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Összefoglaló 

A klasszikus sokdimenziós adatkészletek anomáliáinak (kilógó pontjainak) detektálására 

számos hatékony algoritmus létezik, ezek nagy része azonban feltételezi, hogy az egyes 

rekordok egymástól függetlenek. A detektáló algoritmusok egy speciális részcsoportját 

alkotják azok a módszerek, amelyek az egyes rekordokat valamilyen kontextusban ösz-

szekapcsolják, például időt vagy fizikai elhelyezkedést reprezentáló dimenziókon keresz-

tül. 

Az egyre növekvő, nyílt hozzáférésű hálózati adatsoroknak köszönhetően az utóbbi évti-

zedben az anomália detektálás területe dinamikus fejlődésnek indult. Ennek feladata a 

szokatlan gráf minták és elemek felfedezése, amelyek a közösségi hálózatok vélemény-

vezéreinek keresésekor vagy bűnügyi hálók felderítésekor kiemelt jelentőségűek lehet-

nek. 

A szakdolgozat magában foglalja a jelenleg jellemzően használt detektálási algoritmusok 

feltárását, illetve azok közvetlen használhatóságának vizsgálatát több választott szakterü-

leten: az internetes fórum közösségek, a szociális hálók, a fizikai úthálózatok és a vásárlói 

kosár tartalmát reprezentáló hálók területén. 
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Abstract 

Anomaly detection in networks is a dynamically growing field with compelling applica-

tions in areas such as security (detection of network intrusions), finance (frauds), and 

social sciences (identification of opinion leaders and spammers). Its applicability is pro-

pelled by an ever increasing availability of network data: the ubiquity of handheld devices 

gave rise to a plethora of community and network-based services that in turn generate a 

wide spectrum of graph data in the most different domains. 

This work addresses the problem of outlier detection in plain, static graphs. We analyze 

three fundamental, a feature, a network structure and an information theory driven anom-

aly detection technique. We demonstrate their effectiveness and results on four real-world 

datasets from the domains of discussion, social, spatial, and market basket networks. Each 

network's unique characteristic is presented along with an overarching set of features al-

lowing for network comparison. Finally, we offer an outline to extend the examined 

anomaly detection techniques to the dynamic context of graphs. We conclude with a dis-

cussion on possible directions of future work. 
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1. Introduction to outlier detection in graphs and networks 

Hawkins defined the concept of an outlier [1] in the following way:  

“An outlier is an observation which deviates so much from the other 

observations as to arouse suspicions that it was generated by a differ-

ent mechanism.” 

In the field of data mining, outliers are also referred to as anomalies, abnormalities, dis-

cordant observations, or deviants. Other application domains may use terms like excep-

tions, surprises, peculiarities or contaminants. All these terminologies are capturing a de-

viation from an assumed normal data model. The detection and characterization of that 

deviation provide useful domain-specific insights. Among other domains, intrusion de-

tection, fraud detection and spam filtering are relying on and applying outlier detection 

effectively. 

Outlier detection is related to, but distinct from noise removal, which aims to exclude 

unwanted data values originating from errors or inaccuracy of measurements. 

Considering this definition, noise represents the intermediate range between normal data 

and true outliers. It could be modeled as a weak outlier [2], the deviation of which is not 

yet significant enough to be of interest for the analyst. 

Another related topic is novelty detection, “the identification of new or unknown data, 

[unknown features] that a machine learning system is not aware of during training” [3] 

[4]. The main difference between outliers and novelties is that the latter is typically inte-

grated into the normal data model after its detection. 

This work considers outliers as extraordinary observations that bear significance in their 

contexts. We search for these particularities, highlight them in their environment and put 

them under detailed examination in order to gain insights about what roles they might be 

fulfilling. We regard them as the exact opposite of noise that is usually filtered and re-

moved. We do not think of them as novelties, for the contexts at work are static and do 

not change in the dimension of time. 

1.1. Motivation 

[5] highlights the potential for outlier detection in graphs: the nature of outliers are rela-

tional in certain domains. Performance monitoring is an example where the failure of a 

machine could cause the breakdown of others dependent on it. Therefore some data ob-

jects cannot be treated as points lying in a multi-dimensional space independently. 

Graphs, on the other hand, represent that inter-dependent nature of the data well. 

Interdependency, a key component of social networks, is heavily investigated in the fields 

of social network analysis and network analysis in general. In the past decade, these have 

been gaining momentum and significance, and so has outlier detection in graphs. Internet 

capable devices are becoming ever more ubiquitous, encouraging the development of 

community based services, all of which are aiming to create a large base network of users. 
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Facebook incentivizes individuals to connect along friendships [6], Twitter provides a 

platform for microblogging [7], LinkedIn specializes in professional and career relations 

[8], Couchsurfing facilitates hospitality exchange [9], Uber assists transportation in cities 

[10], Tinder organizes dates based on proximity [11], and the list would continue end-

lessly. As several of these companies hold a large amount of data on user interactions, 

research and data analysis are intensively pursued for product development and usage 

trend comprehension. 

A wide spectrum of fields builds on anomaly detection for successful operation, using 

either conventional multi-dimensional or relational data. Some use cases and the context 

of outliers are briefly summarized in Table 1-1. 

Focus of 

detection 
Example Description 

Intrusion Network intrusion 

Ding et al. identified network intrusions by detect-

ing anomalous network flow data, communication 

that does not respect community structure [12]. 

Fraud 

Subscription 

Cortes et al. revealed subscription fraud in telecom-

munication network, building on the assumption 

that “fraudsters tend to be closer to other fraud-

sters than random accounts are to fraud” [13]. 

Fake personalities 

in auction sites 

Chau et al. uncovered fraudulent personalities in 

networks of online auctioneers by leveraging user 

level features along with network level features that 

capture interactions between different users [14]. 

Trading fraud cases 

Li et al. recognized distinctive patterns – black-

holes and volcanoes, sets of nodes that contain only 

in-links and out-links, respectively, to those sets 

from the rest of the graph – in traders’ network to 

unveil cross-account collaborative fraud cases [15]. 

Spam 

Web pages 

Carlos et al. detected web spam pages based on 

link-based and content-based features as well as the 

topology of the web graph by exploiting the link 

dependencies among the web pages. They found 

that linked hosts tend to belong to the same class of 

spam or non-spam [16]. 

Messages in social 

networks 

Gao et al. filtered spam messages in online social 

networks using incremental clustering, based also 

on network-level features such as the interaction 

history between users [17]. 

Table 1-1. Applications of outlier detection 
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1.2. Challenges 

What is considered to be normal or anomalous is not straightforward. Therefore nav-

igating on the boundary between the two is difficult: an anomalous observation could 

appear to be normal, and vice versa. Consider spam and hijacked account detection in 

online social networks. A user with a conversation history containing only one-on-one 

communication initiates a group conversation with all his/her contacts. One interpretation 

could be that the account was hacked and was thus used to spread spam messages to infect 

additional users. The activity would be flagged, and actions might be taken against it. 

However, it could also have been a genuine help request to complete a survey, which 

requires a larger pool of audience. 

The exact notion of anomaly varies from domain to domain. In the wait-for graph of 

deadlock detection in relational database and operating systems, a small cycle implies a 

blocking that needs to be resolved, otherwise normal execution might completely halt  

[18]. Conversely, in the friendship network of communities, small cycles are common 

creations of typical social behavior: “If two people in a social network have a friend in 

common, then there is an increased likelihood that they will become friends themselves 

at some point in the future.” [19] If such a friendship is established, the three persons 

would form a cycle. 

Anomalies may be the result of malicious actions. In such situations, the adversaries 

often adapt themselves to conceal their true intentions and appear to be normal. This 

makes the detection even more difficult. In the example of trading frauds [15], a trading 

ring – a group of traders that are engaged in illegal activities – tries to align to standard 

commercial behavior and relies on the very high number of transactions to conceal itself. 

Most datasets do not have ground truth. Although there are plenty of datasets that 

contain relational data, most of these lack the predefined knowledge behind them to verify 

that the detected unusualities are indeed anomalies. Additionally, classifying unlabeled 

data faces obstacles of ensuring a consistent, standard labeling of data, a result highly 

dependent on the annotators. Imagine a task of scoring the inappropriateness of forum 

posts on a scale of ten: were the effort saved by outsourcing the task on the e.g. Amazon 

Mechanical Turk [20], the new challenge of normalizing scores would appear in its stead. 

