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Summary

Formal verification is a collective name of techniques that aim to prove that a system design or im-
plementation satisfies its required properties. Formally proving something is much more challenging
than testing and simulation: the proof has to cover every possible case, not just selected executions of
the system. This kind of rigorous analysis is often used in the development of safety-critical hardware
and software systems, commonly found in the automotive, railway or aerospace industries.

Model checking is an automated formal verification technique that evaluates the possible states
and behaviors of a system design with regard to a formal specification. This is a challenging task
because real-life systems usually have an enormous number of possible states, all (or most) of which
has to be checked for violations of the specified properties. Symbolic model checking techniques,
and in particular the saturation algorithm have been introduced to efficiently handle these large state
spaces in many (common) cases.

Research of the saturation algorithm has yielded different variants suitable for different problems,
but the range of possible applications are still not fully covered. This dissertation presents further
results in the fields of efficient analysis of models with prioritized transitions and the model checking
of linear temporal logic properties, a class of specification logic that is prevalent but hard to analyze.
Furthermore, investigation of different variants of saturation inspired an enhanced and more general
version of the original algorithm, which is the culmination of this research.

Thesis 1 presents an approach to efficiently analyze Generalized Stochastic Petri Nets, a formalism
suitable for the modeling of extra-functional aspects of a system. These models have prioritized tran-
sitions, which is challenging for saturation. The presented approach decomposes the priority-related
aspects from the effect of the transition and achieves better scaling compared to previous approaches,
expanding the scope of models on which analysis is feasible.

Thesis 2 is about the model checking of linear temporal logic properties, which is a complex algo-
rithm only partially supported by saturation. It investigates how saturation can be used in different
phases of the algorithm and introduce extensions accordingly. Furthermore, Thesis 2 introduces new
algorithms for the different subtasks of this model checking problem, tailored to work with satu-
ration and combining the best of previously known approaches. The combination of these building
blocks provides a scalable, optimized symbolic model checking algorithm for linear temporal logic
properties.

Thesis 3 introduces an enhanced version of the saturation algorithm. By identifying the common
ideas, the enhanced version generalizes previous variants in a single, more powerful algorithm that
can directly tackle a wider range of problems. Enhancement can be observed on performance as well:
in certain types of models, the enhanced version outperforms the original saturation algorithm by
orders of magnitude, while it has the same performance in other cases.
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sszefoglaló

Formális verifikáció alatt olyan technikákat értünk, amelyek célja egy rendszerterv vagy -
implementáció helyességének bizonyítása adott követelmények szempontjából. Egy követelmény tel-
jesülésének bizonyítása sokkal nagyobb kihívás, mint a tesztelés vagy szimuláció, hiszen egy bizonyí-
tásnak az összes eshetőséget le kell fednie, nem csak (válogatott) egyedi lefutásokat. Ez a fajta szigorú
analízis gyakran elvárás biztonságkritikus hardver- és szoftverrendszerek fejlesztésekor, amik gyako-
riak pl. a jármű-, vasúti és repülőgépiparban.

A modellellenőrzés egy olyan automatikus formális verifikációs módszer, amely egy rendszerterv
(modell) által leírt lehetséges állapotokat és viselkedéseket vizsgál a rendszer specifikációja szem-
pontjából. Ez egy nehéz probléma, ugyanis a legtöbb valós rendszernek hatalmas számú lehetséges
állapota van, amiket mind (de legalábbis nagy részét) meg kell vizsgálni, hogy nem sérti-e a specifikált
rendszertulajdonságokat. Ezeknek a nagyméretű állapottereknek a hatékony kezelésére fejlesztették
ki a szimbolikus modellellenőrzés módszerét, azon belül is a rendkívül hatékony ún. szaturáció algo-
ritmust.

A szaturáció algoritmust többféle probléma hatékony megoldására is adaptálták, de a lehetséges
alkalmazási területek jó része még lefedésre vár. Jelen disszertáció ebben az iránybanmutat be új ered-
ményeket, adaptálva az algoritmust prioritásos viselkedésmodellek, illetve lineáris idejű temporális
logika segítségével megfogalmazott követelmények hatékony ellenőrzésére. lineáris idejű temporális
logikai kifejezéseket széles körben alkalmaznak követelmények formális leírására, azonban ellenőr-
zésük nehéz feladat. Mindezeken felül, a disszertációban bemutatott kutatás csúcspontjaként a sza-
turáció különböző variánsainak elemzéséből inspirálódva továbbfejlesztésre került maga a szaturáció
algoritmus is.

Az 1. tézis az ún. Általánosított Sztochasztikus Petri-hálók (Generalized Stochastic Petri Net) mo-
dellezési formalizmus hatékony elemzésére mutat be új, szaturáció alapú megközelítést. Ez a nyelv
a rendszerek extrafunkcionális tulajdonságainak modellezésére szolgál, és a rendszer lehetséges vi-
selkedései (állapotátmenetei) között prioritásokat is definiál, amelyek kezelése kihívás a szaturáció
számára. A bemutatott megoldás szétválasztja az állapotátmenetek prioritással kapcsolatos leírását
és az átmenet hatásának leírását, amivel jobb skálázódás érhető el a korábbi megoldásokhoz képest,
ezzel növelve az elemezhető modellek körét.

A 2. tézis a lineáris idejű temporális logikai tulajdonságok ellenőrzéséről szól. Az erre szolgáló
algoritmus több összetett lépésből áll, melyek közül a szaturáció nem mindent támogat. A kapcsolódó
fejezetekben megvizsgálom, hogy milyen kiterjesztésekkel lehet a szaturációt az algoritmus minél
több fázisában használni, valamint a szaturációhoz jól illeszkedő új algoritmusokat dolgozok ki és
mutatok be, kombinálva a korábbi megoldások előnyeit. Mindezek az eredmények együttesen egy
jól skálázódó, optimalizált szimbolikus modellellenőrző algoritmust adnak lineáris idejű temporális
logikai tulajdonságok ellenőrzésére.

A 3. tézisben bemutatom a szaturáció algoritmus továbbfejlesztett változatát. A korábbi varián-
sok közös elemeinek elemzésével létrehoztam az algoritmus egy olyan általánosabb és hatékonyabb
változatát, ami a korábbi variánsok kiváltása mellett egy, az eredeti algoritmushoz képest szélesebb
problémakör megoldására is alkalmas. A továbbfejlesztés a teljesítményen is megfigyelhető: egyes
modelltípusok esetén a továbbfejlesztett változat akár több nagyságrenddel is gyorsabb az eredetinél,
míg más esetben is az eredetihez hasonló teljesítményt nyújt.
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Chapter1

Introduction

Between 1985 and 1987, a software bug in the Therac-25 radiation therapy machine killed or severely
injured at least six patients [LT93]. The problem was caused by improper synchronization between
two concurrent processes, which lead to a race condition if the operator entered specific commands
too fast. Race conditions are very hard to detect during testing because they appear only very rarely.
They are a prime example of nondeterministic behavior, which is a mathematical abstraction of un-
predictable but possible outcomes.

Incidents such as that of Therac-25 showed that software, especially concurrent software is very
easy to get wrong, and the faults are very hard to detect with conventional testing approaches. By that
time, formalmethods in computer engineering hadwell-laid foundations inmathematical logic, which
allowed engineers to specify, model and verify their designs in a mathematically precise way [BH14].
With a formal specification and model, the goal of formal verification is to prove the correctness of
the modeled behavior in terms of the specification as opposed to testing certain executions. At the
time of the Therac incidents, pioneering work in the automation of detecting concurrency problems
has just been published by Edmund M. Clarke and Ernest A. Emerson [EC80] as well as Joseph Sifakis
[QS82]: the technique of model checking.

A certain (abstract) behavior of a computer system can be represented by a sequence of discrete
states that describe the system in a specific moment of time. The system would stay in a state for
some amount of time, then transition into another one practically instantaneously. The whole behav-
ior of the system can therefore be regarded as a graph (states as nodes and transitions as directed
arcs), where multiple outgoing transitions denote nondeterministic choices (e. g. the scheduling of
concurrent processes as described above). Every path, i. e. sequence of states in this graph is a pos-
sible execution of the system that might realize under some circumstances. Therefore, any potential
error is also present somewhere in the graph, as an undesired state or sequence of states. The goal
of model checking is to construct this state graph (also called state space) and look for the error as
specified by some logic formula coming from the specification of system properties.

Obviously, the more complex the system, the more states it will have, and unfortunately the re-
lationship is usually exponential – this is known as the state space explosion problem. In practice, a
realistic system model would usually have so many states that it is impossible to store all of them
in computer memory. One of the solutions proposed for this problem is symbolic model checking
[Bur+92].

The main motivation of symbolic model checking is that states are usually vectors of values as-
sumed by variables of the system, and many of these state vectors in the state space would be similar
(especially in concurrent systems). For example, a thread in a programwill most likely change only its

1



1. Introduction

local variables and some of the shared global variables, but will not affect local variables of any other
thread. Symbolic model checking exploits this by characterizing sets of state vectors with Boolean
functions (characteristic functions), which will describe the common features of and relations be-
tween the vectors in the set. For example, a function f(x, y, z) = ¬x ∨ y over Boolean variables x, y
and z describe 6 vectors by returning true for exactly those triples that satisfy ¬x∨ y. Basic set oper-
ations needed for model checking then map to Boolean operators (union to disjunction, intersection
to conjunction, complementation to negation).

As a compact representation for Boolean functions, Randal Bryant proposed binary decision di-
agrams [Bry86], which are essentially decision trees with all the identical subtrees merged. Manip-
ulation of decision diagrams to execute logical operations can be very efficient with recursion and
caching, as the merged subtrees have to be processed only once.

The recursive nature of decision diagrams has inspired a new model checking algorithm that –
instead of using breadth-first search (BFS) or depth-first search (DFS) – follows the structure of the
decision diagram to recursively compute the state graph through a series of submodels, each reused
in the next one until the precise result is found. The algorithm suits decision diagrams very well and
provides a fast and memory-efficient way to construct the decision diagram representing the set of
reachable states of the system. Its goal is to expand the decision diagram that encodes the initial state
node by node, in a bottom-up fashion, hence its name – saturation [CLS01; CMS06].

A crucial property required for the efficiency of saturation is called locality. The notion of locality
means thatwhen the system changes state in response to some event, only some of its componentswill
actually transition to a new state, most of them will not be affected. If events are local, the exploration
of the state space can be decomposed into smaller explorations on submodels with only a subset of
components, considering only those events that are local on them. Saturation follows this strategy by
considering a series of submodels: when saturating a decision diagram node, it considers only those
variables whose values are yet to be considered in that subdiagram (and note those whose values led
to the node) and explores the states reachable with the events local on these variables.

Saturation proved to be one of the most efficient decision diagram-based symbolic model checking
algorithms, especially for concurrent systems. It was initially designed for Petri net models [CLS01],
where it exploited the so-called Kroenecker condition of transitions (which allows for a very simple
representation), but later improvements removed this constraint [CMS06]. A distinct variant of the
algorithm is constrained saturation [ZC09], which can keep exploration inside a predefined set of states
without modifying the transitions of the model (this problem appears e. g. when searching backwards
from a state in an already explored state space). The problem with extending the transitions by an
additional check to see if they leave the constraint set is that it destroys locality, because that checkwill
depend on all state variables even when the original transition did not. With constrained saturation,
the algorithm handles the constraint set separately and in this special case it can still exploit locality
of the original transitions.

Besides the problems solved so far, there are a number of open questions related to the saturation
algorithm. Even though constrained saturation solves the issue for constraint sets, it is generally hard
for saturation to handle global or interdependent transitions. Such an interdependency is introduced
when transitions have priorities. In this case, transitions have to consider also whether any other tran-
sition with a higher priority could be executed, which most of the time makes the transition global
in the sense that it must be aware of all state variables. Prioritized transitions are common in Gener-
alized Stochastic Petri Nets [Chi+93], which is a popular modeling formalism for stochastic systems.
In this setting, symbolic model checking not only has to provide efficient state space exploration, but
also has to support deriving a proper representation for numerical solvers.

2



1.1. Summary of Challenges

Another challenge arises when saturation is used for the model checking of linear temporal logic
(LTL) properties. LTL describes (infinite) executions of a system and translates to Büchi automata,
an extension of finite state automata that accepts infinite words. Model checking of LTL properties
involves the synchronization of the systemmodel and the automaton translated from the negated LTL
property such that the automaton reads the labels of system states as letters. If the automaton accepts
an execution of the system then we have a proof that the property can be violated (as we translate the
negated property). Since the automaton usually reads most of the state variables, the synchronized
transitions will again lose locality. Furthermore, unlike explicit state graph-based model checkers,
symbolic model checkers are usually not able to look for accepted executions before the state space is
completely explored, whereas stopping upon finding a counterexample would be verymuch desirable.

In general, saturation is weak for systems where events are not local enough. In such cases, it
will degrade to BFS or DFS, which tend to produce larger intermediate decision diagrams leading to
larger resource consumption and less efficient scaling. The research presented in this work focuses
on extending saturation to handle these situations efficiently. At the end, it turns out that there is a
common idea in all of these extensions that can be used to further enhance saturation on many classes
of models and also generalize many different variations that were considered as different algorithms
before.

1.1 Summary of Challenges

Challenge 1: Extending saturation to efficiently handle Petri nets with priorities.Gen-
eralized Stochastic Petri nets (GSPN) are a popular formalism to model stochastic systems.
The efficient state space exploration of GSPNs is an important part of stochastic analysis,
which can verify extrafunctional properties of a system such as performance or reliability.
Can the efficiency of saturation be leveraged for prioritized Petri nets?

Challenge 2: Extending saturation to efficiently perform model checking of linear
temporal logic (LTL) properties. In the model checking of LTL properties, the system
behavior has to be synchronized with a Büchi automaton describing the property. To use
saturation, we have to avoid the direct computation of synchronized transition relations
in order to avoid losing locality. Can we modify saturation to compute the synchronous
product on the fly while also exploiting locality?

Challenge 3: Finding accepting executions (that violate the property) on the fly during
state space exploration with saturation. In LTL model checking, we have to look for
accepted executions (i. e. counterexamples) in the synchronous product of the systemmodel
and the Büchi automaton belonging to the negated property. In a finite state space, an
accepting run is always a lasso, i. e. a path leading to a cycle. Therefore, the problem can
be reduced to finding reachable strongly connected components (SCC) in the state space.
Explicit-statemodel checkers can do this on the fly, stopping immediately when an accepted
execution is found. Is there a way to create an efficient on-the-fly SCC detection algorithm
and incorporate it into saturation-based model checking?

Challenge 4: Generalizing the different variants of constrained saturation.Constrained
saturation is an efficient take on recovering locality in special cases. Its core idea to recover
locality appears in many variants solving specialized problems. Currently, these variations
are considered to be separate algorithms, which hinders the opportunity to freely combine
different aspects of model checking (e. g. modeling and specification formalisms). Is there a

3



1. Introduction

way to generalize this idea as an abstract algorithm from which constrained saturation and
other variants can be instantiated?

Challenge 5: Adapting saturation to better handle models where events have global
effects. Some models have mainly synchronous behavior where every transition has to be
aware of most of the components or variables. In this case, saturation will not be able to
exploit locality and will degrade to less efficient exploration strategies. Is it possible to adapt
the ideas of saturation even in these cases? Will the resulting improvements be beneficial
on concurrent, asynchronous models where transitions are local and saturation is already
efficient?

The research presented in this dissertation addresses these challenges and in particular aims to
remove some of the limitations of saturation to provide even more efficient algorithms. Doing so ex-
pands the class of problems where model checking is applicable in practice and facilitates the spread-
ing of automatic formal verification tools. To this end, the dissertation presents new scientific results
in the form of three new saturation-based algorithms for model checking: saturation extended for pri-
oritizedmodels (Thesis 1), a complete algorithm family for the incremental, on-the-flymodel checking
of LTL properties with saturation (Thesis 2), and finally a generalization and enhancement of the sat-
uration algorithm itself that incorporates the discovered ideas into the original algorithm to further
improve its efficiency (Thesis 3). Table 1.1 presents how the results relate to the described challenges.

Table 1.1: Relations between theses and challenges.

Challenge
1 2 3 4 5

Thesis 1 Chapter 3 of the dissertation ● ●
Thesis 2 Chapters 4–5 of the dissertation ● ● ●
Thesis 3 Chapter 6 of the dissertation ● ●

1.2 Contributions and Structure of the Dissertation

The contributions presented in this dissertation are organized into three theses based on the targeted
field and are presented in five chapters loosely following the addressed challenges from Section 1.1.

• Thesis 1 (Chapter 3) focuses on the efficient state space exploration of stochastic systems mod-
eled as Generalized Stochastic Petri Nets, which is the first step of stochastic analysis. GSPNs
have prioritized transitions that pose a challenge to the saturation algorithm because transitions
cannot be evaluated locally. The efficient state space exploration of GSPNs can be a bottleneck
of stochastic analysis, so advancements in this field will improve the whole process, leading to
scalable stochastic analysis that is necessary to prove extra-functional requirements in safety-
critical systems. The thesis will introduce Edge-valued Interval Decision Diagrams (EVIDD) as
a compact encoding of priority-related aspects of the transition relation. It will also present a
modified saturation algorithm that handles the priority-related part separately, achieving better
scalability than previous approaches.
This thesis responds to Challenge 1 discussed in Section 1.1.
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1.3. Generalizability and Potential Impact

• Thesis 2 (Chapters 4–5) contains contributions for the model checking of linear temporal logic
properties. Chapter 4 will present another modification of the saturation algorithm to handle
the transition relation of the Büchi automaton (describing the property) separately. The solution
builds on ideas of the constrained saturation algorithm to preserve the locality of transitions and
improve the performance of the algorithm. Chapter 5 discusses the other aspect of LTL model
checking related to finding counterexamples. I propose a complex approach built around a fixed
point computation algorithm for computing strongly connected components in the state space,
which is integrated with the saturation algorithm to be an incremental, on-the-fly symbolic
model checking algorithm for LTL properties. The solution applies two heuristics that serve as
cheap filters to reduce unnecessary computation (in situations where the absence of an SCC
can be easily proved).
This thesis responds to Challenges 2 and 3 discussed in Section 1.1.

• Thesis 3 (Chapter 6) is about the generalization of the core ideas in Theses 1 and 2 as well as
the constrained saturation algorithm. Work on the previous theses revealed common problems
that appear in many different contexts: 1) different next-state representations (including but
not restricted to different types of decision diagrams) usually come with a specialized variant
of the saturation algorithm and are not compatible with each other, as well as 2) losing locality
is generally a concern in every variant, whereas usually there is a workaround that retains
some of the locality at least. I identified and introduced the notion of conditional locality that
is a weaker requirement towards transition relations than locality, but is enough for the main
idea of saturation to work. Chapter 6 introduces a generalized version of saturation based on
conditional locality that outperforms the original saturation algorithm by orders of magnitudes
in some cases, while it has no considerable overhead in any other case.
This thesis responds to Challenges 4 and 5 discussed in Section 1.1.

1.3 Generalizability and Potential Impact

The proposed algorithms will be illustrated and evaluated on Petri net examples (see Section 2.1.2).
However, all of them are applicable on a much wider range of models. Section 2.3.1 describes the
precise requirements toward anymodeling formalism to be compatible with the proposed approaches,
and it allows virtually any finite-state model to be analyzed. Even the results of Thesis 1 – which were
specifically tailored to GSPNs – is applicable and relevant on any (partitioned) transition systemwhere
high-level behaviors have priorities. This is often the case in state machines describing software or
protocols, where priorities are a convenient way of avoiding nondeterministic behavior.

Model checking in general have a large potential technological and sociological impact. It fits in
the general trend of using machines, and in particular software, to automate tedious and error-prone
tasks (such as most of the advanced tools we use in the 21st century), as well as safeguarding and con-
trolling processes where human error could lead to catastrophic results (such as power plants, driver
assistance andmost safety systems). Model checking and related techniques can become an invaluable
assistant to software and system developers, automating quality-related tasks and augmenting testing,
providing feedback and insights about the system-under-development and even suggesting solutions
to fix problems or implement functionality (with automated model repair and synthesis techniques).
Since the main limitation of these methods is scalability, any improvements in this regard will lead
us closer to this future. Asynchronous concurrent systems, for which saturation is particularly effi-
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1. Introduction

cient, are among the hardest both in getting them right and in analyzing them, therefore the proposed
solutions may have an even higher impact.

Some of algorithmical innovations presented in the theses have potential applications outside of
model checking. Computing the transitive closure of relations have applications in constraint pro-
gramming [c15] and can be used anywhere where underlying graph structures are defined implicitly.
Strongly connected components also play a key role in many domains where graphs are used, and the
algorithms proposed in Thesis 2 may be applied to incrementally compute them during the traver-
sal of the graph. The introduced ideas may also benefit related fields such as model synthesis, game
theory and test generation.

A summary of applications and potential use cases ofmodel checking and the proposed algorithms
in particular is presented in Section 7.4.
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Chapter2

Background

The dissertation builds on well-established results from the fields of mathematical logic, graph the-
ory, automata theory, as well as previously designed algorithms that are presented in this chapter as
background knowledge or related work. Section 2.1 briefly introduces the basics of model checking,
followed by a discussion of automata-theoretic (Section 2.2) and symbolic (Section 2.3) model check-
ing. Finally, the saturation algorithm for state space generation is presented in depth as the direct
basis of the algorithms proposed in the theses.

2.1 Introduction to Model Checking

Model checking is a formal verificationmethod to verify properties of finite state systems, i. e. to decide
whether a given formal modelM satisfies a given requirement ϕ or not. The name comes from formal
logic, where a logical formula may have zero or more models, which define the interpretation of the
symbols used in the formula and the base set such that the formula is true. In this sense, the question
is whether the formal model is indeed a model of the formal requirement:M ⊧ ϕ?

The formal model and the requirement can be given with many different formalisms. In the cases
discussed in this dissertation, the formal model is given by a Kripke structure (Section 2.1.1) or by a
high-level model that can be transformed into a Kripke structure, such as Petri nets (Section 2.1.2).
Most of the algorithms require high-level models to be translated into a Kripke structureM , a process
called state space generation (Section 2.1.3). Model checking itself is a collective name for algorithms
evaluatingM ⊧ ϕ (Section 2.1.4), where the requirement can be a simple safety property formalized
as a state invariant in propositional logic (Section 2.1.4.1) or a temporal logic expression, i. e. a formula
that expresses a temporal evolution of system states with a logical statement. One of the most used
temporal logic formalisms is LTL, a specification language using linear (non-branching) logical time
(Section 2.1.4.2).

2.1.1 Kripke Structures

Kripke structures [Kri63] are directed graphs with labeled nodes. Nodes represent different states of
the modeled system, while arcs denote state transitions. Each state is labeled with properties that
hold in that state, called atomic propositions (atomic in the sense that they apply to one state in
isolation). This way, paths in the graph represent possible behaviors of the system. Labels along the
paths give the opportunity to reason about sequences of states through their properties given as
Boolean propositions.
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(a) Simple version.
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(b) With inhibitor arc.
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(c) With timed transitions.

Figure 2.1: Petri net models describing 3 variations of a producer-consumer system with a buffer for
a single message. We treat each component as a Boolean variable which is 0 when the left place is
marked and 1 when the right one.

Definition 1 (Kripke structure) Given a set of atomic propositions AP = {p, q, ...}, a (finite)
Kripke structure is a 4-tupleM = (S,I,N , L), where:

• S = {s1, ... , sn} is the (finite) set of states;
• I ⊆ S is the set of initial states;
• N ⊆ S × S is the transition relation consisting of state pairs (si, sj);
• L ∶ S → 2AP is the labeling function that maps a set of atomic propositions to each state.

In the setting of LTL model checking, it is usually required that every state has at least one succes-
sor, i. e. there are no deadlocks. This requirement is captured by defining the transition relation as left-
total, i. e. for all si ∈ S , there exists sj ∈ S such that (si, sj) ∈ N (also denoted as sj ∈ N(si)). In that
case, a path inM can be defined as an infinite sequence ρ ∈ Sω with ρ(0) ∈ I and (ρ(i), ρ(i+1)) ∈ N
for every i ≥ 0. The set of paths of a Kripke structure is denoted by paths(M). The infinite sequence
of sets of atomic propositions assigned to the states in ρ by L is called a word on the path and is de-
noted by L(ρ) ∈ (2AP)ω . The language described by a Kripke structureM (i. e. the set of all possible
words on every path ofM ) is denoted by L(M) and is an ω-regular language (see Section 2.2.1). For
systems that do have deadlocks, it is common to add self-loops to dead-end states, called stuttering,
and restrict the LTL language to operators that are stutter invariant [Ben+14] (see Section 2.1.4.2).

2.1.2 Petri Nets

Petri nets are a widely used formalism to model concurrent, asynchronous systems [Mur89]. The
formal definition of a Petri net (including inhibitor arcs) is as follows (see Figure 2.1 for an illustration
of the notations).

Definition 2 (Petri net) A Petri net is a tuple PN = (P,T,W,M0) where:
• P is the set of places (defining state variables);
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2.1. Introduction to Model Checking

• T is the set of transitions (defining behavior) such that P ∩ T = ∅;
• W = (W − ⊔W + ⊔W ○) is a defined by three types of arcs (with their weight function),
where W − ∶ P × T → N, W ○ ∶ P × T → N ∪ {inf} and W + ∶ T × P → N are the set
of input arcs, inhibitor arcs and output arcs, respectively (N = {0,1,2, ...} is the set of
natural numbers);

• M0 ∶ P → N is the initial marking, i. e. the number of tokens on each place.

The three types of weight functions describe the structure of the Petri net: there is an input or
output arc between a place p and a transition t iff W −(p, t) > 0 or W +(t, p) > 0, respectively, and
there is an inhibitor arc iffW ○(p, t) < ∞.

The state of a Petri net is defined by the current markingM ∶ P → N. The dynamic behavior of a
Petri net is described as follows. A transition t is enabled iff ∀p ∈ P ∶M(p) ∈ [W −(p, t),W ○(p, t)).
Any enabled transition t may fire non-deterministically, creating the new marking M ′ of the Petri
as follows: ∀p ∈ P ∶ M ′(p) = M(p) −W −(p, t) +W +(t, p). We denote the firing of transition t in
marking M resulting in M ′ with M tÐ→ M ′. A marking Mi is reachable from the initial marking if
there exists a sequence of markings such thatM0

t1Ð→M1
t2Ð→ ... tiÐ→Mi. The set of reachable markings

is denoted by Sr . This work assumes Sr to be finite.

Petri Nets with Priorities Prioritized Petri nets extend the base formalism with a notion of tran-
sition priorities [Mur89], such that a prioritized Petri net is a tuple PN = (P,T,W,M0, π) where
π ∶ T → N assigns priorities to transitions. Priorities can be used to resolve conflicts between transi-
tions: where unprioritized transitions would be chosen nondeterministically, different priorities can
define a preference and lead to deterministic behavior. In this work, we follow the convention that
priorities are non-negative and transitions with a higher priority have precedence over transitions
with lower priority.

The dynamic behavior of prioritized Petri nets is extended with the notion of fireable transitions: a
transition t is fireable iff it is enabled and there is no other enabled transition t′ such that π(t) < π(t′).
Only fireable transitions may fire, and the selection from fireable transitions is still nondeterministic
(i. e. fireable transitions with the same priority will still fire nondeterministically).

Generalized Stochastic Petri Nets Stochastic Petri nets (SPN) extend Petri nets with timed be-
haviors, where transitions are equipped with exponentially distributed firing delay random vari-
ables [Ajm88]. Timed semantics of SPNs are defined by continuous-time Markov chains. Generalized
Stochastic Petri nets (GSPN) further extend modeling capabilities to support both timed and instanta-
neous behaviors [Chi+93]. In GSPNs, transitions with zero priority (called timed) have exponentially
distributed firing delays, while transitions with π(t) ≥ 1 are immediate. Figure 2.1c presents an ex-
ample for a GSPN, where filled rectangles are immediate (untimed) transitions and empty rectangles
are timed transitions.

A prioritized Petri net markingM where no transition t with π(t) ≥ 1 is enabled is called tangi-
ble, while markings with an enabled transition t with π(t) ≥ 1 are called vanishing. We writeM ∈ T
if M ∈ Sr is a reachable tangible marking and M ∈ V if M is a reachable vanishing marking. In
tangible markings, the timed semantics of Stochastic Petri nets apply to GSPNs. In contrast, immedi-
ate transitions are fired in vanishing markings while no time elapses. Conflicts between immediate
transitions may yield nondeterministic behaviors. To ensure that probability distribution of GSPN
markings evolve deterministically in time, conflicts must be resolved by assigning probability weights
and priorities [Chi+93]. Conflict resolution may yield prioritized Petri nets with many priority lev-
els [TFP03].
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2. Background

Running Example Figure 2.1 presents three Petri net models of a producer-consumer system with
a single message passed back and forth between them. The left-most model (2.1a) is a simple version
where both the producer, the consumer and the message have two places (the circles), representing
their two possible states: ready and busy in case of the producer and consumer and unprocessed and
processed in case of themessage.When a place is marked by a token (black filled circle), the component
is assumed to be in the corresponding state. States may be changed by transitions (rectangles). Arcs
define nonzero weights in the weigh functions (weight of 1 unless written on the arc).

That said, the example model has 5 possible behaviors: t1 and t5 will return a busy producer
or consumer to the ready state, t2 will cause a ready producer to remove the processed message and
create a new, unprocessed one, while the producer will become busy with producing the next message,
t4 similarly causes the consumer to consume and process an unprocessed message, and t3 represents a
timeout when the unprocessed message simple becomes processed. With these transitions, we can see
that exactly one place of every component will be marked in any state of the system, so we may treat
each component as a Boolean variable: it is 0 when the left place is marked and 1 when the right one.

Themodel in themiddle (2.1b) extends the systemwith an inhibitor arc (an arc with a circle instead
of an arrow). Inhibitor arcs will disable a transition if the connected place is marked (by default by
one token). Therefore, this variant says that a timeout may only occur if the producer is ready, e. g.
because the producer’s process keeps track of timeouts and will only check when it is ready.

The third model (2.1c) uses the Generalized Stochastic Petri Net (GSPN) formalism. In this for-
malism, we can distinguish two types of transitions: immediate transitions are just like before and
will fire as soon as they are enabled (possibly in a nondeterministic order), while timed transitions
(empty rectangles) have a firing rate that affects how soon they will fire after becoming enabled. An
important consequence of this distinction is that immediate transitions must fire before any enabled
timed transition, adding priorities to the transitions.

With this in mind, the third model adds the information that the producer and consumer will
actually spend time on creating and processing messages (busy state), and the timeout will happen
after a specific amount of time, while the emitting (t2) and consuming (t4) of new messages will
happen immediately when possible. A consequence of the implied priorities is that e. g. a timeout
may not occur if the consumer is ready to consume a message.

2.1.3 State Space Generation

While model checking algorithms work on low-level formalism and modeling is usually done in a
high-level modeling language, practical applications must address the translation from high-level to
low level. In this work, we use the term state space generation to refer to the process of computing
a Kripke structure that describes the reachable state space of a high-level model – in this case, Petri
nets. Therefore, if not implied otherwise, the term state space will refer to a Kripke structure in which
every state is reachable from some of the initial states, while potential state space will refer to an
overapproximation that is a superset of the reachable state space and by convention contain all states
that can be set as initial state in the high-level formalism.When speaking about state graphs, wemean
the pair (S,N) (states and transitions of a Kripke-structure) interpreted as a graph. As an example,
we define the state space generation problem for Petri nets.

Definition 3 (State space of a Petri net as a Kripke structure) Given a set of atomic
propositions AP reasoning about markings of a (prioritized) Petri net PN, the state space
of PN is a (finite) Kripke structure with:
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• S = Sr is the set of reachable markings of PN (as defined in Section 2.1.2);
• I = {M0} is the initial marking of PN;
• N = {(M,M ′) ∣M ∈ S ∧M ′ ∈ S ∧ ∃t ∈ T ∶M tÐ→M ′} is the transition relation between
reachable markings defined by transitions of PN;

• L(M) = {p ∣ M ⊧ p} ⊆ AP , i. e. each marking is labeled with the atomic propositions
that are true in that marking.

