

DIPLOMATERVEZÉSI FELADAT

Marussy Kristóf
mérnök informatikus hallgató részére

Tervezésitér-bejárás sztochasztikus metrikákkal
A kritikus rendszerek – biztonságkritikus, elosztott és felhő-alapú alkalmazások –

helyességének biztosításához szükséges a funkcionális és nemfunkcionális követelmények
matematikai igényességű ellenőrzése. Számos, szolgáltatásbiztonsággal és
teljesítményvizsgálattal kapcsolatos tipikus kérdés jellemzően sztochasztikus analízis
segítségével válaszolható meg, amely analízis elvégzésére változatos eszközök állnak a
mérnökök rendelkezésére. Ezen megközelítések hiányossága azonban, hogy egyrészt az
általuk támogatott formális nyelvek a mérnökök számára nehezen érthetőek, másrészt az

esetleges hiányosságok kimutatásán túl nem képesek javaslatot tenni a rendszer kijavítására,
azaz a megfelelő rendszerkonfiguráció megtalálására.

Előnyös lenne egy olyan modellezési környezet fejlesztése, amely támogatja a sztochasztikus

metrikák alapján történő mérnöki modellfejlesztést, biztosítja a mérnöki modellek

automatikus leképezését formális sztochasztikus modellekre, továbbá alkalmas az elkészült
rendszertervek optimalizálására tervezésitér-bejárás segítségével. Mind sztochasztikus

analízisre, mind pedig tervezésitér-bejárásra elérhető eszköztámogatás, azonban ezen
megközelítések hatékony integrációja egy egységes keretrendszerben komplex feladat mind

elméleti, mind gyakorlati szempontból.

A hallgató feladata megismerni a sztochasztikus analízis algoritmusokat és a tervezésitér-
bejáró módszereket, majd a két megközelítés kombinálásával létrehozni egy keretrendszert a

kvantitatív mérnöki tervezés támogatása érdekében.

A hallgató feladatának a következőkre kell kiterjednie:
1. Vizsgálja meg az irodalomban ismert technikákat a sztochasztikus modellek analízise

és optimalizálása területén!

2. Tervezzen meg egy eszközt sztochasztikus metrika alapú tervezésitér-bejárás
támogatására, ügyelve rá, hogy a megoldás a tervező mérnököktől ne igényeljen
további különleges szaktudást!

3. Implementálja a megtervezett rendszert és egy esettanulmánnyal illusztrálja a
megközelítés működését!

4. Értékelje a megoldást és vizsgálja meg a továbbfejlesztési lehetőségeket.

Tanszéki konzulens: Molnár Vince, doktorandusz

Budapest, 2017. március 9.

 Dr. Dabóczi Tamás
egyetemi docens

tanszékvezető

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Kristóf Marussy

Design-Space Exploration
with Stochastic Metrics

Master’s Thesis

Supervisors:

Vince Molnár
András Vörös

Budapest, 2017

Typeset with the XCharter (by Michael Sharpe and others),
Fira Sans and Fira Mono (by the Mozilla Foundation) typefaces

and the Libertine (by the Open Fonts Projekt) typeface for mathematics
using the pdfLaTeX (by the TeX Users Group) typesetting engine

and the Memoir (by Peter Wilson, Lars Madsen and others) document class
on 92 a4 pages numbered i–x and 1–82

and 15 a4 pages of appendices numbered 83–97
on December 17, 2017.

v

Contents

Contents v

Kivonat vii

Abstract vii

Hallgatói nyilatkozat ix

1 Introduction 1
1.1 Related work: optimization and stochastic modeling 2

1.2 Overview of our approach . 3

2 Background 7
2.1 Modeling and metamodeling . 7

2.1.1 Metamodels and instance models 7

2.1.2 Graph patterns . 9

2.2 Formal models for stochastic analysis . 10

2.2.1 Petri nets . 10

2.2.2 Continuous-time Markov chains 12

2.2.3 Stochastic analysis tasks . 14

2.2.4 Generalized stochastic Petri nets 15

3 Modular formalism for stochastic models 19
3.1 Related work: modular stochastic modeling 20

3.1.1 Modeling formalisms . 20

3.1.2 Query specifications . 22

3.2 Generalized stochastic Petri net modules 23

3.2.1 Symbols and edges . 23

3.2.2 Type system . 26

3.2.3 Formal definition . 28

3.3 Expressions . 30

3.3.1 Typing . 31

3.3.2 Semantics . 32

4 Incremental view synchronization 37
4.1 Related work: view synchronization approaches 38

4.2 Overview of the transformation engine 40

4.2.1 Transformation specification . 40

4.2.2 Transformation chain . 40

4.2.3 End-to-end traceability . 41

Contents vi

4.3 Transformation specification language . 42

4.3.1 Feature rules . 42

4.3.2 Mapping rules . 43

4.4 Generic view transformation to stochastic Petri nets 44

4.5 Stochastic Petri net concretization . 47

4.5.1 Transformation execution . 48

4.5.2 Expression dependencies . 50

4.5.3 Handling of inconsistencies . 52

5 Application for design-space exploration 55
5.1 Integration with design-space exploration toolchains 55

5.1.1 Model transformation based design-space explorers 57

5.1.2 Stochastic analysis tools . 59

5.2 Software implementation . 61

5.2.1 Specification environment . 61

5.2.2 Transformation execution . 62

5.3 Evaluation of incremental transformations 63

5.3.1 Measurement setup . 64

5.3.2 Results . 65

5.3.3 Observations . 67

5.3.4 Threats to validity . 68

6 Conclusions and future work 71

Acknowledgments 72

References 73

a Case study: dining philosophers 83
a.1 Graph queries . 83

a.2 Petri net modules . 84

a.3 Transformation specification . 85

b Case study: architectural modeling language 87
b.1 Architectural modeling language metamodel 87

b.2 Graph queries . 90

b.3 Petri net modules . 93

b.4 Transformation specification . 95

vii

Kivonat A komplex kritikus rendszerek és kiberfizikai rendszerek modellvezérelt terve-
zéséhez az iparban elterjedt eszközök számos szakterület-specifikus modellezési nyelvet
alkalmaznak. Ezek között szerepelnek mérnöki modellezési nyelvek, valamint a rendsze-
rek megbízhatóságával, rendelkezésre állásával és teljesítményével kapcsolatos kvantitatív
nemfunkcionális követelményeinek matematikai precizitású sztochasztikus analíziséhez
szükséges formális modellezési nyelvek. Az utóbbi modellek elkészítése azonban sokszor
kézzel történik, és különleges szaktudást igényel.

A tervezésitér-bejárás és a keresesés alapú szoftverfejlesztés eszközkészlete lehetővé teszi,
hogy a rendszertervezés során automatikusan előállított és kiértékelt tervezési alternatívákat
vizsgáljunk, illetve megadott szempontok szerint optimális alternatívákat keressünk. Ha
a kiértékelés szempontjai között szerepelnek kvantitatív nemfunkcionális jellemzők, az
optimalizálást vagy az alacsony szintű sztochasztikus matematikai modellek fölött kell
elvégezni, vagy a mérnöki modellekből a matematikai modelleket atomatikusan, modell-
transzformációval kell előállítani.

Egy olyan modelltranszformációs keretrendszerre teszünk javaslatot, mely kifejezettem a
tervezésitér-bejáró eszközökhöz lett tervezve. Ezen felül bemutatunk egy, a moduláris Petri-
hálókon alapuló matematikai formalizmust, mellyel leírhatóak az előállítandó sztochasztikus
modellek részletei. Mgközelítésünket egy esettanulmánnyal szemléltetjük, és mérésekkel
értékeljük a skálázhatóságát.

Kulcsszavak tervezésitér-bejárás, keresés alapú szoftverfejlesztés, sztochasztikus Petri-
háló, modelltranszformáció, nézeti modellek

Abstract Complex industrial toolchains employ multi-paradigm modeling techniques, as
well as multiple domain-specific modeling languages in the design of large critical systems,
such as critical cyber-physical systems and systems-of-systems. Stochastic analysis is used to
rigorously approximate metrics related to the reliability, dependability, performability and
other quantitative non-functional requirements of these systems by solving formal stochastic
models. The construction of the models for stochastic analysis is often manual and requires
specialized expertise.

As the need arises to consider multiple design candidates, design-space exploration
and search-based software engineering techniques are employed to propose and evaluate
automatically generated alternatives according to selected constraints and goal functions.
The optimization of quantitative non-functional requirements necessitates either working
with low-level formal models or the automatic derivation of stochastic analysis models from
the engineering models.

We propose a model transformation approach which was specifically designed for use in
design-space exploration toolchains, as well as a formalism for expressing stochastic model
fragments based on modular Petri nets. Our approach is demonstrated with a case study
and its scalability is empirically evaluated.

Keywords design-space exploration, search-based software engineering, stochastic Petri
nets, change-driven model transformations, view models

ix

Hallgatói nyilatkozat

Alulírott Marussy Kristóf szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiroda-
lom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű
tartalmi kivonat, készítés éve, konzulens(ek) neve) a bme vik nyilvánosan hozzáférhető
elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül
(vagy hitelesített felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka
és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek
esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Kelt : Budapest, 2017. december 17.

..
Marussy Kristóf

1

Chapter 1

Introduction

Multi-paradigm modeling captures the design of complex systems by employing multiple
formalisms andworkingwithmultiple levels of abstraction [Giese et al., 2007]. Often domain-
specific languages (dsls) or domain-specific modeling languages (dsmls) are created as
focused formalisms for specific problem domains. Model queries, as well as transformations
between formalisms and levels of abstractions provide integration of modeling languages
even in complex industrial toolchains.

The viewpoints of reliability, dependability, performability and other quantitative non-
functional requirements are of extreme importance in the design of critical systems, which
may put significant economic costs or even human life at stake. These requirements
are concerned with the probabilistic behaviors of systems. The approximation of metrics
of interest with mathematical rigor requires the solution of formal stochastic models by
stochastic analysis.

The manual construction of precise formal models often requires specialized exper-
tise. An alternative is the derivation of stochastic models from higher-level engineering
formalisms by model transformation, which endows the engineering modeling language
with transformational semantics.

In the design of complex systems, such cyber-physical systems and systems-of-systems,
the need frequently arises to examine multiple design candidates or to obtain design
alternatives that are optimal with respect to some properties. Design-space exploration
(dse) [see e.g. Vanherpen et al., 2014] and search-based software engineering (sbse) [see
e.g. Harman et al., 2012] are concerned with the selection of design candidates by exhaustive
or (meta-)heuristic search to satisfy constraints and optimize goals.

When designing complex critical systems, there is a desire to employ dse and sbse

methods to optimize quantitative non-functional requirements. Doing so requires formal
stochastic models of the architectures under consideration. However, designing systems
directly with formal models may be infeasible, both due to the required specialized expertise,
as well as the low level of afforded abstraction. Hence the needs of high-level design with
domain-specific languages and low-level, formal analysis are in conflict.

Many approaches have been developed to construct models from a formal analysis
viewpoint according to a higher level engineering model [see e.g. Bernardi and Donatelli,
2003; Bernardi et al., 2008; Martens et al., 2010; Smith and Lladó, 2011]. However, these
approaches often restrict themselves to a single, general-purpose engineering modeling
language, such as uml [Rumbaugh et al., 2004], SysML [Friedenthal et al., 2016], aadl [Feiler
and Gluch, 2012] or Palladio [Becker et al., 2008]. Therefore, their applicability to multi-
paradigm modeling is limited.

1.1 Related work: optimization and stochastic modeling 2

We propose a generic approach based on model transformations for the construction
of formal stochastic models for instances of any engineering modeling language, including
domain-specific modeling languages. A transformation specification provided by the user
describes the transformational semantics of the modeling language. We also propose a
modular stochastic modeling formalism, which we call reference generalized stochastic Petri
nets (rgspns) to define stochastic model fragments that correspond to elements of the
engineering model.

The approach builds on existing transformation methods and formalisms; moreover,
common affordances of development environments, such as type checking with strong
typing and content assist, are provided for ease of use. Model fragments and transformation
specifications can be packaged as a black box so that end users of the source modeling
languages do not need to interact with features specific to stochastic modeling.

The transformation engine was designed with the characteristics of dse toolchains in
mind. We also consider integration with stochastic analysis tools and solvers, as well as
empirically validate the scalability of our approach.

In the next sections we review the related works concerning the optimization of stochastic
models, especially in the context of model-driven engineering. Thenwe conclude this chapter
by describing our approach in more detail, as well as the structure of this thesis.

1.1 Related work: optimization and stochastic modeling
In the literature there are two main approaches to the optimization of designs according
to stochastic metrics and constraints. The first approach solves the optimization problem
directly on the level of the stochastic model. In this case, traceability links may be followed
to pull back the results of the optimization to the engineering design.

In contrast, higher-level methods that perform optimization directly over engineering
models are more widespread. However, a downside of the higher-lever approach is that
formal models must be constructed from the engineering model to evaluate stochastic
metrics, which requires annotating the engineering model or developing a transformation
from scratch. Moreover, the lack of deep integration between the transformation and the
analysis tool may lead to inefficiencies.

EvoChecker by Gerasimou et al. [2015] was one of the first tools for the optimization of
stochastic models using evolutionary techniques, such as the nsga-ii genetic algorithm [Deb
et al., 2002]. This approach was extended to support the synthesis of robust designs by
Calinescu et al. [2017a] in the rodes synthesis tool [Calinescu et al., 2017b].

The testing—as opposed to the optimization—of non-functional software requirements
by search-based techniques is a related area of research. Literature in the area was surveyed
by Afzal et al. [2009], as well as Parasa [2016], who noted the applicability of EvoChecker
to the task.

Search-based techniques are also applied to formal models for run time adaptation.
Epifani et al. [2009] combined Bayesian estimation and stochastic modeling for run time
adaptation in the kami tool. The ActivFORMS runtime environment for architecture-based
adaptation employs statistical model checking by simulation to evaluate non-functional
requirements [Iftikhar and Weyns, 2017].

Synthesis of optimal policies in Markov decision processes is another common optimiza-
tion task for stochastic models [Baier et al., 2017a]. Mason et al. [2017] provided assurance
for the correctness of policies learned with reinforcement learning by employing stochas-
tic verification. Abstractions based on Markov decision processes were exploited also by

1.2 Overview of our approach 3

Design-space
exploration

Stochastic
analysis

Incremental
view model

Analysis
model

Analysis
results

Engineering
model

Goal values
and constraint

satisfcation

Input
formalism

Raw analysis
results

Transformation
specification

Goals and
constraints

Stochastic
queries

derive
candidate

designs

transform

interpret

export

parse

formalized by
export

Figure 1.1 Incremental view transformation as a bridge between design-space exploration
and stochastic analysis tools.

Quatmann et al. [2016] for optimizing parameters of stochastic models.
Conversely, approaches for deriving stochastic models from instances of common, general-

purpose engineering modeling languages are much more numerous. Fourteen uml profiles
for dependability analysis were surveyed by Bernardi et al. [2008]. A more recent survey
on the topic is written by H. Koziolek [2010].

A general approach for the optimization of engineering models according to stochastic
metrics was proposed by A. Koziolek and Reussner [2011]. They provide an encoding for
architectural models that enables the application of search-based techniques, such as genetic
algorithms, for optimization. The PerOpteryx [Martens et al., 2010] framework applies
this encoding for architectures defined with the Palladio Component Model [Becker et al.,
2008] to perform evolutionary optimization. The metrics for optimization can be defined by
discrete-event simulations, layered queuing networks [Franks et al., 2009] and discrete-time
Markov chains [H. Koziolek and Brosch, 2009].

We further review the literature on modular stochastic modeling formalisms and queries
in Section 3.1 on page 20, while some incremental transformation approaches are recalled
in Section 4.1 on page 38.

1.2 Overview of our approach
In our current work we propose an approach for the construction of stochastic models from
engineering models without human intervention in order to evaluate automatically derived
architecture proposals by stochastic analysis in design-space exploration.

The proposed transformation process is flexible in the sense that—instead of basing
our approach on a single engineering modeling language—the creation of transformations
for new architectural dsmls in new problem domains are supported without demanding
additional specialized knowledge from the users.

The architecture of the proposed solution is shown in Figure 1.1 in the context of design-
space exploration and stochastic analysis. Components that are highlighted in bold were
developed as part of this work.

Design-space exploration with stochastic metrics is achieved by the interaction of three
components. The design-space explorer employs (meta-)heuristics to derive candidate designs

according to the constraints and goal functions defined by the user. A candidate design,
embodied in some engineering model formalism, is analyzed with our toolchain and an

1.2 Overview of our approach 4

external analysis tool, yielding the values of goal functions and information whether the design

satisfies the constraints. Heuristics account for this information when proposing new designs.
The stochastic analysis tool is responsible for solving formal stochastic models, such as

continuous-time Markov chains (see Section 2.2.2 on page 12). The model to be solved is
given in the input formalism of the analysis tool. Stochastic queries, such as the computations
of dependability and performability metrics or the determination whether some probabilistic
safety properties are satisfied, are answered to produce raw analysis results.

The incremental view model transformation, which is the main focus of our work, bridges
the conceptual gap between the engineering formalism employed in dse and the formal
stochastic models of stochastic analysis. The transformation specification describes how the
formal analysis model is constructed from engineering models and formalizes the goals and
constraints to be analyzed. The analysis model is exported to the input format of the analysis
tool. The stochastic queries to be posed are also automatically generated from the analysis
model in order to enable dependence on its structure.

The raw analysis results are parsed after running the external solver to yield the analysis

results. The results are interpreted according to the traceability links maintained by the
view transformation engine to determine the values of goal functions and constraints.

The requirements for the analysis model formalism were determined to be as follows:

1. The formalism should be easy to use for engineers, preferably by building on an
existing stochastic modeling formalism.

2. Portability and compatibility with a variety of external analysis tools should be ensured.
3. The analysis model should define not only the stochastic model, but also the posed

queries for analysis.

In turn, the transformation engine that assembles the analysis model should satisfy the
following requirements:

1. The transformation should be parametric in the sense that its behavior is determined
by the transformation specification provided by the user.

2. The analysis model should be compatible with external analysis tools by avoiding
features that are not widely supported in stochastic analysis.

3. End-to-end-traceability should be provided to allow interpretation of analysis results
in the context of the engineering model, as well as the analysis model.

4. Incremental execution is preferred, which enables minimizing the work required for
updating the analysis model if the engineering model is modified in-place by the dse

tool. As it will be described in Chapter 5, in-place modification often occurs in many
dse paradigms [Vanherpen et al., 2014].

Our approach differs significantly from existingmethods in the literature. In contrast with
tools that directly optimize stochastic models [see e.g. Gerasimou et al., 2015; Calinescu et al.,
2017b], we derive an analysis model along with traceability information from engineering
models in order to enable design-space exploration with engineering models and stochastic
metrics. However, we note that the produced formal models may be transferred to a
stochastic model optimizer. The traceability links let user pull back the results of the lower-
level optimization to the engineering model; therefore the two approaches can be viewed
as complementary.

Compared to transformations for particular modeling languages, such as uml [see e.g.
Bernardi and Donatelli, 2003], our approach is parametric in the transformation specification
to allowmappings from any source modeling language. In contrast with the genetic encoding

1.2 Overview of our approach 5

in the PerOpteryx framework [A. Koziolek and Reussner, 2011], our approach does not
presume a specific encoding for models and instead transforms the engineering models
themselves. However, since our work delegates optimization by design-space exploration to
a dse tool, such encodings may be employed by the selected design-space explorer.

The rest of this work is structures as follows: Chapter 2 recalls some preliminaries
in model-based engineering and stochastic analysis. Chapter 3 proposes a formalism for
analysis models based on modular Petri nets [Kindler and Petrucci, 2009] in order to ensure
user familiarity and portability across analysis tools. Chapter 4 presents and incremental
transformation engine that uses view transformation and graph query preconditions [De-
breceni et al., 2014] to construct the analysis models. Chapter 5 describes the application
of our transformation framework in dse toolchains and empirically evaluates is scalability.
Lastly, we conclude our thesis in Chapter 6.

Two case studies are presented as appendices. The dining philosophers case study in
Appendix a is used throughout the thesis as a running example. A more complex example
is shown in Appendix b, which transforms architectural models to stochastic Petri nets for
hazard rate analysis. The latter transformation was used in a collaboration with an industrial
partner to evaluate safety requirements in a redundant, self-diagnosing automotive system.

7

Chapter 2

Background

The purpose of this chapter is to briefly recall some preliminaries related to our work,
including concepts frommodel-driven engineering, as well as formal and stochastic modeling.
As our work attempts to aid the calculation of stochastic metrics based on engineeringmodels,
we also describe the stochastic analysis tasks that we are aiming to support.

Chapter 3 builds on generalized stochastic Petri nets, which are described in Section 2.2.4
on page 15, in order to define a formalism suitable for analysis model fragments. Chapter 4
uses incremental query execution of graph patterns, which are described in Section 2.1.2 on
page 9, to instantiate the analysis model fragments according to a changing domain model.
Lastly, Chapter 5 discusses the application of the transformation toolchain to aid proposing
and solving stochastic analysis task from Section 2.2.3 on page 14 in design-space exploration
for the calculation of stochastic metrics on engineering models.

Furthermore, Running example 2.1 introduces the dining philosophers problem, which is
used as a running example throughout this thesis.

2.1 Modeling and metamodeling
In model-driven engineering models provide abstractions of reality, including the structure
and the behavior of systems we wish to analyze or design [Giese et al., 2007]. The models
are described in some formalism or modeling language.

The syntax of modeling languages is traditionally partitioned into abstract and concrete

syntax. Concrete syntax provides a textual or graphical representation of the modeling
language. Abstract syntax is endowed with meaning by mapping into a semantic domain,
which is another modeling language on a lower abstraction level.

2.1.1 Metamodels and instance models
Metamodels explicitly describe the abstract syntax of modeling languages. We will adopt
the formal description of metamodels as first-order logical structures from the work of
Varró et al. [2017] and extend them to support primitive-valued attributes. Metamodels are
regarded as first-order signatures:

Definition 2.1 A metamodel is a first-order two-sorted logical signature

Σ = {C1, C2, . . . , Cn; R1, R2, . . . , Rm; A1, A2, . . . ,Ak },

where

2.1 Modeling and metamodeling 8

• OBJ and PRIM are the sorts of objects and primitives, respectively;
• C1, C2, . . . , Cn :: OBJ are unary relation symbols called classes;
• R1, R2, . . . , Rm :: OBJ × OBJ are binary relation symbols called references (or edges);
• A1, A2, . . . , Ak :: OBJ × PRIM are binary relation symbols called attributes.

Instances of metamodels are regarded as first-order structures:

Definition 2.2 An instance model M = 〈O, Prim,I〉 of the metamodel Σ is a first-order
two-sorted structure, where
• O = {o1,o2, . . . ,oN } is a finite set of objects (or individuals);
• Prim is a set of possible primitive values of attributes, for example, Prim ⊆ R ∪ B,

where R is the set of real numbers and B = {true, false};
• I : Σ→ O ∪ (O × O) ∪ (O × Prim) is the interpretation function, such that

– I(Ci) = CMi ⊆ O for all classes Ci ∈ Σ;
– I(Ri) = RMi ⊆ O × O for all references Ri ∈ Σ;
– I(Ai) = AMi ⊆ O × Prim for all attributes Ai ∈ Σ.

Existing metamodeling technologies, such as the Ecore metamodeling language from
the Eclipse Modeling Framework (emf) [Steinberg et al., 2009] often allow the designers of
modeling languages to impose additional constraints on instances models. Some possible
restrictions are listed below:

• Class inheritance may specify that instances of a class must be instances of another.
• Abstract classes and interfaces can have no direct instances.
• Type constraints on references and attributes restrict the class of the object originating

the reference or attribute and the class of the object at the end of the reference, as
well as the type of the primitive attribute value.

• Multiplicity constraints place lower or upper bounds on the number of references or
attributes from an object.

• Objects may be organized into a containment hierarchy, in which an object is either
a containment root, or is connected to its container in the hierarchy with exactly one
containment reference. The containment hierarchy forms a forest of containment
roots, which is traversed when the object graph is serialized.

• Opposite constants require some references to always go in a direction opposite to
another, i.e. R(oi ,oj) should hold if and only if we have Rop(oj ,oi).

Further well-formedness constraints may be specified with constraint languages, such as
the object constraint language (ocl) [Object Management Group, 2014] or with graph
patterns [Bergmann et al., 2011].

Running example 2.1 We now introduce the dining philosophers domain, which will be
used as a running example throughout this thesis. A number of philosophers sit around a
circular table, such that each philosopher has someone on her left and also on her right.
Each philosopher has a single fork. The forks are placed between philosophers so that
adjacent philosophers must share a fork. A philosopher can only think if she is not hungry
and can only eat if she is holding both forks from her left and right.

Philosophers have a hungry rate, which determines how often they get hungry and a
eating rate which determines how fast they eat. We are interested in evaluating seating
plans (arrangements) of philosophers to determine the total amount of philosophical

2.1 Modeling and metamodeling 9

Philosopher
eatingRate: double
hungryRate: double

Table

[1] left

[1] right

[0..*] philosophers

Figure 2.1 Class diagram
for the dining philosophers
metamodel.

T: Table

P1: Philosopher
eatingRate = 3
hungryRate = 0.5

P2: Philosopher
eatingRate = 2.8
hungryRate = 0.45

right

left

left

right

Figure 2.2 Instance model
with two philosophers.

qPhil(T,P)

T: Table

P: Philosopher

Figure 2.3 Example graph
query matching a philosopher
at a table.

knowledge produced, i.e. the time the philosophers spent thinking. By swapping philoso-
phers around the table we can avoid seating two gluttonous philosophers or two slow
eaters next to each other; thus we can minimize the contentions for forks that prevent
philosophers from satiating their hunger before they can resume thinking.

Figure 2.1 shows a class diagram for the metamodel of the dining philosophers problem.
It contains two classes, Table and Philosopher, three relations, philosophers, left,
right, as well as two attributes, eatingRate and hungryRate.

Type constraints require that philosophers connect Table objects to Philosopher
objects. It is also a containment reference, which makes Table the root of the containment
hierarchy. Moreover, the multiplicity bound [0..*] allows any number of philosophers
around the table, even zero.

The relations left and right connect Philosopher instances. The relation right
is the opposite of left; therefore the philosopher on the left of someone sees that person
on her right and vice verse. Due to the multiplicity bounds [1] each philosopher must
have a single left and right neighbor.

Figure 2.2 shows an instance model with a single Table T and two Philosopher
instances P1 and P2. Because there are only two philosophers around the table, both
philosophers see the other on their left, as well as on their right.

2.1.2 Graph patterns
State-of-the-art modeling toolchains often rely of model queries to retrieve fragments of
interest from model, to specify model to model and model to text transformations, as well
as to validate well-formedness constraints on models [Bergmann et al., 2011; Ujhelyi et al.,
2015].

Formally, again following Varró et al. [2017], we define a graph query ϕ(x1,x2, . . . ,xn)
with n free variables as a first-order logic formula over the metamodel signature Σ. The
formula may contain atomic propositions of the form Ci (x j), Ri (x j ,xℓ) and Ai (x j ,xℓ), where
Ci , Ri , Ai ∈ Σ are classes, references and attributes, respectively. Furthermore, logical
connectives ¬,∧,∨,⇒ and quantifiers ∃,∀ may also appear in formulas.

Model query engines often allow transitive closure computation ϕ+, which makes the
query language strictly more expressive than first-order logic. If ϕ is a formula with
two free variables, its transitive closure ϕ+(xi ,x j) holds if and only if there are some
objects xi = y1,y2, . . . ,yk = x j (k ≥ 1) such that we have ϕ(y1,y2) ∧ ϕ(y2,y3) ∧ · · · ∧

2.2 Formal models for stochastic analysis 10

ϕ(yk−1,yk) [Bergmann et al., 2012].
For detailed semantics of first-order graph patterns extended with transitive closure we

refer to the works of Semeráth and Varró [2017] and Varró et al. [2017].
The tuple 〈q1,q2, . . . ,qn〉 ∈ (O ∪ Prim)n is a match of ϕ(x1,x2, . . . ,xn) in the instance

model M if ϕ holds with the match arguments 〈q1,q2, . . . ,qn〉, i.e. M � ϕ(q1,q2, . . . ,qn).
We will occasionally write the name of the graph pattern before the tuple to emphasize that
it is a tuple of match arguments, e.g. ϕ〈q1,q2, . . . ,qn〉.

The match set of the pattern ϕ in the instance modelM contains all of its matches. It is a
set, i.e. it contains each tuple at most once, regardless how many valid bindings are possible
for the quantified variables inside the pattern.

An incremental (or live) query engine, such as viatra Query [Ujhelyi et al., 2015]
maintains the match sets of graph queries by subscribing to change notifications from
the instance model. The changes are propagated to the match sets, and clients may get
notifications about matches appearing and disappearing as the instance model is being
modified. The Rete algorithm [Forgy, 1982] is often employed for change propagation.

Running example 2.2 Consider the instance model from Figure 2.2 along with the graph
pattern

qPhil(x1,x2) = Table(x1) ∧ Philosopher(x2) ∧ philosophers(x1,x2)

depicted in Figure 2.3, which matches philosophers sitting at a table. Its match set contains
two tuples, qPhil〈T, P1〉 and qPhil〈T, P2〉, which correspond to the two philosophers
in the model.

2.2 Formal models for stochastic analysis
In this section we recall some of the basic formalisms involved in our work. Petri nets are
introduced firstly, which serve as the basis in our framework to express stochastic models.
Then we move to the background in stochastic modeling and analysis methods. Portions of
this section were adapted from previous work by Klenik and Marussy [2015, Chapter 2].

Throughout this section and the rest of this work N, N+, R, R+ will refer to the sets
of natural numbers including zero N = {0, 1, 2, . . .}, the set of positive natural numbers
N
+
= N \ {0}, the set of real numbers and the set of positive real numbers, respectively.

2.2.1 Petri nets
Petri nets are a widely used graphical and mathematical modeling tool for systems which
are concurrent, asynchronous, distributed, parallel or nondeterministic [Murata, 1989].

Definition 2.3 A Petri net with inhibitor arcs and priorities is a 7-tuple

PN = 〈P ,T ,m0,π ,→,←,⊸〉,

where the sets P and T are disjoint and
• P is a finite set of places;
• T is a finite set of transitions;
• m0 : P → N is the initial marking function;
• π : T → N is the transition priority function;

2.2 Formal models for stochastic analysis 11

thinking2

waiting2

eating2

getHungry2

startEating2

finishEating2

fork2

thinking1

waiting1

eating1

getHungry1

startEating1

finishEating1

fork1

Figure 2.4 Example Petri net with two deadlock-free dining philosophers.

• ←,→,⊸ ⊆ P × N
+ × T are the relations of output, input and inhibitor arcs,

respectively, which are free of parallel arcs, i.e. 〈p,n1, t〉, 〈p,n2, t〉 ∈ ← implies
n1 = n2 and this property holds also for→ and⊸.

We will write p
n
← t , p

n
→ t and p

n
⊸ t for 〈p,n, t〉 ∈ ←, 〈p,n, t〉 ∈ → and 〈p,n, t〉 ∈ ⊸,

respectively. The arc inscriptions are omitted in the case n = 1.
Petri nets are graphically represented as edge weighted directed bipartite graphs. Places

are drawn as circles, while transitions are drawn as bars or rectangles. The arc inscriptions
are shown as edge weights.

A marking m : P → N assigns a number of tokens to each place. The transition t is

enabled in the markingm ifm(p) ≥ n for all p
n
← t andm(p) < n for all p

n
⊸ t .

An enabled transition is fireable, written as m t , if no enabled transition has higher
priority, i.e. π (t ′) ≤ π (t) for all enabled transitions t ′.

A fireable transition t can be fired to yield a marking m′, written as m t m′, where

m′(p) =m(p) − nin + nout if p
nin
−−→ t and p

nout
←−−− t . If only an input or output arc is present

between t and p, the token count of p is only decreased or increased, respectively. Places
not connected to t by an arc have their token count unchanged.

A markingm′ is reachable fromm, written asm ∗ m′, if there is a sequence of markings
and transitions such thatm = m1 t1 m2 t2 · · · tk−1 mk = m′. The reachable state space

RS of a Petri net is the set of markings reachable from its initial marking,

RS = {m : P → N | m0 ∗ m}.