Mislabeling data could lead to adverse consequences. In health care systems, dismiss-

ing a seriously ill patient as healthy could cause fatal consequences. In astronomy, if im-

aging instruments suspect most unknown signs to be new celestial objects, the astrono-

mers cannot keep pace with verifying the potential discoveries [21]. 

It is difficult to cope with the scale of the datasets. The enormous size of the networks 

and the immense number of transactions they generate require approaches that are both 

efficient and scalable.  

Class imbalance and asymmetric error have to be taken into consideration. Amidst 

the data created through normal functioning of the systems are hidden the outliers, which 

constitute only a small fraction of the whole. 
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1.3. Outline and organization 

Section 2 provides a more specific definition of outliers in the context of static graphs. 

Section 3 follows with the description of fundamental outlier detection techniques. Our 

assembled network dataset as well as additional referenced datasets are introduced in sec-

tion 4. Section 5 demonstrates and analyzes the application of outlier detection techniques 

on the datasets. Section 6 reflects on the possibility of extending the techniques to dy-

namic graphs. Finally, a brief summary and the conclusions are presented in Section 7. 
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2. The concept of outliers in static graphs 

In this section, we formulate the concept of outliers in static snapshots of graphs. The 

problem is to find graph objects (nodes/edges/subgraphs) that are different from the ma-

jority of the other reference objects in the graph. We make the distinction between plain 

graphs and attributed graphs, each of which carries a different particularity. In the former 

case, particularity could be isolation (far-away points in an n-dimensional space) or unu-

sual structural characteristics, such as the presence of certain patterns (cliques and stars). 

In the latter case, it could be a rare combination of labels (e.g. a scholar having publica-

tions in remotely connected fields such as biology and astrology). 

2.1. Plain and attributed graphs 

Plain graphs consist of only nodes and edges, they do not hold more information than the 

graph structure. Attributed graphs, on the other hand, may have features associated with 

their components. For example in a social network, users may disclose their gender and 

favorite hobbies, and connections between users may be labeled to designate a relation of 

acquaintances/friends/family members. 

Anomaly detection techniques on plain graphs rely exclusively on structural information. 

The survey in [5] categorizes the techniques as feature-based, proximity-based and com-

munity-based depending on their concepts of similarity between graph objects (Table 

2-1). 

Techniques Description 

Feature-based Extracts features like in/out degrees, betweenness centrality [22], 

clustering coefficient [23], modularity [24], etc.  

Proximity-based Measures closeness of graph objects. PageRank [25] is a famous 

example for rating web pages based on their linking from one to 

another. 

Community-based Finds densely connected groups of nodes. 

Table 2-1. Anomaly detection techniques in plain, static graphs 

Anomaly detection techniques on attributed graphs differ in that they rely on structural as 

well as labeled information to find patterns and spot anomalies. Their categorization is 

the same as in the case of plain graphs. However, as a result of the additional information 

provided by labels, the number of extractable features are higher, graph objects could 

either be connected structurally or through similar labeling, and communities could be 

defined by density as well as class labels. 
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2.2. Types of outliers 

Three types of outliers are differentiated: node, linkage and subgraph outliers [26]. 

Node outliers are vertices with unusual characteristics in the graph. They could be de-

fined in various ways: node outliers may be structurally (in)significant, by being isolated 

from the rest of the vertices, or by being in the center of a star shaped pattern. In attributed 

graphs, they could hold a rare combination of categorical attribute values or simply differ 

in labeling compared to their neighbors. 

Linkage outliers are edges with unusual characteristics in the graph. These are generally 

defined as edges that connect two disparate, but each densely connected partitions/com-

munities of the network.  

Subgraph outliers are defined as parts of the graph which exhibit unusual characteristics 

with respect to the normal patterns in the complete graph. They could form particular 

patterns such as stars or cliques, or they could simply be distinctively different from the 

frequent patterns observed in the graph. In attributed graphs, subgraph outliers could also 

be defined based on the repetitions in the labels on the nodes. 
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3. Outlier detection techniques 

In the following subsections, we discuss the basic outlier detection techniques in static, 

plain graphs. Oddball [27] is a feature-based technique for identifying node outliers. 

SCAN [28] and Autopart [29] are community-based techniques that are detecting node 

and linkage outliers, respectively. 

3.1. Oddball 

The aim of this technique, as the same suggests (“odd ball”), is to find anomalous nodes. 

It builds its solution on the analysis of ego networks. It takes in a graph as input, and 

produces a list of node outlier candidates as output. 

Ego network is defined as the one-step neighborhood 

around a central node “ego”. It includes the central node, 

its direct neighbors and all the edges among these nodes. 

In other words, the ego network is the subgraph of one-step 

neighborhood of the central node. 

 

 

Figure 3-1. Ego network 

Figure 3-1 highlights the ego network of the aqua-colored 

node. The red nodes are the neighboring vertices. 

 

Our analysis focuses on nodes partaking in patterns. The nodes whose neighbors are well 

connected (near cliques, Figure 3-2) or sparsely connected (near stars, Figure 3-3) are 

considered particular: in social networks, the previous indicates a regular and intense in-

teraction in the history of the clique members; the latter suggests an influential person in 

a central position, who is capable of reaching a wide, but independent audience. 

The technique can be broken down to four parts. 

1. Ego network extraction: get all ego networks from the input graph. 

2. Feature selection: choose features of ego networks that could indicate anomalies; 

compute these features for all ego networks. 

3. Analysis: pinpoint anomalies using any outlier detection method in point clouds 

[30] [31]. 

Two of the features the authors presented that are successful in detecting outliers are 

number of nodes and number of edges in the ego network. (Their attempts using number 

of neighbors of degree 1, principal eigenvalues of ego networks, and other features did 

not yield significant insights. [32]) Plotting the number of nodes against the number of 

edges reveals near cliques (Figure 3-4) and stars (Figure 3-5). The green line represents 

the maximum number of edges in an 𝑛 node ego network (𝑛 ∗ (𝑛 − 1)/2), while the blue 

line the minimum number of edges (𝑛 − 1). The closer the ego network lies to the lines, 

the more remarkable it is likely to be.  
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Figure 3-2. Clique in graph 𝐴 

 

Figure 3-3. Star in graph 𝐵 

 

Figure 3-4. Revealing cliques in graph 𝐴 

 

Figure 3-5. Revealing stars in graph 𝐵 

3.2. SCAN – Structural Clustering Algorithm for Networks 

The purpose of this technique – similarly to Oddball’s – is to identify node outliers. The 

authors distinguish two types of nodes that play special roles:  

 Outliers: nodes that are marginally connected to clusters  

 Hubs: nodes that bridge clusters 

Clusters are groups of nodes that have a dense set of edges running within the clusters, 

and have a relatively low number of edges that run between the clusters. They are densely 

connected graph parts. 

In the context of this algorithm, hubs play a significant role due to their interconnecting 

properties. They are the targets in viral marketing, individuals who exert great influence 

in the process of opinion or information spreading. In contrast, the term of outliers in this 

context, bear no importance and may be discarded or isolated as noise in the data. 

SCAN takes in a graph and two parameters (ε, µ) as input, and yields a list of clusters, 

hubs and outliers as output. ε captures the rigorousness of the condition of a node to be 

considered part of a cluster. An analogy would be that a sect imposes a requirement on 

newcomers that they must have at least ε number of common acquaintances with an ex-

isting member to join. On the other hand, µ determines the minimum number of vertices 
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a cluster must have. An illustration would be a general rule that states groups must have 

at least µ number of members to be legally considered a sect. 

