJ → {0, 1}.

Definition 4.1 A quasi-reduced orderedmultivalued decision diagram (MDD) encod-
ing the function f (x (0), x (1), . . . , x (J−1)) ∈ {0,1} (where the domain of each variable
x (j) is D(j) = {0,1, . . . , n j − 1}) is a tuple MDD = (V, r, 0, 1, level, children), where

• V =
⋃J

i=0 Vi is a finite set of nodes, where V0 = {0, 1} are the terminal nodes,
the rest of the nodes VN = V \ V0 are nonterminal nodes;

• level : V → {0, 1, . . . , J} assigns nonnegative level numbers to each node (Vi =
{v ∈ V : level(v) = i});

• r ∈ VJ is the root node;
• 0,1 ∈ V0 are the zero and one terminal nodes, respectively;
• children :

�⋃J
i=1 Vi × D(i−1)

�

→ V is a function defining arcs between nodes
labeled by the items of the domains, such that either children(v, x) = 0 or
level(children(v, x)) = level(v)− 1 for all v ∈ V , x ∈ D(level(v)−1),

• if n, m ∈ Vj , j > 0 then the subgraphs formed by the nodes reachable from n
and m are either non-isomorphic, or n= m.

Note that due to the presence of the terminal level V0 the indexing of the levels and
the domains is shifted, i.e., the level Vi corresponds to the domain D(i−1).

According to the semantics of MDDs, f (x) = 1 if the node 1 is reachable from r
through the arcs labeled with x (0), x (1), . . . , x (J−1),

f (x (0), x (1), . . . , x (J−1)) = 1 ⇐⇒

children(children(. . . children(r, x (J−1)) . . . , x (1)), x (0)) = 1.

4.2.2 Symbolic state spaces

Symbolic state space exploration has great advantages compared to explicit techniques
but also raises some issues that didn’t arise with explicit state space exploration.

32 STATE SPACE EXPLORATION

V3 : 0 1

V2 : 0 1 2 0 1 2

V1 : 0 1 2 0 1 2

V0 : 0 1

Figure 4.1 MDD state space encoding for the SharedResource SSPN.

Advantages Symbolic techniques involving MDDs can efficiently store large reachable
state spaces of superposed Petri nets. Reachable states x ∈ RS are associated with state
codings x = (x (0), x (1), . . . , x (J−1)). The function f : PS → {0, 1} can be stored as an
MDD where f (x) = 1 if and only if x ∈ RS. The domains of the MDD are the local
state spaces D(j) = RS(j).

Running example 4.1 Figure 4.1 shows the state space of the SharedResourcemodel
encoded as an MDD. The paths from the root node to the terminal one node 1 along
the arcs of the MDD represent the reachable local state combinations of the system.
Arcs to the terminal zero node 0 were omitted for the sake of simplicity.

Examples of iteration strategies for MDD state space exploration include breath-
first search and saturation [21]. We use the implementation of saturation from the
PetriDotNet framework [26, 31].

Disadvantages Efficiency of symbolic techniques is achieved by using complex storage
schemes and iteration strategies. This results in a more complex implementation which
impacts maintainability and makes debugging harder. Furthermore it isn’t trivial
anymore to incorporate complex transition firing rules into the exploration algorithm
because of the decomposed information about the state space. Handling immediate
transitions (i.e., priority) for example is necessary to support the GSPN formalism,
however, it also raises new problems, like how to eliminate vanishing markings from

4.3. PetriDotNet integration 33

the reachable state space [24].

4.3 PetriDotNet integration

The introduced state space exploration algorithms are defined for regular Petri nets and
don’t use the additional transition rate information provided by stochastic Petri nets. In
order to map RS to a CTMC the PetriDotNet framework had to be extended with
additional capabilities to support and facilitate the analysis of SPNs.

In this section we describe the changes made to the PetriDotNet framework in
order to successfully integrate our stochastic analysis framework with it. The exact
feature set of the PetriDotNet framework is detailed in its official manual.1

Net parameters A general requirement for modeling tools is to support the usage
of model parameters (where it is meaningful). This feature can facilitate the quick
modification of the model’s behavior by providing a centralized access for some proper-
ties of the model. This also increases the maintainability of the model and lowers the
probability of modeling errors when introducing changes to the model properties. In
case of Petri net models we can introduce parameters for multiple purposes, such as
initial token numbers on places, arc weights and transition properties.

As part of this thesis we extended PetriDotNet in order to support net parameters
that can be used in the definition of transition rates. Unlike token number and arc
weight parameters, transition rate parameters have other purposes beside facilitating
modeling – they are the basis for sensitivity analysis of computed performance metrics
as described in Section 2.2.2. To define a parameter we need to provide a name and a
default (floating point) value for it with an optional description. The purpose of default
values is described in the next paragraphs. The exact syntax of parameter arithmetic
expressions is detailed in Section 8.1

Net parameter configurations Even though net parameters provide a convenient way
to modify the model’s behavior in a centralized way, sometimes we want to change more
than one parameter to express a different operational mode of the model (e.g., increased
load of requests and/or increased failure rate of components due to degradation). In the
extended PetriDotNet framework we also provide support for defining parameter
configurations that can assign a (usually different) value to the defined parameters.

With the help of this feature we can define different parameter configurations for the
different operational modes of the model without modifying the parameter definitions
themselves. This way the modeler can easily switch between the configurations to
achieve the desired behavior of the model. The stochastic analysis framework will

1https://inf.mit.bme.hu/en/research/tools/petridotnet

34 STATE SPACE EXPLORATION

always consider the currently set configuration if there is one. Using the parameter
configuration feature is optional, so if no configuration is defined then the parameters
will be considered with their default values.

Transition rate expressions The PetriDotNet framework already supported dif-
ferent timing properties of transitions for the purpose of simulation, however, this wasn’t
sufficient for sensitivity analysis which depends on model (more precisely, transition
rate) parameters. Thus we extended the transition data structure with the capability
of storing an arithmetic expression tree that denotes the transition rate, possibly with
the help of net parameters. The value of the already existing transition rate property is
synchronized with this expression tree based on the current parameter configuration
so the simulation capability of the tool is not affected by this change.

Additional Petri net data The newly introduced extensions, like net parameters, pa-
rameter configurations, transition rate trees and measure definitions (detailed in Chap-
ter 7) are integral part of the model so we need to serialize them with the rest of the
Petri net. The main serialization format of PetriDotNet is the Petri Net Markup
Language standard (PNML) [78], which provides means to store additional information
(not closely related to Petri nets) by defining a tool specific information part in its XML
schema. We used this method to store the additional data so other tools can still process
the resulting PNML file without considering these data.

35

Chapter 5

E�cient generation and storage of
continuous-time Markov chains

5.1 Explicit methods

5.1.1 Explicit matrix construction

Given the finite state space of size n= |RS| in an explicit form (for example acquired by
executing Algorithm 4.1 on page 30) along with a bijection between the markings and
the natural numbers {0, 1, . . . , n− 1}, the generator matrix Q can be directly created
by Algorithm 5.1. The algorithm stores the transition rate Λ(t) in Q for all pairs of
reachable markings Mx [t〉My and transitions t ∈ T .

The generator matrix requires O(n2) memory if a two-dimensional dense array
format is used. Because firing a transition can only take the Petri net from a given
marking Mx to a single target marking My in the SPN formalism, each column of Q
may contain up to |T | nonzero elements. Hence Q requires O(|T |n) memory if a sparse
format is chosen.

Unfortunately, both of these storage methods may be prohibitively costly for large
models due to state space explosion. In addition, explicit enumeration of a large RS
may take an extreme amount of time.

5.1.2 Block Kronecker generator matrices

Kronecker generator matrices

To alleviate the high memory requirements of Q, the Kronecker decomposition for a
superposed SPN with J components expresses the infinitesimal generator matrix of the

36 EFFICIENT GENERATION AND STORAGE OF CTMCS

Algorithm 5.1 Generator matrix construction from explicit state space.
Input: explicit state space RS, transitions T , transition rate function Λ
Output: generator matrix Q

1 allocate QO ∈ R|RS|×|RS|,d ∈ R|RS|

2 foreach y ∈ RS, t ∈ R do
3 if there is a state x ∈ RS such that Mx [t〉My then
4 qD[x , y]← qD[x , y] +Λ(t)

5 d←−QO1T

6 return QO + diag{d}

associated CTMC in the form

Q =QO +QD, QO =
J−1
⊕

j=0

Q(j)L +
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q(j)t , QD = −diag{QO1T}, (5.1)

where QO and QD are the off-diagonal and diagonal parts of Q. The matrix

Q(j)L =
∑

t∈T (j)L

Λ(t)Q(j)t

is the local transition matrix of the component j, while the matrix

Q(j)t ∈ R
n j×n j , q(j)t [x

(j), y(j)] =

¨

1 if x (j) [t〉 y(j),

0 otherwise

describes the effects of the transition t on LN(j). Q(j)t has a nonzero element for every
local state transition caused by t. If j /∈ supp t, Q(j)t is an n j × n j identity matrix.

It can be seen that

qO[x,y] =
J−1
∑

j=0

∑

t∈T (j)L

Λ(t)q(j)t [x
(j), y(j)] +

∑

t∈TS

Λ(t)
J−1
∏

j=0

q(j)t [x
(j), y(j)]

=
J−1
∑

j=0

∑

t∈T (j)L

x (j)[t〉y(j)

Λ(t) +
∑

t∈TS ,x[t〉y

Λ(t) =
∑

t∈T,x[t〉y

Λ(t), (5.2)

which is the same as eq. (2.10) on page 14. Indeed, eq. (5.1) is a representation of the
infinitesimal generator matrix.

The matrices Q(j)L and Q(j)t and the vector −QO1T together are usually much smaller
than the full generator matrix Q even when stored in a sparse matrix form. Hence

5.1. Explicit methods 37

Kronecker decomposition may save a significant amount of storage at the expense of
some computation time.

Unfortunately, the Kronecker generatorQ is a n0n1 · · ·nJ−1×n0n1 · · ·nJ−1 matrix, i.e.,
it encodes the state transitions in the potential state space PS instead of the reachable
state space RS.

Potential Kronecker methods [11] perform computations with the matrix Q of size
|PS| × |PS| and vectors of length |PS|. In addition to increasing storage requirements,
this may lead to problems in some numerical solution algorithms, because the CTMC
over PS is not neccessarily irreducible even if it is irreducible over RS.

In contrast, actual Kronecker methods [5, 11, 45] work with vectors of length
|RS|. However, additional conversions must be performed between the actual dense
indexing of the vectors and the potential sparse indexing of the Q matrix, which leads
to implementation complexities and computational overhead.

A third approach, which we discuss in the next subsection, imposes a hierarchical
structure on RS [3, 10, 13].

Macro state construction

The hierarchical structure of the reachable state space expresses RS as

RS =
⋃

x̃∈ÝRS

J−1
∏

j=0

RS(j)
x̃ (j)

, RS(j) =
⋃

x̃ (j)∈ÝRS
(j)

RS(j)
x̃ (j)

,

whereÝRS = {0̃, 1̃, . . . ,àñ− 1} is the set of global macro states,ÝRS
(j)
= {0̃(j), 1̃(j), . . . ,âñ j − 1

(j)
}

is the set of local macro states of LN(j), and RS(j)x̃ = {0
(j)
x̃ , 1(j)x̃ , . . . , (n j, x̃ − 1)(j)x̃ } are the

local micro states in the local macro state x̃ (j). The product symbol denotes the compo-
sition of local markings, as in eq. (2.15) on page 19.

The local micro states form a partition RS(j) =
⋃

x̃∈fRS
(j) RS(j)x̃ of the state space of

the jth SSPN component.
Construction of macro states is performed as follows [10]:

1. The equivalence relation ∼(j) is defined over RS(j) as

x (j)∼(j) y(j) ⇐⇒ {ẑ(j) : x ∈ RS, z(j) = x (j)}= {ẑ(j) : y ∈ RS, z(j) = y(j)},
(5.3)

where ẑ(j) = (z(0), . . . , z(j−1), z(j+1), . . . , z(J−1)), i.e., two local states are equivalent
if they are reachable in the same combinations of local markings of the other
components. Therefore, the relation

x∼ y ⇐⇒ x (j)∼(j) y(j) for all j = 0, 1, . . . , J − 1,

defined over PS, has the property that whether x ∼ y, either both x and y are
reachable (global) markings, or neither are.

