
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Declarative Specification of
Domain Specific Visual Languages

Master’s Thesis

István Ráth

Supervisor:

Dr. Dániel Varró
assistant professor

Budapest, 19 May 2006

I would like to thank Dr. Dániel Varró for his continued support, friendly advice, and enthu-
siasm. I am also very thankful to my friends and colleagues, Dávid Vágó and András Schmidt,
without whose work my research would have been impossible. I would also like to thank all other
colleagues and friends who participated in the VIATRA2 project by providing valuable testing and
feedback.

Nyilatkozat

Alulı́rott Ráth István, a Budapesti Műszaki és Gazdaságtudományi Egyetem műszaki infor-
matika szakos hallgatója kijelentem, hogy ezt a diplomatervet meg nem engedett segı́tség nélkül,
saját magam készı́tettem, és a diplomatervben csak a megadott forrásokat használtam fel. Minden
olyan részt, melyet szó szerint, vagy azonos értelemben de átfogalmazva más forrásból átvettem,
egyértelműen a forrás megadásával megjelöltem.

Ráth István

Összefoglaló

Napjainkban a modell bázisú szoftverfejlesztési paradigma az iparban széles körben elfogadott
módszertan. Ez az elképzelés a fejlesztési folyamatot egy precı́z modellezési lépéssel kezdi,
általában UML alapokon. Az alkalmazás forráskódját ezekből a modellekből származtatjuk, auto-
matikus kódgeneráló eljárások segı́tségével.

Az ipari tapasztalatok azt mutatják, hogy az UML általános elemkészlete nem minden eset-
ben alkalmas az alkalmazási célterület (domain) speciális igényeinek maradéktalan kielégı́tésére.
Továbbá, sok esetben fontos, hogy a rendszert egyszere több nézőpontból tervezhessük, minden
aspektusban a legmegfelelőbb modellezési nyelv használatával. Az UML új, 2.0-ás változata is
ezt a filozófiát követi: minden diagramtı́pus felfogható egy önálló grafikus domain specifikus mo-
dellezési nyelvként, emellett további nyelvekkel is kiegészı́thetjük az alapkészletet. A jelenlegi
modellezési eszközök (pl. az Eclipse projekt részeiként elérhető EMF és GEF) csupán alapvető
támogatást nyújtanak az új nyelveket támogató eszközök készı́téséhez, ezért egy-egy új grafikus
nyelv kifejlesztése drága és lassú, valamint a már elkészı́tett elemek újrahasznosı́tása gyakran
problémákba ütközik.

A domain specifikus modellezési nyelvek alkalmazásának legfontosabb aspektusai a követ-
kezők: (i) az egyes nyelvek közötti átjárás biztosı́tása (fordı́tás), valamint (ii) az egyes részmodell-
ekből a globális és koherens rendszermodell származtatása. Mindkét kihı́vásra kézenfekvő válasz
a modelltranszformációs technológia alkalmazása, azonban az elérhető eszközök még a fejlesztés
korai fázisában vannak. A jelenlegi modellezési keretrendszerek további, közös hiányossága a gra-
fikus megjelenı́tés absztrakt szintakszishoz kötése. Bár az absztrakt és konkrét szintakszis a nyelv
két különböző metaszintjét képviselik, az elérhető eszközök esetében a diagramok csupán az absz-
trakt modellek (felhasználó által meghatározott) részeit jelenı́tik meg. Ez egyszerű nyelvek esetén
elfogadható megoldás, azonban összetett rendszermodellezésnél a bonyolultság kezelhetetlenné
válhat. Ezért szükséges az absztrakt és konkrét szintakszis minél széleskörűbb szétválasztása.

A diplomatervben bemutatom a ViatraDSM keretrendszert, amelyet Vágó Dáviddal közösen
terveztünk és fejlesztettünk. A rendszer formális és egységes támogatást nyújt a domain speci-
fikus modellezési nyelvek szerkesztőinek modell bázisú tervezéséhez, beleértve a szimulációs és
kódgenerátor funkciókat is. Legfontosabb tervezési célkitűzésünk a minél széleskörűbb újrafel-
használhatóság, a több nézőpontú tervezés és nyelvközi transzformációk támogatása volt.