In the Figure 3-6, the algorithm places all nodes into 

a single cluster with ε = 0.6, µ = 2. A low ε draws a 

low line of requirement for being a member of a clus-

ter, thus all nodes would be grouped together. In-

creasing ε tightens the coherence inside a cluster, and 

the initial all-encompassing cluster would be broken 

up to smaller groups. In the Figure 3-7, the original 

interpretation is retrieved: clusters {1, 2, 3, 4, 5, 6} 

and {8, 9, 10, 11, 12, 13}, 7 as a hub and 14 as an 

outlier. Figure 3-8 further decomposes the two clus-

ters, thus identifying 10 also as a hub, because it 

neighbors two clusters. At the extreme case in Figure 3-9, the conditions to form a cluster 

are so high, that none was identified, thus all nodes are taken to be outliers. It is worth to 

note that ε = 0.7 and µ = 7 would also lead to the extreme case, because there is no 

combination of seven nodes that are closely connected. 

The algorithm works in the following way. At the beginning, all nodes are labeled as 

unclassified. SCAN performs one pass of the nodes, and classifies them either as a cluster 

member or a non-member based on structure connectivity (for an exhaustive definition, 

see [28]). At the end, when all clusters are found, the non-members are classified further 

as hubs or outliers, based on the cluster membership of their neighbors. (Remember, hubs 

are nodes that bridge separate clusters.) 

 

Figure 3-7. ε = 0.7, µ = 2 

 

Figure 3-8. ε = 0.8, µ = 2 

 

Figure 3-9. ε = 0.9, µ = 2 

Analyzing the example network with Oddball 

would highlight 14 as an isolated node, for its 

ego network consists of only two nodes and one 

edge. However, 7 would not stand out among 

the rest of the nodes. (Figure 3-10). Its ego net-

work has a ratio of edges to nodes similar to the 

ego networks of other nodes. 

 

Figure 3-6. A network with two 

clusters, a hub and an outlier 

Figure 3-10. Oddball at work 
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3.3. Autopart – Parameter-Free Graph Partitioning 

Autopart is capable of identifying anomalous edges. Its primary purpose is to (automati-

cally) partition the graph into clusters without user intervention – hence the parameter-

free attribute. After finding a partitioning – a set of clusters – it proposes a method to 

measure the outlierness of edges that bridge separate clusters. The algorithm takes in a 

graph as input, and produces a partitioning and a list of link outlier candidates as output. 

The main idea is to measure the goodness of the partitioning with how well it can be 

compressed and then transmitted. A better compression results in a lower transmission 

cost, which implies a good partitioning. The application of information theory to outlier 

detection is frequently used in the classical, multi-dimensional context [33], and has been 

extended to graphs in the Autopart algorithm. 

This technique specifically uses the adjacency 

matrix as graph representation. A partitioning is a 

reordering of rows and columns in a way that 

nodes belonging to the same cluster are placed 

next to each other (Figure 3-11).  

In consequence, the adjacency matrix is broken 

down to blocks: the squares located on the diago-

nal of the matrix capture the edges running inside 

the clusters; the rectangles represent the edges 

bridging the corresponding clusters. 

C
lu

st
e

r 
1

Cluster 1 Cluster 2

C
lu

st
e

r 
2

Cluster 3

C
lu

st
e

r 
3

 

Figure 3-11. A partitioning of an 

adjacency matrix 

A good partitioning yields homogeneous blocks, which in turn, can be compressed effi-

ciently. At the extreme, with 𝑛 clusters, there could be 𝑛2 perfectly homogenous blocks. 

However, the compression scheme accounts for this as well. 

The author proposes a two-part code for the adjacency matrix. The total cost is comprised 

of a description cost and a code cost.  

 

Description cost holds the information about the rectangular/square blocks. It is the 

transmission cost of the following terms: 

 number of nodes 

 node permutation (which row represents which node) 

 number of clusters 

 number of nodes in each cluster 

 number of ones in each block (the number of edges bridging the given clusters) 

Code cost holds the information about the content of the blocks. It is the transmission 

cost of the blocks calculated using the Shannon entropy function [34]. 
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Description cost penalizes a high number of blocks; on the other hand, code cost penalizes 

heterogeneous blocks. Thus a good partitioning maintains a balance between a low num-

ber of clusters and a high homogeneity of blocks. The algorithm finds the tradeoff point 

between the two aspects and yields a construction with the minimal total cost. 

 

Start with 
initial matrix, 

k=1

STEP 1. Find good 
clusters for fixed k

STEP 2. Increase k, 
k=k+1

Lower the 
encoding cost

Final 
partitioning, 

k*

MAIN LOOP

 

Figure 3-12. Steps of the Autopart algorithm 

It starts with an initial adjacency matrix, where all nodes belong to one cluster (k = 1). 

Inside the main loop, the total cost is iteratively reduced until no improvements can be 

made, and the final partitioning together with the final cluster count 𝑘∗ is outputted (Fig-

ure 3-12). The iterative reduction is made up of two steps: first, a good partitioning given 

the number of clusters is found. Second, the number of clusters is increased to allow for 

better partitioning. 

Once the final partitioning is found, Autopart marks the anomalous edges. Outliers show 

deviation from the normal patterns, so they hurt attempts to compress data. Therefore 

those edges, whose removal reduces the total cost the most are marked as outliers.  
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4. Dataset descriptions 

In order to validate the practical usability of the algorithms, we applied them on four 

datasets. The first is the discussion community network of a Hungarian news portal [35], 

which we assembled using the available forum activity data. This choice reflects our am-

bition to work with a Hungarian dataset. 

The second dataset, the social network of Facebook users [36] was chosen for its availa-

bility of ground truth. The ground truth consists of manually-labeled circles – friendship 

groups defined by social network users based on their relation, history and background 

with their peers – which allows us to test partitioning (clustering) algorithms. Since two 

out of three basic anomaly detection algorithms presented in Section 3 are based on clus-

ter identification, it becomes essential to verify and measure their accuracy and perfor-

mance. 

The third dataset, the road network of Stockton city in San Joaquin County (California, 

U.S.) [37] was selected for its apparent difference in structure, compared to the previous 

two. While it only takes a registration to create a new node, and reply on a comment/con-

firmation of a friend request to link two existing nodes in the online discussion/social 

network, careful architectural, material and civic planning is required for road construc-

tion. In addition to the different pace of network evolution, the number of roads starting 

from the same point (for example a crossing point) is physically constrained, and two 

remote points cannot be connected directly. In consequence, this network will have a 

distinctly different layout and structural metric values. 

The final dataset is a market basket network, a network of books about U.S. politics sold 

on Amazon [38]. Compared to the previous three datasets, this is much smaller in size, 

allowing us to test and analyze algorithms that do not scale well.  

Figure 4-1 visualizes the large networks using OpenOrd [39], a force directed layout al-

gorithm for distinguishing clusters in large graphs. It can be seen that the discussion net-

work is dominated by a single cluster, the social network is comprised of multiple, smaller 

clusters, and the road network is evenly distributed, showing few signs of clustering.  

Figure 4-2 displays the small network of market basket data using ForceAtlas [40], also 

a force directed layout, developed for the visualization of small and medium sized net-

works. 

We review the four datasets in detail in the following subsections. 
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Figure 4-1. Introduction of the large datasets 

 

a) Discussion network b) Social network 

c) Road network 

Figure 4-2. Small network of books 
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4.1. Discussion network 

We examine an online news portal that publishes articles in a broad range of topics, with 

the majority of articles open to unmoderated commentary. The site uses Disqus [41] – a 

blog comment hosting service for web sites and online communitites – to provide a frame-

work for posting comments. Using the REST API of Disqus, we retrieved the complete 

commentary history of the year 2014. 

We constructed a simple undirected graph from the commentary history in the following 

way: nodes represent users, while edges represent replies one user posted in response to 

another user’s comment. Each node is labeled with its associated username. The repetition 

of replies are not reflected in the addition of edges, thus this model can capture neither 

the frequency, nor the quality of responses. 

4.1.1. Defining outliers in a discussion network 

We search for two types of user characteristics that exert remarkable impact and at the 

same time show deviating traits from the majority of users. First, opinion leaders in the 

blogosphere are those that disseminate new information to the masses and capture the 

most representative opinions in the social network [42]. In the context of discussion com-

munities, we regard the opinion leaders as the influential users who interpret and analyze 

the published news articles in a way that evoke approving and/or supplementary re-

sponses. Second, spammers are those who engage in antisocial behavior, meaning that 

they negatively affect other users by trolling, flaming, bullying, and harassing [43]. 