Note that transition is used with two different meanings: whenever ambiguous, we will use low-
level transition to refer to an element of a transition relation of a Kripke structure and high-level
transition to refer to transitions of a Petri net. The relationship is one-to-many, such that a single
high-level transition can be regarded as an event that can happen in the high-level model, resulting
in one of potentially many different low-level (state-)transitions depending on the current state.

A non-trivial part of state space generation is the computation of reachable states (markings),
which can be formally expressed as the problem of computing N ∗ (I), where N∗ is the reflexive-
transitive closure of the transition relation. The term state space generation is often applied to this
problem only, with algorithms focusing on the efficient traversal and representation of the state space.
Graph traversal algorithms such as breadth-first search and depth-first search can be used to generate
the state space, but the large size of the explicit state graph (known as the state space explosion prob-
lem) often prevents the practical application of these simpler algorithms. Symbolic or “implicit” model
checking addresses this problem by the compact encoding of sets and relations and using set opera-
tions instead of graph algorithms (see Section 2.3). Other approaches such as partial order reduction
[Pel98] and counterexample-guided abstraction refinement [Cla+00] try to avoid the full computa-
tion of the state space by omitting information that is insignificant with regard to the property to be
checked.

Especially in relation to abstractions, we have tomention that decidingwhether a label is on a state
or not can be a hard problem. In general, the label has to be derivable from the information known
about the state in the high-level model, which requires automated theorem proving – an undecidable
problem. Nevertheless, this workwill assume that checkingwhether a state s is labeled with an atomic
proposition p ∈ AP (i. e. p ∈ L(s)) is decidable in O(1). This is a good abstraction that lets us focus
on the additional complexity of the model checking algorithms and can be close to reality if the logic
used in atomic propositions and the information known about a state are simple (e. g. quantifier-free
first order logic with the theory of integers and the exact marking of a Petri net).

2.1.4 Model Checking

Given a requirement ϕ usually expressed in some kind of logic, the main goal of model checking
is to evaluate M ⊧ ϕ where M is the result of state space exploration. If the evaluation happen
simultaneously with state space exploration, the algorithm is said to do on-the-fly model checking.
This has an advantage that the exploration – which is usually the most expensive part – can be
stopped as soon as there is a result. The result itself is a decision about M ⊧ ϕ, and algorithms
usually provide a witness for at least one of the outcomes (⊧ or /⊧) that proves the answer and can
be checked easily. In general, if the property is universal, the witness will be a counterexample for
the negative results (proving that the model violates the property), while for existential properties
the witness is an example proving the positive result (the model satisfies the property). The following
sections present state invariants and linear temporal logic, defining their semantics in terms of Kripke
structures that provides the basis for model checking algorithms.
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2.1.4.1 State Invariants

State invariants are one of the simplest universal properties that can be verified with model checking
[CGP99]. A state invariant is a logic expression characterizing a set of states on which it evaluates to
true. We require that state invariant must be true in every reachable state of the system, or equiva-
lently, no state is reachable where the state invariant does not hold. Formally, given a set of atomic
propositions AP , a state invariant ϕ ∈ AP and a Kripke sturctureM ,M ⊧ ϕ if ∀s ∈ S , the state sat-
isfies ϕ: s ⊧ ϕ i. e. ϕ ∈ L(s). A common example for a state invariant in programming is an assertion,
which can be written as an implication: if the program counter points to an assertion instruction, the
expression in the assertion must be true. In safety-critical systems, a common requirement that is a
state invariant is to avoid dangerous states, or equivalently, sustain safe behavior.

Verifying state invariants is essentially equivalent to state space generation, with special emphasis
on evaluating atomic propositions (which are usually defined implicitly and computed on demand). It
is also equivalent to verifying reachability, which is an existential property, and can be expressed as
a state invariant indirectly by assuming that the specified states are not reachable and negating the
result. Assuming that deciding whether a state is labeled with an atomic proposition can be done in
O(1), the complexity of checking reachability isO(∣S∣), which is usually dominated by the complex-
ity of state space generation.

2.1.4.2 Linear Temporal Logic

Linear temporal logic (LTL) [Pnu77] is a temporal logic that describes the temporal evolution of state
labels during an execution. Its timemodel is linear in the sense that it considers a single realized future
behavior of a system, i. e. a single path in a Kripke structure (as opposed to computational-tree logic
(CTL), which has a branching time model and reasons about what is possible from a state instead of
what should happen during the execution). The operators in LTL are the following: X (in the neXt
state), F (in the Future, or more precisely, eventually), G (Globally), U (Until) and R (Release). LTL
without the X operator is stutter invariant (see Section 2.1.1).

Definition 4 (Syntax of LTL) The formal syntax of LTL is given by the following grammar in
Backus–Naur Form (BNF), where p ∈ AP is an atomic proposition:

φ ....= ⊺ ∣ � ∣ p ∣ ¬φ ∣ φ ∧ φ ∣ φ ∨ φ ∣ φ⇒ φ ∣ φ⇔ φ ∣ Xφ ∣ Fφ ∣ Gφ ∣ [φ U φ] ∣ [φ R φ]

A well-formed LTL formula is generated by φ.

An LTL formula ϕ is said to be valid with regard to a Kripke structureM , if it holds for all paths
of M (in this case it is a universal property regarding the set of paths, which can be refuted by a
counterexample). It is satisfiable if it holds for some path inM (as an existential property that can be
proven with an example). As a specification language, usually validity is desired.

Definition 5 (Semantics of LTL) The formal semantics of LTL is defined with respect to a
Kripke structure M with a left-total transition relation (i. e. every path ρ of M is infinite). Let
ρ be a path of M , and let ρ[k] be a suffix of ρ starting from element k. The relation ρ ⊧ φ is
defined inductively:

1. ρ ⊧ ⊺;
2. ρ ⊧ p iff p ∈ L(ρ(0));
3. ρ ⊧ ¬φ iff ρ /⊧ φ;
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4. ρ ⊧ φ1 ∧ φ2 iff ρ ⊧ φ1 and ρ ⊧ φ2;
5. ρ ⊧ Xφ iff ρ[1] ⊧ φ;
6. ρ ⊧ [φ1 U φ2] iff for some k ≥ 0, ρ[k] ⊧ φ2 and for all 0 ≤ i < k, ρ[i] ⊧ φ1.

Other Boolean operators and symbols are defined as usual based on ⊺, ¬ and ∧. The remaining
temporal operators can be defined with the following equivalences:

1. [ψ R ϕ] ≡ ¬[¬ψ U ¬ϕ]
2. F ϕ ≡ [⊺ U ϕ]
3. G ϕ ≡ [� R ϕ]

As the definition of the semantics suggests, LTL can distinguish between words on paths of a
Kripke structure, which are ω-regular words over 2AP as discussed in Section 2.1.1. This way, it is
possible to speak about such words satisfying an LTL formula ϕ, denoted by w ⊧ ϕ, and the language
of the formula L(ϕ) = {w ∣ w ⊧ ϕ}, which is again an ω-regular language. In fact, the language of
any LTL formula is an ω-star-free language, which is a strict subset of ω-regular languages [Coh91].
The model checking of LTL properties is much more complex than verifying state invariants, so it is
discussed separately in the next section.

2.2 Automata-Theoretic Model Checking

Sections 2.1.1 and 2.1.4.2 already discussed words and language in relation to paths of a Kripke struc-
ture, and mode generally to an execution of a system. Automata-theoretic (LTL) model checking ap-
proaches are based on this language-centric formalization of systems and properties and usually build
on the theory of Büchi automata and especially their synchronous product, both discussed in this sec-
tion.

An automaton is an abstract machine that models some kind of computation over a sequence
of input symbols. In formal language theory, automata are mainly used as a finite representation of
infinite languages. In that context, they are often classified by the class of languages they are able to
recognize.

The simplest class of automata is finite automata (also known as finite state machines). A finite
automaton operates with a finite and constant amount of memory (independent of the length of the
input). A finite automaton can operate on finite or infinite inputs. In formal language theory, inputs
are calledwords, while elements of the input are called letters, the set of all possible letters constituting
the alphabet.

A simple type of finite automata reading infinite words is the so-called Büchi automaton, which
typically plays a key role in LTL model checking. This section overviews the definition of Büchi
automata, the ways to represent other formalisms as an equivalent Büchi automaton and the syn-
chronous product of such automata, then concludes with the summary of automata-theoretic LTL
model checking.

2.2.1 Büchi Automata

Büchi automaton [Büc62] is one of the simplest finite automata operating on infinite words.

Definition 6 (Büchi automaton) A Büchi automaton is a 5-tupleA = ⟨Σ,Q,I,∆,F⟩, where:
• Σ = {α1, ... , αn} is the finite alphabet;
• Q = {q1, ... , qm} is the finite set of states;
• I ⊆ Q is the set of initial states;
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• ∆ ⊆ Q ×Σ ×Q is the transition relation consisting of state–input–state triples (q,α, q′);
• F ⊆ Q is the set of accepting states.

A run of a Büchi automaton reading an infinite word w ∈ Σω is a sequence of automaton states
ρw ∈ Qω , where ρw(0) ∈ I and (ρw(i),w(i), ρw(i + 1)) ∈ ∆ for all i, i. e. the first state is an initial
state and state changes are permitted by the transition relation. Let inf (ρw) denote the set of states
that appear infinitely often in ρw. The run ρw is called accepting iff it has at least one accepting state
appearing infinitely often, i. e. inf (ρw) ∩ F ≠ ∅. A Büchi automaton A accepts a word w iff it has an
accepting run reading w. The set of all infinite words accepted by a Büchi automatonA is denoted by
L(A) ⊆ Σω and is called the language ofA. The class of languages that can be characterized by Büchi
automata is called ω-regular languages.

An important question about a Büchi automatonA is whether it accepts any words, i. e. if L(A) =
∅. Because of the finite set of states and infinitely long words, accepted words will always correspond
to a lasso-shaped run of the Büchi automaton: the cycle part of the lasso will contain an accepting
state which is therefore visited infinitely many times and there will be a path from an initial state to
the cycle. Therefore, checking language emptiness can be reduced to looking for reachable cycles, or
more generally, strongly connected components (SCC) in the state graph of the Büchi automaton that
include at least one accepting state, often called fair cycles or fair SCCs. A suitable algorithm for this
problem that is also used in Thesis 2 in Chapter 5 is Tarjan’s algorithm [Tar72].

2.2.2 Kripke Structures and Büchi Automata

Although Kripke structures and Büchi automata are very similar in structure, Kripke structures are
less expressive in terms of language, i. e. there are ω-regular languages that Kripke structures can-
not produce. The following proposition presents a way to construct a Büchi automaton that accepts
exactly the language of a Kripke structure.

Proposition 1 (Büchi automaton of Kripke structure) Given a Kripke structure M =
⟨S,I,N , L⟩ with the set of atomic propositions AP , an equivalent Büchi automaton that accepts
exactly the language produced byM is AM = ⟨Σ,Q,I,∆,F⟩, where:

• Σ = 2AP , i. e. letter are sets of atomic propositions;
• Q = S ∪ {init}, i. e. the states of the Kripke structure together with a special initial state;
• I = {init}, i. e. the special initial state;
• ∆ = {(s,α, s′) ∣ (s, s′) ∈ N ∧ α = L(s′)} ∪ {(init , α,s) ∣ s ∈ I ∧ α = L(s)}, i. e. the automaton
reads the labels of target states and additional transitions go from the special initial state to
initial states of the Kripke structure1;

• F = Q, i. e. every state is accepting.

Defining accepting states as the entire set of states is indeed necessary, because every path in a
Kripke structure produces a word of its language, no matter what states it passes. A general Büchi
automaton, in contrast, can use accepting states to restrict its language to a subset of all the paths.
Based on that, an example ω-regular language that cannot be produced by a Kripke structure is a∗bω
(infinitely many b’s after finitely many a’s). Any Büchi automaton accepting this language must have
a loop that reads the letter a arbitrary many times and another loop that reads b infinitely many times.
Only the second loop can contain an accepting state to force runs out of the first loop, which cannot

1Technically, the special initial state is necessary to make the automaton read the labels of the initial states of the Kripke
structure. The first step of the automaton can be regarded as the initialization of the corresponding Kripke structure.

14



2.2. Automata-Theoretic Model Checking

be modeled in Kripke structures: if something can happen arbitrary many times in a Kripke structure,
it can also happen infinitely many times.

2.2.3 LTL to Büchi Automata

Since linear temporal logic formulas characterize a strict subset of ω-regular languages (see Sec-
tion 2.1.4.2), there is an equivalent Büchi automaton for every LTL formula ϕ that accepts the same
language that satisfies ϕ. In the history of model checking, many approaches have been developed to
perform this conversion.

In general, the resulting automaton can be exponential in the size of the LTL formula, but effi-
cient algorithms exist that are applicable in practice, where formulas are usually small. The algorithm
described in [Ger+95] was one of the first solutions, and there are some more advanced variants as
well, such as [GO01].

Since atomic propositions in ϕ refer to labels of a Kripke structure, the alphabet of the equivalent
automaton will be Σ = 2AP . This is the same alphabet as that of the automaton describing the Kripke
structure itself as defined in Proposition 1.

2.2.4 Synchronous Product of Büchi Automata

The synchronous product of two Büchi automata A1 and A2 over the same alphabet Σ is another
Büchi automaton A1 ∩A2 that accepts exactly those words that both A1 and A2 accept [CGP99]. The
language of the product automaton is therefore L(A1 ∩A2) = L(A1) ∩ L(A2). The construction of
such synchronous product automata is well-known and can be found in e. g. [CGP99].

However, the setting of LTLmodel checking is special, as in the automaton of the Kripke structure
all states are accepting (F1 = Q1, see Proposition 1). In such a case, the definition of the product
automaton is simpler. Since any infinite run inA1 will be accepting, the product inherits the accepting
states of A2.

Definition 7 (Synchronous product – special case) Given two Büchi automata A1 =
⟨Σ,Q1,I1,∆1,F1⟩ and A2 = ⟨Σ,Q2,I2,∆2,F2⟩ with F1 = Q1, their synchronous product is
A1 ∩A2 = ⟨Σ,Q∩,I∩,∆∩,F∩⟩, where:

• Q∩ = Q1 ×Q2, i. e. product states are pairs;
• I∩ = I1 × I2, i. e. every combination of the initial states will be considered;
• ∆∩ = {((q, r), α, (q′, r′)) ∣ (q,α, q′) ∈ ∆1 ∧ (r,α, r′) ∈ ∆2}, i. e. both automata can
process the input;2

• F∩ = F1 ×F2 = Q1 ×F2, i. e. accepting states of A2 are inherited.

Note that in this case, Q∩ is a potential state space because state combinations are not necessary
reachable from the initial states. The main challenge is the computation of ∆∩ ⊆ (Q1 × Q2) × Σ ×
(Q1 × Q2) that is necessary if reachable states of the product are sought. The first part of Thesis 2
(Chapter 4) proposes an algorithm to compute reachable states efficiently even for large automata.

2.2.5 LTL Model Checking

Formally, the problem of LTL model checking is deciding if ∀ρ ∈ paths(M) ∶ ρ ⊧ ϕ, where M is
a Kripke structure modeling a system and ϕ is an LTL formula describing a desired property of the

2In the context of LTL model checking, labels on the two synchronized transitions (q,α1, q
′) and (r,α2, r

′) do not
have to be the same. We require only that α1 ⊧ α2, which – according to Definition 1 – translates to α2 ⊆ α1, similarly to
the model checking of state invariants.
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Figure 2.2: Steps of ω-regular model checking (with simplified notations).

system [EC80]. The essential idea of LTLmodel checking is to use Büchi automata to describe both the
property and the system model (see Sections 2.2.2 and 2.2.3) and reduce the model checking problem
to language emptiness [CGP99].

Given a Kripke structure M and an LTL formula ϕ using the same atomic propositions AP , let
L(M) and L(ϕ) denote the languages produced by the Kripke structure and characterized by the
formula. The language L(M) contains every observable behavior of M in terms of AP (provided
behaviors), while L(ϕ) contains valid behaviors. The model checking problem can be rephrased to
the following: is the set of provided behaviors fully within the set of valid behaviors? This is called
the language inclusion problem and can be formalized as the decision of L(M) ⊆ L(ϕ).

An equivalent formalization isL(M)∩L(ϕ) = ∅, whereL(ϕ) is the complement of the language
of ϕ. Although both the language inclusion problem and the complementation of Büchi automata are
hard, in case of LTLmodel checking, the complementation can be avoided. The key observation is that
the complement of the language of an LTL formula is the language of the negated formula: L(ϕ) ≡
L(¬ϕ). This way, the model checking problem is reduced to language intersection and language
emptiness, both of which can be efficiently computed on Büchi automata.3

This approach is called automata-theoretic model checking [Var96]. Given a high-level model and
a linear temporal logic specification, the following steps have to be realized (see Figure 2.2):

1. Compute the Kripke structureM of the high-level model (Section 2.1.3).
2. Transform the Kripke structure into a Büchi automaton AM (Section 2.2.2).
3. Transform the negated LTL formula into a Büchi automaton A¬ϕ (Section 2.2.3).
4. Compute the synchronous product AM ∩A¬ϕ (Section 2.2.4).
5. Check language emptiness of the product: L(AM ∩A¬ϕ) = ∅ (Section 2.2.1).
If L(AM ∩A¬ϕ) = ∅ then the model meets the specification. Otherwise words of L(AM ∩A¬ϕ)

are counterexamples, i. e. provided behaviors that violate the specification. The complexity of LTL
model checking is O(∣S∣ ⋅ 2∣ϕ∣), where ∣ϕ∣ is the number of temporal operators in ϕ [Sch03].

Sometimes, it is possible to design the algorithms such that some steps may overlap or can be
executed together. For example, many algorithms compute the product automaton on-the-fly during
state space generation, using the high-level model as an implicit representation of the Kripke struc-
ture. Language emptiness may sometimes also be checked continuously during the computation of
the product. If both optimizations are present in an algorithm, it is said to perform the LTL model
checking on the fly (during state space generation) [Cou+91]. For an example, see [Ger+95] that is
the base of the SPIN explicit model checker.

3This “trick” is possible because LTL cannot express everyω-regular language, therefore the problem of complementing
the language of LTL formulas can be easier than for a Büchi automata.
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2.3 Symbolic Model Checking

Symbolic model checking techniques have been devised to combat the state space explosion problem
[McM92; Bur+92]. While traditional explicit-state model checkers employ graph algorithms and enu-
merate states and transitions one-by-one, symbolic model checking algorithms use a special encoding
to efficiently represent the state space and try to process large numbers of similar states together. The
special encoding can be regarded as a compression of the sets and relations, but unlike traditional
data compression methods, the encoded data can be manipulated without returning to the explicit
representation.

Symbolic model checking was first introduced for hardwaremodel checking, where states of hard-
ware models were encoded in binary variables [Cla+96]. Similarly, states of a Kripke structure can be
encoded in at least k = ⌈log(∣S∣)⌉ Boolean variables. Sets of states can then be represented by Boolean
characteristic functions fS ∶ Bk → B, returning true when a state is in the set, where B = {⊺,�} is the
set of Boolean values (true and false, respectively). The transition relation can also be represented by
functions mapping from 2k binary variables to true or false, half of them encoding the source state,
the other half encoding the target: fN ∶ Bk ×Bk → B.

The functions are usually represented by Boolean formulas or binary decision diagrams (BDDs)
[Bry86]. In case of Boolean formulas, the model checking problem is reduced to the Boolean satisfi-
ability problem (SAT), while in case of decision diagrams, efficient algorithms are known to manip-
ulate the sets directly in the encoded form [Bry86]. Based on these operations, model checking can
be reduced to fixed point computations on sets of states, such as in the case of saturation algorithm
presented in Section 2.4.

This concept can also be used with integers or other data types if the states encode information
from a high-level model as state vectors. In that case, formulas will be in quantifier-free first order
logic solved by SMT (satisfiability modulo theories) solvers, while decision diagrams will be extended
to e. g. Multi-valued Decision Diagrams (MDDs) [MD98], which will be presented in Section 2.3.3.

2.3.1 Partitioned Transition Systems

To capture the structure of high-level models for symbolic encoding, algorithms like saturation prefer
to use partitioned transition systems (PTS) instead of Kripke structures. In a PTS, state variables of the
high-level model, high-level events (causing transitions) and their dependencies on state variables are
preserved to partition the low-level next-state relation and localize the effect of transitions [CMS06].
In decision diagram-based model checking, such models usually come with a user-specified variable
ordering.

Definition 8 (Variable ordering) A variable ordering over variables V (∣V ∣ = K) is a total
ordering of elements of V that defines a sequence. The variable in position k of the sequence is
denoted by xk. We will say that x1 is the lowest and xK is the highest in the ordering. We will
use the notations V≤k = {x1, ... , xk} and V>k = {xk+1, ... , xK} for sets of variables constituting
a prefix or suffix (respectively) of the sequence.

With a specified variable ordering, the formal definition of a PTS is as follows.

Definition 9 (Partitioned Transition System) A partitioned transition system is a tuple
M = (V,D,I,E ,N) where:
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• V = {x1, ... , xK} is the finite set ofK variables with an arbitrary but well-defined variable
ordering;

• D is the domain function such that D(xk) ⊆ N for all xk ∈ V ;
• I ⊆ Ŝ is the set of initial states, where Ŝ =D(x1)×⋯×D(xK) is the potential state space
(the shape of which is unaffected by the chosen variable ordering);

• E is the set of high-level events, specifying groups of individual transitions;
• N ⊆ Ŝ × Ŝ is the next-state relation partitioned by E such that N = ⋃e∈E Ne. We often
use N as a function returning the “next states”: N(s) = {s′∣(s, s′) ∈ N} and N(S) =
⋃s∈SN(s) for S ⊆ Ŝ.

A (concrete) state of the system is a vector s ∈ Ŝ, where each variable xk has a value from the
corresponding domain: s[k] ∈D(xk).

PTSs are halfway between high-level models and low-level models and are often used as abstrac-
tions of high-level models on which state space generation can be performed (note that the set of
reachable states is not part of the definition of a PTS). To illustrate this, we will give the translation
of Petri net to PTSs, as well as from PTSs to Kripke structures (including the computation of the set
of reachable states).

Definition 10 (Petri net as PTS) Given a Petri net PN = (P,T,W,M0), the corresponding
PTS representation is defined asM = (V,D,I,E ,N) such that:

• V = P , i. e. there is a variable for each place;
• D ∶ V → N, i. e. each variable is a non-negative integer;
• I =M0, i. e. the initial state is the initial marking;
• E = T , i. e. each transition in the Petri net is an event;
• N = ⋃t∈E Nt such that Nt = {(M,M ′) ∣M tÐ→ M ′}, i. e. the next-state relation is parti-
tioned by transitions of the Petri net.

Definition 11 (State space of a PTS as a Kripke structure) Given a set of atomic proposi-
tions AP reasoning about state vectors of a PTSM = (V,D,I,E ,N), the state space ofM is a
(finite) Kripke structureM = (S,I,N , L) with:

• S = N ∗ (I) is the set of reachable states from the set of initial states (as defined in
Section 2.1.3);

• L(s) = {p ∣ s ⊧ p}, i. e. each state vector is labeled with the atomic propositions that are
satisfied by that vector.

As Definition 10 suggests, translating to a PTS is mostly syntactic, except sometimes the next state
relation, depending on the representation. On the other hand, moving from PTS to Kripke structure
(i. e. the state space) involves the computation of reachable states. Therefore, PTS is a suitable input
formalism to symbolic model checking algorithms.

2.3.2 Abstractions

Symbolic model checking is closely related to abstraction-based techniques both in many SAT/SMT
solver-based approaches (i. e. CEGAR [Cla+00]) and decision diagram-based approaches. In this sec-
tion, we characterize the types of abstractions and similar techniques used throughout the disserta-
tion.
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Definition 12 (Abstraction of states) Given a set of concrete states S (with possible unreach-
able states) and a set of abstract states S′, f ∶ S → S′ is an abstraction if it is a total surjective
function, i. e. ∀s ∈ S ∶ f(s) ∈ S′ and ∀s′ ∈ S′ we have that ∃s ∈ S ∶ f(s) = s′. We will use the
notation s ⊆ s′ to say that s is a concrete state mapped to s′, i. e. f(s) = s′.4

With this definition for abstraction, it is possible to define multiple variants for the abstraction of
Kripke structures. Following [God14], we will build on may and must abstractions.

Definition 13 (May and Must abstraction of a Kripke structure) Assume a set of atomic
propositionsAP , a “concrete” Kripke structureM ′ = (S ′,I ′,N ′, L), an “asbtract” Kripke struc-
tureM = (S,I,N , L′) and a total surjective function f ∶ S → S ′ such that:

• I ′ = f(I), i. e. abstract initial states are the images of concrete initial states;
• ∀s′ ∈ S ′ ∶ L′(s′) = {p ∣ ∃s ∈ S ∶ f(s) = s′, p ∈ L(s)}, i. e. an abstract state gets all the
labels of any concrete state mapped onto it;

• N ′ ⊆ S ′ × S ′, i. e. abstract transitions are between abstract states.
M ′ is a may abstraction ofM if:

• (s′1, s′2) ∈ N ′ ⇒ ∃s1 ⊆ s′1 ∶ (∃s2 ⊆ s′2 ∶ (s1, s2) ∈ N), i. e. if there is a transition from
abstract state s′1 to s′2 then there exists a concrete state s1 mapped to s′1 from which there
is a transition to any concrete state s2 mapped to s′1.

M ′ is a must abstraction ofM if:
• (s′1, s′2) ∈ N ′ ⇒ ∀s1 ⊆ s′1 ∶ (∃s2 ⊆ s′2 ∶ (s1, s2) ∈ N), i. e. if there is a transition from
abstract state s′1 to s′2 then for every concrete state s1 mapped to s′1 there is a transition
to any concrete state s2 mapped to s′1.

A may abstractionM ′ can simulate the concrete Kripke structureM in the sense that for any path
ρ ofM there is a path ρ′ inM ′ such that ∀i ≥ 0 ∶ f(ρ(i)) = ρ′(i), i. e. abstract states of the abstract
path are abstractions of the concrete states of a concrete path. With the languages of the Kripke
structures, this can be written as L(M) ⊆ L(M ′) – whatever happens in the may abstraction may
(or may not) happen in the concrete model, but nothing else.5 On the other hand, a must abstraction
M ′′ can be simulated byM , i. e. L(M ′′) ⊆ L(M) – what happens in the must abstraction must have
an equivalent in the concrete model (and more things can happen, too).

A special case of may abstraction on PTSs is projection, which is implied by the surjective function
of projecting state vectors to a subset of variables.

Definition 14 (Projection of state vectors) Given a set of variables V and a state vector s
over these variables, s′ is the projection of s to target variables X ⊆ V , denoted by s ↘X s′, iff
s[k] = s′[k] for every xk ∈ X and s′[l] is undefined for variables xl ∉ X (i. e. s′[] is a partial
function over V , assigning a value to elements in X only). A projection of a set of states S is
denoted by S ↘X S′ where S′ = {s′ ∣ ∃s ∈ S ∶ s↘V ′ s

′}.

Definition 15 (Projection of a PTS) A PTSM ′ = (V ′,D,I ′,E ,N ′) is a projection of another
PTSM = (V,D,I,E ,N), denoted byM ↘V ′ M

′ if:
• V ′ ⊆ V is the the set of target variables to whichM is projected;

4The notation s ⊆ s′ suggests that s′ represents more real states of the system and is consistent with the general notion
of state abstraction and refinement.

5Notice the similarity with LTLmodel checking. In a sense, the Büchi automaton of an LTL property is amay abstraction
of the described system.
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(a) An MDD with 6 nodes encoding 4 states.
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(b) An MDD with 3 nodes encoding 8 states.

Figure 2.3: Two MDDs illustrating how more encoded states can yield a smaller diagram. Nodes are
displayed as circles, the terminal node as a box, while the children function is denoted by the labeled
arcs between nodes. Nodes are assigned to variables by vertical layering of the layout, i. e. the lowest
layer corresponds to decisions about x1 while the root node on the top corresponds to x3.

• I ↘V ′ I ′, i. e. initial states are projected to the target variables;
• N ′ = {(s′1, s′2) ∣ ∃s1, s2 ∶ (s1 ↘V ′ s

′
1) ∧ (s2 ↘V ′ s

′
2) ∧ (s1, s2) ∈ N}, i. e. there is a

(projected) transition from projected state s′1 to s′2 iff there is a transition from any s1 to
any s2 whose projections are s′1 and s′2, respectively.

When we speak about a single original PTS and a number of its projections, we will use the term
state to refer to states of the original PTS and partial state over variables V ′ to refer to a state
in a projection to V ′, denoted by s(V ′) when it would be ambiguous. Special projections used
throughout the dissertation are projections to Vk = {xk} (projection to the kth variable in the
ordering), V≤k = {xi ∣ i ≤ k} (projection to first k variables in the ordering) and V>k = {xi ∣ i > k}
(projection to lastK − k variables).

2.3.3 Decision Diagrams

Saturation and symbolic model checking in general works with different types of decision diagrams.
In this work, we consider multi-valued decision diagrams [MD98] to encode the state space of a PTS.6
Two examples are shown in Figure 2.3.

Definition 16 (Multi-valued decision diagram) An ordered quasi-reduced multi-valued de-
cision diagram (MDD) over a set of variables V (∣V ∣ = K), a variable ordering, and domains D
is a tuple MDD = (V, lvl, children) where:

• V = ⋃K
k=0 Vk is the set of nodes, where items of V0 are the terminal nodes 1 and 0, the rest

(V>0 = V ∖ V0) are internal nodes (Vi ∩ Vj = ∅ if i ≠ j);
• lvl ∶ V → {0,1, ... ,K} assigns non-negative level numbers to each node, associating them

6See [HTK08] for model checking with hierarchical set decision diagrams.
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with variables according to the variable ordering (nodes in Vk = {n ∈ V ∣ lvl(n) = k}
belong to variable xk for 1 ≤ k ≤K and are terminal nodes for k = 0);

• children ∶ V>0 ×N → V defines edges between nodes labeled with elements of N (denoted
by n[i] = children(n, i), n[i] is left-associative), such that for each node n ∈ Vk (k > 0)
and value i ∈D(xk) ∶ lvl(n[i]) = lvl(n) − 1 or n[i] = 0;7as well as n[i] = 0 if i ∉D(xk);

• for every pair of nodes n1, n2 ∈ V>0, if for all i ∈ N ∶ n1[i] = n2[i], then n1 = n2.
An MDD node n ∈ Vk encodes a set of partial states S(n) over variables V≤k such that for each
s ∈ S(n) the value of n[s[k]]⋯[s[k]] (recursively indexing n with components of s) is 1 and
for all s ∉ S(n) it is 0. When speaking about an MDD encoding the set S(n), we mean the pair
(MDD, n) and we refer to n as the root node of the MDD. The size of such an MDD is defined
as the number of nodes reachable from the root node and is denoted by ∣n∣.

It is easy to see that indexing a node on level k in a decision diagram results in a node that
encodes the states of a PTS projected to V≤k−1. In this sense, terminal nodes belong to a projection
with no variables at all, which has a single state (ε, a zero-length vector) that is either included in
S(n) (in this case n = 1 or not (n = 0). Furthermore, the encoded set of states of a node can be
expressed in terms of its children: S(n) = ⋃i∈N ({i} ×S(n[i])). For the sake of convenience, we will
use S[n](i) = {i} × S(n[i]) to denote the partition of S(n) where xk = i (note that these partitions
are disjoint).

Based on this idea, there are efficient recursive algorithms that compute the result of set opera-
tions directly on MDDs (e. g. union is described in [CMS06]). They use the following equivalence to
decompose the computation recursively, caching the results on each level to reuse them when the
same nodes are reached on different paths:

S(n1) op S(n2) ≡ ⋃
i∈N
({i} × (S(n1[i]) op S(n2[i]))) (2.1)

Recursion stops at terminal nodes, where the result is easily computed because only two sets are
possible: {ε} and ∅. With caching, each pair of nodes is processes only once, so these algorithms run
in O(∣n1∣ ⋅ ∣n2∣) steps assuming that the number of arcs from each node can be bound by a constant
(which is practically the case with finite domains).

An interesting property of MDDs is that the number of nodes does not grow proportionally with
the size of the encoded set. In fact, the size of an MDD can decrease when adding new states because
of the exploited regularities. This phenomenon can be observed on Figure 2.3, where the MDD in
Figure 2.3a encodes 4 states with 6 internal nodes, while the one in Figure 2.3b encodes 8 states with
3 internal nodes.