Önálló munkám legfontosabb eredményei a következők:

• kiterjesztettem a ViatraDSM rendszer többnézőpontú modellezést támogató komponenseit,
ı́gy a rendszer támogatja több modellezési aspektus integrálását metamodell-cı́mkézési és
transzformációs technikákkal;

• kifejlesztettem a keretrendszer megjelenı́tési funkcióit, amelyek támogatják az absztrakt és
konkrét szintakszis metamodell-szintű szétválasztását, a két réteg közötti kétirányú megfe-
leltetés segı́tségével.

Az önálló labor és a diplomatervezés során végzett munkánk eredményeképpen a Budapesti
Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszékén
fejlesztett VIATRA2 modelltranszformációs keretrendszer 2005 szeptemberétől hivatalosan az Ec-
lipse Generative Model Transformers projekt része.

Abstract

Nowadays, the model based development paradigm has gained considerable acceptance within
the software development industry. This paradigm begins the development process with a precise
modeling step, usually based on UML. Application source code is generated from these models
using automated code generation technology.

Industrial experience with model driven development shows that UML’s general concepts do
not always fulfill the special requirements of the application’s target domain. Moreover, in many
cases it is practical to design a system using multiple perspectives, with the most appropriate do-
main specific language being used for each modeling perspective. Even UML 2.0 follows this
philosophy: each of its diagrams can be considered a (graphical) domain specific language (DSL),
but it can also be extended to support new languages for modeling in a special domain. Present
tools (e.g. Eclipse’s EMF and GEF) only provide basic support for creating DSL tools, thus the
development of complex and visual domain specific languages is expensive, and existing solutions
are difficult to reuse.

The most critical aspects of utilizing domain specific language technology are: (i) providing
support for translation between DSLs, and (ii) generating a global and coherent system model
from small domain specific submodels. Both of these problems should typically be solved using
automated model transformations; existing tools, however, have not yet progressed beyond devel-
opment prototype status.

A common problem of present day tools is a simplistic approach to graphical representation.
While abstract and concrete syntaxes represent different levels of abstraction, current implemen-
tations do not allow the language engineer to customise the visualisation of modeling languages
independently of the internal representation. This is acceptable for simple domains, however for
complex systems engineering a more flexible approach is necessary.

In this thesis, I present the ViatraDSM framework, designed in co-operation with Dávid Vágó,
which provides uniform and formal support for creating editors, model transformations, simula-
tors and code generators for domain specific visual languages. This framework was designed to
ensure reusability, and support multi-domain modeling and inter-domain translations.

My most important results are the following:

• I extended the capabilities of the ViatraDSM framework to support the multi-domain model-
ing of complex systems using light-weight modeling and model transformation approaches;

• I developed the presentation layer of the ViatraDSM framework to support the metamodel-
level separation of the abstract and concrete syntax modeling layers, facilitating a bi-directional
mapping based on a metamodel specification.

Based on our efforts, the VIATRA2 system, developed at BUTE’s Department of Measurement
and Information Systems, officially became part of the Eclipse Generative Model Transformers
subproject as of September, 2005.

Declarative Specification of Domain Specific Visual Languages István Ráth

Contents

1 Introduction 10
1.1 Models in software engineering . 10
1.2 The evolution of approaches . 11

1.2.1 CASE . 11
1.2.2 UML . 11
1.2.3 Model Driven Architecture . 12

1.3 Problems with MDA . 13
1.3.1 Domains in MDA . 13
1.3.2 Transformations in MDA . 14

1.4 Domain-specific modeling . 15
1.4.1 Motivation for DSM . 17

1.5 MDSE = MDA + DSM . 17
1.6 ViatraDSM: a tool supporting MDSE . 18
1.7 Objectives . 19

2 The State of the Art of Language Engineering 21
2.1 Goals . 21

2.1.1 Language engineering . 21
2.1.2 Domain integration . 22

2.2 Basis of comparison . 22
2.2.1 Language engineering criteria . 23
2.2.2 Integration criteria . 24
2.2.3 Architectural properties . 24
2.2.4 Typical workflow . 25

2.3 Commercial products . 25
2.3.1 MetaCase . 25
2.3.2 Microsoft DSL Tools . 28

2.4 VMTS . 31
2.5 Eclipse . 32

2.5.1 The Eclipse Integrated Development Environment 32
2.5.2 Eclipse Modeling Framework . 33
2.5.3 Graphical Editing Framework . 33
2.5.4 Domain-specific editors with EMF and GEF 35
2.5.5 Eclipse GMF . 36
2.5.6 openArchitectureWare . 37
2.5.7 Tiger . 40