Note that both opinion leaders and spammers belong to the category of node outliers. 

4.2. Social network 

Facebook is an online social networking service where registered users can connect with 

each other. In the network dataset, nodes are users, and edges are undirected friendship 

connections between the users. 

The dataset was assembled from the friendship data of the Kaggle [44] data science com-

petition participants. According to the small-world phenomenon [45], or the “six degrees 

of separation”, social networks exhibit a certain characteristics that any two members 

should be connected by a relatively short path [46]. However, probably because of the 

national diversity of the participants, who were scattered across different geographical 

locations, this network is comprised of several larger components, leaving this the only 

unconnected network among our datasets. 

Small-world phenomenon is the observation that any two individuals in a social network 

are likely to be connected through a short sequence of intermediate acquaintances. 

Small-world networks are characterized by relatively short diameters, radii and average 

shortest path lengths. Figure 4-3 shows that both the discussion and the social network 

have relatively short network distances, while the road network has values greater by an 

order of magnitude. The basket network displays the shortest distances, which in this case 

we attribute to its size rather than to its domain. 
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Figure 4-3. Network distances 

Diameter is the longest shortest path between network nodes. 

Radius is the minimum eccentricity of the network nodes. 

Eccentricity of a node 𝑛 is the maximum distance between 𝑛 and any other node of the 

network. 

The main difference between the social network and the discussion network is that the 

previous revolves around presenting user activities of friends for friends, while the latter 

focuses on displaying articles of journalists for everyone. Therefore we expect the con-

cept of densely connected circles in the social network to be more dominant. In terms of 

graph features, the average clustering coefficient of the social network is expected to be 

higher, which means it is more likely to contain cliques, or near-cliques. Figure 4-4 con-

firms our anticipation. 

Clustering coefficient is a measure of how nodes are embedded in their neighborhood. 

Formally, 

𝐶𝑖 =
 |{𝑒𝑗𝑘: 𝑣𝑗, 𝑣𝑘 ∈ 𝑁𝑖, 𝑒𝑗𝑘 ∈ 𝐸}|

𝑘𝑖(𝑘𝑖 − 1)
2

 

where 𝐶𝑖  is the clustering coefficient of node 𝑖, 𝑒𝑗𝑘is the edge between node 𝑣𝑗  and 𝑣𝑘, 𝑁𝑖 

is the neighborhood of node 𝑖, 𝐸 is the set of edges of the graph, and 𝑘𝑖 is the number of 

neighbors of node 𝑖. Note that members of a clique would have a clustering coefficient 1. 

 

Figure 4-4. Average clustering coefficient of networks 
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4.2.1. Defining outliers in a social network 

In a context where we have ground truth about existing circles, we attribute significance 

to and search for those users, who are connected to several tightly knit groups. The fact 

that they are not confined to one single circle means that they have access and view of 

multiple group activities. They are the ones bridging the circles, constituting the weak ties 

[47] for those who are involved exclusively in one circle.  

Consider the example on Figure 4-5. Except 

for node 1, none has information, or connec-

tion to other groups. In exchange, node 1 is 

not as embedded in, or completely part of any 

of the groups. It is, however, providing the 

weak ties (1-2, 1-6, 1-7, 1-11, 1-12 and 1-16) 

for the respective members of the groups, 

serving as the sole information channel. 

This illustrates the idea that “the best job 

leads come from acquaintances rather than 

close friends” [48]. Close friends move in 

the same environment and therefore are ex-

posed to similar news and information. A 

new change of environment might be 

brought about by acquaintances, who have 

access to information we otherwise would 

not necessarily hear about. 

 

Figure 4-5. The strength of weak ties 

4.3. Road network 

The road network of Stockton city in San Joaquin County (U.S.) [37] combines geo-

graphic and graph-theoretic information in one structure. Nodes represent road intersec-

tions, and edges represent road segments that join such points. Generally, road networks 

contain geographic information: vertices are labeled with longitude and latitude coordi-

nates, and edges are labeled with their length. 

As demonstrated earlier (Figure 4-3), a significant difference between the road network 

and the online networks are network distances; the road network is a non-small-world 

network. This could be attributed to the low-paced network evolution as well as the spatial 

limitations: it certainly takes numerous hops to drive from one secluded corner to the 

spatially opposite point of the city. 

Another noteworthy difference stemming from spatial constrains is that intersections can 

be the endpoint of a limited number of roads. In contrast, forum commenters have the 

freedom to reply to any other user, and social network users are free to befriend anyone 

they find. This is reflected in the node degree measures, where there may be a whole order 

of magnitude in difference (Figure 4-6). 
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Figure 4-6. Degree measures 

4.3.1. Defining outliers in a road network 

Objects in spatial networks – in our case, intersections and road segments – usually have 

two dimensions along which attributes are defined: (i) spatial attributes include location, 

altitude and other topological properties; (ii) non-spatial attributes include values of e.g. 

traffic or climate metrics. 

Our dataset contains exclusively topological properties of spatial objects. Consequently 

we define the outliers based on graph connectivity: we assign special characteristics to 

and search for nodes with high number of neighbors, and edges that bridge otherwise 

separate partitions of the network. 

4.4. Market basket network 

The basket network of political books [38] is the result of market basket analysis, a tech-

nique closely related to association mining [49] in the field of data sciences. The analysis 

rests on the assumption that from a collection of products commonly bought together, it 

could be inferred what else a consumer might be interested to buy. The aim is to leverage 

this information to build recommendation systems capable of delivering targeted offers. 

Furthermore, “it can suggest new store layouts; it can determine which products to put 

on special; it can indicate when to issue coupons” [50]. 

 

Figure 4-7. Book labeling 

Nodes in the network represent books, edges represent frequent co-purchasing of those 

books. The books were pre-labeled as liberal, neutral, or conservative [51] (Figure 4-7). 
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4.4.1. Defining outliers in a basket network 

Figure 4-7 shows two clearly discernable liberal and conservative clusters of books, in-

between which a couple of neutral books are scattered. This suggests that books labeled 

as the same category are often purchased together (except for neutral books that form no 

distinct pattern). While there are a few conservative books drawn near to the liberal clus-

ters, the same does not hold for liberal books. In this context, we target edges that connect 

otherwise densely connected partitions. The results might coincide with co-purchases that 

contain both liberal and conservative books. 

4.5. Graph features of datasets 

We summarized the network features of our datasets in Table 4-1. It provides an overview 

of the networks’ distances, clustering and degree measures.  

Feature 
Discussion 

network 

Social  

network 

Road  

network 

Basket  

network 

Graph type 

Undirected | Simple 

Connected Unconnected Connected Connected 

#Nodes 15109 26457 18263 105 

#Edges 350507 372227 23797 441 

Avg. degree 46.397 28.138 2.536 8.400 

Max. degree 2324 276 8 25 

Diameter 8 18 167 7 

Radius 4 9 93 4 

Avg. path length 3.025 5.25 70.577 3.079 

Avg. clustering 

coefficient 

0.411 0.619 0.023 0.488 

Table 4-1. Graph features of datasets 
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4.5.1. Degree distribution and the scale-free property 

Scale-free network is a network whose node degree exhibits a power law distribution. 

In scale-free networks, the probability that a node has k links 𝑃(𝑘) follows a power 

law 𝑃(𝑘)~ 𝑘−𝛾. “This feature was found to be a consequence of two generic mecha-

nisms: (i) networks expand continuously by the addition of new vertices, and (ii) new 

vertices attach preferentially to sites that are already well connected.” [52] 

 

Figure 4-8. Node degree distributions 

Figure 4-8 shows that both the discussion network and the social network display a long 

tail, a characteristic of power laws [53]. To confirm that online networks have the scale-

free property, we converted the power law relationship 𝑦 = 𝐶𝑥−𝛾 to an expected linear 

relationship by taking its logarithm: 𝑦′ = log(𝐶) − 𝛾 𝑥′ where 𝑥′ = log(𝑥)  𝑦′ = log(𝑦). 