The Petri net is bounded if there is an upper bound K ∈ N such thatm(p) ≤ K for all
p ∈ P andm ∈ RS. The reachable state space RS is finite if and only if the net is bounded.

The state space of a bounded Petri net can be determined efficiently by the saturation

algorithm [Ciardo et al., 2001, 2012]. Extensions have been proposed for the algorithm to
handle transition priorities effectively [Miner, 2006; Marussy et al., 2017].

The arc inscriptions of a Petri net may depend on the current marking by replacing
the positive integers N+ with a set of algebraic expressions ExprP over the token counts of
places. In the marking dependent setting←,→,⊸ ⊆ P × ExprP × T and the inscription
expressions are evaluated according to the markingm when firing transitionsm t m′. Such
Petri nets with marking-dependent arcs can simplify formal modeling [Ciardo and Trivedi,
1993]; however, they may preclude the use of some analysis techniques.

2.2 Formal models for stochastic analysis 12

Running example 2.3 Figure 2.4 shows an example Petri net modeling the dining
philosophers problem with two philosophers. The philosophers i = 1, 2 are modeled by
the places thinkingi, waitingi and eatingi. In the initial marking both philosophers
are thinking. Upon firing getHungryi a philosopher may get hungry and starts waiting
for forks to eat with. If both fork1 and fork2 is available, she may then startEatingi
by picking up both forks. The forks are picked up as a single atomic action. This avoids a
possible case for deadlock when both philosophers pick up single forks but are unable to
get the other fork and start eating. Therefore this model is the deadlock-free version of
the dining philosophers problem. Upon finishing eating, the philosophers put their forks
down by firing finishEatingi and returning to the thinking state.

2.2.2 Continuous-time Markov chains
Continuous-time Markov chains (ctmcs) are mathematical tools for describing the behavior
of systems in continuous time where the stochastic behavior of the system only depends on
its current state [see e.g. Reibman et al., 1989]. This assumption is reasonable in a wide class
of modeling tasks; hence ctmcs are commonly used in the reliability and performability
prediction of critical systems.

Definition 2.4 A continuous-time Markov chain (ctmc) X = {X (t) ∈ S | t ≥ 0} over
the finite state space S = {0, 1, . . . ,n − 1} is a continuous-time random process with the
Markovian or memoryless property:

P(X (tk) = xk | X (tk−1) = xk−1,X (tk−2) = xk−2, . . . ,X (t0) = x0)

= P(X (tk) = xk | X (tk−1) = xk−1),

where t0 ≤ t1 ≤ · · · ≤ tk and X (tk) is a random variable denoting the state of the ctmc

at time tk . A ctmc is said to be time-homogenous if it also satisfies

P(X (tk) = xk | X (tk−1) = xk−1) = P(X (tk − tk−1) = xk | X (0) = xk−1),

i.e. it is invariant under time shifting. In this work we will restrict our attention to
time-homogenous ctmcs over finite state spaces.

The state probabilities at time t form a finite-dimensional vector π(t) ∈ R
n , where

π (t)[x] = P(X (t) = x). Following the convention from ctmc literature, all vectors consid-
ered will be row vectors, i.e. n element vectors are equivalent to matrices with a single row
and n columns. Moreover, the ith element of the vector v will be written as v[i], where
indexing is zero-based (i = 0, 1, . . . ,n − 1).

The vectors π(t) satisfy the differential equation

dπ(t)

dt
= π(t)Q (2.1)

for some square matrix Q . The matrix Q is called the infinitesimal generator matrix of the
ctmc and satisfies Q1T = 0T , where 1 and 0 are n-element vectors of ones and zeroes.

The diagonal elements q[x ,x] < 0 of Q describe the holding times of the ctmc. If
X (t) = x , the holding time hx = inf{h > 0 | X (t) = x ,X (t + h) , x} spent in state x is
exponentially distributed with rate λx = −q[x ,x]. If q[x ,x] = 0 then no transitions are
possible from the state x and it is said to be absorbing.

2.2 Formal models for stochastic analysis 13

0 1 2

λ1 λ2

µ2µ1

µ3

0 1 2()
0 −λ1 λ1 0

Q = 1 µ1 −λ2 − µ1 λ2
2 µ3 µ2 −µ2 − µ3

Figure 2.5 Example ctmc with 3 states and its generator matrix.

The off-diagonal elements q[x ,y] ≥ 0 of Q describe state transitions of the ctmc. The
ctmc while being in state X (t) = x will jump to state y at the next state transition with
probability −q[x ,y]/q[x ,x]. Equivalently, there is an expontentially distributed countdown
in the state x for each y that satisfies q[x ,y] > 0 with transition rate λxy = q[x ,y]. The first
countdown to finish will trigger a state change to the corresponding state y. Therefore the
ctmc is a transition system with exponentially distributed timed transitions.

Example 2.4 Figure 2.5 shows a ctmc with 3 states. The transitions from the state 0 to
1 and from 1 to 2 are associated with exponentially distributed countdowns with rates λ1
and λ2 respectively, while transitions in the reverse direction have rates µ1 and µ2. The
transition form state 2 to 0 is also possible with rate µ3.

The rows (corresponding to source states) and columns (destination states) of the
infinitesimal generator matrixQ are labeled with the state numbers. The diagonal element
q[1, 1] is −λ2 − µ1, hence the holding time in state 1 is exponentially distributed with
rate λ2 + µ1. The transition from state 1 to 0 is taken with probability −q[1, 0]/q[1, 1] =
µ1/(λ2 + µ1), while the transition to 2 is taken with probability λ2/(λ2 + µ1).

Steady-state probabilities

A state y is reachable from the state x , written as x ∗ y, if there exists a sequence of states
x = z1, z2, z3, . . . , zk−1, zk = y, such that q[zi , zi+1] > 0 for all i = 1, 2, . . . ,k − 1. If x ∗ y

for all pairs of states x ,y ∈ S , the Markov chain is irreducible.
The steady-state probability distribution π = limt→∞ π(t) exists and is independent from

the initial distribution π(0) = π0 if and only if the ctmc is irreducible. The steady-state
distribution satisfies the system of linear equations

dπ

dt
= πQ = 0, π1T = 1. (2.2)

The matrix Q is sparse and is often amenable to decomposed storage [Buchholz, 1999a].
However, solving the system of linear equations eq. (2.2) requires iterative linear equation
solver algorithms, which can have varying convergence and running time characteris-
tics [Buchholz, 1999b; Marussy et al., 2016b; Buchholz et al., 2017].

Selection of numerical solver backends and their parameters in the context of design-
space exploration toolchains are discussed in Section 5.1.2 on page 59.

Parametric models

The infinitesimal generator matrix of a parametric ctmc depends on a vector of parameters

θ ∈ A ⊆ R
k , where A is the feasible region of parameter values. The parameters represent

unknown or uncertain attributes of the system under study, while the feasible region describes
realizable or plausible parameter values. Parameter optimization refers to the selection of
feasible parameter values θ ∈ A such that some goal function is maximized.

2.2 Formal models for stochastic analysis 14

Analysis methods for parametric Markov chains include sensitivity analysis [Blake et
al., 1988], parametric steady-state solution [Hahn et al., 2011; Vörös et al., 2017b] and
parameter synthesis [Quatmann et al., 2016]. Some analysis methods only allow specific
kinds of parameter-dependence in the generator matrix elements θ 7→ q(θ)[x ,y], such as
C1 differentiable expressions [Blake et al., 1988] or rational functions [Hahn et al., 2011].

Markov reward models

Continuous-timeMarkov chains may be employed in the estimation of performance measures
of models by defining rewards that associate reward rates with the states of a ctmc. The
reward rate random variable R(t) can describe performance measures defined at a single
point of time, such as resource utilization or the probability of failure, while the accumulated

reward random variable Y (t) may correspond to performance measures associated with
intervals of time, such as the total downtime.

Definition 2.5 A continuous-time Markov reward process over a finite state space S =

{0, 1, . . . ,n − 1} is a pair 〈X , r〉, where X is a ctmc over S and r ∈ Rn is a reward rate

vector. The reward rate stochastic process R = {R(t) = r [X (t)] | t ≥ 0} describes the
momentary reward rate associated with the active state of the ctmc.

The accumulated reward until time t is defined as the time integral of R,

Y =

{
Y (t) =

∫ t

0

R(τ) dτ

���� t ≥ 0

}
.

Example 2.5 Let c0, c1 and c2 denote operating costs per unit time associated with the
states of the ctmc X in Figure 2.5. Consider the Markov reward process 〈X , r〉 with the
reward rate vector

r =
(
c0 c1 c2

)
.

The random variable R(t) describes the momentary operating cost, while Y (t) is the total
operating expenditure until time t . The steady-state expectation limt→∞ ER(t) is the
average maintenance cost per unit time of the long-running system.

In parameter-dependent reward models not only does the infinitesimal generator matrix
Q : A→ R

n×n depend on the parameter vector θ ∈ A but also can the reward rate vector
r : A→ R

n be parameter-dependent.

2.2.3 Stochastic analysis tasks
Various analysis tasks concerning ctmcs and Markov reward models are performed to calcu-
late stochastic metrics or determinewhether the system satisfies a reliability or performability
requirement. We will refer to such problems as queries concerning a stochastic model. Below
we attempt to give a short summary of the most basic analyses and computational methods.

Steady-state analysis refers to the calculation of the steady-state expectation ER(∞) =

limt→∞ ER(t) to characterize the values of reliability or performability metrics during long-
term system operation. Because the steady state expectation is calculated according to the
formula ER(∞) = π rT , where π is the steady-state probability vector form eq. (2.2), this
form of analysis is tantamount to the solution of eq. (2.2).

2.2 Formal models for stochastic analysis 15

Transient and accumulated analysis is concerned with the transient behavior of the
modeled system when it is started from an initial probability distribution π0. An initial
value problem with eq. (2.1) on page 12 is solved subject to the initial condition π(0) = π0.
Then the expected transient reward value ER(t) = π(t) rT can be calculated.

Variations of the uniformization algorithm [see e.g. Morsel and Sanders, 1997; Dĳk et al.,
2017] can solve eq. (2.1) efficiently. Moreover, L(t) =

∫ t

0
π(τ) dτ can also be obtained by

uniformization in order to calculate EY (t) = L(t) rT for the analysis of accumulated metrics.

Mean-time-to-state-partition analysis determines the expected time taken to reach a set
of states D (S from an initial distribution π0. The calculation of the mean time to first

failure, which is the mean time to reach the state partition D of failed states, has many
applications in reliability engineering. Other tasks, such as the determination of the mean
time between failures or the time taken to successfully complete a request can also be
formalized as mean-time-to-state-partition problems.

These problems can be solved by the analysis of phase-type distributions [Neuts, 1975]
derived from the ctmc and the state partitions D of interest by linear equations solvers,
analogously to the calculation of steady-state expectations.

Sensitivity analysis concerns the rates of change in stochastic metrics due to changes in
parameter values of a parametric ctmc or reward model. The model reacts to changes of
parameters with high absolute sensitivity more prominently; therefore they can be promising
directions of system optimization. The partial derivatives of the expectation describes above
can be computed with respect to the elements of the parameter vector [Blake et al., 1988;
Ramesh and Trivedi, 1993].

Stochastic model checking consists of decision procedures to determine whether the system
under consideration satisfies requirements formalized in a stochastic logic. Often stochastic
model checking involves the analysis tasks outlined above as subroutines. Logics suitable
for continuous-time models include continuous stochastic logic (csl) [Aziz et al., 1996] and
continuous stochastic reward logic (csrl) [Kwiatkowska et al., 2006]. Further approaches
to specifying stochastic properties and queries are surveyed in Section 3.1.2 on page 22.

2.2.4 Generalized stochastic Petri nets
Although continuous-time Markov chains and reward processes based on ctmcs allow
the study of dependability or reliability, the explicit specification of stochastic processes
and rewards is often cumbersome. Generalized stochastic Petri Nets extend Petri nets by
assigning exponentially distributed random delays to some transitions and instantaneous
random firing to others [Marsan et al., 1984]. After the delay associated with an enabled
timed transition is elapsed the transition fires atomically and the transition delays are reset.

Definition 2.6 A generalized stochastic Petri net (gspn) is an 8-tuple

GSPN = 〈P ,T ,m0,π , λ,→,←,⊸〉,

where
• 〈P ,T ,m0,π ,→,←,⊸〉 is a Petri net with priorities and inhibitor arcs,
• λ : T → R

+ is a transition rate and weight function.

Transitions t ∈ T satisfying π (t) = 0 are called timed transitions and λ(t) is the rate

of such transitions. In contrast, transitions with higher priority are called immediate and

2.2 Formal models for stochastic analysis 16

thinking2

waiting2

eating2

getHungry2
λ = 0.45

startEating2
λ = 1, π = 1

finishEating2 λ = 2.8

fork2

thinking1

waiting1

eating1

getHungry1
λ = 0.5

startEating1
λ = 1, π = 1

finishEating1 λ = 3.0

fork1

Figure 2.6 Example gspn for the dining philosophers problem.

λ(t) is their probability weight. Timed transitions are usually depicted as rectangles, while
immediate transitions are black bars.

Markings in which an immediate transitions is fireable are vanishing, while markings
where only timed transitions are fireable are tangible. Reachable tangible markings form
the tangible state space

TRS = {m ∈ RS | π (t) = 0 for allm t }.

Timed transitions t have an associated exponentially distributed countdown with rate
parameter λ(t). Fireable timed transitions are fired when their countdown expires, which
resets the countdown. In contrast, immediate transitions are fired as soon as they become
fireable. If multiple immediate transitions are fireable, a single transition is picked randomly
to be fired. The probability of an immediate transition t being picked is proportional to its
probability weight λ(t). Immediate transitions are fired until a tangible marking is reached.

Running example 2.6 Figure 2.6 shows a gspn version of the dining philosophers model
form Running example 2.3 on page 12. The timed transitions getHungry1, getHungry2,
finishEating1 and finishEating2 have rates 0.5, 0.45, 3.0 and 2.8, respectively.

The transitions startEating1 and startEating2 are immediate with equal priority
and weight. Hence philosophers start eating as soon as they become hungry and there
are forks available. Both philosophers can be selected to eat with equal priority if both
are hungry at the same time.

Stochastic Petri nets

A stochastic Petri net (spn) is a gspn with no immediate transitions, i.e. π (t) ≡ 0 for all
t ∈ T . In such nets all reachable states are tangible, TRS = RS.

Bounded spns can be transformed into ctmcs in a straightforward way. Let S =
{0, 1, . . . , |TRS| − 1} be the set of states of the ctmc and let ι : TRS → S be a bijection.
The off-diagonal elements of the infinitesimal generator matrix Q ∈ R

|TRS |× |TRS | can be
computed by summing the rates of transitions between states, while diagonal elements are
set such that Q1T = 0T is satisfied. Formally, we have

q[ι(m), ι(m′)] =
∑

m t m′

λ(t) ifm ,m′, q[x ,x] = −
∑
y,x

q[x ,y].

2.2 Formal models for stochastic analysis 17

This simple translation makes spns especially amenable to analysis. For gspns with
immediate transitions the reachable vanishing markings must be eliminated before a ctmc

can be formed [Marsan et al., 1984].

Marking- and parameter-dependent models

The arc inscriptions of gspns can be made marking-dependent similarly to Petri nets, which
lets the arcs←,→,⊸ ⊆ P × ExprP ×T contain arbitrary algebraic expressions of the token
counts of the places P . Moreover, the transition rates and weights can be made marking
dependent, which results in λ : T → ExprP .

Dependence on a set of parameters Par may also be introduced. In this case λ : T →
ExprP,Par, where ExprP,Par is the set of algebraic expressions depending on token counts
of P and the values of the parameters in Par. Parameter-dependent gspns are translated
into parametric ctmcs, where the values of Par are encoded as the parameter vector
θ ∈ A ⊆ R

|Par |. The feasible region A of parameter values can be determined according to
domain requirements.

Reward nets

Generalized stochastic Petri nets can specify not only ctmcs, but also Markov reward models.
The reward expression r ∈ ExprP is an algebraic expression which may refer to token counts
of places. The reward expression r is translated into a reward vector r upon analysis in
order to calculate expectations and answer queries regarding the reward value.

In the case of parameter-dependent gspns the reward expression may depend on the
values of the parameters, such that we have r ∈ ExprP,Par.

Running example 2.7 Consider the dining philosophers gspn from Running exam-
ple 2.6 along with the reward expression

r = #thinking1 + #thinking2,

which sums the token counts of the places thinking1 and thinking2.
The expected transient reward rate ER(t) is the expected number of philosophers

thinking at time t after starting from the initial marking. The expected steady-state reward
rate ER(∞) is the mean number of thinking philosophers during long-term operation. The
expected accumulated reward EY (t) is the mean total time spent thinking by philosophers
until time t after starting.

19

Chapter 3

Modular formalism for stochastic models

In this chapter we turn to modular stochastic modeling approaches to propose a formalism
for the modules (or fragments) of stochastic models corresponding to the analyzed aspects of
engineering models. The transformation, which is discussed in Chapter 4, will instantiate
the modules specified by the user to automatically derive an analysis model.

As stated in our introduction in Section 1.2 on page 3, formal models should be based on
a stochastic formalism that has sufficient descriptive power to support engineering practice.
In addition, compatibility of the derived models with existing stochastic verification tools
should be ensured so that recent developments in formal methods may be leveraged for
high-performance analysis. Hence reusing an existing formalism is dictated by both 1 ease
of use and 2 portability.

Analysis tools usually separate the input formal model and the query to be answered [see
e.g. Vörös et al., 2017a, Section 4.2], which is a performance metric to be calculated or a
logical requirement to be verified. Therefore, when stochastic models are automatically
derived for design-space exploration, 3 the appropriate queries must also be generated.
The queries, which may depend on the structure of the engineering model in the same
way as the derived stochastic model, serve as the objective functions and constraints of the
exploration strategy.

After briefly reviewing related work, we describe our proposed formalism based on
modular Petri nets, an extension of the iso/iec 15909-1:2004 standard on High-level Petri
nets with a formally defined module concept [Kindler and Petrucci, 2009].

Petri nets and their extension to stochastic modeling, generalized stochastic Petri nets
(gspns) are a widely used formalism for the analysis of software and hardware systems [Mu-
rata, 1989]. Various tools support gspns, such as spnp [Hirel et al., 2000], smart [Ciardo
et al., 2006], Möbius [Courtney et al., 2009], GreatSPN [Babar et al., 2010] and PetriDot-
Net [Vörös et al., 2017b]. Hence we believe most of the target audience of our transformation-
based design-space exploration approach is familiar with them. In addition, to aid finding
bugs in the analysis models and to contribute to the 1 ease of use, static typing, which was
first proposed for modular high-level Petri nets by Kindler [2007], is supported for both the
stochastic model and the queries.

Models are serialized in the iso/iec 15909-2:2011 pnml format for 2 compatibility with
a wide variety of external tools.

In order to 3 generate queries for the stochastic models, we follow Kindler and We-
ber [2001] and extend modular Petri nets with symbols corresponding to the stochastic
properties of interest. The addition of new symbols lets us encode the queries simultane-
ously with the structure of the analysis model.

3.1 Related work: modular stochastic modeling 20

3.1 Related work: modular stochastic modeling
In this section we briefly review some existing approaches for modular construction of
logical and stochastic formal models, as well as for the specification of properties and
metrics of interest over such models. For an overview on performance evaluation techniques
for particular component-based software engineering languages, which contrast with our
present work that aims to be generic in the engineering dsl, we direct the interested reader
to the survey by H. Koziolek [2010].

We are especially interested in modular formalisms that allow assembling structured
models from modules (or fragments). While arbitrary combination of modules leads to high
expressivity, it also restricts the opportunities for compositional verification. Conversely, a
formalism is compositional if the properties of model can be verified recursively by verifying
simpler properties of its constituent components. These models are often constructed
using composition operators that restrict arbitrary modularity in order to enforce property
preservation.

We opt for modularity instead of compositionality to avoid restricting the model transfor-
mations that will automatically assemble the stochastic models according to an architectural
dsl instance. However, this means solution techniques will have to consider the assembled
model in its entierty and cannot depend on preservation of the properties of the components.

3.1.1 Modeling formalisms
Continuous-time Markov chains (ctmcs) are common tools for the reliability and per-
formability prediction of critical systems [see e.g. Reibman et al., 1989]. However, instead
of modeling with ctmcs directly, often higher-level formalisms are used to obtain more
compact models. The semantics of these models are defined in terms of ctmcs or related
stochastic processes, such as Markov regenerative processes [Logothetis et al., 1995; Telek
and Pfening, 1996]. Usually the higher-level formalism belongs to one of these three classes:

Queuing networks (qns) describe the routing of customers or work items between queues.
The times spent in queues are described by random variables. The design and analysis of
performance models based on hierarchical qns were surveyed by Smith and Lladó [2011].

Stochastic Petri nets (spns) are Petri nets where transitions are equiped with expontentially
distributed firing delays. Generalized stochastic Petri nets (gspns) may contain transitions
with either exponentially distributed delays and immediate firing [Marsan et al., 1984].
Moreover, deterministic [Logothetis et al., 1995] and phase-type distributed [Longo and
Scarpa, 2013] delays may also be incorporated; however, this makes verification significantly
more complicated. Another generalization is the stochastic activity network formalism,
where arbitrary input and output gates are allowed [Sanders and Meyer, 2001].

Stochastic process algebras incorporate random timings into the denotational semantics of
process calculi [Hermanns et al., 2002] while allowing compositional verification. However,
composition is syntactically restricted to set of allowed process operators, such as parallel
and sequential composition of two subprocesses. An example formalism of this class is the
Performance Enhanced Process Algebra (pepa) defined by Hillston [1995].

Although all ctmcs can be expressed with any of these formalism classes, a significant
advantage of higher-level models is the ability to expresses complicated behaviors of systems
with small models. In this regard, gspns can express qns without increasing model

3.1 Related work: modular stochastic modeling 21

size [Vernon et al., 1986]. Comparison of Petri nets and process algebras is more difficult
due to the vastly different modeling styles [Donatelli et al., 1995]. The definable composition
operators for Petri nets only conserve a limited set of properties; for a review we refer to
Chapter 2 of the book by Huang et al. [2012].

Modularity in various Petri net formalisms was surveyed by Marechal and Buchs [2012].
Following their categorization we briefly review some formalisms below:

Syntactic (naïve) approaches to modularity construct analysis models from modules by
structural sharing or merging of model elements. Marechal and Buchs [2012] refer to this
approach as naïve because often the full analysis model must be assembled to determine its
behavior. Thus compositional verification approaches based on the properties of modules
are of limited use. However, this approach affords the greatest freedom to users when they
define and assemble modules.

Stochastic automata networks△ formalize the hierarchical structuring of ctmcs. Actions
of the same label can be shared among automata for modeling communicating parallel
systems. Labels are also a popular way of merging places (state variables) and transi-
tions (actions) in Petri nets; among the 18 variants surveyed by Marechal and Buchs [2012]
11 used syntactic sharing of elements with equal labels. Bernardi and Donatelli [2003]
proposed a methodology to construct stochastic Petri nets by merging places and transitions
according to their labels as part of the DepAuDE project for dependability analysis. López-
Grao et al. [2004] developed a transformation from uml activity diagrams to stochastic Petri
nets with the use of labeled Petri nets. Kühne et al. [2009] proposed a label-based model
transformation framework that was also illustrated with Petri nets.

Syntactic merging is implemented in various stochastic analysis tools. GreatSPN provides
support for labeled gspns [Bernardi et al., 2000]. Möbius lets users compose sub-models
by sharing either state variables or actions [Courtney et al., 2009]; however, the two
approaches cannot be mixed. The prism model checker allows both global state variables
and synchronization on common actions [Kwiatkowska et al., 2011].

The downside of merging model elements is that contradictions may arise if modules
prescribe different properties to a model element. For example, the firing rate of a stochastic
action may be different across modules, or a state variable may have definitions with differing
initial values. Contradictions may be signaled as errors when the models are analysed or
may be resolved according to a resolution rule. For example, prism multiplies the rates of
transitions when synchronization is used. More elaborate resolution rules were proposed
for labeled gspns by Bernardi [2003, Section 2.2.3].

The leader-follower style composition in modular Petri nets proposed by Kindler and
Petrucci [2009] avoid contradiction resolution by requiring each model element to have a
single owner module that defines its properties. References in other modules may import
foreign model elements to add adjacent Petri net arcs. Petri net modules may also define
strongly typed interfaces separately from their implementation.

Synchronous or asynchronous message passing can serve as a means to assemble larger
models from modules. The Behavior-Interactions-Priority (bip) formalism presents a rigor-
ous approach to the composition of state-based model using an algebra of connectors that
transmit synchronous messages [Basu et al., 2006]. A stochastic extension of bip was pro-
posed by Nouri et al. [2015] for the composition of discrete-time probabilistic automata. On
the other hand, hierarchical queuing networks constructed from simpler modules by model

△ Perhaps confusingly, stochastic activity networks and stochastic automata networks are both often abbrevi-
ated as sans. We will refrain from abbreviating either.

3.1 Related work: modular stochastic modeling 22

transformation [see e.g. Moreno et al., 2008] can be viewed as models on synchronously com-
municating components. Recently, a composition framework was proposed by Graics [2017]
that supports mixing synchronous and asynchronous communication; however, it does not
facilitate stochastic modeling.

Object-oriented approaches incorporate dynamic instantiation of modules into the opera-
tion semantics of the formalism. In Petri nets the net-within-net paradigm is employed most
frequently, which allows higher level modules operate on dynamically instantiated modules
as tokens. An example of this class is the reference net formalism implemented by the Renew
integrated development environment [Cabac et al., 2016].

3.1.2 Query specifications
Logical properties of complex asynchronous systems may be captured by temporal logics,
such as the computational tree logic (ctl) [Clarke and Emerson, 1981] and linear temporal
logic (ltl) [Vardi, 1996]. The logic ctl∗ contains both ctl and ltl fragments [Emerson
and Halpern, 1986]; however, without restriction to either of these fragments model checking
of properties becomes considerably more difficult in practice.

Markov reward models are the principal tools for defining performance metrics for
ctmcs. They associate a stochastic process {R(t) : t ≥ 0} with the ctmc. A wide
variety of analyses are possible, such as the computation of the expected steady-state
reward ER(∞), the expected transient reward ER(t) or the expected accumulated reward
EY (t) = E

∫ t

0
R(τ) dτ [see e.g. Reibman et al., 1989]. The results are interpreted as the

mean values of the measures of interest. Sensitivity analysis [see e.g. Blake et al., 1988] can
determine the rate of change in a metric caused by changing model parameters. Reward
analysis can be generalized to Markov decision processes to study the effects of external
control in stochastic systems [Baier et al., 2017a].

Several logics have been developed to study temporal and stochastic properties. Prob-
abilistic computation tree logic (pctl) was proposed by Hansson and Jonsson [1994] for
discrete-time systems, while continuous stochastic logic (csl) [Aziz et al., 1996] and csl

with timed automata (cslta) [Donatelli et al., 2009] can describe properties of continuous-
time systems. Continuous stochastic reward logic (csrl) to incorporates reward analysis
into csl [Kwiatkowska et al., 2006]. A generalized version of csrl (gcsrl) was developed
by Kuntz and Haverkort [2007] for gspns and other systems with both timed and untimed
stochastic behavior.

Queries for component-based models

An extension for uml class diagrams was proposed by Bernardi and Donatelli [2003] to
construct stochastic metrics and property specifications for software models. Special derived
features are added to represent model parameters, metrics and dependability requirements
(prefixed with “/”, “$” and “/$”, respectively). Bernardi et al. [2004] also incorporated the
trio language for temporal property specification.

Measure Specification Language (msl) uses first-order logic to specify reward structures
for component-based stochastic models [Aldini and Bernardo, 2007]. Aldini et al. [2011]
combined msl with csrl to extend its expressive power to temporal properties.

A temporal extension to Object Constraint Language (ocl) [Object Management Group,
2014] was proposed by Ziemann and Gogolla [2003] to formulate temporal constraints
on uml models. Zalila et al. [2013] integrated temporal ocl and bidirectional model
transformations for the formal verification of domain-specific modeling languages.

3.2 Generalized stochastic Petri net modules 23

The ProMoBox framework was developed by Meyers et al. [2014] for the generation of
domain-specific property specification languages. The input of ProMoBox is an engineering
dsl based on which it specializes generic built-in sublanguages for 1. structural design,
2. run time state representation, 3. property specification, 4. input sequences and 5. output
traces. The property specification sublanguage contains templates with expressive power
equivalent to ltl. To our best knowledge, there was no attempt to incorporate stochastic
properties into the framework.

3.2 Generalized stochastic Petri net modules
In this section we propose the specification of modules for gspns simultaneously with their
reward measures and queries. When doing so, contradictions may arise in assembling the
stochastic model from modules concerning the initial markings of places, the timings to
transition firings and the definitions of the queries. In addition, care must be taken to avoid
circularity in the merged models and queries, i.e. the structure of the model must not depend
on the answers to the queries, as the state space and the ctmc derived from the model is
used in producing the answer. Hence circular dependence between the model and queries
makes analysis impossible.

To address these challenges, we base our approach on modular Petri nets [Kindler and
Weber, 2001], which define modules as a collection of symbols (also referred to as nodes)
and the arcs between them. Petri net places and transitions are represented as symbols. A
symbol may either be concrete symbol or a reference to another symbol. Imports of a module
are references that are pointed to exports of ther modules when the module is instantiated.

A module may only specify additional information about a concrete symbol, such as the
initial marking of a concrete place or the rate of a timed transition. Thus there is a leader-
follower relationship between concrete and reference symbols, which avoids contradictions
in assembled models. The specification of measures and queries is restricted analogously.

We incorporate three new symbol kinds into modular Petri nets to construct modular
gspns. In addition, an expression language is proposed to specify the values of both
the stochastic attributes of the model elements, such as transition firing rates, and the
performance measures and queries of interest. Circularity in models is avoided by an
adapting strict typing to mark invalid dependencies as type errors. This approach was
inspired by the work of Kindler [2007] on strictly typed colored Petri net modules. We call
the resulting formalism with extended symbols, expressions and typing reference generalized

stochastic Petri nets (rgspn).
To simplify presentation the separation of module interfaces and implementations, which

enable information hiding for the design of modules, will be not considered. Moreover,
the assembly of modules into a complete stochastic model is deferred to Chapter 4. The
remainder of this chapter will focus on the structure and semantics of single rgspn modules.

3.2.1 Symbols and edges
The rgspn formalism consists of symbols, and edges between the symbols. The latter gen-
eralize Petri net arcs by also permitting reference assignments and collection memberships
among the edges of the Petri net graph.

Each symbol has a kind, which determines what information is needed to define the
symbol, and a type, which determines the context where the symbol may be used. The type
system, which is elaborated in Section 3.2.2 on page 26, contains type for places, transitions,

3.2 Generalized stochastic Petri net modules 24

and variables. However, the mapping between symbol kinds and types is not one-to-one,
since the type of references can be set to determine the types of symbols they may point at.

Symbol kinds

The rgspn formalism has six symbol kinds:

Places correspond to Petri net places. The token game of the net changes the markings
of the places starting from their defined initial marking. The marking is a non-negative
whole number, i.e. colored variants of gspns are not currently supported. When rgspns
are shown as graphs places are displayed as circles.

Transitions correspond to Petri net transitions. They are equipped with a firing policy,
which is either timed or immediate. Timed transitions have a rate parameter, which is the
rate of the exponentially distributed firing delay. Immediate transitions have a probability
weight and a priority consistently with the net-level specification of immediate transitions in
gspns [Teruel et al., 2003]. Graphically, timed transitions are rectangles, while immediate
transitions are filled.

Variables are expressions that may refer to the markings of transitions, other variables and
parameters of the net. The type of the expression determines the context where a reference
to a variable may appear in the net. Variables are shown as triangles.

Parameters are associated with constant real values and express the dependence of the
model on continuous parameters. Parameter nodes are preserved during the inlining of the
net into a gspn as symbolic placeholders. Hence external tools may construct a parametric
ctmc and apply sensitivity analysis [Blake et al., 1988] parametric solution [Hahn et al.,
2011; Vörös et al., 2017b] or parameter synthesis [Quatmann et al., 2016]. The graphical
notation for a parameter symbol is a filled triangle.