2.3.4 Next-State Representations

If sets of states are encoded in decision diagrams, it is advised to encode the next-state relation in a
similar way. Operations on decision diagrams are efficient only with recursion and caching, otherwise
the encoded elements had to be considered one by one, like in simple set operations. Therefore, we
prefer next-state representations where the relational product operation (see Section 2.3.5) can be
defined recursively.

7Quasi-reduced means that arcs may skip levels only if they lead to 0, with the meaning that regardless of the values
of skipped variables the result will be the same. With the same meaning, fully reduced decision diagrams allow this even
when the target is not 0. A fully reduced decision diagram can be interpreted as quasi-reduced if the children function gets
the current level number as well and returns the same node regardless of the index if the node is not on the current level.
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Figure 2.4: Examples for three kinds of next-state representations (from left to right: Kroenecker ma-
trices, Matrix Diagrams and 2K-MDDs).

2.3.4.1 Non-Recursive Representations.

Transitions are essentially directed edges of the state graph, therefore two natural ways to represent
them are adjacency lists and adjacency matrices. An adjacency list assigns to each (source) state a list
of target states, while an adjacency matrix is a matrix A = (aij) ∈ B∣S∣×∣S∣ where each aij is true if
(si, sj) ∈ N and false otherwise. These representations work with states as atomic elements instead
of state vectors, therefore they are not suitable for recursive processing similar to decision diagrams.

2.3.4.2 Kroenecker Consistent Representations

If states are vectors, the Kroenecker product operation on matrices might be used to decompose the
system. This is not always the case: the transition relation has to have specific symmetries. The Kroe-
necker product of matrix A with dimensionsm×n and B with dimensions p× q is themp×nq block
matrix defined as follows (aB is element-wise conjunction with a Boolean literal in this case):

A⊕ B =
⎡⎢⎢⎢⎢⎢⎣

a11B ⋯ a1nB
⋮ ⋱ ⋮

am1B ⋯ amnB

⎤⎥⎥⎥⎥⎥⎦
(2.2)

Definition 17 (Kroenecker consistency of a PTS) A next-state relation of a PTS N (or a
partition thereof) is Kroenecker consistent iff for each xk ∈ V there exists an adjacency ma-
trix Ak with dimensions ∣D(xk)∣ × ∣D(xk)∣ such that the adjacency matrix A describing N is
A1 ⊕⋯⊕AK .

It is interesting to note that Ai describes the next-state relation of a projection of the PTS to
Vk. The series of these projections is called a Kroenecker matrix representation and can be indexed
recursively to check if a transition (s, s′) is in N : starting from AK , if Ak[s[k], s′[k]] is false then
the transition is not in N , otherwise check Ak−1 unless k = 1, in which case the transition is in N .
This strategy implies a linked list structure where matrices are linked according to the variable order.
The left-most part of Figure 2.4 illustrates the concept where the encoded transition relation sets x2
to 1 and leaves x1 unchanged.

Since a next-state relation consisting of a single transition N = {(s, s′)} is always Kroenecker
consistent, there is a partitioning for every next-state relation where every partition is Kroenecker
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consistent. A high-level characterization of a Kroenecker consistent next-state relation is that 1) the
next value of a variable can depend only on the current value of the same variable and 2) each variable
has a set of enabling values, such that the transition is enabled if the values of all variables enable it.
The next-state relation of any Petri net (without priorities) is partitioned by its transitions into subsets
that are Kroenecker consistent.8

Even in Kroenecker consistent models, next-state relations are rarely given explicitly in Kroe-
necker matrix form. More often they are defined implicitly by partial functions for each variable,
which are defined over subsets of the variable’s domain and compute the next value from the current
one. This most general representation is used in [BM19] where they call it implicit relation forests,
referring to the fact that for a set of next-state relations, identical suffixes of both Kroenecker matrix
chains and implicit relation chains can be merged for compactness and better caching.

For Petri nets, a special case of implicit relations can be given with only 3 integer values for each
space: the number of tokens that enable (due to simple arcs) and disable (due to inhibitor arcs) the
Petri net transition as well as the offset in the next marking (weight difference of output and input
arcs).

2.3.4.3 Decision Diagram Representations

Even though every next-state relation can be decomposed into Kroenecker consistent partitions, this
is generally expensive if the high-level transitions do not already define such a partitioning (such as
in Petri nets). For such cases, different types of decision diagrams have been introduced.

From the MDD point of view, a natural idea is to use twice the number of variables to encode the
next-state relation, where simple variables xk correspond to current values and primed variables x′k to
next values [CMS03]. Conventionally, the variable ordering in such a diagram is x1, x′1, ... , xK , x′K .9
We will refer to this approach as 2K-MDD.10 The right-most part of Figure 2.4 illustrates the concept
where the encoded transition relation is the following: (00 → 00), (00 → 10), (00 → 01), (10 → 00),
the order of values is x1x2.

From the Kroeneckermatrix point of view, another representationwith the same expressive power
is called matrix diagram [Min01]. Matrix diagrams can be regarded as a hybrid of MDDs and Kroe-
necker matrices: instead of matrix chains, we organize matrices into a diagram, allowing cells to not
only specify enabledness (as a Boolean value), but also the next matrix on the lower level.

Definition 18 (Matrix diagram) An ordered quasi-reduced matrix diagram (MxD) over a set
of variables V (∣V ∣ = K), a variable ordering, and domains D is a tuple MDD = (V, lvl,matrix)
where:

• V = ⋃K
k=0 Vk is the set of nodes, where items of V0 are the terminal nodes 1 and 0, the rest

(V>0 = V ∖ V0) are internal nodes (Vi ∩ Vj = ∅ if i ≠ j);
• lvl ∶ V → {0,1, ... ,K} assigns non-negative level numbers to each node, associating them
with variables according to the variable ordering (nodes in Vk = {m ∈ V ∣ lvl(m) = k}

8This is one of the reasons it is worth including events in the definition of PTSs.
9There are various reasons to follow this convention, e. g. the next value is most of the times related to the current

value, resulting in a more compact diagram.
10There is an important difference between fully reduced MDDs and 2K-MDDs. While a skipped level in an MDDmeans

that the variable can have any value, this applies only to even levels of 2K-MDDs (corresponding to simple variables xk). If
an odd level is skipped (corresponding to primed variables xk), it means that the only index not associated with the 0 node is
the same as the index of the level skipping arc. This implies that identity relations can be reduced, yielding a constant-sized
representation for identities instead of the linear-sized enumeration of every identical pair.
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belong to variable xk for 1 ≤ k ≤K and are terminal nodes for k = 0);
• matrix = ⋃1≤k≤K matrixk with matrixk ∶ Vk → V ∣D(xk)∣×∣D(xk)∣

<k defines the edge matrix
of a node (indexing is denoted by m[i, j] = matrix(m)ij , n[i, j] is left-associative), such
that for each node m ∈ Vk (k > 0) and values i, j ∈ D(xk) ∶ lvl(m[i, j]) = lvl(m) − 1 or
m[i, j] = 0;11as well asm[i, j] = 0 if i ∉D(xk) or j ∉D(xk);

• for every pair of nodesm1,m2 ∈ V>0, if for all i, j ∈ N ∶m1[i, j] =m2[i, j], thenm1 =m2.
An MxD node m ∈ Vk encodes a relation N(m) between partial states over variables V≤k such
that for each (s, s′) ∈ N(m) the value ofm[s[k], s′[k]]⋯[s[k], s′[k]] (recursively indexingm
with components of s and s′) is 1 and for all (s, s′) ∉ N(m) it is 0. When speaking about an
MxD encoding the set N(m), we mean the pair (MxD,m) and we refer to m as the root node
of the MxD.

Matrix diagrams are a very intuitive way to represent a next-state relation. They follow the struc-
ture of MDDs, but each node has to be indexed with two values. The indexing of a node corresponds
to the change of a single variable xk and recursively yields another node describing what can happen
to the other variables in V<k given they way xk would change. The middle part of Figure 2.4 illustrates
the concept where the encoded transition relation sets x2 to 1, and if x2 was originally 2, it also sets
x1 to 1 (otherwise it is unchanged).

Before the introduction ofAbstract Next-State Diagrams (ANSD) in Thesis 3 (Chapter 6), we choose
to present algorithms with the matrix diagram representation.

2.3.5 State Space Generation with Set Operations

With compact representations for sets and relations, as well as efficient set operations, the last missing
element for symbolic model checking is the recursive definition of the relational product operation.
Formally, the relational product of a (state) set S and a (next-state) relation N ⊆ S × S is S ○ N =
N(S) = {s′ ∣ ∃s ∈ S ∶ (s, s′) ∈ N}. With a decision diagram node n and a matrix diagram node m
(lvl(n) = lvl(m), same set of variables and same variable order), the recursive computation of the
relational product S(n) ○N(m) is based on the following equivalence:

S(n) ○N(m) ≡ ⋃
j∈N
{j} × (⋃

i∈N
S(n[i]) ○N(m[i, j])) (2.3)

Recursion stops at terminal nodes, where the results are easily computed based onS(1) = {ε},S(0) =
∅, N(1) = {(ε, ε)} (the terminal identity relation is a 1 × 1 adjacency matrix with a11 = true) and
N(0) = ∅ (the terminal empty relation is 1 × 1 adjacency matrix with a11 = false).

As mentioned in Section 2.1.3, computing the set of reachable states of a PTS is equivalent to
computing I ○ N ∗ = N ∗(I) = I ∪ N(I) ∪ N(N(I)) ∪ ⋯, where N ∗ is the reflexive transitive
closure of the next-state relation. Another way to express this – and many other model checking
problems – is using fixed points.

A fixed point of a function f ∶ 2S → 2S is a subset of the base set S ⊆ S such that S = f(S).
For monotonically increasing functions (i. e. S ⊆ f(S)), a least fixed point is a fixed point S such that
S ⊆ S′ for every fixed point S′. Similarly, for monotonically decreasing functions (i. e. S ⊇ f(S)), a
greatest fixed point is a fixed point such that S ⊇ S′ for every fixed point S′. We will often require
least fixed points to contain as subset a set of (initial) states I , which can be expressed as the least

11A fully reduced matrix diagram allows skipping a level if the matrix of the reduced node would be an identity ma-
trix (with diagonal elements pointing to the same child node and non-diagonal elements pointing to the 0 node). This is
analogous to the reduction rules of 2K-MDDs.
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fixed point of f ′(S) = f(S) ∪ I , or greatest fixed points to be a subset of a set of (reachable) states
Sr , expressed as the greatest fixed point of f ′(S) = f(S) ∩ Sr .

Expressed as a fixed point, the set of reachable states is a least fixed point Sr = I ∪ Sr ∪ N(Sr)
(with f(Sr) = Sr ∪ N(Sr) being a monotonically increasing function and I ∪ f(Sr) enforcing the
containment of initial states).

A finite fixed point of monotonic function f over a finite base set can be computed iteratively by
starting from the bottom element (e. g. the empty set ∅) for least fixed points, the top element (e. g.
the potential state space Ŝ) for greatest fixed points, or an arbitrary element for any fixed point, and
repeatedly applying f until f(S) = S becomes true. This scheme yields the strategy to compute the
set of reachable states as N ∗(I) = I ∪ N(I) ∪ N(N(I)) ∪ ⋯, which is the result of recursively
expanding the fixed point as if it was an assignment (instead of an equality).

The strategy above is equivalent to the breadth-first search (BFS) algorithm for graph traversal.
For certain types of systems expressed as PTSs, BFS with chaining was shown to work better [CCY06].
Chaining exploits the partitioning of the next-state relation and instead of applying the whole relation
in each step, it chains the application of partitions (i. e. the firing of high-level events) to progress
faster. The definition of f for BFS with a partitioned next-state relation applies each partition to the
parameter set as follows:

f(S) = S ∪ (Ne1(S) ∪⋯ ∪Ne
∣E∣
(S)) (2.4)

In contrast, BFS with chaining defines f by applying next-state partitions to all discovered states:

f(S) = S ∪Ne1(S) ∪Ne2(S ∪Ne1(S)) ∪⋯ ∪Ne
∣E∣
(S ∪Ne

∣E∣−1
(...)) (2.5)

Of course, parameters of the next-state relation partitions are not computed again, but reused from
left-to-right computation of the whole expression. Another version of chaining uses the reflexive
transitive closures N ∗

e of Ne, which can be computed as another least fixed point.
The next section presents the saturation algorithm, which is an even more natural and efficient

approach for PTSs.

2.4 Saturation

The problem with BFS is that firing all events from a set of states yields a lot of different state vectors,
whereas decision diagrams are compact for sets of similar vectors. This often results in very large
intermediate MDDs, even if the set of reachable states does have a compact MDD representation.
On top of the implied memory overhead, execution time also increases drastically as most MDD
operations scale in the size of their operands. Chaining helps because it fires events from all previously
explored states, yielding more similar state vectors and a more compact MDD representation for the
intermediate results.

Saturation puts the emphasis on compactness of intermediate decision diagrams and uses a strat-
egy that guides the exploration accordingly. This section will introduce the concept of locality (Sec-
tion 2.4.1) and the saturation algorithm (Section 2.4.2), as well as a variant called constrained satura-
tion (Section 2.4.3), which introduces key ideas with regard to the research presented in this work.

2.4.1 Locality

Exploiting the information preserved in a PTS, we can define different relationships between an event
and a variable (illustrated in the dependency matrices of Figure 2.5).
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cons. msg. prod.
t1 rw
t2 rw rw
t3 rw
t4 rw rw
t5 rw

(a) Simple version.

cons. msg. prod.
t1 rw
t2 rw rw
t3 rw r
t4 rw rw
t5 rw
(b) With inhibitor arc.

cons. msg. prod.
t1 r r rw
t2 rw rw
t3 r rw r
t4 rw rw
t5 rw r r

(c) With timed transitions.

Figure 2.5: Dependency matrices for the 3 variants of the example. Letters r and w stand for read
and/or write dependencies, differences from the simple model are in boldface. Colors denote the high-
est component that is not independent from the transitions, an information used by the saturation
algorithm.

Definition 19 (Locally read-only) An event e is locally read-only on variable xk if for any
(s, s′) ∈ Ne we have that s[k] = s′[k]. Informally, the value of x is never modified by the
transitions of event e.

While the locally read-only property guarantees that the value of the variable will not change,
the event can still depend on the information stored in the variable. The following property forbids
this as well.

Definition 20 (Locally invariant) An event e is locally invariant on variable xk if it is locally
read-only and for any (s, s′) ∈ Ne and v ∈ D(xk) we also have (s[xk←v], s

′
[xk←v]) ∈ Ne, where

s[xk←v] is a state where the value of variable xk is v, but all other variables have the same value
as in s. Informally, the value of x does not affect the outcome of event e.

With the help of local invariance, we can define locality, the central notion of the saturation algorithm.

Definition 21 (Locality) An event e ∈ E is said to be local over variables X ⊆ V if it is locally
invariant on variables in V ∖ X . If X is minimal (i. e. the event is dependent on variables in
X) then we say that X is the set of supporting variables of e: Supp(e) = X . With respect to
the variable order, it is practical to distinguish the variable with the highest index among the
supporting variables, which is the top variable (Top(e)) of e, and thatwith the lowest index, called
the bottom variable (Bot(e)). In the context of saturation, we will use Ek = {e ∣ Top(e) = xk} and
Nk = ⋃e∈Ek Ne to denote events and their next-state relations whose top variable is xk.

The next-state relation of an event e local on variables Supp(e) = X can be defined over partial
states S(X), because no other information is required to compute its image. This enables a compact
representation12 and clever iteration strategies like saturation.

2.4.2 The Saturation Algorithm

Saturation is a symbolic state space generation algorithm working on decision diagrams [CMS06].
Formally, given a PTSM , its goal is to compute the set of states Sr that are reachable from the initial
states I through transitions in N : S = I ∪N(I) ∪N(N(I))⋯ = N ∗(I), where N ∗ is the reflexive

12In fully reduced 2K-MDDs and MxDs, there will be no node on the levels corresponding to independent variables,
because they would be identities and therefore reduced.
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(c) With timed transitions.

Figure 2.6: Submodels for saturation corresponding to each component. Colors denote the assignment
of transitions to submodels. Arcs that are responsible for the assignment (introducing the dependency
to the higher level) are also colored. Note that dependencies introduced by priorities are not visible
(see Figure 2.5 for the dependency matrices).

and transitive closure ofN . This is equivalent to computing the least fixed point characterized as the
minimal solution of S = I ∪ S ∪ N(S). The main strength of saturation is a recursive computation
of this fixed point, which is based on the following definitions.

Based on locality, first define the submodel of a PTS, which is similar to a projection, but analogous
to must abstractions.

Definition 22 (Submodel of a PTS) Given a PTSM = (V,D,I,E ,N) and a set of target vari-
ables V ′ ⊂ V , another PTSM ′ = (V ′,D,I ′,E ′,N ′) is a submodel ofM implied by V ′ (denoted
byM ∠V ′ M ′) if:

• I ↘V ′ I ′, i. e. initial states are projected to the target variables;
• E ′ = {e ∣ Supp(e) ⊆ V ′}, i. e. events are restricted to those of which are local over the set
of target variables;

• N ′ = ⋃e∈E ′N ′
e , whereN ′

e is the projection of the next-state relations corresponding to the
local events in the original PTS M (like in Definition 15), i. e. only local transitions are
kept.

A submodel is a must abstraction, because only local events are included, which will be fireable
regardless of the omitted variables. Submodels can be used to divide the state space exploration prob-
lem. To introduce the terminology of saturation gradually, we start with the definition of saturated
sets of states, which represent local fixed points during state space exploration.

Definition 23 (Saturated set of states) Given a PTSM , a set of variablesV ′ and the submodel
M ∠V ′ M ′ implied by the variables, a set of (partial) states S over variables V ′ is saturated iff
S = S ∪N ′(S), where N ′ is the next-state relation of the submodel.

Combining local fixed points on submodels with decision diagrams yields the definition of
a saturated node. We will use submodels over an increasing prefix of the variable ordering, i. e.
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∅, V≤1, V≤2, ..., denoted by M∅,M≤1,M≤2, ..., respectively. We will use the same notation to refer
to events and next-state relations ofM≤k (like E≤k and N≤k).

Definition 24 (Saturated node) Given a PTSM , an MDD node n on level lvl(n) = k is satu-
rated iff it encodes a set of (partial) states S(n) that is saturated with respect to the submodel
corresponding to V≤k. Equivalently, the node is saturated iff all of its children n[i] are saturated
and S(n) = S(n) ∪Nk(S(n)).

The two definitions are equivalent because of the following. In a fixed point, no transition can
reach “new” states, so the fixed point over variables V≤k implies that no transition in N≤k will leave
S(n). Similarly, the fixed point S(n) = S(n) ∪Nk(S(n)) implies that no transition inNk will leave
S(n). In the recursive step, we have that for each child n[i], transitions in N≤k−1 will not leave
S[i](n). Using the recursive definition of S(n) we can derive that transitions inN≤k−1 will not leave
S(n). Since N≤k = Nk ∪ N≤k−1, we proved that the two definitions do in fact define the same fixed
point.

As suggested by the definition, locality ismainly used to compute a Top value for each event, which
is the lowest level on which fixed point computation involving the event can happen. By definition,
the terminal nodes 1 and 0 are saturated because they do not have child nodes andN∅ (the next-state
relation of the empty submodel) is empty. The saturation algorithm is then easily defined as a recursive
algorithm that given a node n computes the least fixed point S(ns) = S(ns) ∪ Nk(S(ns)) that
contains S(n), making sure that child nodes are always saturated by recursion. Figure 2.6 illustrates
which events are processed on which level on the example Petri nets from Figure 2.1. When applied
on a node encoding the set of initial states, the result will be a node encoding the states reachable
through transitions in N .

The motivation of this decision diagram-driven strategy comes from the observation that larger
sets may often be encoded in smaller MDDs. By exploring as many variations in the lower variables as
possible, intermediate diagrams may be much smaller than in traditional BFS and chaining BFS strate-
gies (also described in [CMS06]). Another intuition is that in an MDD encoding the set of reachable
states, all nodes are by definition saturated – therefore it is impractical to create nodes which have
unsaturated child nodes. In other words, a saturated node has a chance of being in the final MDD,
while an unsaturated one does not.

It is interesting to note that saturation was believed to be hard to parallelize [CZJ09]. Results
of [Vör+11] and in particular the solution implemented in the LTSmin13 tool [DMP19], however,
introduced more and more efficient parallelization strategies, reaching nearly-linear scaling with the
number of processing cores. Both of them relies on parallel processing of nodes, where the processing
of child nodes start in parallel with the parent. These approaches are orthogonal to the algorithms
presented in this dissertation, as every operation of every proposed algorithm follows the same node-
wise processing as the original saturation algorithm, essentially yielding the same task hierarchy.

2.4.3 The Constrained Saturation Algorithm

The constrained saturation algorithm has been introduced in [ZC09] to limit the exploration inside
the boundaries of a predefined set of states (the constraint). Even though this is possible with the
original algorithm by removing transitions inN that end in states not inside the constraint, it would
damage the locality of events by making them dependent on additional variables (the event has to
decide whether it is leaving the constraint or not). Constrained saturation avoids this by traversing

13https://ltsmin.utwente.nl/
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an MDD representation of the constraint along with the MDD of the state space, and deciding the
enabledness of events when firing them.

Formally, given a constraint set C , the goal of constrained saturation is to compute the least fixed
point S = S ∪ (N(S) ∩C) that contains the initial states inside the constraint I ∩C . Definitions 23
and 24 are modified as follows.

Definition 25 (Saturated state space with constraint) Given a PTSM , a set of variables V ′,
the submodelM ∠V ′ M ′ implied by the variables and a constraint C , a set of (partial) states S
over variables V ′ is saturated iff S = S ∪ (N ′(S) ∩ C), where N ′ is the next-state relation of
the submodel.

Definition 26 (Saturated node with constraint) Given a PTS M and a constraint node nc
(S(nc) = C), an MDD node n on level lvl(n) = k is saturated iff it encodes a set of (partial) states
S(n) that is saturated with respect to the submodel corresponding to V≤k and the constraint
C . Equivalently, the node is saturated iff all of its children n[i] are saturated with respect to
constraint node nc[i] and S(n) = S(n) ∪ (Nk(S(n)) ∩S(nc)), whereNk = ⋃e∣Top(e)=xk

Ne for
1 ≤ k ≤K and N0 = ∅.

The recursive computation of Nk(S(n)) ∩ S(nc) is done by simultaneously traversing n with
the source states, a recursive representation of Nk with source and target states, and nc with target
states. Note that nc does not encode the partial state determined by the path through which recursion
reached the current node, but “remembers” just enough to decide if the transition is allowed based
only on the rest of the state.

Figures 2.7a–2.7c present the pseudocode of the constrained saturation algorithm. To retrieve the
pseudocode of the original saturation algorithm, one should assume that at any point c ≠ 0 and
c[i] ≠ 0 for any i. The pseudocode also contains a stub for the Confirm procedure that serves for the
on-the-fly update of the next-state relations whenever new states are found (as described in [CMS06]
and enhanced in [Mei+14]).

The ConsSaturate procedure starts by checking the terminal cases. Line 2 checks if the same
problem has already been solved. Caching – as in all operations on decision diagrams – is crucial
to have optimal performance. If there is no matching entry in the cache, the algorithm recursively
saturates the children of the input node n, calling Confirm for every encountered local state. The
resulting node is checked for uniqueness in line 8 and is replaced by an already existing node if
necessary (to preserve MDD canonicity). In line 11, we iterate over the MxD nodes for each event
belonging to the current level, apply them again and again in lines 9–13 until no more states are
discovered – a fixed point is reached. This version of the iteration is called chaining and is discussed
in [CMS06].

The result of firing an event on a set of states is computed by ConsFire and ConsRecFire. The
only differences between them are that ConsRecFire also saturates the resulting node before return-
ing it and also caches it – ConsFire is called as part of a saturation process so this is not necessary.
The common parts (3–7 in ConsFire and 4–8 in ConsRecFire) compute the resulting node by recur-
sively processing their child nodes. It is important to note that the arguments of the recursive call
are n[i], c[j] and m[i, j], that is, n is traversed along the source state and c is traversed along the
target state. The recursive saturation of the result node in ConsRecFire in line 10 ensures that child
nodes of the currently saturated node always stay saturated during the fixed point computation in
accordance with Definitions 24 and 26.
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Input:MDD node n, c
Output: saturated MDD node n′

1 if n = 0 or n = 1 or c = 0 then return n
2 if ¬SatCacheGet(n, c, n′) then
3 n′ ← new MddNode(lvl(n))
4 for each i where n[i] ≠ 0 do
5 Confirm(lvl(n), i)
6 n′[i] ← ConsSaturate(n[i], c[i])
7 end
8 n′ ← CheckIn(n′)
9 repeat
10 changed ← false
11 for eachm ∈ {m ∣ ∃e ∈ Elvl(n) ∶ N(m) = Ne} do
12 n′′ ← ConsFire(n′, c,m)
13 if n′ ≠ n′′ then n′ ← n′′, changed ← true
14 end
15 until ¬changed
16 SatCachePut(n,m,n′)
17 end
18 return n′

(a) Procedure ConsSaturate.
Input:MDD node n, c, MxD nodem
Output:MDD node n′ encoding states in S(c) reachable from S(n) through N(m) such that children of n′ are

saturated
1 if n = 0 orm = 0 then return 0
2 if m = 1 then return n
3 n′ ← new MddNode(lvl(n))
4 for each i, j where n[i] ≠ 0 and c[j] ≠ 0 andm[i, j] ≠ 0 do
5 s← ConsRecFire(n[i], c[j],m[i, j])
6 if s ≠ 0 then Confirm(lvl(n), j)
7 n′[j] ← n′[j] ∪ s

8 end
9 n′ ← CheckIn(n′)

10 return n′ ∪ n

(b) Procedure ConsFire.
Input:MDD node n, c, MxD nodem
Output:MDD node n′ encoding states in S(c) reachable from S(n) through N(m) such n′ is saturated

1 if n = 0 orm = 0 then return 0
2 if m = 1 then return n ∩ c
3 if ¬RecFireCacheGet(n, c,m,n′′) then
4 n′ ← new MddNode(lvl(n))
5 for each i, j where n[i] ≠ 0 and c[j] ≠ 0 andm[i, j] ≠ 0 do
6 s← ConsRecFire(n[i], c[j],m[i, j])
7 if s ≠ 0 then Confirm(lvl(n), j)
8 n′[j] ← n′[j] ∪ s

9 end
10 n′ ← CheckIn(n′), n′′ ← ConsSaturate(n′,m), RecFireCachePut(n, c,m,n′′)
11 end
12 return n′′

(c) Procedure ConsRecFire.

Figure 2.7: Pseudocode of constrained saturation with MxDs.
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Chapter3

Analysis of Generalized Stochastic

Petri Nets with Symbolic State Space

Generation

3.1 Introduction

Priorities in Petri nets provide a convenient way to represent dependencies between transitions, mak-
ing them useful in the modelling of complex problems. One particularly important subset of priori-
tized Petri nets is Generalized Stochastic Petri nets (GSPN, introduced in Section 2.1.2). To analyse the
stochastic behaviour of a GSPN, themodel must not express any nondeterminism. Oneway to guaran-
tee this is to assign priorities to the transitions [TFP03]. While explicit (graph-based) model checking
algorithms naturally handle priorities, symbolic model checkers often have trouble representing the
resulting complex transition relations compactly.

Furthermore, locality of prioritized transitions are determined not only by read and write depen-
dencies, but also other transitions with higher priority. In general, to determine the fireability of a
transition in a prioritized Petri nets, we need to check the enabledness of all transitions with higher
priority, introducing a read dependency for every place used by these higher-priority transitions.

The problem of representation can be overcome with decision diagram-like representations (see
Section 2.3.4), but the problem of reduced locality remains. The approach in [Min04] uses matrix dia-
grams to encode priorities into the transition relations of Petri nets by removing elements where the
source state enables a higher-priority transition. To compensate for the degraded locality, they present
a method to factor the relations (i. e. merging events and decomposing them in a way independent
from the original model) such that saturation can still exploit some of the original locality.

The motivation of this thesis comes from the intuition that any alteration to the transition rela-
tions (without priorities) that affects locality will hurt the efficiency of saturation more than what is
absolutely necessary. Therefore we devised a solution that, with the modification of the saturation
algorithm (inspired by constrained saturation, presented in Section 2.4.3), uses the simple next-state
relations of unprioritized transitions as is and handles the priority-related fireability separately, en-
coded in a new kind of decision diagram called edge-valued interval decision diagram (EVIDD). We
show that for Petri nets, such a diagram can be constructed offline.

We expect our approach to yield smaller intermediate decision diagrams and thus result in better
performance for the state space generation of prioritized models. Our experiments comparing our
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results to that of [Min04] confirm this expectation, demonstrating that the presented algorithm scales
better with the size of benchmark models than previous approaches.

The chapter is structured as follows. In the rest of this section, we provide an overview of the
problem to be solved, including alternatives and related work (Section 3.1.1). Section 3.2 introduces
the definition and operations of EVIDDs and the encoding of priority-related enabledness. The mod-
ified saturation algorithm is presented in Section 3.3, while the results of evaluation are discussed in
Section 3.4. Finally, Section 3.5 provides concluding remarks and our plans for future work.

3.1.1 Overview

In this section, we investigate the problem of state space generation for models with priorities. Our
goal is to efficiently build the handling of priorities into saturation – which in its original form does
not consider priorities directly.

Previous work has addressed this problem by encoding the effect of priorities into the transition
relations. In [Min04], the author had twomain goals. Firstly, matrix diagrams have been introduced to
encode the transition relations, thus relaxing the requirement of having to use Kroenecker-consistent
next-state relations. This was necessary because the modification of the relations to exclude states in
which a higher-priority transition is enabled almost always spoils Kroenecker-consistency. Although
it is possible to decompose such a relation into Kroenecker-consistent relations, this was deemed
inefficient (see Section 2.3.4 for more details about next-state representations).

Secondly, [Min04] has also pointed out that the modified next-state relations lose the property of
locality. With regard to saturation, this means a drastic raise in the Top values of events, degrading
saturation to BFS or chaining BFS. This problem has been alleviated by slicing the relations to extract
the part which really depends on the additional components and keeping the rest lower. This way they
have managed to preserve locality as much as possible without modifying the saturation algorithm.

On the contrary, we chose to extend saturation and use every next-state relation as if transitions
were not prioritized, in the hopes of achieving better scalability. Assuming the priorities are given as
integers (contrary to [Min04] but in accordance with [TFP03]), the highest priority among enabled
transitions πmax, or more intuitively, the minimal priority to fire is encoded into a separate data struc-
ture for every possible marking. This information is passed along with recursive calls in a modified
saturation algorithm and used to decide whether a transition can be fired, similarly to the passing of
constraints in constrained saturation (as described in Section 2.4.3).

The minimal priority πmax(M) to fire depends on the current markingM of the Petri net. Thus
the encoding must be suitable to compute πmax for any markingM encountered by saturation, in one
of the following ways.

Firstly, an overapproximation Ŝr of the prioritized model’s reachable state space Sr can be calcu-
lated. As saturation only encounters reachable markingsM ∈ Sr , it is sufficient to encode πmax(M)
for the elements of Ŝr . The approximation may come from knowing bounds of places a priori, deriv-
ing bounds from P -invariants (see [Mur89] for details about invariants) or exploring the state space
of the unprioritized version of the model. However, this calculation may not always be possible, e. g.
due to lack of known place bounds or the unprioritized model being unbounded. Moreover, poor
overapproximations may produce unnecessarily large encodings.

Secondly, the encoding of πmax(M) may be calculated on the fly. When saturation encounters a
new local state, the data structure can be updated accordingly. We aim to explore this approach in
future work.
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Thirdly, a specialized data structure may be introduced that can encode πmax for any reachable
or unreachable marking and compiled before saturation. To this end, we introduce edge-valued in-
terval decision diagrams (EVIDD) to encode for each state the maximum of the priorities of enabled
transitions (Section 3.2). We show that in case of Petri nets this information can be compiled offline
(Section 3.2.2). The extended saturation algorithm and a more detailed comparison of our approach
and that of [Min04] will be discussed in Section 3.3.