From the two online networks, the discussion network indeed displayed a linear pattern, 

while the social network did not (Figure 4-9). In the case of discussion network, we used 

least squares fitting on the cloud point to get a rough estimate 𝛾 = 1.06 and 𝐶 = 1200 

(Figure 4-10). 

b) Social network a) Discussion network 

c) Road network d) Basket network 
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Figure 4-9. Node distribution of social 

network in logarithmic scale 

 

Figure 4-10. Least squares fitting 

The node degree of the road and the basket network clearly do not follow a power-law 

distribution. We concluded that out of the four datasets, only the discussion network was 

scale-free (Figure 4-11). 

 

Figure 4-11. Scale-free property of the discussion network 
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5. Application of outlier detection techniques on datasets 

The algorithms were implemented in Python1 [54], and the NetworkX2 [55] library was 

used for graph related operations. For Oddball and SCAN, we have a reliable implemen-

tation that scales well to graphs with nodes in the order of 10 thousands and edges in the 

100 thousands. Autopart, on the other hand, operates with a complexity which renders it 

inapplicable to our large graphs. 

The algorithms are summarized briefly in Table 5-1. Oddball is the most flexible in terms 

of input graphs. The reason is that an ego network is practically a subgraph of the com-

plete graph, and the operation of taking subgraphs is independent of the graph type. Fur-

thermore, the features can also be selected based on the input graph type. For instance, 

the total weight of edges in an ego network might prove useful for directed, weighted 

multigraphs. 

Oddball may be considered parameter-free, however, the feature selection – a pre-requi-

site for its operation – is decisive in its usefulness. Selecting the appropriate features for 

a given problem might require exhaustive experimentation. The other parameter-free 

technique is Autopart. The reason it can be parameter free is because it attempts to deter-

mine the number of clusters 𝑘 by starting from 1 and increasing it step-by-step. This ap-

proach has a high computational expense, which is reflected in its complexity 𝑂(𝑒 𝑘∗2), 

where 𝑒 and 𝑘∗ are the number of edges, and the final cluster count, respectively. 

The complexity of Oddball depends on the selected feature. While a simple choice, such 

as the number of nodes may take 𝑂(𝑛) (𝑛 = #nodes) steps to finish, a more computation-

ally demanding choice, such as node eccentricity, may require 𝑂(𝑛3) steps, in order to 

compute all the shortest paths in the network (using the Floyd-Warshall algorithm [56]). 

 Oddball SCAN Autopart 

Input graph 

Simple | Multi 

Plain | Attributed 

Directed | Undirected 

Weighted | Unweighted 

Simple 

Plain 

Undirected 

Unweighted 

Simple 

Plain 

Directed | Undirected 

Unweighted 

Parameters Parameter-free 2 parameters Parameter-free 

Output Node outliers 
Node outliers 

Clustering 

Edge outliers 

Clustering 

Complexity Feature dependent 𝑂(𝑒) 𝑂(𝑒 𝑘∗2) 

Table 5-1. Algorithm applicability 

The implementation is accessible in a public repository at 

https://github.com/tonnpa/opleaders 

                                                
1 Version 2.7, for compatibility with the NetworkX drawing functions 
2 Version 1.10 

https://github.com/tonnpa/opleaders
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5.1. Oddball results 

Oddball1 identifies outliers that could be organized into two categories. The first attracted 

attention by its excessively high number of graph components in the ego network (Figure 

5-1/a, b, c). These are distinctly separable from the rest of the data points and are not 

specifically targeted by Oddball. The second category contains the patterns recognizable 

from the plotting of number of nodes against the number of edges: near-cliques (Figure 

5-1/d) and near-stars (Figure 5-1/b, c). 

 

Figure 5-1. Outliers identified by Oddball 

The data points in the discussion network exhibit a near linear pattern. The labeled points 

are five users who are especially active in posting their opinions under news articles. As 

a result, they established a high number of links with a high number of users. Their 

intensive forum activity is reflected in the user statistics of Disqus that lists 4 of them to 

be the top 4 commenters2. 

The social network demonstrated well the purpose of Oddball and our choice of features. 

Three nodes were found to have near-star ego networks (Figure 5-2). Using ForceAtlas, 

it becomes obvious that the identified nodes indeed provide bridges between clusters. 

                                                
1 Oddball has an existing implementation in the combination of Python and MATLAB scripts on the au-

thor’s web page [67]. 
2 According to Disqus statistics in May 2015. 

a) Discussion network b) Social network 

c) Road network d) Basket network 
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Particularly node 21574 (Figure 5-2/a) embodies a transition between two otherwise 

weakly connected partitions. 

In the case of road network, two points were emphasized for their especially high number 

of neighbors. These had an ego network of 9 nodes, which indeed covers a unique 

crossing point from which 8 roads originate. There were many stars in this dataset, which 

could be explained as the result of minimizing connection redundancy between closely 

positioned locations. 

The basket network contained two near cliques with a relatively high number of nodes in 

the ego network (Figure 5-3). Both of these turned out to be liberal books that happened 

to be each other’s neighbor. 

 

Figure 5-2. Near-star ego networks in the social network 

 

Figure 5-3. Near-clique ego networks in the basket network 

 

a) User 21574 b) User 16636 c) User 3350 

a) The ego network of book 75 (Worse Than Watergate) and its location in the complete graph 

b) The ego network of book 82 (The Politics of truth) and its location in the complete graph 
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5.2. SCAN results 

All four datasets were inspected using the algorithm. We conducted the analysis on the 

discussion, social and road network, and refer to the SCAN authors’ work in the case of 

basket network. In the upcoming subsection, the social network is inspected thoroughly: 

using this example we show how SCAN can be combined with Oddball for anomaly ver-

ification. Afterwards, the discussion and road network are examined briefly, in which we 

show that applying the algorithm can reveal further insights about the domain. 

Note that what we consider as outliers, the extraordinary observations that fulfill special 

roles, are here referred to and detected as hubs. 

5.2.1. SCAN at work: social network 

In our detailed analysis of the algorithm we leverage the available ground truth, the 455 

predefined friendship circles. SCAN requires two input parameters (ε, µ). Based on the 

author’s recommendation on parametrization, we ran the algorithm multiple times, tuning 

ε in the range of 0.5 and 0.7, 0.02 steps in-between, and µ = 2, 3, 4. 

In order to compare the results of different parametrizations, we defined a performance 

measure based on ground truth. Since we do not have complete information about all 

circles in the social network, we focused on how well the given 455 circles appear in the 

resulting clustering. We converted the problem to a maximum weighted bipartite match-

ing: 

 the two disjoint sets of vertices are the (i) ground truth circles and the (ii) clusters 

found by the algorithm 

 there is an edge between a circle and a cluster, if they have at least one common 

node, that is they are not disjoint groups of nodes in the network 

 the weight of the edges is the Jaccard similarity [57] of the connected circle and 

cluster 

Jaccard similarity is defined as 

 𝐽(𝐴, 𝐵) =  
|𝐴 ∩ 𝐵|

|𝐴 ∪ 𝐵|
, 0 ≤ 𝐽(𝐴, 𝐵) ≤ 1  

where 𝐴, 𝐵 are groups of nodes. It equals the number of common nodes divided by the 

number of distinct nodes in the groups. 

The maximum weighted matching yields a one-to-one pairing of circles and clusters, 

maximizing the similarity between the pairs. The final performance score assigned to a 

clustering is the average similarity of its pairs: 
∑ 𝐽(𝑝𝑎𝑖𝑟𝑐𝑖𝑟𝑐𝑙𝑒,   𝑝𝑎𝑖𝑟𝑐𝑙𝑢𝑠𝑡𝑒𝑟)𝑝𝑎𝑖𝑟

#𝑐𝑖𝑟𝑐𝑙𝑒𝑠
  . 

The scores calculated for the different parametrizations are displayed in Figure 5-4. It can 

be seen that the score decreases by increasing µ, or by moving ε to the extremes of the 

recommended range. Increasing µ raises the minimum number of nodes there has to be in 

a cluster. Consequently, fewer graph parts meet the higher requirement and the number 

of clusters decreases (Figure 5-5). At the same time, changes occur in the classification 

of nodes that were previously parts of small clusters in case of µ = 2: these nodes are 
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converted from cluster members to outliers. Thus the percentage of outliers increases 

(Figure 5-6). 