38 EFFICIENT GENERATION AND STORAGE OF CTMCS

Algorithm5.2 Hiearchical decomposition of the reachable state space into macro
states by Buchholz [10].

Input: Reachable state space RS, reachable local state spaces RS(j)

Output: Macro state space fRS, local macro state spacesÝRS
(j)

1 allocate bit vector b ∈ {0, 1}n0n1···nJ−1 initialized with zeroes
2 foreach x ∈ RS do
3 // Fill b with ones corresponding to reachable states
4 b[nJ−1nJ−2 · · ·n1 x (0) + nJ−1nJ−2 · · ·n2 x (1) + · · ·+ nJ−1 x (J−2) + x (J−1)]← 1

5 for j← 0 to J − 1 do
6 Reshape b into matrix B with n j columns
7 Partition the columns of B by componentwise equality
8 foreach element S of the equality partition of the columns of B do

9 Create a new local macro state ỹ(j) inÝRS
(j)

10 Assign all local micro states z ∈ S to ỹ(j)

11 Drop all columns of B corresponding to S but a single representant of ỹ(j)

12 foreach x̃ ∈ RS(0) × RS(1) × · · · × RS(J−1) do
13 if b[x̃] = 1 then Add x̃ toÝRS as a global macro state

14 returnÝRS,
�

ÝRS
(j)	J−1

j=0

2. Reachable local macro states are the partitions of RS(j) generated by ∼(j). A

bijectionÝRS
(j)
↔ RS(j)/∼(j) is formed between the integers 0,1, . . . , ñ(j) − 1 and

the local state partitions for each component LN(j).

3. The set of potential macro states is

fPS =
J−1
∏

j=0

ÝRS
(j)
⊇ÝRS

the Cartesian product of the local macro states. If macro state x̃ ∈ fPS contains
a reachable state, all associated (micro) states are reachable, because fPS is the
partition PS/∼ of PS generated by the relation ∼. Thus, ÝRS is constructed by
enumerating the reachable macro states in fPS. A bijection is formed between the
reachable subset of fPS and the integers 0̃, 1̃, . . . ,àñ− 1.

The pseudocode for this process is shown in Algorithm 5.2. The decomposition is
extremely memory demanding due to the allocation of the bit vector b of length |PS|.

In [10], sorting the columns of B lexicographically was recommended to calculate
the equality partition of the columns of B. In our implementation, we insert the columns

5.1. Explicit methods 39

of B into a bitwise trie and detect duplicates instead, so that no mapping between the
original order and sorted ordering of columns needs to be maintained.

Running example 5.1 The macro states of the RunningExample SSPN model (Fig-
ure 2.6 on page 18) are obtained from its component state space (Table 2.2 on
page 19) as follows:

1. The bit vector b is filled according to the reachable states RS,

0 0 0 0 0 0 1 1 1 1 1 1 2 2 2 2 2 2
0 0 1 1 2 2 0 0 1 1 2 2 0 0 1 1 2 2
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
� �

b= 1 0 1 0 0 1 1 0 1 0 0 1 0 1 0 1 0 0 ,

where the mixed indices in small type refer to the states of the local nets LN(0),
LN(1) and LN(2), respectively.

2. We reshape b into a matrix B so that each column corresponds to a local state
of the component LN(0),

0 1 2




























B =

0 0 1 1 0
0 1 0 0 1
1 0 1 1 0
1 1 0 0 1
2 0 0 0 0
2 1 1 1 0

in order to conclude that

ÝRS
(0)
0 = {0(0)0 = M (0)0 , 1(0)0 = M (0)1 }, ÝRS

(0)
1 = {0(0)1 = M (0)2 }.

3. After removing all local states of LN(0) except representants ofÝRS
(0)
, the order

of components is shifted by one and b is reshaped again

0 1 2











B =

0̃ 0 1 1 0
0̃ 1 0 0 1
1̃ 0 0 0 0
1̃ 1 1 1 0

to find that

ÝRS
(1)
0 = {0(1)0 = M (1)0 , 1(1)0 = M (1)1 }, ÝRS

(0)
1 = {0(1)1 = M (1)2 }.

40 EFFICIENT GENERATION AND STORAGE OF CTMCS

4. Finally, after shifting the order of components again, we reshape b

0 1











B =

0̃ 0̃ 1 0
0̃ 1̃ 0 1
1̃ 0̃ 0 1
1̃ 1̃ 0 0

and conclude

ÝRS
(2)
0 = {0(2)0 = M (2)0 }, ÝRS

(2)
1 = {0(2)1 = M (2)1 }.

5. Unfolding the matrix B

0̃ 0̃ 0̃ 0̃ 1̃ 1̃ 1̃ 1̃
0̃ 0̃ 1̃ 1̃ 0̃ 0̃ 1̃ 1̃
0̃ 1̃ 0̃ 1̃ 0̃ 1̃ 0̃ 1̃
� �

b= 1 0 0 1 0 1 0 0

shows that the reachable global macro states are

ÝRS = {0̃= (0̃(0), 0̃(1), 0̃(2)), 1̃= (0̃(0), 1̃(1), 1̃(2)), 2̃= (1̃(0), 0̃(1), 1̃(2))},

where 0̃ corresponds to the free state of the resource, while in 1̃ and 2̃, the
clients LN(1) and LN(0) are using the resource, respectively.

Block Kronecker matrix composition

The hierarchical or block Kronecker form of Q expresses the infinitesimal generator of
the CTMC over the reachable state space by the means of macro state decomposition.

The matrices Q(j)t [x̃
(j), x̃ (j)] and Q(j)L [x̃

(j), x̃ (j)] ∈ Rn j,x×nn,y describe the effects of a
single transition t ∈ T and the aggregated effects of local transitions on LN(j) as its
state changes from the local macro state x̃ (j) to ỹ(j), respectively. Formally,

q(j)t [x̃
(j), ỹ(j)][a(j)x , b(j)y] =

¨

1 if a(j)x [t〉 b(j)y ,

0 otherwise,
(5.4)

Q(j)L [x̃
(j), ỹ(j)] =

∑

t∈T (j)L

Λ(t)Q(j)t [x̃
(j), ỹ(j)]. (5.5)

In the case j /∈ supp t, we define Q(j)t [x̃
(j), ỹ(j)] as an identity matrix if x̃ (j) = ỹ(j) and a

zero matrix otherwise.

5.1. Explicit methods 41

Let us call macro state pairs (x̃, ỹ) single local macro state transitions (slmst.) at h if
x̃ and ỹ differ only in a single index h (x̃ (h) 6= ỹ(h)).

The off-diagonal part QO of Q is written as a block matrix with ñ× ñ blocks. A single
block is expressed as

QO[x̃, ỹ] =











































































J−1
⊕

j=0

Q(j)L [x̃
(j), x̃ (j)]

+
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q(j)t [x̃
(j), x̃ (j)]

if x̃= ỹ,

IN1×N1
⊗Q(h)L [x̃

(h), x̃ (h)]⊗ IN2×N2

+
∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q(j)t [x̃
(j), ỹ(j)]

if (x̃, ỹ) slmst. at h,

∑

t∈TS

Λ(t)
J−1
⊗

j=0

Q(j)t [x̃
(j), ỹ(j)] otherwise,

where N1 =
∏h−1

f=0 nh,x (h) , N2 =
∏J−1

f=h+1 nh,x (h) . If x̃ = ỹ, the matrix block describes
transitions which leave the global macro state unchanged, therefore any local transition
may fire. If (x̃, ỹ) is slmst. at h, only local transitions on the component h may cause the
global state transition, since no other local transition may affect LN(h). In every other
case, only synchronizing transitions may occur.

This expansion of block matrices is equivalent to eq. (5.1) on page 36 except the
considerations to the hierarchical structure of the state space.

The full Q matrix is written as

Q =QO +QD, QD = −diag{QO1T}

as usual.
Algorithm 5.3 shows the construction of the local transition matrices according to

eqs. (5.4) and (5.5).
The construction of the block matrix Q is shown in Algorithm 5.4 on page 48. We

optimized the formulation from eq. (5.2) in several ways:

• If a Kronecker product contains a 0 matrix term, it is itself zero, therefore, such
products are discarded in line 23.

• For identity matrices IN×N ⊗ In×n = INn×Nn holds. This is exploited in line 21 to
reduce the number of terms in the Kronecker producs.

• Instead of constructing QO and QD separately, the diagonal elements are added
to the blocks of Q along its diagonal in line 26.

42 EFFICIENT GENERATION AND STORAGE OF CTMCS

Algorithm 5.3 Transition matrix construction for block Kronecker matrices

Input: State spacesÝRS
(j)
RS(j)x , transitions T , transition rates Λ

Output: Transition matrices Q(j)t ,Q(j)L
1 for j← 0 to J − 1 do

2 foreach (x̃ (j), ỹ(j)) ∈ÝRS
(j)
×ÝRS

(j)
do

3 if j ∈ supp t then
4 allocate Q(j)t [x̃

(j), ỹ(j)] ∈ Rn j,x×nn,y

5 Fill in Q(j)t [x̃
(j), ỹ(j)] according to eq. (5.4) on page 40

6 else if x̃ (j) = ỹ(j) then Q(j)t [x̃
(j), ỹ(j)]← In j,x×n j,y

7 else Q(j)t [x̃
(j), ỹ(j)]← 0n j,x×n j,y

8 allocate Q(j)L [x̃
(j), ỹ(j)] ∈ Rn j,x×nn,y

9 foreach t ∈ T (j)L do
10 Q(j)L [x̃

(j), ỹ(j)]←Q(j)L [x̃
(j), ỹ(j)] +Λ(t)Q(j)t [x̃

(j), ỹ(j)]

5.2 Symbolic methods

5.2.1 Edge-valued multivalued decision diagrams

Edge-valued multivalued decision diagrams (EDDs) [71] provide a compact, graph-
based representation for functions of the form NJ → N.

Definition 5.1 A quasi-reduced ordered edge-valued multivalued decision diagram
(EDD) encoding the function g(x (0), x (1), . . . , x (J−1)) ∈ N is a tuple EDD =
(V, r, 0, 1, level, children, label), where

• MDD = (V, r, 0, 1, level, children) is a quasi-reduced ordered MDD,
• label :

�⋃J
i=1 Vi × D(i−1)

�

→ N is an edge label function.

According to the semantics of EDDs, the function g is evaluated as

g(x) =

¨

undefined if f (x) = 0,
∑J−1

j=0 label(n
(j), x (j)) if f (x) = 1,

where f is the function associated with the underlying MDD and n(j) are the nodes
along the path to 1, i.e.,

n(J−1) = r, n(j) = children(n(j+1), x (j+1)).

5.2. Symbolic methods 43

V3 : 0 1

V2 : 0 1 2 0 1 2

V1 : 0 1 2 0 1 2

V0 : 0 1

0
4

0 2 0 12

0
1 0

Figure 5.1 EDD state space mapping for the SharedResource SSPN.

5.2.2 Symbolic state spaces

Similarly to MDDs, EDDs can efficiently store the mapping between symbolic state
encodings x and reachable state indices x ∈ RS = {0, 1, . . . , n − 1} as the function
g(x) = x . This mapping is used to refer to elements of state probability vectors π and
the sparse generator matrix Q when these objects are created and accessed.

Running example 5.2 Figure 5.1 shows the state space of the SharedResourcemodel
encoded as an EDD. The edge labels express the lexicographic mapping of symbolic
state codes x to state indices x. Edges to the terminal zero node 0 were omitted for
the sake of clarity.

Algorithms 5.5 and 5.6 on page 49 illustrate the construction of a generator matrix
based on the state space encoded as EDDs. The procedure FillIn descends the EDD
following a path for the target and the source state simultaneously. The edge labels,
representing state indices, are summed on both paths. If a transition x [t〉 y is found,
the matrix element qO[x , y] corresponding to the summed indices is incremented by
the transition rate Λ(t). Algorithm 5.6 repeats FillIn for all transitions.

5.2.3 Symbolic hierarchical state space decomposition

The memory requirements and runtime of Algorithm 5.2 on page 38 may be significantly
improved by the use of symbolic state space storage instead of a bit vector.