References can stand for other symbols from foreign rsgpn fragments. A reference has
a reference type, which is the type of the symbol at which it may be assigned to point.
A reference may only point at a single symbol at a time; however, references may be
chain, as long as some concrete symbol can be resolved at the end of the chain. Graphical
representation of references is derived from the pointed symbols but uses dashed lines.

References allow assembling different Petri net modules by merely adding reference
assignments. As it will be shown in Section 4.5.1 on page 48, setting a single reference
can correspond to redirecting many arcs in the net. Hence references help exploiting the
modularity already present in the graph structure of Petri nets.

Collections, similarly to references, point to other symbols. A collection may point to
multiple symbols as long as their type is consistent with the member type of the collection.
The graphical notation is derived from the member type by adding a drop shadow.

Collections enable modular query specification in rgspns. While Petri nets are graphs,
which can be easily extended by adding new arcs, performance measures are queries
and described by algebraic expressions of a much stricter tree structure. Although variable
references can serve as “holes” in the expression trees, they do not allow arbitrary aggregation
of queries. For example, consider a performance measure which is defined as the sum of
other measure corresponding to the components of the system. An expression of the form
v1 + v2 can only serve as the aggregate measure of exactly two components, which must
have their elementary performance measures assigned to the references v1 and v2.

3.2 Generalized stochastic Petri net modules 25

philosopher1

thinking1

waiting1

eating1

getHungry1
λ = hungryRate1

startEating1
w = 1, π = 1

finishEating1
λ = eatingRate1

thinkingTime1
= #thinking1

hungryRate1
= 0.5

eatingRate1
= 3.0

rightFork1leftFork1

philosopher2

thinking2

waiting2

eating2

getHungry2
λ = hungryRate2

startEating2
w = 1, π = 1

getHungry2
λ = hungryRate2

thinkingTime2
= #thinking2

hungryRate2
= 0.45

eatingRate2
= 2.8

rightFork2leftFork2

table

totalThinkingTime
= sum(thinkingTimes)thinkingTimes

∈ ∈

Figure 3.1 Example rgspn model with an aggregate performance measure.

In Section 3.3 on page 30 we introduce aggregation functions into the syntax of query
expressions. This lets the aggregate performance measure be written as sum(c) analogously
to the big operator expression

∑
v ∈c v, where c is the collection of the constituent elementary

measures. Collections may contain duplicate elements so that expressions like v +v +v can
be written in big operator form.

Edges

Any relation between two rgspn symbols will be called an edge. Three kinds of edges are
introduced, which are arcs, reference assignments and collection memberships.

Petri net arcs between transitions and places may be output, input or inhibitor arcs. Either
end may be a reference to an appropriate place or transition instead of a concrete symbol.
Arcs are equipped with possibly marking-dependent inscription, which is the number of
tokens moved by the transition. If the inscription is the constant 1, we will omit it. Parallel
arcs between the same symbols and with the same arc kind are forbidden.

Reference assignments connect references to the symbol at which they point. Indirect
references, i.e. r1 ≔ r2, r2 ≔ s are possible and arbitrary chains of references may be built.
In particular, an rgspn may even contain reference cycles (r1 ≔ r2, r2 ≔ r1), or multiple,
contradictory assignments (r ≔ s1, r ≔ s2, s1 , s2). However, inconsistent rgspns cannot
be transformed into gspns for analysis. Inconsistency handling is discussed in detail in
Section 4.5.3 on page 52.

Collection memberships connect collections to their member symbols. Either end of the
membership edge may be a reference to a collection or an appropriate member symbol,
respectively. In contrast with arcs, parallel membership edges are possible in order to express
positive integer weighted aggregations.

3.2 Generalized stochastic Petri net modules 26

Running example 3.1 Figure 3.1 shows an rgspn model of the dining philosophers
problem with two philosophers sitting around a table.

While the immediate transitions startEating1 and startEating2 have constant weights
and priorities, the timed transitions all refer to different symbols in their rate expressions.
Note the difference between the variables hungryRate1, hungryRate2 and the parameters
eatingRate1, eatingRate2. Although these variables and symbols are all set to real number
constants, the parameters are preserved as continuously changeable quantities when the
model is passed to an external tool.

The self-contained subnets philosohper1 and philosopher2 contain reference places
rightFork1 and rightFork2. The subnets are connected by reference assignments. The
reference places specify no initial marking at all—not even a zero marking—, because
they are followers of the pointed leader symbols leftFork2 and leftFork1, respectively.

The performance measures thinkingTime1 and thinkingTime2 are added to the collec-
tion thinkingTimes. Thus the aggregate performance measure totalThinkingTime can be
formed by the aggregation operator sum.

3.2.2 Type system
Type systems are tractable syntactic methods for proving the absence of certain unwanted
behaviors by classifying terms according to the values they compute [Pierce, 2002, Chapter 1].
On the other hand, static type systems for symbols in a modular Petri net were introduced by
Kindler [2007]. In rgspns, types are used in both senses for classifying expressions, which
are terms describing the quantitative aspects of the stochastic model, as well as symbols,
which carry structural information.

The main unwanted behavior is the dependence of some expression on contextual
information that is not available when the expression is evaluated. For example, the
inscription of a Petri net arc should not depend on the state space of the Petri net, as the
inscriptions themselves determine the reachable states.

The possible types are described by the following ebnf-like grammar:

‹Type›F place | tran | ‹VarType› | ‹Type›[],
‹VarType›F ‹Dependence› ‹Pretype›,

DependenceF const | param | marking | weight | prop | path,
‹Pretype›F int | double | boolean.

(3.1)

The types place and tran correspond to places and transitions in the rgspn and the
references thereof. Types of collections are formed by appending the collection qualifier

suffix [] to the type of the members.
The types of variables deviate from routine. Inspired by conventions from the presen-

tation of substructural type systems [see e.g. Walker, 2005] the types of variables are split
into a qualifier and a pretype. The pretype part expresses the domain of values, boolean
for truth values B = {true, false}, int for integers and double for real numbers.

The dependence qualifier specifies the evaluation context of an expression as follows:

• A const expression yields a value without further input.
• A param expression refers to the values of continuous model parameters, which are

embodied by parameter symbols.
• A marking expression refers to the token counts of places; therefore it yields a different

value in different Petri net markings.

3.2 Generalized stochastic Petri net modules 27

• A weight expression is both parameter- and marking-dependent.
• A prop expression is a performance measure or query that can be determined by

model checking and stochastic analysis, but may also depend on the initial marking.
• A path expression is a path property defined along a trace of model execution. It may

be a complete ltl query or appear as a path formula in a ctl∗ prop query.

Because symbol kinds are separated from types, the type system can be adapted for
many different scenarios while leaving the Petri net structure intact. Some of these possible
extension based on existing literature are explored in Remarks 3.1 and 3.2.

Remark 3.1 Some analysis methods only allow specific kinds of parameter-dependence, such as C1

differentiable expressions [Blake et al., 1988] or rational functions [Hahn et al., 2011]. However, no
attempt is make to track different classes of parameter-dependent functions in param expressions,
because the restrictions on parametric expressions are highly specific to these analysis methods. If
such validations is required, either the rgspn can be inspected when being exported for analysis, or
the type system can be modified for the needs of the particular analysis method.

Subtyping

The type system proposed in eq. (3.1) can be overly rigid, because otherwise valid usages
of expressions are forbidden, e.g. a const literal is incompatible with a marking context.
We introduce subtyping to our type system for flexibility by enabling coercions between
different dependence contexts and pretypes.

Subtyping is a binary relation <: ⊆ Type × Type, where τ <: τ ′ signifies that terms of
type τ are convertible to type τ . It is reflexive, i.e. τ <: τ for all τ ∈ Type.

Subtyping for variable types is the direct product of the partial orders

©« const

param marking

weight

prop

path ª®®®®®®®®®®¬

×
©« int

double

boolean

ª®®¬
(3.2)

of the sets Dependence and Pretype, respectively, where comparable elements are con-
nected with upward paths in the style of e.g. Walker [2005]. For example, const int <:
marking double, because const � marking and int � double in the partial orders. The
semantics of variable type coercions are discussed in Section 3.3.2 on page 32.

Collection types are covariant in their member types; therefore τ <: τ ′ if and only if
τ[] <: τ ′[]. Type coercion of collections is performed elementwise.

Remark 3.2 It would be possible to include more elaborate abstract syntax and subtyping rules for
types, for example to describe colored Petri nets, where scalar token counts in markings are replaced
by multisets over the elements of the color class or sort corresponding to each place. In the colored
setting, instead of a single place type, types of places carry a sort parameter. Kindler [2007] studied
modular colored Petri nets with sort and operator symbols. A sort symbol reference is a color class
that can be imported into the module from outside and is thus left abstract inside the module. Types
of places thus may depend on the sort symbols.

Modular colored nets may also contain operator symbols, which transform members of a color
class into another. In our framework, these could be modeled by symbols of type τ → σ , i.e. operators
that transform values of type τ into values of type σ , extending syntax of types ‹Type› F . . . |

‹Type›→ ‹Type›. The arising challenges seem to require more elaborate type theoretical machinery,
such as typed lambda calculus with subtyping [see e.g. Pierce, 2002, Chapters 15 and 16].

3.2 Generalized stochastic Petri net modules 28

3.2.3 Formal definition
In this section we first define rgspn signatures as a set of symbols of various kinds. Then
the definition of an rgspn on a given signature is elaborated, which extends the signature
with the properties of the symbols and the edges of the net. This separation allows deferring
the details of the expressions of a signature to Section 3.3 on page 30 even though expression
will serves as the properties of symbols in the definition of rgspns.

Definition 3.1 An rgspn signatrue is an 11-tuple

Σ = 〈P ,TT ,Ti ,V , Par,R,C, dep, pretype, target,member〉,

where the sets P ,Tt ,Ti ,V , Par,R,C, are disjoint and
• P is a set of places;
• TT and Ti are sets of timed and immediate transitions, respectively;
• V is a set of variables;
• Par is a set of parameters;
• R is a set of references;
• C is a set of collections;
• dep : V → Dependence is the variable dependence function;
• pretype : V → Pretype is the variable pretype function;
• target : R → Type is the reference target type function;
• member : C → Type is the collection member type function.

We will abuse notation such that Σ also stands for the set P ∪Tt ∪Ti ∪V ∪ Par ∪ R ∪C

of all symbols. Furthermore, ExprΣ will denote the set of all algebraic expressions that may
mention symbols of Σ.

Definition 3.2 An rgspn is an 11-tuple N = 〈Σ,m0, λ,w,π , value,←,→,⊸,≔,+=〉,
where

• Σ = 〈P ,TT ,Ti ,V , Par,R,C, . . .〉 is an rgspn signature;
• m0 : P → ExprΣ is the initial marking function;
• λ : TT → ExprΣ is the timed transition rate function;
• w : Ti → ExprΣ is the immediate transition weight function;
• π : Ti → ExprΣ is the immediate transition priority function;
• value : V ∪ Par→ ExprΣ ∪R is a function, such that value(v) ∈ ExprΣ for all v ∈ V

and value(par) ∈ R for all par ∈ Par;
• ←,→,⊸ ⊆ Σ × ExprΣ × Σ are the relations of output, input and inhibitor arcs,

respectively, which are free of parallel arcs, i.e. 〈p, e1, t〉, 〈p, e2, t〉 ∈ ← implies
e1 = e2 and this property holds also for→ and⊸;

• ≔ ⊆ R × Σ is the relation of reference assignments;
• += ∈ Multiset(Σ × Σ) is the multiset relation of collection memberships.

Note the separation between timedTT and immediate transitionsTi . In gspns timed and
immediate transitions are usually discriminated by setting π (t) = 0 for all t ∈ TT [Marsan
et al., 1984]. However, in our setting the priority π (t) may contain an algebraic expression;
therefore determining whether π (t) = 0would require nontrivial computations. By explicitly
partitioning the set of transitions T = TT ⊔Ti this computation is avoided.

All quantitative aspects of the net are described by expressions ExprΣ with the exception
of the values of the parameters, which must be real numbers. Any computation is forbid-
den inside parameter values, so that parameter synthesis tool may set new values of the

3.2 Generalized stochastic Petri net modules 29

parameters without needing to respect constraints between parameter values implicit in the
value computations. Explicit constraints, such as interval bounds for parameters may be
added as an extension of rgspns; however, they are currently not supported. If multiple
values depending on a shared set of parameters are needed, variable symbols with value
expressions may be used instead.

Edges of the net are between pairs of arbitrary symbols, e.g. arcs are not restricted to
go from place symbols to transition symbols, because any symbol may be replaced by a
reference of compatible type. However, reference assignments must assign the symbol to be
pointed at to a reference, as no other symbol kind can act as an assignable.

Although parallel arcs are forbidden, parallel collection membership edges are permitted
by making += a multiset relation, i.e. a bag of tuples, such as H〈c, s〉, 〈c, s〉, . . .I.

We will write p
e
← t , p

e
→ t , p

e
⊸ t , r ≔ s and c += s for 〈p, e, t〉 ∈ ←, 〈p, e, t〉 ∈ →,

〈p, e, t〉 ∈ ⊸, 〈r , s〉 ∈ ≔ and 〈c, s〉 ∈ +=, respectively.

Type checking

Types for the symbols of the net are synthesized by the function type : Σ→ Type defined as

type(s) =

place, if s ∈ P , tran, if s ∈ T ,
dep(s) pretype(s), if s ∈ V , param double, if s ∈ Par,
target(s), if s ∈ R, member(s)[], if s ∈ C,

The types of places and transitions match their kinds, while variables have a variable
type according to their dependence and pretype. The types of parameters are fixed to
param double, as they are continuous and parameter dependent by definition. References
always have the type of the symbol they may point at; therefore they may stand for the
pointed symbol. Collections append a collection type qualifier to the type of their members.

The typing relation _ ⊢ _ : _ assigns types to expressions e ∈ ExprΣ. We write Σ ⊢ e : τ

if e is of type τ in the context of the rgspn signature Σ. As it will be seen in Section 4.5.1
on page 48 the typing relation respects subtyping, i.e.

Σ ⊢ e : τ τ <: τ ′

Σ ⊢ e : τ ′
. (T-Sub)

In well-typed rgspns, where expressions and edges respect strong typing to ensure
context-appropriate use of symbols and expressions within both the structural part of the net
and its queries. Below we propose some typing requirements that make analysis tractable
without greatly restricting the modeler.

Definition 3.3 An rgspn is well-typed if it has the following properties:
• For all p ∈ P the initial marking is an integer constant, Σ ⊢m0(p) : const int.
• For all timed transitions t ∈ TT the transition rate is a possibly marking- and

parameter-dependent real number, Σ ⊢ λ(t) : weight double.
• For all immediate transitions t ∈ Ti the probability weight is a possibly marking-

and parameter-dependent real number, Σ ⊢ w(t) : weight double. The transition
priority is typed much more conservatively by requiring an integer constant, such
that Σ ⊢ π (t) : const int holds.

• For all variables v ∈ V the value expression must match the type of the variable,
Σ ⊢ value(v) : type(v).

• All arcs p
e
← t , p

e
→ t or p

e
⊸ t go between places and transitions such that

type(p) <: place and type(t) <: tran holds. The inscription e may depend on the
marking, Σ ⊢ e : marking int,

3.3 Expressions 30

• For all r ≔ s, s is a compatible target of r , type(s) <: target(r).
• For all c += s, s is a valid member of c, type(s) <: member(s).

Remark 3.3 The requirements are based on the assumptions in gspn and ctmc solution algorithms.
While the inscriptions of arcs e are allowed to have dependence marking, becausemarking-dependent
arcs may lead to simplifications of stochastic models [Ciardo and Trivedi, 1993]. However, as some
external tools only support arcs with constant inscriptions, Σ ⊢ e : const int may be enforced
instead for compatibility.

Similarly, marking-dependent immediate transition weights can also pose a difficulty in solving
the model [Teruel et al., 2003], which can be averted by requiring Σ ⊢ w(t) : param double
for all t ∈ Ti . In contrast, some state-space explorations methods, such as the decision diagram
based algorithm proposed by Marussy et al. [2017], may permit marking-dependent priorities
Σ ⊢ π (t) : marking int.

From now on all discussed rgspns will be assumed to be well-typed.

Running example 3.2 Figure 3.2 shows the model from Running example 3.1 on page 26
extended with type annotations in blue. Places, transitions and parameters have their
expected types place, tran, param double. Variables are annotated according to their
dep and pretype, while collections bear the collection qualifier suffix [].

There are several examples of subtyping in action: the symbols thinkingTime1, thinking-
Time2, eatingRate1, eatingRate2 are used as rates of timed transitions despite their types
const double and param double. The collection thinkingTimes of prop double mem-
bers contains the symbols thinkingTime1 and thinkingTime2 of type marking int.

3.3 Expressions
In this section we propose an abstract syntax for expressions that describe the quantitative
aspects of rgspn models, including arc inscriptions, initial markings and firing policies in
Definition 3.1 on page 28, as well as the performance measures and queries of interest.

The expression language ctl∗ includes state and path operators in addition to references
to net elements, basic arithmetic and logical operators. These additional operators enable
defining queries concerning ctl, ltl or ctl∗ properties. Similarly to the flexibility of the
type system, the syntax of expressions can be also extended if the definition of further
properties, such as csl formulas are desired. Validation and interpretation of the queries,
such as checking whether a ctl∗ formula is in ctl when full ctl∗ is not supported, is the
responsibility of the external model checking tool.

The valid expression on an rgspn signature Σ form the set ExprΣ described by the
following ebnf-like grammar:

‹ExprΣ›F ‹Literal› | ‹Σ› | #‹Σ› | ‹Aggregate›(‹Σ›) | ‹Unary› ‹ExprΣ›
| ‹ExprΣ› ‹Binary› ‹ExprΣ› | if (‹ExprΣ›) ‹ExprΣ› else ‹ExprΣ›,

‹Literal›F ‹N› | ‹R› | ‹B›,

‹Aggregate›F sum | prod | all | any,
‹Unary›F + | - | ! | A | E | X | F | G,
‹Binary›F + | - | * | / | == | != | < | <= | > | >= | && | || | U.

(3.3)

The expression language contains Boolean, integer and real literals, a standard set of
unary and binary operators, a ternary conditional operator, as well as ctl∗ state operators

3.3 Expressions 31

philosopher1

thinking1 : place

waiting1: place

eating1
: place

getHungry1
λ = hungryRate1
: tran

startEating1
w = 1, π = 1
: tran

getHungry1
λ = hungryRate1
: tran

thinkingTime1
= #thinking1
: marking int
hungryRate1
= 0.5
: const double
eatingRate1
= 3.0
: param double

rightFork1
:place

leftFork1 : place

philosopher2

thinking2 : place

waiting2: place

eating2
: place

getHungry2
λ = hungryRate2
: tran

startEating2
w = 1, π = 1
: tran

getHungry2
λ = hungryRate2
: tran

thinkingTime2
= #thinking2
: marking int
hungryRate2
= 0.45
: const double
eatingRate2
= 2.8
: param double

rightFork2
: place

leftFork1 : place

table
totalThinkingTime
= sum(thinkingTimes)
: prop double

thinkingTimes
: prop double[]

∈ ∈

Figure 3.2 Example rgspn with type annotations.

A, E and path operators X, F, G, U. Variable symbols and references thereof from Σ may
be mentioned as-is and are interpreted as the values of the variables. Places can be also
mentioned by prefixing them with # and correspond to marking dependent expressions
referring to the number of tokens on the place. Collections must be paired with an
aggregation operator to turn their multiset of member symbols into a single value.

Note that marking expressions and collection aggregations directly take a symbol from Σ

instead of an expression ExprΣ; therefore “if (#p1 > 0) #p2 else #p3” is a valid expression,
but “#(if (#p1 > 0) p2 else p3)” is invalid. This restriction, while not constraining expres-
sivity significantly, allow for more straightforward inlining and implification of expressions
when the rgspn is transformed into a gspn.

3.3.1 Typing
A complete set of typing rules for ExprΣ is presented in Table 3.1 on page 33, which describes
the relation _ ⊢ _ : _. The judgement Σ ⊢ e : τ assigns a type τ to an expression e ∈ Expr(Σ)

in the context of an rgspn signature Σ.
The types of unary operators, binary operators, conditional and aggregate expressions

are captured by the rules T-Unary, T-Bin, T-If and T-Agg. Instead of introducing types for
operators and typing rules for operator application, typing rules for all operators are written
out explicitly. While this approach increases the number of typing rules considerably, the
lack of function types and polymorphic types allows the syntax of Type to remain simple.
If more generality is desired, the type system may be extended to support user-defined
operators and operator types as described in Remark 3.2 on page 27.

In spite of being handled only in the type derivation rules, several operators are poly-
morphic in the types of the arguments. However, T-BinaryDiv forces both arguments of
the division operator be real numbers, so that ambiguities concerning integer division are

3.3 Expressions 32

avoided. Most compound expressions are dependency polymorphic, that is, the types of their
arguments may have any dependency qualifier δ , which will be inherited by the type of the
whole expression. The exceptions are the ctl∗ operators, which operate on path formulas
and produce path or prop state formulas.

Variable and marking references are handled by T-Var and T-Marking. Referring to
markings of places always produces a marking dependent int. T-Literal assigns const
types to literal constants. Lastly, T-Sub allows the use of subtyping in type derivations.

3.3.2 Semantics
In this section we sketch the semantics of ExprΣ both for structural expression of an rgspn

and for performance measures and queries. Most of the expression evaluation happens in
external analysis tools when marking- and parameter-dependent expressions are interpreted
to construct a ctmc from the Petri net and when queries are answered. Therefore, exporting
rgspns for external tools must be performed with care to ensure that the tool interprets the
provided input according to these semantics. This may require nontrivial transformation
of the expressions to the input language of the tool and may even be impossible to fully
achieve when the external tool is missing some analysis features. In the latter case, the user
may receive an error message during export.

Pretypes and dependence qualifiers

Values of pretypes boolean, int and double can be interpreted as members of the sets
B = {true, false} of truth values, Z of integers and R of real numbers, respectively.△

Formally, pretypes have the interpretations specified in Table 3.1, i.e.

JbooleanK = B, JintK = Z, JdoubleK = R.

Variable types δ ρ can be viewed as functions from some context determined by the
dependence qualifier δ to the set JρK. In the case δ = const, the context is empty, so
Jconst ρK is isomorphic to JρK. For other qualifiers, the context may be comprised of a
vector θ ∈ R |Par | of parameter values and the current marking of the Petri netm. Queries
with prop and path dependence may also require the entire ctmc that describes the logical
and stochastic behavior of the rgspn for evaluation. Finally, path properties are evaluated
on an execution path Π =m1 →m2 → . . . of markings (or equivalently, ctmc states). The
interpretations of variable types can be summarized as

Jconst ρK : p ∈ JρK,
Jparam ρK :θ 7→p ∈ JρK,

Jmarking ρK : m 7→p ∈ JρK,
Jweight ρK :θ,m 7→p ∈ JρK,

Jprop ρK :θ,m, ctmc 7→p ∈ JρK,
Jpath ρK :θ, ctmc,Π 7→p ∈ JρK.

Type coercion from int to double act in the obvious way. Dependence coercion along the
partial order from eq. (3.2) on page 27 introduces arguments to the interpretation functions
that are ignored. For example, coercing const to weight results in a function that ignores

△ In practice, representations on integers and floating-point numbers with a finite number of bits are used
instead. However, this distinction only becomes important in the external analysis tools, where finite numerical
precision necessitates careful design of algorithms to control approximation error [Baier et al., 2017b].

3.3 Expressions 33

Table 3.1 Typing rules for expressions.

⋄ ∈ {+, -} ρ ∈ {int, double} Σ ⊢ e : δ ρ

Σ ⊢ ⋄e : δ ρ
, (T-Unary±)

Σ ⊢ e : δ boolean
Σ ⊢ !e : δ boolean

, (T-UnaryNot)

⋄ ∈ {A, U} Σ ⊢ e : path boolean
Σ ⊢ ⋄e : prop boolean

, (T-UnaryState)

⋄ ∈ {X, F, G} Σ ⊢ e : path boolean
Σ ⊢ ⋄e : path boolean

, (T-UnaryPath)

⋄ ∈ {+, -, *} ρ ∈ {int, double} Σ ⊢ e1 : δ ρ Σ ⊢ e2 : δ ρ

Σ ⊢ e1 ⋄ e2 : δ ρ
, (T-BinNumeric)

Σ ⊢ e1 : δ double Σ ⊢ e2 : δ double
Σ ⊢ e1 / e2 : δ double

, (T-BinDiv)

Σ ⊢ e1 : path boolean Σ ⊢ e2 : path boolean
Σ ⊢ e1 U e2 : path boolean

, (T-BinUntil)

⋄ ∈ {==, !=} Σ ⊢ e1 : δ ρ Σ ⊢ e2 : δ ρ

Σ ⊢ e1 ⋄ e2 : δ boolean
, (T-BinEq)

⋄ ∈ {<, <=, >, >=} Σ ⊢ e1 : δ double Σ ⊢ e2 : δ double
Σ ⊢ e1 ⋄ e2 : δ boolean

, (T-BinCompare)

⋄ ∈ {&&, ||} Σ ⊢ e1 : δ boolean Σ ⊢ e2 : δ boolean
Σ ⊢ e1 ⋄ e2 : δ boolean

, (T-BinLogical)

Σ ⊢ e1 : δ boolean Σ ⊢ e2 : δ ρ Σ ⊢ e3 : δ ρ

Σ ⊢ if (e1) e2 else e3 : δ ρ
, (T-If)

agg ∈ {sum, prod} ρ ∈ {int, double} type(b) = δ ρ[]
Σ ⊢ agg(b) : δ ρ

, (T-AggNumeric)

agg ∈ {all, any} type(b) = δ boolean[]
Σ ⊢ agg(b) : δ boolean

, (T-AggLogical)

v : type(v), (T-Var)
type(p) <: place
#p : marking int

, (T-Marking)

ℓ ∈ JρK

Σ ⊢ ℓ : const ρ
, (T-Literal)

Σ ⊢ e : τ τ <: τ ′

Σ ⊢ e : τ ′
, (T-Sub)

where JintK = N, JdoubleK = Z and JbooleanK = B.

its θ and m arguments while returning a constant value. The only non-straightforward
coercion is from prop to path. In order to be consistent with ctl∗ formulas this conversion
is defined such that the first marking m1 of the path Π = m1 → m2 → . . . serves as the
current marking argumentm of the prop computation when it is treated as a path property.

Operators and mentioned symbols

Now we will clarify the semantics J_K of the expressions ExprΣ themselves. The interpreta-
tions of expressions conform with the types, i.e. if Σ ⊢ e : τ , then we have JeK ∈ Jτ K.

Operators from eq. (3.3) on page 30 act pointwise on the interpretation functions, e.g. to
calculate e1 ⋄ e2, e1 and e2 are separately evaluated in the dependence context, then the

3.3 Expressions 34

operator ⋄ is applied to the resulting values.△

The ctl∗ operators, which explicitly require prop and path dependence contexts, are
excepted from pointwise evaluation. A prop expression is treated as a state predicate over
markingsm after plugging the parameter binding θ and the ctmc into the interpretation
function. Similarly, path expressions are treated as predicates over paths Π composed by
the operators according to ctl∗ semantics [see e.g. Emerson and Halpern, 1986].

To interpret variables mentioned inside expressions, we introduce reference resolution. A
reference symbol r ∈ R may point at some concrete s ∈ Σ \R or at another references r ′ ∈ R.
We say that r resolves to s ∈ Σ \ R, written as r { s, if s is the unique concrete symbol with
a chain of reference assignments from r to s. In addition, every concrete symbol resolves to
itself, s { s for all s ∈ Σ \ R. This notion is formalized as follows:

Definition 3.4 Let ≔∗ ⊆ Σ × Σ be the reflexive transitive closure of the relation ≔, i.e.
s1 ≔

∗ s2 if and only if

∃k ≥ 0, s1 = r0, r1, . . . , rk = s2 ∈ Σ such that ri ≔ ri−1 for all i = 1, . . . ,k.

The symbol s1 resolves to s2, written as s1 { s2, if s2 ∈ Σ \R is the unique concrete symbol
for which s1 ≔∗ s2 holds.

If a symbol v of variable type is mentioned in an expression, we simply substitute it with
its value. However, if v refers to a parameter symbol—or is actually parameter symbol—it
is instead interpreted to refer to the corresponding element of the parameter vector θ.
Formally,

JvK =

Jvalue(v ′)K, if v { v ′ and v ′ ∈ V ,

θ 7→ θ [par], if v { par and par ∈ Par,

⊥, otherwise.

Note that if the reference v cannot be resolved or it points to an invalid symbol the
interpretation is not defined.

Mentioning the marking of a place simply refers to the number of tokens of the place
after resolving references,

J#pK =

{
m 7→m(p ′), if p { p ′ and p ′ ∈ P ,

⊥, otherwise.

Collection aggregations are defined with “big operator” semantics. An aggregation
operator is equipped with a monoid 〈⋄,n〉, where ⋄ is an associative binary operator and n
is a the neutral element of the operator. The ⋄ operator joins the elements of the collection,
whereas for empty collections, n is returned instead. The monoid 〈+, 0〉 is associated with
the aggregation operator sum, 〈*, 1〉 with prod, 〈&&, true〉 with all and 〈||, 1〉 with any.

Definition 3.5 The resolved elements of a collection c ∈ C are

resolved(c) = Hs | ∃ r1, r2 ∈ Σ such that r1 { c, r1 += r2, r2 { sI,

where the multiset-builder notation respects the multiplicities in the relation≔. Note that
both ends of a collection membership edge r1 += r2 may be references, which resolve as
r1 { c on the collection end and r2 { s on the member end, respectively.

△ This makes variable types with a dependence qualifier other than const specializations of Reader (also
known as Environment) applicative functors [McBride and Paterson, 2008, Section 8].

3.3 Expressions 35

The aggregation agg is interpreted as

Jagg(c)K =

^s ∈resolved(c ′)JsK, if c { c ′, c ′ ∈ C and |resolved(c ′)| ≥ 1,

n, if c { c ′, c ′ ∈ C and |resolved(c ′)| = 0,

⊥, otherwise,

where the operator ⋄ acts over the interpretation functions JsK as discussed above while
respecting multiplicity and the constant n is type coerced as needed.

The interpretations given above for mentioned symbols, token counts and collection
aggregation in expressions are exploited in Section 4.5.1 on page 48 for inlining. The
inlining process transforms expressions into expressions with equivalent semantics that can
be exported to analysis tools without special support for rgspns.

37

Chapter 4

Incremental view synchronization

Complex industrial toolchains used for the model-based design of safety-critical cyber-
physical systems frequently depend on various models on different levels of abstraction,
where abstract models are derived by model transformations. The derived models are often
views, which aim to focus attention from a given viewpoint such that details relevant to
a specific group of stakeholders are retained [Brunelière et al., 2017]. The views contain
information that is related to and coming from other models, which can also be themselves
other views. Incremental small-step execution of model transformations aids in reducing
the computations costs of view maintenance [Varró, 2015].

In this chapter we propose a means to assemble formal stochastic models from domain
models by model transformation. The resulting analysis model is a view of the engineering
model from a reliability or performability viewpoint. The transformation should be 1 para-

metric in the sense that the source metamodel, the transformation rules and the analysis
model fragments that are instantiated may be specified by the user. In addition, stochastic
Petri nets produced by the transformation should be 2 compatible with external analysis

tools. As a key to interpret analysis results of the derived stochastic models automatically,
the transformation should ensure 3 end-to-end traceability between source model elements
and the quantitative aspects of the stochastic model. Lastly, to support efficient mapping
of constantly changing design candidates in design-space exploration, the transformation
should be 4 executed incrementally driven by change notifications of the source model.

Existing transformation languages, such as atl [Jouault et al., 2008], QVTr [Object
Management Group, 2016, Chapter 7] or viatra Views [Debreceni et al., 2014] can describe
mappings between instances of arbitrary metamodels; therefore they satisfy the requirement
of 1 user configurability. These languages require the specification of the results of the
transformation at the low level of individual model objects and links. While creating single
objects at once is satisfactory for views that aim to create abstractions of the source model,
automatic derivation of stochastic models is closer to compilation. The result of mapping
even just one source element may have a complicated result, such as a collection of Petri net
places, transitions and expressions trees describing quantitative aspects of the model. Hence
we propose a transformation specification language tightly integrated with the rgspns
introduced in Chapter 3 as an alternative to general-purpose transformation languages for
stochastic model creation.