 

Figure 5-4. Clustering performance score of varying (ε, µ) 

 

Figure 5-5. Number of clusters ε = 0.62 

 

Figure 5-6. Cluster composition ε = 0.62 

Moving ε to the extremes of the recommended range has two opposite effects. A low ε 

causes the merging of small clusters, and results in a low number of large clusters. On the 

other hand, a high ε causes the decomposition of large clusters, and results in a high num-

ber of small clusters (Figure 5-7, Figure 5-8). A balance between the two extremes could 

estimate the right number of clusters of the appropriate size. To maximize the similarity 

score, we settled the parameters ε = 0.62, µ = 2. Further analysis is conducted on the 

results of that parameterization. 
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Figure 5-7. Number of clusters 

µ = 2 

 

Figure 5-8. Cluster composition µ = 2 

One disadvantage of SCAN is the predominant number of small clusters as shown in 

Figure 5-9. The ground truth only had circles with at least five members, and pairing these 

up with mostly two or three-sized groups yielded a low average similarity. Figure 5-10 

shows that a notable number of circles (~ 60 out of 455) had no, or very insignificant 

matches. Only 8 circles were found completely, while the rest were paired to clusters with 

similarities distributed evenly between 0 and 1. 

 

Figure 5-9. Histogram of cluster size 

 

Figure 5-10. Histogram of similarity 

Another disadvantage of SCAN compared to Oddball is the high number of identified 

anomalies. Outliers, in the context of SCAN, do not have significance, and may be dis-

carded as noise. Hubs, on the other hand, play an important interconnecting role. In our 

social network of more than 26 000 nodes, over 3000 nodes were marked as hubs. Further 

work has to be conducted to differentiate the most impactful ones. 

We inspected whether the near-stars detected by Oddball would appear here as hubs. Fig-

ure 5-11 displays the ego networks of the particular nodes. Hubs are dark red and outliers 

are dark blue. The remaining colors represent clusters. Similar, or matching colors be-

tween the subfigures do not represent the same clusters. It can be seen that two out of 
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three stars were classified as hubs. In the third case, the central node was rendered to be 

part of the largest cluster in its vicinity. 

 

Figure 5-11. Near-star ego networks colored by the clustering of SCAN 

5.2.2. SCAN at work: discussion and road network 

Datasets without ground truth about clusters or circles do not provide feedback on the 

quality of parametrization. Therefore we introduced a few intuitive conditions based on 

which we selected the parameters: 

1. Provided the size of these datasets, more than 1 cluster has to be identified. 

2. The execution of the algorithm should yield hubs and outliers. 

3. The number of outliers and hubs should not nearly equal or exceed the number of 

cluster members. 

4. The number of outliers should not exceed 10% of the network’s node count. 

Following these guidelines, we selected an ε value for our networks (we retained µ = 2). 

The clustering of the discussion network had to be conducted with an unexpectedly low 

ε = 0.15 value. Figure 5-12 shows that for lower values, no hubs were found, which vi-

olates condition #2. However, for higher values, the number of outliers exceeds the num-

ber of cluster members, violating condition #3 and #4. Therefore we settled for a transi-

tional value in the middle of the two extremes. 

The high number of outliers is accompanied by another characteristic feature of the clus-

tering: the presence of a single encompassing cluster with nearly 6000 members (Figure 

5-13). The remaining clusters have only a few (≤ 11) members. This analysis confirmed 

our first impression about the network on Figure 4-1, which visualized the discussion 

network in a star shape, with a dense nucleus in the center. 

A single dominating cluster of thousands of members accompanied by numerous outliers 

suggests an activity pattern in discussion forums. Registered users are either active com-

menters, thus becoming a member of the discussion community, or passive observers who 

are mainly reading the news articles and might leave a comment or two in a few cases. 

a) User 21574 b) User 16636 c) User 3350 
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Figure 5-12. Cluster count and composition in ε 

tuning of discussion network 

 

Figure 5-13. Histogram of cluster 

size, discussion network 

We used ForceAtlas to display the 

distinct rift between the two types of 

users. All clusters were painted 

black, except for the single large 

one, which is displayed in orange. 

Outliers were kept dark blue. What 

can be seen is a large orange nu-

cleus, surrounded by sharp, dark 

blue spikes (Figure 5-14).  

Figure 5-14. Separation of the two user types in 

the discussion network 

We conducted the clustering of the road network with ε = 0.5. Figure 5-15 shows that 

there is no significant difference between an ε value of 0.45 or 0.5, so we settled arbitrar-

ily on the latter. The resulting clusters, similar to the previous cases, showed a tendency 

of containing only a few members (Figure 5-16). Interestingly, there was a cluster of 

nearly 700 members, which is unexpected for a relatively homogeneous road network. 

Figure 5-17 shows (in a graph structure-centric, not geography-centric layout) that the 

cluster is composed of several circle and tree-like structures chained together. Further 

work could be conducted to explain the appearance of such cluster, or the reason why 

there were not more of that. 

Road intersections marked as remote outliers by Oddball were not marked as hubs by 

SCAN, instead they all have been merged into a part of a cluster (Figure 5-18). Note that 

coloring is influenced by additional nodes not displayed in the figure. 
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Figure 5-15. Cluster count and composition in ε 

tuning of road network 

 

Figure 5-16. Histogram of cluster 

size, road network 

 

Figure 5-17. The largest cluster of the road 

network 

 

Figure 5-18. Vicinity of Oddball outliers 

Specific values of cluster count and composition related to the parametrization of SCAN 

can be found in the Appendix. 

5.2.3. Authors’ graph choice: basket network 

The author of [28] applied the algorithm using parameters 𝜀 = 0.35, µ = 2. The three 

clusters representing conservative, neutral and liberal books were reported to have been 

found. For further analysis and illustration, refer to work [28]. 

5.3. Autopart results 

In the case of Autopart, our implementation may yield suboptimal results. The main idea 

is to decompose the adjacency matrix of the inspected graph into easily compressible and 

transmittable parts. It is proposed that outliers could be identified by their diminishing 

impact on the compression rate. This technique relies on information theory concepts that 

are not straightforward to verify. Although we leveraged the similarity with the author’s 

previous work on matrix decomposition [58] (also an information theory driven algo-

rithm), we did not manage to completely clarify all claims. We proceeded assuming that 

the equations and the theorems were correct and adjusted our implementation for fault 
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acceptance. In terms of algorithm application, it means the final output could be a subop-

timal construction compared to the theoretical optimum, which is compressed and trans-

mitted using the least cost. 

Our implementation works with operations that have high computing cost. The iterations 

in the main body of the algorithm involves frequent changes in the adjacency matrix, 

which in implementation means row and column manipulations. The data structure em-

ployed by the NetworkX graph library are the sparse matrices of the SciPy [59] package. 

These structures (compressed sparse row matrix/compressed sparse column matrix/linked 

list sparse matrix) do not support efficient row and column insertion and deletion, a fre-

quently performed operation. This has a significant adverse impact on performance. 

In addition to the lack of support of frequent operations, the algorithm has an inherent 

complexity 𝑂(𝑒 𝑘∗2), which leaves a runtime proportional to the number of edges multi-

plied by the square of the final number of clusters. Here 𝑘∗ indicates the number of clus-

ters at which the algorithm terminates, in consequence of not finding further ways to re-

duce the total coding cost.  

Due to the high-cost operation, and an inherently high algorithm complexity, our imple-

mentation does not scale up to the size of the large datasets. We could not verify the 

author’s claim that Autopart “scales linearly with the problem size, and is thus applicable 

to very large matrices”. 

In the following subsection, we conduct the analysis on the smaller basket network. Af-

terwards, we describe the measurements related to the limitations of our implementation. 

5.3.1. Autopart at work: basket network 

The algorithm settles at four clusters (𝑘∗ = 4), and reaches that state in 12 iterations. 

These include 3 adjustments of cluster count, and 9 re-partitioning. An adjustment is the 

splitting of the group with the highest entropy. A repartitioning involves moving nodes 

between groups. 