44 EFFICIENT GENERATION AND STORAGE OF CTMCS

To symbolically partition the local states RS(j) into macro statesÝRS
(j)
, we will use

the following notations of above and below substates from Ciardo et al. [20]:

Definition 5.2 The set of above substates coded by the node n is

A(n) ⊆ {(x (j+1), x (j+2), . . . , x (J−1)) ∈ RS(j+1) × RS(j+2) × · · · × RS(J−1)},

such that

x ∈A(n) ⇐⇒ children(children(. . . children(r, x (J−1)) . . . , x (j+2)), x (j+1)) = n

and j = level(n)− 1, i.e., A(n) is the set of all paths in the MDD leading from r to n.

Definition 5.3 The set of below substates coded by the node n is

B(n) ⊆ {(x (0), x (1), . . . , x (j)) ∈ RS(0) × RS(1) × · · · × RS(j)},

such that

x ∈B(n) ⇐⇒ children(children(. . . children(n, x (j)) . . . , x (1)), x (0)) = 1

and j = level(n)− 1, i.e., B(n) is the set of all paths in the MDD leading from n to 1.

The relation ∼(j) over RS(j) can be expressed with A(n) and B(n) in a way that can
be handled easily with symbolic techniques.

Observation 5.4 The set of states which contain some local state x (j) is

{ẑ(j) : z ∈ RS, z(j) = x (j)}=

{(b,a) : n ∈ Vj+1, children(n, x (j)) 6= n,b ∈B(children(n, x (j))),a ∈A(n)}.

Proof. Any reachable state z ∈ RS that has z(j) = x (j) is represented by a path in
the MDD that passes through a pair of nodes n ∈ Vj+1 and children(n, x (j)) 6= 0.
Therefore, some path a ∈ A(n) must be followed from r to reach n, then some path
b ∈B(children(n, x (j))) must be followed from children(n, x (j)) to 1.

This means all paths from r to 1 containing x (j) are of the form (b, x (j),a) and the
converse also holds.

5.2. Symbolic methods 45

V3 : 0 1

V2 : 0 1 2 0 1 2

V1 : 0 1 2 0 1 2

V0 : 0 1

0
4

0 2 0 12

0
1 0

Figure 5.2 The set of all paths having x (1) = 2(1) in the SharedResource EDD.

Running example 5.3 Figure 5.2 shows all path in the SharedResource MDD with
x (1) = 2(1).

The single path in the setA(n) is dashed, while paths in the setB(children(n, 2(1)))
are drawn as dotted edges.

Observation 5.5 If n and m are distinct nonterminal nodes of a quasi-reduced
ordered MDD, A(n)∪A(m) = ; and B(n) 6=B(m).

Proof. We prove the statements indirectly. Let a ∈A(n)∪A(m). If we follow the path a
for r, we arrive at n, because a ∈A(n). However, we also arrive at m, because a ∈A(m).
This is a contradition, since n 6= m, A(n) and A(m) must be disjoint.

Now suppose that there are n, m ∈ VN such that B(n) =B(m). Because the paths
B(n) describe the subgraph reachable from n completely, this means the subgraphs
reachable from n and m are isomorphic. This is impossible, because then the MDD
cannot be reduced, thus B(n) and B(m) must be distinct.

Observation 5.6 The relation x (j)∼(j) y(j) can be expressed as

x (j)∼(j) y(j) ⇐⇒

{(n, children(n, x (j))) : n ∈ Vj+1}= {(n, children(n, y(j))) : n ∈ Vj+1}.

46 EFFICIENT GENERATION AND STORAGE OF CTMCS

Proof. Let

X = {ẑ(j) : z ∈ RS, z(j) = x (j)}, Y = {ẑ(j) : z ∈ RS, z(j) = y(j)}.

According to eq. (5.3) on page 37, x (j)∼(j) y(j) if and only if X = Y .
Define

X (n) = {b : (b,a) ∈ X ,b ∈A(n)}, Y (n) = {b : (b,a) ∈ Y,b ∈A(n)}.

X = Y holds precisely when X (n) = Y (n) for all n ∈ Vj+1. We may notice that {X (n)×
A(n)}n∈Vj+1

and {Y (n)×A(n)}n∈Vj+1
are partitions of X and Y , respectively, because the

A-sets are disjoint for each node.
According to Observation 5.4,

X (n) =B(children(n, x (j))), Y (n) =B(children(n, y(j))).

Thus, X (n) = Y (n) if and only if children(n, x (j)) = children(n, y(j)), because the B-sets
are distinct for each node.

Observation 5.6 can be interpreted as the statement that x (j)∼(j) y(j) if and only if
the MDD edges corresponding to x (j) are always parallel, i.e., from the node n they all
go to the same node m(n) for all n ∈ Vj+1.

The macro states can be constructed from the parallel edges in the MDD by partition
refinement. This process is performed by Algorithm 5.7 on page 50.

The key step in partition refinement is in line 15, where the candidate macro state
S is split into S1 and S2. Edges in S1 are all parallel and go from n to m, while S2 is
further split. The process is repeated for each node n and level Vj+1 until only parallel
macro state candidates remain.

This procedure is based on an idea of Buchholz and Kemper [12], however, we
employed partition refinement instead of hashing and and proved correctness of the
algorithm formally.

A block Kronecker matrix may be constructed from the decomposed state space by
Algorithm 5.4.

5.3 Matrix storage

Existing linear algebra and matrix libraries, such as [8, 30, 40, 53, 73], usually have
unsatisfactory support for operations required in stochastic analysis algorithms with
decomposed matrices, for example, multiplications with Kronecker and block Kronecker
matrices. Therefore, we have decided to develop a linear algebra framework in C#.NET
specifically for stochastic algorithms as a basis of our stochastic analysis framework.

5.3. Matrix storage 47

A=







1 0 0 2.5
3 1 0 0
4 0 0 1
5 0 0 0







A= {{(1, 0), (3, 1), (4, 2), (5, 3)},
{(1, 1)},
{},
{(2.5, 0), (1,2)}}

Figure 5.3 Compressed Column Storage of a matrix.

Block
Matrix

Linear
Combination

Kronecker
Matrix

Sparse
Matrix

Identity
Matrix

Diagonal
Matrix

Vector

∗ ∗ ∗

10..1

∗

Figure 5.4 Data structure for block Kronecker matrices.

Decomposed Kronecker and block Kronecker matrices are stored as algebraic expres-
sion trees as shown in Figure 5.4. Matrix multiplication and manipulation algorithms
for expression trees are detailed in Section 6.4 on page 56. Benchmark results for the
block Kronecker decomposition are discussed in Section 9.3 on page 73.

The expression tree approach allows the use of arbitrary matrix decompositions that
can be expressed with block matrices, linear combinations and Kronecker products. The
implementation of additional operational primitives is also straightforward. The data
structure forms a flexible basis for the development of stochastic analysis algorithms
with decomposed matrix representations.

48 EFFICIENT GENERATION AND STORAGE OF CTMCS

Algorithm 5.4 Block Kronecker matrix construction.

Input: State spacesÝRS,ÝRS
(j)
RS(j)x , transitions T , transition rates Λ,

matrices Q(j)t ,Q(j)L
Output: Infinitesimal generator Q

1 allocate block matrix Q with ñ× ñ blocks
2 foreach (x̃, ỹ) ∈ÝRS×ÝRS do
3 Initialize Q[x̃, ỹ] as a linear combination of matrices
4 if x̃= ỹ then
5 for j← 0 to J − 1 do
6 if Q(j)L [x̃

(j), ỹ(j)] 6= 0 then
7 I1← I∏ j−1

f=0 n f ,x(f)×
∏ j−1

h=0 n f ,x(f)
, I2← I∏J−1

g= j+1 n f ,x(f)×
∏J−1

f= j+1 n f ,x(f)

8 Q[x̃, x̃]←Q[x̃, x̃] + I1 ⊗Q(j)L [x̃
(j), x̃ (j)]⊗ I2

9 else if (x̃, ỹ) is a slmst. at h then
10 I1← I∏h−1

f=0 n f ,x(f)×
∏h−1

h=0 n f ,x(f)
, I2← I∏J−1

f= f +1 n f ,x(f)×
∏J−1

f=h+1 n f ,x(f)

11 Q[x̃, x̃]←Q[x̃, x̃] + I1 ⊗Q(h)L [x̃
(h), x̃ (h)]⊗ I2

12 foreach t ∈ TS do
13 Initialize B as an empty Kronecker product
14 zeroProduct← false
15 for j← 0 to J − 1 do
16 if Q(j)[x,y] = 0 then
17 zeroProduct← true
18 break
19 else if Q(j)[x,y] is an identity matrix then
20 if the last term of B is an indentity matrix IN ,N then
21 Enlarge the last term of B to INn j,x×Nn j,y

22 else B← B ⊗Q(j)[x,y]

23 if ¬zeroProduct then Q[x,y]←Q[x,y] +Λ(t)B

24 allocate block vector d with ñ blocks
25 d←−Q1T

26 foreach x̃ ∈ÝRS do Q[x̃ , x̃]←Q[x̃ , x̃] + diag{d[x̃]}
27 return Q

5.3. Matrix storage 49

Algorithm 5.5 FillIn procedure for matrix construction from EDD state space.
Input: node for target state t, node for source state s, target state offset y,

source state offset x , transition t, transition rate λ, matrix QO
1 if level(t) = 0 then
2 if t = 1∧ s = 1 then qO[x , y]← qO[x , y] +λ
3 else
4 j← level(t)− 1
5 foreach y(j) ∈ RS(j) do
6 if children(t, y(j)) = 0 then return
7 Find x (j) such that x (j) [t〉 y(j)

8 if children(s, x (j)) = 0 then return
9 FillIn(children(t, y(j)), children(s, x (j)),

10 y + label(t, y(j)), x + label(t, x (j)), t,λ,QO)

Algorithm 5.6 Sparse matrix construction from EDD state space.
Input: state space MDD root r, state space size n, transitions T , transition rate

function Λ
Output: generator matrix Q ∈ Rn×n

1 allocate QO ∈ Rn×n

2 foreach t ∈ T do
3 FillIn(r, r, 0, 0, t,Λ(t),QO)

4 d←−QO1T

5 return QO + diag{d}

50 EFFICIENT GENERATION AND STORAGE OF CTMCS

Algorithm 5.7 Local macro state construction by partition refinement.
Input: Symbolic state space MDD

Output: Local macro statesÝRS
(j)
, RS(j)x

1 for j← 0 to J − 1 do
2 Initialize the empty queue Q
3 Done← {RS(j)}
4 foreach n ∈ Vj+1 do
5 foreach S ∈ Done do
6 Enqueue(Q, S)

7 Done← ;
8 while ¬Empty(Q) do
9 S← Dequeue(Q)

10 S1← ;
11 S2← ;
12 Let x0 be any element of S
13 m← children(n, x0)
14 foreach x ∈ S \ {x0} do
15 if m= children(n, x) then S1← S1 ∪ {x} else S2← S2 ∪ {x}

16 if S2 6= ; then
17 Enqueue(Q, S2)

18 Done← Done∪ {S1}

19 ñ j ← |Done|

20 ÝRS
(j)
← {0̃(j), 1̃(j), . . . ,âñ j − 1

(j)
}

21 Each set S ∈ Done is a local macro stateÝRS
(j)
x

51

Chapter 6

Algorithms for stochastic analysis

Steady state, transient and sensitivity analysis problems pose several numerical chal-
lenges, especially when the state space of the CTMC and the vectors and matrices
involved in the computation are large.

In steady-state and sensitivity analysis, linear equations of the form xA = b are
solved, such as eqs. (2.3) and (2.7). The steady-state probability vector is the solution
of the linear system

πQ = 0, π1T = 1, (2.3 revisited)

where the infinitesimal generator Q is a rank-deficient matrix. Therefore, steady-state
solution methods must handle various generator matrix decompositions and homoge-
nous linear equation with rank deficient matrices. Convergence and computation times
of linear equations solvers depend on the numerical properties of the Q matrices, thus
different solvers may be preferred for different models.

In transient analysis, initial value problems with first-order linear differential equa-
tions such as eq. (2.2) on page 8 are considered. The decomposed generator matrix Q
must be also handled efficiently. Another difficulty is caused by the stiffness of differen-
tial equations arising from some models, which may significantly increase computation
times.