The left side of the transformation rules are graph patterns which select the parts of the
source model to be mapped. On the right side, the transformation results are specified as
rgspn modules, which are rgspn model fragments. The typing discipline from Definition 3.3
on page 29 is extended to transformation rules to aid in catching bugs.

4.1 Related work: view synchronization approaches 38

In current analysis tools, there is little support for reference symbols, variables and
collections introduced in rgspns. To 2 ensure compatbility, a inlining step is also incorpo-
rated into the transformation chain. The inlining concretizes the abstract rgspn constructed
according to the user-provided view specification and yields a concrete rgspn, that contains
no references, collections and does not mention variables in expressions. Variable symbols
are kept so that they can exported to the analysis tool as stochastic metrics to be computed
or as queries to be answered. Matching of the queries to source model concepts is pro-
vided by 3 traceability relations that are maintained implicitly, i.e. without additional user
intervention.

The 4 incremental execution of the transformation is ensured by the use of an in-
cremental graph query engine [Ujhelyi et al., 2015] and a reactive model transformation
platform [Bergmann et al., 2015]. If a step in the transformation chain cannot be executed
due to a malformed input model the effects of the transformation are delayed until the
issue is resolved. Upon delaying, an error marker is generated that is removed when the
transformation can resume successfully.

After briefly reviewing related work we describe the proposed transformation chain, as
well as its specification language and semantics. Then the instantiation of rgspn modules
is discussed, finally followed by the details of the concretization transformation and its
handling of inconsistencies by the means of delayed execution.

4.1 Related work: view synchronization approaches
Now we briefly review some approaches for synchronizing view models for engineering
dsls with a focus on approaches supporting incremental synchronization and the creation
of complex formal modes.

Model transformations are a pervasive concept in model-driven engineering (mde) where
they are employed to modify a model in place or convert between different representations
and abstraction levels of models by either creating a new targetmodel or updating an existing
one [Czarnecki and Helsen, 2006]. For transformations with separate source and targets,
tracing connects related source and target objects. The traceability model may be main-
tained manually (explicitly), or the transformation engine may provide automatic (implicit)
traceability. Batch execution re-evaluates the whole transformation when the source model
changes to create a new version of the target. In contrast, target incrementality (change
propagation) only performs necessary changes on the target model. Source incremental

transformations also attempt to minimize the re-examined portion of the source model, for
example, by subscribing to change notifications.

Varró [2015] categorized the styles of change-driven model transformations as follows:
1. Transformations with no incrementality only execute in batch mode. 2. Dirty incrementality

marks target models or elements to be recomputed as dirty upon source changes and re-runs
the transformation for the dirty portions. 3. Incrementality by traceability relies on missing
or dangling traceability links to determine the target elements that are created or removed.
4. Reactive source incrementality triggers transformation rules by change notifications without
relying on traceability links.

View transformations are specific models transformations that aim to create target
models that describe the source from a specific viewpoint. Brunelière et al. [2017] has
surveyed view transformation tools, including incremental approaches.

The atl transformation language is a domain-specific language for describing model-
to-model transformations with implicit traceability [Jouault et al., 2008]. Algorithms for

4.1 Related work: view synchronization approaches 39

3. Abstract
analysis model

5. Concrete
analysis model

+ errors
2. View

transformation
4. Concretizer

transformation

Incremental
query engine

1. Source
model

View
trace model

Concretizer
trace model

Transform.
rules

Precondition
queries

RGSPN
modules

Tr
ac

e
M

od
el

Pa
ra

m
et

er
s Defined by the user

Part of our transformation framework

External model query engineexecutessubscribes to
match changes

executes
instantiates contains

instances of

Figure 4.1 Overview of the transformation chain.

trace-based incremental atl execution were proposed by Xiong et al. [2007], as well as by
Jouault and Tisi [2010].

The Query-View-Transformation (qvt) family of languages were also developed for
describing model-to-model transformations [Object Management Group, 2016]. The relation
QVTr sublanguage is a declarative language for the correspondences between the source
and target models with implicit traceability, which is compiled to the simple core QVTc
sublanguage. The operational QVTo sublanguage provides imperative transformations. Song
et al. [2011] proposed trace based incremental transformation for a subset of QVTr suitable
for deriving runtime models.

Triple graph grammars (tgg) can describe model transformations by employing an ex-
plicit trace model called the correspondencemodel [Schürr, 1994]. Restrictions of tggs (view
tggs) have been proposed for incremental view synchronization [Jakob et al., 2006; Anjorin
et al., 2014]. Greenyer and Rieke [2011] proposed extensions for tggs so that they could
derive formal models from sequence diagram specifications. However, their approach does
not support incremental execution.

The viatra reactive model transformation platform provides a framework for change-
driven model transformations with optional manual traceability [Bergmann et al., 2015].
Debreceni et al. [2014] proposed viatra Views as a declarative, incremental view transfor-
mation engine built on incremental model queries [Ujhelyi et al., 2015] and viatra.

Mosteller et al. [2016] proposed an approach to define semantics of domain-specific mod-
eling languages by Petri nets in the Renew meta-modeling and transformation framework.
A specialized modeling tool is generated based on a mapping from dsl elements to Petri
net fragments. The user can manipulate the concrete syntax of the dsl while a Petri net is
assembled from the fragments by the tool for analysis and code generation.

The ability to reference target objects created by different transformation rules is es-
pecially important in incremental transformation languages, because the developer of the
transformations cannot rely on the order of rule executions. Hence transformation rules
must be able to share target objects regardless of their execution order.

In atl model elements generated by rules can be resolved at any time by the built-in
resolveTemp operation. In QVTr relations between source and target elements can be joined
by when clauses. In tggs target object sharing is implicitly present in the correspondence
parts of the rule triples. Greenyer and Rieke [2011] introduced reusable patterns to tggs to
further refine object sharing. viatra Views support referencing objects produces by other

4.2 Overview of the transformation engine 40

rules with the @Lookup annotation. In contrast, modular Petri nets [Kindler and Petrucci,
2009] and thus our rgspn fragments model importing symbols explicitly by reference
symbols and reference assignments.

4.2 Overview of the transformation engine
The transformation chain from engineering models to analyzable rgspns is shown in
Figure 4.1. The architecture is divided into three parts: 1. the parameters of the transforma-
tion, which constitute the transformation specification provided by the user, 2. the models

and model transformations participating in the chain and 3. the trace models providing
end-to-end traceability.

4.2.1 Transformation specification
The transformation description contains the precondition queries, which are executed on an
incremental model query engine. For each query match the transformation rules specify
which rgspn module should be instantiated.

In addition, the user is able to reuse quantitative aspects of the engineering model in the
analysis model and define new quantitative aspects to be evaluated as stochastic queries.
These associated symbols, along with their traceability information play roles similar to the
parameters (prefixed with “$”), stochastic metrics (“/”) and queries (“/$”) introduced as an
extension to uml diagrams by Bernardi and Donatelli [2003].

Transformation rules can govern the mapping of numeric attributes from the domain
model to the variable symbols of the rgspn. Attributes may be marked as parameters,
which are retained as parameters symbols in rgspn and also when the analysis model is
exported to external solvers. Therefore the parameter mapping relates domain attributes
to sensitivity analysis [Blake et al., 1988], parametric solution of Markov chains [Hahn
et al., 2011] and parameter synthesis [Quatmann et al., 2016; T. Molnár, 2017], letting users
perform the aforementioned tasks directly on the domain model.

Moreover, derived features may also be specified that associate rgspn symbols with
domain model elements. In contrast with model query based approaches for the creation
of derived features [Ráth et al., 2012] the domain model is not modified to incorporate the
features. However, code generation and the extension methods feature of Xtend1 are utilized
in Section 5.2.1 on page 61 to emulate derived features syntactically in a general-purpose
programming language.

4.2.2 Transformation chain
As it is shown in Figure 4.1 the construction of rgspn analysis models is realized as a chain

of two model transformations.
The precondition queries of transformation rules are ran on the 1. source model by an

incremental query engine. The 2. view transformation maintains a 3. abstract analysis model

based on the query matches of the precondition queries and instantiates the rgspn modules
according to the transformation rules. In addition, the associated symbols relating to the
quantitative aspects of the source model elements are instantiated. A view trace model links
the elements and query matches of the source model to the symbols of the abstract rgspn.

1https://www.eclipse.org/xtend/

https://www.eclipse.org/xtend/

4.2 Overview of the transformation engine 41

T: Table
/totalThinkingTime
: prop double

T.totalThinkingTime
T.totalThinkingTime

= #thinking1 + #thinking2 <RewardConfig>
<Place>
thinking1
</Place>
<Place>
thinking2
</Place>
</RewardConfig>

Source
model

Abstract
analysis model

Concrete
analysis model

Exported
PNML

sum(thingingTimes)

<<trace>> <<trace>> <<trace>>

<<trace>>

Figure 4.2 Traceability for associated symbols.

The abstract rgspn contains reference symbols, variables and collections that are not
directly exportable to analysis tools. Therefore the 4. concretizer transformation is needed
to inline these features and obtain a 5. concrete analysis model, which is an rgspn without
advanced features. The concrete model can be exported as a gspn possibly parameter- and
marking-dependent transition rates for analysis with external tools. Furthermore, the value
expressions of the retained variable symbols, which refer to elements of the concrete model,
can serve as stochastic metrics and queries to be analyzed.

If the abstract analysis model is inconsistent, e.g. it contains unassigned references or
circular references, concretization is delayed and error markers are generated until the
inconsistency is resolved. The concretizer trace model links the abstract analysis model to
the concrete one; moreover, it also allows the interpretation of error markers.

Both the concrete and abstract rgspns are fully materialized as instance models so
that they can be freely inspected and exported. It is also possible to subscribe to change
notification of either of the models, for example, to incorporate our transformation chain
into a larger chain.

4.2.3 End-to-end traceability
Fully traversing the view and concretizer trace models allows the association of concrete
rgspn symbols with source model elements. Thus when an external solver is interfaced
with the transformation, it is sufficient to provide traceability between the concrete analysis
model and the external solver so that the analysis results remain interpretable in the context
of the source domain model.

Running example 4.1 Figure 4.2 shows the trace links for an rgspn symbol derived
feature totalThinkingTime of the domain class Table.

The first trace link is the view trace model associates the domain object T with the
reference symbol T.totalThinkingTime in the abstract analysis model. A variable
symbol is assigned to the reference.

The concretization transformation resolves and inlines all references, therefore both
trace links from the reference symbol and the concrete symbol in the concretization trace
model point at the same variable symbol in the concrete analysis model. As result of the
inlining, the aggregation operator in value expression of the variable is replaced with the
sum of the member variables. In the example, these members are token count expressions
#thinking1 and #thinking2.

If the concrete analysis model is exported to an external analysis tool, such as Petri-
DotNet [Vörös et al., 2017b], the pnml serializer may also output traceability information.

4.3 Transformation specification language 42

Table 4.1 Feature rules for dining philosophers transformation specification.

Domain class Transformation rule Associated symbols

features {

Philosopher
eatingRate: double
hungryRate: double

Philosopher {
param eatingRate

} hungryRate eatingRate

Table
Table {
derived prop double

totalThinkingTime
}

totalThinkingTime

}

In the example, the value expression of T.totalThinkingTime is turned into a reward
configuration for PetriDotNet. The end-to-end trace links associate the exported reward
configuration with the derived feature; hence the results of stochastic analysis can be
interpreted in the context of the domain model and its derived features.

4.3 Transformation specification language
We present the transformation specification language by walking through a running example.
Tables 4.1 and 4.2 show an example transformation description for the dining philosophers
domain. On the left graph patterns are displayed as subgraphs, while the rgspn modules
on the right also use graphical concrete syntax. In the middle column, the textual concrete
syntax of transformation descriptions is shown.

4.3.1 Feature rules
The first section of the transformation specification contains feature rules that describe the
associated symbols relating to the features (attributes) of the domain model elements. The
feature rule section is introduced by the features keyword. Each domain class may have a
sub-section describing the mapping of its features.

By default, each int, double and boolean attribute of a domain class is mapped to a
const variable symbol in the abstract rgspn. The value expression of the variable symbol
is a literal that is equal to the value of the domain attribute.

Users may override the attribute mapping of double features by specifying param
mapping instead. Attributes marked as param are turned into parameter symbols instead.

Lastly, feature rules may specify derived features. An rgspn reference symbol with
the given type and name is created and is associated with the domain element.

Running example 4.2 The metamodel for the dining philosophers domain contains the
classes Philosopher and Table. The two attributes of type double of Philosopher
are eatingRate and hungryRate, while Table has no attributes.

For Philosopher the feature rule in Table 4.1 marks the attribute eatingRate as a
parameter. Hence eatingRate is mapped to the rgspn as a parameter symbol, while
const variable symbol is created for hungryRate.

4.3 Transformation specification language 43

The Table feature rule prescribes a derived feature totalThinkingTime of type
prop double. Hence a reference symbol with the same name and type is associated with
Table objects.

4.3.2 Mapping rules
A mapping rule associates a precondition model query with a set of lookup declarations,
assignments and collections membership declarations, as well as optionally a postcondition

rgspn module. Thus the abstract analysis model is weaved from rgspn module instances
and the edges added between them by the mappings.

For every tuple of match arguments in the match set of the precondition query instances
of the assignments, collections memberships and the rgspnmodule are added to the abstract
analysis model. The instantiation of modules is performed by copying their contents to
the abstract analysis model after renaming their symbols to avoid collisions. The match
argument tuple serves as the source of traceability links to the instantiated objects.

After the keyword mapping the precondition graph pattern is named, followed by its list
of parameters. The associated symbols of match arguments are accessible in the body of the
mapping rule by mentioning the name of the match argument, followed by the dot operator
and the name of the associated symbol.

The name of the rgspn module to instantiate and a local name for the module instance
may be specified after the => operator. If the module instantiation clause is present symbols
inside the module instance can be referred to using the local name of the instance and the
dot operator similarly to associated symbol references.

Lookup declarations

The view trace model can be traversed during the view transformation by lookup declarations,
analogously to the @Lookup annotation introduced by Debreceni et al. [2014] for the traversal
of traceability relations in view maintenance. Introduced by the keywords lookup they
name a precondition pattern and provide a list of match arguments. The match arguments
must be a subset of the parameters of the containing mapping rule and a pattern match of
the specified pattern must exist.

After the operator as a local name may be given to the module instance created by
the lookup up mapping rule. Hence it is possible to refer to symbols instantiated by other
mapping rules in order to connect them with the rest of the analysis model. The execution
of the view transformation, which is described in Section 4.4, ensures that the modules can
be instantiated in any order and allows cyclic lookups between mapping rules.

Edge declarations

Edges between different rgspn module instances and symbols associated with domain
objects are also supported. The := and += operators may add reference assignments and
collection membership edges, respectively. Typing rules in Definition 3.3 on page 29 are
checked in mapping rules as well as in rgspn modules. Thus the abstract rgspn output by
the view transformation is ensured to be well-typed.

Running example 4.3 In Table 4.2 three mapping rules are given for the dining philoso-
phers domain. The feature rules in Table 4.1 are assumed for the mappings.

4.4 Generic view transformation to stochastic Petri nets 44

Table 4.2 Mapping rules for dining philosophers transformation specification.

Precondition Transformation rule rgspn module

qTable(T)

T: Table

mapping qTable(T)
=> TableMod TM {

T.totalThinkingTime
:= TM.totalThinkingTime

}

TableMod

totalThinkingTime
= sum(thinkingTimes)thinkingTimes

qPhil(T,P)

T: Table

P: Philosopher

mapping qPhil(T, P)
=> PhilMod PM {

lookup qTable(T) as TM
PM.hungryRate := P.hungryRate
PM.eatingRate := P.eatingRate
TM.thinkingTimes

+= PM.thinkingTime
}

PhilMod

thinking

waiting

eating

getHungry
λ = hungryRate

startEating
w = 1, π = 1

finishEating
λ = eatingRate

thinkingTime = #thinking

hungryRate

eatingRate

rightForkleftFork

qAdjacent(T,L,R)

T

RL left

right

mapping qAdjacent(T, L, R) {
lookup qPhil(T, L) as PM1
lookup qPhil(T, R) as PM2
PM2.leftFork := PM1.rightFork

}

PM1:
PhilMod

PM1.rightFork

PM2:
PhilMod

PM2.leftFork

The pattern qTable matches for all instances T of the class Table. An instance of the
module TableMod is created with the local name TM. The symbol totalThinkingTime
of TM is assigned to the derived symbol with the same name of the domain object T.

The pattern qPhil matches each philosopher P sitting around a table T. The corre-
sponding mapping instantiates PhilMod with the local name PM. The table T is included
in the match parameter list such that the module TM created by the mapping qTable for
T can be looked up. The references hungryRate and eatingRate inside PM are assigned
to the symbols constructed from the attributes of P. The variable symbol thinkingTime
of PM is added to the collection thinkingTimes of PM.

The interaction between the instances of TableMod and PhilMod showcases the advan-
tages of collection symbols in rgspn. The individual performance measures thinking-
Time of philosophers are added to a collection, such that the aggregate performance
measure totalThinkingTime can be computed.

Lastly, qAdjacent find philosophers L and R sitting next to each other around the
table T. While the corresponding mapping has no rgspn module to instantiate, it looks
up the modules instances PM1 and PM2, respectively. The reference to the left fork of the
right philosopher is assigned to the right for of the left philosopher, which completes the
dining philosophers model.

4.4 Generic view transformation to stochastic Petri nets
The first transformation in our transformation chain is the view transformation that derives
abstract rgspn analysis models from engineering model. Its four main objectives are

4.4 Generic view transformation to stochastic Petri nets 45

• the instantiation of associated symbols for domain objects,
• the instantiation of rgspn modules for mapping rule precondition matches,
• the instantiation of additional assignment and collection membership edges according

to lookup specifications and
• the synchronization of the value expressions of associated attribute symbols with the

values of domain attributes.

The creation and removal of associated symbols, as well as rgspn modules and edges
follow the strategy for incremental view maintenance by graph queries proposed by De-
breceni et al. [2014]. Analysis model elements are created for precondition pattern matches
with missing traceability links, while analysis model elements with dangling traceability
links are deleted. Hence the style of instantiation is small-step incrementality by traceabil-

ity [Varró, 2015]. The trace model is implicit, i.e. users do not need to define a metamodel
for traceability links themselves. The transformation engine maintains the view trace model
automatically instead.

Edges defined inside mapping rules are only instantiated when there is a traceability
link for the abstract rgspn symbols on both ends of the edge and the precondition of
the mapping rule matches. To this end a connection graph pattern is generated which
incorporates the precondition pattern and also matches the traceability links for the looked
up rgspnmodules and associated symbols of the mapping rule. By evaluating the generated
pattern over the source model and the view trace model jointly the set of edges that can be
added to the abstract analysis model are determined. Dedicated traceability links are also
added between the matches of the generated patterns and the inserted edges; therefore the
edges can be removed when their corresponding match of the connection pattern disappears
and the traceability link becomes dangling.

Running example 4.4 The connection pattern generated from themapping rule qTable
in Table 4.2 is qTable∗(x) = qTable(x) ∧ (∃ℓ1.moduleInstanceTrace(qTable, 〈x〉, ℓ1)) ∧
(∃ℓ2.associatedSymbolTrace(x , ℓ2)), where moduleInstanceTrace(ϕ, t , ℓ) indicates that
ℓ is the traceability link for the rgspn module instance created by the map-
ping rule with precondition ϕ for the pattern match tuple t and associatedSymbol-

Trace(x , ℓ) indicates that ℓ is the traceability link for the symbols associated with
the source object x . Likewise we have qPhil∗(x ,y) = qPhil(x ,y) ∧ (∃ℓ1.moduleIn-

stanceTrace(qPhil, 〈x ,y〉, ℓ1))∧(∃ℓ2.associatedSymbolTrace(y, ℓ2))∧(∃ℓ3.moduleInstance-

Trace(qTable, 〈x〉, ℓ3)) and qAdjacent∗(x ,y, z) = qAdjacent(x ,y, z) ∧ (∃ℓ1.moduleIn-

stanceTrace(qPhil, 〈x ,y〉, ℓ1)) ∧ (∃ℓ2.moduleInstanceTrace(qPhil, 〈x , z〉, ℓ2)).

Symbols associated with numerical attributes of domain objects are synchronized with
the values of the attributes. The transformation engine subscribes to change notifications
from the source model and updates values of the symbols associated with the changed
object. Hence the attribute synchronization is reactive source incremental.

Running example 4.5 Figures 4.3 to 4.5 show an example transformation of a dining
philosophers domain model according to the feature rules in Table 4.1 on page 42 and
the mapping rules in Table 4.2. Symbols inside module instances with no adjacent edges
between modules were suppressed for clarity. Trace links are indicated by writing the
names of the linked pattern matches in the analysis model, as well as the coloring of
pattern matches and model elements.

The initial model in Figure 4.3 contains a Table T and a Philosopher P1. The
precondition query qTable has a single match 〈T〉 and qPhil has a single match 〈T, P1〉.

4.4 Generic view transformation to stochastic Petri nets 46

Source model
qPhil(T, P1)

T: Table

P1: Philosopher
eatingRate
= 3
hungryRate
= 0.5

qTable(T)

Abstract analysis model

qPhil(T, P1) => PM1: PhilMod

PM1.
thinkingTime

PM1.
hungryRate

PM1.
eatingRate

P1.
hungryRate
= 0.5

P1.
eatingRate
= 3.0

qPhil*(T, P1)qPhil*(T, P1)

qTable(T) => TM: TableMod

TM.totalThinkingTime
= sum(thinkingTimes)

TM.
thinkingTimes

T.totalThinkingTime

∈
qPhil*(T, P1)

qTable*(T)

Figure 4.3 Initial setup for the example view transformation.

Source model
qPhil(T, P1)

T: Table

P1: Philosopher
eatingRate
= 3
hungryRate
= 0.75

qTable(T)

Abstract analysis model

qPhil(T, P1) => PM1: PhilMod

PM1.
thinkingTime

PM1.
hungryRate

PM1.
eatingRate

P1.
hungryRate
= 0.75

P1.
eatingRate
= 3

qPhil*(T, P1)qPhil*(T, P1)

qTable(T) => TM: TableMod

TM.totalThinkingTime
= sum(thinkingTimes)

TM.
thinkingTimes

T.totalThinkingTime

∈
qPhil*(T, P1)

qTable*(T)

Figure 4.4 State of the example view transformation after modifying P1.eatingRate.

Source model

qPhil(T, P1)

qPhil(T, P2)

T: Table

P1: Philosopher
eatingRate
= 3
hungryRate
= 0.75

P2: Philosopher
eatingRate
= 2.8
hungryRate
= 0.45

qTable(T)

qAdjacent(T, P1, P2)

qAdjacent(T, P2, P1)

Abstract analysis model

qPhil(T, P1) => PM1: PhilMod

PM1.
thinkingTime

PM1.
hungryRate

PM1.
eatingRate

PM1.
rightFork

PM1.
leftFork

qPhil(T, P2) => PM2: PhilMod

PM2.
thinkingTime

PM2.
hungryRate

PM2.
eatingRate

PM2.
rightFork

PM2.
leftFork

P1.
hungryRate
= 0.75

P1.
eatingRate
= 3.0

P2.
hungryRate
= 0.45

P2.
eatingRate
= 2.8

qAdjacent*
(T, P2, P1)

qAdjacent*
(T, P1, P2)

qPhil*(T, P1) qPhil*(T, P1)
qPhil*(T, P2)

qPhil*(T, P2)

qTable(T) => TM: TableMod

TM.totalThinkingTime
= sum(thinkingTimes)

TM.
thinkingTimes T.totalThinkingTime

∈

qPhil*(T, P1)

∈

qPhil*(T, P2)

qTable*(T)

Figure 4.5 State of the example view transformation after adding a new philosopher P2.

4.5 Stochastic Petri net concretization 47

The associated symbols P1.eatingRate and P1.hungryRate were created for P1.
The derived feature symbol T.totalThinkingTime is associated with T. Module in-
stances TM of TableMod and PM1 of PhilMod were also added to the abstract analysis
model for the precondition matches qTable〈T〉 and qPhil〈T, P1〉, respectively. The
connection patterns qTable∗ generated from the qTable mapping rule and qPhil∗ gen-
erated from the qPhil mapping rule govern the insertion of rgspn edges between mod-
ules. The connection match qTable∗〈T〉 assigns the variable TM.totalThinkingTime
to the derived reference T.totalThinkingTime. In addition, qPhil∗〈T, P1〉 adds
PM1.thinkingTime to the collection TM.thinkingTimes and assigns the features sym-
bols associated with T to the respective reference symbols in the module PM1 such that
they can be mentioned in the expressions inside the implementation of PhilMod.

In Figure 4.4 the attribute hungryRate of P1 was changed. Therefore the transforma-
tion synchronized the literal in the value expression of the feature symbol P1.hungryRate
in the abstract analysis model.

In Figure 4.5 a new Philosopher P2 was created, which sits both on the left
and right of P1 around the circular table T. New precondition matches qPhil〈T, P〉,
qAdjacent〈T, P1, P2〉 and qAdjacent〈T, P2, P1〉 appeared, which lead to the instantia-
tion of a new PhilMod PM2. The symbols inside the PM2 are connected to the rest of
the analysis model with edges due to the connection match qPhil∗〈T, P〉. Furthermore,
matches qAdjacent∗〈T, P1, P2〉 and qAdjacent∗〈T, P2, P1〉 of the connection query gen-
erated from the mapping rule qAdjacent caused the assignments of PM1.leftFork to
PM2.rightFork and PM2.leftFork to PM2.rightFork.

Because analysis model elements with dangling trace links are removed the deletion
of P2 from the source model would cause the view transformation to restore the analysis
model to the state shown in Figure 4.4.

4.5 Stochastic Petri net concretization
The second step in our transformation chain is the concretization, which derives a rgspn

containing only concrete symbols from the abstract analysis model. The resulting concrete
analysis model can be readily exported as a parametric gspn to external solvers. In addition,
variable symbols are preserved in the concrete analysis model so that they can serve as
stochastic metrics and queries to be evaluated.

The three main responsibilities of the concretization transformation are

• the copying of concrete place, transition, variable and parameter symbols from the
abstract analysis model to the concrete analysis model,

• the resolution of reference symbols and
• the inlining of the variables and collection aggregations into rgspn expressions.

The execution of the aforementioned transformations may be prevented by errors and
inconsistencies of the abstract analysis model. Inconsistency may be caused by a reference
symbol having no resolution to a concrete symbol, reference resolution leading to parallel arcs
or cyclic dependencies of expression. Robust inconsistency handling is especially important
in change-driven incremental transformation chains, as a sequence of modifications of the
source model may induce inconsistency in the abstract analysis model during execution even
if the abstract analysis model becomes consistent at the end of the sequence. Our handling
delays parts of the concretization until the inconsistency is resolved, while an error marker
is generated to alert the user. The list of error markers can be checked at the end of source

4.5 Stochastic Petri net concretization 48

model modification sequences to ensure that the transformation chain fully synchronized
the analysis models without hampering the execution of individual modification operations
in the sequence.

Running example 4.6 Figures 4.6 to 4.8 show the concretizations of the abstract analysis
models from Figures 4.3 to 4.5 on page 46. Traceability links are indicated by identical
names of symbols in the abstract and concrete analysis models.

Figure 4.6 shows the initial concrete analysis model. Reference and collections symbols
have been eliminated from the model. The mentioned reference symbol PM1.eatingRate
in λ(PM1.finishEating) was replaced with the parameter symbol P1.eatingRate by
reference resolution. The value of the variable symbol P1.hugryRate was inlined into
λ(PM1.getHungry). The aggregation expression in TM.totalThinkingTime was ex-
panded into #PM1.thinking.

All expressions in the conretemodel are “flat”, i.e. they contain nomentions of variables
or collection aggregations. The only non-constant expressions are direct parameter and
marking dependencies. While variable symbols are not mentioned in expressions of the
Petri net, they remain in the model so that they can be exported as metrics and queries to
external analysis tools.

In Figure 4.3 on page 46 the referenced PM1.leftFork in the abstract analysis model
did not point at any (concrete) symbol. Therefore the reference could not be resolved
in Figure 4.6. Creation of the arcs between PM1.startEating, PM1.finishEating and
PM1.leftFork in the concrete analysis model is delayed. An error marker is generated
indicating that the concretization was not fully completed.

In Figure 4.4 on page 46 the modification of the eatingRate of P1 is propagated to
the concrete rgspn. In contrast with Figure 4.4 on page 46 not only the value expression
of the variable symbol P1.eatingRate is synchronized but also λ(PM1.finishEating)
is updated. Because the reference PM1.leftFork is still unresolved the error marker is
preserved; however, the rest of the transformation could be executed.

The addition of the Philosopher P2 lead to a new PhilMod instance PM2 in Figure 4.5
on page 46, which was copied into Figure 4.8. Due to the reference resolutions (see
Definition 3.4 on page 34) PM1.leftFork { PM2.rightFork and PM2.leftFork {
PM1.rightFork all symbols and arcs could be concretized successfully. In the concrete
rgspn the rightFork symbols stand for the leftFork symbols of the abstract rgspn.
Moreover, the value expression of TM.totalThinkingTimewas updated to accommodate
the new element PM2.thinkingTime = #PM2.thinking of the aggregated collection
TM.thinkingTimes in the abstract analysis model.

4.5.1 Transformation execution
The copying of place, transition, variable and parameter symbols is performed in a trace

incremental style, similarly to the instantiation of the abstract analysis model. The symbol
in the abstract analysis model is connected to its image in the concrete analysis model with
a traceability link.

Resolution of references during copying is also trace incremental. To copy Petri net arcs

s1
e
→ s2 (or s1

e
← s2, s1

e
⊸ s2, respectively) the symbols at both ends of the arc are resolved

to concrete places and transitions according to Definition 3.4 on page 34 first, such that we
have s1 { p and s2 { t for some transition t and place p. Since p and t are located in the
abstract analysis model, traceability links must be traversed to locate their images p ′ and

t ′ in the concrete analysis model. Then the arc of the form p ′
e
→ t ′ can be added to the

4.5 Stochastic Petri net concretization 49

TM

TM.totalThinkingTime
= #PM1.thinking

P1.
hungryRate
= 0.5
P1.
eatingRate
= 3.0

PM1

PM1.thinking

PM1.waiting

PM1.eating

PM1.
getHungry
λ = 0.5

PM1.
startEating
w = 1, π = 1

PM1.finishEating
λ = P1.eatingRate

PM1.
rightFork

PM1.thinkingTime
= #PM1.thinking

Error: reference
PM1.leftFork does not

point at a concrete symbol.

Figure 4.6 Concretization of the initial
rgspn from Figure 4.3 on page 46.

TM

TM.totalThinkingTime
= #PM1.thinking

P1.
hungryRate
= 0.75
P1.
eatingRate
= 3.0

PM1

PM1.thinking

PM1.waiting

PM1.eating

PM1.
getHungry
λ = 0.75

PM1.
startEating
w = 1, π = 1

PM1.finishEating
λ = P1.eatingRate

PM1.
rightFork

PM1.thinkingTime
= #PM1.thinking

Error: reference
PM1.leftFork does not

point at a concrete symbol.

Figure 4.7 Concretization of the rgspn

from Figure 4.4 on page 46 after changing
P1.eatingRate.

TM

TM.totalThinkingTime
= #PM1.thinking + #PM2.thinking

P1.
hungryRate
= 0.75
P1.
eatingRate
= 3.0

PM1

PM1.thinking

PM1.waiting

PM1.eating

PM1.
getHungry
λ = 0.75

PM1.
startEating
w = 1, π = 1

PM1.finishEating
λ = P1.eatingRate

PM1.
rightFork

PM1.thinkingTime
= #PM1.thinking

PM2

PM2.thinking

PM2.waiting

PM2.eating

PM2
getHungry
λ = 0.45

PM2.
startEating
w = 1, π = 1

PM2.finishEating
λ = P2.eatingRate

PM2.
rightFork

PM2.thinkingTime
= #PM2.thinking

P2.
hungryRate
= 0.45
P2.
eatingRate
= 2.8

Figure 4.8 Concretization of the rgspn from Figure 4.5 on page 46.