Figure 5-19 displays the change of the adjacency matrix. The nodes line up on the 

𝑥, 𝑦 axes, and the black dots indicate the presence of edges between the corresponding 

nodes. Orange separators mark the border of clusters and divide the matrix into blocks 

that represent the connectivity between those clusters. A clear tendency can be discerned: 

the black dots accumulate in the right and lower part of the matrix, which indicates that 

high-degree nodes are grouped together. The algorithm halts when no further improve-

ment is found. 

We evaluate the effectiveness of the clustering based on the ground truth, the three classes 

in the labeling of books. In order to allow comparison of SCAN and Autopart, we adopted 

the measurement of SCAN’s authors, the adjusted Rand index [60]. We also follow their 

reasoning for this choice [61]. 
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Figure 5-19. Autopart steps, changing of the adjacency matrix 

 

The higher the index value, the greater the similarity is 

between the clustering and the labeling. The results indi-

cate that Autopart yields a significantly less accurate 

clustering compared to SCAN, which could be partially 

explained by the different number of identified clusters. 

 Autopart SCAN 

ARI -0.03 0.71 

   

However, an important feature and advantage of Autopart over SCAN is the overall pic-

ture of partitioning. While Autopart provides an easily visualizable, fairly intuitive over-

view of the clustering based on the density of connections between clusters, SCAN yields 

numerous clusters of various sizes that are challenging to visualize and to interpret. 

Once Autopart has produced the final partitioning, it utilizes that information to mark 

certain edges as outliers. It reasons that those edges whose removal reduces the total en-

coding cost the most are the outliers. Therefore the algorithm finds the block where re-

moval of an edge incurs the greatest reduction in cost. Since all edges within the same 

block contribute equally to the encoding cost, all of them are considered as edge outliers. 

1) Increase #clusters, 𝑘 = 2 2) Re-partitioning 3) Re-partitioning 4) Re-partitioning 

5) Re-partitioning 7) Re-partitioning 8) Re-partitioning 6) Increase #clusters, 𝑘 = 3 

9) Re-partitioning 10) Increase #clusters, 𝑘 = 4 11) Re-partitioning 12) Re-partitioning 
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In the case of basket network, the 4 clusters 

create 16 blocks. Table 5-2 displays the reduc-

tion in total cost incurred by the removal of an 

edge from the given block. Since we are 

searching for link outliers that bridge different 

clusters, edges between cluster 1 and 2 are the 

final results (Figure 5-20). 

Clusters 1 2 3 4 

1 5.4 3.4 2.8 2.2 

2 3.4 3.6 1.6 1.3 

3 2.8 1.6 1.5 0.9 

4 2.2 1.3 0.9 1.1 

Table 5-2. Reduction in total cost 

There are 136 edges bridging the two clusters, 

a result too broad to interpret. This brings us 

to the limitations of this technique. 

 

Figure 5-20. Edge outliers 

5.3.2. Limitations of Autopart 

The outlier detection quality of this technique is coarse in the sense that there is no dif-

ferentiation between edges that reside in the same block. In consequence, when the par-

titioning yields a few, but large clusters, the number of edges marked as outliers is likely 

to be high. This raises yet another problem for the user, as no further hint is given to 

which specific cases should be put under scrutiny. 

We created a graph construction to measure the impact of increasing graph size on the 

algorithm runtime. We multiplied the basket network and considered the union of multi-

ple basket networks to be a single, unconnected graph. Following this method, we created 

input networks linearly growing in size. We inspected whether the result of this experi-

ment would be a linearly increasing runtime that yields partitionings with a cluster count 

of linear growth. 

Our measurements do not show a linear 

relationship between runtime and input 

size (Figure 5-21). They also provided 

a more specific insight as to why the 

implementation did not scale up to our 

large datasets: it took over 20 minutes 

to finish1 for a graph of less than 500 

nodes. 

(The values are the average runtime of 

three repeated algorithm executions.)  

Figure 5-21. Runtime vs. input size 

                                                
1 Hardware: Intel® Core™ i5-2410M CPU @ 2.30GHz 
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The author's observation that “the execution time grows lin-

early with the number of edges” fails to take into considera-

tion the special graph type on which the experiments were 

executed. “Caveman graphs are highly clustered, sparse 

graphs that consist of isolated cliques or caves.” [62] (An 

example is in Figure 5-22.) The runtime measurements were 

conducted on special 3-cave graphs, which do not form new 

clusters in consequence of adding more edges. However, the 

evolution of complex networks, such as social networks, of-

ten brings about the emergence of new structures. An exam-

ple would be that a certain social networking service becomes available in a previously 

unengaged geographical area. Thus the conclusion of the algorithm scaling to large 

graphs is highly questionable. 

 

Figure 5-23. Final partitionings 

Figure 5-23 displays the final partitionings of the algorithm. These hold information about 

the number of identified clusters. It can be observed that the case of 3 and 4 replicas did 

not, but the case of 2, 5, and 6 did have a dramatic increase in runtime. An explanation is 

provided by 𝑘∗, which, when increased, clearly disrupts any trace of linearity. 

Does a pattern emerge in the grouping of nodes in reaction of a predictably changing 

input graph? That question remained open for us. 

2 replicas, 𝑘∗ = 6 3 replicas, 𝑘∗ = 4 

5 replicas, 𝑘∗ = 5 6 replicas, 𝑘∗ = 7 4 replicas, 𝑘∗ = 4 

1 replica, 𝑘∗ = 4 

Figure 5-22. 3-cave 

graph 
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6. Extending the techniques to dynamic graphs 

In this section, we introduce the problem of outlier detection in the context of dynamic or 

time-evolving/temporal graphs. Dynamic graphs are a sequence of static snapshots of the 

same, but evolving graphs. The problem is to find the timestamps that correspond to a 

change, as well as the graph objects (nodes/edges/subgraphs) that contribute most to the 

change [5].  

The surveys about graph-based anomaly detection [5] and evolutionary network analysis 

[63] provide a comprehensive overview of the state-of-the-art methods for anomaly de-

tection in a dynamic context. However, none of these discuss the usability of Oddball, 

SCAN and Autopart. In the following subsections, we propose a way to adapt the static 

outlier detection techniques to dynamic settings. 

6.1. Oddball in a dynamic context 

Oddball could be adapted to be a feature-based method [5]. The main idea is to monitor 

a set of selected graph properties and flag the timestamps and their corresponding snap-

shots where the value change of the properties exceed a predefined threshold. 

“The general approach in detecting anomalous timestamps in the evolution of dynamic 

graphs can be summarized in the following steps: 

1. Extract a summary from each snapshot of the input graph. 

2. Compare consecutive graphs using a distance or similarity function. 

3. When the distance is greater than a manually or automatically defined threshold, 

characterize the corresponding snapshot as anomalous.” [5] 

Oddball works with the building blocks of ego networks. Thus the summary extracted 

from snapshots would be the set of properties calculated for each ego network. In case of 

numeric properties – such as the number of edges or nodes – the difference of the old and 

new values would be an adequate distance measure. A manual threshold can be drawn 

based on the nature of the properties and the size of the ego networks. 

In a static context, outlier detection algorithms ideally would scale linearly with the size 

of the input graphs (number of edges, or nodes). In a dynamic context, these algorithms 

should also be linear on the size of changes of the input graphs. Running Oddball repeat-

edly on every small change in the input graph would soon run into scalability and runtime 

walls. We propose a set of basic events to which network evolution can generally be 

decomposed to: 

 Addition / Removal of an edge 

 Addition of a node that connects to the existing graph with (a few) edges 

 Removal of a node and all its existing connection to other nodes 

It is essential for the algorithms to handle these events efficiently in order to be applicable 

in practice. Oddball would generally react to these in the following way. 
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Event Event handling 

Edge addition 

or removal 

The ego network properties of the nodes at the endpoints of the in-

serted/removed edges have to be updated. 

Node addition 
A new set of properties is created for the new ego network. The ego 

networks of the new node’s neighbors have to be updated. 

Node removal 
Properties of the node’s ego network is deleted. The ego networks of 

the deleted node’s neighbors have to be updated. 

Note that there are certain graph properties that require more than the update of the vicin-

ity of the change. For instance, removal of a highly connected node could affect the ec-

centricity of nodes far away from the removed node. When operating with these proper-

ties, further analysis of the problem is required. 