2.6 Summary . 41
2.7 Our approach . 44

7

Declarative Specification of Domain Specific Visual Languages István Ráth

2.8 Example: Petri Net . 48

3 Interpreter-based model transformation in VIATRA2 49
3.1 Metamodeling: Definition of Abstract Syntax 49

3.1.1 Visual and Precise Metamodeling . 49
3.1.2 The VTML language . 51

3.2 The VTCL language . 52
3.2.1 Graph patterns . 52
3.2.2 Graph transformation rules . 54
3.2.3 Control Structure . 56

3.3 VIATRA2 Architectural overview . 58
3.3.1 The VIATRA2 framework . 58
3.3.2 The GTASM interpreter . 59

3.4 Summary . 60

4 The ViatraDSM Framework 61
4.1 Architecture . 61

4.1.1 Editor generation or runtime framework? 61
4.1.2 Domain specific graphical representation 64
4.1.3 Modeling . 64
4.1.4 Diagrams . 66

4.2 Implementation . 69
4.2.1 DSM framework and domain plugins 69
4.2.2 VIATRA2 as the model container . 71
4.2.3 Graphical representation . 73

4.3 Transformations, simulation and code generation 74
4.3.1 Requirements of transformation support 74
4.3.2 Describing transformations . 75
4.3.3 Running transformations . 75

4.4 User Interface . 77
4.4.1 Logical model view . 77
4.4.2 Diagrams . 80

5 Multi domain modeling 82
5.1 Introduction . 82
5.2 Domain integration . 82
5.3 Example: Enterprise Security Policies and UML’s Performance Profile 83
5.4 Concepts for multi-domain integration . 85

5.4.1 Transformation-based integration . 85
5.4.2 Metamodel-level integration by subclassing 85
5.4.3 Model-level integration by multiple instantiation 86

5.5 Multi-domain modeling in ViatraDSM: An example 87

6 Mapping between abstract and concrete syntax 91
6.1 Introduction . 91
6.2 Architecture . 92
6.3 Techniques . 95

6.3.1 The presentation layer of ViatraDSM 95
6.3.2 Java interfaces . 97

8

Declarative Specification of Domain Specific Visual Languages István Ráth

6.3.3 The Mapping metamodel . 99
6.3.4 Using the mapping metamodel . 101
6.3.5 Interpreting mapping models . 102
6.3.6 GTASM transformations . 105

6.4 Summary and future improvements . 107

7 Case study: Petri net editor 109

8 Conclusions 122

9

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 1

Introduction

Models are projections of reality. In engineering, they are used to capture concepts related to
the engineer’s task: the product that is being designed, its environment, and processes that may
be involved in its life cycle. Models are attractive because they allow a problem to be precisely
grasped at the right level of abstraction without unnecessarily delving into detail.

1.1 Models in software engineering

In software development, models are used to represent data structures, communication between
agents, algorithms, or at a higher abstraction level, entities in a complex system, e.g. organisational
units or products in an e-commerce application.

The software development industry has been using high level models at the core of develop-
ment for more than a decade now, because it is widely believed that software systems of large
complexity can only be designed and maintained if the level of abstraction is set considerably
higher than that of conventional programming languages. On the other hand, computers can only
operate at the lowest possible level of abstraction (machine code consisting of elementary oper-
ations and data primitives), thus models need to be translated into the language that the target
platform can understand and run. By platform I mean the low level software and hardware ar-
chitecture that executes application code (which includes software libraries, operating systems, a
computer architecture, or even a virtual machine with a runtime framework, such as Sun’s Java or
Microsoft’s .NET).

For low level models, this translation is usually called compilation (in this context, a pro-
gramming language construct, i.e. source code is also considered a model); while for high level
models, the term model transformation is frequently used. This is traditionally called model-to-
model transformation. In contrast, a special case of model transformation is referred to as code
generation, where source code is generated from a (graphical) model, using a code generator
(model-to-code transformation).

The model based software development paradigm is based on the idea that the developer
should work with high abstraction level models during most of the development cycle. For this
to work in practice, model transformations are required. Source code, the ’traditional’ product of
software development, should be generated to the largest possible extent, to minimize the amount
of business logic that is outside of the scope of modeling, and is only represented by handwritten
code.