4.5 Stochastic Petri net concretization 50

concrete analysis model and connected to s1
e
→ s2 with a traceability link. The concretized

arc is removed when any of its traceability links become dangling.
In contrast, the inlining of expressions is not trace incremental, as the value of an

expression may change even if no objects are added or removed in the abstract analysis
model. A purely notification driven approach is also unsuitable, as an abstract analysis
model change requires updating not only the image of the affected symbol in the concrete
analysis model, but also the images of any expressions referring to the symbol, possibly
through a chain of references or collection aggregations. A dirty incrementality is employed
instead, where symbols depending on changed source model elements are marked as dirty
when the change notification is received. After the rest of the transformation rules have
been processed the cleanup rule is fired, which re-evaluates any expressions connected to
dirty symbols without unnecessary duplication of computations.

4.5.2 Expression dependencies
In this section we describe the algorithm used for dirty marking and re-evaluation of
expressions. The algorithm works on the level of symbols and arcs and re-evaluates any
expressions connected to a symbol when cleaning up dirty marks. Although expression-
level granularity could prevent event more re-evaluations compared to symbol-level dirty
marking, in our evaluation Section 5.3 on page 63 we found the scalability of the current
approach acceptable.

Re-evaluation of the image of an expression may be required

• when the value of a variable mentioned directly in the expression or indirectly through
variable, references and collection aggregations changes,

• when a reference assignment r ≔ s of a directly or indirectly mentioned reference
symbol r is created or removed,

• when a collection membership edge c += s of a directly or indirectly mentioned
collection symbol c is created or removed.

We formalize these notion as follows by mutually recursively defining the support : Σ ∪

ExprΣ ∪ (→) ∪ (←) ∪ (⊸) → 2Σ of expressions, symbols and arcs of an rgspn over the
signature signature Σ, as well as touching of symbols:

Definition 4.1 The support of an expression is the union of the supports of the symbols
mentioned directly,

support(e) =
⋃

s is mentioned in e

support(e).

The support of a symbol contains itself, the supports of any expressions associated
with the symbol, its pointed symbols and its collection members,

support(s) = {s} ∪ support(m0(s)) ∪ support(λ(s)) ∪ support(w(s))

∪ support(π (s)) ∪ support(value(s)) ∪
⋃
s≔s ′

support(s ′) ∪
⋃
s+=s ′

support(s ′)

where P ,TT ,Ti ,V , Par,R,C are the sets of places, timed transitions, immediate transitions,
variables, parameters, references as collections of Σ according to Definition 3.1 on page 28.

The support of an arc 〈p, e, t〉 ∈ (→) ∪ (←) ∪ (⊸) is the support of its inscription,

support(〈p, e, t〉) = support(e).

4.5 Stochastic Petri net concretization 51

The cone : Σ→ 2Σ∪(→)∪(←)∪(⊸) of a symbol is the set of symbols and arcs that contain
it in their supports, which is the set of rgspn elements the symbol can affect,

cone(s) = {x ∈ Σ ∪ (→) ∪ (←) ∪ (⊸) | s ∈ support(x)}.

Example 4.7 In Figure 4.5 on page 46 the support of T.totalThinkingTime is
{T.totalThinkingTime, TM.totalThinkingTime, TM.thinkingTimes, PM1.think-
ingTime, PM1.thinking, PM2.thinkingTime, PM2.thinking}. The cone of P1.hung-
ryRate is {P1.hungryRate, PM1.hungryRate, PM1.getHungry}.

Note that r ≔∗ s (and thus r { s) implies s ∈ support(r) and r ∈ cone(s).

Definition 4.2 A change of the abstract analysis model touches a symbol s if
• it changes the value ofm0(s), λ(s), w(s), π (s) of value(s),
• it creates or removes an assignment edge of the form s ≔ s ′,
• it creates or removes a collection membership edge of the form s += s ′.

Example 4.8 Changing P1.hungryRate in Figure 4.4 on page 46 touched P1.hungry-
Rate, because value(P1.hungryRate) was modified. Adding a new philosopher P2 and
its rgspn module PM2 in Figure 4.5 on page 46 touched TM.thinkingTimes, because
the membership edge TM.thinkingTimes += PM2.thinkingTime was added.

When a change is to be propagated from the abstract analysis model to the concrete
rgspn, the cones of any touched symbols are inspected. The images of symbols and arcs
in the touched cones (if any) are marked as dirty in the concrete rgspn. Moreover, any
symbol copied from the abstract analysis model starts as dirty. Dirtyness is tracked in the
concretizer trace model.

After synchronizing any other change, such as the copying of concrete symbols and the
removal of symbols with dangling traceability edges, the cleanup of dirty symbols and arcs
proceeds. Symbols are cleaned up in the order of their dependencies. Lastly, dirty arcs are
cleaned up by re-evaluating their inscriptions.

Definition 4.3 A symbol s ′1 of the concrete analysis model precedes s ′2, written as s ′1 � s ′2
if s ′1 and s ′2 are the images of s1 and s2 from the abstract analysis model, respectively, and
s1 ∈ support(s2).

Symbols s1 and s2 such that s1 , s2, but both s1 ∈ support(s2) and s2 ∈ support(s1)

constitute a circular dependency, which will be identified as a source of inconsistency of the
abstract analysis model in Section 4.5.3. If there are no cicrular dependencies � forms a
partial order over the symbols of the concrete rgspn.

Symbol cleanup processes dirty symbols in nondecreasing order according to �. Each
expression associated with a symbol is re-evaluated by inlining the values of mentioned
variables, unfolding collection aggregations, as well as replacing mentioned places and
parameter symbols by their images. These operations produce expressions equivalent to the
originals according to the semantics described in Section 3.3.2 on page 32.

As the symbols are ordered by their dependencies upon traversal, there is no need
to recursively process the value expressions of mentioned variable symbols. The variable
symbol was already processed, because any mentioned variable is in the support of the

4.5 Stochastic Petri net concretization 52

expression; hence the image of the variable already has a re-evaluated value expression
that was simplified as much as possible. Moreover, basic constant propagation arithmetic is
performed if the result of evaluation is a Boolean or numerical constant.

After processing all the dirty symbols the inscriptions of dirty arcs are similarly re-
evaluated. Because variables cannot depend on arc inscriptions the dependency order is not
violated and variables can be inlined as above.

The concretizer transformation is aided by incremental model queries over the abstract
rgspn and the concretizer trace model. The reflexive transitive closure of the assignment
relation ≔∗, the reference resolution relation { and supports of symbols in the abstract
analysis model, as well as the dependency order � on the concrete analysis model is
maintained by incremental transitive closure computation [Bergmann et al., 2012].

Remark 4.1 Petri net slicing [see e.g. Llorens et al., 2017] uses tools closely related to our dependency
tracking mechanism to extracts parts of a Petri net influencing the satisfaction of a property. Slicing
could be incorporated in the future into the concretization transformation to avoid copying symbols to
the concrete analysis model that are irrelevant to the (stochastic) properties of interest. Alternatively,
the external analysis tools can slice their input Petri nets to reduce computational burden.

4.5.3 Handling of inconsistencies
Inconsistencies in the abstract rgspn analysis model refer to constraint violations that
prevent the model from being concretized. While type checking for rgspns as defined in
Definition 3.3 on page 29 can prevent some problems at design time, other violations arise
from the mapping rules the structure of the dsource model of the view transformation.

View transformation specification developers should strive for creating concretizable
analysis models from valid source models. However, a sequence of source model modifica-
tions may produce inconsistent analysis models event if the source model becomes valid at
the end of the sequence. For example, if a source model object is replaced with another,
there may be an instant when an rgspn reference has no assignments or there are multiple
contradictory assignments, depending on whether the replacement first removes the old
object or inserts the new one. Hence the concretization must be robust in face of inconsistent
abstract rgspns and can resume transformation when the consistency is restored.

Inconsistency may appear in the abstract analysis model due to three main reasons:

• Reference assignments may be missing or contradictory. If a reference r has no
assignments, or any assigned symbol s (i.e. r ≔∗ s) is itself a reference r cannot be
concretized. Moreover, if there are multiple concrete symbols s1, s2 such that s1 , s2
but r ≔∗ s1 and r ≔∗ s2, there is no unambiguous concretization of r .

• There may be circular dependencies among symbols which prevent expression inlining.
Possible circular dependencies include

– simple circularly mentioned variables, value(v1) = v2, value(v2) = v1,
– circular mentioning through a reference, value(v1) = r , r ≔ v2, value(v2) = v1,
– circular mentioning through a collection, value(v) = sum(c), c ≔ v

and many variations thereof. We decided to disallow any form of circular dependency
to avoid confusion. Only one of s1 ∈ support(s2) and s2 ∈ support(s1) may hold if
s1 , s2. This always makes � a preorder on the concrete analysis model.

• Concretization may lead to disallowed parallel arcs. For example, if p
e1
→ t ,p

e2
→ r and

r ≔ t hold in the abstract analysis model there would be two parallel arcs p ′
e1,e2
−−−−→ t ′

in the concrete rgspn. This is forbidden by Definition 3.2 on page 28.

4.5 Stochastic Petri net concretization 53

Inconsistencies are tracked by the incremental model query engine during the concretiza-
tion transformation in the same way as reference resolutions and the dependency order.
The cleanup transformation is prevented from traversing symbols and arcs depending on
inconsistent parts of the model even if they were marked dirty; thus the concretization
is delayed until consistency is restored. Changes restoring consistency touch the delayed
symbols, hence the cleanup transformation can handle them properly again.

The match sets model queries tracking inconsistencies can be retrieved from the trans-
formation engine. Therefore if the analysis model is presumed to be consistent after a valid
sequence of source model changes this fact can be verified. In addition, the error markers
generated by inconsistencies can serve as a tool for transformation specification debugging.

55

Chapter 5

Application for design-space exploration

To achieve our goal of supporting design-space exploration with stochastic metrics, a
formalism for the convenient modular construction of stochastic models was presented in
the previous chapters along with a technique for transforming engineering (architectural)
models into stochastic models. Now the application of these tools in design-space exploration
(dse) toolchains is discussed.

Users may configure the model transformation framework proposed in Chapter 4 by
providing a transformation description, which determines the source dsl and the rgspn

fragments instantiated by transformation according to source model. Integrating the trans-
formation engine into a dse pipeline enables running any such transformation description
to provide analysis models.

Queries associated with the analysis models are represented as variables in the rgspns
derived by our transformation. The answers to the queries, which can calculated by external
stochastic analysis tools, guide the dse process as constraints to satisfy and goal functions
to optimize. To carry out the computation the design space explorer must interface with
the analysis tools. Serialization in iso/iec 15909-2:2011 pnml format was provided for
interoperability with externals tools. However, the toolchain integrator must provide means
to run the external solver, to serialize stochastic queries in its input format and to read the
analysis results.

As the literature pertaining the optimization of stochastic models was already reviewed in
Section 1.1 on page 2, in this chapter we start by describing the tasks related to the integration
of our analysis model transformation framework with a dse toolchain. In addition, we
describe the implementation of the framework along with the interfaces provided to users
and our empirical evaluation of its scalability.

5.1 Integration with design-space exploration toolchains
Kang et al. [2010] have identified cornerstones of an effective dse framework as 1. a suitable
representation of the design space, 2. analysis capabilities to check discovered potential
candidates against design constraints and 3. an exploration method for navigating interesting
solutions. The approaches and representations used for dse in the context of model-driven
engineering were further classified by Vanherpen et al. [2014]. They have identified the
following dse patterns of exploration methods:

• The Model Generation Pattern synthesizes design candidates that satisfy a set of
constraints, which are imposed based on the metamodel and in addition by the
designer. During the exploration, design candidates are represented as solutions of a

5.1 Integration with design-space exploration toolchains 56

constraint satisfaction problem. Tools based on this pattern include formula [Kang
et al., 2010] and Alloy Analyzer [Jackson, 2011].

• The Model Adaptation Pattern constructs an exploration representation, such as a
string of genes in genetic algorithms [see e.g. Deb et al., 2002] from an initial model
provided by the designer. Based on the guidance of a goal function further design
candidates are devised in this intermediate form using (meta-)heuristic search. For
example, the dse tool PerOpteryx [Martens et al., 2010] uses this pattern.

• The Model Transformation Pattern directly represents the design candidates as an
instancemodel. Model transformation rules that yield alternativemodels are scheduled
using (meta-)heuristics to optimize a goal function. An example of this approach is
viatra-dse [Hegedüs et al., 2013; Abdeen et al., 2014].

• The Exploration Chaining Pattern adds multiple abstraction layers to dse to prune the
space of alternative solutions. At each abstraction layer, an exploration pattern is used
to prune non-feasible solutions while selecting feasible solutions to be refined in the
next layer. Domain knowledge is used to define abstraction layers. Costly evaluation
of design candidates is usually deferred to the lower layers.

Vanherpen et al. [2014] also classified the representations employed by dse patterns:

1. The starting point for exploration is expressed in a model formalism.
2. Constraints to be satisfied by the design alternatives and objective function to be

optimized are captured by constraint and goal formalisms.
3. Design candidates are stored in an exploration formalism during the exploration. In

the Model Transformation Pattern, this coincides with the model formalism.
4. The exploration formalism may be transformed into an analysis formalism to check

feasibility with respect to the constraints.
5. A second transformation may target a performance formalism to check optimality with

respect to the goal functions.
6. Execution traces yielding the design alternatives are stored in a trace formalism.
7. Finally, the solution is output in a solution formalism, which may coincide with either

the model or the trace formalism.

The rgspn formalism proposed in Chapter 3 may serve as both an analysis formalism
when constraints are formulated in terms of stochastic analysis queries and as a performance

formalism when the optimized goal function is a stochastic metric. Hence in dse the
transformation proposed in Chapter 4 should be employed as ameans of transformingmodels
in the exploration formalism to the analysis formalism. In more elaborate transformation
chains, where a separate analysis formalism is employed and rgspns are only used as
performance formalism, the analysis formalismmay serve as a source instead. The traceability
links produced by the transformation ensure that the results of the analysis can be interpreted
as information about the satisfaction of constraints and the values of goal functions defined
over the engineering formalisms.

The proposed approach based on incremental model transformation is especially suited
for the Model Transformation dse pattern, where the change-driver mapping to rgspns can
be performed directly from the model formalism. Hence the same mapping is applicable for
both stand-alone engineering models and in dse, while the change-driver transformation
may react to source model changes caused by the exploration rules. The transformation
description, which specifies the creation of rgspns from the model formalism, can serve as
the constraint or goal formalism, since it encodes which stochastic queries are constructed
and evaluated for the instance models.

5.1 Integration with design-space exploration toolchains 57

For application in the context of Model Generation and Model Adaptation the transfor-
mation description for our analysis transformation engine must be formulated with the
exploration or an intermediate analysis formalism as the source. The resulting transforma-
tion will be only suitable for dse and not for standalone model mapping. Moreover, inModel

Generation change-driven incrementality may have diminished utility, because constraint
solvers often generate solution in the exploration formalism from scratch instead of applying
change operations. Adaptation of constraint solvers to the incremental setting is challenging
due to scalability issues [Semeráth et al., 2016b], especially in the case of graph generation
with complex structural constraints [Semeráth et al., 2016a].

Remark 5.1 A recent approach in Model Generation combines partial interpretations from mathe-
matical logic and techniques from Boolean satisfiability (sat) solvers to formulate the problem in
terms of Model Adaptation [Varró et al., 2017]. The exploration formalism in this approach is a partial
interpretation of the original model formalism. It is possible to evaluate model queries on the partial
interpretation by constraint rewriting of queries over the original model formalism [Semeráth and
Varró, 2017]. Therefore our transformation engine could be adapted to construct rgspns from the
partially interpreted exploration formalism based on a transformation description developed for the
original model language by rewriting (“lifting”) the involved model queries, which would enable
incremental execution in all three major dse paradigms.

Remark 5.2 Retaining parameter symbols in rgspns for use with external solvers provides an
opportunity for Exploration Chaining. The elements of the ctmc parameter vector θ ∈ R

|Par |

correspond to primitive attributes of engineering model elements after transformation. Hence the
vector is a concise exploration representation of a design alternative once its structure is fixed and
only attributes need to be filled in. As a nested exploration method, algorithms based on sensitivity
analysis and numerical optimization [T. Molnár, 2017] or parametric abstractions [Quatmann et al.,
2016] may be employed so that the higher-level exploration method can be reserved to propose
candidate structures for the design.

5.1.1 Model transformation based design-space explorers
Incremental transformation to rgspn analysis models was considered above in the contexts
of various dse patterns. We now describe the operation of our transformation engine with
the Model Transformation Pattern, which is perhaps the most amenable to change-driven
synchronization of analysis models.

The Formalism Transformation Graph and Process Model (ftg+pm) notation was pro-
posed by Lúcio et al. [2012] as a guide to carry out model transformations in multi-paradigm
modeling. An extended version of the Model Transformation Pattern ftg+pm of Vanherpen
et al. [2014, Figure 4] is shown in Figure 5.1, which illustrates model transformation based
dse with incrementally synchronized rgspn analysis models. The Formalism Transforma-
tion Graph (ftg) on the left shows the modeling languages as rectangles and the involved
model transformations as circles. Arrows indicate the direction of transformations, such
that bidirectional arrows correspond to in-place model modification. The Process Model
(pm) contains the transformation activities, which are displayed as rounded rectangles, their
control flow (solid arrows) and data flows (dashed arrows). Languages and transformations
provided by our framework are emphasized in bold.

Model transformation based dse works directly on the model formalism. Heuristics or
meta-heuristics provided by the dse toolchain in the Create Candidate Solutions activity apply
model transformations according to some goal functions. In order to support change-driven
synchronization of the rgspn view for analysis, the transformations should be in-place so
that change notifications can be propagated. In the pm, the in-place model modification is
indicated by data flows of pieces of input and output data of the same type.

5.1 Integration with design-space exploration toolchains 58

Goal Formalism

RGSPN Analyis Formalism

Model Formalism

Solver Input
Formalism

Solver Input
Queries

Trace Formalism

Solution Formalism

Solver Output Formalism

Create Candidate Solutions

To Analysis

To Solver Representation

Execute Analysis

Interpret Solver Output

From Trace Representation

: Goal Formalism: Model Formalism

Create Candidate
Solutions

: Model Formalism

To Analysis: RGSPN

: RGSPN To Solver
Representation

Execute Analysis

: Solver Input
Formalism

: Solver Output Formalism

Interpret
Solver Output

: Trace Formalism

: Solver Input
Queries

From Trace
Representation

: Solution Formalism

Figure 5.1 ftg+pm of the Model Transformation dse pattern with rgspn-based analysis.
The components in bold were implemented in our work, while the rest of the components
should be supplied by the dse framework and stochastic analysis tool.

The To Analysis activity derives the rgspn analysis model by interpreting the transforma-
tion description in the goal formalism with our transformation engine, which was described
in Chapter 4. The analysis models are derived incrementally by modifying the rgspns in
place according to changes in the candidate solution. The resulting rgspn contains both
the stochastic analysis model and the variable symbols that correspond to the goal functions.

The queries pertaining goal functions and queries can be answered on the analysis model
by executing the stochastic analysis in an external tool. The rgspn model is transferred to
the external tool by serializing it in a standardized interchange format, which is the Solver

Input Formalism. Moreover, the queries themselves must be serialized in the appropriate
Solver Input Query formalism. The To Solver Representation activity performs this task.
We provide an implementation of this activity as part of our framework that targets them
iso/iec 15909-2:2011 pnml format as the Solver Input Formalsm while using extensions
defined by the PetriDotNet tool [Vörös et al., 2017b] to convey timings of Petri net transitions
and stochastic queries.

After the Execute Analysis activity, which usually involves calling an external program,
the answers to the stochastic queries are obtained in the Solver Output Formalism. This

5.1 Integration with design-space exploration toolchains 59

representation must be parsed in the Interpret Solver Output activity so that the values of the
goal functions are available to the dse toolchain. The dse toolchain incorporates the results
of the analysis into the trace representation; thus the candidate designs in the solution store
can be compared according to their fitness.

The Model Transformation dse pattern is iterative. The traces, which are enriched with
the values of the goal functions, are incorporated by the Create Candidate Solutions heuristics
to produce new design candidates. The in-place modification of the candidate design and
the rgspn is signified in the pm by the data flow going into the decision node at the end of
the loop and the data flow back to the start of the loop.

Finally, if required, the optimal solution or a set of solutions can be transformed from
the trace representation to the solution formalism by the From Trace Representation activity.

5.1.2 Stochastic analysis tools
To answer the queries posed as variable symbols in the rgspn analysis models external
stochastic analysis tools must be invoked. As discussed in the previous section, this requires
a modification of the dse toolchain to produce input for the external tool, invoke it and
parse its output. However, additional support for this workflow must be incorporated into
the analysis tool, too.

Firstly, the analysis tool needs to have an interface for unattended execution. Various
ways to provide this interface include command-line applications and web services. For
example, the PetriDotNet analysis tool contains a separate binary executable for running
stochastic analyses in the command line.△ Initiatives such as the Model Checking Con-
test (mcc) [Kordon et al., 2017] and the Petri Nets Repository [Hillah and Kordon, 2017]
strive for common interfaces for Petri net analysis tools. In contrast with the jani format
for quantitative model checking, to our best knowledge, no generic interface is widely
supported for Petri net queries. Hence even though models serialized in the pnml format
are portable between solvers, each of them must be called in a specific way.

Secondly, any parameters required by the analysis in addition to the stochastic model
and the queries must be supplied automatically. For stochastic Petri net analysis, these
parameters include the ordering of state variable in symbolic analysis methods when the
model is converted into a ctmc and the choice of numeric algorithm to solve the arising
systems of linear or differential equations.

Variable ordering

Symbolic computations methods such as saturation [Ciardo et al., 2001, 2012] are often used
in the state-space exploration of Petri nets, which is required for model checking logical
properties and the construction of ctmcs from stochastic Petri nets [Miner, 2004]. Symbolic
algorithms represent the reachable state space of the formal model as a decision diagram,
such as a multi-valued decision diagram (mdd) [Kam et al., 1998]. The decision diagram
is a directed acyclic graph where each node belongs to a given level. Each state variable
of the model, which may be the marking of single place or a collection of places in Petri
nets, is assigned to a different level. The assignment is referred to as the variable ordering.
Outgoing edges from nodes are labeled with the possible values of the state variable, such
that each path in the graph is a reachable state, i.e. a reachable Petri net marking.

△ This tool, similarly to the rest of PetriDotNet 1.5b2 is available from https://inf.mit.bme.hu/en/research/
tools/petridotnet upon request. More information can be found in the user manual by Vörös et al. [2017a].

https://inf.mit.bme.hu/en/research/tools/petridotnet
https://inf.mit.bme.hu/en/research/tools/petridotnet

5.1 Integration with design-space exploration toolchains 60

The transitions in the formal model induce a next-state relation over the states in the
diagram. The reachable state space can be determined by fixed-point iteration of the
next-state relation. By selecting appropriate representation of the next-state relation, even
complex models, such as stochastic Petri nets with immediate transition priorities can be
handled [Miner, 2006; Marussy et al., 2017]. However, the variable ordering has dramatic
effects on the run time of the fixed point computation [Amparore et al., 2017]. Stochastic
analysis is further made difficult due to the decompositions employed in the numerical
solution of ctmcs often requiring variable assignments that differ from those suitable for
symbolic analysis [Marussy et al., 2016a].

As the structure of the derived Petri net model may constantly change during exploration,
the variable ordering cannot be provided to the solver manually. Either the solver itself or
some other component of the dse pipeline must generate an acceptable variable ordering.
Based on the abstraction level at which the generation is done, we suggest three possible
solutions as follows:

• The stochastic analysis tool itself may generate a variable order by some heuristic,
such as those surveyed by Amparore et al. [2017].

• The rgspn transformation engine may communicate the groupings of places induced
by the instantiation of Petri net modules to the analysis tool. The nested-unit Petri
net (nupn) format was proposed by Garavel [2015] to encode such grouping and was
employed in the 2017 edition of the mcc to aid variable ordering heuristics of the
participating tools [Kordon et al., 2017].△

• It would be also possible to extend the transformation specifications such that our
transformation engine could generate variable orderings along with rgspns.

Numerical algorithm selection

Another setting which may dramatically impact the solution time and accuracy of stochastic
models is the choice of the numerical algorithms.

In steady-state and mean time to state partition analysis, solving the ctmc reduces to a
system of linear equations, where the number of variables and equations equal to the size
of the reachable state space of the model. The matrix of this system of linear equations
is the infinitesimal generator matrix of the ctmc, which is sparse and often amenable to
decomposed storage [Buchholz, 1999a].

Due to the size of the systems direct solution methods are infeasible and iterative
numerical methods are employed instead. However, the choice the iterative linear equations
solver method and its parameters determines the run time and convergence of the solution;
moreover, no numerical method was found to be suitable for all classes of models [Buchholz,
1999b; Marussy et al., 2016b; Buchholz et al., 2017].

In transient analysis, transitions with orders of magnitude timing difference cause
stiffness the system of differential equations associated with the ctmc. Stiff Markov chains
may be handled by numerical differential equation solver algorithms especially tailored
to such situations [Reibman et al., 1989] or by adaptive variants of the uniformization

algorithm [Morsel and Sanders, 1997; Dĳk et al., 2017].
To our best knowledge, no method was proposed in the literature to automatically select

a suitable numeric algorithm for stochastic analyses. An analysis tool may offer a default
selection; however, for ill-conditioned problems, the user should override it before starting

△ The specification for embedding nupn data in pnml files is available at https://mcc.lip6.fr/nupn.php.

https://mcc.lip6.fr/nupn.php

5.2 Software implementation 61

design-space exploration. Alternatively, a portfolio of algorithms may be specified that are
tried sequentially or in parallel until one of them converges successfully.

Remark 5.3 Deeper, change-driven integration between external analysis tools and model transfor-
mation toolchains was suggested recently by V. Molnár et al. [2016] and Meyers [2016, Section 2.8]
inspired by incremental approaches in the evaluation of expensive model queries [Ujhelyi et al.,
2015]. Such integration might allow solvers to receive model changes and compute the analysis result
incrementally by reusing parts of the previous solution.

Since our rgspn transformation is engine is fully change-driven it is able to translate engineering
model changes to analysis model changes, which could be sent directly to the solver. Moreover, in
the numeric analysis of ctmcs it is sometimes possible to reuse the previous solution vector as an
initial approximation. However, no existing analysis tool is in our knowledge that is able to take
advantage of model change information; therefore extending change-driven execution throughout
the analysis remains in the scope of future work.

5.2 Software implementation
A software tool for the development of transformation specifications and their execution
was implemented as a plug-in for the Eclipse Oxygen.1 Integrated Development Environ-
ment2 (ide). The plug-in is based on open source technologies from the Eclipse Modeling
Project: the EclipseModeling Foundation (emf) [Steinberg et al., 2009], the XText3 framework
for language engineering and viatra scalable reactive model queries and transformations.

The software consists of two major components. Both rgspn modules and model
transformations from arbitrary emf-based dsls to rgspns can be developed in the trans-
formation specification environment. The transformation can be run either inside the ide

for testing or inside a dse program after Java code generation. Together with a runtime
library implementing the transformation engine, the generated Java code provides incre-
mental transformation to stochastic Petri nets from dsls defined with Ecore metamodels,
the metamodeling core of emf.

5.2.1 Specification environment
A specification development environment named Ecore2Pn (Ecore to Petri net transformation)
was implemented for rgspn-based transformation development.△ A screenshot of the tool
is shown in Figure 5.2 on page 63.

The plug-in suite contains concrete textual syntaxes for rgspn modules and trans-
formation descriptions based on the Xtext language engineering framework. Integrated
devlopment environment (ide) features, such as semantics-aware syntax highlighting, con-
tent assist for code completion, jump-to-definition and outline view are available. The
definition of model queries as preconditions for the rgspn transformation rules is possible
with the viatra Query emf query definition editor [Ujhelyi et al., 2015].

Similarly to the viatra query editor, integration is offered with the modeling services of
the Eclipse ide to try out and debug transformation descriptions. The transformation may
be executed live on models loaded as xmi [Object Management Group, 2015] files or with
graphical concrete syntax as Sirius4 diagrams. Modification of the model triggers change-
based synchronization of the rgspn. A listing of instantiated rgspn modules symbols
△ The specification development environment was implemented by the author during his summer internship

at ThyssenKrupp Presta Hungary Kft.

2http://www.eclipse.org/downloads/packages/release/Oxygen/1 3https://www.eclipse.org/Xtext/

⁴http://www.eclipse.org/sirius/

http://www.eclipse.org/downloads/packages/release/Oxygen/1
https://www.eclipse.org/Xtext/
http://www.eclipse.org/sirius/

5.2 Software implementation 62

along with traceability links is displayed in the Ecore2Pn Transformation view. Moreover, a
graphical view of the rgspn is available in the Petri Net view.

Model export

In addition to transformation development and execution, Ecore2Pn offers export facilities for
model interchange. These features are part of the transformation engine runtime; therefore
they are also available for developers who wish to integrate rgspns into dse toolchains.
Ecore2Pn merely provides a convenient user interface for exporting single models.

Serialization in iso/iec 15909-2:2011 pnml format allows model interchange with
external analysis tools. The exporter also supports the state reward configuration and
fault configuration facilities of PetriDotNet [Vörös et al., 2017a, Section 4.2] for Markovian
steady-state, transient and mean time to state partition analysis. Symbols marked with the
@RewardConfiguration and @FaultConfiguration annotations in the rgspn textual
editor get translated into reward and fault configurations, respectively, and are available for
analysis once the exported pnml is opened with PetriDotNet.

An additional export facility is available targeting the dot format compatible with the
Graphviz5 graph visualization software. The dot utility provides automatic layouting and
drawing for directed graphs, which allows visual inspection of rgspn models. This exporter
is also employed along with a Java port6 of Graphviz by the Petri Net view of the specification
environment to display the results of the currently running rgspn transformation.

Code generation

Code generation is used throughout the specification development environment to ensure
that the transformation specification can be executed in a wide variety of environments,
such as within and Eclipse plugin-in or as a standalone Java application.

The rgspn modules and the transformation description defined by the user are turned
into Java code for compilation. In this way the transformation description can be passed
to the execution engine by just instantiating a class, just like how viatra Query generates
pattern-specific matcher code from graph patterns for type-safe consumption [Ujhelyi et al.,
2015, Section 2.3]. Moreover, as model queries, rgspn modules and transformations become
Java classes, their dependencies can be managed by the Java classpath mechanism. For
example, and rgspn module can be seamlessly upgraded by replacing its containing archive
on the classpath without breaking compatibility with transformation definitions in other
archives that refer to the module.

Additional helper code is generated for derived features defined in transformations. The
helper simulates derived features in code written in the Xtend7 programming language. The
extension methods feature allows traversal of the traceability relations created by the rgspn

transformation engine to obtain derived feature symbols as if they were true properties of
the domain model elements.

5.2.2 Transformation execution
The transformation execution engine is a Java library that can be used either as an Eclipse
plug-in or in standalone applications. The transformation engine can be instantiated
with an existing viatra Incremental Query engine over an emf scope which contains the
intended source model. The other argument required for the transformation is the generated

⁵ https://www.graphviz.org/ ⁶https://github.com/nidi3/graphviz-java ⁷ https://www.eclipse.org/xtend/

https://www.graphviz.org/
https://github.com/nidi3/graphviz-java
https://www.eclipse.org/xtend/

5.3 Evaluation of incremental transformations 63

1
4

2
3

Figure 5.2 Sreenshot of the transformation specification environment. The showcased
features include 1 the transformation description editor with syntax highlighting, 2 the
outline view for transformations, 3 the Ecore2Pn Transformation execution and traceability
viewer and 4 the rgspn graph Petri Net visualizer.

transformation specification object, which refers to the viatra model queries and rgspn

modules involved in the transformation. Once instantiated, the engine executes in an
incremental fashion and reacts to changes in the source model.