To facilitate configurable stochastic analysis, we developed several linear equation
solvers and transient analysis methods. Where it is reasonable, the implementation is
independent of the form of the generator matrix Q. We achieved genericity by defining
an interface between the algorithms and the data structures with operations including

• multiplication of a matrix with a vector from left or right,
• scalar product of vectors with other vectors and columns of matrices,
• specialized operations like accessing the diagonal or off-diagonal parts of a matrix

and replacing columns of matrices.
In this chapter, we describe some of the algorithms implemented in our stochastic

analysis framework restricting our attention to direct solvers that can compute solutions

52 ALGORITHMS FOR STOCHASTIC ANALYSIS

Algorithm 6.1 Crout’s LU decomposition without pivoting.
Input: the matrix A∈ Rn×n operated on in-place
Output: L, U ∈ Rn×n such that A= LU , u[i, i] = 1 for all i = 0, 1, . . . , n− 1

1 for j← 0 to n− 1 do
2 for i← 0 to j do a[i, j]← a[i, j]−

∑i−1
k=0 a[i, k]a[k, j]

3 for i← j + 1 to n− 1 do a[i, j]←
�

a[i, j]−
∑ j−1

k=0 a[i, k]a[k, j]
��

a[i, i]

4 Let AL, AD and AU refer to the strictly lower triangular, diagonal and strictly
upper triangular parts of A, respectively.

5 L← AL + AD
6 U ← AU + I
7 return L, U

of smaller CTMCs with high precision. For additional numerical algorithms supported
by our framework we refer to [51].

6.1 Direct linear equation solvers

6.1.1 Explicit solution by LU decomposition

LU decomposition is a direct method for solving linear equations with forward and
backward substitution, i.e., it does not require iteration to reach a given precision [74].

The decomposition computes the lower triangular matrix L and upper triangular
matrix U such that

A= LU .

To solve the equation
xA= xLU = b

forward substitution is applied first to find z in

zU = b,

then x is computed by back substitution from

xL = z.

We used Crout’s LU decomposition [66, Section 2.3.1], presented in Algorithm 6.1,
which ensures

u[i, i] = 1 for all i = 0, 1, . . . , n− 1,

i.e., the diagonal of the U matrix is uniformly 1. The matrix is filled during the
decomposition even if it was initially sparse, therefore it should first be copied to a dense

6.1. Direct linear equation solvers 53

Algorithm 6.2 Forward and back substitution.
Input: U , L ∈ Rn×n, right vector b ∈ Rn

Output: solution of xLU = b
1 allocate x,z ∈ Rn

2 if b= 0 then z← 0 // Skip forward substitution for homogenous equations

3 else for j← 0 to n− 1 do z[j]← b[j] ·
∑ j−1

i=0 u[i, j]
4 if l[n− 1, n− 1]≈ 0 then
5 if z[n− 1]≈ 0 then x[n− 1]← 1 // Set the free parameter to 1
6 else error “inconsistent linear equation system”

7 else x[n− 1]← z[n− 1]/l[n− 1, n− 1]
8 for j← n− 2 downto 0 do
9 if l[j, j]≈ 0 then error “more than one free parameter”

10 x[j]←
�

z[i]−
∑n−1

i= j+1 x[i]l[i, j]
��

l[j, j]

11 return x

array storage for efficiency reasons. This considerably limits the size of Markov chains
that can be analysed by direct solution due to memory constraints. Our data structure
allows access to upper and lower diagonal parts of matrices and linear combinations,
therefore no additional storage is needed other than A itself.

The forward and back substitution process is shown in Algorithm 6.2. If multiple
equations are solved with the same matrix, its LU decomposition may be cached.

Matrices of less than full rank

If the matrix Q is of rank n− 1, the element l[n− 1, n− 1] in Crout’s LU decomposition
will be 0. In this case, x[n−1] is a free parameter and will be set to 1 to yield a nonzero
solution vector when z[n− 1] = 0. If z[n− 1] 6= 0, the equation xL = z does not have a
solution and the error condition in line 6 is triggered. A matrix of rank less than n− 1
triggers the error condition in line 9.

In practice, the algorithm can be used to solve homogenous equations in Markovian
analysis, because the infinitesimal generator matrix Q of an irreducible CTMC is always
of rank n− 1. The solution vector x is not a probability vector in general, so it must be
normalized as π= x/(x1T) to get a stationary probability distribution vector.

6.1.2 Improving LU decomposition with partial pivoting

Despite being a direct solver, LU decomposition is inherently numerically unstable, just
like Gaussian elimination. This instability originates from line 3 of Algorithm 6.1 where
we perform a division by a[i, i]. In order to stabilize the LU decomposition numerically

54 ALGORITHMS FOR STOCHASTIC ANALYSIS

we can use partial pivoting, i.e., for every elimination step we reorder the rows of the
matrix in a way that ensures the largest denominator a[i, i] in that step. This way
we can minimize the occurring numerical errors with relatively small performance
overhead.

The partial pivoting method for Crout’s decomposition is fairly simple [67, Section
2.3]. We delay the division during the iterations at line 3 and calculate the values a[i, j]
without it. Once the values are computed for a column, we find the element with the
biggest absolute value in the column’s subdiagonal part and perform the necessary row
ordering. As the final step we perform the division on the reordered values.

Parts of the referenced algorithm can be simplified in case of Markovian analysis.
Firstly, we only have to iterate through the diagonal to find the element of the matrix
with the biggest absolute value, since the diagonal elements are the negative of the sum
of the corresponding offdiagonal row elements. Secondly, instead of performing explicit
row ordering we can use indirect indexing of elements, so we only need to perform the
ordering on the index mapping.

6.2 Transient analysis

6.2.1 Uniformization

The uniformization or randomization method solves the initial value problem

dπ(t)
dt

= π(t)Q, π(t) = π0 (2.2 revisited)

by computing

π(t) =
∞
∑

k=0

π0Pke−αt (αt)k

k!
, (6.1)

where P = α−1Q+ I , α≥maxi|a[i, i]| and e−αt (αt)k
k! is the value of the Poisson probabilty

function with rate αt at k.
eq. (6.1) can be realized as

x=
1
W

kleft−1
∑

k=0

wleftπ0Pk +
kright
∑

k=kleft

w[k− kleft]π0Pk

!

, (6.2)

where x is π(t), kleft and kright are trimming constants selected based on the required
precision, w is a vector of (possibly accumulated) Poisson weights and W is a scaling
factor. The weight before the left cutoff wleft is 1 if the accumulated probability vector
L(t) is calculated, 0 otherwise.

Eq. (6.2) is implemented by Algorithm 6.3. The algorithm performs steady-state
detection in line 9 to avoid unnecessary work once the iteration vector p reaches the

6.3. Mean time to first failure 55

Algorithm 6.3 Uniformization.
Input: infinitesimal generator Q ∈ Rn×n, initial probability vector π0 ∈ Rn,

truncation parameters kleft, kright ∈ N, weights wleft ∈ R, w ∈ Rkright−kleft ,
scaling constant W ∈ R, tolerance τ > 0

Output: instantenous or accumulated probability vector x ∈ Rn

1 allocate x,p,q ∈ Rn

2 α−1← 1/maxi|a[i, i]|
3 p← π0
4 if wleft = 0 then x← 0 else x← wleft · p // Vector scaling
5 for k← 1 to kright do
6 q← pQ // Vector-matrix product
7 q← α−1 · q // In-place vector scaling
8 q← q+ q // In-place vector addition
9 if ‖q− p‖ ≤ τ then

10 x← x+
�

∑kright
l=k w[l − kleft]

�

· q // In-place scaled vector addition

11 break

12 if k < kleft ∧wleft 6= 0 then x← x+wleft · q // In-place scaled vector addition
13 else if k ≥ kleft then x← x+w[k− kleft] ·q // In-place scaled vector addition
14 Swap the references to p and q

15 x←W−1 · x // In-place vector scaling
16 return x

steady-state distribution π(∞), i.e., p≈ pP. If the initial distribution π0 is not further
needed or can be generated efficiently (as it is the case with a single initial state), the
result vector x may share the same storing, resulting in a memory overhead of only two
vectors p and q.

The weights and trimming constants may be calculated by the famous algorithm
of Fox and Glynn [34]. However, their algorithm is extremely complicated due to the
limitations of single-precision floating-point arithmetic [44]. The stochastic framework
provides an implementation of Burak’s significantly simpler algorithm [14] (which is
not in the scope of this work) in double precision instead, which avoids underflow by a
scaling factor W � 1.

6.3 Mean time to first failure

In MTFF calculation (Section 2.2.3 on page 12), quantities of the forms

MTFF = −πUQ−1
UU

︸ ︷︷ ︸

γ

1T, P(X (TFF+0) ∈ D′) = −πUQ−1
UU

︸ ︷︷ ︸

γ

qT
U D′ (2.8, 2.9 revisited)

56 ALGORITHMS FOR STOCHASTIC ANALYSIS

Algorithm 6.4 Parallel block vector-matrix product.
Input: block vector b ∈ Rn0+n1+···+nk−1 ,
block matrix A∈ R(n0+n1+···+nk−1)×(m0+m1+···+ml−1)

Output: c= bA∈ Rm0+m1+···+ml−1

1 allocate c ∈ Rm0+m1+···+ml−1

2 parallel for j← 0 to l − 1 do
3 c[j]← 0
4 for i← 0 to k− 1 do
5 c[j]← c[j] + b[i]A[i, j] // Scaled addition of vector-matrix product

Algorithm 6.5 Product of a vector with a linear combination matrix.
Input: b ∈ Rn, A= ν0A0 + ν1A1 + · · ·+ νk−1Ak−1, where Ah ∈ Rn×m

Output: c= bA∈ Rm

1 allocate c ∈ Rm if no target buffer is provided
2 c← 0
3 for h← 0 to k− 1 do
4 c← νh · bAh // In-place scaled addition of vector-matrix product

5 return c

are computed, where U , D, D′ are the set of operations states, failure states and a
specific failure mode D′ (D, respectively.

The vector γ ∈ R|U | is the solution of the linear equation

γQUU = πU (6.3)

and may be obtained by any linear equation solver.
The sets U , D = D1 ∪ D2 ∪ · · · are constructed by the evaluation of CTL expressions.

If the failure mode Di is described by ϕi, then the sets D and U are described by CTL
formulas ϕD = ¬AX true∨ϕ1 ∨ϕ2 ∨ · · · and ϕU = ¬ϕD, where the deadlock condition
¬AX true is added to make (6.3) irreducible.

After the set U is generated symbolically, the matrix QUU may be decomposed in
the same way as the whole state space S. Thus, the vector-matrix operations required
for solving (6.3) can be executed as in steady-state analysis.

6.4 E�cient vector-matrix products

Iterative linear equation and transient distribution solvers require several vector-matrix
products per iteration. Therefore, efficient vector-matrix multiplication algorithms are

6.4. E�cient vector-matrix products 57

Algorithm 6.6 The Shuffle algorithm for vector-matrix multiplication.

Input: b ∈ Rn0n1···nk−1 , A= A(0) ⊗ A(1) ⊗ · · · ⊗ A(k−1), where A(h) ∈ Rnh×mh

Output: c= bA∈ Rm0m1···mk−1

1 n← n0n1 · · ·nk−1, m← m0m1 · · ·mk−1

2 tempLength←maxh=−1,0,1,...,k−1
∏h

f=0 m f
∏k−1

f=h+1 n f

3 allocate x,x′ with at least tempLength elements

4 x[0:1:n]← b, ileft← 1, iright←
∏k−1

h=1 nh
5 for h← 0 to k− 1 do
6 if A(h) is not an identity matrix then
7 ibase← 0, jbase← 0
8 for il← 0 to ileft − 1 do
9 for ir← 0 to iright − 1 do

10 x′[jbase:mh:iright]← x[ibase:nh:iright]A(h)

11 ibase← ibase + nhiright, jbase← jbase +mhiright

12 Swap the references to x and x′

13 ileft← ileft ·mh
14 if h 6= k− 1 then iright← iright/nh+1

15 return c= x[0:1:m]

required for the various matrix storage methods (i.e., dense, sparse and block Kronecker
matrices) to support configurable stochastic analysis.

Our data structure supports run-time reconfiguration of operations, for example,
to switch between parallel and sequential matrix multiplication implementations for
different parts of an algorithm, depending on the characteristics of the model and the
hardware which runs the analysis.

Implemented matrix multiplication for the data structure (see Figure 5.4 on page 47)
routines are

• Multiplication of vectors with dense and sparse matrices. Sparse matrix multipli-
cation may be parallelized by splitting the columns of the matrix into chunck and
submitting each chunk to the executor thread pool.

Operations with vectors and sparse matrices are implemented in an unsafe1

context. The elements of the data structures are not under the influence of the
Garbage Collector runtime, but stored in natively allocated memory. This allows
the handling of large matrices without adversely impacting the performance of
other parts of the program, albeit the cost of allocations is increased.