10

Declarative Specification of Domain Specific Visual Languages István Ráth

1.2 The evolution of approaches

1.2.1 CASE

Whilst all aspects of the software development process could be supported by software tools,
computer aided software engineering (CASE) tools are usually used to assist software design and
analysis. Historically, CASE emerged during the 1980’s, when many software development com-
panies realised that meeting increased demand for high quality and complex software required
more sophisticated development methods than those used previously. These tools arose out of
developments such as Jackson Structured Programming and the software modelling techniques
promoted by researchers like Ed Yourdon, Chris Gane and Trish Sarson (SSADM: Structured
Systems Analysis and Design Methodology). CASE is a very broad concept, and in that sense
even modern integrated develoment environments, such as Eclipse, or Visual Studio can be con-
sidered CASE tools. In this historical context, however, the term ’CASE tool’ refers to the earliest
programs designed to assist software development and analysis.

The problem with early CASE tools stems from the fact that they lacked a common approach.
Although the methodologies they were built to support shared similar concepts, on the implemen-
tation level they differed substantially. Due to the lack of a common graphical notation system,
even development documentation was hardly reusable.

1.2.2 UML

The Unified Modeling Language was conceived to provide a common framework for specifica-
tion, modeling, and documentation in the software development process. In many senses, it was
a spectacular success, because it established a visual, easy to use notation system which was
comprehensive enough to capture all major aspects of software engineering. Today, UML is the
industry standard for modeling and specification. It’s use is not restricted to modeling software,
it is also widely used for business process modeling, organizational structure modeling, and even
hardware design. UML represents a compilation of best engineering practices which have proven
to be successful in modeling large, complex systems, especially at the architectural level.

History UML was developed by Grady Booch, James Rumbaugh, and Ivar Jacobson. It was
first standardized in 1997 under the supervision of the Object Management Group, a consortium,
including industry heavyweights such as IBM, Hewlett-Packard, Apple Computer, and Sun Mi-
crosystems, formed in 1989 to set standards in object-oriented programming and system modeling.
Along with the standardization of UML, the OMG’s most important work is CORBA (Common
Object Request Broker Architecture), an architecture designed to enable applications on heteroge-
nous platforms to interoperate using a common set of application programming interfaces (APIs),
communication protocols and information models. CORBA was a very ambitious project, but it
is a debated issue whether it can be considered successful. However, it fits well into the pattern
of technologies promoted by the OMG: all are fairly large and complicated, of in-width nature,
trying to achieve very ambitious goals by being ”everything to everyone”.

Aspects UML handles three domains of system modeling: requirement, static, and dynamic
models. Requirement modeling employs concepts which are related to how the system interacts
with its surroundings (Use Case Diagrams). Static modeling deals with the structure of the system,
and uses concepts such as classes, objects, attributes, operations, and associations (Class and De-
ployment Diagrams). Dynamic modeling captures the behaviour of the system with concepts like

11

Declarative Specification of Domain Specific Visual Languages István Ráth

activities, messages, function calls, states, concurrency, transitions (Activity Diagrams, Sequence
Diagrams, State Chart Diagrams).

Apparently, UML is intended to be a general-purpose modeling language, which is indepen-
dent of the application domain - even if some of the diagrams evolved from languages already
being used before in certain domains (e.g. statecharts in embedded systems).

1.2.3 Model Driven Architecture

The Model Driven Architecture (MDA) is OMG’s newest approach to model-based software
development. MDA is essentially an approach to model-based software development utilizing
OMG’s flagship techonogies, UML, the Meta Object Facility (MOF), XML Metadata Interchange
(XMI), and the Common Warehouse Metamodel (CWM).

MDA is a visionary concept: it is a model-based software development paradigm to support
evolving standards in application domains as diverse as enterprise resource planning, air traf-
fic control and human genome research; standars that are tailored to the need of these diverse
organizations, yet need to survive changes in technology and the proliferation of different kind
of middleware. The OMG Model Driven Architecture addresses the complete life cycle of de-
signing, deploying, integrating, and managing applications as well as data using open standards.
MDA-based standards enable organizations to integrate whatever they already have in place with
whatever they build today and whatever they build tomorrow[45].

Design goals MDA was designed with the following goals in mind:

• Portability and reusability, increasing application reuse and reducing the cost and complex-
ity of application development and management.

• Cross-plaform interoperability, using rigorous methods to guarantee that standards based
on multiple implementation technologies all implement identical business functions.