The transformation rules are scheduled and fired by the viatra Event-driven Virtual
Machine (evm) [Bergmann et al., 2015]. Hence the transformation engine can be easily
integrated with other emf-related technologies, such as viatra Query [Ujhelyi et al., 2015]
and viatra-dse [Abdeen et al., 2014].

It is possible to only execute the view transformation, which yields an abstract rgspn
with collections and references, or both the view and the concretizer transformation, which
also yields a concrete rgspn that can be exported to external analysis tools. The engine
can be customized by overriding Google Guice8 dependency injections.

Traceability relations can be traversed either by explicitly reading them, or by the derived
features helper classes generated for Xtend programming. In addition, extra annotations

specified in the rgspn modules and the transformation description are also propagated
through the transformation chain, which may influence the behavior of rgspn exporters.

5.3 Evaluation of incremental transformations
We carried out preliminary scalability evaluation of our transformation runtime in order to
study the overhead the imposed on transformation imposes on design-space exploration.
Both batch execution—where the transformation engine is initially instantiated and the
intermediate and target rgspn models are materialized according to the engineering
models—and incremental execution—where each source model change is immediately trans-
lated into intermediate and target model changes—were studied. More specifically, we

⁸ https://github.com/google/guice

https://github.com/google/guice

5.3 Evaluation of incremental transformations 64

Table 5.1 Source model, abstract net and concrete net sizes for the philosophers models.

N #Source #Abstract net #Concrete net

8 9 644 532

16 17 1268 1060

32 33 2516 2116

64 65 5012 4228

128 129 10 004 8452

carried out the evaluation in the dining philosophers domain to address the following three
research questions:

rq1 How does the initial batch transformation from the engineering dsl to the formal
stochastic model (gspn) scale with respect to size of the input model?

rq2 How does the incremental transformation scale with respect to the size and the
change operations of the input model?

rq3 What is the overhead associated with the serialization of models to the iso/iec pnml

interchange format?

Answering these questions may help identifying strengths and weaknesses of the proposed
approach to the stochastic evaluation of engineering models. Moreover, the answers to rq1

and rq2 aid in determining whether incremental or batch model transformation should
be used according to the usual size of source changes. This choice arises when there is
no need to construct the target model change as a sequence of operations for each source
change; therefore incremental execution is not necessitated and the system integrator can
chose between either execution schemes. Lastly, the answer to rq3 tells whether the
overhead of serialization into a portable format is acceptable or more direct integration and
communication with the external solver is needed.

5.3.1 Measurement setup
Measurements were performed on instances of the dining philosophers domain model, which
was used throughout this work as a running example. The number of philosophers and thus
the size of the source model was set to N = 8, 16, 32, 64 and 128. Table 5.1 shows the sizes
of the source models, as well as the sizes of the derived intermediate abstract rgspns and
target concrete rgspns, including any symbol, edge and expression objects.

To evaluate incremental execution, various change operations were defined as follows:

• Swap rotates the seating order two philosophers adjacent around the table. This
change only modifies references in the source model; hence is simulates a dse rule
with no object creation and deletion.

• New creates a new philosopher and inserts it between two existing philosophers.
• Delete removes a philosopher from the table and deletes it from the model.
• FixedMix simulates a compound model change of fixed size by a randomly ordered

mixture of 8 swap, 4 new and 4 delete operations.
• ScaledMix simulates a compound model change of model-dependent size by a ran-

domly ordered mixture of N swap, N
2
new and N

2
delete operations.

5.3 Evaluation of incremental transformations 65

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xxx
x
x
xx
x
xxx
xx
x
xxx
x
xx
xx
xxxx
x
x

xx

x

xx

x

xx

x

x

xx

x

x

x

xx

x

xx

x
x

xx

x
x

x

x

x

x

xx xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
x
x
x
x
x
x
x
x
x
xxxxxxx
x
x
xxx
xx
x
x
xx
x
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x

x

x

x

xxxx

xx

xxxxx

x
x

x

xx

x

x
x

x

x
x

xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx
xx
x
xx
xxxxx
x
xxxxxx
x
x
xx
x
x
x
x
xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x
x
xxx

x

xx

x

x

x

x
x

xx

xxxx

xxxxxx

xx

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xx
xx

xx
xxxx
x
x
xx
x
xx
xx
xxx
xx
x
x
x
x
x
xxxx
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x
xx

xxx

x

xx

x

x

x

xxxxx

x

xxxx

xx

x

xx

x

x

x

xxx
x
xxx
xx
x
xxx
xxxx
xxx
x
x
x
xxx
xx
x
x

xx xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxx
x
xxxx
x
x
xxxxx
xxxx
xxxxx
xxx
x

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

x

x
x

x

xx

xxxx

xx

x

x
xx

x

x

xx

xx

x

xx

xx

x

xx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xx xx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxx
xxxxxxxxxxxxxxxxx
xxxxxxx
x
x

x
xxxxx
xx
x
x
xx
x
xxxxx
x
xx
xx
xxxxxxx

x

x

x
x

x

xxxxx

xxx
x

xxx

x

x

x

x
x
x

x

x

xxx

x

x

xx

xx

x

xxxxx

x

x

xxx

x
x
x

x

x
xx

x

xx

xxx

x
x

delete fixedMix scaledMix

none swap new

50 100 50 100 50 100

0

5000

10000

15000

0

5000

10000

15000

number of philosophers (N)

tr
an

sf
or

m
at

io
n

tim
e/

m
s

execution x xbatch incremental

Figure 5.3 Execution times of transformations.

The compound model change scaledMix was devised such that half of the philosophers
is replaced around the table, while fixedMix is obtained from scaledMix by setting N = 8

to the size of the smallest input model. The model elements involved in the simple and
compound model changes were randomized similarly to the order of simple operations
without compound ones. However, the random seed was fixed for each measurements,
i.e. the model changes are always deterministic given the input model size.

Measurements of a given execution scheme and change type comprise a scenario. Batch
transformation of the initial models was studied in an additional scenario without any model
change. Every scenario was executed for each model size N ∈ {8, 16, 32, 64, 128} multiple
times. A single execution of the transformation is an iteration. After 10 warm-up iterations,
the run times of 30 iterations were measured for each scenario and model size.

To avoid measuring the latency of the hard disk, the target gspn models were serialized
in the pnml format to an in-memory output stream. However, for externals tools that can
only read Petri nets from a disk, an in-memory file system may be needed instead.

Measurements were performed on a workstation with two dual-core Intel Xeon 5160
3.00 GHz processors and 16gb memory. The heap size of the Java 1.8u144 virtual machine
was limited to 8gb with a 30 s wall clock time limit for each iteration.

5.3.2 Results
The execution time of the transformations on the various model sizes and change operations
is shown in the scatter plot in Figure 5.3. It is apparent that the distribution of run times is
extremely bimodal, especially for larger source models.

Therefore instead of fitting a single curve for each scenario, data points were split into
two clusters for each scenario and model size. First, the threshold thresh = max−min

2
was

5.3 Evaluation of incremental transformations 66

Table 5.2 Minimum and maximum execution times of transformations/ms.

Incremental

N Batch Swap New Delete FixedMix ScaledMix

8 209 – 294 6l 9 15l 26 17 – 33 126l 166 124l 163

16 281l 344 8l15 23l 41 27l 45 224l 291 456l 575

32 631l 852 13l18 46l 91 51l 86 505l 631 1714l 2221

64 2006l 2975 26l34 119 – 164 129l181 1148l1473 8644l11 681

128 7568l14 659 52l68 357l427 383l478 3342l4211 Timed out

determined, where max and min were the smallest and largest execution times, respectively.
Due to the heavy bimodality, no data points were adjacent to this threshold. The upper and
lower clusters were then formed by data points above and below thresh. The upper and
lower curves of degree up 3, which are shown in Figure 5.3, were fit to data points from the
upper and lower clusters of each scenario. It is apparent that execution times of the batch
scenarios in both the upper are lower clusters scale superlinearly, and the same phenomenon
also occurs with incremental view synchronization of mixes of change operations. There
was no correlation between the iteration numbers and the clusters, i.e. the bimodality was
not found to be a warm-up transient artifact.

The minimum and maximum execution times of each scenario and model size, which
are representative of the execution times in two clusters, are shown in Table 5.2. Because
the considered model changes did not affect the run times of batch transformations, we only
report the run time of the batch transformation of the initial model. The symbol l indicates
significant (p < 0.05) bimodality of the execution time distributions according to Hartigan’s
dip test [Maechler, 2016], while – denotes unimodal distributions.

In order to study the source of bimodality in the execution times, a further experimentwas
conducted. The batch transformations, which had the most striking bimodality, was executed
with further instrumentation on the source model containing N = 128 philosophers. Four
stages of the transformation were distinguished:

1. The view query phase prepares the model queries that are the preconditions of the
view transformation. In viatra Query, this corresponds to query optimization, as well
as the traversal of the source model to populate the various base relations and caches
for incremental query evaluation.

2. The view transformation phase fires the transformation rules on the viatra Event-
driven Virtual Machine (evm) to construct the abstract rgspn model with references.

3. The concretizer query phase traverses the abstract net to prepare the precondition
queries of the concretizer transformation.

4. The concretizer transformation phase is ran on the evm to resolve references and inline
expression in the abstract net to construct the concrete rgspn target model.

In ordinary transformation execution, the query phases are run simultaneously to avoid
spurious model traversal. Moreover, the transformation phases share an evm execution
schema that provides sequential execution by prioritized firing of transformation rules.
However, in our experiment, we separated the phases to observe their run times individually.

The histogram of the transformation phases with 30 iterations is shown in Figure 5.4.
The concretizer transformation phase, which is running an order of magnitude slower than
other phases, is revealed as the source of the heavy bimodality.

5.3 Evaluation of incremental transformations 67

view query view transform concretizer query concretizer transform

40 45 50 55 60 70 80 90 10
0

21
0

22
0

23
0

24
0

70
00

80
00

90
00

10
00

0
11

00
0

0

3

6

9

execution time/ms

co
un

t

Figure 5.4 Execution times of batch transformation phases with N = 128 philosophers.

Table 5.3 Execution times of pnml serializations.

x

x

xx
x

xx

x

x

xx

x

x
x

x

x
x
xxxx

x

xxxxx

x

xx x

x

x

xxx

x

x

x

x

x

xx

x

x

x

x

x
xxxxxxx
x

x

xxx

x

x

x

x

xxxxx

x

x

x

xx
x
x

x

x
xxxxxxx

x

xxx
x x

xxxxx

x
x

x
xxxxx

x

xxxxx
xxx

x

x
x

x

x
xx

x

xxx
x
xxx
x
x

x
x

xx

x

xxxxx

x

x

x

xxxx

x

xx

260

280

300

320

50 100
number of philosophers (N)

se
ria

liz
at

io
n

tim
e/

m
s

N Time/ms pnml size/bytes

8 257 – 295 50 700

16 261l288 100 441

32 262 – 298 200 572

64 276 – 301 400 736

128 298 – 333 802 454

Lastly, the time taken by serialization of the target models in iso/iec pnml format to
an in-memory output stream is show in Table 5.3 and the accompanying figure. Both the
serialization time and the size of the resulting pnml descriptions scale linearly with the
model size. Significant bimodality was detected by the dip test on in the case of N = 16

with p = 0.004. However, it is possible that the latter observation is only due to randomness.

5.3.3 Observations
The research questions rq1–3 may be answered based on the presented measurement
results as follows:

rq1 Batch transformations scaled superlinearly in the size of the input model. Transforma-
tion of the largest studied source model, which had 129 elements, took up to 15 s to produce
a 8452-element output model along with traceability information which affords incremental
synchronization of the target rgspn according to future source model changes.

The run time exhibited significant bimodality, apparent to both visual examination an
Hartigan’s dip test of bimodality. In the most extreme case of N = 128 philosophers,
iterations in the upper cluster of run times took nearly twice as long a those in the lower
cluster, while for smaller input models, the difference was up to 50%.

rq2 Incremental synchronization of the swap change operation was found to take linear
time as the function of the source model time. Therefore the synchronization time depends
on not only the changes to be synchronized but also on the size of the input model.
Synchronization time for create and delete changes was found to be superlinear similarly

5.3 Evaluation of incremental transformations 68

to the batch transformation. This indicates the creation and removal of objects has larger
overhead than the modification of references in the source model and the rgspn.

Synchronization time was below that of batch transformation in the fixedMix compound
change operation. However, for the change operation scaledMix of model-dependent
size, batch transformation was found to be faster that incremental synchronization in all
cases except N = 8. Therefore we can conclude that if change operations affect large
portions of the input model batch transformation may be more economical than incremental
synchronization; although for smaller input changes, synchronization won by a margin of
at least 14%, the smallest difference being achieved on the fixedMix change with N = 16.

rq3 The pnml serialization routine, which traverses the concrete rgspnmodel to produce
its pnml equivalent, scaled linearly in the size of the input model. However, the cause of this
phenomemon is probably that the size of concrete gspn itself is only a constant multiple of
the input model size. The size of the generated pnml was also a multiple of the input model
size. In all measured cases pnml serialization took no more than 1/3 of a second, much less
than the time taken by analysis tools to analyze stochastic Petri net models similar to the
ones considered. Therefore pnml serialization is not a significant overhead compared to
stochastic analysis. It is also generally smaller than the time taken by batch transformation.

Bimodality of transformation run time distributions was found to be caused by the execution
of the rgspn concretizer transformation on the viatra Event-driven Virtual Machine. We
hypothesize that the large differences is execution time are caused by the nondeterministic
scheduling in evm.

While conflicting transformation rules of differing priorities are fired in the order of their
priorities, the ordering between rules of the same priority are not defined. The firing of a
low-priority rule may activate a higher priority one. In the implementation of our concretizer
transformation, the work performed by some high-priority rules may be occasionally undone
by a low-priority rule when rgspn references are resolved and expressions are inlined
due to the dependency tracking required for expression inlining. Thus if low-priority rules
are fired in an unsuitable order, some work must be redone by high-priority rules after
the correct dependencies are taken into account. Although taking dependencies between
rgspn symbols and expressions at the level of evm conflict resolution may alleviate this
issue, performing such tracking efficiently remains in the scope of future work.

Due to the hashing employed by the conflict resolver, the firing order of equal priority
rules is determined at runtime by hashCode of the rule activation objects, which is not
overridden from its default implementation. In the Java runtime environment, the default
hashCode is connected with the allocation of objects and forcing it to be deterministic for
the sake of consistent measurements is difficult. Hence the apparently random switching
between fast and slow execution of the concretizer transformation.

5.3.4 Threats to validity
An internal threat to validity was the possibility of an incorrect implementation of the
transformation engine or the incorrect description of the transformation from the dining
philosophers domain model to Petri nets. To ensure correctness the transformation outputs
were manually inspected for the small source models for consistency with the source models
and the transformation description.

Moreover, interferences may have occurred in the measurement environment. To reduce
interferences, the measurements were ran on a physical machine on which no other task
was executed at the time. Each scenario and input model was measured 30 times after 10

5.3 Evaluation of incremental transformations 69

warm-up iterations to reduce random noise and the interferences caused by ongoing just-in-
time compilation. Garbage collection within the runtime environment was also controlled
manually to ensure that subsequent iterations did not interfere.

Despite these attempts, run time distributions were found to be bimodal having two
clusters with small variance instead of a single cluster with small variance. We conducted
further measurements to break down the transformation into phases and hypothesize that
this phenomenon is intrinsic to the current implementation of the transformation instead of
being caused by interferences.

As we conducted our experiments on in single domain with a single transformation
description, several external threats to validity impede generalization. Firstly, further
studies are needed to observe the behavior of the transformation on different domain
models and transformation descriptions. Secondly, as the size of the target rgspn models
was a constant multiple of the size of the source models, behaviors depending on the sizes
of either of these models could not be distinguished from each other.

71

Chapter 6

Conclusions and future work

We have developed a formalism and model transformation tool to support design-space
exploration with stochastic metrics. The work described in this thesis can be summarized
in accordance with the thesis topic as follows:

1. We surveyed techniques in the literature for analysis and optimization of stochastic
models focusing on approaches that combine model-driven engineering and stochastic
analysis in Section 1.1 on page 2. In addition, further literature reviewwas conducted in
stochastic modeling and query formalisms in Section 3.1 on page 20 and on incremental
view transformations approaches for the automatic derivation of stochastic models in
Section 4.1 on page 38.

2. A novel formalism for describingmodular stochastic models, whichwas called reference
generalized stochastic Petri net (rgspn), was proposed in Chapter 3 on page 19. The
formalism builds on generalized stochastic Petri nets [Marsan et al., 1984] and the
extensions for modularity by Kindler and Petrucci [2009] in iso/iec 15909-1:2004
high-level Petri nets. Moreover, strong typing was incorporated to aid in model
development and in finding bugs.

In Chapter 4 on page 37 a lightweight view model transformation engine was pro-
posed to create stochastic analysis models from domains-specific models by assembling
rgspn fragments. Precondition graph queries employed in the style of the view trans-
formations suggested by Debreceni et al. [2014] ensure flexibility. The transformation
specification language affords the same aids to users as our modular Petri net formal-
ism. In addition, the transformations can be packaged and ran with our transformation
engine without further intervention or knowledge specific to stochastic modeling.

We believe that the combination of the aforementioned tools can effectively serve the
needs for derivation of stochastic models of design-space space exploration in a variety
of domains, while remaining to be easy to use for engineers.

3. A prototype implementation of the modeling formalism and the transformation engine
was implemented as a plug-in of the Eclipse Oxygen.1 integrated development envi-
ronment based on the Eclipse Modeling Foundation [Steinberg et al., 2009] modeling
platform. Moreover, a development environment for transformation specifications
was developed during a summer internship. The implemented tools are described in
Section 5.2.1 on page 61.

Our contributions were illustrated with the dining philosophers problem, which was
introduced in Running example 2.1 on page 8 and was used as a running example

72

throughout this thesis. The artifacts describing the example transformation are
presented in Appendix a on page 83 with textual concrete syntax. In addition, a more
complex example concerning an architectural modeling language [Ecsedi, 2016] for
reliability analysis is shown in Appendix b on page 87.

4. Chapter 5 on page 55 discussed the applicability of our work in a variety of design-
space exploration patterns [Vanherpen et al., 2014]. In particular, the scalability of
our incremental transformation engine was evaluated empirically in Section 5.3 on
page 63. Incremental analysis model update was found to be beneficial over batch
updates when the changes propagated from the source engineering models are small,
which often happens in design-space exploration toolchains.

Possible avenues for future work were highlighted in this theses in various Remarks
within the main body of the text and are highlighted in the present conclusions.

The transformation tools presented in this work have been used to corroborate the results
of manual stochastic modeling and analysis by supplying automatically derived stochastic
models of an automotive system in collaboration with an industrial partner. The modeling
language and transformation used in the collaboration is presented in Appendix b.

Possible future work and extensions are in three major areas. Firstly, and perhaps most
pressingly, the presented formalism and transformation framework should be integrated
with a design-space exploration toolchain, such as viatra-dse [Hegedüs et al., 2013], and
a stochastic analysis tool, such as PetriDotNet [Vörös et al., 2017b].

Secondly, the rgspn formalism could be extended to support additional stochastic
modeling concepts, such as colored Petri nets. The main challenge in this area appears to be
that the advantages of strong typing [Kindler, 2007] should be preserved, while allowing the
exploitation of specific colored net structures, such as stochastic well-formed nets [Chiola
et al., 1993].

Thirdly, there is a need for deeper, change-driven integration between model transfor-
mation tools and external solvers. Such integration was suggested recently by V. Molnár
et al. [2016] and Meyers [2016, Section 2.8]. An additional, promising line of research is the
application of model transformations to phasedmission systems [Mura and Bondavalli, 2001],
where the evaluated model changes at phase boundaries during analysis. Pushing model
changes to an external solver as part of the analysis queries would enable the specification
of phase changes directly on engineering models.

Acknowledgments This work was partially supported by the mta-bme Lendület 2015
Research Group on Cyber-Physical Systems and the únkp-16-2-i New National Excellence
Program of the Ministry of Human Capacities. This work was partially carried out in the
framework of the efop-3.6.2-16-2017-00013 project supported by the European Union and
co-financed by the European Social Fund. We thank ThyssenKrupp Presta Kft. and Péter
Lantos for the summer internship.

I would like to thank Prof. Miklós Telek, Prof. Dániel Varró, Dr. István Majzik, Dr. Gábor
Bergmann, Dr. Zoltán Micskei, Oszkár Semeráth, Csaba Debreceni, Gábor Szárnyas and
Gergő Ecsedi for their insightful comments and discussions.

Lastly, but by no means least, I would like to thank my supervisors, Vince Molnár and
András Vörös for their overarching support.

73

References

Abdeen, Hani, Dániel Varró, Houari Sahraoui, András Szabolcs Nagy, Csaba Debreceni,
Ábel Hegedüs, and Ákos Horváth [2014].
Multi-objective optimization in rule-based design space exploration.
In: Proc. 29th acm/ieee Int. Conf. Automated Softw. Eng. acm, pp. 289–300.
doi: 10.1145/2642937.2643005.

Afzal, Wasif, Richard Torkar, and Robert Feldt [2009].
A systematic review of search-based testing for non-functional system properties. In: vol. 51.
Elsevier, pp. 957–976. doi: 10.1016/j.infsof.2008.12.005.

Aldini, Alessandro and Marco Bernardo [2007].
Mixing logics and rewards for the component-oriented specification of performance measures.
J. Theor. Comput. Sci., 382 (1): 3–23. doi: 10.1016/j.tcs.2007.05.006.

Aldini, Alessandro, Marco Bernardo, and Jeremy Sproston [2011].
Performability Measure Specification: Combining csrl and msl. In: fmics 2011. lncs 6959.
Springer, pp. 165–179. doi: 10.1007/978-3-642-24431-5_13.

Amparore, Elvio Gilberto, Susanna Donatelli, Marco Beccuti, Giulio Garbi, and
Andrew S. Miner [2017]. Decision Diagrams for Petri Nets: which Variable Ordering?
In: Proc. Int. Workshop on Petri Nets and Softw. Eng. ceur Workshop Proceedings 1846.
ceur-ws, pp. 31–50. url: hhttp://ceur-ws.org/Vol-1846/paper3.pdf.

Anjorin, Anthony, Sebastian Rose, Frederik Deckwerth, and Andy Schürr [2014].
Efficient Model Synchronization with View Triple Graph Grammars. In: ecmfa 2014. lncs 8569.
Springer, pp. 1–17. doi: 10.1007/978-3-319-09195-2_1.

Aziz, Adnan, Kumud Sanwal, Vigyan Singhal, and Robert Brayton [1996].
Verifying continuous time Markov chains. In: cav 1996. lncs 1102. Springer, pp. 269–276.
doi: 10.1007/3-540-61474-5_75.

Babar, Junaid, Marco Beccuti, Susanna Donatelli, and Andrew S. Miner [2010].
GreatSPN Enhanced with Decision Diagram Data Structures. In: petri nets 2010. lncs 6128.
Springer, pp. 308–317. doi: 10.1007/978-3-642-13675-7_19.

Baier, Christel, Joachim Klein, Sascha Klüppelholz, and Sascha Wunderlich [2017a].
Maximizing the Conditional Expected Reward for Reaching the Goal. In: tacas 2017.
lncs 10206. Springer, pp. 269–285. doi: 10.1007/978-3-662-54580-5_16.

Baier, Christel, Joachim Klein, Linda Leuschner, David Parker, and Sascha Wunderlich [2017b].
Ensuring the Reliability of Your Model Checker: Interval Iteration for Markov Decision Processes.
In: cav 2017. lncs 10426. An extended version of the paper with implementation is available at
https://www.tcs.inf.tu-dresden.de/ALGI/PUB/CAV17/. Springer, pp. 160–180.
doi: 10.1007/978-3-319-63387-9_8.

Basu, Ananda, Marius Bozga, and Joseph Sifakis [2006].
Modeling Heterogeneous Real-time Components in bip.
In: 4th ieee Int. Conf. Softw. Eng. and Formal Methods. ieee. doi: 10.1109/SEFM.2006.27.

Becker, Steffen, Heiko Koziolek, and Ralf Reussner [2008].
The Palladio component model for model-driven performance prediction.
J. Sys. Softw., 82 (1): 3–22. doi: 10.1016/j.jss.2008.03.066.

Bergmann, Gábor, István Dávid, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán Ujhelyi, and
Dániel Varró [2015]. viatra 3: A Reactive Model Transformation Platform. In: icmt 2015.
lncs 9152. Springer, pp. 101–110. doi: 10.1007/978-3-319-21155-8_8.

https://doi.org/10.1145/2642937.2643005
https://doi.org/10.1016/j.infsof.2008.12.005
https://doi.org/10.1016/j.tcs.2007.05.006
https://doi.org/10.1007/978-3-642-24431-5_13
hhttp://ceur-ws.org/Vol-1846/paper3.pdf
https://doi.org/10.1007/978-3-319-09195-2_1
https://doi.org/10.1007/3-540-61474-5_75
https://doi.org/10.1007/978-3-642-13675-7_19
https://doi.org/10.1007/978-3-662-54580-5_16
https://www.tcs.inf.tu-dresden.de/ALGI/PUB/CAV17/
https://doi.org/10.1007/978-3-319-63387-9_8
https://doi.org/10.1109/SEFM.2006.27
https://doi.org/10.1016/j.jss.2008.03.066
https://doi.org/10.1007/978-3-319-21155-8_8

References 74

Bergmann, Gábor, Ábel Hegedüs, Ákos Horváth, István Ráth, Zoltán Ujhelyi, and
Dániel Varroó [2011]. Implementing Efficient Model Validation in emf Tools.
In: Proc. 26th acm/ieee Int. Conf. Automated Softw. Eng. ieee, pp. 580–583.
doi: 10.1109/ASE.2011.6100130.

Bergmann, Gábor, István Ráth, Tamás Szabó, Paolo Torrini, and Dániel Varró [2012].
Incremental Pattern Matching for the Efficient Computation of Transitive Closure. In: icgt 2012.
lncs 7562. Springer, pp. 386–400. doi: 10.1007/978-3-642-33654-6_26.

Bernardi, Simona [2003].
Building Stochastic Petri Net models for the verification of complex software systems.
PhD thesis. Department of Informatics, University of Turin.

Bernardi, Simona and Susanna Donatelli [2003].
Building Petri net scenarios for dependable automation systems.
In: ieee Proc. 7th Int. Workshop on Petri Nets and Performance Models. ieee, pp. 72–81.
doi: 10.1109/PNPM.2003.1231544.

Bernardi, Simona, Susanna Donatelli, and Giovanna Dondossola [2004]. Towards a Methodological
Approach to Specification and Analysis of Dependable Automation Systems. In: lncs 3253.
Springer, pp. 36–51. doi: 10.1007/978-3-540-30206-3_5.

Bernardi, Simona, Susanna Donatelli, and Andrá Horváth [2000]. Compositionality in the GreatSPN
tool and its application to the modelling of industrial applications.
In: Proc. Workshop on the practical use of High Level Petri Nets.
url: http://www.di.unito.it/~horvath/publications/papers/BeDoHo00.ps.

Bernardi, Simona, José Merseguer, and Dorina Petriu [2008].
An uml profile for dependability analysis and modeling of software systems. Tech. rep. rr-08-05.
Department of Informatics and Systems Engineering, University of Zaragoza.

Blake, James T., Andrew L. Reibman, and Kishor S. Trivedi [1988].
Sensitivity analysis of reliability and performability measures for multiprocessor systems.
acm sigmetrics Perf. Eval. Review, 16 (1): 177–186. doi: 10.1145/1007771.55616.

Brunelière, Hugo, Erik Burger a6nd Jordi Cabot, and Manuel Wimmer [2017].
A Feature-based Survey of Model View Approaches. Softw. Sys. Mod.

doi: 10.1007/s10270-017-0622-9.
Buchholz, Peter [1999a]. Hierarchical structuring of superposed gspns.

ieee Tran. Softw. Eng., 25 (2): 166–181. doi: 10.1109/32.761443.
Buchholz, Peter [1999b]. Structured analysis approaches for large Markov chains.

Appl. Numer. Math., 31 (4): 375–404. doi: 10.1016/S0168-9274(99)00005-7.
Buchholz, Peter, Tuğrul Dayar, Jan Kriege, and Mushin Can Orhan [2017].

On compact solution vectors in Kronecker-based Markovian analysis. J. Perf. Eval., 115: 132–149.
doi: 10.1016/j.peva.2017.08.002.

Cabac, Lawrence, Michael Haustermann, and David Mosteller [2016]. Renew 2.5 – Towards a
Comprehensive Integrated Development Environment for Retri Net-Based Applications.
In: petri nets 2016. lncs 9698. Springer, pp. 101–112. doi: 10.1007/978-3-319-39086-4_7.

Calinescu, Radu, Milan Češka, Simos Gerasimou, Marta Kwiatkowska, and Nicola Paoletti [2017a].
Designing Robust Software Systems through Parametric Markov Chain Synthesis.
In: 2017 ieee Int. Conf. Softw. Architecture. ieee. doi: 10.1109/ICSA.2017.16.

Calinescu, Radu, Milan Češka, Simos Gerasimou, Marta Kwiatkowska, and Nicola Paoletti [2017b].
rodes: A Robust-Design Synthesis Tool for Probabilistic Systems. In: qest 2017. lncs 10503,
pp. 304–308.

Chiola, Giovanni, Claude Dutheillet, Guiliana A. Francheschinis, and Serge Haddad [1993].
Stochastic well-formed colored nets and symmetric modeling applications.
ieee Tran. Comput., 42 (11): 1343–1360. doi: 10.1109/12.247838.

Ciardo, Gianfranco, Robert L. Jones, Andrew S. Miner, and Radu Siminiceanu [2006].
Logic and stochastic modeling with smart. J. Perf. Eval., 63 (6): 578–608.
doi: 10.1016/j.peva.2005.06.001.

Ciardo, Gianfranco, Gerald Lüttgen, and Radu Siminiceanu [2001].
Saturation: An Efficient Iteration Strategy for Symbolic State-Space Generation. In: tacas 2001.
lncs 2031. Springer, pp. 328–342. doi: 10.1007/3-540-45319-9_23.

https://doi.org/10.1109/ASE.2011.6100130
https://doi.org/10.1007/978-3-642-33654-6_26
https://doi.org/10.1109/PNPM.2003.1231544
https://doi.org/10.1007/978-3-540-30206-3_5
http://www.di.unito.it/~horvath/publications/papers/BeDoHo00.ps
https://doi.org/10.1145/1007771.55616
https://doi.org/10.1007/s10270-017-0622-9
https://doi.org/10.1109/32.761443
https://doi.org/10.1016/S0168-9274(99)00005-7
https://doi.org/10.1016/j.peva.2017.08.002
https://doi.org/10.1007/978-3-319-39086-4_7
https://doi.org/10.1109/ICSA.2017.16
https://doi.org/10.1109/12.247838
https://doi.org/10.1016/j.peva.2005.06.001
https://doi.org/10.1007/3-540-45319-9_23

References 75

Ciardo, Gianfranco and Kishor S. Trivedi [1993].
A decomposition approach for stochastic reward net models. J. Perf. Eval., 38 (1): 37–59.
doi: 10.1016/0166-5316(93)90026-Q.

Ciardo, Gianfranco, Yang Zhao, and Xiaoqing Jin [2012].
Ten Years of Saturation: A Petri Net Perspective. In: ToPNoC v. lncs 6900. Springer, pp. 51–95.
doi: 10.1007/978-3-642-29072-5_3.

Clarke, Edmund M. and E. Allen Emerson [1981].
Design and synthesis of synchronization skeletons using branching time temporal logic.
In: Logics of Programs 1981. lncs 131. Springer, pp. 52–71. doi: 10.1007/BFb0025774.

Courtney, Tod, Shravan Gaonkar, Ken Keefe, Eric W. D. Rozier, and William H. Sanders [2009].
Möbius 2.3: An extensible tool for dependability, security, and performance evaluation of large
and complex system models. In: ieee/ifip Int. Conf. Dependable Systems & Networks, 2009. ieee.
doi: 10.1109/DSN.2009.5270318.

Czarnecki, Krzysztof and Simon Helsen [2006].
Feature-based survey of model transformation approaches.
ibm Systems J. – Model-driven software development, 45 (3): 621–645. doi: 10.1147/sj.453.0621.