1https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx

58 ALGORITHMS FOR STOCHASTIC ANALYSIS

• Multiplication with block matrices by delegation to the constituent blocks of the
matrix (Algorithm 6.4 on page 56). The input and output vectors are converted
to block vectors before multiplication. If parallel execution is required, each block
of the output vector can be computed in a different task, since it is independent
from the others.

• Multiplication by a linear combination of matrices is delegated to the constituent
matrices (Algorithm 6.5 on page 56). An in-place scaled addition of vector-
matrix product to a vector operation is required for this delegation. To facilitate
this, each vector-matrix multiplication algorithm is implemented also as an in-
place addition and in-place scaled addition of vector-matrix product, and the
appropriate implementation is selected based on the function call arguments.

• Multiplications b · diag{a} by diagonal matrices are executed as element-wise
product b�a. The special case of multiplication by an identity matrix is equivalent
to a vector copy.

• Multiplications by Kronecker products is performed by the Shuffle algorithm [4,
11] as shown in Algorithm 6.6 on page 57.

The algorithm requires access to slices of a vector, denoted as x[i0:s:l], which
refers to the elements x[i], x[i+s], x[i+2s], . . . , x[i+(l−1)s]. Thus, slices were in-
tegrated into the operations framework as first-class elements, and multiplication
algorithms are implemented with support for vector slice indexing.

Shuffle rewrites the Kronecker products as

k−1
⊗

h=0

A(h) =
k−1
∏

h=0

I∏h−1
f=0 n f ×

∏h−1
f=0 n f

⊗ A(h) ⊗ I∏k−1
f=h+1 m f ×

∏k−1
f=h+1 m f

,

where Ia×a denotes an a× a identity matrix. Multiplications by terms of the form
IN×N ⊗ A(h) ⊗ IM×M are carried out in the loop at line 8 of Algorithm 6.6.

The temporary vectors x,x′ are large enough store the results of the successive
matrix multiplications. They are cached for every worker thread to avoid repeated
allocations.

Other algorithms for vector-Kronecker product multiplication are the Slice [33]
and Split [25] algorithms, which are more amenable to parallel execution than
Shuffle. Their implementation is in the scope of our future work.

59

Chapter 7

Post-processing numerical results

The output of the numerical solution step in the stochastic analysis workflow is a
(possibly accumulated) probability distribution vector that assigns a probability to every
state of the modeled system. In case of steady state and transient analysis this vector is
π and π(t), respectively.

Usually we need more information about the system than just the probability
distribution of its states. We can assign reward rates to the individual states of the
system to describe some desired metric (as detailed in Sections 2.2.1 and 2.3.1) to
for example compute the expected value of that metric. For the computation of the
expected value, the probability distribution vector is given as the output of the previous
analysis step. However, we still need an efficient way to describe the reward rates
associated with the states of the system.

In this chapter we detail the different ways of assigning reward rates to states in an
easy and maintainable manner. Furthermore, we provide some insight into the efficient
calculation of these measures and their sensitivity analysis to net parameters.

7.1 Reward configurations

In order to construct the reward vector we need to be able to somehow reference the
states of the system (preferably not one-by-one). Once we can reference a set of states,
we need to assign to the a reward rate that potentially depends on the actual state
it’s assigned to. The implemented stochastic analysis framework supports this reward
vector construction with the following definitions:

1. (p, w), where p ∈ P is a place and w is a constant reward weight expression. This
reward expression is equivalent to a rate reward rr(M) = M(p) ·w, i.e., the value
of w is multiplied by the number of tokens on p.

60 POST-PROCESSING NUMERICAL RESULTS

2. (t, w), where t ∈ T is a transition and w is a constant reward weight expression.
This is equivalent to an impulse reward ir(t, M) = w ·Λ(t) gained upon the firing
of t.

3. ϕ → w, where ϕ is a Computational Tree Logic (CTL) expression and w is a
reward weight expression. This is equivalent to the rate reward rr(M) = w if ϕ
holds in M , 0 otherwise.

The reward weight expression in the CTL-based definition is an algebraic expression
that may contain various operations and references:

1. The common arithmetic operators: +, −,ˆ, ∗, / and // for integer division.

2. Some predefined functions: ex p(), l g(), l b(), ln(), log(,), sin(), cos().

3. The defined net parameters (accessed through the variable’s name).

4. The rate of a transition (accessed through the rate() function and the transition’s
name as the argument).

5. The number of tokens on a place in the currently evaluated state (accessed
through the name of the place).

References to places are replaced by the number of tokens upon evaluation, while
references to transition rates can be evaluated at the beginning of the analysis. Fur-
thermore, note, that the reward expression (p, w) may be written as true→ p · w or
p > 0→ p ·w using CTL. Reward expressions with CTL are only allowed when symbolic
state space representation is used, as CTL evaluation1 is performed symbolically [26].

Defining the entire reward vector r using only one definition from above is cumber-
some. To alleviate this problem the framework uses the concept of reward configuration
to describe the vector r. A reward configurations may contain one or more reward
definitions and each definition corresponds to a reward vector ri ∈ R|RS|. The complete
reward vector for the modeled system is expressed as the following sum:

r=
∑

i

ri (7.1)

Running example 7.1 Consider the reward structures defined over the Shared-
Resource Petri net from Running example 2.6 on page 16.

1The symbolic state space exploration and CTL evaluation component is currently provided by the
PetriDotNet [31] tool.

7.2. E�cient reward calculation 61

The utilization of the shared resource can be described by the reward configuration

resourceUtilization= {(pS1
, 1), (pS2

, 1)},

which is equivalent to the SRN reward structure

rr1(M) = M(pS1
) +M(pS2

), ir1(t, M)≡ 0. (2.11 revisited)

This can also be written as

resourceUtilization= {pS1
> 0∨ pS2

> 0→ 1}

using CTL, because the places S1 and S2 are 1-bounded in the SharedResource model.
Completed calculations are described by

completedCalculations= {(ts1
, 1), (tr2

, 1)},

which is equivalent to the reward structure

rr2(M)≡ 0, ir2(t, M) =

¨

Λ(t) if t ∈ {tr1
, tr2
},

0 otherwise.
(2.12 revisited)

7.2 E�cient reward calculation

To calculate the expected value of a measure we need to form the inner product
ER(t) = π(t) rT. If we were to generate r according to eq. (7.1) that would pose a
severe memory overhead. Usually not every state has a reward rate value associated
with it so the vector r in the inner product is a sparse vector. Thus eq. (2.4) on page 10
can be changed accordingly:

ER(t) =
∑

i,r[i] 6=0

π(t)[i]r[i] (7.2)

Combining eq. (7.2) with eq. (7.1) we can write the calculation of the expected
value as:

ER(t) =
∑

j

∑

i,r j[i] 6=0

π(t)[i]r j[i] (7.3)

As we can see from eq. (7.3) every r j[i] value is used only once, when we multiply
it with π(t)[i]. This means that even though the vectors r j are sparse vectors, it is

62 POST-PROCESSING NUMERICAL RESULTS

meaningless to store their elements: as soon as we calculate the appropriate r j[i] value
we can perform the multiplication with π(t)[i] and accumulate the result.

The framework employs several optimization methods to ensure the efficient gener-
ation of r j[i] reward rate values.

Arithmetic expression evaluation As the reward rates are defined with the help of
arithmetic expression trees, it is essential to evaluate them in an efficient way. If an
arithmetic expression references only net parameters and transition rates then it can be
reduced to a constant expression by substituting the appropriate values at the beginning
of the workflow (before constructing the generator matrix). However, if the expression
contains references to the marking of the currently evaluated state then that expression
must be re-evaluated for every necessary state.

Evaluation of an expression tree means that we substitute every variable in the tree
with their respective values. Generally this can be achieved by a recursive graph traversal
method (for example by using the visitor pattern [62]) to find and replace the variables
in the tree. However, in order to acquire the value represented by the expression we
also need to evaluate (i.e., ”execute”) the operator nodes which could severely impact
the performance. Fortunately, the tree describes an arithmetic expression and most
of the programming languages provide built-in support for efficiently executing such
expressions.

Our framework ”compiles” the expression tree by generating executable Intermedi-
ate Language (IL) code from it that contains parameters.2 This parameterized code can
be more efficient than ”manually” substituting variables. We only need to compile the
expression once, then execute it for each relevant state with the appropriate markings
(expression parameters).

Guided state space enumeration The other challenge of efficient reward evaluation
is the enumeration of only those states that have a nonzero r j[i] reward rate value
associated with them. In case of explicit state spaces we have to enumerate every state
in order to evaluate the associated (place- and transition-based) reward definitions.
However, decision diagram-based state spaces provide means to exclude a large number
of states based on a local information in a component’s state space. For example, it
is easy to find every reachable state that contains a specific marking pattern for some
places or where a certain transition is enabled.

Based on this observation the framework makes it possible to ”guide” the symbolic
state space enumeration based on some constraint that can be one or more of the
following:

Unrestricted The guide doesn’t constrain the enumeration of states at all.

2https://msdn.microsoft.com/en-us/library/mt654263.aspx

7.3. Sensitivity calculation 63

MDD guide The allowed paths to take in the decision diagram are constrained by an
other MDD. This other MDD is usually the result of a model checking algorithm
that was used to gather the states affected by a CTL-based reward definition. Note
that place-based reward definitions can be transformed to CTL-based reward
definitions.

Target state guide This iterator guide only allows iteration through states in which a
given transition is enabled and firing it results in a global state allowed by another
iterator guide. This guide combined with an unrestricted guide can be used to
evaluate the transition-based reward definitions. Even though these definitions
could be transformed to CTL-based definitions using the structure of the net, it is
more efficient to use the additional local state space information of components
than performing model checking and using an MDD guide.

Composite guide Different guides can be combined together resulting in the conjunc-
tion of their respective constraints.

7.3 Sensitivity calculation

Transition and reward rates are stored as algebraic expression trees in the input SPN
models. Symbolic operations, such as partial differentiation may be performed directly
on the trees using algebraic laws, before evaluating the expressions (for example in
order to construct the generator matrix).

In reward and MTFF calculations, rate expressions are evaluated by replacing
sensitivity parameters with their values before the matrix Q is composed. Thus, the
elements of a matrix are not expression trees, but floating point numbers and matrix
generation has to be performed only when sensitivity parameters are changed.

Steady-state sensitivity calculation, shown in Figure 7.1, is the most complicated
post-processing in the workflow. Partial derivatives of the transition rate expressions and
reward weight expressions are taken to calculate ∂ ER/∂ θi using eqs. (2.6) and (2.7)
on page 11 and on page 12.

7.4 Interval-based measure calculation

Usually we are interested in the performance metric values not only for one value of
a parameter, but for a range of values of parameters. The framework provides means
to define ranges and sample point densities for parameters and then it performs the
selected analysis for every sample point in the parameter space.

The drawback of this method is that it performs the complete analysis workflow for
every sample point, even though the result of state space exploration or the macro state-
based decomposition could be reused. However, the individual analyses are completely

64 POST-PROCESSING NUMERICAL RESULTS

∂

∂ θi

Q matrix
generation

Vi matrix
generation

Solve for p Solve for si

p
∂ rT

∂ θi

Calculate
sir

T

Rate
expressions

∑

Sensitivity
value

Parameter
bindings

Reward
expressions

Figure 7.1 Reward and sensitivity calculation from expression tree inputs.

independent of each other so the parameter space can be divided into multiple parts
and distributed across arbitrary number of computers. The next chapter in Section 8.2
will present an alternative method to evaluate measures across parameter intervals
without performing the analysis multiple times. However, it lacks the scalability of this
approach and is only applicable for smaller models.

65

Chapter 8

Symbolic evaluation

The presence of parameters in amodel opens up new possibilities among the performable
analysis types, e.g., sensitivity analysis. However, to be able to perform such analyses, a
special infrastructure is needed that can handle the various tasks that the incorporation
of parameters into the workflow presents.

In this chapter we provide an overview of the parameter-related parts of the frame-
work, including the arithmetic grammar, the application of expression trees during
analysis and the integration of higher precision software arithmetic.

8.1 Arithmetic grammar

So far in this thesis we always mentioned expression trees when talking about arithmetic
expressions, like those used in transition rate expressions or reward weight expressions.
These trees usually need to be read from user provided input and later persisted in
a similar form. In order to do this we need to specify a grammar for the textual
specification of arithmetic expressions.