• Platform independence, greatly reducing the time, cost and complexity associated with re-
targeting applications for different platforms.

• Domain specificity, through domain-specific models that enable rapid implementation of
new, industry-specific applications over diverse platforms (the term domain will be ex-
plained in detail in 1.4).

• Productivity, by allowing developers, desingers and system administrators to use languages
and concepts they are comfortable with, while allowing seamless communication and inte-
gration across the teams. Moreover, a significant reduce in costs is attained by models of
the target application that can be directly tested and simulated.

Development steps As it can be seen on Figure 1.1, MDA emphasizes the clear distinction
between Platform Independent Models (PIM) and Platform Specific Models (PSM), thus, software
development in MDA is envisioned as a three-step process. First, the Plaform Independent Model
is designed, which is supposed to use modeling concepts which are not platform specific. The
PIM is a pure UML model, with constraints specified in the Object Constraint Language (OCL),
and behavioral semantics described in Action Semantics (AS) language.

The second step is to generate a Plaform Specific Model, which contains additional UML
models, and represents an implementation of the system under design which can run on the target
platform. The transition between PIM and PSM should typically be facilitated using automated

12

Declarative Specification of Domain Specific Visual Languages István Ráth

Platform
Independent

Model

CORBA
model

J2EE
model

Other
model

CORBA J2EE Other
Legacy

application

Reverse engineering

Platform
Independent

Model

Platform
Specific
Model

Software
application

Model
transformation

Code
generation

Figure 1.1: Model Driven Architecture

model transformation technology. The most important keyword of this phase is ”standard map-
pings”, i.e. it is very important that this transformation step be agile, meaning that it should require
the smallest possible amount of human interaction (otherwise, there is no point in wasting lots of
time on platform independent designs).

Finally, application code is generated from the Platform Specific Model. Again, code gen-
eration should be as extensive as possible, in order to minimise the amount of necessarily slow
and error-prone manual coding. This, in turn, requires PSMs that are expressive enough, not only
from a static, but also from a dynamic point of view of the system, to produce all of the application
code.

1.3 Problems with MDA

1.3.1 Domains in MDA

In MDA, initial system design was carried out on the first, plaform independent level. ”Domain
knowledge” appears here as UML profiles, or applied in-house design patterns (general, best-
practice solutions to common domain-specific problems). The platform specific model was au-
tomatically generated using a standard mapping. As PIM is one level of abstraction higher than
the PSM, for the PSM to be as comprehensive as possible, all necessary information should be
provided in these standard mappings. This information, in MDA terms, is platform-specific, rather
than domain-specific. Therefore, as MDA is based on UML, the success of an MDA design highly
depends on how expressively a domain can be modeled using a general-purpose modeling lan-
guage, on a platform-independent level.

From the late 1990’s, UML rapidly gained industry-wide acceptance, many software houses be-
gan to experiment with using UML not only for documentation, but for real model-driven software
development. New technologies, such as extensive code generation and model verification were
found to be difficult to implement with UML models. At the end of the decade, several shortcom-
ings in UML have been pinpointed, in surveys such as [24]. The most important weaknesses of
UML are identified in [46] as:

...its imprecise semantics, and the lack of flexibility in domain specific applications. In
principle, due to its in-width nature, UML would supply the user with every construct

13

Declarative Specification of Domain Specific Visual Languages István Ráth

needed for modeling software applications. However, this leads to a complex and
hard-to-implement UML language, and since everything cannot be included in UML
in practice, it also leads to local standards (profiles) for certain domains.

Thus, the two key points, where UML needed improvement, were: (i) precise semantics, and
(ii) flexibility to integrate domain-specific concepts.

The Object Management Group has partially succeded in identifying these problem areas,
as considerable efforts have been made towards an in-depth evolution of the UML standard for
version 2.0. According to these ideas, UML 2.0 would consist of a core kernel language (UML
Infrastructure 2.0), and an extensible family of distinct languages (UML Superstructure). Each
UML sublanguage would have its own (individually defined) semantics, which fundamentally
requires an appropriate and precise metamodeling technique.