6.2. SCAN in a dynamic context 

SCAN could be adapted to be a community or clustering-based method. The main idea 

is, “instead of monitoring the changes in the whole network, [we] monitor graph commu-

nities or clusters over time and report an event when there is structural or contextual 

change in any of them.” [5] 

SCAN depends on two initial properties (ε, µ) and produces a classification of nodes into 

clusters, hubs and outliers. Over time, both the initial properties and the classification 

may be subject to change. The initial properties may have to be re-tuned, therefore a pe-

riodic update of the parameters may be conducted to keep them attuned to the network. 

The adjustment could be fired by different triggers, such as the elapse of predefined length 

of time, or the occurrence of a certain number of graph object changes. 

SCAN would react to the basic events in the following way: 

Event Event handling 

Edge addition  

The connectivity of the nodes on the endpoint has to be re-examined. 

Depending on the parameters and their neighborhood, they might 

form a new small cluster, or merge two already existing clusters. 

Edge removal 

The connectivity of the nodes on the endpoint has to be re-examined. 

If they were part of a small cluster, that cluster may have to be re-

moved. 

Node addition 
Based on the classification of the inserted node’s neighbors, the node 

may be classified as a cluster member, hub, or an outlier. 

Node removal 

The connectivity of the deleted node’s neighbors have to be re-exam-

ined. An existing cluster may disappear, rendering the previously 

node members to be either outliers as hubs. An existing cluster may 

also be split in two. 
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Unlike Oddball, which may operate with non-local graph properties, SCAN is capable of 

handling all the basic events by re-classifying nodes exclusive to an affected graph area. 

The reason is that SCAN builds the clustering on structural connectivity. 

Once the clustering is adaptive to the dynamic context, SCAN can provide the hubs and 

outliers that appeared or vanished at a certain timestamp. 

6.3. Autopart in a dynamic context 

Autopart – similar to SCAN – could also be adapted to be a community or clustering-

based method. In contrast to Oddball and SCAN, the event handling cannot be narrowed 

down to the adjustment of aggregated properties, or re-classification of a restricted area 

of the graph. The information theory driven algorithm, that once finished and produced a 

final partitioning, has to be resumed. 

However, what can and should be utilized from a previous running of the algorithm is the 

partitioning of the adjacency matrix. Following the removal of graph objects, the nodes 

will be re-ordered according to the adjusted block properties. Addition of a new node 

could be handled by inserting the node into a random existing group and the algorithm 

could be resumed to see where it moves the newly inserted node. 

For each timestamp and its corresponding snapshot of the graph, Autopart provides the 

block whose edges diminish the compression efficiency the most. 
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7. Summary and conclusions 

We addressed the problem of anomaly detection in graphs. The problem was approached 

pragmatically: we selected three fundamental outlier detection techniques, and applied 

them on a diverse range of real-world network datasets. The networks were assembled 

from various domains of online discussion forums, social networking services, spatial 

road mappings and market basket analysis. Building on the different unique characteris-

tics of these domains, we evaluated the networks with respect to the concept of small-

world phenomenon, also known as the six degrees of separation, and the scale-free prop-

erty, a structure attributed to evolution following preferential attachment. In addition, we 

summarized the essential graph-centric properties [5] for comparing network datasets. 

For each dataset, we defined outliers in respect of its domain. We aimed to identify opin-

ion leaders and spammers in a discussion community; users bridging multiple, but not 

committing to a single of friendship circles in a social network; intersections that connect 

an unusually high number of road sections; and finally, purchases that contain politically 

contrasting books in a basket network. 

The three techniques employed to the detection of the predefined anomalies were feature, 

network structure, and information theory driven: Oddball, SCAN, and Autopart, respec-

tively. Oddball and SCAN targeted node outliers, and Autopart located edge outliers. 

Oddball detected visually conspicuous, select outliers in all networks. It identified espe-

cially active users among the forum commenters. In order to further classify these as ei-

ther opinion leaders, or spammers, deeper analysis is required. A possible way for that is 

to embed the characteristics proposed in work [64] that differentiate spammers from reg-

ular users. Oddball also located high-degree intersections of the road network. Its straight-

forwardness makes it a highly effective, easily applicable technique. 

SCAN found hubs positioned on the border of densely connected graph parts. Although 

the results are outputted quickly, their high numbers rule out case-by-case examination. 

We combined SCAN with Oddball to focus on the particularly interesting cases. This 

proved its usefulness in the social network, where users with potentially numerous weak 

ties were discovered. 

Autopart marked compression-reducing edges in the basket network. Its frequent matrix 

operations and complexity require carefully chosen data structures to make it scalable. 

Although this technique also produces too many outliers for a case-by-case analysis, it 

provides a general overview of them in the feasibly visualizable partitioned adjacency 

matrix. 

Finally, we delineated the possible extension of the algorithms to a dynamic context. 
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7.1. Future work and possible improvements 

The parameter estimation of SCAN were mostly carried out according to the authors’ 

suggestions and repeated measurements. Work has been conducted toward the automatic 

tuning of 𝜀 [65] which could be imported into the current implementation for a more 

refined method of parameter assignment. 

Moreover, SCAN could be utilized to improve on Autopart. In a combination of the two 

algorithm, SCAN – which scales more efficiently for large graphs – could provide the 

initial cluster count 𝑘 for Autopart. The reason k is set to 1 in the beginning is that Au-

topart aimed to remain parameter free. However, the computation cost in turn is really 

high (𝑂(𝑒 𝑘∗2)) which in practice could be substantially reduced by providing an estima-

tion of lower bound for 𝑘∗. 

Our discussion network contains many attributes that have yet to be fully exploited. The 

dates on the individual comments allow for analysis of dynamic graphs. The registration 

dates of forum users enables the observation of user life cycles. The ratings, like and 

dislike scores of comments open up a new dimension on response quality that could reveal 

insights without reading all the comment text themselves.  

Could the emergence of new community structures be spotted in their development? What 

are the typical activity patterns exhibited by newcomers? Are opinion leaders distinguish-

able by rating reputation alone? 

These are questions that guide in directions worth exploring. 
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Appendix 

Tables pertaining to the parameter tuning of SCAN 

µ\ε 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 

2 0.332 0.352 0.358 0.364 0.364 0.372 0.374 0.369 0.367 0.357 0.350 

3 0.318 0.338 0.344 0.350 0.348 0.356 0.356 0.350 0.346 0.336 0.327 

4 0.312 0.327 0.332 0.341 0.337 0.340 0.339 0.331 0.329 0.311 0.302 

Social network: clustering performance score of varying (ε, µ) 

feature \ µ 2 3 4 

#clusters 1937 1212 930 

#hubs 3004 2808 2705 

#outliers 2989 4635 5892 

#members 20464 19014 17860 

Social network: Number of hubs, outliers and cluster members for varying parametriza-

tion (𝜀 = 0.62) 

feature \ ε 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64 0.66 0.68 0.7 

#clusters 1449 1567 1651 1755 1803 1875 1937 1990 2047 2032 2087 

#hubs 917 1221 1451 1805 2237 2573 3004 3449 3900 4338 4696 

#outliers 1656 1851 2057 2191 2473 2676 2989 3376 3657 4253 4709 

#members 23884 23385 22949 22461 21747 21208 20464 19632 18900 17866 17052 

Social network: number of hubs, outliers and cluster members for varying parametrization 

(µ = 2) 

feature \ ε  0.05 0.1 0.15 0.2 0.25 

#clusters 30 191 818 1348 1154 

#hubs 0 0 166 1135 1486 

#outliers 1158 4654 7007 7988 9269 

#members 13951 10455 7936 5986 4354 

Discussion network: number of hubs, outliers and cluster members for varying parametri-

zation (µ = 2) 

  0.4 0.45 0.5 0.55 0.6 

#clusters 1 1180 1194 4116 3978 

#hubs 0 612 618 1498 1248 

#outliers 1 1122 1123 3920 7879 

#members 18262 16529 16522 12845 9136 

Road network: number of hubs, outliers and cluster members for varying parametrization 

(µ = 2) 
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