3.2 Edge-valued Interval Decision Diagrams

This section introduces edge-valued interval decision diagrams, a hybrid between edge-valued deci-
sion diagrams [RS10] and interval decision diagrams [Tov08].

Definition 27 (Edge-valued interval decision diagram) An ordered edge-valued interval
decision diagram (EVIDD) overK variables is a tuple ⟨K,V,H, r, rh, lvl, edges⟩ such that:

• V = ⋃K
k=0 Vk is the set of nodes with V0 = {1} (the single terminal node) and V≥1 = V ∖ V0

being the set of internal nodes;
• H = ⋃K

k=0Hk is the set of handles where Hk = N × (Vk ∪ {1}), i. e. every handle is a pair
of a value and a node;

• lvl ∶ (V ∪H) → {0,1, ... ,K} assigns non-negative level numbers to each node and handle,
associating them with the variables (Vk = {n ∈ V ∣ lvl(n) = k} andHk = {h ∈H ∣ lvl(h) =
k});

• The root node r is the single node on levelK (VK = {r}) and rh = ⟨v, r⟩ is the root handle
with value v, representing the encoded function;

• edges ∶ V≥1 → (N×H)∗ assigns an edge list (a sequence of edges) to internal nodes, i. e. for
any node n ∈ V≥1, edges(n) = (⟨lb1, h1⟩, ... , ⟨lbc, hc⟩), c denoting the number of edges of
n. Each edge consists of a lower bound lbi and a handle hi such that hi ∈Hk−1. We require
that lb1 = 0 and for all 1 < i ≤ c ∶ lbi−1 < lbi, i. e. the lower bounds form an increasing
sequence.

An EVIDDmay be represented by a directed graph (see the bottom row of Figure 3.3 for examples).
Internal nodes of the EVIDD have several outgoing edges. Each edge ⟨lbi, hi⟩ ∈ edges(n) is labelled
with a lower bound lbi and value v of the handle hi = ⟨v,m⟩, connecting n tom. The terminal node
1 has no outgoing edge.

If ⟨v, n⟩ is a handle andw ∈ N, let ⟨v, n⟩+w and ⟨v, n⟩−w denote ⟨v+w,n⟩, ⟨v−w,n⟩, respectively.
The latter is defined only when w ≤ v.

The edge lower bounds lbi of some internal EVIDD node n partition N into disjoint intervals
[lb1 = 0, lb2), [lb2, lb3), ... , [lbc−1, lbc), [lbc,∞). For convenience we will write lbc+1 = ∞. For any
x ∈ N there is a unique highest index i of edges(n) such that lbi ≤ x, which corresponds to the
interval [lbi, lbi+1) containing x. Let ⟨v, n⟩[x] = hi + v, where ⟨lbi, hi⟩ ∈ edges(n) and i is the index
defined above. Moreover, let ⟨v,1⟩[x] = ⟨v,1⟩ for any x.

Definition 28 (Semantics of EVIDD) An EVIDD rooted in handle h encodes the function
gh∶NK → N such that gh(x) = gh(xK , ... , x1) = w, iff ⟨w,1⟩ = h[x] = h[xK][xK−1]⋯[x1],
where x ∈ NK .

Since h[x] ∈Hk−1 for all h ∈Hk, the result ofK-fold indexing is always defined for root handles
and it always returns a handle of the form ⟨w,1⟩.
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Lemma 1 For every suffix x≥k = (xk, xk+1, ... , xK) of x, gh(x≥k) ≤ gh(x).

Proof Due to nonnegative edge values, h[x≥k] = ⟨z,m⟩ implies gh(y) ≥ z for all y =
(y1, y2, ... , yk−1,x≥k). Note that if h[x≥k] = ⟨z,1⟩, then gh(y) = z.

Definition 29 An internal EVIDD node n ∈ V≥1 is canonical if 1) for all adjacent edges
(⟨lbi, hi⟩, ⟨lbi+1, hi+1⟩) ⊆ edges(n), hi ≠ hi+1 and 2) there is an edge ⟨lbi, ⟨vi,mi⟩⟩ ∈ edges(n)
such that vi = 0; The terminal EVIDD node 1 is canonical. An (ordered) EVIDD is quasi-reduced
if 1) all nodes are canonical, 2) no two internal nodes have equal edge lists and 3) if the following
holds: if edges(n) = (⟨0, ⟨v1,m1⟩⟩) for some internal node n, thenm1 ≠ 1.

In the rest of this chapter we assume all EVIDDs to be quasi-reduced and ordered.
The following lemma shows that the handle h uniquely represents gh, which means caching may

be used to speed up operations with functions gh.

Lemma 2 Let h = ⟨v, n⟩ and q = ⟨w,m⟩ be handles of nodes in a quasi-reduced ordered EVIDD such
that h, q ∈Hk. If gh(x) = gq(x) for all x ∈ Nk, then h = q.

Proof We proceed by induction by increasing k. If k = 0, the claim is trivial.
In the inductive case, we need to consider handles h ∈ Hk ∖H0. Thanks to the induction hypothesis,

it suffices to show that h[x] = q[x] for all x ∈ N implies h = q. Let x be such that v′ is minimized in
h[x] = q[x] = ⟨v′, n′⟩. Then v′ = v +min(vj) = w +min(wi), where vi and wi range over the edge
values of n andm, respectively. For canonical n andm, min(vi) =min(wi) = 0, thus v = w.

Now we show that edges(n) = edges(m), which implies n = m. Consider some j ∈ N such that
h[j − 1] ≠ h[j]. Then ⟨j, h[j] − v⟩ must appear in edges(m). Conversely, if h[j − 1] = h[j] and m is
canonical, no edge with lower bound j may appear in edges(m). Finally, note that the first element of
edges(m) is ⟨0, h[0] − v⟩, which is also the first element on edges(m).

3.2.1 EVIDD Operations

3.2.1.1 Building Canonical EVIDDs

Fig. 3.1a shows the procedure EviddCheckIn that creates a canonical EVIDD node from a list of edges.
Callers must ensure that the edge list contains no invalid level skipping, i. e. all child nodes are located
on the same level or are the terminal node 1. Adjacent edges with equal values and child nodes are
removed in lines 4–6. If only a single edge to 1 remains, a handle to the terminal node is returned
instead of a new node in line 10. Otherwise, the edge list is brought into canonical form in lines 12–13
by subtracting offset =min(vi) from the edge values so that a zero valued edge appears.

Lines 14–15 depend on three other routines to produce a node object in memory. The constructor
EviddNode(E) creates a new node object from a canonical list of edges E. As in other decision
diagram implementations, space is conserved and comparisons of nodes are made more efficient by
the use of a unique table. The function CheckIn handles the unique table – if it contains a node with
the same edges as n, CheckIn(n) disposes of the object pointed by n and returns a reference to the
equivalent node from the unique table. Otherwise n is returned and CheckIn(n) adds n to the unique
table. Finally, offset is recovered as the value of the returned handle ⟨offset, n⟩.
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Input: edges E = (⟨lbi, ⟨vi,mi⟩⟩)ci=1
Output: checked in EVIDD handle

1 if lb1 ≠ 0 then fail
2 for i← 2 to c do
3 if lbi−1 ≥ lbi then fail
4 if vi = vi−1 andmi =mi−1 then
5 drop ⟨lbi, ⟨vi,mi⟩⟩ from E
6 i← i − 1, c← c − 1

7 end
8 end
9 if c = 1 andm1 = 1 then
10 return ⟨v,1⟩
11 end
12 offset ←mini=1,2,...,c vi
13 for i← 1 to c do vi ← vi − offset
14 n← EviddNode(E)
15 n← CheckIn(n)
16 return ⟨offset, n⟩

(a) Procedure EviddCheckIn.

Input: a = ⟨v, n⟩, b = ⟨w,m⟩ ∈Hk

Output: max{a, b}
1 if n = 1 andm = 1 then
2 return ⟨max{v,w},1⟩
3 end
4 offset ←min{v,w}
5 a← a − offset, b← b − offset
6 if ¬MaxCacheGet({a, b}, h) then
7 if n = 1 then
8 h← MergeConstant(b, v)
9 else if m = 1 then
10 h← MergeConstant(a,w)
11 else
12 h← Merge(a, b)
13 end
14 MaxCachePut({a, b}, h)
15 end
16 return h + offset

(b) Procedure Maximum.

Figure 3.1: Basic EVIDD operations.

Input: a = ⟨v, n⟩ and w ∈ N
Output:max{a, ⟨w,1⟩}

1 E ← ()
2 for each ⟨lbi, hi⟩ ∈ edges(n) do E ← E ++ (⟨lbi,Maximum(hi + v, ⟨w,1⟩)⟩)
3 return EviddCheckIn(E)

(a) Procedure MergeConstant.

Input: a = ⟨v, n⟩, b = ⟨w,m⟩ ∈Hk

Output:max{a, b}
1 c← ∣edges(n)∣, c′ ← ∣edges(m)∣, i← 1, j ← 1, E ← (), lbout ← 0

2 let us denote edges(n) by (⟨lbk, hk⟩)ck=1 and edges(n) by (⟨lb′k, h′k⟩)c
′

k=1

3 while i ≤ c and j ≤ c′ do
4 E ← E ++ (⟨lbout,Maximum(hi + v, h′j +w)⟩)
5 if i = c then nextA←∞ else nextA← lbi+1
6 if j = c′ then nextB ←∞ else nextB ← lb′j+1
7 lbout ←max{nextA,nextB}
8 if nextA = lbout then i← i + 1
9 if nextB = lbout then j ← j + 1

10 end
11 return EviddCheckIn(E)

(b) Procedure Merge.

Figure 3.2: Subroutines for the Maximum operation (++ denotes concatenation).
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3.2.1.2 Elementwise Maximum

Definition 30 The elementwise maximum of the EVIDD handles a, b ∈ Hk is the handle h =
max{a, b}, such thatmax{ga(x), gb(x)} = gh(x) for all x ∈ Nk.

The semantics of EVIDDs together with the definition of max{a, b} imply that
max{ga(x), gb(x)} = max{ga[xk]

(x≤k−1), gb[xk]
(x≤k−1)}. Therefore max{a, b}[x] =

max{a[x], b[x]} for all x ∈ N, which allows recursive calculation of max{a, b}. The operation
has two further properties which will be exploited in our implementation to facilitate caching.
Firstly, the operation is symmetric: max{a, b} = max{b, a}. Secondly, because q = h + w implies
gq(x) = gh(x) +w for all x, the elementwise maximum is offset invariant. If h = max{a, b}, we have
h +w =max{a +w, b +w} and h −w =max{a −w, b −w}.

Fig. 3.1b shows the implementation Maximum of the elementwise maximum operation. The al-
gorithm is divided into four cases based on whether the handles a and b point to terminal or internal
EVIDD nodes. If a and b are both handles of the terminal node 1 (line 1), the functions ga and gb are
constant. This base case is processed directly without caching. The remaining recursive cases make
use of caching. Maximum depends on the routines MaxCacheGet and MaxCachePut to manage
the cache. MaxCacheGet({a, b}, h) takes an unordered caching key {a, b} and sets the reference h
to the cached result max{a, b}. Successful retrievals are indicated by returning true, while false is
returned on cache misses. MaxCacheGet({a, b}, h) associates the result h with the key {a, b}.

To increase the number of potential cache hits, lines 4–5 subtract the minimum of their values
from the handles a = ⟨v, n⟩ and b = ⟨w,m⟩, so that at least one of v andw is 0. After possibly retrieving
max{a, b} from the cache, this offset is added back to the result in line 16.

The function MergeConstant in Fig. 3.2a processes the two cases when one of a and b is a
handle to 1, while the the other references an internal node. Due to symmetry, we may assume
that a = ⟨v, n⟩ ∈ Hk and b = ⟨w,1⟩ ∈ Hk. Because ⟨w,1⟩[x] = ⟨w,1⟩, max{a, b}[x] must be set
to min{a[x], ⟨w,1⟩} for all x ∈ N. This is accomplished by replacing all edges ⟨lbi, hi⟩ of n with
max{a[lbi], ⟨w,1⟩}.

The most interesting case, when the handles a = ⟨v, n⟩, b = ⟨w,m⟩ both refer to internal nodes
n,m ∈ Vk is processed by Merge in Fig. 3.2b. The difficulty arises from the edge lists edges(n) =
(⟨lbk, hk⟩)ck=1 and edges(m) = (⟨lb′k, h′k⟩)c

′

k=1 having possibly different lower bound sequences lbi
and lb′j . Therefore a new edge list E with a new sequence of lower bounds {lbi} ∪ {lb′j} must be
constructed.

Since lb1 = lb′1 = 0, the first edge of the new edge list is ⟨0,max{a[0], b[0]}⟩ = ⟨0,max{h1+v, h′1+
w}⟩. The loop in lines 3–9 of Merge traverses the lower bounds lbi and lb′j with the indices i and j.
Lines 5 and 6 peek at the next elements nextA = lbi+1 and nextB = lb′j+1 of the lower bound sequences.
We follow the convention that lbc+1 = lb′c′+1 = ∞. The lower bound lbout of the next edge to be created
is equal to the smaller of the two next elements. Thus an intersection of the interval partitions of N
induced by edges(n) and edges(m) is built. If both edge lists are exhausted, lbout = nextA = nextB = ∞,
which causes both i and j to be incremented beyond their limits and the loop to terminate.

Other elementwise operations for EVIDD handles can be implemented similarly. Elementwise
minimum is straightforward, since it is both symmetric and offset invariant. However, for operations
which are offset dependent, such as addition, or asymmetric, such as subtraction, the caching logic
must be adjusted accordingly.

36



3.2. Edge-valued Interval Decision Diagrams

x

y

0

0
2

2

n2

1

1

10

0
n3

n4

1 2

n2 n4

1
0

2

0
1

2 0

1

n5

n6

1

y

1

2

3

1 2 3

2

0
x

0 1

y

1

2

3

1 2 30
x

0

1
1

y

1

2

3

1 2 3

2 2

0
x

0

0

3

3

x

y

π1 = 2 π2 = 1

Example Petri net

t1 t2

Enabledness of t1 Enabledness of t2 Maximum enabled priority

0

02 0

∞

∞

0

0

0 1

∞

∞

0

1

0

0 0

12
0

0

∞

∞
∞ ∞

0

n1

0 0

Figure 3.3: Regions of the space of markings defined by (transitions of) the example Petri net with
priorities (top row) and corresponding EVIDD representations (bottom row). Highlighted regions are
encoded by the highlighted paths in the EVIDD.

3.2.2 Encoding the Minimal Priority to Fire

In this section we construct an EVIDD and a handle h that encodes the minimal priority to fire a
transition of a prioritized Petri net for any state. We will have gh(M(pK),M(pK−1), ... ,M(p1)) =
πmax(M) for a markingM of the Petri net if a transition with priority πmax has the highest priority
among all enabled transitions inM . If there are no enabled transitions inM , we set πmax(M) = 0.

TransitionHandle(t), which is shown in Fig. 3.4a, associates an EVIDD handle h to a prioritized
Petri net transition t. The handle encodes the function

gh(M(pK),M(pK−1), ... ,M(p1)) =
⎧⎪⎪⎨⎪⎪⎩

π(t), ifM ∈ En(t),
0, ifM ∉ En(t),

where En(t) is the set of markings in which t is enabled:

En(t) =
K

∏
k=1

[W −(t, pk),W ○(t, pk)) ∩NK ,

i. e. En(t) is the set of integer vectors where the component corresponding to the place pk lies in the
interval [W −(t, pk),W ○(t, pk)). Recall that if there are no inhibitor edges between t and the place
pk, thenW ○(t, pk) = ∞. If π(t) = 0 or En(t) = ∅, gh is constant and h is ⟨0,1⟩.

These intervals are encoded by the loop in lines 3–8 from the lowest to the top level of the EVIDD.
If t is never enabled due to an empty interval, a zero handle is returned in line 4. The function checks
in handles h(k) ∈ Hk such that gh(k)(x≤k) = π(t) for all x≤k ∈ ∏k

i=1[W −(t, pi),W ○(t, pi)) ∩ Ni,
otherwise 0. For all k < Bot(t), h(k) = ⟨π(t),1⟩ due to the reduction of zero nodes in EviddCheckIn.
Moreover, for all k > Top(t), h(k) = ⟨π(t), n⟩, where edges(n) = (⟨0, h(k−1)⟩) and the EVIDD is a
single path, becauseW −(t, pk) = 0 andW ○(t, pk) = ∞.
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Input: transition t
Output: priority EVIDD handle

1 if π(t) = 0 then return ⟨0,1⟩
2 h(0) ← ⟨π(t),1⟩
3 for k ← 1 toK do
4 if W −(t, pk) >W ○(t, pk) then return ⟨0,1⟩
5 if W −(t, pk) > 0 then E ← (⟨0, ⟨0,1⟩⟩, ⟨W −(t, pk), h(k−1)⟩)
6 else E ← (⟨0, ⟨0, h(k−1)⟩⟩)
7 if W ○(t, pk) < ∞ then E ← E ++ (⟨W ○(t, pk), ⟨0,1⟩⟩)
8 h(k) ← EviddCheckIn(E)
9 end

10 return h(K)

(a) Procedure TransitionHandle.
Input: set of all transitions T
Output: EVIDD handle encoding the minimal priority to fire

1 h← ⟨0,1⟩
2 order T by Top(t) nondecreasing
3 for each t ∈ T do
4 q ← TransitionHandle(t)
5 h← Maximum(h, q)
6 end
7 return h

(b) Procedure ReqiredPriority.

Figure 3.4: Encoding the highest priority of enabled transitions.

ReqiredPriority in Fig. 3.4b encodes πmax as an EVIDD handle. For each transition t the EVIDD
handle describing the enabling states En(t) and the priority π(t) is constructed by TransitionHan-
dle. TheMaximum operation is used tomerge the transition handles into a single handle. Analogously
to a heuristic in constraint programming with MDDs [c15], Maximum is called for the transition han-
dles ordered by Top(t) nondecreasing. Hence upper levels of the EVIDD are left as a single path for
as long as possible, which we have found to improve performance.

Figure 3.3 illustrates the above concepts on a simple example. The enabling region of a transition
is an (infinite) box in theK dimensional space of Petri net markings, labeled with its priority, where
K is the number of places in the net. For the sake of clarity, we use a simple Petri net with two places.
Therefore regions are rectangles or quadrants in 2-dimensional space, as seen in the top row. With
one or more sets of potentially overlapping regions corresponding to every transition in the net (t1
and t2 in this case), the Maximum operation computes a new set of disjoint regions that cover exactly
the same points as the original regions (rightmost part of Figure 3.3), where labels are obtained as the
maximum of labels on original regions that cover the new region. For regions that do not enable any
transition we assign the priority level 0.

The bottom row of Figure 3.3 shows the EVIDD representations of the sets of regions above them.
According to Definition 27, a handle (at the arrowhead of an arc) is a pair of a node and a weight. The
weight represents a portion of the priority of the highest enabled transition belonging to the region
such that the priority is the sum of weights along the path. A node represents a dimension (in this case
a marking of a place) and has an ordered list of arcs partitioning the dimension: each arc corresponds
to an interval with an inclusive lower bound defined by its label and exclusive upper bound defined
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by the label of the next arc of the node, or infinity (which is not associated to an arc), and points to
a child handle for the next dimension or the terminal node. Weights are distributed automatically by
reduction rules (see Definition 29).

3.3 Saturation with Priority Constraints

In this section, we discuss our extension in detail and also give some remarks about its advantages
over previous approaches. Because we can now represent the priority related enabledness of the tran-
sitions, we will use the simplest representation for unprioritized next-state relations. As mentioned
in Section 2.3.4, this will be an implicit relation forest with three integers characterizing the partial
functions.

Definition 31 (Implicit relation forest for Petri net transitions) An implicit relation for-
est (IRF) for Petri net transitions is a tuple IRF = (V, lvl,W −,W ○,W +,next), where:

• V = ⋃K
k=0 Vk is the set of nodes, where items of V0 are the terminal nodes 1 and 0, the rest

(V>0 = V ∖ V0) are internal nodes (Vi ∩ Vj = ∅ if i ≠ j);
• lvl ∶ V → {0,1, ... ,K} assigns non-negative level numbers to each node, associating them
with variables according to the variable ordering (nodes in Vk = {r ∈ V ∣ lvl(r) = k}
belong to variable xk for 1 ≤ k ≤K and are terminal nodes for k = 0);

• W −, W ○ and W + are functions from V to N and encode the effect of a transition on a
place belonging to the level of the node;

• next ∶ V → V is the next node if the implicit function is interpreted on an input, i. e.
indexing a node yields r[i, j] = next(r) ifW −(r) ≤ i <W ○(r) (the transition is enabled)
and j = i−W −(r)+W +(r) (the marking changed from i to j), while r[i, j] = 0 otherwise;

• for every pair of nodes on the same level r1, r2 ∈ Vk, if W −(r1) = W −(r2), W ○(r1) =
W ○(r2) andW +(r1) =W +(r2), then r1 = r2.

Semantics are defined based on node indexing in the same way as for MxDs. For a Petri net
transition t, an IRF chain assuming a variable ordering can be built from bottom to top as follows.
Let r0 = 0. We define rk ∈ Vk such that next(rk) = rk−1, W −(rk) = W −(pk, t), W ○(rk) =
W ○(pk, t) andW +(rk) =W +(pk, t).

This representation is implicit, therefore it does not have to be updated when a new state is found.
Furthermore, it is as compact as the original Petri net. Such a Kroenecker-consistent representation
would not be possible without separating the priority-related aspects from the description of the
transition itself.

3.3.1 Details of the Algorithm

Given the EVIDD notation and the operations defined so far, as well as the implicit relation forest for
Petri nets, Fig. 3.5 presents the pseudocode of the extended saturation algorithm capable of handling
prioritized models natively. The pseudocode uses Eπk = {e ∣ e ∈ Ek ∧ π(e) = π} to denote the set of
events “belonging” to level k (as defined in Definition 21) and having priority π, as well as the self-
explanatory Eπ≥vk (v is a given priority level). The IRF node corresponding to event e and therefore
encoding Ne without priority considerations is denoted by r(e).

The procedure Saturate (Fig. 2.7a) takes an MDD node n and an EVIDD handle h – which are
initially the root of the MDD representing the set of initial states (I in Definition 9) and the root
handle of the EVIDD as returned by ReqiredPriority (Fig. 3.4b) – and saturates n. Recall that when
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Input:MDD node n, EVIDD handle h = ⟨v,m⟩
Output: saturated MDD node n′

1 if n = 0 or n = 1 then return n
2 if ¬SatCacheGet(n,h,n′) then
3 n′ ← MddNode(lvl(n))
4 for each x where n[x] ≠ 0 do n′[x] ← Saturate(n[x], h[x])
5 n′ ← CheckIn(n′)
6 repeat
7 changed ← false
8 for each e ∈ Eπ≥vlvl(n) do
9 n′′ ← SatFire(n, e, h)

10 if n′ ≠ n′′ then n′ ← n′′, changed ← true
11 end
12 until ¬changed
13 SatCachePut(n,h,n′)
14 end
15 return n′

(a) Procedure Saturate.
Input:MDD node n, event e, EVIDD handle h = ⟨v,m⟩
Output: the result of firing e from the states n with the children saturated

1 π ← π(e), r ← r(e)
2 if n = 0 or π < v then return 0
3 if r = 1 andm = 1 then
4 if π = v then return n else fail “invalid descriptor”
5 end
6 n′ ← MddNode(lvl(n))
7 for each x, y where r[x, y] ≠ 0 do
8 s← RelProdSat(π, r[x, y], n[x], h[x], h[y])
9 n′[y] ← Union(n′[y], s)

10 end
11 n′ ← CheckIn(n′)
12 return n′

(b) Procedure SatFire.

Input: priority π, IRF node r, MDD node n, EVIDD handles h = ⟨v,m⟩, h′
Output: saturated MDD node n′′, which is the result of firing d from n

1 if n = 0 or π < v then return 0
2 if r = 1 andm = 1 then
3 if π = v then return n else fail “invalid descriptor”
4 end
5 if ¬RelProdCacheGet(π, r, n, h, h′, n′′) then
6 n′ ← MddNode(lvl(n))
7 for each x, y where r[x, y] ≠ 0 do
8 s← RelProdSat(π, r[x, y], n[x], h[x], h′[y])
9 n′[y] ← Union(n′[y], s)

10 end
11 n′ ← CheckIn(n′), n′′ ← Saturate(n′, h′), RelProdCachePut(π, r, n, h, h′, n′′)
12 end
13 return n′′

(c) Procedure RelProdSat.

Figure 3.5: Saturation with EVIDDs for prioritized models.
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the root node gets saturated, it represents the set of reachable states Sr = N ∗(I). The procedure first
recursively saturates every child node (lines 3–4). The constructor MddNode creates a new node on
the current level which will hold the new (saturated) children. Similarly to EviddCheckIn, CheckIn
in line 5 ensures that the resulting node n′ is unique (i. e. the MDD currently being processed is quasi-
reduced). Lines 6–10 perform the fixed point computationwith the next-state functions corresponding
to Eπ≥vlvl(n), i. e. those events that “belong” to the current level and have a priority of at least v, the value
of handle h. Note that v is indeed a lower bound of the priority of any fireable transition, as shown
by Lemma 1. Terminal nodes are returned immediately.

The procedure SatFire computes the image of Ne on S(n). RelProdSat is used to compute
the image recursively for every component, also saturating new nodes during the process (line 11
of Fig. 2.7c). Due to this, both procedures return a saturated (and also quasi-reduced) node. SatFire
uses the priority and the descriptor belonging to event e to evaluate base cases. If S(n) is empty or
the value of the priority handle h is higher than π(t) (i. e. there is at least one enabled transition
with a higher priority), the terminal zero node is returned immediately. On the other hand, if the
descriptor r is the identity descriptor and the node of the handle is the terminal EVIDD node, we
expect that the priority of the current transition will be v and then we can return n as is (because of
the identity relation). If v is lower than the current priority, then either the descriptor or the priority
EVIDD is invalid, since the event e is enabled and has higher priority than any enabled transition
(including itself), which is an obvious contradiction. Lines 6–9 recursively compute the image ofNe.
RelProdSat does essentially the same, but it also saturates the resulting node before returning it
(line 11 of Fig. 2.7c). Note, however, that in RelProdSat we consider two EVIDD handles – one for
the source state (h) and one for the target state (h′). The former is used to evaluate the enabledness
of the transition currently being fired, while the latter will be used to saturate the resulting node.

To exploit the structure of decision diagrams (i. e. the same node may be reached on multiple
paths), Saturate and RelProdSat use caches to store previously computed results (lines 2, 13 of
Fig. 2.7a and lines 5, 11 of Fig. 2.7c).

3.3.2 Discussion

The correctness of the presented algorithm can be proved along the following (schematic) consid-
erations. Suppose that we decompose the next-state relation into Ne = N̂e ∖ Ee such that N̂e is
the next-state relation without considering priorities (which is by definition a superset of Ne) and
Ee = Enπ>π(e) × S where Enπ>π(e) = ⋃e′∈Eπ>π(e) En(e′), i. e. the Cartesian product of the states in
which an event with higher priority is enabled and the state space. The root IRF node of e encodes
N̂e. To encode Enπ>π(e), we use the EVIDD built by ReqiredPriority: by selecting only the paths
to which the EVIDD assigns a value larger than π(e), we can exactly compute Enπ>π(e).

It is easy to see that the modified saturation algorithm performs the selection whenever π is
compared to the value of a handle and also computesNe = N̂e∖Ee on the fly. Edge-labeling therefore
enables the compact representation of a series of sets Enπ>i, where every set is the superset of the
previous one. Handling of intervals instead of values, on the other hand, enables us to encode the
highest priority offline in case of Petri nets.

Compared to the matrix diagram-based solution of [Min04], we expect to build more compact
decision diagrams in the intermediate steps. This assumption is based on the intuition that the effi-
ciency of saturation comes from the ability to saturate nodes as low as possible, minimizing the size
of the diagram before moving to the next level. Although the firing of an event is similar in the two
approaches both in terms of computing the image and caching (where [Min04] has more matrix deci-
sion diagram nodes we have more EVIDD nodes to spoil the cache), the significant difference comes
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Input:MDD node n, EVIDD handle h = ⟨v,m⟩
Output:MDD node n′ corresponding to tangible markings in n

1 if v ≥ 1 then return 0
2 if n = 0 orm = 1 then return n
3 if ¬GetTangibleCacheGet(n,h,n′) then
4 n′ ← MddNode()
5 for each local state x do n′[x] ← GetTangible(n[x], h[x])
6 CheckIn(n′), GetTangibleCachePut(n,h,n′)
7 end
8 return n′

Figure 3.6: Procedure GetTangible.

from the iteration order of the whole saturation algorithm. Because our approach keeps the events as
is (as opposed to modifying them and raising their Top values), it can process more transitions when
saturating a node, potentially yielding a smaller (denser) diagram after every Saturate call. The con-
firmation of this hypothesis would require a thorough analysis of the algorithms or the observation
of how the state space MDD evolves in each case. At this stage of the work, we can provide empirical
measurements that seem to confirm our expectations. This idea is taken one step further by Thesis 3
in Chapter 6.

3.3.3 Application: Stochastic Petri Nets

Tangible state space generation of Generalized Stochastic Petri nets can be performed efficiently by
the proposed saturation method. First, the EVIDD encoding the highest priority of enabled transitions
πmax is constructed by ReqiredPriority (Fig. 3.4b). The EVIDD will encode a nonzero value for
each vanishing marking. Then Saturate (Fig. 2.7a) is called on the MDD with the initial marking
to explore the reachable state of the GSPN. Finally, tangible states are extracted into a new MDD
by simultaneously traversing the saturated MDD and the EVIDD. This approach is similar to the
“elimination after generation” in [Min04].

GetTangible in Fig. 3.6 extracts the tangible states T from the MDD corresponding to the reach-
able states Sr . The function recursively traverses the MDD and the EVIDD in lines 3–6 using caches
to store previously computed results. If the lower bound of πmax becomes nonzero (see Lemma 1), the
zero node is returned in line 1. The recursion may also terminate in line 2 for two reasons: Firstly, the
MDD 0 node may be reached. Secondly, the terminal EVIDD node 1 may be reached. This indicates
that πmax = v = 0 for every child of the current MDD node, therefore no further transformation is
needed.

3.4 Evaluation

A prototype implementation1 of our algorithm has been written in the Scala programming language.
Measurements were run on a 2.50GHz Intel® Xeon® L5420 processor and 32GB memory under
Ubuntu Linux 14.04. Heap space for the Java 1.8 virtual machine was maximized in 25GB. Concurrent
mark-and-sweep garbage collection was enabled in the JVM. However, no additional garbage collec-
tion routines were implemented to reclaim unique table and cache entries during saturation, i. e. MDD
node collection was Lazy [CLS01].

1See https://inf.mit.bme.hu/en/pn2017 for more details about the measurements.
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3.4. Evaluation

Table 3.1: Comparison with matrix diagram based methods.

DD nodes Comparison
N ∣T ∣ Final Peak Time Alg. Time Scaling

Ph
ils

16 4.87 × 106 1188 10662 0.216 s

Eag
[Min06]

1.3 s
30 3.46 × 1012 2364 26086 0.390 s 10.1 s
60 1.20 × 1025 4884 75449 0.930 s 69.2 s
90 4.15 × 1037 7404 147772 1.420 s 204.4 s
120 1.44 × 1050 9924 238976 2.261 s —

Ka
nb

an

8 4.23 × 107 280 1800 0.045 s
Eag

[Min06]

0.5 s
30 2.36 × 1012 1985 21259 0.638 s 67.0 s
40 2.86 × 1013 3240 41464 1.151 s 280.0 s
50 2.01 × 1014 4795 71569 2.252 s 979.0 s

FM
S

8 4.46 × 107 280 5972 0.186 s
Eag

[Min06]

0.2 s

Evidd
20 8.83 × 109 3646 45031 1.407 s 2.5 s
40 4.97 × 1012 13276 232061 7.413 s 29.0 s
80 3.71 × 1015 50536 1352121 52.009 s 477.0 s

Po
ll

5 5.91 × 106 279 2806 0.056 s
Eag

[Min06]

0.4 s

Eag
10 9.34 × 1016 1604 30602 0.726 s 13.0 s
15 2.28 × 1028 4729 135267 3.867 s 113.1 s
20 3.20 × 1040 10404 398512 11.831 s 540.1 s

Co
ur
ie
r 10 4.25 × 109 1433 17703 0.626 s

Otf
[Min04]

14 s

Otf
20 2.26 × 1012 4193 55458 2.666 s 82 s
40 2.18 × 1015 13913 191268 14.789 s 668 s
60 1.44 × 1017 29233 407478 42.847 s —

3.4.1 Benchmark Models

We used several scalable families of GSPNmodels from the literature as benchmarks. As only the state
space of the models are explored, transition timings were ignored and only transition priorities were
kept. Phils is the modified version of the dining philosophers model from [Min04], where the action
of picking up a fork is an immediate transition. The prioritized versions of the Kanban, FMS and Poll
models were also taken from [Min04]. In particular, the FMS model was modified from its original
version in [CT93] by setting marking-dependent arc weights to constant. Courier describes Courier
protocol software from [WL91]. We follow [Min06] by setting N =M .