Deb, Kalyanmoy, Amrit Pratap, Sameer Agarwal, and T. Meyarivan [2002].
A fast and elitist multiobjective genetic algorithm: nsga-ii. ieee Tran. Evolutionary Comp., 6 (2).
doi: 10.1109/4235.996017.

Debreceni, Csaba, Ákos Horváth, Ábel Hegedüs, Zoltán Ujhelyi, István Ráth, and Dániel Varró [2014].
Query-driven incremental synchronization of view models.
In: Proc. 2nd Workshop View-Based, Aspect-Oriented and Orthographic Software. acm, pp. 31–38.
doi: 10.1145/2631675.2631677.

Dĳk, Nicolaas M. van, Sem P. J. van Brummelen, and Richard J. Boucherie [2017].
Uniformization: Basics, extensions and applications. J. Perf. Eval.
doi: 10.1016/j.peva.2017.09.008. In press.

Donatelli, Susanna, Serge Haddad, and Jeremy Sproston [2009].
Model Checking Timed and Stochastic Properties with cslta.
ieee Tran. Softw. Eng., 35 (2): 224–240. doi: 10.1109/TSE.2008.108.

Donatelli, Susanna, Marina Ribaudo, and Jane Hillston [1995].
A comparison of performance evaluation process algebra and generalized stochastic Petri nets.
In: Proc. of the 6th Int. Workshop on Petri Nets and Performance Models. ieee.
doi: 10.1109/PNPM.1995.524326.

Ecsedi, Gergő [2016]. Architektúra alapuú megbízhatósági modellezés és analízis. In Hungarian.
Bachleor’s thesis. Faculty of Electrical Engineering and Informatics, Budapest University of
Technology and Economics. url:
https://diplomaterv.vik.bme.hu/hu/Theses/Architektura-alapu-megbizhatosagi-modellezes.

Emerson, E. Allen and Joseph Y. Halpern [1986].
“Sometimes” and “not never” revisited: on branching versus linear time temporal logic.
J. acm, 33 (1): 151–178. doi: 10.1145/4904.4999.

Epifani, Ilenia, Carlo Ghezzi, Raffaela Mirandola, and Giordano Tamburrelli [2009].
Model evolution by run-time parameter adaptation. In: Proc. 31st Int. Conf. Softw. Eng. ieee,
pp. 111–121. doi: 10.1109/ICSE.2009.5070513.

Feiler, Peter H. and David P. Gluch [2012]. Model-Based Engineering with aadl: An Introduction to the

sae Architecture Analysis & Design Language. Addison-Wesley Professional.
isbn: 978-0-32-188894-5.

Forgy, Charles L. [1982].
Rete: A fast algorithm for the many pattern/many object pattern match problem.
J. Artificial Intelligence, 19 (1): 17–37. doi: 10.1016/0004-3702(82)90020-0.

Franks, Greg, Tariq Al-Omari, Murray Woodside, Olivia Das, and Salem Derisavi [2009].
Enhanced Modeling and Solution of Layered Queueing Networks.
ieee Tran. Softw. Eng., 35 (2): 148–161. doi: 10.1109/TSE.2008.74.

Friedenthal, Sanford, Alan Moore, and Rick Steiner [2016].
A Practical Guide to SysML: The Systems Modeling Language. 3rd ed. Morgan Kaufmann.
isbn: 978-0-12-800202-5.

https://doi.org/10.1016/0166-5316(93)90026-Q
https://doi.org/10.1007/978-3-642-29072-5_3
https://doi.org/10.1007/BFb0025774
https://doi.org/10.1109/DSN.2009.5270318
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1109/4235.996017
https://doi.org/10.1145/2631675.2631677
https://doi.org/10.1016/j.peva.2017.09.008
https://doi.org/10.1109/TSE.2008.108
https://doi.org/10.1109/PNPM.1995.524326
https://diplomaterv.vik.bme.hu/hu/Theses/Architektura-alapu-megbizhatosagi-modellezes
https://doi.org/10.1145/4904.4999
https://doi.org/10.1109/ICSE.2009.5070513
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1109/TSE.2008.74

References 76

Garavel, Hubert [2015]. Nested-Unit Petri Nets: A Structural Means to Increase Efficiency and
Scalability of Verification on Elementary Nets. In: petri nets 2015. lncs 9115. Springer,
pp. 179–199. doi: 10.1007/978-3-319-19488-2_9.

Gerasimou, Simos, Giordano Tamburrelli, and Radu Calinescu [2015].
Search-Based Synthesis of Probabilistic Models for Quality-of-Service Software Engineering.
In: Proc. 30th acm/ieee Int. Conf. Automated Softw. Eng. ieee. doi: 10.1109/ASE.2015.22.

Giese, Holger, Tihamér Levendovszky, and Hans Vangheluwe [2007].
Summary of the Workshop on Multi-Paradigm Modeling: Concepts and Tools.
In: Workshops and symphosia at models 2006. lncs 4364. Springer, pp. 252–262.
doi: 10.1007/978-3-540-69489-2_31.

Graics, Bence [2017]. Model-Driven Development of Reactive Systems with Mixed Synchronous and

Asynchronous Hierarchical Composition. Scientific Students’ Association Report. Faculty of
Electrical Engineering and Informatics, Budapest University of Technology and Economics.
url: http://tdk.bme.hu/VIK/DownloadPaper/Vegyes-szemantika-szerinti-hierarchikus.

Greenyer, Joel and Jan Rieke [2011]. Applying Advanced tdd Concepts for a Complex
Transformation of Sequence Diagram Specifications to Timed Game Automata. In: agtive 2011.
lncs 7233. Springer, pp. 222–237. doi: 10.1007/978-3-642-34176-2_19.

Hahn, Ernst Moritz, Holger Hermanns, and Lijun Zhang [2011].
Probabilistic reachability for parametric Markov models.
Int. J. Softw. Tools Technol. Transf., 13 (1): 3–19. doi: 10.1007/s10009-010-0146-x.

Hansson, Hans and Bengt Jonsson [1994]. A logic for reasoning about time and reliability.
Formal Aspects of Computing, 6 (5): 512–535. doi: 10.1007/BF01211866.

Harman, Mark, S. Afshin Mansouri, and Yuanyuan Zhang [2012].
Search-based software engineering: Trends, techniques and applications.
acm Computing Surveys, 45 (1). doi: 10.1145/2379776.2379787.

Hegedüs, Ábel, Ákos Horváth, and Dániel Varró [2013].
A model-driven framework for guided design space exploration.
Automated Softw. Eng., 22 (3): 339–436. doi: 10.1007/s10515-014-0163-1.

Hermanns, Holger, Ulrich Herzog, and Joost-Pieter Katoen [2002].
Process algebra for performance evaluation. J. Theor. Comput. Sci., 274 (1–2): 43–87.
doi: 10.1016/S0304-3975(00)00305-4.

Hillah, Lom-Messan and Fabrice Kordon [2017].
Petri Nets Repository: A Tool to Benchmark and Debug Petri Net Tools. In: petri nets 2017.
lncs 10258. Springer, pp. 125–135. doi: 10.1007/978-3-319-57861-3_9.

Hillston, Jane [1995]. Compositional Markovian Modelling Using a Process Algebra.
In: Computations with Markov Chains. Springer, pp. 177–196.
doi: 10.1007/978-1-4615-2241-6_12.

Hirel, Christophe, Bruno Tuffin, and Kishor S. Trivedi [2000].
spnp Stochastic Petri Nets. Version 6.0. In: tools 2000. lncs 1786. Springer, pp. 354–357.
doi: 10.1007/3-540-46429-8_30.

Huang, Hejiao, Li Jiao, To-Yat Cheung, and Wai Ming Mak [2012].
Property-Preserving Petri Net Process Algebra in Software Engineering. World Scientific.
isbn: 978-981-4324-28-1.

Iftikhar, M. Usman and Danny Weyns [2017].
ActivFORMS: A Runtime Environment for Architecture-Based Adaptation with Guarantees.
In: 2017 ieee Inf. Conf. on Softw. Architecture Workshops. ieee. doi: 10.1109/ICSAW.2017.21.

International Organization for Standardization [2004]. Systems and software engineering – High-level

Petri nets – Part 1: Concepts, definitions and graphical notation. Standard iso/iec 15909-1:2004.
International Organization for Standardization [2011].

Systems and software engineering – High-level Petri nets – Part 2: Transfer format.
Standard iso/iec 15909-2:2012.

Jackson, Daniel [2011]. Software Abstractions. Revised edition. The mit Press.
isbn: 978-0-262-01715-2.

https://doi.org/10.1007/978-3-319-19488-2_9
https://doi.org/10.1109/ASE.2015.22
https://doi.org/10.1007/978-3-540-69489-2_31
http://tdk.bme.hu/VIK/DownloadPaper/Vegyes-szemantika-szerinti-hierarchikus
https://doi.org/10.1007/978-3-642-34176-2_19
https://doi.org/10.1007/s10009-010-0146-x
https://doi.org/10.1007/BF01211866
https://doi.org/10.1145/2379776.2379787
https://doi.org/10.1007/s10515-014-0163-1
https://doi.org/10.1016/S0304-3975(00)00305-4
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-1-4615-2241-6_12
https://doi.org/10.1007/3-540-46429-8_30
https://doi.org/10.1109/ICSAW.2017.21

References 77

Jakob, Johannes, Alexander Königs, and Andy Schürr [2006].
Non-materialized Model View Specification with Triple Graph Grammars. In: icgt 2006.
lncs 4178. Springer, pp. 321–335. doi: 10.1007/11841883_23.

Jouault, Frédéric, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev [2008].
atl: A Model Transformation Tool. J. Sci. Comp. Prog., 72 (1-2): 31–39.
doi: 10.1016/j.scico.2007.08.002.

Jouault, Frédéric and Massimo Tisi [2010]. Towards Incremental Execution of ATL Transformations.
In: icmt 2010. lncs 6142. Springer, pp. 123–137. doi: 10.1007/978-3-642-13688-7_9.

Kam, Timothy, Tiziano Villa, Robert Brayton, and Alberto Sangiovanni-Vincentelli [1998].
Multi-valued decision diagrams: theory and applications.
Int. J. Multiple-Valued Logic, 4 (1–2): 9–62.

Kang, Eunsuk, Ethan Jackson, and Wolfram Schulte [2010].
An Approach for Effective Design Space Exploration. In: Monterey Workshop 2010. lncs 6662.
Springer, pp. 33–54. doi: 10.1007/978-3-642-21292-5_3.

Kindler, Ekkart [2007]. Modular pnml revisited: Some ideas for strict typing.
In: Proc. 14th Workshop Algorithmen und Werkzeuge für Petrinetze. Universität Koblenz-Landau,
pp. 20–25. url: http://www2.cs.uni-paderborn.de/cs/kindler/Publikationen/copies/

AWPN07-PNMLmodules.pdf.
Kindler, Ekkart and Laure Petrucci [2009].

Towards a Standard for Modular Petri Nets: A Formalisation. In: petri nets 2009. lncs 5606,
pp. 43–62. doi: 10.1007/978-3-642-02424-5_5.

Kindler, Ekkart and Michael Weber [2001].
A Universal Module Concept for Petri Nets – an implementation-oriented approach.
Informatik-Bericht 150.
url: https://www2.informatik.hu-berlin.de/top/pnml/download/about/modPNML_TB.ps.

Klenik, Attila and Kristóf Marussy [2015].
Configurable Stochastic Analysis Framework for Asynchronous Systems.
Scientific Students’ Association Report. Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics.
url: http://tdk.bme.hu/VIK/ViewPaper/Aszinkron-rendszerek-konfigurarhato.

Kordon, Fabrice, Hubert Garavel, Lom-Messan Hillah, Francis Hulin-Hubard, Bernard Berthomieu,
Gianfranco Ciardo, Maximilien Colange, Silvano Dal Zilio, Elvio Gilberto Amparore,
Marco Beccuti, Torsten Liebke, Jeroen J. G. Meĳer, Andrew S. Miner, Christian Rohr, Jiri Srba,
Yann Thierry-Mieg, Jaco van der Pol, and Karsten Wolf [2017].
Complete Results for the 2017 Edition of the Model Checking Contest.
url: http://mcc.lip6.fr/2017/results.php.

Koziolek, Anne and Ralf Reussner [2011].
Towards a generic quality optimisation framework for component-based system models.
In: Proc. 14th Int. acm sigsoft Symp. Component based softw. eng. acm, pp. 103–108.
doi: 10.1145/2000229.2000244.

Koziolek, Heiko [2010]. Performance evaluation of component-based software systems: A survey.
J. Perf. Eval., 67 (8): 634–658. doi: 10.1016/j.peva.2009.07.007.

Koziolek, Heiko and Franz Brosch [2009].
Parameter Dependencies for Component Reliability Specifications.
Electronic Notes in Theor. Comput. Sci., 253 (1): 23–38. doi: 10.1016/j.entcs.2009.09.026.

Kühne, Thomas, Gergely Mezei, Eugene Syriani, Hans Vangheluwe, and Manuel Wimmer [2009].
Explicit Transformation Modeling. In: models 2009. lncs 6002. Springer, pp. 240–255.
doi: 10.1007/978-3-642-12261-3_23.

Kuntz, G. W. Matthias and Boudewĳn R. H. M. Haverkort [2007].
gcsrl – A Logic for Stochastic Reward Models with Timed and Untimed Behaviour.
In: Proc. 8th Workshop on Performability of Modeling Computer and Communication Systems.
ctit Workshop Proceedings lncs4549.
Centre for Telematics and Information Technology, University of Twente, pp. 50–56.
url: https://research.utwente.nl/files/5312765/cam_ready_GCSRL.pdf.

https://doi.org/10.1007/11841883_23
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/978-3-642-13688-7_9
https://doi.org/10.1007/978-3-642-21292-5_3
http://www2.cs.uni-paderborn.de/cs/kindler/Publikationen/copies/AWPN07-PNMLmodules.pdf
http://www2.cs.uni-paderborn.de/cs/kindler/Publikationen/copies/AWPN07-PNMLmodules.pdf
https://doi.org/10.1007/978-3-642-02424-5_5
https://www2.informatik.hu-berlin.de/top/pnml/download/about/modPNML_TB.ps
http://tdk.bme.hu/VIK/ViewPaper/Aszinkron-rendszerek-konfigurarhato
http://mcc.lip6.fr/2017/results.php
https://doi.org/10.1145/2000229.2000244
https://doi.org/10.1016/j.peva.2009.07.007
https://doi.org/10.1016/j.entcs.2009.09.026
https://doi.org/10.1007/978-3-642-12261-3_23
https://research.utwente.nl/files/5312765/cam_ready_GCSRL.pdf

References 78

Kwiatkowska, Marta, Gethin Norman, and David Parker [2011].
prism 4.0: Verification of Probabilistic Real-time Systems. In: cav 2011. lncs 6806. Springer,
pp. 585–591. doi: 10.1007/978-3-642-22110-1_47.

Kwiatkowska, Martha, Gethin Norman, and António Pacheco [2006].
Model checking expected time and expected reward formulae with random time bounds.
Comp. & Math. with Appl., 51 (2): 305–316. doi: 10.1016/j.camwa.2005.11.016.

Llorens, Marisa, Javier Oliver, Josep Silva, and Salvador Tamarit [2017].
An Integrated Environment for Petri Net Slicing. In: petri nets 2017. lncs 10258. Springer,
pp. 112–124. doi: 10.1007/978-3-319-57861-3_8.

Logothetis, Dimitris, Kishor S. Trivedi, and Antonio Puliafito [1995]. Markov regenerative models.
In: Proc. of the 1995 ieee Int. Comput. Perf. and Dependability Symp. ieee.
doi: 10.1109/IPDS.1995.395809.

Longo, Francesco and Marco Scarpa [2013].
Two-layer symbolic representation for stochastic models with phase-type distributed events.
Int. J. Syst. Sci., 46 (9): 1540–1571. doi: 10.1080/00207721.2013.822940.

López-Grao, Juan Pablo, José Merseguer, and Javier Campos [2004]. From uml activity diagrams to
Stochastic Petri nets: application to software performance engineering.
In: Proc. 4th Int. Workshop Softw. Perf. acm, pp. 25–36. doi: 10.1145/974044.974048.

Lúcio, Levi, Joachim Denil, Hans Vangheluwe, Sadaf Mustafiz, and Bart Meyers [2012].
The Formalism Transformation Graph as a Guide to Model Driven Engineering.
Tech. rep. cs-tr-2012.1. School of Computer Science, McGill University.
url: https://www.cs.mcgill.ca/media/tech_reports/

10_The_Formalism_Transformation_Graph_as_a_Guide_to_Model_Driven_Engineering.pdf.
Maechler, Martin [2016]. diptest: Hartigan’s Dip Test Statistic for Unimodality – Corrected.

R package version 0.75-7. url: https://CRAN.R-project.org/package=diptest.
Marechal, Alexis and Didier Buchs [2012]. Modular extensions of Petri Nets: a survey. Tech. rep. 218.

Faculty of Sciences, University of Geneva.
url: https://smv.unige.ch//technical-reports/pdfs/ModularitySurvey.pdf.

Marsan, Marco Ajmone, Gianni Conte, and Gianfranco Balbo [1984]. A Class of Generalized
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor Systems.
acm Trans. Comput. Syst., 2 (2): 93–122. doi: 10.1145/190.191.

Martens, Anne, Heiko Koziolek, Steffen Becker, and Ralf Reussner [2010].
Automatically improve software architecture models for performance, reliability, and cost using
evolutionary algorithms. In: Proc. 1st joint wosp/sipew int. conf. Perf. eng. acm, pp. 105–116.
doi: 10.1145/1712605.1712624.

Marussy, Kristóf, Attila Klenik, Vince Molnár, András Vörös, István Majzik, and Miklós Telek [2016a].
Efficient Decomposition Algorithm for Stationary Analysis of Complex Stochastic Petri Net
Models. In: petri nets 2016. lncs 9698. Springer, pp. 281–300.
doi: 10.1007/978-3-319-39086-4_17.

Marussy, Kristóf, Attila Klenik, Vince Molnár, András Vörös, Miklós Telek, and István Majzik [2016b].
Configurable numerical analysis for stochastic systems.
In: 2016 Int. Workshop on Symbolic and Numerical Methods for Reachability Analysis. ieee.
doi: 10.1109/SNR.2016.7479383.

Marussy, Kristóf, Vince Molnár, András Vörös, and István Majzik [2017].
Getting the Priorities Right: Saturation for Prioritised Petri Nets. In: petri nets 2017.
lncs 10258. Springer, pp. 223–242. doi: 10.1007/978-3-319-57861-3_14.

Mason, George, Radu Calinescu, Daniel Kudenko, and Alec Banks [2017].
Assured Reinforcement Learning with Formally Verified Abstract Policies.
In: Proc. 9th Int. Conf. Agents and Artificial Intelligence. scitepress, pp. 105–117.
doi: 10.5220/0006156001050117.

McBride, Connor and Ross Paterson [2008]. Applicative programming with effects.
J. Functional Prog., 18 (1): 1–13. doi: 10.1017/S0956796807006326.

Meyers, Bart [2016]. A Multi-Paradigm Modeling Approach to Design and Evolution of Domain-Specific

Modeling Languages.

https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1016/j.camwa.2005.11.016
https://doi.org/10.1007/978-3-319-57861-3_8
https://doi.org/10.1109/IPDS.1995.395809
https://doi.org/10.1080/00207721.2013.822940
https://doi.org/10.1145/974044.974048
https://www.cs.mcgill.ca/media/tech_reports/10_The_Formalism_Transformation_Graph_as_a_Guide_to_Model_Driven_Engineering.pdf
https://www.cs.mcgill.ca/media/tech_reports/10_The_Formalism_Transformation_Graph_as_a_Guide_to_Model_Driven_Engineering.pdf
https://CRAN.R-project.org/package=diptest
https://smv.unige.ch//technical-reports/pdfs/ModularitySurvey.pdf
https://doi.org/10.1145/190.191
https://doi.org/10.1145/1712605.1712624
https://doi.org/10.1007/978-3-319-39086-4_17
https://doi.org/10.1109/SNR.2016.7479383
https://doi.org/10.1007/978-3-319-57861-3_14
https://doi.org/10.5220/0006156001050117
https://doi.org/10.1017/S0956796807006326

References 79

PhD thesis. Department of Mathematics and Computer Science, University of Antwerp.
url: http://msdl.cs.mcgill.ca/people/bart/publ/thesis.pdf.

Meyers, Bart, Romuald Deshayes, Levi Lucio, Eugene Syriani, Hans Vangheluwe, and
Manuel Wimmer [2014].
ProMoBox: A Framework for Generating Domain-Specific Property Languages. In: sle 2014.
lncs 8706. Springer, pp. 1–20. doi: 10.1007/978-3-319-11245-9_1.

Miner, Andrew S. [2004]. Implicit gspn reachability set generation using decision diagrams.
J. Perf. Eval., 56 (1–4): 145–165. doi: 10.1016/j.peva.2003.07.005.

Miner, Andrew S. [2006]. Saturation for a General Class of Models.
ieee Tran. Softw. Eng., 32 (8): 559–570. doi: 10.1109/TSE.2006.81.

Molnár, Tímea [2017].
Sztochasztikus modellek paramétereinek optimalizációja: eszközök és kihívások. In Hungarian.
Bachleor’s thesis. Faculty of Electrical Engineering and Informatics, Budapest University of
Technology and Economics.
url: https://diplomaterv.vik.bme.hu/hu/Theses/Sztochasztikus-modellek-parametereinek.

Molnár, Vince, András Vörös, Dániel Darvas, Tamás Bartha, and István Majzik [2016].
Component-wise incremental ltl model checking. Formal Aspects of Comp., 28 (3): 345–379.
doi: 10.1007/s00165-015-0347-x.

Moreno, Gabriel A., Connie U. Smith, and Lloyd G. Williams [2008].
Performance analysis of real-time component architectures: a model interchange approach.
In: Proc. 8th Workshop Softw. Perf. acm, pp. 115–126. doi: 10.1145/1383559.1383574.

Morsel, Aad P. A. van and William H. Sanders [1997].
Transient solution of Markov models by combining adaptive and standard uniformization.
ieee Tran. Reliability, 46 (3): 430–440. doi: 10.1109/24.664016.

Mosteller, David, Lawrence Cabac, and Michael Haustermann [2016].
Integrating Petri Net Semantics in a Model-Driven Approach: The Renew Meta-Modeling and
Transformation Framework. In: ToPNoC xi. lncs 9930. Springer, pp. 92–113.
doi: 10.1007/978-3-662-53401-4_5.

Mura, Ivan and Andrea Bondavalli [2001]. Markov regenerative stochastic petri nets to model and
evaluate phased mission systems dependability. ieee Tran. Comput., 50 (12): 1337–1351.
doi: 10.1109/TC.2001.970572.

Murata, Tadao [1989]. Petri nets: Properties, analysis and applications. Proc. ieee, 77 (4): 541–580.
doi: 10.1109/5.24143.

Neuts, Marcel F. [1975]. Probability distributions of phase type.
In: Liber Amicorum Prof. Emeritus H. Florin. University of Louvain, pp. 173–206.

Nouri, Ayoub, Saddek Bensalem, Marius Bozga, Benoit Delahaye, Cyrille Jegourel, and
Axel Legay [2015]. Statistical model checking QoS properties of systems with sbip.
Int. J. Softw. Tools Technol. Transf., 17 (2): 171–185. doi: 10.1007/s10009-014-0313-6.

Object Management Group [2014]. Object Constraint Language Specification. Version 2.4.
url: http://www.omg.org/spec/OCL/2.4/.

Object Management Group [2015]. xml Metadata Interchange (xmi) Specification. Version 2.5.1.
url: http://www.omg.org/spec/XMI/2.5.1/.

Object Management Group [2016]. mof Query/View/Transformation Specification. Version 1.3.
url: http://www.omg.org/spec/QVT/1.3/.

Parasa, Nitin [2016]. Application of Search-based Software Testing to Non-functional system properties.

A validated framework. Master’s thesis. Faculty of Computing, Blekinge Institute of Technology.
url: http://www.diva-portal.org/smash/record.jsf?pid=diva2:1047036.

Pierce, Benjamin C. [2002]. Types and programming languages. The mit Press.
isbn: 978-0-262-16209-8.

Quatmann, Tim, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-Pieter Katoen [2016].
Parameter Synthesis for Markov Models: Faster Than Ever. In: atva 2016. lncs 9938. Springer,
pp. 50–67. doi: 10.1007/978-3-319-46520-3_4.

Ramesh, A. V. and Kishor S. Trivedi [1993].
On the Sensitivity of Transient Solutions of Markov Models.

http://msdl.cs.mcgill.ca/people/bart/publ/thesis.pdf
https://doi.org/10.1007/978-3-319-11245-9_1
https://doi.org/10.1016/j.peva.2003.07.005
https://doi.org/10.1109/TSE.2006.81
https://diplomaterv.vik.bme.hu/hu/Theses/Sztochasztikus-modellek-parametereinek
https://doi.org/10.1007/s00165-015-0347-x
https://doi.org/10.1145/1383559.1383574
https://doi.org/10.1109/24.664016
https://doi.org/10.1007/978-3-662-53401-4_5
https://doi.org/10.1109/TC.2001.970572
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/s10009-014-0313-6
http://www.omg.org/spec/OCL/2.4/
http://www.omg.org/spec/XMI/2.5.1/
http://www.omg.org/spec/QVT/1.3/
http://www.diva-portal.org/smash/record.jsf?pid=diva2:1047036
https://doi.org/10.1007/978-3-319-46520-3_4

References 80

In: Proc. of the 1993 acm sigmetrics conf. on Measurement and modeling of comput. syst. acm,
pp. 122–134. doi: 10.1145/166955.166998.

Ráth, István, Ábel Hegedüs, and Dániel Varró [2012].
Derived Features for emf by Integrating Advanced Model Queries. In: ecmfa 2012. lncs 7349.
Springer, pp. 102–117. doi: 10.1007/978-3-642-31491-9_10.

Reibman, Andrew L., Roger Smith, and Kishor S. Trivedi [1989].
Markov and Markov reward model transient analysis: An overview of numerical approaches.
Eur. J. Oper. Res., 4 (2): 257–267. doi: 10.1016/0377-2217(89)90335-4.

Rumbaugh, James, Ivar Jacobson, and Grady Booch [2004].
The Unified Modeling Language Reference Manual. 2nd ed. Pearson Higher Education.
isbn: 0321245628.

Sanders, William H. and John F. Meyer [2001].
Stochastic Activity Networks: Formal Definitions and Concepts. In: eef School 2000. lncs 2090.
Springer, pp. 315–343. doi: 10.1007/3-540-44667-2_9.

Schürr, Andy [1994]. Specification of graph translators with triple graph grammars. In: wg 1994.
lncs 903. Springer, pp. 151–163. doi: 10.1007/3-540-59071-4_45.

Semeráth, Oszkár, Csaba Debreceni, Ákos Horváth, and Dániel Varró [2016a].
Incremental backward change propagation of view models by logic solvers.
In: Proc. acm/ieee 19th Int. Conf. Model Driven Eng. Lang. Syst. acm, pp. 306–316.
doi: 10.1145/2976767.2976788.

Semeráth, Oszkár and Dániel Varró [2017].
Graph Constraint Evaluation over Partial Models by Constraint Rewriting. In: icmt 2017.
lncs 10374. Springer, pp. 138–154. doi: 10.1007/978-3-319-61473-1_10.

Semeráth, Oszkár, András Vörös, and Dániel Varró [2016b].
Iterative and Incremental Model Generation by Logic Solvers. In: fase 2016. lncs 9633.
Springer, pp. 87–103. doi: 10.1007/978-3-662-49665-7_6.

Smith, Connie U. and Catalina M. Lladó [2011].
Model Interoperability for Performance Engineering: Survey of Milestones and Evolution.
In: perform 2010. lncs 6821. Springer, pp. 10–23. doi: 10.1007/978-3-642-25575-5_2.

Song, Hui, Gang Huang, Franck Chauvel, Wei Zhang, Yanchun Sun, Weizhong Shao, and
Hong Mei [2011]. Instant and Incremental qvt Transformation for Runtime Models.
In: models 2011. lncs 6981. Springer, pp. 273–288. doi: 10.1007/978-3-642-24485-8_20.

Steinberg, Dave, Frank Budinsky, Marcelo Paternostro, and Ed Merks [2009].
emf: Eclipse Modeling Framework. 2nd ed. Addison-Wesley Professional.
isbn: 978-0-321-33188-5.

Telek, Miklós and András Pfening [1996].
Performance analysis of Markov regenerative reward models. J. Perf. Eval., 27–28: 1–18.
doi: 10.1016/S0166-5316(96)90017-6.

Teruel, Enrique, Giuliana Franceschinis, and Massimiliano De Pierro [2003].
Well-defined generalized stochastic Petri nets: a net-level method to specify priorities.
ieee Tran. Softw. Eng., 29 (11): 962–973. doi: 10.1109/TSE.2003.1245298.

Ujhelyi, Zoltán, Gábor Bergmann, Ábel Hegedüs, Ákos Horváth, Benedek Izsó, István Ráth,
Zoltán Szatmári, and Dániel Varró [2015].
emf-IncQuery: An integrated development environment for live model queries.
J. Sci. Comp. Prog., 98 (1): 80–99. doi: 10.1016/j.scico.2014.01.004.

Vanherpen, Ken, Joachim Denil, Paul De Meulenaere, and Hans Vangheluwe [2014].
Design-Space Exploration in mde: An Initial Pattern Catalogue. In: Proc. of the 1st Int. Workshop

on Combining Modelling with Search- and Example-Based Approaches.
ceur Workshop Proceedings 1340. ceur-ws, pp. 42–51.
url: http://ceur-ws.org/Vol-1340/paper6.pdf.

Vardi, Moshe Y. [1996]. An automata-theoretic approach to linear temporal logic.
In: Logics for Concurrency. lncs 1043. Springer, pp. 238–266. doi: 10.1007/3-540-60915-6_6.

Varró, Dániel [2015]. Patterns and Styles for Incremental Model Transformations.
In: Proc. 1st Workshop Patterns in Model Eng. ceur Workshop Proceedings 1657. ceur-ws,
pp. 41–43. url: http://ceur-ws.org/Vol-1657/paper8.pdf.

https://doi.org/10.1145/166955.166998
https://doi.org/10.1007/978-3-642-31491-9_10
https://doi.org/10.1016/0377-2217(89)90335-4
https://doi.org/10.1007/3-540-44667-2_9
https://doi.org/10.1007/3-540-59071-4_45
https://doi.org/10.1145/2976767.2976788
https://doi.org/10.1007/978-3-319-61473-1_10
https://doi.org/10.1007/978-3-662-49665-7_6
https://doi.org/10.1007/978-3-642-25575-5_2
https://doi.org/10.1007/978-3-642-24485-8_20
https://doi.org/10.1016/S0166-5316(96)90017-6
https://doi.org/10.1109/TSE.2003.1245298
https://doi.org/10.1016/j.scico.2014.01.004
http://ceur-ws.org/Vol-1340/paper6.pdf
https://doi.org/10.1007/3-540-60915-6_6
http://ceur-ws.org/Vol-1657/paper8.pdf

References 81

Varró, Dániel, Oszkár Semeráth, Gábor Szárnyas, and Ákos Horváth [2017].
Towards the Automated Generation of Consistent, Diverse, Scalable and Realistic Graph Models.
In: Festschrift in Memory of Hartmut Ehrig. lncs. Springer.
url: https://inf.mit.bme.hu/sites/default/files/publications/fmhe2017-model-generation.pdf.
Forthcoming.

Vernon, Mary, John Zahorjan, and Edward D. Lazowska [1986].
A Comparison of Performance Petri Nets and Queueing Network Models.
Computer Sciences Techninal Report 669.
url: http://ftp.cs.wisc.edu/pub/techreports/1986/TR669.pdf.

Vörös, András, Dániel Darvas, Ákos Hajdu, Attila Jámbor, Attila Klenik, Kristóf Marussy,
Vince Molnár, Tamás Bartha, and István Majzik [2017a]. PetriDotNet 1.5 User Manual.
url: http://petridotnet.inf.mit.bme.hu/releases/pdn1_manual.pdf.