Platform
Independent

View 1

CORBA
model

J2EE
model

Other
model

CORBA J2EE Other
Legacy

application

Platform
Independent

Models

Platform
Specific
Model

Software
application

Model
transformation

Code
generation

Platform
Independent

View 2

Platform
Independent

View n

Reverse engineering

Intermediate
models

Figure 1.2: Model Driven Architecture - in reality

1.3.2 Transformations in MDA

Such a metamodeling-based architecture of UML highly relies on transformations within and be-
tween different models and languages. In practice, transformations are necessitated for at least the
following purposes [46]:

• model transformations within a language should control the correctness of consecutive re-
finement steps during the evolution of the static structure of a model, or define a (rule-based)
operational semantics directly on models;

• model transformations between different languages should provide precise means to project
the semantic content of a diagram into another one, which is indispensable for a consistent
global view of the system under design;

• a visual UML diagram (i.e., a sentence of a language in the UML family) should be trans-
formed into its (individually defined) semantic domain, which process is called model inter-
pretation (or denotational semantics).

The crucial role of model transformation (MT) languages and tools for the overall success
of model-driven system development have been revealed in many surveys and papers during the

14

Declarative Specification of Domain Specific Visual Languages István Ráth

recent years. To provide a standardized support for capturing queries, views and transformations
between modeling languages defined by their standard MOF metamodels, the Object Management
Group is soon to issue the QVT standard.

QVT provides an intuitive, pattern-based, bidirectional model transformation language, which
is especially useful for synchronization kind of transformations between semantically equivalent
modeling languages. The most typical example is to keep UML models and target database models
(or UML models and application code) synchronized during model evolution in a bidirectional
way.

However, there is a large set of model transformations, which are unidirectional by nature,
especially, when the source and target models represent information on very different abstraction
levels (i.e. the model transformation is either refinement or abstraction). Unfortunately, the current
QVT Mapping Language is far less intuitive and easy-to-use in case of unidirectional transforma-
tions.

The VIATRA2 model transformation framework primarily aims at designing model transfor-
mations to support the precise model-based system development with the help of invisible formal
methods[4].

It is important to recognize that UML is intended to be the one and only language, a universal
standard. There are, however, domains where engineers either do not understand UML, or the
general concepts of UML are simply inappropriate for modeling effectively - in fact, they might
already have their own standard languages or tools which are.

1.4 Domain-specific modeling

What makes a model domain specific? A domain can be defined as the set of concepts and their
relations within a specialized problem field. This definition implies that all software is built to
solve domain-specific problems, since software engineering is all about providing software so-
lutions to problems in specialized problem fields (e.g. pharmaceutical, business processes, civil
engineering). Even software design is a domain in this sense. On the other hand, in software
design, the term application domain refers to a knowledge base that is outside of the scope of soft-
ware development. For example, if an application for managing a book shop is being designed, all
information that describes actual business processes and products, how they interact, what their
attributes are, etc. constitutes domain knowledge. Domain knowledge can only be obtained from
domain experts, and it is therefore one of the most valuable assets of software development.

Domain-specific (programming) languages (DSLs) are specialised languages, suitable for ef-
ficiently writing programs to solve problems that are specific to an application domain. In contrast
to general-purpose programming languages, DSLs are much more expressive and comprehensive
for the experts in their own domain. For example, when using SQL, it is very easy to write database
queries, but it is impossible to implement an operating system kernel. In the C language, it is pos-
sible to do both, but a single line of SQL code is likely to correspond to tens, even hundreds of
lines of C code.

Intentional Programming (IP) by Charles Simonyi [41], shares similar concepts with domain-
specific programming languages. However, IP is more like a bottom-up approach, in contrast to
the top-down nature of DSLs, where the languages are specifically tailored to the needs of the
target domain. IP was envisioned to be an evolution of general-purpose programming languages.

15

Declarative Specification of Domain Specific Visual Languages István Ráth

In IP, the level of abstraction is raised by introducing to notion of intention, the abstract concept
behind common programming language constructs such as iteration, recursion, variable, function
calls etc. Intentional programmers create source code by glueing together their intentions into
a coherent logical structure which represents the functionality of the system under design. This
approach combines the flexibility of textual languages with the visual and abstract nature of model-
based development.

Aspect-oriented Programming (AOP) by Gregor Kiczales et al[21], was also meant to be an
evolution of conventional procedural and object-oriented programming paradigms. However, in-
stead of raising the level of abstraction above the source code level, AOP is a horizontal approach.
In AOP, the most important goal was the separation of concerns by splitting the logical structure
of application source code into aspects, which are later joined at the designated join points by an
automated process called weaving.