Phils is grown structurally, i. e. by repeating submodels, for increasing values of N . Poll is grown
both structurally and by increasing initial token counts, while the rest of the model families grow
only by initial marking.

No further modifications were needed to analyze the models. We choose as variables the marking
of single places such that the highest priority of enabled transitions can be encoded as an EVIDD.
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Table 3.2: Unique table and cache utilization for the Courier model.

EVIDD MDD Otf [Min04]
N πmax Peak Cache Sr T Peak Cache Peak Cache

Co
ur
ie
r 10 69 538 424 3236 1433 17165 85414 71735 304612

20 69 538 424 9346 4193 54920 264639 227230 857572
40 69 538 424 30566 13913 190730 891589 801920 2656692
60 69 538 424 63786 29233 406940 1876539 — —

3.4.2 Comparison with Matrix Diagram Methods

Table 3.1 shows the number of decision diagram nodes and the running times of our algorithm when
applied to generate the tangible state space T as described in paragraph Application: Stochastic Petri
Nets of Section 3.3. Unfortunately, we were unable to directly compare our algorithm to matrix dia-
gram based approaches [Min04; Min06] implemented in SMART [Cia+06], as the currently available
version of SMART does not support prioritized models. We instead compare to the results published
in [Min04] and [Min06]. For Courier, we compare with the best-scaling approach from [Min04], Otf.
For the other models, we compare with “elimination after generation” (Eag) from [Min06]. To account
for differences between the hardware used, the semi-log plots in the Scaling column show normalized
running times. The running times for each algorithm and model family were divided by the running
time of the algorithm on the smallest model of the family before plotting. For example, the running
time of Eag on Phils was divided by 1.3 s, while the running time of our algorithm was divided by
0.216 s.

Ourmeasurements indicate that our EVIDD-basedmodified saturation approach scales better than
matrix diagram based approaches that handle priorities by changing the next-state relations. Scaling
is especially good with the structurally grown Phils family. To obtain a more accurate comparison,
further measurements would be needed.

Table 3.2 shows the number of decision diagram nodes required for representing the highest prior-
ity of enabled transitions πmax, the reachable states Sr and the tangible states T , as well as the unique
table and cache utilizations on the Courier model family. When comparing with the utilizations of
Otf published in [Min04], it is apparent that – in accordance with our expectations – prioritized
saturation with EVIDDs requires the creation of less temporary MDD nodes and therefore reduces
the size of the cache as well (even though using pairs as keys would obviously lead to worse cache
coherence in itself).

3.4.3 Models with Many Priority Levels

To study the effects of more complicated priority structures, we created three additional modifications
of the Phils model family where we assign multiple priority levels to transitions. In these models, the
picking up of a fork is an immediate event with π ≥ 0, while the rest of the behaviours are timed
with π = 0. In PhilsRight, picking up the left fork has priority 1, while picking the right fork has
priority 2. In PhilsBH and PhilsTH, picking up the two forks have equal priorities. However, in PhilsBH,
philosophers have sequentially increasing priority from the top to the bottom of the EVIDD andMDD
variable order. In PhilsTH the order is reversed. All models have the same tangible states. Moreover,
PhilsBH and PhilsTH have isomorphic reachable state spaces, albeit with different variable ordering.
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Figure 3.7: Measurements with many priority levels.

Fig. 3.7 shows the number of EVIDD nodes required to encode πmax, the total number of cache
entries created, and the execution time of the tangible state space generation. Adding another priority
level in PhilsRight increased only the number of EVIDD nodes by a constant factor. The effects of
assigning sequential priorities to philosophers heavily depended on the order of priorities. EVIDDs
could encode priorities increasing from bottom to top in PhilsTH with the same number of nodes as
Phils; however, the reversed order in PhilsBH increased node count substantially.

While PhilsRight only increased cache usage moderately compared to Phils, the more complicated
effective next-state relations of PhilsTH and PhilsBH required much more cache entries in saturation.
This problem is further amplified by the large number of EVIDD nodes that appear in cache keys in
PhilsBH. This effect also manifests in the running times, which were found to be strongly correlated
(R = 0.999) with the number of cache entries.

3.5 Summary and Future Work

In this thesis I have introduced a modified saturation algorithm capable of natively handling priori-
tized models. To this end, the chapter introduced edge-valued interval decision diagrams which can
efficiently encode the priority-related enabledness of transitions and can be constructed before state
space generation in case of Petri nets. I have described the new algorithm in detail and compared the
results of our empirical experiments to the results of [Min04], demonstrating that handling priorities
separately can indeed yield smaller intermediate diagrams and better performance.

Thesis 1 I designed an algorithm to help the efficient analysis of Generalized Stochastic Petri
Nets (GSPN). It extends the traditional saturation algorithm to perform amore efficient symbolic
state space exploration of systems with prioritized transitions.
1.1 I introduced a new type of decision diagram called Edge-Valued Interval Decision Diagram

(EVIDD) that can encode enabledness of prioritized transitions in GSPNs.
1.2 I extended the saturation algorithm to handle prioritized transitions efficiently using an

EVIDD instead of encoding priorities in the transition relation.
1.3 I evaluated the algorithm and showed that it scales better than previously known ap-

proaches.

As the direct follow-up of this work, we plan to define a full workflow to efficiently analyze
the stochastic behavior of large GSPNs, also supporting phase-type distributions and marking-based
behavior (e. g. in the form of marking-dependent arc weights).
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Chapter4

Saturation-Based On-the-Fly

Computation of Synchronous Products

for LTL Model Checking

4.1 Introduction

Linear temporal logic (LTL) specifications (presented in Section 2.1.4.2) play an important role in
the history of verification as being a prevalent formalism to specify the requirements of reactive and
safety-critical systems [Pnu77]. Section 2.2.5 discussed how the behaviors defined by an LTL property
can be expressed with the help of Büchi automaton and that the problem of checking LTL properties is
usually reduced to deciding language emptiness of the synchronous product of two Büchi automata:
one characterizing the possible behaviors of the system and another accepting behaviors that violate
the desired property [VW86]. The language emptiness problem of the result product Büchi automaton
can be decided by finding strongly connected components (SCCs). Explicit state graph-based algorithms
solve this problem in an on-the-fly manner, often providing a counterexample quickly.

Section 2.4 presented the saturation algorithm in detail. In an LTL model checking context, we
have to overcome the loss of locality caused by the synchronization with the Büchi automaton de-
scribing the property. The goal of Thesis 2 (presented in this chapter and Chapter 5) is to combine the
efficiency of saturation with the on-the-fly operation of explicit state model checking. The first step
is to utilize saturation to compute the synchronous product on the fly during the state space explo-
ration, which will be presented in this chapter. Then in Chapter 5, the model checking problem is split
into smaller tasks according to the iteration of saturation and after each step an incremental model
checking query is executed. An efficient, component-wise abstraction technique is used to construct
small state graphs tractable by explicit-state algorithms.

The contribution of Thesis 2 is a new hybrid LTLmodel checking algorithm that 1) exploits satura-
tion to build the symbolic state space representation of the synchronous product 2) looks for SCCs on
the fly, 3) incrementally processes the discovered parts of the state space and 4) uses explicit runs on
multiple fine-grained abstractions to avoid unnecessary computations. In the rest of this section, we
present an overview of the related work, then Section 4.2 presents the symbolic synchronous product
computation.
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4.1.1 Related Work

Our algorithm uses a hybrid approach that combines symbolic techniques with abstraction and
explicit-state model checking. There are a number of related approaches that solve similar problems
based on more or less similar techniques.

Explicit-state LTLmodel checking computes the graph representation of the synchronous product
automaton and uses traditional SCC computation algorithms like the one of Tarjan [Tar72] or more
recent ones [HPY97]. It provides a natural way to apply model checking on-the-fly, i. e. continuously
during the state space traversal [Cou+91; Ger+95] and answer the model checking question without
exploring the full state space in many cases. Explicit-state methods yield the potential of applying
various reduction techniques during the traversal such as partial order reduction [Pel98; God96] that
is based on cutting redundant orderings of partially ordered actions introduced by the interleaving se-
mantics of the underlying concurrent system models. Partial order reduction is especially efficient for
asynchronous, concurrent systems, where state space explosion is a common issue, and can consider
LTL properties to preserve information that is important for the evaluation of the property.

Symbolic model checking (discussed in Section 2.3) is used for both CTL (computation tree logic)
and LTL model checking. CTL model checking benefits from efficient set manipulation that can be
implemented with decision diagram operations (see Section 2.3.3). LTL model checking algorithms
were also developed based on decision diagrams and they proved their efficiency [CGH97; STV05].
In these works, the state space and the transition relation of the synchronous product is encoded
symbolically, then SCCs satisfying the accepting condition are computed on the synchronous product
representation. Symbolic SCC computation based on decision diagrams usually apply greatest fixed
point computations on the set of states to compute SCC hulls [SRB02]. These approaches typically
scale well, and they have been improved considerably due to the extensive research in this area. A
particularly interesting approach that also employs abstraction is based on compositional refinement
introduced in [Wan+06], which uses techniques similar to the one introduced in Section 5.3.2.

SAT-based methods approach the symbolic model checking problem from a different direction.
Traditional SAT-based bounded model checking unfolds the state space and the LTL property to a
given length (bound), encodes it as a SAT problem and uses solvers to decide the model checking
query [Bie+99]. These approaches are incomplete unless the diameter of the state space is reached. In
recent years, new algorithms appeared using induction to provide complete and efficient algorithms
for model checking of more complex properties, including LTL [SSS00; McM03; Bra+11].

A considerable amount of effort was put in combining symbolic and explicit techniques [BZC99;
Dur+11a; HIK04; KP08; STV05]. The motivation is usually to introduce one of the main advantages
of explicit approaches into symbolic model checking: the ability to look for SCCs on the fly. Solutions
typically include abstracting the state space into sets of states such as in the case of multiple state
tableaux [BZC99] or symbolic observation graphs [KP08]. Explicit checks can then be run on the
abstraction on the fly to look for potential SCCs.

Our approach builds on these works, as it combines symbolic and explicit techniques too. How-
ever, the synchronous product computation is based on new ideas and our approach uses a series of
fine-grained abstractions instead of a single one to reason about SCCs on the fly. Furthermore, the
developed approach employs a novel incremental fixed point computation algorithm to decompose
the model checking problem into smaller tasks and incrementally process them.
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4.2 Symbolic Computation of the Synchronous Product

As discussed in Section 2.2.5, a crucial point of optimization in LTLmodel checking is the computation
of the synchronous product on the fly during state space generation. In this section, a new algorithm
is introduced to efficiently perform this step symbolically.

Formally, given a PTSM and a Büchi automatonA, the task is to directly computeAM ∩A on the
fly using saturation, where AM is the Büchi automaton accepting the language produced by the state
space of M as a Kripke structure (described in Section 2.2.2). Although the result is an automaton,
inputs can be omitted from the representation – labels are used only to synchronize the two automata,
but are irrelevant in the language emptiness check performed in the next phase of the model checking
process.

The algorithm is based on saturation as a state space generation method and reuses the strategy
of constrained saturation. The main idea is to decompose the synchronous transitions and to modify
constrained saturation tomake it compute the possible combinations (see Definition 7). The constraint
will serve as a function instead of a set of allowed states, and mechanisms of constrained saturation
will be used to evaluate it on states of the model. This approach is presented in Section 4.2.1, then
Section 4.2.2 investigates correctness from a formal point of view.

4.2.1 Encoding the Product Automaton

To use saturation, the synchronous product automaton has to be structured to have components and
events according to Definition 9 in Section 2.3.1. By the definition of such a structure, saturation can
be driven to compute the set of reachable states in the product automaton directly while exploring
the state space of the system. Formally, the model of the synchronous productM∩ has to be defined
in the formM∩ = (V∩,D∩,I∩,E∩,N∩), also requiring the definition of the variable ordering and the
set of events.

Saturation is very sensitive to variable ordering, but the relation between the overall performance
(runtime and memory usage) and the ordering is very complex and hard to determine. It is usually
advised to place related variables1 close to each other to enhance locality in the structure of decision
diagrams as well. This strategy usually reduces the size of the decision diagram encoding of the set of
states. In addition, the representation of events also tends to be smaller. Another thing to consider is
the Top values of events. A great deal of the power of saturation comes from the ability to apply the
partitioned next-state relation locally, thus dividing the fixed point computation into smaller parts.
This ability is even more enhanced by caching.

Although it is hard to say how much these values affect performance, one corner case is certainly
undesirable: Setting every Top value to the index of the highest component,K . In this case, saturation
would degrade to a chaining BFS iteration strategy, trying to apply every event on the top level of the
decision diagram, effectively flattening the recursive algorithm and degrading cache efficiency in the
Saturate function.

4.2.1.1 Encoding the States

Encoding the states of the product is quite natural in the sense that they are pairs (s, q) ∈ Ŝ × Q,
which can be represented as vectors, thus it is possible to encode them in a decision diagram. States
of the specification automaton can be represented as a vector in any way from using a single variable

1Different definitions of related variables yield different heuristics. For example, variables can be considered related if
they are part of the same expression or transitions frequently modify them together.
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variable x2

variable x1
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Figure 4.1: Example of a decision diagram encoding of a product state space.

to binary encoding. For now, assume that the state of the specification automaton is encoded in a
single variable xa = q (i. e. it behaves as a single component inM∩).

The crucial part is the variable ordering, i. e. the order of the original variables x1, ... , xK , xa in
the state vector of the product. The following heuristic is based on notations and considerations of
Section 2.4.1 and assumes that the original model M had a variable ordering already optimized for
saturation.

Since events of M and transitions of A are synchronized in M∩, every event of M will trigger
a transition in A, i. e. every event of M∩ will depend on xa. Formally, ∀e ∈ E∩, xa ∈ supp(e), and
by definition, the value of Top(e) might also change. If the Top components of events are not to
be changed at all (which is only the most straightforward, but not necessarily the best heuristic),
putting xa to the lowest level is an ideal choice. This way, a state of the product is a vector (s, q) =
(xa, s1, ... , sK). Figure 4.1 shows an example of how the encoding decision diagram is structured.

4.2.1.2 Composing the Transition Relation of the Product Automaton

Decomposing the synchronized transitions means that instead of building a single next-state rela-
tion encoding the state changes of both M and A, transitions of the model and the automaton are
stored and handled separately. The synchronization itself will be done on-the-fly during the state
space traversal by our extended constrained saturation-based algorithm, like in the case of prioritized
models and EVIDDs in Chapter 3.

To understand the motivation of the following construct, recall that constrained saturation eval-
uates a binary function on the states of the system and allows only those that make the function true
– this is the meaning of traversing a decision diagram encoding a set. Also recall that relations can
be interpreted as functions, and they can also be encoded in decision diagrams (this time we will use
a hybrid of MDDs and 2K-MDDs). The idea is to use the “function evaluating” ability of constrained
saturation to compute the possible state changes of the automaton based on the labeling of the target
states of the system (as defined in Definition 7), according to the transition relation of A.

To do this, the transition relation of A is reordered to have the signature ∆ ⊆ 2AP × Q × Q.
Assuming an ordering of the atomic propositions of AP where ind ∶ AP → {0, ... , ∣AP ∣ − 1} is the
indexing of atomic propositions p ∈ AP , a letter α ∈ 2AP is encoded as a binary vector p ∈ B∣AP ∣,
wherep[ind(p)] = ⊺ ⇔ p = ⊺. For an illustration of such an encoding, observe Figure 4.2b that shows
the transition relation of a simple Büchi automaton (presented in Figure 4.2a) as a decision diagram.

It is important to note that the ordering of atomic propositions in p has to be fixed beforehand
and also has to match the order of components that are subjects of propositions. The subject of a
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0 a

1

b

⊺

(a) Büchi automaton of [a U b].

proposition a

proposition b

a ¬a

variable xa

¬b b b ¬b

variable x′a

0 0 1 0 1 1

0 0 1 1

1

(b) Constraint encoding the transition relation of the automaton.

Figure 4.2: Minimal Büchi automaton for the LTL formula [a U b] and its encoding as a constraint.

proposition is a component whose local state is necessary to evaluate the proposition2 and is denoted
by Subject(p). The valuation of an atomic proposition in terms of the local state i of its subject is
p(i) ∈ {0,1}.

With the two transition relations defined separately, a synchronous transition of the product will
be computed by applying a transition from the selectedNk on the state of the system, then choosing a
“suitable” transition from∆. The set of “suitable” transitions can be computed from the function rep-
resentation of automaton transition relation ∆ ∶ 2AP → 2Q×Q by evaluating the atomic propositions
on the target state of the system to obtain a letter. Constrained saturation will be used to evaluate the
function, with the help of a simple indirection layer evaluating the propositions (see Figure 4.5).

More precisely, as saturation is recursively calling itself and traverses the decision diagram, one
of the following can happen. Assume that ℓ is the highest level encoding the automaton (ℓ = 1 in the
pseudocode).

• If the current level belongs toM , i. e. it is above ℓ, the next local transition ofN is used and the
constraint evaluates the atomic propositions corresponding to the target local state.

• If the current level is the ℓth, the current constraint node encodes ∆(L(s′)). For this level
and others below it, this relation is used instead of N to choose the next local transition. The
constraint is ignored under this level.

• If the current level is below ℓ (so it belongs to A), the relation ∆(L(s′)) chosen by α on level
ℓ is used to choose the next local transition.

This evaluation step has to be included in both Saturate and RelProd. The modified version of
these functions can be seen in Figures 4.3 and 4.4.

The modified saturation algorithm for synchronous product computation is implemented in func-
tions ProdSaturate, ProdRelProd and StepConstraint(Figures 4.3, 4.4 and 4.5, respectively).

StepConstraintis used to navigate through the “constraint” MDD encoding the transition rela-
tion of the automaton. It takes as parameters a node c that represents the current state of the evalua-

2Note that the current version of the algorithm does not support the comparison of variables in different components,
so the subject of an atomic proposition is always a single component. In case of bounded variables with the same domain,
this restriction can be circumvented by comparing both of them to the same constant value for all possible values in the
domain.
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tion and two indices i and k, the former encoding the reached local state of the model and the latter
identifying the current level (or component).

The function performs a simple evaluation. If the current level is the lowest (i. e. belongs to the
automaton), the function does nothing, but returns c (that may be 0 or an MDD encoding state tran-
sitions of the automaton). Otherwise atomic propositions belonging to level k are evaluated on local
state i in the predefined order and the constraint is navigated along the corresponding edges. Note
that this navigation may consist of zero or more steps, depending on the number of propositions
belonging to level k.

Functions ProdSaturate and ProdRelProd are very similar to Saturate and RelProd. There
are essentially two differences. First, where constrained saturation navigates the constraint by getting
a child of the current node, the modified version uses StepConstraintto compute the next constraint
node (note that the level of c is now unknown). Secondly, when ProdRelProd reaches level 1, the
node encoding the next-state relation of the model should be 1 – this is the point where the constraint
is used as the transition relation of the automaton (line 2).

Formally, the algorithm applies the following set of transitions: {((s, q), (s′, q′)) ∣ (s, s′) ∈
N , (q, q′) ∈ ∆ (L(s′))}, i. e. the first part of a transition (originally belonging to the model) takes
the model into a state s′, whose labeling is read to choose the second part of the transition (originally
belonging to the automaton).∆ (L(s′)) can be seen as a partitioning of the transition relation of the
automaton based on the letters that transitions read.

4.2.2 Correctness and Efficiency

In order to prove the correctness of the algorithm, it is necessary to show that every transition of the
product can be simulated by the decomposition-based approach, and no false transitions are intro-
duced by the construct.

Theorem 1 (Correctness of decomposition-based product computation) Given the transition
relation ∆∩ of the product automaton AM ∩ A, the next-state relation N of M and the transition
relation ∆ of A, every transition of ∆∩ can be simulated by the decomposition-based product com-
putation algorithm and vice versa.

Proof The definition of the transition relation of the product (without the input letters) is ∆∩ =
{((s, q), (s′, q′)) ∣ (s, s′) ∈ N , (q,α, q′) ∈ ∆, α = L(s′)}. The modified constrained saturation ap-
plies the transitions {((s, q), (s′, q′)) ∣ (s, s′) ∈ N , (q, q′) ∈ ∆ (L(s′))}. By definition, ∆(α) =
{(q, q′) ∣ (q,α, q′) ∈∆}, so by substituting α = L(s′) the equivalence follows.

As the proof suggests, the algorithm directly computes the synchronous transitions on the fly
without actually storing them. This way, no additional storage is required above the representation
of the separate relations, and the computational overhead is also negligible compared to traditional
constrained saturation.
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input : sk , c : node
// sk: node to be saturated,

// c: constraint node

output : node

1 if sk = 1 then return 1
2 n2k ←Nk as decision diagram
3 Return result from cache if possible
4 tk ← new Nodek

5 for eachi ∈ Sk ∶ sk[i] ≠ 0 do
6∗ c′ ← StepConstraint(c, i, k);
7 if c′ ≠ 0 then tk[i] ← ProdSaturate(sk[i], c′)
8 else tk[i] ← sk[i] // no steps allowed

9 end
10 repeat
11 for eachsk[i] ≠ 0 ∧ n2k[i][i′] ≠ 0 do
12∗ c′ ← StepConstraint(c, i′, k)
13 if c′ ≠ 0 then tk[i′] ← (tk[i′] ∪ ProdRelProd(tk[i], c′, n2k[i][i′]))
14 end
15 until tk unchanged
16 tk ← PutInUniqueTable(tk)
17 Put inputs and results in cache
18 return tk

Figure 4.3: ProdSaturate

input : sk, c, n2k : node
// sk: node to be saturated,

// c: constraint node,

// n2k: next-state node

output : node

1 if sk = 1 ∧ n2k = 1 then return 1
2∗ if k = 1 then n2k ← c // transitions of automaton

3 Return result from cache if possible
4 tk ← new Nodek

5 for eachsk[i] ≠ 0 ∧ n2k[i][i′] ≠ 0 do
6∗ c′ ← StepConstraint(c, i′, k);
7 if c′ ≠ 0 then tk[i′] ← (tk[i′] ∪ ProdRelProd(sk[i], c′, n2k[i][i′])
8 end
9 tk ← ProdSaturate(PutInUniqueTable(tk), c)

10 Put inputs and results in cache
11 return tk

Figure 4.4: ProdRelProd

input : c : node i, k: index
// c: constraint node,

// i: index of local state

// k: level of component

output : node

1 if k ≤ 1 then return c // level of automaton, do nothing

2 foreach p ∈ AP ,Subject(p) = k do
3 c← c[p(i)] // evaluate p on i
4 end
5 return c

Figure 4.5: StepConstraint
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Chapter5

Saturation-Based Detection

of Strongly Connected Components

for LTL Model Checking

5.1 Introduction

Chapter 4 introduced a new algorithm to build the product state space encoded by decision diagrams
on the fly by using saturation. In this chapter, we will achieve on-the-fly detection of SCCs by run-
ning searches over the discovered state space continuously during state space generation. In order
to reduce the overhead of these searches, we present a new incremental fixed point algorithm that
considers newly discovered parts of the state space when computing the SCCs. This approach relies
on the component-wise structure of asynchronous systems and incremental fixed-point computation
is driven by the ordering of the components.

Abstraction is a key technique in the verification of complex systems, where the choice of the
applied abstraction function determining the information to be hidden is very important. The com-
putational cost of the abstraction is also significant: the more complex the chosen abstraction function
is, the less efficient the model checking procedure might become. However, the computational invest-
ment of having better abstraction can pay off in decreasing the verification costs. Choosing the proper
abstraction is difficult, many attempts exist targeting this problem, e. g. in [Cla+00; Hen+02; Wan+06].
While the incremental fixed point algorithm specializes on finding an SCC, we will use abstraction in
a complementary algorithm that maintains various abstractions of the state space to perform explicit
searches in order to inductively prove the absence of SCCs.

This chapter is structured as follows. Section 5.2 details the new symbolic SCC computation algo-
rithm. The efficiency of SCC computation is further enhanced by various heuristics and abstractions,
discussed in Section 5.3. The proposed new approach to LTL model checking, including the results
presented in Chapter 4, is evaluated and compared to three other tools in Section 5.4. Finally, the work
is concluded in Section 5.5.

5.1.1 Main Concepts

There are simple and powerful algorithms for SCC detection in the explicit case, where the state
space is represented by a graph that can be traversed freely [Tar72; HPY97]. In a symbolic setting, set
operations can be used to compute an SCC-hull as a greatest fixed point in the state space [SRB02]. To
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introduce the advantage of on-the-fly SCC detection and early termination of explicit techniques into
symbolic algorithms, hybrid approaches using abstraction have also spread [HIK04; KP08; Dur+11a]
(implemented in e. g. ITS-tools1). To further enhance the power of these approaches, both symbolic
and explicit methods will be introduced in the following two sections, carefully designed to work
together in a symbolic setting.

The symbolic algorithm will be a variant of traditional SCC-hull computation schemes, but opti-
mized to process the state space incrementally during the exploration. On the verge of symbolic and
explicit, saturation will be enhanced to collect recurring states, states that are visited more than once
during the exploration and thus can indicate SCCs. Finally, a cheap abstraction considering decision
diagram nodes will also be employed to use explicit algorithms to quickly reason about SCCs in the
state space without actually trying to find them. The last two techniques are capable of making the
overhead of on-the-fly model checking almost disappear.

Algorithms of this chapter are orthogonal to the algorithm of Chapter 4. Every one of them as-
sumes that a model is given as a PTS, no matter if it is a product automaton or anything else. Conse-
quently, the devised methods can be used in settings other than LTL model checking, although in the
thesis, the focus is on this particular application.

Before presenting the algorithms, a seemingly trivial but fundamental lemma has to be declared.
This observation will serve as the basis of the incremental symbolic SCC detection algorithm as well
as the explicit and abstraction techniques of the next section.

Lemma 3 (Lemma of state space partitions) Given a decision diagram node n on level lvl(n) = k,
any path of (S(n),N≤k) as a directed graph (the state graph of submodel M≤k restricted to states
encoded by n) that is not present in (S[i](n),N<k) (the state graph of submodel M<k restricted to
states encoded by child nodes) contains at least one transition from Nk.

An implication of the lemma is that there is no way to traverse the boundaries of S[i](n) without
using at least one transition fromNk, since the state spaces (S[i](n),N<k) are disjoint (they differ in
the local state of component k).

5.2 Symbolic SCC Computation

As seen in Section 2.2.5, the LTLmodel checking problem can be reduced to checking language empti-
ness, which in turn reduces to the problem of finding fair SCCs in the product state space. This is why
devising efficient SCC detection algorithms is especially important here. The algorithm presented in
this section is correct and complete. However, various heuristics can be used to further improve its
efficiency. These extensions will be discussed later in Section 5.3.

5.2.1 Related Work: SCC Computation with Saturation

Saturation-based SCC computation has first been proposed by [ZC11]. The two implemented algo-
rithms are that of Xie and Beerel (XB) and the Transitive Closure (TC) algorithm. Both of them differ
from SCC-hull algorithms, because they aim to compute exactly those states that belong to an SCC.

The main idea of the XB algorithm is to compute the set of forward and backward reachable states
from a randomly picked seed state – their intersection gives an SCC. After removing the states of this
SCC, the procedure is repeated until no states are left.

1https://lip6.github.io/ITSTools-web/

56

https://lip6.github.io/ITSTools-web/


5.2. Symbolic SCC Computation

The TC method works by building the relation of reachability between reachable states, i. e. the
transitive closure of the next-state relation. This relation can then be used to identify states in SCCs
in a fully symbolic way by collecting all states that have a self loop in the transitive closure.

While the XB algorithm is usually much faster, it does not scale well with the number of SCCs in
the state space. TC, on the other hand, does not enumerate the strongly connected components, but
encodes them symbolically.

These algorithms differ from the approach presented here in that they both compute exact SCCs
of an already explored state space, whereas the we compute SCC hulls and do it on the fly, during state
space exploration. Nevertheless, due to the ability to reuse the caches of other runs of saturation, these
algorithms can be very efficient in computing an exact counterexample detected by the algorithm
presented in Sections 5.2.2–5.2.2.3.

5.2.2 Incremental Symbolic SCC Computation

In the presented model checking algorithm, on-the-fly SCC detection is intended to be achieved
by running SCC computations frequently during the state space generation. Certainly, this strategy
wouldmean amassive overhead if repetition of workwould not be addressed, so themain requirement
towards the design of such an approach is incrementality.

The context of the algorithm is the following. When saturation processes the state space (see
Section 4), SCC detection will be run whenever a node n becomes saturated. Processing a saturated
node has the advantage of handling a set of (partial) states S(n) that is closed with regard to events
independent from higher levels (N≤k). This means that the set will not change anymore during the
exploration, i. e. each closed set has to be processed only once.

Even though a set with its related events will be processed only once, the recursive definition of
saturation will cause such sets to appear again as subsets of larger sets encoded by the parent node in
the decision diagram (see Section 2.3.3). Due to this, the algorithm has to be able to distinguish parts of
the state space already processed (these are (S[i](n),N<k) encoded by the children nodes) and focus
only on new opportunities gained by processing the current node. Since S(n) = ⋃i∈D(xk

S[i](n) and
N≤k = N<k ∪ Nk of which S[i](n) and N<k are already processed, new elements are in Nk. This is
exactly the base idea of the algorithm: in each run, look for only those SCCs that contain at least one
transition from Nk.

5.2.2.1 Elementary Steps of the Fixed Point Computation

The idea can be implemented by discarding transitions from a set of “new” transitions Nnew – those
that cannot be closed to form a loop. In other words, a transition is discarded if its source state cannot
be reached from its target state. In SCC-hull algorithms [SRB02], sets of states are processed iteratively
to eventually get rid of “bad” states (dead-end states, for example) by computing a greatest fixed point
of some function on the original set. Now, a set of transitions has to be processed and the function is
the following (N is the set of all transitions, i. e. both “old” and “new” transitions):

f(Z) = {(s1, s′1) ∣ (s1, s′1) ∈ Z,∃(s2, s′2) ∈ Z, s1 ∈ N ∗(s′2)}

The formal goal of the proposed SCC detection algorithm is to compute the greatest fixed point
of f as ZΘ = f(ZΘ)∩ZΘ ⊆ Nnew, i. e. transitions ofNnew that are fireable on some path after another
transition of the set has fired. The intuition is that in in an SCC, every transition may be fired after
some other. The following lemma justifies the definition of function f and will prove the correctness
and completeness of an incremental step of the SCC detection algorithm.
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Lemma 4 (Correctness and completeness) Given a transition system (S,N) and a set of “new”
transitions Nnew ⊆ N , the fixed point ZΘ is empty iff (S,N) does not contain any SCC with transi-
tions from Nnew.

Proof The two directions are proven separately.
(→): Indirect proof. Suppose there is a strongly connected componentΘ in the transitions system that

contains at least one transition from Nnew, let this be (s, s′). Also suppose that the fixed point ZΘ is
empty. Consider f({(s, s′)}). By the definition of a strongly connected component, every state of Θ is
reachable from every other state ofΘ, so s is also reachable from s′. Reachability in terms ofN is defined
by inclusion in the set of states N ∗(s′), so (s, s′) ∈ f({(s, s′)}) can be concluded that contradicts the
assumption of ZΘ being empty. Note that because of the transition (s, s′),Θ is a real (but not necessarily
nontrivial) SCC even if s = s′ because of the self-loop.
(←): The other direction is also proved indirectly. Suppose there is no strongly connected component in

the transition system that contains at least one transition fromNnew. Also suppose that the fixed point is
nonempty. Take a transition ν1 = (s1, s′1) fromZΘ. Since it is in the fixed point, its source state s1 must be
reachable from the target state s′2 of some other transition ν2 = (s2, s′2). Now consider this transition and
repeat the process. Since ZΘ is finite, at some point, the transition νi will be the same as some transition
before: νi = νj = (s, s′), where j < i. At each repetition, the source state of previous transitions were
reachable from the target state of the current transition, so sj = s is reachable from s′i = s′. Since s′ is
obviously reachable from s through ν, they must be in an SCC, which leads to a contradiction.