Vörös, András, Dániel Darvas, Ákos Hajdu, Attila Klenik, Kristóf Marussy, Vince Molnár,
Tamás Bartha, and István Majzik [2017b].
Industrial applications of the PetriDotNet modelling and analysis tool. J. Sci. Comp. Prog.

doi: 10.1016/j.scico.2017.09.003. In press.
Walker, David [2005]. Substructural Type Systems.

In: Advanced Topics in Types and Programming Languages. The mit Press, pp. 3–43.
isbn: 0-262-16228-8.

Xiong, Yingfei, Dongxi Liu, Zhenjiang Hu, Haiyan Zhao, Masato Takeichi, and Hong Mei [2007].
Towards automatic model synchronization from model transformations.
In: Proc. 22nd ieee/acm int. conf. on Automated Softw. Eng. acm, pp. 164–173.
doi: 10.1145/1321631.1321657.

Zalila, Faiez, Xavier Crégut, and Marc Pantel [2013].
Formal Verification Integration Approach for dsml. In: models 2013. lncs 8107. Springer,
pp. 336–351. doi: 10.1007/978-3-642-41533-3_21.

Ziemann, Paul and Martin Gogolla [2003]. ocl Extended with Temporal Logic. In: psi 2003.
lncs 2890. Springer, pp. 351–357. doi: 10.1007/978-3-540-39866-0_35.

https://inf.mit.bme.hu/sites/default/files/publications/fmhe2017-model-generation.pdf
http://ftp.cs.wisc.edu/pub/techreports/1986/TR669.pdf
http://petridotnet.inf.mit.bme.hu/releases/pdn1_manual.pdf
https://doi.org/10.1016/j.scico.2017.09.003
https://doi.org/10.1145/1321631.1321657
https://doi.org/10.1007/978-3-642-41533-3_21
https://doi.org/10.1007/978-3-540-39866-0_35

83

Appendix a

Case study: dining philosophers

This case study contains the artifacts with their concrete textual syntax for dining philoso-
phers problem introduced in Running example 2.1 on page 8, which were also used in our
empirical evaluation in Section 5.3 on page 63. Furthermore, the behaviors of some analyses
of models generated with this transformation were studied by T. Molnár [2017, Chapter 5]
in the context of parameter identification of stochastic Petri nets.

We present the transformation from Running example 4.2 on page 42 and Running
example 4.3 on page 43 with added symbols and annotations for reward analysis and
mean-time-to-first-failure analysis with the PetriDotNet stochastic analysis tool.

a.1 Graph queries
Graph queries are written in the query language of viatra Query [Ujhelyi et al., 2015], a
live model query evaluation tool. Due to the similarities with Datalog and other logical
query languages, we follow the convention of starting variable names with a capital letters.
Occasionally, this leads to a variable having the same name as its type; however, the result
is not ambiguous in the syntax of viatra Query. Class, reference and attribute names are
highlighted in blue for clarity.

Listing a.1 Philosophers.vql

1 package hu.bme.mit.inf.petridse.example.philosophers.patterns
2

3 import "http://example.org/philosophers"
4

5 /* Find the table around which the philosophers sit. */
6 pattern table(Table : Table) {
7 Table(Table);
8 }
9

10 /* Find each Phil around the Table. */
11 pattern philosopher(Table : Table, Phil : Philosopher) {
12 Philosopher(Phil);
13 Table.philosophers(Table, Phil);
14 }
15

16 /* Left and Right sit next to each other around the Table. */
17 pattern adjacentPhilosophers(Table : Table, Left : Philosopher, Right :

Philosopher) {

a.2 Petri net modules 84

18 Philosopher.right(Left, Right);
19 Table.philosophers(Table, Left);
20 Table.philosophers(Table, Right);
21 }

a.2 Petri net modules
Petri net modules used the concrete syntax of our Ecore2Pn tool. Places, transitions and
variables are highlighted in green, gold and blue, respectively. Names of references are
written in italics.

The rgspn modules presented below extend the modules from Running example 4.3 on
page 43 with symbols for mean-time-to-first-failure analysis. The objective of this analysis
is to determine the first philosopher to get hungry.

Listing a.2 PhilModule.ecore2pn

1 package hu.bme.mit.inf.petridse.example.philosophers.ecore2pn
2

3 module PhilModule {
4 ref param double hungryRate
5 ref param double eatingRate
6

7 prop double thinkingTime = if (#thinking >= 1) 1 else 0
8 // Error mode for mean-time-to-first-failure analysis.
9 prop boolean isHungry = #waiting >= 1

10

11 place thinking = 1
12 place waiting
13 place eating
14 place rightFork = 1
15 ref place leftFork
16

17 // Timed transition with rate hungryRate.
18 tran getHungry = exp hungryRate
19 // Immediate transition with probability weight 1.0, priority is 1 by default.
20 tran startEating = immediate 1.0
21 tran finishEating = exp eatingRate
22

23 // Chains of arcs can be written with chains of arrows.
24 // Arc weights default to 0, but can be specified as e.g. -2->.
25 thinking -> getHungry -> waiting -> startEating -> eating
26 -> finishEating -> thinking
27 rightFork, leftFork -> startEating
28 finishEating -> rightFork, leftFork
29 }

The rgspn module for the table only contains variable and collection symbols.

Listing a.3 TableModule.ecore2pn

1 package hu.bme.mit.inf.petridse.example.philosophers.ecore2pn
2

3 module TableModule {

a.3 Transformation specification 85

4 prop double[] thinkingTimes
5 prop double totalThinkingTime = sum(thinkingTimes)
6 // Collection of error modes for mean-time-to-first-failure analysis.
7 prop boolean[] hungryFaultModes
8 }

a.3 Transformation specification
We repeat the transformation specification from Running example 4.2 on page 42 and Run-
ning example 4.3 on page 43 with the extensions for analyses performed with PetriDotNet.

Listing a.4 DiningPhilosophers.ecore2pn

1 package hu.bme.mit.inf.petridse.example.philosophers.ecore2pn
2

3 import "http://example.org/philosophers"
4 import hu.bme.mit.inf.petridse.example.philosophers.patterns.*
5

6 transformation DiningPhilosophers {
7 features {
8 Philosopher {
9 // Textual description of the parameter symbol.

10 @Description(text="Likes rice ’this’ much.")
11 param eatingRate
12

13 // Reward analysis in PetriDotNet.
14 @RewardConfiguration derived prop double thinkingTime
15 // Mean-time-to-first-failure analysis in PetriDotNet.
16 @FaultConfiguration derived prop boolean isHungry
17 }
18

19 Table {
20 @RewardConfiguration derived prop double totalThinkingTime
21 // Mean-time-to-first-failure analysis with multiple error modes.
22 @FaultConfiguration derived prop boolean[] hungryFaultModes
23 }
24 }
25

26 // Create the Petri net mapping for the table.
27 mapping table(Table) => TableModule TableM {
28 // Bind the metric totalThinkingTime and the collection of fault modes
29 // hungryFaultModes to the domain object Table as derived features.
30 Table.totalThinkingTime := TableM.totalThinkingTime
31 Table.hungryFaultModes := TableM.hungryFaultModes
32 }
33

34 // Create the Petri net mapping for each philosopher.
35 mapping philosopher(Table, Phil) => PhilModule PhilM {
36 lookup table(Table) as TableM
37 PhilM.hungryRate := Phil.hungryRate
38 PhilM.eatingRate := Phil.eatingRate
39 // First PhilM.totalThinkingTime is assigned to the derived feature
40 // Phil.totalThinkingTime...
41 Phil.thinkingTime := PhilM.thinkingTime

a.3 Transformation specification 86

42 // ...then Phil.totalThinkingTime is added to the collection
43 // TableM.thinkingTimes.
44 TableM.thinkingTimes += Phil.thinkingTime
45 Phil.isHungry := PhilM.isHungry
46 TableM.hungryFaultModes += Phil.isHungry
47 }
48

49 // Adjacent philosophers must share forks.
50 mapping adjacentPhilosophers(Table, Left, Right) {
51 lookup philosopher(Table, Left) as LeftM
52 lookup philosopher(Table, Right) as RightM
53 RightM.leftFork := LeftM.rightFork
54 }
55 }

87

Appendix b

Case study:
architectural modeling language

This case study shows a more complex example which transforms architectural models to
stochastic Petri nets for hazard rate analysis. The transformation was used in a collaboration
with an industrial partner to evaluate safety requirements in a redundant, self-diagnosing
automotive system. Stochastic analysis was performed both on the dependability models
automatically derived from the architecture models and on manually constructed stochastic
Petri nets. The equal results from the analyses corroborated each other and demonstrated
the correctness of the transformation.

b.1 Architectural modeling language metamodel
The architectural modeling language applied in the case study is a domain-specific language
for dependability analysis, which was proposed by Ecsedi [2016] for mean-time-to-first-
failure and hazard rate analysis of component-based systems.

Figures b.1 to b.3 show the metamodel of the language as class diagrams. Figure b.1
shows the basic structure of the language. The root element DepModel can contain port
types (PortType), component types (ComponentType) and systems (System). Port types
may have multiple named error modes (ErrorMode). Component types instantiate port
types as input and output ports; moreover, they have an ErrorModel describing their
fault modes and transitions. A system contains Component instances. Systems may also
delegate input and output system ports to their components. The delegated ComponentPort
identifies the port by referring to the port instance and its containing component instance.

Input ports are connected to output ports by Connection instances as shown in Fig-
ure b.2. ComponentConnection instances connect component ports within systems, while
SystemConnection instances connect delegated system ports. The Propagation of a con-
nection describes whether an error on an output port is propagated to the input port through
the connection. CertainPropagation propagates the error with probability 1. In contrast,
UncertainPropagation only propagates with a specified probability. Separation of
propagation methods enables generating simplified Petri nets for certain connections, while
allowing sensitivity analysis in the stochastic model for uncertain connections.

Figure b.3 on page 89 shows the metamodel of the error models. An ErrorModel has at
least one State. A specific state is designated as the initialState. State transitions are
described by Transition instances. A transition fires according to a Trigger. Transitions
with an OccurrenceTrigger are triggered spontaneously by an exponentially distributed

b.1 Architectural modeling language metamodel 88

Component

name : EString

ComponentType

name : EString

DepModel

 systemConnections :
SystemConnection

Port

name : EString

PortType

name : EString

System

name : EString

 componentConnections :
ComponentConnection

SystemPort

name : EString

ErrorMode

name : EString

ErrorModel

 states : State

 initialState : State

 transitions :
Transition

ComponentPort

[1..1] componentType
[0..*] inputPorts [0..*] outputPorts

[0..*] portTypes
[0..*] componentTypes

[0..*] systems

[1..1] portType

[0..*] components

[0..*] inputPorts

[0..*] outputPorts[1..*] errorModes
[0..1] errorModel

[1..1] componentPort
[1..1] component

[1..1] port

Figure b.1 Architectural modeling language metamodel.

Connection

name : EString

ComponentConnection SystemConnection

ComponentPort

component : Component

port : Port

SystemPort

name : EString

Propagation

UncertainPropagation

probability : EDouble
= 0.0

CertainPropagation

[1..1] sourcePort
[1..1] targetPort

[1..1] sourcePort [1..1] targetPort

[1..1] componentPort

[1..1] propagation

Figure b.2 Connections between ports in the architectural modeling language metamodel.

countdownwith rate parameter occurrenceRate. In contrast, PropagatedErrorTrigger
triggered transitions are fired immediately when the specified error appears on the specified
input port, which is described by a PropagatedErrorInstance. As a side effect of
transitions, an outputError may appear on an output port.

The semantics of the language were described in more detail by Ecsedi [2016, Chapter 4].
Figure b.4 shows a portion of the telecare system example architecture by Ecsedi [2016,

Chapter 7]. The graphical concrete syntax was created for the language using the Sirius9

framework as part of our collaboration with the industrial partner.△

△ Icons used in the graphical syntax are available in the Fugue Icons library by Yusuke Kamiyamane under
the Creative Commons Attribution 3.0 license at http://p.yusukekamiyamane.com/

⁹http://www.eclipse.org/sirius/

http://p.yusukekamiyamane.com/
http://www.eclipse.org/sirius/

b.1 Architectural modeling language metamodel 89

ErrorModel

State

name : EString

Transition

name : EString

Trigger

PropagatedError

 port : Port

 errorMode : ErrorMode

OccurrenceTrigger

occurrenceRate : EDouble = 0.0

PropagatedErrorTrigger

[1..*] states[0..1] initialState
[0..*] transitions

[1..1] sourceState

[1..1] targetState

[1..1] trigger

[0..1] outputError

[1..1] inputError

Figure b.3 Error models in the architectural modeling language metamodel.

SensorData

InvalidData

LowBattery

NewBattery

HwToSw

CorruptedDataHwSw

LowBatteryHwSw

NewBatteryHwSw

DriverType

NormalDriver

LowBattery

InvalidDatasensorPort
: HwToSw

sendData :
SensorData

HardwareType

LowBatteryError

NormalHW

CorruptedDataError

driverPort :
HwToSw

Sensor

PulseSensor :
HardwareType

driverPort :
HwToSw

WeightScaleSensor :
HardwareType

driverPort :
HwToSw

PulseDriver :
DriverType

sensorPort
: HwToSw

sendData :
SensorData

WeightScaleDriver :
DriverType

sensorPort
: HwToSw

sendData :
SensorData

pulseComm :
SensorData

weightComm
: SensorData

New (sensorPort.
NewBatteryHwSw /

sendData.
NewBattery)

InvalidSignal
(occ 50.0 /
sendData.

InvalidData)

Invalid (sensorPort.
CorruptedDataHwSw

/ -)

LowBattery
(sensorPort.

LowBatteryHwSw
/ sendData.
LowBattery)

NewMeasurement (occ 2.0 / -)

New (occ 10.0 /
driverPort.

NewBatteryHwSw)

Low (occ 0.16 /
driverPort.

LowBatteryHwSw)

IRecovery (occ 5.0 / -)

Corrupted (occ 2.5 /
driverPort.

CorruptedDataHwSw)

pulseConn (0.9)

weightConn (0.9)

LowBattery
(sensorPort.

LowBatteryHwSw
/ sendData.
LowBattery)

New (sensorPort.
NewBatteryHwSw /

sendData.
NewBattery)

NewMeasurement (occ 2.0 / -)
Invalid (sensorPort.

CorruptedDataHwSw
/ -)

InvalidSignal
(occ 50.0 /
sendData.

InvalidData)

Low (occ 0.16 /
driverPort.

LowBatteryHwSw)

Corrupted (occ 2.5 /
driverPort.

CorruptedDataHwSw)IRecovery (occ 5.0 / -)

New (occ 10.0 /
driverPort.

NewBatteryHwSw)

pulseConn (0.9)

weightConn (0.9)

Figure b.4 Telecare system architecture example.

b.2 Graph queries 90

b.2 Graph queries
We implemented the transformation of the architectural modeling language to Petri nets,
which was proposed by Ecsedi [2016, Chapter 6]. The transformation allows studying the
hazard rates of propagated errors under the assumption that only a single error occurs
during system operation per port instance and error mode.

The modeling language contains port types and component types, as well as their
instances. Hence it offers some features for multi-level metamodeling. Component instances
in systems do not contain individual objects for their ports; furthermore, port instances in
component types do not contain individual objects for the error modes of their port instances.
Hence ports of component instances must be identified by pairs 〈Component, Port〉, while
error modes are identified by triples 〈Component, Port, ErrorMode〉. Similar techniques are
employed for referencing states and transitions of component instances.

Listing b.1 Dependability.vql

1 package hu.bme.mit.inf.petridse.example.dependability.queries
2

3 import "http://example.org/dependability"
4

5 /* Match all states of component instances. */
6 pattern state(DepModel : DepModel, Component : Component, State : State)

{
7 find component(DepModel, Component);
8 Component.componentType.errorModel.states(Component, State);
9 }

10

11 /* The initial state is selected by an additional reference. */
12 pattern initialState(DepModel : DepModel, Component : Component, State :

State) {
13 find component(DepModel, Component);
14 Component.componentType.errorModel.initialState(Component, State);
15 }
16

17 /* Any non−initial states are error states. */
18 pattern errorState(DepModel : DepModel, Component : Component, State :

State) {
19 find state(DepModel, Component, State);
20 neg find initialState(DepModel, Component, State);
21 }
22

23 /* Match all ports of component instances. */
24 pattern port(DepModel : DepModel, Component : Component, Port : Port) {
25 find component(DepModel, Component);
26 find componentPort(Component, Port);
27 }
28

29 /* Match all error modes of component instance ports. */
30 pattern errorMode(DepModel : DepModel, Component : Component, Port :

Port, ErrorMode : ErrorMode) {
31 find port(DepModel, Component, Port);
32 Port.portType.errorModes(Port, ErrorMode);
33 }
34

b.2 Graph queries 91

35 /* An error mode is an output error mode if it belongs to an output port. */
36 pattern outputErrorMode(DepModel : DepModel, Component : Component, Port

: Port, ErrorMode : ErrorMode) {
37 find component(DepModel, Component);
38 Component.componentType.outputPorts(Component, Port);
39 Port.portType.errorModes(Port, ErrorMode);
40 }
41

42 /* Match all transitions within component instances. */
43 pattern transition(DepModel : DepModel, Component : Component,

Transition : Transition) {
44 find component(DepModel, Component);
45 Component.componentType.errorModel.transitions(Component, Transition);
46 }
47

48 /* Connect a transition to its source and target states. */
49 pattern transitionFromTo(DepModel : DepModel, Component : Component,

Transition : Transition, From : State, To : State) {
50 find transition(DepModel, Component, Transition);
51 Transition.sourceState(Transition, From);
52 Transition.targetState(Transition, To);
53 }
54

55 /* Transition with an occurrence trigger.
56 * The occurrence trigger specifies the occurrence rate of the transition. */
57 pattern transitionOccurrenceTrigger(DepModel : DepModel, Component :

Component, Transition : Transition, Trigger : OccurrenceTrigger) {
58 find transition(DepModel, Component, Transition);
59 Transition.trigger(Transition, Trigger);
60 OccurrenceTrigger(Trigger);
61 }
62

63 /* Transition triggered by an error mode on a port.
64 * The component instance of the port is the component instance of the transition. */
65 pattern transitionPropagatedTrigger(DepModel : DepModel, Component :

Component, Transition : Transition, Port : Port, ErrorMode :
ErrorMode) {

66 find transition(DepModel, Component, Transition);
67 Transition.trigger(Transition, Trigger);
68 PropagatedErrorTrigger.inputError.port(Trigger, Port);
69 PropagatedErrorTrigger.inputError.errorMode(Trigger, ErrorMode);
70 }
71

72 /* The transition causes the error mode to appear on the port.
73 * The component instance of the port is the component instance of the transition. */
74 pattern transitionPropagates(DepModel : DepModel, Component : Component,

Transition : Transition, Port : Port, ErrorMode : ErrorMode) {
75 find transition(DepModel, Component, Transition);
76 Transition.outputError.port(Transition, Port);
77 Transition.outputError.errorMode(Transition, ErrorMode);
78 }
79

80 /* An uncertain connection causes the error mode to propagate between the component ports.
81 * System ports are not matched directly,
82 * because their delegated component ports stand for them. */

b.2 Graph queries 92

83 pattern connectedErrorModesUncertain(DepModel : DepModel, From :
Component, FromPort : Port, To : Component, ToPort : Port,
Propagation : UncertainPropagation, ErrorMode : ErrorMode) {

84 find connectedErrorModes(DepModel, From, FromPort, To, ToPort,
Propagation, ErrorMode);

85 UncertainPropagation(Propagation);
86 }
87

88 /* A certain connection causes the error mode to propagate between the component ports. */
89 pattern connectedErrorModesCertain(DepModel : DepModel, From :

Component, FromPort : Port, To : Component, ToPort : Port, ErrorMode
: ErrorMode) {

90 find connectedErrorModes(DepModel, From, FromPort, To, ToPort,
Propagation, ErrorMode);

91 CertainPropagation(Propagation);
92 }
93

94 /* A component of the dependability model. */
95 pattern component(DepModel : DepModel, Component : Component) {
96 DepModel.systems.components(DepModel, Component);
97 }
98

99 // Private helper patterns:
100

101 /* Match all ports instances within a component type. */
102 private pattern componentTypePort(ComponentType : ComponentType, Port :

Port) {
103 ComponentType.inputPorts(ComponentType, Port);
104 } or {
105 ComponentType.outputPorts(ComponentType, Port);
106 }
107

108 /* Match all port instances of a component instance,
109 * which are exactly those of its component type */
110 private pattern componentPort(Component : Component, Port : Port) {
111 Component.componentType(Component, ComponentType);
112 find componentTypePort(ComponentType, Port);
113 }
114

115 /* Match two connected ports of component instances. */
116 private pattern connectedPorts(From : Component, FromPort : Port, To :

Component, ToPort : Port, Connection : Connection) {
117 // The connection is either a direct component connection...
118 ComponentConnection.sourcePort.component(Connection, From);
119 ComponentConnection.sourcePort.port(Connection, FromPort);
120 ComponentConnection.targetPort.component(Connection, To);
121 ComponentConnection.targetPort.port(Connection, ToPort);
122 } or {
123 // ...or is a system connection between delegated component ports.
124 SystemConnection.sourcePort.componentPort.component(Connection, From);
125 SystemConnection.sourcePort.componentPort.port(Connection, FromPort);
126 SystemConnection.targetPort.componentPort.component(Connection, To);
127 SystemConnection.targetPort.componentPort.port(Connection, ToPort);
128 }
129

b.3 Petri net modules 93

130 /* Match all the error modes of two connected ports of component instances. */
131 pattern connectedErrorModes(DepModel : DepModel, From : Component,

FromPort : Port, To : Component, ToPort : Port, Propagation :
Propagation, ErrorMode : ErrorMode) {

132 find component(DepModel, From);
133 find component(DepModel, To);
134 find connectedPorts(From, FromPort, To, ToPort, Connection);
135 Connection.propagation(Connection, Propagation);
136 Port.portType.errorModes(FromPort, ErrorMode);
137 }

b.3 Petri net modules
Various Petri net modules were created for the transformation. The module StateMod-
ule contains a single reference, which will be used to simulate “rule inheritance” of the
InitialStateModule and ErrorStateModule modules.

The aim of the analysis model is provide hazard rate analysis for port instances of
components. Because port instances of component instances are not represented directly
as objects in the architectural model, derived features cannot be used for the metrics. We
instead bind a @FaultConfiguration analysis annotation to a symbol in the PortModule,
which is instantiated for each port instance of each component instance.

Listing b.2 DependabilityModules.ecore2pn

1 package hu.bme.mit.inf.petridse.example.dependability.ecore2pn
2

3 /* Placeholder for places created for states. */
4 module StateModule {
5 ref place p
6 }
7

8 /* An initial state has an initial marking. */
9 module InitialStateModule {

10 place p = 1
11 }
12

13 /* Error states have no initial marking. */
14 module ErrorStateModule {
15 place p
16 }
17

18 /* An error mode of a port instance is signified by a place. */
19 module ErrorModeModule {
20 // Condition triggered when the error occurs.
21 marking boolean errorModeOccurred = #error >= 1
22

23 place error
24 }
25

26 /* Output error modes have an additional transition to propagate the error. */
27 module OutputErrorModeModule {
28 ref place error
29 // Send the error token to the input ports connected with this port.

b.3 Petri net modules 94

30 tran outputToBuffer = immediate 1.0 priority 2
31

32 error -> outputToBuffer
33 }
34

35 /* Transition between two states of an error model. */
36 module TransitionModule {
37 ref place from
38 ref place to
39 ref tran fire
40

41 from -> fire -> to
42 }
43

44 /* Occurrence transitions are timed. */
45 module OccurrenceTransitionModule {
46 ref param double occurrenceRate
47

48 tran fire = exp occurrenceRate
49 }
50

51 /* Propagated transitions are immediate.
52 * additional arcs will be added to control when the transition can fire. */
53 module PropagatedTransitionModule {
54 ref place triggerError
55 tran fire = immediate 1.0 priority 1
56

57 triggerError -> fire
58 }
59

60 /* A port has an associated collection of error modes indicator variables.
61 * The collection is passed to PetriDotNet for hazar rate analysis. */
62 module PortModule {
63 @FaultConfiguration
64 marking boolean[] errorModes
65 }
66

67 /* Single certain propagation of an error. */
68 module CertainPropagationModule {
69 ref place error
70 ref tran fire
71

72 // The inhibitor arc prevents the same error mode from propagating twice.
73 error -o fire -> error
74 }
75

76 /* Uncertaion certain propagation of an error. */
77 module UncertainPropagationModule {
78 ref param double probability
79

80 // Buffer place to temporarily keep the error token.
81 place buffer
82 ref place to
83

84 ref tran outputToBuffer

b.4 Transformation specification 95

85 // Propagate the error with a given probability p...
86 tran propagateError = immediate probability priority 1
87 // ...or discard it with propability 1 − p.
88 tran propagateSink = immediate 1.0 - probability priority 1
89

90 to -o outputToBuffer, propagateError
91 buffer -o outputToBuffer -> buffer
92 buffer -> propagateError -> to
93 buffer -> propagateSink
94 }

b.4 Transformation specification
The transformation specification instantiates the rgspn modules according to the mapping
defined by Ecsedi [2016, Chapter 6].

States of component instances, as well as the error modes of port instances owned by
every component instance are represented as single places. Connecting Petri net fragments
describe state transitions and error mode propagation.

Listing b.3 DependabilityPetriNet.ecore2pn

1 package hu.bme.mit.inf.petridse.example.dependability.ecore2pn
2

3 // Import the dependability metamodel with a qualified name.
4 import "http://example.org/dependability" as dependability
5 import hu.bme.mit.inf.petridse.example.dependability.queries.*
6

7 transformation DependabilityPetriNet {
8 features {
9 // Qualified references to classes from the metamodel.

10 dependability::OccurrenceTrigger {
11 @Description(text="Occurrence rate of the fault.")
12 param occurrenceRate
13 }
14

15 dependability::UncertainPropagation {
16 @Description(text="Probability of fault propagation.")
17 param probability
18 }
19 }
20

21 // Create a placeholder for each state.
22 // We do not refer to the modul instance here, so it can remain unnamed.
23 mapping state(DepModel, Component, State) => StateModule
24

25 // Instantiate states with initial marking.
26 mapping initialState(DepModel, Component, State) =>

InitialStateModule IS {
27 lookup state(DepModel, Component, State) as S
28 S.p := IS.p
29 }
30

31 // Instantiate states without initial marking.

b.4 Transformation specification 96

32 mapping errorState(DepModel, Component, State) => ErrorStateModule ES
{

33 lookup state(DepModel, Component, State) as S
34 S.p := ES.p
35 }
36

37 // Instantiate a module containing the hazard rate analysis queries.
38 mapping port(DepModel, Component, Port) => PortModule
39

40 // Each error mode is represented by a place.
41 mapping errorMode(DepModel, Component, Port, ErrorMode) =>

ErrorModeModule EM {
42 lookup port(DepModel, Component, Port) as P
43 P.errorModes += EM.errorModeOccurred
44 }
45

46 // Add the transition for output error modes.
47 mapping outputErrorMode(DepModel, Component, Port, ErrorMode) =>

OutputErrorModeModule OutEM {
48 lookup errorMode(DepModel, Component, Port, ErrorMode) as EM
49 OutEM.error := EM.error
50 }
51

52 // Add the Petri net fragment for state transitions.
53 mapping transition(DepModel, Component, Transition) =>

TransitionModule
54

55 // Connect the state transitions to their source and target states.
56 // We did not add connections in the transition rule,
57 // so that it can be looked up more easily, without pollution with more match arguments.
58 mapping transitionFromTo(DepModel, Component, Transition, From, To) {
59 lookup transition(DepModel, Component, Transition) as Tran
60 lookup state(DepModel, Component, From) as SF
61 lookup state(DepModel, Component, To) as ST
62 Tran.from := SF.p
63 Tran.to := ST.p
64 }
65

66 // Map occurrence triggers with their occurence rate parameter symbols.
67 mapping transitionOccurrenceTrigger(DepModel, Component, Transition,

Trigger) => OccurrenceTransitionModule OT {
68 lookup transition(DepModel, Component, Transition) as Tran
69 OT.occurrenceRate := Trigger.occurrenceRate
70 Tran.fire := OT.fire
71 }
72

73 // Map propagated transitions.
74 mapping transitionPropagatedTrigger(DepModel, Component, Transition,

Port, ErrorMode) => PropagatedTransitionModule PT {
75 lookup transition(DepModel, Component, Transition) as Tran
76 lookup errorMode(DepModel, Component, Port, ErrorMode) as EM
77 PT.triggerError := EM.error
78 Tran.fire := PT.fire
79 }
80

b.4 Transformation specification 97

81 // Reuse the CertainPropagationModule for output error mode propagation.
82 mapping transitionPropagates(DepModel, Component, Transition, Port,

ErrorMode) => CertainPropagationModule TP {
83 lookup transition(DepModel, Component, Transition) as Tran
84 lookup errorMode(DepModel, Component, Port, ErrorMode) as EM
85 TP.fire := Tran.fire
86 TP.error := EM.error
87 }
88

89 // Add the error mode propagating fragment for certain connections.
90 mapping connectedErrorModesCertain(DepModel, From, FromPort, To,

ToPort, ErrorMode) => CertainPropagationModule P {
91 lookup outputErrorMode(DepModel, From, FromPort, ErrorMode) as

EMFrom
92 lookup errorMode(DepModel, To, ToPort, ErrorMode) as EMTo
93 P.fire := EMFrom.outputToBuffer
94 P.error := EMTo.error
95 }
96

97 // Add the error mode propagating fragment for uncertain connections.
98 mapping connectedErrorModesUncertain(DepModel, From, FromPort, To,

ToPort, Propagation, ErrorMode) => UncertainPropagationModule P {
99 lookup outputErrorMode(DepModel, From, FromPort, ErrorMode) as

EMFrom
100 lookup errorMode(DepModel, To, ToPort, ErrorMode) as EMTo
101 P.outputToBuffer := EMFrom.outputToBuffer
102 P.to := EMTo.error
103 P.probability := Propagation.probability
104 }
105 }

	Contents
	Kivonat
	Abstract
	Hallgatói nyilatkozat
	1 Introduction
	1.1 Related work: optimization and stochastic modeling
	1.2 Overview of our approach

	2 Background
	2.1 Modeling and metamodeling
	2.1.1 Metamodels and instance models
	2.1.2 Graph patterns

	2.2 Formal models for stochastic analysis
	2.2.1 Petri nets
	2.2.2 Continuous-time Markov chains
	2.2.3 Stochastic analysis tasks
	2.2.4 Generalized stochastic Petri nets

	3 Modular formalism for stochastic models
	3.1 Related work: modular stochastic modeling
	3.1.1 Modeling formalisms
	3.1.2 Query specifications

	3.2 Generalized stochastic Petri net modules
	3.2.1 Symbols and edges
	3.2.2 Type system
	3.2.3 Formal definition

	3.3 Expressions
	3.3.1 Typing
	3.3.2 Semantics

	4 Incremental view synchronization
	4.1 Related work: view synchronization approaches
	4.2 Overview of the transformation engine
	4.2.1 Transformation specification
	4.2.2 Transformation chain
	4.2.3 End-to-end traceability

	4.3 Transformation specification language
	4.3.1 Feature rules
	4.3.2 Mapping rules

	4.4 Generic view transformation to stochastic Petri nets
	4.5 Stochastic Petri net concretization
	4.5.1 Transformation execution
	4.5.2 Expression dependencies
	4.5.3 Handling of inconsistencies

	5 Application for design-space exploration
	5.1 Integration with design-space exploration toolchains
	5.1.1 Model transformation based design-space explorers
	5.1.2 Stochastic analysis tools

	5.2 Software implementation
	5.2.1 Specification environment
	5.2.2 Transformation execution

	5.3 Evaluation of incremental transformations
	5.3.1 Measurement setup
	5.3.2 Results
	5.3.3 Observations
	5.3.4 Threats to validity

	6 Conclusions and future work
	Acknowledgments
	References
	A Case study: dining philosophers
	A.1 Graph queries
	A.2 Petri net modules
	A.3 Transformation specification

	B Case study: architectural modeling language
	B.1 Architectural modeling language metamodel
	B.2 Graph queries
	B.3 Petri net modules
	B.4 Transformation specification