Note that both IP and AOP are targeted towards programmers, not domain experts, which is a
crucial difference.

Domain-specific modeling languages Analogously to domain-specific textual languages, domain-
specific modeling languages are modeling languages which operate with elements and rules that
are special to the target domain. For example, if one wants to design user interfaces for mo-
bile phones, domain-specific model elements could include Menu, MenuItem, DialPad, SMS etc.
Domain-specific modeling languages are, just as DSLs, much more expressive in their domain,
than general-purpose modeling languages, such as the Unified Modeling Language (UML).

Domain-specific modeling (DSM) is a new approach to model-based software development.
In contrast to IP and AOP, DSM is a top-down and vertical approach: instead of trying to create
high abstraction level ”interfaces” to source code, DSM gives the designer the freedom to use
structures and logic that is specific to the target application domain, and thus, completely indepen-
dent of programming language concepts and syntax. Similarly to MDA, DSM is a model-based
approach, however, while MDA emphasizes the importance of a single and universal modeling
language at the center of the development process, proponents of domain-specific modeling argue
that flexibility and ease of use by domain experts is more important than sticking to (pure) UML.

PlatformPlatform

Generated code

DS Model
Generated code

PS Model
Domain

framework

PI Model

DS Model

DSM DSM
with

framework

MDA

Level of abstraction Code

Platform

Figure 1.3: The difference between various DSM and MDA appoaches

As it can be seen on Figure 1.3, in current domain-specific modeling technology, source
code is generated directly from domain-specific models, instead of going through the platform-
independent and platform-specific abstraction levels found in MDA. While it is often claimed that

16

Declarative Specification of Domain Specific Visual Languages István Ráth

it is exactly this difference which makes 100% code generation possible [19], this approach can
make the implementation of platform-specific code generators difficult. Thus, recent DSM ap-
proaches, such as the one presented in [38], emphasize the importance of a domain framework,
which makes code generation easier by ensuring portability across various platforms (thus, this
domain framework has to be implemented on various architectures, similarly to the Java or .NET
idea).

1.4.1 Motivation for DSM

If the model-based software development paradigm is to succeed on a wider scale, effective meth-
ods for rapid, productive and agile modeling and code generation need to be established.

As it has been previously concluded, UML is a general-purpose modeling language, and as
such, it is rather limited in integrating domain-specific modeling concepts. Recent articles, such
as [14], see domain-specific modeling languages as ”...the next step towards developing a tech-
nology for software manufacturing”. Others, like [19], claim that a pure DSM-based approach
consistently results in productivity increases of 500-1000%, compared to the mere 35% found
with MDA (interestingly, all the articles refer to one and the same study[6]). Steven Kelly, the
Chief Technical Officer of MetaCase, a company that produces a popular DSM framework, re-
cently wrote[20]:

While good, that [35% increase in productivity] is far from the 500%-1000% con-
sistently found with DSM. MDA proponents envisage higher forms of MDA incorpo-
rating elements of DSM, and these may offer some more hope. In these, the base
UML can be extended with domain-specific enhancements, or even replaced with new
MOF-based metamodels. However, experiences with the former have found current
tools lacking the necessary extensibility, and no tools support the latter.

1.5 MDSE = MDA + DSM

From the author’s perspective, MDA and DSM are complementary concepts rather than rivals.
Both emphasize the importance of reusable and verifiable design based on models of a high ab-
straction level. What OMG seems to fail to realise with MDA is that in order to integrate develop-
ment from the widest possible range of application domains into a single framework, the standard
needs to be as flexible as possible on the highest abstraction level (PIM), while being as precise
as possible concerning the automated transformations between the abstraction levels. If these two
requirements are met, it does not really matter what modeling language is used for documentation
(UML was a good choice in this respect).

The idea behind the results presented in this thesis is a synthesis of the Model Driven Archi-
tecture and Domain-specific Modeling approaches based on a robust model transformation frame-
work: Multi-Domain Systems Engineering (MDSE) can be considered an MDA variant, but also
a DSM variant. As it can be seen on Figure 1.4, our approach recognizes (i) providing support for
translation between domain-specific modeling languages, and (ii) generating a global and coherent
system model from small domain specific submodels as the most critical aspects of utilizing DSM
technology in MDA.