5.2.2.2 Incremental Steps of the Fixed Point Computation

An incremental step has to compute the fixed point ZΘ. This is implemented by the function De-
tectSCC that can be seen in Figure 5.2. Checking reachability is performed using saturation, en-
abling the algorithm to reuse caches in the SCC detection phase as well, just like the decision diagram
structures built during the state space exploration (through the shared unique table).

Compared to the definition of f , the implementation is slightly different. Instead of handling a
set of transitions, the implementation reduces the problem to sets of states by considering the source
states and target states of every transition in Nnew. The sets of source and target states are denoted
by S− and S+ respectively. Furthermore, a set of states S (typically the set of states discovered so
far) is also input to DetectSCC to constrain SCCs – during the state space generation (especially if
saturation is used), N may contain transitions that are not in S × S (e. g. they will be reached after
firing an event from E>k or not reachable at all).

The core of DetectSCC is the filtering loop (lines 3–6), where function f is implemented and
performed iteratively until no more changes occur. In each iteration, the sets S− (source states) and
S+ (target states) are filtered:

1. Elements of S− that are not reachable from S+ are removed.
2. Elements of S+ that are not reachable from S− in one step throughNnew are removed, ensuring

that S− and S+ always contain exactly the source and target states of the remaining transitions.
Lemma 4 still holds if ZΘ is approximated by S− and S+: transitions are removed from Z when

their source states are removed from S− in step 1, while target states are removed from S+ when all
of their corresponding transitions got removed from Z to adjust the approximation in step 2. Note
that S− and S+ will always be both empty or both nonempty at the fixed point, because a transition
has to have a source and a target state. However, the iteration can be stopped one step before – if any
of them becomes empty, the next step will discard every state from the other one as well.
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The number of iterations in the filtering loop has an upper bound ofO(∣Nnew∣), since in every step,
at least one transition is discarded from the set. Methods to make the initial set of “new” transitions
smaller and thus reduce the number of required steps are discussed in Sections 5.3.3.1 and 5.3.3.3.

An incremental step will always assume that there is no SCC in the transition system that does
not contain a transition from Nnew (otherwise the on-the-fly model checking algorithm would have
already been terminated). With this, the completeness of the algorithm depends on the strategy of
applying the incremental steps.

5.2.2.3 On-the-fly Search Using the Incremental Steps

The last design question is how andwhen to call DetectSCC. The chosen design is to call DetectSCC
whenever a node n becomes saturated (marked by a circle in Figure 5.6, presenting the final pseu-
docode of on-the-fly SCC detection). The set of states to constrain the search is S(n), the set of all
transitions is N≤k and the set of new transitions is Nk (it is trivial that Nk ⊆ N≤k).

In the general case (and in breadth-first style strategies), the whole next-state relation of a model
can be partitioned by the traversal strategy, for example, a breadth-first exploration would partition
the transitions into “layers” based on their distance from the initial state. If DetectSCC is called on
each partition as new transitions, Lemma 4 will imply that the algorithm is correct and complete, i. e.
it finds an SCC exactly if there exists one.

In saturation, however, the exploration is recursive, so calling DetectSCC after a node is satu-
rated does not fall into the above case. Proving that the algorithm is complete can thus be performed
inductively.

Theorem 2 (Completeness of incremental SCC detection) Calling DetectSCC during state
space generation every time a node becomes saturated gives a complete algorithm for deciding if
there exists an SCC in a state space, i. e. in at least one call, the fixed point will not be empty iff there
exists an SCC in the state space.

Proof Inductive proof. It is trivial that the empty state spaces encoded by terminal nodes do not con-
tain any SCC. Assume the children of a decision diagram node n together with their related transitions
N<k (that is, (S(n[i]),N<k)) do not contain SCCs either. Proving that the fixed point will be nonempty
iff there exists an SCC in (S(n),N≤k) would imply that when the root node is saturated and the al-
gorithm stops, the statement of the theorem would hold. The inductive hypothesis directly follows from
Lemmas 3 and 4. If there exists an SCC, it must contain a path that is not present in (S(n[i]),N<k)
(otherwise (S(n[i]),N<k) would also contain the SCC), so according to Lemma 3 it will contain at least
one transition from Nk. This would cause the fixed point to be nonempty (Lemma 4).

5.2.3 Extensions to Support Fair SCCs

When looking for fair SCCs, i. e. SCCs containing at least one state from a set of statesF , the algorithm
can be extended to involve F as the third set in the filtering loop. Operations performed in the cycle
are then the following (the main idea is illustrated in Figure 5.1):

• Elements of F that are not reachable from S+ are removed.
• Elements of S− that are not reachable from F are removed.
• Elements of S+ that are not reachable from S− in one step throughNnew are removed, ensuring
that S− and S+ always contain exactly the source and target states of the remaining transitions.
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S− S+

F

S

Figure 5.1: Illustration of Figure 5.2 extended
to look for fair SCCs.

input : S,N ,Nnew : set
// S: set of states,

// N ,Nnew: set of transitions

output : bool

1 S− ←N −1new(S); S+ ←Nnew(S−)
2 if S+ = ∅ then return false
3 repeat
4 S− ← S− ∩N ∗(S+)
5 S+ ← S+ ∩Nnew(S−)
6 until S+ and S− unchanged
7 return S− ≠ ∅ ∧ S+ ≠ ∅

Figure 5.2: DetectSCC

The first two operations ensure that if a transition ofNnew is in an unfair SCC (i. e. does not contain
any state from F ), it is removed from the fixed point. Note that even accepting trivial SCCs (a single
state of F with a transitions ofNnew as a self loop) are found this way, because a state is by definition
reachable from itself (i. e. reachability as a relation is reflexive).

When looking for accepting SCCs during LTL model checking, F is the set of accepting states.
Supporting multiple acceptance sets to directly use more complex automata (e. g. generalized Büchi
automata) in the model checking algorithm is subject of future work.

5.3 SCC Computation Made Smart

The SCC computation algorithm presented before is efficient and generally applicable. However, by
considering that the goal of any on-the-fly model checking algorithm is to terminate when the first
counterexample is found, it is easy to see that at most one SCC detection call is sufficient. In this
section, we extend our SCC computation algorithm by adding various methods to prove the absence
of SCCs and thus prevent unnecessary symbolic fixed-point computations.

When looking for accepting SCCs, checking the absence of accepting states is a usual optimization
in similar algorithms, for example in the abstraction refinement approach presented in [Wan+06].
The contribution of this thesis goes two steps further. Section 5.3.1 introduces the use of recurring
states and a specialized algorithm to compute them, while Section 5.3.2 presents new component-
wise abstraction techniques tailored to decision diagrams and saturation that allow the use of explicit
algorithms directly to reason about the presence or absence of SCCs.

The heuristic using recurring states is based on the observation that if no states were seenmultiple
times during the saturation, then no loop can exist in the state space. The use of abstraction exploits
the fact that if an over-approximation of the state space does not contain an SCC, then the state space
cannot contain any either. A suitably small abstraction can be used with efficient explicit algorithms
that are far cheaper than an actual symbolic detection step.

The new SCC computation workflow is summarized in Figure 5.3. After presenting the building
blocks, Sections 5.3.3 and 5.3.4 will present the complete SCC algorithm extended with these improve-
ments.
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Figure 5.3: SCC computation workflow extended with heuristics.

5.3.1 Recurring States Heuristics

Recurring states are those that have already been discovered before reaching them again during state
space exploration. To precisely define them, let a concrete exploration ϵ of a fully reachable, connected
state graph (S,N) with initial states I be a sequence of subsets of S , where each element of the
sequence contains states discovered in that step: ϵ ∈ (2S)∗ such that ϵ(0) = I and ϵ(i + 1) ⊆ N(Si)
for every 0 ≤ i < ∣ϵ∣, where Si = ⋃0≤j≤i ϵ(j). An exploration is full if S∣ϵ∣ = S and the exploration
algorithm considered every enabled transition in N .

Definition 32 (Recurring states) Given an exploration ϵ ∈ (2S)∗, the set of recurring states
in each step i isRi = Si ∩ ϵ(i + 1), where Si = ⋃0≤j≤i ϵ(j).

Many explicit algorithms rely on recurring states as indicators of SCCs (for example [Tar72] and
[HPY97]). Indeed, they are candidates of being in an SCC, since (apart from the trivially avoidable case
of applying the same transitions multiple times) there are only two cases in which they can appear:
if the exploration reached them on parallel paths, or a previous state of a path is reached again, i. e. a
loop is found. Using the following proposition, recurring states can be used to reason about SCCs.

Proposition 2 Given a state space containing at least one SCC, any full exploration will yield at least
one state of each SCC as a recurring state.

Using the proposition as an indirect proof, recurring states offer a cheap way to distinguish situ-
ations where there is no chance of finding an SCC – situations that often arise during an on-the-fly
search.

5.3.1.1 On-the-fly Collection of Recurring States

Since a basic step in saturation is performed by applying some Ne (i. e. computing the relational
product of a set of states and Ne), recurring states have to be collected in this granularity as well. In
this context, the desired output of the function RelProd would be two sets of states: the result of the
relational product and the set of recurring states.

Instead of performing the costly intersection at the end of the function, the collection of recurring
states can be done on the fly. In general, constrained saturation did exactly the same, as it only allowed
steps that stay in a certain set of states. This set is now the set of “old” states, i. e. those that were passed
to RelProd.
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Figure 5.7 shows the implementation of RelProd with the collection of recurring states, corre-
sponding lines marked by asterisks. The function basically performs a constrained and an uncon-
strained saturation simultaneously, gathering the results to two separate sets (decision diagrams). An
important note is that contrary to normal constrained saturation, the recursion occurs even if the con-
straint would not allow the step, because the main functionality is the computation of the relational
product.

In each Saturate call (Figure 5.6 shows the extended version, where Saturate is called Scc-
Saturate), all recurring states produced by transitions of a given Nk are collected separately as the
union of sets returned by RelProd (called SccRelProd). Recurring states encountered by applying
lower level events during recursive Saturate calls are processed locally and will not be considered
any further. The arguments of RelProd are the original node, the next-state node and the node that
represents the relevant part of the old states (with which the results of the relational product will be
merged).

It is important to note that this mechanism is useful only if the inputs and results of SccRelProd
are cached. Otherwise, repeating a previous call would by definition recognize every target state as a
recurring state, since they have already been reached by that previous call.

5.3.2 Using Abstractions to Reason About Emptiness

Hybrid model checking algorithms usually use symbolic encoding to process huge state spaces, while
introducing clever abstraction techniques to produce an abstract model on which explicit graph al-
gorithms can be used. In this context, the goal of abstraction is to reduce the size of a system’s state
space while preserving certain properties, such as the presence or absence of SCCs. The purpose of
abstractions is no different in this work, they are used to reason about SCCs. However, unlike in
most approaches in this domain, multiple abstractions are used, ordered in a hierarchy matching the
structure of the underlying decision diagram to build an inductive proof about strongly connected
components of the state space.

In a symbolic setting, components of the model provide a convenient basis for abstraction (see
e. g. projection in Section 2.3.2 or submodel in Section 2.4.2). In LTL model checking, it is usual to use
the Büchi automaton or its observable language to group states and build an abstraction from these
aggregates.

Abstraction based on components. An extensive approach to using abstraction in SCC compu-
tation has been proposed in [Wan+06]. By defining a lattice of abstractions based on one or more
components of the model, the paper presents strategies of using some of the abstractions to discard
uninteresting parts of the state space and search in relevant components.

Each abstraction is obtained by projecting the state space to some of the components, keeping
only those transitions that do not affect other components (in this sense, they are similar to the must
abstraction of Section 5.3.2.1). Searching for SCCs in the abstract graphs can prove that no SCCs exist
within the selected components. If an SCC is found, the algorithm also looks for accepting states,
which offers another way of discarding irrelevant components. Completeness is achieved by refining
the abstraction until an SCC is found or the full state space is searched.

Abstraction based on the automaton. A common way of abstracting the state space is based on
the automaton describing the desired property. Such techniques include symbolic observation graph
(SOG) [HIK04; KP08], its extension, symbolic observation product (SOP) [Dur+11a], and self-loop
aggregation product (SLAP) [Dur+11b].
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Symbolic observation graphs are aggregated Kripke structures: each state of the SOG is a set of
states of the original model. Consecutive states are grouped by observable atomic propositions, i. e.
two states are considered equal if the satisfy the same atomic propositions of the LTL formula. An
improvement is symbolic observation product, which is based on the observation that as the property
automaton progresses, the set of relevant atomic propositions decreases, allowing a more aggressive
grouping (i. e. two states are considered equal if they satisfy the same atomic propositions currently
read by the automaton). Furthermore, SOP can substitute the computation of the product automaton,
because it is in itself a tableau representing the system in terms of the property. The drawback of this
approach is that it requires a globally stuttering property (i. e. operator X cannot be used).

Self-loop aggregation product works with every LTL formula. SLAP aggregates consecutive states
by observing self loops of the Büchi automaton: states are aggregated if their labels satisfy the condi-
tion of self-loops, i. e. the automaton does not change its statewhen the system does (i. e. this transition
of the system is invisible to the Büchi automaton).

5.3.2.1 Simple abstractions

In addition to selecting the base component, there are multiple ways to define an abstraction in terms
of transitions. To illustrate this, two simple abstractions are presented before introducing a new ap-
proach of using the structure of a decision diagram to define a more powerful abstraction.

Using abstractions to answer binary decisions has two potential goals. One can create an under-
approximating abstraction that can say a definite yes (these are must abstractions, e. g. as defined in
Section 2.3.2), or an over-approximating one that can say a definite no (these are may abstractions).
To construct an abstraction based on a single component of the system, we can use submodel as must
abstraction and projection as may abstraction.

In a submodel, the must abstraction of transitions is defined to keep only those transitions that
correspond to events fully within the support of the chosen component.Wewill denote the state graph
of a submodel for component k as A∃k = (Sk,N ∃

k ). In a projection, may abstraction preserves every
local transition, but omits the synchronization between components (i. e. assumes that if a transition
is enabled in component k, it is globally enabled). We will denote the state graph of a submodel for
component k as A∀k = (Sk,N∀

k ).
Due to these definitions, it is sometimes possible to reason about the presence or absence of global

SCCs. If there is an SCC in a single must abstraction, it is the direct representation of one or more
SCCs of the global state space. Complementary, if there is no SCC in the may abstraction of any
component, then the global state space cannot contain any SCC either.

These abstractions usually yield small state graphs that can be represented explicitly. Running
linear-time explicit algorithms on them gives a very cheap opportunity to possibly prove or refute
the presence of SCCs before symbolic methods are used. Moreover, the definition of may and must
abstractions implies N∀

k ⊆ N ∃
k , so running the explicit SCC computation on a may abstraction and

checking if every transition of a possible SCC is in N∀
k effectively considers both cases at the same

time.

Example 1 As an example, observe Figure 5.4. Figure 5.4a illustrates the Petri net model of a producer-
consumer system where the message has a timeout if the consumer is too slow. The model is divided
into three components, with their state variables (xc for the consumer, xm for the message and xp for
the producer) having two potential values: 0 if their token is on the left place and 1 if it is on the right.
Figures 5.4b and 5.4c show the state space of the model as an explicit state graph and an MDD, with
variable ordering xc, xm, xp.

63



5. Saturation-Based Detection of Strongly Connected Components for LTL Model
Checking

10

pr
od

uc
er

m
es
sa
ge

co
ns
um

er

t1

t2

t3

t4

t5

(a) Petri net model.

001 011

111

000
110

010

101

100

Component order: xc, xm, xp

(b) State space.

0

0

0

1

1

1

variable xp

variable xm

variable xc

n3

n2

n1

1

(c) State space MDD.

Figure 5.4: Producer-consumer model with non-deterministic buffer.
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Figure 5.5: The effect of the abstractions to the transitions

State transitions of the system are shown in Figure 5.5a, with connected arcs representing a single
transition affecting multiple components. Assume that every transition of the Petri net defines an event
in the model. In this case, every state transition belongs to a separate event. Events affecting multiple
components can be regarded as synchronization constraints between local transitions. Abstractions can be
acquired by removing synchronizations and local transitions. Figures 5.5b and 5.5c depict the transitions
transformed by must and may abstractions, respectively, for every component. If the goal is to find an
SCC containing the state where only the places on the right of the Petri net are marked (depicted as a
black state in Figure 5.4b), none of the simple abstractions of any component can provide information
about SCCs.

5.3.2.2 Node-wise abstraction

Among the main algorithmic contributions of this thesis, the last one is a specialized abstraction
that fits saturation and the presented incremental symbolic SCC detection algorithm, as well as it
complements Proposition 2 (about recurring states) as a cheap way to prove the absence of SCCs. The
goal of the following construct is to match the order in which events are processed during saturation,
as well as the structure of the underlying decision diagram.
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Definition 33 (Node-wise abstraction) Node-wise abstraction of state graph (S,N)with re-
gard to node n is A∃n = (Sn,N ∃

n ), where Sn = {i ∣ S(n[i]) ≠ ∅}, i. e. reachable local states
encoded by the arcs of n, and N ∃

n = {(sk, s′k) ∣ sk, s′k ∈ Sn,∃((... , sk, ...), (... , s′k, ...)) ∈ Nk},
i. e. the projections of events Ek to component k.

Node-wise abstraction can be regarded as a projection of the submodel M≤k to component k.
With this hybrid, variables above level k (where recursive saturation will not change anything) are
discarded in a must abstraction fashion, while variables below level k (where recursive saturation
may explore further) are omitted by a projection.

Just like may abstractions, a series of node-wise abstractions can also be used to reason about
global SCCs. Moreover, this can be done inductively during the state space generation. The following
theorem gives the basis for this inductivemethod of using node-wise abstractions to prove the absence
of SCCs.

Theorem 3 (Node-wise abstraction and SCCs) Given a node-wise abstraction A∃n with regard to
a saturated node n, the state graph (S(n),N≤k) does not contain any SCC if the following assump-
tions hold: 1) neither the abstract state graph A∃n 2) nor the state spaces (S[i](n),N<k) belonging to
the children of n contain an SCC.

Proof Indirect proof. Suppose that (S(n),N≤k) contains an SCC with a state in S[i](n) (i. e. component
k is in local state i). There are three possible cases to realize this:

1. The SCC is fully within S[i](n) and contains transitions only from N<k;
2. The SCC is fully within S[i](n) and contains transitions fromNk, but they do not change the local

state of component k;
3. The SCC contains a state from at least one other S[j](n) (i ≠ j) as well.

Case 1 contradicts Assumption 2, while case 2 is also a contradiction with Assumption 1, since not chang-
ing the local state of component k would mean a self loop in A∃n constituting a trivial SCC. Proving that
case 3 also yields a contradiction is based on Lemma 3. To reach the state in S[j](n) from the state in
S[i](n), a path has to use at least one transition from Nk. These transitions will also form a path in A∃n
from i to j. To be in an SCC, there has to be a path from the state in S[i](n) to the state in S[j](n) also
using at least one transition fromNk, which in turn also forms a path inA∃n from j to i. Since i and j are
reachable from each other, they are in an SCC of A∃n, which is again a contradiction with Assumption 1.

The main idea of the proof is that node-wise abstraction represents the effects of the events Ek
exactly on the level of their Top value. At the time a node n becomes saturated, the only transitions
that can change the local state of component k are inNk. Node-wise abstractions contain the images
of exactly these transitions, thus they describe the possible transitions between sets of partial states
encoded by the children of n. This is why they can be used to identify so-called one-way walls in the
state space that separate the possible spaces for SCCs.

Note that the theorem did not specify how to ensure Assumption 2 (SCC-free state spaces of
children nodes). This means that the algorithm is not restricted to using node-wise abstraction to
prove SCC-freeness for the children – even if the corresponding node-wise abstraction did contain an
SCC (which only implies the possible presence of a global SCC), the symbolic fixed point computation
algorithm of Section 5.2.2 can check if the abstract SCC candidate is realizable in the global state space
or not. This way, the series of saturated nodes can inductively prove the absence of SCCs by the end
of the state space generation.
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Example 2 Observing Figure 5.5 again, node-wise abstractions of the state space with regard to the
three decision diagram nodes can be seen in Figure 5.5d. As Theorem 3 suggests, it is unnecessary to
start symbolic SCC detection until the top level node n3 (corresponding to the consumer component) gets
saturated, since it is the only node whose node-wise abstraction contains an SCC.

By the time a node is saturated, its node-wise abstraction will not change anymore. This way, a
single abstraction has to be built and analyzed only once. The computation of node-wise abstractions
is very simple and cheap. It can be done on demand by projecting the next-state relation of corre-
sponding events to the Top component, or on-the-fly during saturation by adding vertices and arcs
each time a new local state is discovered or a new transition of the corresponding events is fired,
respectively (marked by a diamond in Figure 5.6). A simple must abstraction can also be examined as
part of computing SCCs of the node-wise abstraction by checking if every local transition used in the
SCC belongs to events having only the current component as a supporting one. If this is the case, that
SCC is inherently realizable and can be returned as a counterexample immediately.

5.3.3 On-the-fly Incremental Hybrid Model Checking of LTL Properties

In this section, the building blocks presented so far are assembled into an on-the-fly, hybrid and in-
cremental LTL model checking algorithm. Section 5.3.3.1 will show a way to reuse recurring states
and the modified relational product operator in the symbolic fixed point computation algorithm. Sec-
tion 5.3.3.2 shows how to consider recurring and accepting states in the explicit search, while Sec-
tion 5.3.3.3 will integrate the symbolic and explicit searches. Section 5.3.4 will present the full hybrid
SCC detection algorithm.

5.3.3.1 Recurring States in the Fixed Point Computation

In addition to indicating the absence of SCCs, recurring states can also help in finding them. Since
each SccSaturate builds its own set of recurring states, the set of all gathered recurring states on
level k will all be target states of transitions in Nk (only these transitions are fired on level k). This
way, the “interesting” subset of S+ is available at the end of a Saturate call and DetectSCC can be
initialized with the recurring states instead of S(n).

Corollary 1 (Accelerating the fixed point computation) During an SCC detection phase after the
saturation of node n, restricting the set of “new” transitions Nk to those that end in recurring states
(that is, {(s, s′) ∣ (s, s′) ∈ Nk, s

′ ∈ R}) will still find all SCCs that would be found otherwise.

The corollary follows from the fixed point computation strategy of saturation and its caching
mechanisms. It can be used to accelerate the fixed point computation by using a smaller input set,
since a smaller set of “new” transitions makes DetectSCC finish in fewer iterations.

Another application of RelProd is the computation of the filtered sets in the filtering loop of
DetectSCC. Since RelProd can be used to compute the intersection of the relational product and
any other set of states on the fly, it is suitable to substitute the intersection used in the computation
of reachable states.

5.3.3.2 Constraining the Explicit Search of Abstractions

Recurring states together with accepting states (if any) are useful in the explicit search on node-wise
abstractions as well. According to Proposition 2, every SCC has to contain at least one recurring state.
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If fair SCCs are sought, then at least one state of an acceptance set F also has to be included in the
SCC.

In a node-wise abstraction A∃n, every node i represents the set of states S[i](n). If the SCC can-
didate is realizable, it will contain some states from these sets. A necessary property of abstract SCC
candidates is therefore described by the following corollary that is a direct consequence of the above
considerations.

Corollary 2 (Necessary condition for abstract SCC realizability) An abstract candidate SCC
ΘA = (SΘ,NΘ) of a node-wise abstraction A∃n is not realizable or not fair if

• (⋃i∈SΘ S[i](n)) ∩R = ∅, or
• (⋃i∈SΘ S[i](n)) ∩ F = ∅, respectively.

Since every S[i](n) as well as R, and even the set of accepting states (formally {(s, q) ∣ q ∈ F})
is known by the time of the explicit search, candidate SCCs can be evaluated and sorted out if the
necessary conditions do not hold. If no potentially realizable candidate SCCs remain, the state space
does not contain any global SCCs either.

5.3.3.3 SCC Candidates in the Fixed Point Computation

Node-wise abstraction and the incremental symbolic fixed point computation algorithm are strongly
related. Node-wise abstraction contains exactly those transitions that are considered “new” in the
fixed point algorithm, so the latter can be regarded as a method to check whether a candidate SCC is
realizable or not.

According to Definition 33 (the definition of node-wise abstraction) and Theorem 3, arcs of candi-
date SCCs represent the transitions thatmay be part of an SCC – if an arc is not part of any candidate
SCC, its corresponding transitions will not be part of a global SCC either.

Corollary 3 (Realizing abstract SCCs) Given a node-wise abstraction A∃n and an abstract SCC
candidate Θ = (SΘ,NΘ), the only transitions of Nk that can be part of the global SCC are those
corresponding to abstract arcs NΘ, formally {(s, s′) ∣ (s, s′) ⊆ Nk, (sk, s′k) ∈ NΘ}, where sk and s′k
are the local states of component k in the global states s and s′.

The corollary can be exploited in the symbolic fixed point algorithm by considering only those
transitions as “new” that are part of a candidate SCC instead of the full relation Nk.

5.3.4 Assembling the Pieces – The Full SCC Detection Algorithm

After introducing the different aspects and components of the incremental hybrid SCC detection al-
gorithm presented in this chapter, this section summarizes the algorithm as a whole. The input model
is assumed to be a PTS. SCC detection relies only on a base algorithm employing the iteration strat-
egy of saturation, including, but not limited to traditional saturation, constrained saturation or the
product computation algorithm of Section 4.
Whenever a node n becomes saturated, the following steps have to be executed:

1. The set of encoded states S[i](n) and transitionsNk are checked against emptiness – if any of
them is empty, SCC detection reports “no SCC”.

2. The set of collected recurring states R and – if applicable – accepting states F are checked
against emptiness – if no recurring states were found, SCC detection reports “no SCC” (see
Proposition 2).
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3. An explicit SCC computation algorithm is run on the current node-wise abstraction A∃n to ob-
tain an SCC candidate – if no candidate is found, SCC detection reports “no SCC” (see Theo-
rem 3).

4. Candidate SCCs are checked according to Corollary 2 – if none of them is appropriate, SCC
detection reports “no SCC”.

5. A fixed point computation is started with S+ = R and transitions corresponding to arcs of the
candidate SCCs as “new” transitions – the result of the computation is returned as the result of
this iteration (see Lemma 4, Theorem 2 and Corollaries 1 and 3).

As summarized in Figure 5.3, the algorithm terminates as soon as DetectSCC finds a nonempty
fixed point, or if the root node is saturated. If a nonempty fixed point is found, its contents can be
used to aid counterexample generation (e. g. saturation-based SCC computation algorithms of [ZC11]).
Otherwise, there is no counterexample and the modelM is valid in terms of the specification ϕ.

Figures 5.6 and 5.7 show the pseudocodes of the modified Saturate and RelProd functions.
SCC detection with saturation is implemented in functions SccSaturate and SccRelProd (Fig-

ures 5.6 and 5.7, respectively). They are very similar to Saturate and RelProd, but without a con-
straint. Differences are marked by an asterisk in case of lines related to recurring states, a diamond
marks the on-the-fly construction of the node-wise abstraction, and a circle shows the line where
symbolic SCC detection is called.

SccRelProd has two additional parameters: o is a node encoding the “old states” that the return
value will be merged with (in order to compute their intersection) and r is an in-out parameter used
to return this intersection (the recurring states). Computation of this intersection is integrated with
the function SccRelProd. When the recursion ends with reaching 1, o is checked. If it is 1, then the
found new state is in fact already in the set of states that will be merged with the result, so r is also
set to 1 to include the current state in the set of recurring states.

In order to collect recurring states, a node r is created in every SccSaturate call. During the
computation of the relational product, another temporary node is passed to every call of SccRelProd
as an in-out parameter to collect the recurring states of the lower levels. When the function returns,
this node is merged into the corresponding child of rk. SccRelProd also collects recurring states this
way. Once t is saturated, the algorithm checks r to see if there is any recurring state collected.

The abstraction is built on the fly every time a local transition processed in SccSaturate is found
to be globally fireable, i. e. SccRelProd returns a nonempty node. If recurring states are found, tran-
sitions that yielded an SCC in A∃tk are computed2 and stored in NΘ.

Finally, DetectSCC is called with the set of recurring states S(r),N≤k as the set of all processed
transitions andNΘ as the set of new transitions.3 If it returns true (i. e. an SCC is detected), the whole
algorithm is terminated with a counterexample.

5.4 Evaluation

To demonstrate the efficiency of the presented new model checking algorithm (referred to as Hyb-
MC), models of the Model Checking Contest4 (MCC) have been used to compare it to three com-
petitive tools. NuSMV 2 [Cim+02] is a BDD-based model checker implementing traditional SCC-hull
algorithms and is well-established in the industrial and academical community. Its successor, nuXmv

2This step can also be done on the fly inside DetectSCC.
3Checking the emptiness of NΘ is not necessary, because DetectSCC will terminate almost immediately if Nnew is

empty.
4http://mcc.lip6.fr/
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input : n : node
// n: node to be saturated,

output : node

1 if n = 1 then return 1
2
3 m←Nk as MxD
4 Return result from cache if possible
5 n′ ← new Nodek

6 for eachi ∈ Sk ∶ n[i] ≠ 0 do n′[i] ← SccSaturate(n[i])
7
8∗ r ← new Nodek

9 repeat
10 foreach n[i] ≠ 0 ∧m[i][i′] ≠ 0 do
11∗ r′k−1 ← new Nodek−1

12 uk−1 ← (SccRelProd(n′[i],m[i][i′], n′[i′], r′k−1))
13◇ if uk−1 ≠ 0 then add arc (i, i′) to A∃n′
14 n′[i′] ← (n′[i′] ∪ uk−1)
15∗ r[i′] ← (r[i′] ∪ r′k−1)
16 end
17 until n′ unchanged
18∗ r ← PutInUniqueTable(r)
19 n′ ← PutInUniqueTable(n′)
20 Put inputs and results in cache
21∗ if r = 0 then return n′

22◇ NΘ ← transitions corresponding to SCCs of A∃n′
23○ if DetectSCC(S(r),N≤k,NΘ) then terminate with counterexample
24
25 return n′

Figure 5.6: SccSaturate

input : n,m, o : node
// n: node to be saturated,

// m: next-state node,

// o: old node,

in-out : r : node
// r: recurring states

output : node

1 if n = 1 ∧m = 1 then
2∗ if o = 1 then r ← 1
3 return 1

4 end
5 Return result from cache if possible
6 n′ ← new Nodek

7 foreach n[i] ≠ 0 ∧m[i][i′] ≠ 0 do
8∗ r′k−1 ← new Nodek−1

9 n′[i′] ← (n′[i′] ∪ SccRelProd(n′[i],m[i][i′], n′[i′], r′k−1))
10∗ r[i′] ← (r[i′] ∪ r′k−1)
11 end
12∗ r ← PutInUniqueTable(r)
13 n′ ← SccSaturate(PutInUniqueTable(n′))
14 Put inputs and results in cache
15 return n′

Figure 5.7: SccRelProd
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[Cav+14] –among other methods– implements the IC3 algorithm for LTL model checking. ITS-LTL
[Dur+11b] is a powerful tool based on saturation that implements various optimizations both for the
symbolic encoding and on-the-fly SCC detection.

5.4.1 Implementation

The algorithms presented in Chapter 4 and this chapter were implemented in the PetriDotNet5 frame-
work. PetriDotNet is a modeling and model checking tool written in C# supporting colored and or-
dinary Petri nets. It has been developed by the Fault Tolerant Systems Research Group of Budapest
University of Technology and Economics, including the author of this dissertation. It supports ba-
sic analysis of Petri nets, and a handful of saturation-based model checking techniques including
state space generation and reachability analysis, CTL model checking, bounded CTL model checking
and on-the-fly LTL model checking (presented in this thesis). Here we only use it as an interface to
models, and we reuse the basic saturation algorithms and related data structures from the previous
CTL model checking algorithms. The implementation of our new method also uses tools of the SPOT
toolset [DP04] to parse LTL formulas and transform them to Büchi automata.