For the construction of the arithmetic grammar we used the ANTLR4 tool [63]. The
tool allows the specification of annotated grammar files from which it generates the
necessary lexers and parsers at the selected programming language (C#.NET in our
case). Another useful feature of the tool is the ability to resolve left recursive definitions
which makes it easier to define the usual priority rules among the arithmetic operators.

Besides the operators, the basic grammar file defines the syntax for variable names
and function invocations only. The variable name syntax conforms to the naming rules
of the PNML standard and allows references to hierarchical variable names which is
essential to support the element names of a hierarchical model in the PetriDotNet
tool. The syntax for variable names is the following:

ID : [a−zA−Z] ([a−zA−Z .] | DIGIT | ’ _ ’) * ;

66 SYMBOLIC EVALUATION

The definition of function syntax also allows hierarchical naming, moreover it allows
the function to have an arbitrary number of parameters. The syntax is the following:

ID LPAR expr (, expr)* RPAR

where LPAR and RPAR are the symbols for the left and right parenthesis, respectively.
After parsing an expression, ANTLR4 returns an expression tree with the defined

primitives in it. We use the visitor pattern to transform that tree into our own expression
tree data structure. This data structure can be extended with custom tree builder
components that can handle the unknown parts of the expression tree, such as functions
or variables. The basic functions listed in Section 7.1 on page 59 were added to the
data structure using this extension point.

Besides the support for arbitrary function and variable definitions, there was an other
reason why we created our own arithmetic library instead of using an existing one. The
PetriDotNet framework already contained a library that defined a similar grammar
for boolean and CTL expressions. In that library CTL expressions can reference boolean
expressions as atomic propositions. We plan to merge the two expression libraries,
making it possible for boolean expressions to reference arithmetic expressions in their
relational propositions (e.g., in the two operands of the< operator). This would provide
support for defining more complex temporal and boolean expressions.

8.2 Symbolic measure computation

In the original workflow of the framework, we substituted every parameter reference
in the transition rates for its value defined by the current parameter configuration in
an early step. This resulted in a purely numerical problem that can be handled by a
variety of solvers provided by the framework.

If we do not perform this substitution, then we can construct a generator matrix
whose elements are expression trees instead of floating point values. The unknown
values (parameters) of this matrix, however, impose some restrictions on the solvers
that we can use for the computation of the probability distribution vector (that will
also contain expression trees). Solvers that need a predefined precision or error margin
value can not be used, since we can not perform the necessary convergence test to
determine the termination criteria due to the unknown quantities in the matrix. For
this reason employing iterative solvers and Krylov-subspace methods is not feasible in
this context.

What we can use are direct solvers like LU decomposition that computes the ele-
ments of the required result vector in a closed form. Since all the necessary arithmetic
operators have a corresponding representation in the expression tree, we can simu-
late the execution of these operators by constructing new expression trees from their
operands. This results in a vector whose elements are closed functions of the net

8.3. Arbitrary precision evaluation 67

parameters. Once we acquire the symbolic probability vector, we can perform the same
post processing on it as discussed in Section 7.2 on page 61. Again, we ”execute” the
arithmetic operators during post processing by constructing new expression trees. At
the end of the symbolic workflow the required measure will be defined by a closed
function of the net parameters.

The main advantage of the symbolic evaluation of measures is that we acquire
a closed function of net parameters that is independent of the actual values of the
parameters. Even if we change the parameter configuration we don’t need to re-run
the analysis workflow since the result will be the same. Instead, we can evaluate the
function for arbitrary parameter values which can be further improved by generating
executable IL code from the measure expression (as described in Section 7.2 on page 61).
This means that we can perform the interval-based measure calculation (see Section 7.4
on page 63) more efficiently.

Another advantage of the symbolic result is that we have a wide arsenal of mathe-
matical methods at our disposal to perform additional post processing on the function.
For example, instead of the complicated sensitivity analysis depicted in Figure 7.1 on
page 64, we can simply differentiate symbolically (one or more times) the measure
expression to gain some information about its sensitivity to model parameters.

Despite the advantages of symbolic evaluation, the mandatory use of direct solvers
(like LU decomposition) severely limits the scalability of the approach. Direct solvers
usually operate on dense matrices even if the generator matrix is originally a sparse
matrix. This results in a high memory and performance overhead when performing
symbolic evaluation on larger models.

8.3 Arbitrary precision evaluation

Even thought symbolic evaluation does not use excessive numerical calculations, it
doesn’t solve the instability problem of the LU decomposition, it only delays it to the
time when we evaluate the measure expression. In performability related problems
it is preferable to use arbitrary precision arithmetic to avoid the unwanted impact of
numerical errors at the price of a runtime overhead originating in using a software
library instead of the hardware arithmetic. This is achieved by allocating more memory
and CPU time to the operations. The additional precision of the results, which is an
important requirement for the verification of safety-critical systems, should outweigh
the overhead of the arbitrary precision calculation.

In order to alleviate the problems caused by numerical errors we provide support
for arbitrary precision arithmetic in the stochastic framework. This option can be used
during both numerical and symbolical evaluation of performance measures, so it is not
confined only to the LU decomposition algorithm, other solvers can benefit from it as

68 SYMBOLIC EVALUATION

well. For the prototype phase of this feature we integrated a C# library called Numbers1

with our arithmetic expression library and created a high precision version of the data
structures and related algorithms.

1https://github.com/peteroupc/Numbers

69

Chapter 9

Evaluation

9.1 Testing

When developing an algorithm library for formal analysis of safety critical systems it is
vital to verify the correctness of the implementation. Since the complexity of the code
base makes formal verification difficult we confined ourselves to rigorously testing the
functionalities provided by the framework.

9.1.1 Combinatorial testing

As described in Chapter 6, algorithms use the common vector and matrix interfaces to
perform various operations. This makes the used storage techniques transparent which
in turn makes the code base more concise, reusable and less prone to errors.

The most important requirement against the data structure operations is mathemat-
ical correctness regardless of the storage technique used. Considering the number of
implementations for a given interface and the previous requirement we used a simple
unit testing design pattern (also known as interface testing pattern) as the core building
block for the data structure testing [59].

The basic idea behind this pattern is to write unit tests for interface operations
without any knowledge about the concrete implementation. Hiding implementation
details can be achieved in a number of ways. Some unit testing frameworks (like NUnit,
[65]) support the usage of generic test classes and running them for multiple concrete
types.

Since most of the time multiple instances of different types of interface implemen-
tations are needed in a single unit test we choose a more flexible approach for hiding
implementation details. This approach is based on class inheritance and abstract fac-
tory methods. Whenever we need an instance for a given interface we delegate the
instantiation to an abstract factory method in the test class.

70 EVALUATION

A drawback of this approach is that the test class itself becomes abstract so we can’t
run the tests inside it directly. However we can easily inherit from the base test class and
implement the abstract factory methods in any way we’d like. But the most important
advantage of this approach manifests itself when we apply the virtual modifier to one
or more unit tests in the base class. This way we can completely override tests in the
derived classes if needed based on the types of the interface implementations. So the
first step in testing the data structure library was to implement these abstract unit tests
that operate on an interface level.

Abstract tests

In order to make sure we cover the most possible usage scenarios of the data structure
we followed some common testing techniques. As a first step we used equivalence
partitioning to identify the valid and invalid ranges of the parameters of the operations.
Next we implemented the parameter value checks in interface code contract classes using
Microsoft’s Code Contract library [54]. This enabled us to implement the parameter
check logic in one place for an operation making the code more maintainable. Moreover
every class implementing a data structure interface and it’s operations will automatically
contain these logics if code contracts are enabled. Code contracts can be disabled
if needed resulting in a performance boost for the data structure library since the
parameter checks are skipped.

Writing unit tests for valid parameter values was straightforward since it’s possible
to cover multiple valid parameter ranges with a single unit test. However testing for
invalid parameter values requires some care. We must ensure that there is only one
invalid parameter per unit test so one error doesn’t obscure the other. This significantly
increases the number of unit tests and the possibility that we forget to test an invalid
parameter range. Therefore we aimed to gather every possible invalid parameter range
automatically.

For this purpose we used Microsoft’s IntelliTest tool [55] (formerly known as Pex,
[76]) which assists in automating white-box and unit-testing. IntelliTest automatically
generates unit tests using constraint satisfaction problem solving based on the source
code of the method under test. Using IntelliTest on our interface code contract classes
provided us with many invalid parameter values which we could use in our abstract
unit tests.

Concrete tests

Once the abstract unit tests were implemented the next step was to create the derived
classes for every storage combination and implement the abstract factory methods. Since
the number of possible combinations were too many to implement manually we used
Microsoft’s Text Template Transformation Toolkit (T4, [56]) to generate the derived

9.1. Testing 71

classes. The created template files provide ways to modify the behavior of abstract
tests (through simple regular expression based configuration files) and to decrease the
number of generated test by using pairwise testing instead of full combinatorial testing
of implementation combinations. To generate the combinations for pairwise testing we
used the ACTS tool [9].

As a result of this testing process more than 78 000 unit tests were generated using
full combinatorial testing (more than 18 000 with pairwise testing) which together with
the behavior configuration files serve as a quasi-formal specification for the expected
behavior of future and modified implementations (e.g., performance optimization).
Breaking changes in implementation should either be rejected or the test suite and
configuration files should be revised as specification change. Every unit test was executed
successfully for both sequential and parallel operation implementations.

9.1.2 Software redundancy based testing

Apart from testing the data structure operation implementations it is vital to test the
correctness of higher level algorithms used in the analysis workflow, e.g., the linear
equation solver algorithms. Testing every implemented algorithm one by one with unit
tests would be tremendous work and it can’t be easily automated (or maintained in
case of manual testing). Moreover every algorithm is used as part of a bigger workflow
which raises the question of compatibility of algorithms during an analysis.

As described in Section 3.2 for almost every step of the workflow numerous algo-
rithms are available.

Observation 9.1 The result of a performance analysis (e.g., reward calculation) is
mathematically independent of the used analysis workflow. It only depends on the
possible behaviors of the system and the definition of the required performance mea-
sure. Two results calculated by using two different analysis methods can only differ
from each other due to the numerical precision properties of the used algorithms.

Combining our fully configurable workflow with Observation 9.1 presents a new
approach for testing the algorithm implementations in a maintainable and almost auto-
matic manner. We can take advantage of the concept of software redundancy commonly
used in safety critical applications. The main idea behind software redundancy is to
perform a calculation multiple times with usually fundamentally different algorithms
(often developed by independent teams) thus minimizing the possibility of common
mode failures. After the calculations a voting component examines whether every
algorithm calculated the same result. If that’s not the case then one or more of the
algorithms are incorrect.

72 EVALUATION

The building block for this testing phase consists of running our analysis workflow
for a given configuration and saving the calculated results (reward and sensitivity
values). We generated 588 mathematically consistent configurations in total, executed
them for our running example (Figure 2.4), multiple benchmark models and case
studies. Finally we examined the maximum absolute difference of the calculated results
as an error indicator for each performance measure in each model as presented in the
next sections.

Beside verifying the correctness of the developed algorithms, our main goal with
software redundancy based testing is to gather a knowledge base about the effectiveness
of different analysis approaches for models with varying properties. The gathered
observations are summarized in Section 9.3.

9.2 Measurements

In this section we introduce the models used throughout the testing and benchmarking
phase then we present preliminary results about the performance of solver algorithms
using the implemented block Kronecker decomposition matrix form.

9.2.1 Shared resource

One of the benchmark models was the modified version of stochastic SharedResource
(SR) system (presented in Figure 2.4). We added three more nodes to the system and
modified some of its parameters along two dimensions. On one hand we increased
the number of reachable states by adding more resources and local processes to the
model. On the other hand we changed the rates of transitions in the model resulting in
changes in it’s stochastic behaviour. We created symmetric, slightly asymmetric and
significantly asymmetric versions of the model. In the third case there are orders of
magnitude of difference between the transitions rates of the model.

9.2.2 Kanban

We used the SPN version of the kanban (KB) system [19] as the other benchmark
model. The model was scaled by modifying the available resources at each stage of the
model resulting in an increase in the size of the state space.

9.2.3 Cloud performability

One of the models we used for analysis represents a cloud architecture [36] with physical
and virtual machines serving incoming jobs using warm and cold spare resources in
case of increasing load. We modified some aspects of the model in [36] since our library
currently doesn’t support the GSPN formalism.

9.3. Results 73

Model States Generator Algorithm Memory Time

SR-Sym-7 10 775710 Sparse Uniformization 3120 MiB 279 s
BiCGSTAB 3450 MiB 236 s

BK Uniformization 650 MiB 222 s
BiCGSTAB 815 MiB 162 s

SR-Asym-7 10 775710 Sparse Uniformization 3116 MiB 316 s
BiCGSTAB 3450 MiB 236 s

BK BiCGSTAB 812 MiB 373 s
SR-Degen-7 10 775710 Sparse BiCGSTAB Breakdown

BK Group GS / Jacobi No convergence
SR-Sym-9 81 466099 Sparse BiCGSTAB 25 564 MiB 2542 s
SR-Asym-9 81 466099 Sparse BiCGSTAB Oscillation

BK Group GS / Jacobi 2388 MiB 9402 s
Cloud-3-2 20 047500 Sparse BiCGSTAB Out of memory

BK BiCGSTAB Breakdown
Group GS / Jacobi 684 MiB 3379 s

KanBan-5 2546 432 Sparse Uniformization 833 MiB 54 s
BiCGSTAB 911 MiB 92 s

BK Uniformization 360 MiB 70 s
BiCGSTAB 392 MiB 124 s

KanBan-7 41 644800 Sparse Uniformization 12 471 MiB 909 s
BK Uniformization 6253 MiB 1135 s

Table 9.1 Preliminary benchmark results.

9.2.4 Industrial case study

As an industrial case study we performed stochastic analysis on a safety model of a
subsystem that contains two redundant components with self-checking capabilities. The
model consisted of a relatively small amounts of states so it was especially amenable to
high precision symbolic evaluation of measures.

9.3 Results

Observation 9.2 Based on the preliminary measurements and combinatorial testing
we can note some interesting observations:

74 EVALUATION

1. As expected the storage requirement of the block Kronecker form is almost an
order of magnitude lower than that of the sparse form.

2. For models with moderate state space sizes (approximately a few millions) the
sparse form outperforms the block Kronecker form.

3. However for models with considerably bigger state space sizes (almost a hun-
dred million) the block Kronecker form outperforms the sparse form not just
in memory usage but in analysis time as well. This is probably because of the
inefficient cache usage of the sparse structure.

4. Slower, but more memory efficient solvers (Gauss-Seidel iteration, Jacobi itera-
tion) often diverged using sparse matrix form while converged using the block
Kronecker form. This is due to the possibility of different state ordering in the
block Kronecker form.

75

Chapter 10

Conclusion and future work

We have developed and presented our configurable stochastic analysis framework for
the dependability, reliability and performability analysis of complex asynchronous
systems. Our presented approach is able to combine the strengths and advantages
of the different algorithms into one framework. We have not only implemented a
stochastic analysis library, but we integrated the various state space traversal, generator
matrix representation and numerical analysis algorithms together.

From the theoretical side, we have developed an algorithm which can efficiently
compile the symbolic state space representation into the complex data structure repre-
sentation of the stochastic process. We have formalised our algorithm and proved its
correctness. This new algorithm helps us to exploit the efficient state space representa-
tion of symbolic algorithms in stochastic analysis.

In addition we have investigated the composability of the various data storage, nu-
merical and symbolic solution and state space representation techniques and combined
them together to provide configurable stochastic analysis in our framework.

Extensive investigation was executed in the field to be able to develop more than
two state space exploration algorithms, three state space representation algorithms,
three generator matrix decomposition and representation algorithms, two steady-state
solvers, one transient analysis algorithm and four different computation algorithms
for engineering measures. Our long term goal is to provide these analysis techniques
for a wider community, so we have integrated our library into the PetriDotNet
framework. Our algorithms are also used in education for illustration purposes of the
various stochastic analysis techniques. In addition, our tool was also used in an industrial
project: one of our case-studies comes from there. More than 70000 generated test
cases serve to ensure correctness as much as possible. In addition, software redundancy
based testing was applied to further improve the quality of our library.

Some promising directions for future research and development are:

• More extensive benchmarking of algorithms to extend the knowledge base about

76 CONCLUSION AND FUTURE WORK

the effectiveness and behavior of stochastic analysis approaches in order to provide
an adaptive framework;

• Distributed implementations of the existing algorithms [15];

• Support for fully symbolic storage and solution of Markov chains [22, 61, 79];

• The use of tensor decompositions instead of vectors to store state distributions
and intermediate results to greatly reduce memory requirements of solution
algorithms [2, 27, 38];

• Exploiting the advantages of the Split [25] algorithm and providing efficient
heuristics for splitting.

77

References

[1] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. “Approximative sym-
bolic model checking of continuous-time Markov chains”. In: CONCUR’99 Con-
currency Theory. Springer, 1999, pp. 146–161.

[2] Jonas Ballani and Lars Grasedyck. “A projection method to solve linear systems
in tensor format”. In: Numerical Linear Algebra with Applications 20.1 (2013),
pp. 27–43.

[3] Falko Bause, Peter Buchholz, and Peter Kemper. “A Toolbox for Functional and
Quantitative Analysis of DEDS”. In: Computer Performance Evaluation: Modelling
Techniques and Tools, 10th International Conference, Tools ’98, Palma de Mallorca,
Spain, September 14-18, 1998, Proceedings. Vol. 1469. Lecture Notes in Computer
Science. Springer, 1998, pp. 356–359. doi: 10.1007/3-540-68061-6_32.

[4] Anne Benoit, Brigitte Plateau, and William J Stewart. “Memory efficient iterative
methods for stochastic automata networks”. In: (2001).

[5] Anne Benoit, Brigitte Plateau, and William J. Stewart. “Memory-efficient Kro-
necker algorithms with applications to the modelling of parallel systems”. In:
Future Generation Comp. Syst. 22.7 (2006), pp. 838–847. doi: 10.1016/j.
future.2006.02.006.

[6] Andrea Bianco and Luca De Alfaro. “Model checking of probabilistic and non-
deterministic systems”. In: Foundations of Software Technology and Theoretical
Computer Science. Springer. 1995, pp. 499–513.

[7] James T. Blake, Andrew L. Reibman, and Kishor S. Trivedi. “Sensitivity Analy-
sis of Reliability and Performability Measures for Multiprocessor Systems”. In:
SIGMETRICS. 1988, pp. 177–186. doi: 10.1145/55595.55616.

[8] BlueBit Software. .NET Matrix Library 6.1. Accessed October 26, 2015. url:
http://www.bluebit.gr/NET/.

[9] Mehra N Borazjany, Linbin Yu, Yu Lei, Raghu Kacker, and Rick Kuhn. “Combinato-
rial testing of ACTS: A case study”. In: Software Testing, Verification and Validation
(ICST), 2012 IEEE Fifth International Conference on. IEEE. 2012, pp. 591–600.

78 REFERENCES

[10] Peter Buchholz. “Hierarchical Structuring of Superposed GSPNs”. In: IEEE Trans.
Software Eng. 25.2 (1999), pp. 166–181. doi: 10.1109/32.761443.

[11] Peter Buchholz, Gianfranco Ciardo, Susanna Donatelli, and Peter Kemper. “Com-
plexity of Memory-Efficient Kronecker Operations with Applications to the So-
lution of Markov Models”. In: INFORMS Journal on Computing 12.3 (2000),
pp. 203–222. doi: 10.1287/ijoc.12.3.203.12634.

[12] Peter Buchholz and Peter Kemper. “Kronecker based matrix representations
for large Markov models”. In: Validation of Stochastic Systems. Springer, 2004,
pp. 256–295.

[13] Peter Buchholz and Peter Kemper. “On generating a hierarchy for GSPN analysis”.
In: SIGMETRICS Performance Evaluation Review 26.2 (1998), pp. 5–14. doi:
10.1145/288197.288202.

[14] Maciej Burak. “Multi-step Uniformization with Steady-State Detection in Non-
stationary M/M/s Queuing Systems”. In: CoRR abs/1410.0804 (2014). url:
http://arxiv.org/abs/1410.0804.

[15] Jaroslaw Bylina and Beata Bylina. “Merging Jacobi and Gauss-Seidel methods for
solving Markov chains on computer clusters”. In: Proceedings of the International
Multiconference on Computer Science and Information Technology, IMCSIT 2008,
Wisla, Poland, 20-22 October 2008. IEEE, 2008, pp. 263–268. doi: 10.1109/
IMCSIT.2008.4747250.

[16] Krishnendu Chatterjee, Thomas A. Henzinger, Barbara Jobstmann, and Rohit
Singh. “Measuring and Synthesizing Systems in Probabilistic Environments”. In:
J. ACM 62.1 (2015), 9:1–9:34. doi: 10.1145/2699430.

[17] Giovanni Chiola, Claude Dutheillet, Giuliana Franceschinis, and Serge Haddad.
“Stochastic Well-Formed Colored Nets and Symmetric Modeling Applications”. In:
IEEE Trans. Computers 42.11 (1993), pp. 1343–1360. doi: 10.1109/12.247838.

[18] Piotr Chrzastowski-Wachtel. “Testing Undecidability of the Reachability in Petri
Nets with the Help of 10th Hilbert Problem”. In: Application and Theory of Petri
Nets 1999, 20th International Conference, ICATPN ’99, Williamsburg, Virginia, USA,
June 21-25, 1999, Proceedings. Vol. 1639. Lecture Notes in Computer Science.
Springer, 1999, pp. 268–281. doi: 10.1007/3-540-48745-X_16.

[19] Gianfranco Ciardo, Robert L Jones, Andrew S Miner, and Radu Siminiceanu.
“Logical and stochastic modeling with SMART”. In: Computer Performance Evalu-
ation. Modelling Techniques and Tools. Springer, 2003, pp. 78–97.

[20] Gianfranco Ciardo, Gerald Lüttgen, and Radu Siminiceanu. Saturation: an effi-
cient iteration strategy for symbolic state—space generation. Springer, 2001.

REFERENCES 79

[21] Gianfranco Ciardo, Robert Marmorstein, and Radu Siminiceanu. “The saturation
algorithm for symbolic state-space exploration”. In: Int. J. Softw. Tools Technol.
Transf. 8.1 (2006), pp. 4–25. doi: http://dx.doi.org/10.1007/s10009-005-
0188-7.

[22] Gianfranco Ciardo and Andrew S. Miner. “Implicit data structures for logic and
stochastic systems analysis”. In: SIGMETRICS Performance Evaluation Review 32.4
(2005), pp. 4–9. doi: 10.1145/1059816.1059818.

[23] Gianfranco Ciardo, Jogesh K. Muppala, and Kishor S. Trivedi. “On the Solution
of GSPN Reward Models”. In: Perform. Eval. 12.4 (1991), pp. 237–253. doi:
10.1016/0166-5316(91)90003-L.

[24] Gianfranco Ciardo, Yang Zhao, and Xiaoqing Jin. “Transactions on Petri Nets and
Other Models of Concurrency V”. In: ed. by Kurt Jensen, Susanna Donatelli, and
Jetty Kleijn. Springer Berlin Heidelberg, 2012. Chap. Ten Years of Saturation: A
Petri Net Perspective, pp. 51–95. doi: 10.1007/978-3-642-29072-5_3.

[25] Ricardo M. Czekster, César A. F. De Rose, Paulo Henrique Lemelle Fernandes,
Antonio M. de Lima, and Thais Webber. “Kronecker descriptor partitioning for
parallel algorithms”. In: Proceedings of the 2010 Spring SimulationMulticonference,
SpringSim 2010, Orlando, Florida, USA, April 11-15, 2010. SCS/ACM, 2010,
p. 242. isbn: 9781450300698. url: http://dl.acm.org/citation.cfm?id=
1878537.1878789.

[26] Dániel Darvas. Szaturáció alapú automatikus modellellenőrző fejlesztése aszinkron
rendszerekhez [in Hungarian]. 1st prize. 2010. url: http://petridotnet.inf.
mit.bme.hu/publications/OTDK2011_Darvas.pdf.

[27] Sergey V Dolgov. “TT-GMRES: solution to a linear system in the structured tensor
format”. In: Russian Journal of Numerical Analysis and Mathematical Modelling
28.2 (2013), pp. 149–172.

[28] Susanna Donatelli. “Superposed Generalized Stochastic Petri Nets: Definition
and Efficient Solution”. In: Application and Theory of Petri Nets 1994, 15th Interna-
tional Conference, Zaragoza, Spain, June 20-24, 1994, Proceedings. Vol. 815. Lec-
ture Notes in Computer Science. Springer, 1994, pp. 258–277. doi: 10.1007/3-
540-58152-9_15.