5.4.2 Benchmark Cases

The Model Checking Contest offers Petri net models of various artificial and real-world problems.
The models are given in PNML format [Hil+09], usually both as colored Petri nets and unfolded Petri
nets as well. Due to the supported input formats of the selected tools, only ordinary Petri nets could
be used.

Excluding the “surprise models” of the contest of 2014 (which were released after conducting the
measurements), a total of 27 scalable models were used in the benchmark, with instances of differ-
ent size, resulting in 157 model instances. The majority of the models expose concurrent and asyn-
chronous behavior. Except the “planning” model, state spaces of the nets are finite. Even the infinite
model was kept in order to demonstrate that on-the-fly LTL model checking can sometime bear with
infinite models: if the product is finite or a counterexample is found in a finite subset of the state
space.

As for the specifications, a tool of the SPOT toolset was used to generate real (i. e. no pure Boolean)
LTL formulas with predefined atomic propositions. Atomic propositions were generated based on
the models: for every place of the smallest instance (those that appear in instances of any size) two
propositions requiring zero and nonzero token counts were defined. SPOT generated 50 properties
for every model class – instances of every size were checked against these properties. All in all, the
50 properties for each of the 157 model instances gave a total of 7 850 benchmark cases.

5.4.2.1 Generated LTL formulas

There are many categorizations of LTL formulas based on syntactic or semantic considerations
[MP92]. The generated LTL properties were also categorized by a tool of SPOT. The following cate-
gories were used in the measurements.6

• Safety properties (1 466 formulas): Specifies that something “bad” never happens. In general,
counterexamples of these properties consist of a finite prefix that cannot be “fixed” with any
suffix, i. e. the violation occurs in the prefix itself. In LTL, they are usually in the form G ϕ.

5http://petridotnet.inf.mit.bme.hu/en/
6The categories are not always exclusive. For example, obligation properties include safety and guarantee properties.
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• Guarantee properties (2 112 formulas): Specifies that something “good” is guaranteed to hap-
pen. Counterexamples for guarantees are “lasso” shaped, since they have to describe an infinite
behavior that fails to expose the desired property. In LTL, they are usually in the form F ϕ.

• Obligation properties (4 975 formulas): Combination of safety and guarantee properties. In LTL,
they are usually in the form G ϕ1 ∨ F ϕ2.

• Pure eventuality formulas (1 620 formulas): If ϕ is a pure eventuality formula and the path ρ
models ϕ, then ζρ also models ϕ, where ζ ∈ S∗ is any finite prefix. In other words, pure even-
tualities describe left-append closed languages.

• Pure universality formulas (1 260 formulas): If ϕ is a pure universality formula and the path
ζρ models ϕ, then ρ also models ϕ, where ζ ∈ S∗ is any finite prefix. In other words, pure
universalities describe suffix closed languages.

There are some more complex and interesting categories that cannot be automatically recognized
by SPOT. For this reason, the category “not obligation” (2 875 formulas) is used for such properties,
including the following categories.

• Progress properties: Specifies that something “good” will keep happening again and again. In
LTL, they are usually in the form G F ϕ.

• Response properties: Specifies that a response will eventually be given to a certain event when-
ever it occurs. In LTL, they are usually in the form G ϕ1 ⇒ F ϕ2.

• Stability properties: Specifies that a certain property will stabilize eventually. In LTL, they are
usually in the form F G ϕ.

As it turned out, the presented algorithm is not sensitive to the category of the checked LTL
property.

5.4.2.2 Tools and Inputs

As mentioned, the tools selected for comparison are NuSMV, nuXmv and ITS-LTL.7 Unfortunately, at
the time of the measurements, PNML was not supported in any of the tools selected for comparison.
Both NuSMV and nuXmv consume models in their native SMV format, while ITS supported many
types of models and formats other than PNML. In case of NuSMV and nuXmv, PNML models were
translated to SMVby ourmodel exporter in PetriDotNet, similarly to the approach discussed in [SB14].
Since ITS accepts models in CAMI format (the native format of the tool CPN-AMI) and there exists a
widely-used tool to convert between PNML and CAMI, this tool was used to generate the input files
for ITS.8

In terms of the properties, both Hyb-MC and ITS-LTL uses SPOT to parse the formula and trans-
form it into a Büchi automaton. A small tool was implemented to transform these formulas into the
format of NuSMV and nuXmv.

7While there were many other powerful model checkers that could process LTL at the time of this research, we were
interested in symbolic model checkers, preferably using a hybrid approach. Only ITS-LTL satisfied this requirement, but we
included NuSMV as an established baseline among BDD-based model checkers as well as nuXmv that is a SAT/SMT-based
symbolic model checker that represented the state of the art of its category at that time.

8The conversion between different input formats might have an impact on the performance of the tools. While ITS can
handle Petri nets directly (only the file format has to be changed), the models have to be transformed into SMV format for
the NuSMV and nuXmv tools. Direct, manual modeling could have yielded a more efficient model, but due to the number
of benchmark models, automatic conversion had to be used.
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5.4.2.3 Benchmark settings

Measurements were done on identical server machines with Intel Xeon processors (4 cores, 2.2GHz)
and 8 GB of RAM. Hyb-MC and ITS-LTL were run on Windows 7 x64, while NuSMV and nuXmv
were run on CentOS 6.5 x64.

The timeout of each measurement was set to 600 seconds. Runtimes were measured internally by
every tool. In case of Hyb-MC, the runtime includes the processing time of SPOT (transformation to
automaton) and the total runtime of the algorithm including its initialization, but not the loading time
of PetriDotNet. ITS-LTL also measured its runtime internally, also including the runtime of SPOT and
the algorithm. NuSMV and nuXmv canmeasure time by placing a special command in the input script.
In case of these tools, only the actual runtime of model checking was measured, omitting the time of
loading the model and constructing the binary model from the SMV input, making their measured
runtimes slightly smaller than the actual runtime. In total, approximately 40 days of processing time
was spent on the evaluation.

The decision diagram based tools (Hyb-MC, NuSMV and ITS-LTL) used the same variable ordering
produced by heuristics of the ITS toolset. Out of the numerous Python scripts bundled with ITS-LTL,
“Script 11” was used to produce a flat ordering with each place encoded in a separate variable –
this produced orderings that every tool could parse and use. This way, the hierarchical features of
ITS might not have been fully exploited, but saturation-based algorithms in PetriDotNet can also be
faster if a variable can encode multiple places.

5.4.3 Results

The following sections present some aspects of the results of the evaluation. Overall, 5 megabytes of
measurement log was collected and analyzed. Out of the successfully checked cases, properties were
fulfilled 2 811 times, while 3 565 cases gave counterexamples. In 1 474 cases, all the tools exceeded the
predefined time limit. The whole benchmark and the analyzed results can be downloaded from the
website9 of PetriDotNet dedicated to [c8].

5.4.3.1 Comparison of Runtime Results

The main emphasis of preliminary analysis was on the runtime results of each tool. The runtime of
Hyb-MC was compared to the corresponding runtime of the other tools. In addition, simple state
space generation with saturation was also done for each model instance to prove that saturation is
not the single reason of high performance—on-the-fly model checking can finish much earlier than a
simple state space generation.

Results can be seen on the scatter plots of Figure 5.8. The four scatter plots show the comparison of
Hyb-MC to simple state space generation (SSG) with saturation and the three chosen tools. Each dot
represents a benchmark case. The horizontal and vertical axes measure the runtime of Hyb-MC and
the other tool, respectively. A dot above the diagonal line is a benchmark case that Hyb-MC solved
faster than the competitor. The borders of the diagrams represent cases where one of the tools did
not finish under the time limit. Cases in which neither of the tools finished are not shown on this
diagram.

As the top-left plot suggests, model checking with Hyb-MC is usually faster than simple state
space generation. The main cause of this is the algorithm’s on-the-fly operation and efficient incre-
mental operation (i. e. a low degree of redundancy). There are also some cases where state space

9http://inf.mit.bme.hu/en/tacas15.
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Figure 5.8: Measurement results.

generation could be finished, but model checking was unsuccessful. These cases show that incre-
mental operation and the presented optimizations cannot always compensate the overhead of model
checking complex properties.

Comparing to the other model checking tools, the vast majority of cases show the competitiveness
of the presented algorithm. Since the scales of the axes are logarithmic, the distance of a dot from the
diagonal indicate an exponential difference in the runtimes of the tools.

This difference is visualized on the bar charts of Figure 5.8. The bar charts show the quantity tA/tB
with a logarithmic horizontal axis, where tA and tB are the runtime of the compared algorithms.
Bar charts of Figure 5.8 are colored to show the distribution of valid and invalid properties. Hyb-
MC is better than the other tools more often in refuting an invalid property than in proving valid
ones. This shows the efficiency of the SCC detection algorithm compared to the other approaches,
but even valid cases show a decent speedup compared to the other three tools, justifying the product
computation algorithm and the use of abstraction and recurring states as a means to prove the absence
of counterexamples.

The last diagram in Figure 5.8 shows howmany of the cases finished with runtime under the value
of the horizontal axis, i. e. how many cases would have finished if the timeout was set to a specific
value. This diagram indirectly suggests the scalability of the algorithms. The initial delay of Hyb-MC
and ITS-LTL is due to SPOT building the Büchi automaton from the LTL property.

It is interesting to note some special features of the tools. ITS-LTL performed the best among the
chosen competitors, but it could outperform Hyb-MC in very few cases only. Since it is also based
on saturation and uses abstraction to perform on-the-fly model checking, these results are the most
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Table 5.1: SCC detection statistics in different groups of cases.

Cases Time spent with Prevented Prevented by
SCC detection symbolic runs Recurring Abstraction

All 16.9% 99.7% 89.7% 10.3%

Valid 13.5% 99.7% 89.0% 11.0%
Invalid 19.6% 99.7% 91.3% 8.7%

Obligation 13.7% 99.7% 86.3% 13.7%
Not obligation 23.2% 99.7% 93.0% 7.0%

Echo (2D) 2.7% 100.0% 100.0% 0.0%
Eratosthenes 65.9% 62.9% 19.0% 81.0%

significant among all the others.
Although NuSMV performed the worst of all competitors, it could beat Hyb-MC in more cases

and also more significantly than ITS-LTL. NuSMV is the oldest of all the tools and is supposed to be
better with synchronous models, so these cases deserve future attention.

Results of nuXmv are very different from results of the other tools. This is not surprising, since
it uses a SAT-based algorithm with different techniques and strengths. It is also the one that outper-
formed Hyb-MC most of the times, it even managed to process many cases that caused a timeout in
Hyb-MC. It is also interesting to note that nuXmv proved to be the only tool sensitive to the category
of the checked property.

Analysis of runtime results measured on model families showed other interesting differences in
the scalability of the tools. NuSMV and nuXmv performed significantly better on models where in-
stances of the model were scaled in the domain of state variables. On the other hand, saturation-based
tools Hyb-MC and ITS-LTL were much better on models that scaled in the number of variables (com-
ponents).

5.4.3.2 Efficiency of the Presented Techniques

During the measurements, Hyb-MC spent only 17% of the time computing SCCs. Overall, 359 084
symbolic fixed point computations were started, while abstraction and explicit algorithms prevented
1.22⋅108 runs of symbolic SCC computation, 99.7% of all the cases. 90% of these cases were prevented
by the absence of recurring states (as a first check), while the remaining 10% were the cases where
explicit runs on node-wise abstractions managed to find even more evidence.

Table 5.1 shows the discussed statistics for some interesting subsets of the benchmark cases. Not
surprisingly, Hyb-MC spends more time looking for SCCs in case of invalid properties. The efficiency
of recurring states and explicit search slightly varies, but not significantly. The difference is greater
between obligation and more complex formulas: complex properties (such as progress properties)
require more time spent on SCC detection. The share of recurring states and explicit search also
varies a bit more.

Echo (2-dimensional instances) and Eratosthenes are two extreme models in terms of time spent
on SCC detection. Echo was one of the hardest models for Hyb-MC, only 26% of all the cases were
solved in the 2-dimensional family, all of which were valid. The fact that symbolic SCC detection was
never called in these cases suggests that Hyb-MC fails here on invalid cases, where SCC detection
would be necessary (cases that timed out do not contribute to these statistics). Eratosthenes, on the
other hand, had all of its cases solved, and there also were valid properties. In spite of this, almost two
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thirds of the time was spent on computing SCCs. Explicit search also shows extremely high efficiency
here, although the percentage of prevented symbolic runs is the only value among the models that is
under 90%.

5.5 Summary and Future Work

LTL model checking of asynchronous systems is a computationally difficult problem. Various tech-
niques and algorithmswere developed in the history to tackle the state space explosion problemwhich
is inherent in concurrent systems, and to combat the complexity of LTLmodel checking. I address this
complex problem in my work by introducing a new, hybrid LTL model checking algorithm for asyn-
chronous systems. The proposed approach combines the advantages of various algorithms in a novel
way. Saturation explores the possible states of the system and constructs the synchronous product on
the fly with the help of a synchronization method built on top of constrained saturation.

A new incremental fixed-point algorithm decomposes the model checking problem into smaller,
component-wise queries and computes local model checking results. In order to decrease the number
of symbolic fixed point computations, the thesis introduces a scalable abstraction framework, which
efficiently filters SCC computations by using local explicit model checking runs.

Thesis 2 includes the following new algorithms (in Chapters 4 and 5):
• An efficient on-the-fly synchronous product generation algorithm based on saturation;
• An incremental symbolic fixed point computation algorithm for SCC detection;
• An abstraction technique to support inductive reasoning on the absence of SCCs;
• A unique hybrid model checking algorithm combining explicit state traversal with symbolic
state space representation.

As a theoretical result, the thesis also contains the proofs for the correctness of the presented
algorithms.

The new algorithms were implemented in the PetriDotNet framework and extensive measure-
ments were conducted to examine efficiency. The tool was compared to industrial and academicmodel
checking tools. Although the implementationwas only in the prototype phase, it turned out to be quite
competitive and could solve more of the benchmarks cases than any of its competitors. In addition,
according to Yann Thierry-Mieg, the current ITS-tools implementation (in 2019) now uses solutions
inspired by the results of Chapter 5.

Thesis 2 I designed an incremental, on-the-fly algorithm for the model checking of properties
described by linear temporal logic (LTL), extending the saturation algorithm for state space
generation and using it for fixed point computations.
2.1 I extended the saturation algorithm to directly generate the state space of the product sys-

tem obtained by combining the system-under-analysis and a Büchi automaton describing
the LTL property. The advantage of direct generation is that it avoids the explicit compu-
tation of the product transition relation.

2.2 I designed an algorithm to incrementally search for strongly connected components (SCC)
in the state space during its generation by the saturation algorithm, using the saturation
algorithm to compute the necessary fixed points. This approach enables on-the-fly model
checking, i. e. the algorithm can terminate as soon as a witness is found.

2.3 I introduced two heuristics that complement the incremental SCC detection algorithm.
Using abstraction-based techniques and the concept of recurring states, the heuristics can
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prove the absence of an SCC and therefore can speed up the search by preventing unnec-
essary fixed point computations.

2.4 I evaluated the resulting LTL model checking algorithm on models of the Model Checking
Contest (MCC), comparing the runtime with three tools that represented the state of the
art: the algorithm was found to be often orders of magnitude faster than its competitors.

The presented algorithm has a huge potential for future developments. Following the idea of
driving the symbolic algorithm with explicit runs, a promising direction is to combine partial order
reduction with symbolic model checking. In addition, advanced representations of the properties can
also be used to further improve the speed of model checking.
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Chapter6

Enhancement and Generalization

of the Saturation Algorithm

6.1 Introduction

As we could see in the previous chapters, locality has a crucial effect on the efficiency of saturation.
Constrained saturation introduced an idea that can be used to keep fixed point computations of satu-
ration as low as possible. Building on constrained saturation, Chapter 3 proposed a new approach for
the model checking of prioritized Petri nets and Chapter 4 introduced further extensions to support
the verification of linear temporal logic (LTL), in particular the on-the-fly computation of the product
of the system and the property automaton. Both of them proposed ways to preserve locality for a tran-
sition relation that is composed of simple transitions and additional constraints (such as enabledness
based on priorities or synchronization between the system and the property automaton).

In this chapter, we propose a new algorithm for saturation that generalizes the attempts of pre-
serving locality in the approaches above. We introduce conditional locality to relax the original notion
of locality and automatically handle transition relations that previously required a form of constrained
saturation to process efficiently (such as in Chapters 3 and 4). In addition to generalizing a family of
algorithms, using conditional locality can increase the saturation effect, which is intuitively associ-
ated with better performance (suggested also by results of the previous theses). We investigate this
effect in the context of Petri nets, where we empirically show that the generalized saturation algo-
rithm (GSA) can be orders of magnitude faster than the original saturation algorithm (described in
Section 2.4.2) and is virtually never slower.

The main motivation of conditional locality is to compute fixed points even more locally. Satura-
tion ignores variables that are independent of the processed events to avoid computing the fixed point
for each of their valuations. With conditional locality, we can ignore even those variables that are not
written but read by an event (because they will not change), at the price of computing the fixed point
as many times as the value of those variables would cause a different result. The intuition is that the
resulting nodes will be part of the final decision diagrammore often than those created by the original
saturation algorithm, leading to less intermediate nodes and therefore improved performance.

The most important related work is [Min04], where the authors propose a method to split a transi-
tion relation such that the resulting relations are as local as possible. The key idea is to extract relations
which do not depend on the variables higher in the variable ordering and therefore the method works
well when the transition relation is a “sum” of such a relation and another one (i. e. R = R1 ∪ R2).
Our approach also handles the cases when the relation is the result of “removing” certain cases from
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a transition that normally does not depend on a variable (i. e. R = R1 ∖ R2). Another work that is
similar in spirit is [Mei+14], where the dependencies of high-level transitions on state variables are
more fine-grained than dependent and independent, which enables a more compact encoding andmore
efficient update of the transition relation. Our approach also refines this dependency relation to relax
the notion of locality.

The key novelties introduced in this thesis are the following: 1) the introduction of conditional
locality to relax the original notion of locality; 2) the generalization of a family of saturation-based al-
gorithms using conditional locality ; and 3) an empirical demonstration of the efficiency of the proposed
approach on Petri nets. This chapter is structured as follows. Section 6.2 presents a generalizations of
next-state relations that can be used with saturation. Section 6.3 introduces conditional locality and
the generalized saturation algorithm. The empirical evaluation on Petri nets is in Section 6.5. Finally,
Section 6.6 concludes the chapter.

6.2 Next-State Representations

Saturation has been designed with various next-state representations, most of them presented in Sec-
tion 2.3.4. Pseudocodes in the previous chapters used some of them, but it is apparent that they do
not change the main aspects of saturation. In the following definition, we characterize the minimum
requirement towards a next-state representation to be “compatible” with saturation and, in particu-
lar, the enhanced version presented here. We will build on this notion heavily in the generalization
of saturation variants.

Definition 34 (Abstract next-state diagram) An abstract next-state diagram (ANSD) over a
set of variables V (∣V ∣ =K) and corresponding domains D is a tuple (D, lvl,next)

• D = ⊔Ki=0Di is the set of next-state descriptors (NS descriptor or descriptor for short), where
items of D0 are the terminal identity 1 and the terminal empty 0 descriptors, the rest
(D>0 = D ∖D0) are non-terminal descriptors;

• lvl ∶ D → {0,1, ... ,K} assigns non-negative level numbers to each descriptor, associating
them with variables (descriptors in Dk = {d ∈ D ∣ lvl(d) = k} belong to variable xk for
1 ≤ k ≤K and are terminal nodes for k = 0);

• next ∶ D×N×N→ D is the indexing function that given a descriptor d and a pair of “before”
and “after” variable values returns another descriptor d′ such that lvl(d′) = lvl(d) − 1 or
d′ = 0. Also denoted by d[v, v′] = d′ ⇔ (d, v, v′, d′) ∈ next (with d, d′ ∈ D, v, v′ ∈ N,
d[v, v′] is left-associative) and d[s, s′] = d[vK , v′K]⋯[v1, v′1].We require for any v, v′, v′′ ∈
N and v ≠ v′ that 1[v, v] = 1, 1[v, v′] = 0, and 0[v, v′′] = 0.

The abstract NS descriptor d ∈ Dk encodes the relation N(d) ⊆ NK × NK iff for all s, s′ ∈ NK

the following holds:

((s, s′) ∈ N(d) ⇔ d[s, s′] = 1) ∧ ((s, s′) ∉ N(d) ⇔ d[s, s′] = 0)

Decision diagram-based representations such as 2K-MDDs or matrix decision diagrams naturally
implement ANSDs – descriptors are nodes of the diagram, the identity descriptor is the terminal one
node (1), the empty descriptor is the terminal zero node (0) and the indexing is the same (in case of
2K-MDDs d[x,x′] is implemented by d[x][x′]). The main difference between these representations
and ANSDs is that the latter are abstract – they can have any representation as long as it can be
mapped to the definition and they can be compared for equality.

78



6.3. The Generalized Saturation Algorithm

Specialization for Petri Nets. In case of Petri nets, the simplest representation is the weight func-
tion of the net, which has been introduced as an implicit relation forest in Section 3.3. Another formal-
ization of the same concept is given below, but this time as an ANSD. Given a Petri net withK = ∣P ∣
places each constituting a separate state variable (pk denoting the kth variable in the ordering en-
coding the number of tokens on place p ∈ P ), a mapping to an ANSD for every transition t ∈ T is as
follows.

• The set of descriptors is Di = N × N × N × Di−1 for 1 ≤ i ≤ K , i. e. tuples of the input weight,
inhibitor weight and output weight for pi and the descriptor of for the next place if the transition
is enabled with respect to pi (D0 = {1,0}).

• For the next function, if d = (v−, v○, v+, d′), the result of indexing is d[i, j] is d′ if v− ≤ i < v○
and j = i − v− + v+ and 0 otherwise.

• For each transition t the corresponding descriptor is defined recursively: d0 = 1 and di =
(W −(pi, t),W ○(pi, t),W +(pi, t), di−1).

Relation to Homomorphisms. Abstract Next-State Diagrams can be related with homomor-
phisms over decision diagrams as used in ITS-tools [HTK08]. The key difference is that while an
ANSD describes only a next-state relation and leaves the strategy of computing next-states to the
state sace generation algorithm, homomorphisms describe the computation of obtaining the next-
states for a set of states. This property lets model frontends of ITS-tools to customize the state space
generation algorithm, and saturation itself is also implemented as a homomorphism. On the one hand,
this provides great flexibility, but on the other hand it makes some of the optimizations proposed in
this and the other two theses harder to implement in a general way. Constrained saturation, for ex-
ample, is less optimal with homomorphisms in the general case (where the constraint is an arbitrary
set of states and not predicates), because of an excessive loss of locality.

6.3 The Generalized Saturation Algorithm

As we could see, the motivation of the constrained saturation algorithm (and all of its variants pre-
sented in Theses 1 and 2) is to handle a modified transition relation without losing locality. This work
generalizes these attempts by introducing the notion of conditional locality, a concept that expresses
the most important consideration of all kinds of saturation: computing fixed points as locally (i. e. low
in the decision diagram) as possible. This intuition has been discussed in Section 2.4, and the conclu-
sion – that saturated nodes have a chance of being in the final MDD – can be used to improve the
definitions to enhance this effect even further, which we do in the generalized saturation algorithm
(GSA).

6.3.1 Conditional Locality

The concept of locality enables the saturation algorithm to ignore the value of variables outside the
support of the currently processed event because it does not depend on them in any way. The result is
that a fixed point can be calculated over partial states, which has to be computed only once regardless of
the number of matching concrete states. The main motivation of conditional locality is to ignore even
those variables that are not written but read by an event and compute the fixed point over even shorter
partial states, but as many times as the value of those variables would cause a different result. The
intuition is that the resulting nodes will be part of the final MDDmore often than those created by the
original saturation algorithm, leading to less intermediate nodes and therefore improved performance.
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Definition 35 (Conditional locality) An event e ∈ E is said to be conditionally local over vari-
ablesX and with respect to condition variables Y (X∩Y = ∅) iff it is local overX∪Y and locally
read-only on variables in Y . If Y is maximal andX ∪Y = Supp(e), then we call Y = Guard(e)
the guard variables and X = Suppc(e) the conditional support of e. The variable with the high-
est index among the conditionally supporting variables (according to a variable order) is the
conditional top variable (Topc(e)) of e.

The (full) next-state relation of a PTS can be automatically repartitioned based on conditional
locality. The resulting partitions (events) will either be locally read-only on a variable or will always
change its value (behaviors like “test-and-set” may combine these and be read-only sometimes but
change the value other times – in this case, we can split the next-state relation). A special case of this
repartitioning is built into the GSA as described in Section 6.3.2.

With conditional locality, the notion of submodel (over a set of variables X used in saturation is
relaxed such that states are nownot projected otX , and all events e are includedwhere Suppc(e) ⊆X .
Just like a submodel, this relaxed submodel also includes a set of initial states, but they are not partial
states now and the value they assign to Y = V ∖X is significant in defining the relaxed submodel (this
will have implications on caching). What a relaxed submodel still promises is that variables in Y will
not be changed by transitions of the relaxed submodel. Figure 6.1 illustrates the difference between a
submodel and a relaxed submodel.

Definition 36 (Relaxed submodel of a PTS) Given a PTS M = (V,D,I,E ,N) and a set of
target variables V ′ ⊂ V , another PTS M ′ = (V ′,D,I ′,E ′,N ′) is a relaxed submodel of M
(denoted byM →V ′ M

′) if:
• I ′ = I , i. e. initial states are the same;
• E ′ = {e ∣ Suppc(e) ⊆ V ′}, i. e. events are restricted to those of which are conditionally
local over the set of target variables;

• N ′ = ⋃e∈E ′Ne, i. e. only conditionally local transitions are kept.

The following definition of conditionally saturated sets of states and MDD nodes can be consid-
ered as relaxations of Definitions 23 and 24 based on conditional locality.

Definition 37 (Conditionally saturated set of states) Given a partitioned transition system
M , a set of variables V ′ and the relaxed submodel M → x′ M

′ implied by the variables, a set
of (partial) states S over variables X is conditionally saturated with respect to the partial state
s(Y ) over variables Y ⊆ V ∖X iff S′ = S′ ∪N ′(S′), where S′ = {s(Y )} × S(X).

Note that a set of (partial) states S over variables X that is conditionally saturated with respect
to a zero-length state s(∅) is saturated over X , therefore the goal is the same as before: generate a
minimal, conditionally saturated set of states S with respect to s(∅) that contains the initial states I .

Definition 38 (Conditionally saturated node) Given a partitioned transition systemM , an
MDD node n on level lvl(n) = k is conditionally saturated with respect to the partial state s(V>k)
over V>k iff it encodes a set of (partial) states S(n) that is conditionally saturated with respect
to the submodel corresponding to V ≤ k and s(V>k).

The equivalent definition in terms of child nodes is now phrased as a theorem.

Theorem 4 (Conditionally saturated node – recursive definition) Given a partitioned transi-
tion system M , an MDD node n on level lvl(n) = k is conditionally saturated with respect to the
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Figure 6.1: The (relaxed) submodel of the example with inhibitor arc (Figure 2.1b) corresponding to
the message component as seen by the original saturation algorithm as well as by the GSA. Notice
that the GSA can decide the enabledness of t3 but it will not change the state of the producer.

partial state s(V>k) iff 1) all of its children n[i] are conditionally saturated with respect to s(V>k−1),
where s(V>k) ↘V >k s(V>k−1) and s(V>k−1)[k] = i; and 2) S′ = S′ ∪Nk(S′), where S′ = {s(V>k)} ×S(n)
and Nk = ⋃e∣Topc(e)=xk

Ne for 1 ≤ k ≤K and N0 = ∅.

Proof We prove only that a node described in the theorem encodes a conditionally saturated set of states.
To prove the fixed point, we have to show that for any state s ∈ {s(V>k)} × S(n) we have N≤k(s) ⊆
{s(V>k)}×S(n). Note thatN≤k = ⋃k

i=0Nk. Assume there is a state s′ ∈ N≤k(s) that is not in {s(V>k)}×
S(n). We know that (s, s′) ∈ Nl for some l ≤ k. If l = k then we have a direct contradiction with the
second requirement of the theorem. If l < k, then s′[k] = s[k] = i, because the transition cannot change
the value of xk. Because the first requirement of the theorem says that n[i] is conditionally saturated with
respect to s(V>k−1) as defined above, andNl ⊆ N≤k−1, it follows that s′ must be in {s(V>k−1)}×S(n[i]) ⊆
{s(V>k)} × S(n).

Based on Theorem 4 and the observation after Definition 37, the set of reachable states is encoded
as a conditionally saturated MDD node on levelK .

The key difference compared to Definitions 23 and 24 is the inclusion of a partial state with respect
to which we can define a fixed point. Because we consider the repartitioned events that are now
conditionally local, the partial state can be used to bind their guard variables, which will specify
their effect on the variables in their conditional support. Since the guard variables are not changed
when executing the transitions, we can compute a fixed point on only those variables that are in the
conditional support of the event.

Even though the definition uses a partial state to define the fixed point, it is generally enough to
traverse the NS descriptors just like the constraint in constrained saturation: whenever we navigate to
n[i], we should also navigate through d[i, i]. The resulting descriptor will characterize all the partial
states that cause the same behavior in the rest of the transitions.
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6.3.2 Detailed Description of the GSA

The pseudocode for the GSA is presented in Figure 6.2. The inputs are an MDD node n encoding the
initial states I of a PTS, and a NS descriptor d representing the whole next-state relation N . Since
the algorithm will automatically partition the next-state relation based on conditional locality, d can
be an union of all de (descriptors for events).

Sometimes, computing the full next-state relation is not practical, either because of its cost (e. g.
we have to change representation) or because we want to use chaining in the fixed point computation.
An advantage of ANSDs is the ability to represent operations in a lazy manner. For example, the union
of two descriptors may be represented by extending the set of descriptorsD with elements ofD×D×
{union} (lvl((d1, d2,union)) = lvl(d1) = lvl(d2)) and extending next such that (d1, d2,union)[i, j]
is: 1 if d1 or d2 is 1; d1 if d2 is 0; d2 if d1 is 0; and (d1[i, j], d2[i, j],union) otherwise. The lazy
descriptor (d1, d2,union) will not be equivalent to any non-lazy descriptor (even if they encode the
same relation), but will be equivalent to (d1, d2,union) or (d2, d1,union), which is not optimal cache-
wise but is often better than pre-computing the union. This approach can be generalized to more than
two operands.

Compared to (constrained) saturation in Figures 2.7a–2.7c, the main differences and points of
interest are listed below. In Saturate:

• Next-state descriptors are not retrieved for each level, but are a parameter.
• Recursive saturation of child nodes in line 5 passes d[i, i] as the NS descriptor to use on the
lower level k − 1, which encodes a set of transitions that do not modify the variable associated
to this level (and any above), therefore they are conditionally local over V≤k−1 with respect to
the partial state specified by the Saturate procedures currently on the call stack.

• Cache lookup in line 2 considers d instead of the partial state specified by the call stack because
every partial state leading to d would produce the same result.

• In the fixed-point iteration in line 9 the Split procedure is used to retrieve the operands of a
lazy union descriptor to support chaining. It may be implemented in any other way as long as
the returned set of descriptors cover the relation encoded by the descriptor passed as argument.

• In lines 4 and 8, the Update procedure supports on-the-fly next-state relation building by pro-
viding a hook for replacing parts of d.

In SatFire:
• There are two descriptors: ds for recursive saturation and df to fire.
• In the loop computing local successors in line 4 we omit locally read-only transitions (i ≠ j),
because they will be processed by recursive saturation.

• In the recursive firing in line 5, ds is indexed by [y, y] because (like in constrained saturation) the
resulting nodewill ben′[y] (and therefore ds[y, y] describes the conditionally local transitions),
while df is indexed as usual.

In SatRecFire:
• Cache lookup in line 3 considers both next-state descriptors.
• In the loop computing local successors in line 5 we now consider every transition even if they
are read-only, (on some level above they changed a variable).

• Recursive saturation in line 10 will use ds (which is still conditionally local).