[29] Susanna Donatelli. “Superposed stochastic automata: a class of stochastic Petri
nets with parallel solution and distributed state space”. In: Performance Evaluation
18.1 (1993), pp. 21–36.

[30] Extreme Optimization. Numerical Libraries for .NET. Accessed October 26, 2015.
url: http://www.extremeoptimization.com/VectorMatrixFeatures.aspx.

80 REFERENCES

[31] Fault Tolerant Systems Research Group, Budapest University of Technology
and Economics. The PetriDotNet webpage. Accessed October 23, 2015. url:
https://inf.mit.bme.hu/en/research/tools/petridotnet.

[32] Paulo Fernandes, Brigitte Plateau, and William J. Stewart. “Numerical Evaluation
of Stochastic Automata Networks”. In: MASCOTS ’95, Proceedings of the Third
International Workshop on Modeling, Analysis, and Simulation On Computer and
Telecommunication Systems, January 10-18, 1995, Durham, North Carolina, USA.
IEEE Computer Society, 1995, pp. 179–183. doi: 10.1109/MASCOT.1995.
378690.

[33] Paulo Fernandes, Ricardo Presotto, Afonso Sales, and Thais Webber. “An Alter-
native Algorithm to Multiply a Vector by a Kronecker Represented Descriptor”.
In: 21st UK Performance Engineering Workshop. 2005, pp. 57–67.

[34] Bennett L. Fox and Peter W. Glynn. “Computing Poisson Probabilities”. In: Com-
mun. ACM 31.4 (1988), pp. 440–445. doi: 10.1145/42404.42409.

[35] Robert E Funderlic and Carl Dean Meyer. “Sensitivity of the stationary distribu-
tion vector for an ergodic Markov chain”. In: Linear Algebra and its Applications
76 (1986), pp. 1–17.

[36] Rahul Ghosh. “Scalable stochastic models for cloud services”. PhD thesis. Duke
University, 2012.

[37] Stephen Gilmore and Jane Hillston. “The PEPA Workbench: A Tool to Support a
Process Algebra-based Approach to Performance Modelling”. In: Computer Per-
formance Evaluation, Modeling Techniques and Tools, 7th International Conference,
Vienna, Austria, May 3-6, 1994, Proceedings. Vol. 794. Lecture Notes in Computer
Science. Springer, 1994, pp. 353–368. doi: 10.1007/3-540-58021-2_20.

[38] Lars Grasedyck, Daniel Kressner, and Christine Tobler. “A literature survey of
low-rank tensor approximation techniques”. In: arXiv preprint arXiv:1302.7121
(2013).

[39] Winfried K. Grassmann. “Transient solutions in markovian queueing systems”. In:
Computers & OR 4.1 (1977), pp. 47–53. doi: 10.1016/0305-0548(77)90007-7.

[40] Gaël Guennebaud, Benoît Jacob, et al. Eigen v3. Accessed October 26, 2015.
2010. url: http://eigen.tuxfamily.org.

[41] Boudewijn R Haverkort. “Matrix-geometric solution of infinite stochastic Petri
nets”. In: Computer Performance and Dependability Symposium, 1995. Proceed-
ings., International. IEEE. 1995, pp. 72–81.

[42] International Workshop on Timed Petri Nets, Torino, Italy, July 1-3, 1985. IEEE
Computer Society, 1985. isbn: 0818606746.

REFERENCES 81

[43] Ilse CF Ipsen and Carl D Meyer. “Uniform stability of Markov chains”. In: SIAM
Journal on Matrix Analysis and Applications 15.4 (1994), pp. 1061–1074.

[44] David N Jansen. “Understanding Fox and Glynn’s “Computing Poisson probabili-
ties”. In: (2011).

[45] Peter Kemper. “Numerical Analysis of Superposed GSPNs”. In: IEEE Trans. Soft-
ware Eng. 22.9 (1996), pp. 615–628. doi: 10.1109/32.541433.

[46] Attila Klenik and Kristóf Marussy. Configurable Stochastic Analysis Framework
for Asynchronous Systems. 1st prize. 2015. url: https://tdk.bme.hu/VIK/
DownloadPaper/Aszinkron-rendszerek-konfigurarhato.

[47] Francesco Longo and Marco Scarpa. “Two-layer Symbolic Representation for
Stochastic Models with Phase-type Distributed Events”. In: Intern. J. Syst. Sci.
46.9 (2015), pp. 1540–1571. doi: 10.1080/00207721.2013.822940.

[48] Marco Ajmone Marsan. “Stochastic Petri nets: an elementary introduction”. In:
Advances in Petri Nets 1989, covers the 9th European Workshop on Applications and
Theory in Petri Nets, held in Venice, Italy in June 1988, selected papers. Vol. 424.
Lecture Notes in Computer Science. Springer, 1988, pp. 1–29. doi: 10.1007/3-
540-52494-0_23.

[49] Marco Ajmone Marsan, Gianfranco Balbo, Andrea Bobbio, Giovanni Chiola, Gi-
anni Conte, and Aldo Cumani. “The Effect of Execution Policies on the Semantics
and Analysis of Stochastic Petri Nets”. In: IEEE Trans. Software Eng. 15.7 (1989),
pp. 832–846. doi: 10.1109/32.29483.

[50] Marco Ajmone Marsan, Gianni Conte, and Gianfranco Balbo. “A Class of Gener-
alized Stochastic Petri Nets for the Performance Evaluation of Multiprocessor
Systems”. In: ACM Trans. Comput. Syst. 2.2 (1984), pp. 93–122. doi: 10.1145/
190.191.

[51] Kristóf Marussy. “Configurable Numerical Solutions for Stochastic Models”.
Bachelor’s Thesis. Budapest University of Technology and Economics, 2015.
url: https://diplomaterv.vik.bme.hu/en/Theses/Konfiguralhato-
numerikus-modszerek.

[52] Kristóf Marussy, Attila Klenik, Vince Molnár, András Vörös, Miklós Telek, and
István Majzik. “Configurable Numerical Analysis for Stochastic Systems”. In:
2nd International Workshop on Symbolic and Numerical Methods for Reachability
Analysis (SNR’16). Accepted, in press. IEEE, 2016.

[53] Math.NET.Math.NET Numerics webpage. Accessed October 26, 2015. url: http:
//numerics.mathdotnet.com/.

[54] Microsoft Research. TheMicrosoft CodeContract webpage. Accessed October 26, 2015.
url: http://research.microsoft.com/en-us/projects/contracts/.

82 REFERENCES

[55] Microsoft Research. The Microsoft IntelliTest webpage. Accessed October 26, 2015.
url: http://research.microsoft.com/en-us/projects/pex/.

[56] Microsoft Research. The Text Template Transformation Toolkit webpage. Accessed
October 26, 2015. url: https://msdn.microsoft.com/en-us/library/
bb126445(v=vs.120).aspx.

[57] Vince Molnár, Kristóf Marussy, Attila Klenik, András Vörös, István Majzik, and
Miklós Telek. “Efficient decomposition algorithm for stationary analysis of com-
plex stochastic Petri net models”. In: Application and Theory of Petri Nets and
Concurrency. Vol. 9698. Lecture Notes in Computer Science. Accepted. Springer,
2016. doi: 10.1007/978-3-319-39086-4_17.

[58] Tadao Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings
of the IEEE 77.4 (1989), pp. 541–580.

[59] Glenford J Myers, Corey Sandler, and Tom Badgett. The art of software testing.
John Wiley & Sons, 2011.

[60] M. Neuts. “Probability distributions of phase type”. In: Liber Amicorum Prof.
Emeritus H. Florin. University of Louvain, 1975, pp. 173–206.

[61] Ninth International Conference on Quantitative Evaluation of Systems, QEST
2012, London, United Kingdom, September 17-20, 2012. IEEE Computer So-
ciety, 2012. isbn: 9781467323468. url: http://ieeexplore.ieee.org/
xpl/mostRecentIssue.jsp?punumber=6354262.

[62] J. Palsberg and C. B. Jay. “The essence of the Visitor pattern”. In: Computer
Software and Applications Conference, 1998. COMPSAC ’98. Proceedings. The
Twenty-Second Annual International. 1998, pp. 9–15. doi: 10.1109/CMPSAC.
1998.716629.

[63] Terence Parr. The Definitive ANTLR 4 Reference. 2nd. Pragmatic Bookshelf, 2013.
isbn: 1934356999, 9781934356999.

[64] RJ Plemmons and A Berman. Nonnegative matrices in the mathematical sciences.
Academic Press, New York, 1979.

[65] Poole, Prouse, Busoli, Colvin, Popov. The NUnit webpage. Accessed October 26, 2015.
url: http://www.nunit.org/.

[66] William H Press. Numerical recipes 3rd edition: The art of scientific computing.
Cambridge university press, 2007.

[67] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.
Numerical Recipes 3rd Edition: The Art of Scientific Computing. 3rd ed. Cambridge
University Press, 2007. isbn: 0521880688, 9780521880688.

[68] S. Rácz, Á. Tari, and M. Telek. “MRMSolve: Distribution estimation of Large
Markov reward models”. In: Tools 2002. Springer, LNCS 2324, 2002, pp. 72–81.

REFERENCES 83

[69] A. V. Ramesh and Kishor S. Trivedi. “On the Sensitivity of Transient Solutions of
Markov Models”. In: SIGMETRICS. 1993, pp. 122–134. doi: 10.1145/166955.
166998.

[70] Andrew Reibman, Roger Smith, and Kishor Trivedi. “Markov and Markov reward
model transient analysis: An overview of numerical approaches”. In: European
Journal of Operational Research 40.2 (1989), pp. 257–267.

[71] Pierre Roux and Radu Siminiceanu. “Model Checking with Edge-valued Decision
Diagrams”. In: Second NASA Formal Methods Symposium - NFM 2010, Washington
D.C., USA, April 13-15, 2010. Proceedings. Vol. NASA/CP-2010-216215. NASA
Conference Proceedings. 2010, pp. 222–226.

[72] Advances in Petri Nets 1987, covers the 7th European Workshop on Applications and
Theory of Petri Nets, Oxford, UK, June 1986. Vol. 266. Lecture Notes in Computer
Science. Springer, 1987. isbn: 3540180869.

[73] Conrad Sanderson. “Armadillo: An open source C++ linear algebra library for
fast prototyping and computationally intensive experiments”. In: (2010).

[74] Williams J Stewart. Introduction to the numerical solutions of Markov chains.
Princeton Univ. Press, 1994.

[75] Enrique Teruel, Giuliana Franceschinis, and Massimiliano De Pierro. “Well-
Defined Generalized Stochastic Petri Nets: A Net-Level Method to Specify Priori-
ties”. In: IEEE Trans. Software Eng. 29.11 (2003), pp. 962–973. doi: 10.1109/
TSE.2003.1245298.

[76] Nikolai Tillmann and Jonathan De Halleux. “Pex–white box test generation for.
net”. In: Tests and Proofs. Springer, 2008, pp. 134–153.

[77] András Vörös, Dániel Darvas, Vince Molnár, Attila Klenik, Ákos Hajdu, Attila
Jámbor, Tamás Bartha, and István Majzik. “PetriDotNet 1.5: Extensible Petri Net
Editor and Analyser for Education and Research”. In: Application and Theory
of Petri Nets and Concurrency. Vol. 9698. Lecture Notes in Computer Science.
Accepted. Springer, 2016. doi: 10.1007/978-3-319-39086-4_9.

[78] Michael Weber and Ekkart Kindler. “Petri Net Technology for Communication-
Based Systems: Advances in Petri Nets”. In: ed. by Hartmut Ehrig, Wolfgang
Reisig, Grzegorz Rozenberg, and Herbert Weber. Springer Berlin Heidelberg,
2003. Chap. The Petri Net Markup Language, pp. 124–144. doi: 10.1007/978-
3-540-40022-6_7.

84 REFERENCES

[79] Yang Zhao and Gianfranco Ciardo. “A Two-Phase Gauss-Seidel Algorithm for
the Stationary Solution of EVMDD-Encoded CTMCs”. In: Ninth International
Conference on Quantitative Evaluation of Systems, QEST 2012, London, United
Kingdom, September 17-20, 2012. IEEE Computer Society, 2012, pp. 74–83. doi:
10.1109/QEST.2012.34.