6.3.3 Discussion

To estimate the efficiency of the algorithm, we will consider the advantages and disadvantages of the
different modifications. First and foremost it is important to note that if Topc(e) = Top(e) for every
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Input:MDD node n, NS descriptor d
Output: saturated MDD node n′

1 if n ∈ {0,1} or d ∈ {0,1} then return n
2 if ¬SatCacheGet(n, d, n′) then n′ ← new MddNode(lvl(n))
3 for each i where n[i] ≠ 0 do
4 Confirm(lvl(n), i),Update(d)
5 n′[i] ← Saturate(n[i], d[i, i])
6 end
7 repeat
8 changed ← false,Update(d)
9 for each df ∈ Split(d) do
10 n′′ ← SatFire(n′, d, df)
11 if n′ ≠ n′′ then n′ ← n′′, changed ← true
12 end
13 until ¬changed
14 SatCachePut(n, d, n′)
15
16 return n′

(a) Procedure Saturate.
Input:MDD node n, NS descriptor for saturate ds, NS descriptor for fire df
Output: the result of firing d from the states n with the children saturated

1 if n = 0 or d = 0 then return 0
2 if d = 1 then return n
3 n′ ← new MddNode(lvl(n))
4 for each x, y where x ≠ y and d[x, y] ≠ 0 and n[x] ≠ 0 do
5 m← SatRecFire(d[y, y], d[x, y], n[x])
6 if m ≠ 0 then Confirm(lvl(n), y)
7 n′[y] ← n′[y] ∪m

8 end
9 CheckIn(n′)

10 return n′

(b) Procedure SatFire.
Input: NS descriptor for saturate ds, NS descriptor for fire df , MDD node n
Output: saturated MDD node n′′ (after firing df from n saturated with ds)

1 if n = 0 or d = 0 then return 0
2 if d = 1 then return n
3 if ¬RecFireCacheGet(ds, df , n, n′′) then
4 n′ ← new MddNode(lvl(n))
5 for each x, y where d[x, y] ≠ 0 and n[x] ≠ 0 do
6 m← SatRecFire(ds[y, y], df [x, y], n[x])
7 if m ≠ 0 then Confirm(lvl(n), y)
8 n′[y] ← n′[y] ∪m

9 end
10 CheckIn(n′), n′′ ← Saturate(n′, ds), RecFireCachePut(ds, df , n, n′′)
11 end
12 return n′′

(c) Procedure SatRecFire.

Figure 6.2: Pseudocode of the GSA.

event e, then the GSA degrades to the original saturation algorithm from [CMS06] or the correspond-
ing constrained saturation algorithm from [ZC09], Chapter 3 or Chapter 4 with no difference in the
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iteration strategy and the virtually zero overhead of handling the next-state relation as a parameter.
In every other case, there may be a complex interplay between the advantages and disadvantages
discussed below.

An advantage of using conditional locality is that Topc(e) ≤ Top(e), i. e. we can potentially use
event ewhen saturating a node on a lower level, which is intuitively better because it raises the chance
that the resulting node will be part of the final diagram. A direct price of this is the diversification
of cache entries. By repartitioning the events, we may introduce a lot more next-state relations to
process, and it is not evident if their smaller size and the enhanced saturation effect can compensate
this. Furthermore, by keeping track of ds (the descriptor to saturate with), we spoil the cache of
saturation due to the following.

Whenever we navigate through d[i, i], we remember something from i in the context of the next-
state relation, yielding a potentially large number of different descriptors to saturatewith. The original
saturation algorithm saturates each MDD node only once, because it uses the same next-state relation
every time. In the GSA, we saturate every pair of different MDD node and NS descriptor, so the
diversity of descriptors can be a crucial factor. In the extreme case, when at least one event remembers
every value along the path (for example because it copies them to other variables below), caching can
degrade to the point where everything will need to be computed from scratch.

The other extreme is when each event remembers only one thing from the values bound above:
whether it is enabled or not (e. g. when variables are compared to constants in guard expressions).
Fortunately, this is the case with Petri nets: each transition will check variables locally and decide
whether it is still enabled or not. This means that given a descriptor d representing transitions in
∣T ∣, the number of possible successors for d[i, i] will be O(∣T ∣) (n values can partition N into n + 1
partitions, each transition may contribute 2 values – one for an input arc and one for an inhibitor
arc), but this number will also be limited by the number of non-zero child nodes of the saturated
MDD node.

Given the facts that transitions of Petri nets are inherently conditionally local without reparti-
tioning, and many nets are bounded (often safe), model checking of Petri net models with the GSA
can be expected to yield favorable results. In fact, the experiment presented in Section 6.5 shows that
the GSA is superior to the original saturation algorithm on every model that we analyzed.

For other types of models, we have yet to investigate the efficiency of the algorithm and the
balance of benefits and overhead. It might be the case that we have to refine the read-only dependency
into “local” and “global” evaluation (depending on whether we have to remember the value of the
variable or can evaluate it immediately) and use conditional locality only with the “local” case. We
also have to note that the efficient update of the next-state descriptors is not trivial and subject to
future work.

6.4 Constrained Saturation Variants as Instances of the GSA

With the automatic partitioning offered by the GSA, next-state relations that motivated the introduc-
tion of constrained saturation and its variants can now be directly encoded into the transition relation
without any cost. This is because a constraint is a guard, therefore it can cause an event only to be-
come read-only on a variable instead of independent, but will still never write it. Adding a constraint
will never raise the conditional top variable of events, but it can raise their unconditional top variable
in many cases, which is associated with degraded performance.

Indeed, the handling of ds in the GSA is very similar to the handling of the constraint node –
we could say that our algorithm uses the next-state relation itself as a constraint. Combining this
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with the flexibility of abstract NS descriptors (lazy descriptors in particular), we get the properties of
constrained saturation enhanced with every difference between the original saturation algorithm and
the GSA (see Section 6.3.3).

We illustrate the usage of abstract NS descriptors for variants of constrained saturation with the
kind of constraint used in the original constrained saturation algorithm [ZC09].

Definition 39 (Constrained next-state descriptor) Given a NS descriptor d and a constraint
node c, the constrained next-state descriptor dc describing N(dc) = N(d) ∖ (NK × S(c)) is a
tuple dc = (d, c) with lvl(dc) = lvl(d) = lvl(c), and dc[i, j] is: 0 if d[i, j] = 0 or c[j] = 0; and
(d[i, j], c[j]) otherwise.

For prioritized models, a similar definition can be used to remove transition which are not firable
due to another enabled transition with higher priority. The EVIDD handle h = ⟨v, n⟩ encoding the
minimal priority to fire will replace the constraint node c. The descriptor will be a triple instead of a
pair, also containing the priority π assigned to transitions in d. When indexing the descriptor, π ≥ v
will be checked instead of c[j] = 0 in the constrained version to see if d is fireable or not.

For the computation of the synchronous product, handling the constraint node c describing the
transition relation of the automaton will be done inside the descriptor. When indexing a descriptor
above level ℓ (the highest level on which the property automaton is encoded), StepConstraint will
be used to compute c[j]. On and below level ℓ, d[i, j] will be simply c[i][j].

In case of LTL model checking, conditional locality will have additional benefits for SCC detection
as well. Because events are processed on lower levels, counterexamples may be found sooner and in
smaller submodels. As an extreme case, trivial fair SCCs (a self loop on an accepting state) will be
detected on the terminal level, because it is conditionally local on no variable (i. e. it does not change
any variable).

For the GSA, it is not important anymore how the next-state relation is encoded. Nevertheless,
the lazy computation of these complex next-state relations are still powerful both with regard to
memory consumption (the decomposed relationswill usually bemore compact, partly because simpler
representations such as implicit relation forests can be used) and preprocessing time (sometimes an
eager computation is not even possible because one of the relations is infinite). The main advantage of
the GSA and ANSDs is exactly this: optimizations on the next-state representation are now orthogonal
to the saturation algorithm itself.

6.5 Evaluation

In this section, we present the results of our experiments performed on a large set of Petri net models.

6.5.1 Research Questions

We have two main research questions about the GSA, both comparing it to the original saturation
algorithm (SA) from [CMS06] (results should apply to constrained saturation as well). Both questions
will be answered by measuring the relevant metrics for each algorithm and comparing the results for
each benchmark model.

We expect that 1) the GSAwill be identical to the SAwhen conditional locality cannot be exploited;
as well as in other cases 2) the GSA will create less MDD nodes than the SA and 3) in these cases it
will be faster than the SA.
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6.5.2 The Benchmark

We have implemented both the original saturation algorithm and the GSA in Java. Both variants used
the same libraries for MDDs and next-state descriptors, and their source code differs only in the points
discussed in Section 6.3.2.

We used the latest set of 743 available models from the Model Checking Contest 2018 [Kor+18],
excluding only the Glycolytic and Pentose Phosphate Pathways (G-PPP) model with a parameter of
10–1000000000 (because the initial marking cannot be represented on 32-bit signed integers). We gen-
erated a variable ordering for each model using the sloan algorithm recommended by [Amp+18], and
amodified sloan algorithm where we omitted read-only dependencies when building the dependency
graph (motivated by the notion of conditional locality). We ran state space exploration 3 times on each
model with each ordering, measuring several metrics of the algorithms. We will report the median of
the running time of the algorithms (excluding the time of loading the model) and the total number of
MDD nodes created during each run, as well as the size of the state space and the final MDD for each
model and each ordering.

Measurements were conducted on a bare-metal server machine rented from the Oracle Cloud
(BM.Standard.E2.64), with 64 cores and 512 GB of RAM, running Ubuntu 18.04 and Java 11. Three
processes were run simultaneously, each with a maximum Java heap size of 100 GB and stack size of
512 MB. No process has run out of memory and the combined CPU utilization never exceeded 70%.
Timeout was 20 minutes (including loading the model and writing results).

6.5.3 Results

The main results of the experiments can be seen in Figure 6.3. Every point represents a model (dashes
on the side means a timeout), classified into two groups: “simply local” if none of the events had a
read-only top variable and “conditionally local” otherwise. In the “simply local” group we expected
no difference because the GSA should degrade into the original saturation algorithm, which was
supported by the results. In the other group we were optimistic about the balance of advantages and
disadvantages as discussed in Section 6.3.3, but the results were even better thanwhat we expected. As
the plots show, a significant part of the “conditionally local” models are below the reference diagonal,
meaning that the GSA were often orders of magnitudes faster.

With the sloan ordering, 274 models were in the “conditionally local” group and the GSA was at
least twice as fast as the SA in 53 cases. With the modified ordering, these numbers are 69 out of 298.
In one case (SmallOperatingSystem-MT0256DC0128), the SA managed to finish just in time while the
GSA exceeded the timeout (scaling was similar for smaller instances). Models where the GSA finished
successfully but the SA exceeded the timeout with the sloan ordering include instances of CloudDe-
ployment, DiscoveryGPU, DLCround, DLCshifumi, EGFr, Eratosthenes,MAPKbis, Peterson and Raft; and
with the modified ordering also AirplaneLD, BART, Dekker, FlexibleBarrier, NeoElection, ParamProduc-
tionCell, Philosopher, Ring and SharedMemory. Analyzing these models in detail may provide insights
about when the GSA is especially efficient.

Looking at the plots about the number of created MDD nodes (i. e. the size of the unique table)
reveals that our expectations about less intermediate diagrams were correct and this probably has
direct influence on the execution time. Even though not visible in Figure 6.3, interactive data analysis
revealed that the model instances are more-or-less located at the same point on the execution time
and node count plots. The collected data also suggests a linear relationship between the number of
created nodes and the execution time, but this is rather a lower bound than a general prediction.
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Figure 6.3: Main results of the experiment: running times and total number of created nodes with
sloan ordering (top row) and modified sloan ordering (bottom row).

As an auxiliary result and without any illustration, we also report that out of the 117 cases when
the sloan ordering and the modified ordering were different and we have data about the final MDD
size, the modified sloan ordering produced smaller final MDDs 69 times and larger MDDs 39 times.
This motivates further work on variable orderings like in [Amp+18]. We have also compared the
SA with sloan ordering and the GSA with the modified sloan ordering to find that the GSA with the
modified sloan ordering was better in 78 cases and worse in 16 cases (considering only at least a factor
of 2 in both cases).
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6.6 Summary and Future Work

In this chapter, I have formally introduced the generalized saturation algorithm (GSA), a new satura-
tion algorithm enhanced with the notion of conditional locality. I have discussed the effects of using
conditional locality and empirically evaluated our approach on Petri nets from the Model Checking
Contest to find that the GSA has virtually no overhead compared to the original saturation algorithm,
but can outperform it by orders of magnitude when conditional locality can be exploited.

I have made theoretical considerations and prepared the algorithm to be compatible with a wide
range of next-state representations as well as the on-the-fly update approach described in [CMS06].
The GSA seems to be superior to the original saturation algorithm on Petri net models, but its effi-
ciency over more general classes of models is yet to be explored.

Thesis 3 I designed an enhancement of the saturation algorithm using the concept of con-
ditional locality. I showed that the classic constrained saturation algorithm, the extension for
prioritized Petri nets (Thesis 1), as well as the extension for computing the product state space
(Thesis 2) are instances of this generalized saturation algorithm.
3.1 I defined the concept of conditional locality and conditionally saturated nodes, relaxing

the notion of locality used in the original saturation algorithm.
3.2 Based on conditional locality, I designed the generalized saturation algorithm (GSA)which

enhances the saturation effect and therefore improves the original algorithm. I formally
proved the correctness of the new algorithm.

3.3 I showed that the GSA generalizes a family of saturation variants based on constrained
saturation. I described the original constrained saturation algorithm along with the ex-
tended variants proposed in this work in terms of the GSA.

3.4 I evaluated the GSA on Petri net models of the model checking contest (MCC) and showed
that it may outperform the original saturation algorithm by orders of magnitudes in some
cases, while it has no considerable overhead in any other case.

The introduction of abstract next-state diagrams and the automatic partitioning of next-state re-
lations in the GSA opens interesting possibilities in potential next-state representations. Behind an
ANSD, an expression diagram would be an implementation where nodes are quantifier-free first or-
der logic formulas, and node indexing is substitution of a variable. This would be a generalization of
implicit relation trees and will be a direct follow-up of this research. With expression diagrams, sym-
bolic transition systems would be directly analyzable with saturation, facilitating the integration of
saturation-based model checking and counterexample-guided abstraction refinement [Cla+00], two
powerful approaches that could enhance each other even further.
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Chapter7

Summary of the Research Results

7.1 Thesis 1: Analysis of Generalized Stochastic Petri Nets with
Symbolic State Space Generation

GSPNs introduce transition priorities into Petri net models. Timed transitions always have less pri-
ority than immediate transitions, and the formalism allows the modeler to specify priorities between
immediate transitions aswell. Therefore, state space exploration should be able to consider the various
priority levels of the transitions, leading to the reduced transition locality.

The key idea behind the result of Thesis 1 was that fireability of a transition can be checked
based on two separate aspects: enabledness as in Petri nets without priorities and the highest priority
assigned to any (other) enabled transition. For prioritized Petri nets, the highest priority assigned to
any enabled transition in any marking can be compiled statically before state space exploration and
is independent from the representation of the transitions themselves. To encode this information, I
have introduced Edge-Valued Interval Decision Diagrams (EVIDD).

An EVIDD is hybrid between of Edge-valued Decision Diagrams (EDD) [RS10] and Interval De-
cision Diagrams (IDD) [Tov08]: possible values of a variable are not enumerated but partitioned into
intervals (like in IDDs) and each decision amounts to a portion of a value that is computed for the
evaluated vector (like in EDDs, as opposed to having only a binary outcome).

It is capable of representing the enabling (and disabling) regions of a transition with its priority
as a path in the diagram. The Union-Max operation (implemented by procedure Maximum) is defined
recursively on handles and computes an EVIDD representing a disjoint set of regions with maximum
priorities as described above. This way, a single EVIDD can encode the highest priority of enabled
transitions in any marking.

With an EVIDD describing the highest priority of enabled transitions in every possible marking,
fireability can be decided during the computation of the next states in saturation by traversing the
EVIDD simultaneously with the decision diagram encoding the state space: if at any point the sum of
integer labels exceed the priority of the current transition, it cannot fire and the resulting next state
set on that level in the recursion will be empty.

Results. There is not much previous work available on the efficient processing of prioritized Petri
nets with saturation. A paper by A. S. Miner et al. [Min01] describes an approach that encodes priori-
ties in the transition relation and uses matrix-diagrams (a special kind of decision diagrams to describe
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relations) along with a splitting algorithm to repartition the next-state relation such that each parti-
tion is as local as possible. My approach has the advantage that the original locality is preserved in the
transition relations and the modified saturation algorithm keeps track of priority-related information
for all transitions in one place, with a compact data structure [c4]. Experimental evaluation showed
that this is indeed an advantage and the EVIDD-based solution scales better than that of [Min01].

Thesis 1 I designed an algorithm to help the efficient analysis of Generalized Stochastic Petri
Nets (GSPN). It extends the traditional saturation algorithm to perform amore efficient symbolic
state space exploration of systems with prioritized transitions.
1.1 I introduced a new type of decision diagram called Edge-Valued Interval Decision Diagram

(EVIDD) that can encode enabledness of prioritized transitions in GSPNs.
1.2 I extended the saturation algorithm to handle prioritized transitions efficiently using an

EVIDD instead of encoding priorities in the transition relation.
1.3 I evaluated the algorithm and showed that it scales better than previously known ap-

proaches.

The importance of these results is that the efficient state space exploration of GSPNs can be
a bottleneck of stochastic analysis, so advancements in this field will improve the whole process.
Saturation-based state space exploration can handle larger state spaces, and the resulting decision
diagram representations can be used to compute efficient decompositions for numerical solvers [c5].
The solvers, in turn, can process these larger state spaces with an acceptable resource budget [c7],
leading to scalable stochastic analysis that is necessary to prove extra-functional requirements in
safety-critical systems [j1; c6].

7.2 Thesis 2: Saturation-Based Incremental Model Checking for
Linear Temporal Logic

Challenge 2 and 3 showed that symbolic LTL model checking has two distinct problems to solve:
computing the combined state space of the system and a Büchi automaton describing the negated
property, and looking for accepting cycles that represent a counterexample in the system.

Synchronizing with Büchi automata. Computing the combined state space is challenging for
saturation because each transition has to be synchronized with one of the transitions of the Büchi
automaton such that the transition of the automaton is labeled with an expression that is true in the
target state. This implies a read-dependency between variables in the LTL property and all transitions
in the system, spoiling locality and reducing the effectiveness of saturation.

The solution for this is based on a similar idea as in Thesis 1. Since the state space and the transition
relation of the Büchi automaton are statically available, a data structure encoding the “enabledness”
(the satisfaction of expressions on automaton transitions) can be compiled offline. If we assume that
atomic propositions in the property are all comparisons between a single state variable and a constant
value (and never between two variables), this structure is a finite decision diagram: the upper part
consists of levels corresponding to atomic propositions, ordered by the referenced variable, where arcs
are labeled by 1 (true) and 0 (false) (representing the result of evaluating the atomic proposition with
a value of the referenced variable), and the lower part is a representation of a subset of the transition
relation of the Büchi automaton. Each subset contains the transitions that are labeled according to
the evaluation of atomic propositions along the path leading to the lower part.
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The saturation algorithm is extended as follows.We assume that the variable encoding the state of
the Büchi automaton is on the lowest level. The algorithmwill keep evaluating the atomic propositions
in the previously described decision diagram until it reaches this bottom level. The transition relation
of the model does not specify what happens to the automaton – instead, the reference in the terminal
node is used to finish the next-state computation. This way, the information that would spoil the
locality of transitions is again handled separately and in one place by the saturation algorithm itself,
allowing it to retain the recursive submodel strategy that makes it efficient.

Looking for counterexamples. The problem of finding strongly connected components with sat-
uration has a number of known solutions (e. g. [ZC11]). These assume that the state space is already
computed and apply fixed point computations to iteratively remove dead-end states until either no
state is left (no SCC) or there are no more dead-ends (the remaining set contains an SCC). Although
this would be enough in the LTL model checking setting, but LTL model checkers are traditionally
on-the-fly algorithms, i. e. they can stop exploration as soon as a counterexample is found. This is
often much faster than processing the whole state space symbolically.

The goal therefore is to apply fixed point computations more often during state space exploration.
I proposed an approach that fits the recursive nature of the saturation algorithm: look for SCCs every
time a node is saturated, i. e. when a submodel is fully explored, therefore dividing the problem in
a similar fashion as saturation does with state space exploration. This approach has a number of
advantages. First, it can detect an SCC in an abstract submodel without considering other parts of
the system, which will lead to sooner counterexample detection. Secondly, the computation can be
incremental in the sense that an SCC must contain at least one firing from a transition that belongs
to the current level (otherwise it had been discovered on a lower level), which greatly reduces the
search space.

This algorithm still has a considerable overhead and redundancy in the exploration steps. To over-
come this, I have proposed two heuristics that can prove the absence of SCCs without an expensive
fixed point computation.

Recurring states are states that are reached more than once during exploration. This can be either
because there were more than one path leading into the state, or because it is in a cycle which has
been closed there. Either way, if there are no recurring states during an exploration, there is no SCC
– an observation that can be used as a cheap filter. Recurring states can be efficiently collected in the
saturation algorithm and can further restrict the search space of the fixed point algorithm.

A more powerful heuristic is based on abstractions. Saturation itself already works on abstract
submodels, but those can still be quite large, especially as more and more components are considered.
By further abstraction, we can omit all the lower components as well, but this time we will assume
that transitions dependent on them are enabled (i. e. the omitted places can have any marking – amay
abstraction – contrary to the higher components not present in the submodel).

I showed that if this abstraction does not have an SCC (which can be efficiently computed by
graph algorithms), then there is no SCC in the state space encoded by the node that contains a firing
of a transition that belongs to the current level. This is exactly that the fixed point-based algorithm
would look for, therefore there is no point in running it. If there is an SCC, fixed point computation
can be further limited to transitions whose projections constitute that SCC.

Results. These four components (computation of the combined state space, incremental SCC de-
tection, collection of recurring states and abstractions) constitute an efficient, on-the-fly, incremental
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symbolic LTL model checking algorithm that outperforms most of the similar tools that were avail-
able at the time of its creation [j2; c8]. Extensive measurements on models of the Model Checking
Contest showed that the algorithm is often orders of magnitude faster than its competitors, which is
a significant step towards scalable LTL model checking for real-life systems.

Thesis 2 I designed an incremental, on-the-fly algorithm for the model checking of properties
described by linear temporal logic (LTL), extending the saturation algorithm for state space
generation and using it for fixed point computations.
2.1 I extended the saturation algorithm to directly generate the state space of the product sys-

tem obtained by combining the system-under-analysis and a Büchi automaton describing
the LTL property. The advantage of direct generation is that it avoids the explicit compu-
tation of the product transition relation.

2.2 I designed an algorithm to incrementally search for strongly connected components (SCC)
in the state space during its generation by the saturation algorithm, using the saturation
algorithm to compute the necessary fixed points. This approach enables on-the-fly model
checking, i. e. the algorithm can terminate as soon as a witness is found.

2.3 I introduced two heuristics that complement the incremental SCC detection algorithm.
Using abstraction-based techniques and the concept of recurring states, the heuristics can
prove the absence of an SCC and therefore can speed up the search by preventing unnec-
essary fixed point computations.

2.4 I evaluated the resulting LTL model checking algorithm on models of the Model Checking
Contest (MCC), comparing the runtime with three tools that represented the state of the
art: the algorithm was found to be often orders of magnitude faster than its competitors.

The importance of these results is that the introduced LTL model checking algorithm often scales
better than previously known approaches, while its main ideas are orthogonal tomany other improve-
ments that can be found in the literature, promising an even better result when combined. LTL is a
popular formalism for specifying temporal properties, especially fairness properties, which cannot be
expressed in the other popular formalism, computational-tree logic (CTL). Because of this, advance-
ment in this direction can help in achieving wide-spread use of formal verification in (concurrent)
safety-critical systems where fairness is a crucial part or precondition of properties to verify. The
algorithm is implemented in the PetriDotNet framework1 [j1; c6]

7.3 Thesis 3: Enhancement and Generalization of the Saturation
Algorithm

Work on the previous theses revealed common problems that appear in many different contexts: 1)
different next-state representations (including but not restricted to different types of decision dia-
grams) usually come with a specialized variant of the saturation algorithm and are not compatible
with each other, as well as 2) losing locality is generally a concern in every variant, whereas usually
there is a workaround that retains some of the locality at least.

According to our experience in implementing saturation-based model checkers, a generic repre-
sentation of transition relations that works well with saturation would be desirable to separate the
algorithm from the representation [c4]. We have introduced Abstract Next-State Diagrams (ANSD) to

1http://petridotnet.inf.mit.bme.hu/en/
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generalize decision diagram-like representations by extracting their common features into an abstract
interface.

The core of this thesis is an observation that resulted in the introduction of conditional locality.
The recursive saturation algorithm exploits the fact that transitions in an abstract submodel belonging
to a decision diagram node are independent from the higher variables that are not included in the
submodel, therefore their enabledness can be checked and they can be fired arbitrary many times.
This is important because computing a local fixed point for the submodel requires the exhaustive
firing of all transitions. But can any other transition be fired arbitrary many times?

The answer is yes: for example, transitions with read-only dependencies to higher variables could
be fired arbitrary many times, because they will not change the value of the omitted state variables,
given that they are enabled. In general, any transition that does not change the value of omitted vari-
ables can be fired arbitrary many times, even if the value of that variable affects the outcome of the
firing.

Conditional locality formulates exactly this property: a transition is conditionally localwith respect
to a prefix of a state vector if firing it from a state with that prefix will result in a state with the same
prefix, i. e. those values are not changed [c3]. This means that recursive abstract submodels now
contain the places above the current level and also those transitions that have write dependency with
the current variable and at most read-only dependency to higher levels.

I have proposed a generalized version of saturation based on conditional locality that computes
these submodels dynamically, automatically partitioning the transition relation to process everything
on the lowest level possible [c3]. This approach enhances the saturation effect, because a larger portion
of the work is performed on small submodels. Even better, including more transitions in the submod-
els lead to sub-results that are more likely to be final, yielding a faster and more memory-efficient
algorithm.

The generalized saturation algorithm (GSA) works with ANSDs to represent any next-state re-
lation. With the automatic partitioning, representations introduced in Theses 1 and 2 (EVIDDs and
the decision diagram for the Büchi automaton) as well as previously published variants such as the
constraint from constrained saturation can be dynamically intersected with the original transition
relation under the ANSD abstraction layer, so the saturation algorithm itself does not have to be
adapted. Furthermore, the SCC detection algorithm (along with the heuristics) of Thesis 2 can also
benefit from processing transitions on a lower level, as this can speed up the computation and also
result in sooner detection of SCCs (on a lower level).

Results. I have compared the GSA with the original saturation algorithm on Petri net models of the
MCC to find that it has virtually no overhead when conditional locality is the same as simple locality,
whereas it is often orders of magnitude faster and more memory efficient on models with read-only
dependencies. The experiments imply that the GSA takes the purely beneficial ideas of saturation one
step further without introducing any overhead, while also generalizing the solutions of a family of
problems that were hard to solve in the context of the original algorithm. Even though this result
covers some of the results in Theses 1 and 2, it is my most recent and most important contribution
in this field that would not have been conceived without identifying and generalizing the common
ideas in these and other preceding results.

Thesis 3 I designed an enhancement of the saturation algorithm using the concept of con-
ditional locality. I showed that the classic constrained saturation algorithm, the extension for
prioritized Petri nets (Thesis 1), as well as the extension for computing the product state space
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(Thesis 2) are instances of this generalized saturation algorithm.
3.1 I defined the concept of conditional locality and conditionally saturated nodes, relaxing

the notion of locality used in the original saturation algorithm.
3.2 Based on conditional locality, I designed the generalized saturation algorithm (GSA)which

enhances the saturation effect and therefore improves the original algorithm. I formally
proved the correctness of the new algorithm.

3.3 I showed that the GSA generalizes a family of saturation variants based on constrained
saturation. I described the original constrained saturation algorithm along with the ex-
tended variants proposed in this work in terms of the GSA.

3.4 I evaluated the GSA on Petri net models of the model checking contest (MCC) and showed
that it may outperform the original saturation algorithm by orders of magnitudes in some
cases, while it has no considerable overhead in any other case.

The importance of these results is that the saturation algorithm was already one of the most
successful symbolic model checking algorithms, which has been improved with the introduction of
conditional locality. One of the largest problems in model checking is state space explosion, that can
be countered by better scaling and abstractions, which is combined in this result. Furthermore, this
result generalizes a family of algorithms, facilitating the correctness, compatibility, a better under-
standing and maintainable implementation of saturation-based model checking tools by providing a
common framework and general correctness proofs for the core algorithm. Finally, the ANSD abstrac-
tion layer for the transition relation and the automatic partitioning provided by the GSA enable the
direct model checking of more general modeling formalisms (e. g. hierarchical state machines) which
in turn facilitates the integration of model checking tools to high-level modeling tools such as the
Gamma Statechart Composition Framework (developed by Bence Graics under my supervision) [c12;
c13; c14].

7.4 Application of the New Results

7.4.1 Stochastic Analysis of Generalized Stochastic Petri Nets

Saturation for prioritized Petri nets has been used in a tool for the stochastic analysis of GSPNs,
where state space exploration is performed by saturation [c4], the state space decomposition is based
on decision diagrams [c5] and numerical analysis is performed by a configurable solver framework
[c7]. Stochastic analysis is implemented in the PetriDotNet framework2 [j1; c6] as well, which has
been used in the dependability analysis of automotive embedded systems.

7.4.2 LTL Model Checking

The saturation-based on-the-fly, incremental LTL model checking algorithm is also implemented in
the PetriDotNet framework that is freely available online. With this, PetriDotNet offers a compre-
hensive set of analysis algorithms built into a graphical editor, allowing users to model, simulate and
analyze Petri nets and stochastic Petri nets using properties expressed either as invariants, CTL or
LTL formulas or extra-functional metrics. The tool has been used in a number of independent projects
as discussed in [j1]. The LTLmodel checking algorithm described in the thesis was the first one to suc-
cessfully verify LTL properties on the so-called PRISE model, which models a safety procedure in the
Paks Nuclear Power Plant in Hungary detecting primary-to-secondary leakage accidents [Ném+09].

2http://petridotnet.inf.mit.bme.hu/en/
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7.4.3 The Generalized Saturation Algorithm

Even though the GSA is fairly new, we are working on exploiting its properties in the Theta
Configurable Abstraction Refinement-based Verification Framework [Tót+17] developed by our re-
search group. The framework offers abstraction-based software model checking capabilities with
counterexample-guided abstraction refinement (CEGAR), as well as various input languages to facili-
tate integration with modeling tools. A promising research direction is the combination of saturation
and CEGAR. Concurrently, we are working on integrating the framework with the Gamma Statechart
Composition Framework [c12; c13; c14], where the verification of component-based systems will ben-
efit from the power of saturation algorithm. The Gamma framework is used in industrial projects for
the modeling and analysis of embedded systems as well as for code and test generation.

7.4.4 Use Cases for Model Checking

A part of my research not strictly related to the theses was about the use cases of model check-
ing, which guided my work towards practical applicability. In the CECRIS project3, I have developed
a model checking-based methodology for automated Failure Mode and Effects Analysis (FMEA) of
software [j10; c16]. The approach relies on injecting non-deterministically activating faults into the
program, then analyzing its behavior with a model checker for different purposes. For FMEA, one
is concerned about whether the fault activation will result in a system-level failure, which can be
specified separately. The approach can also be used to evaluate fault tolerance mechanisms and error
detectors by checking the conformance of the fault-free version and the faulty version coupled with
the evaluated mechanism. The results of the project including my work has been published in a book
[b17].

In cooperation with my student Levente Bajczi we have also introduced and investigated a novel
problem domain involving parallel programs executed on multi-core processors, where the memory
controller has a crucial role on the correctness of the system as a whole [c11]. With the widespread
use of custom-built processors in embedded systems, faulty memory controllers are less and less
rare, party because they tend to be very complex, and also because hardware verification techniques
are now able to reveal the problem even after release. Fortunately, these purpose-built chips often
run a single program during their lifetime, and the activation of the fault is often linked to specific
circumstances. If our program will never encounter those circumstances, then there should be no
activation and the problem will remain dormant. Our work showed that today’s model checkers are
not very well suited for this problem, opening new research questions and challenges with the formal
definition of a new use case.

3FP7–Marie Curie (IAPP) number 324334
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