A domain-specific modeling environment is only effective if its visual languages are suffi-
ciently expressive, intuitive and easy-to-use. This is only possible if the system provides support
to all aspects of language engineering:

• Concrete syntax, so that designers can use familiar visual symbols;

17

Declarative Specification of Domain Specific Visual Languages István Ráth

Domain-
specific
View 1

CORBA
model

J2EE
model

Other
model

CORBA J2EE Other

Platform
Specific
Model

Software
application

Model
transformation

Code
generation

Domain-
specific
View 2

Domain-
specific
View n

Intermediate
models

Domain-
Specific
Models

PIM

Figure 1.4: Model Driven Systems Engineering

• Abstract syntax, to make efficient and precise model transformations possible;

• Well-formedness rules, to integrate domain-specific constraints into high-level models;

• Dynamic semantics (simulation), to enable the designer to visualize the system as it interacts
with its environments;

• Transformations, to facilitate the automated translation of high-level models into a low-level
representation (PSMs, or application source code).

Additionally, it is important to emphasize that abstract and concrete syntax represent different
levels of abstraction. Therefore, a conceptual separation of these modeling layers is required to
ensure that abstract syntax can be optimised to the requirements of the modeling infrastructure
(e.g. low memory footprint, suitable structure for transformations, etc), without compromising
the end user’s ability to work with perspicuous and familiar-looking visual models of manageable
complexity.

1.6 ViatraDSM: a tool supporting MDSE

The ViatraDSM framework, a tool developed by Dávid Vágó and myself, is a general and flexible
domain-specific modeling and transformation environment, leveraging the model transformation
facilities of the VIATRA2 framework. Our approach enables the handling of all critical aspects
of language engineering (abstract syntax, concrete syntax, well-formedness constraints, model
simulation and transformations) within a single framework.

Our approach integrates a mathematically precise model transformation engine with an easy-
to-use domain-specific modeling interface, in order to:

(i) enable language engineers to design domain-specific languages utilising all aspects of lan-
guage engineering;

(ii) provide support for precise model-to-model and model-to-code transformations, using a
powerful domain-specific programming language;

18

Declarative Specification of Domain Specific Visual Languages István Ráth

(iii) integrate the system into an existing model-driven development infrastructure through im-
port and export capabilities;

(iv) so that domain experts can use an intuitive graphical user interface to create multi-domain
models with support for interdomain translations and simulation, seamlessly integrated into
a model transformation framework; thereby facilitating the automatic generation of docu-
mentation, low-level models, and application source code from high abstraction level mod-
els.

ViatraDSM was first introduced in a report by Dávid Vágó, András Schmidt and myself, titled
Automated Model Transformations in Domain Specific Visual Languages, which won first prize at
the Scientific Students’ Association conference (”Tudományos Diákköri Konferencia” in Hungar-
ian) in October 2005. Since then, the tool has matured: some of the theoretical background has
been revisited and new ideas and features were introduced.

1.7 Objectives

In the last semester, development work on both ViatraDSM continued; my research goals – and
the primary contributions of this thesis – were to develop the multi-domain modeling capabilities
and design and implement the presentation layer supporting the complete separation of abstract
and concrete syntaxes.

In this thesis, I present the following results:

• I evaluate the state-of-the-art of language engineering tools by comparing various academic
and commercial domain-specific visual environments (Chapter 2);

• I describe the theoretical background and goals of the ViatraDSM framework (Section 2.7)
as developed by myself, including:

– a method for the precise specification of domain-specific visual languages using a
high-level formal language;

– a proposal for the definition of the abstract syntax of these languages using visual and
precise metamodeling techniques;

– techniques to uniformly specify modeling constraints, model transformations, model
simulation and code generation by a combination of graph transformation and abstract
state machines.

• I overview the VIATRA2 framework, which provides the model transformation infrastruc-
ture for the ViatraDSM framework, including the modeling basics and the native textual
languages (Chapter 3);

• I discuss the design and implementation details of the ViatraDSM framework (Chapter 4),
developed in co-operation with Dávid Vágó;

• I describe the fundamentals for multi-domain modeling based on multiple aspects (designed
by myself), and discuss several techniques implemented in the ViatraDSM framework, by
Dávid and myself (Chapter 5);

19

Declarative Specification of Domain Specific Visual Languages István Ráth

• I propose multiple imperative and declarative techniques to facilitate the mapping between
the abstract syntax and concrete syntax model layers of visual languages (Chapter 6):

– I analyse the importance of the conceptual separation of abstract and concrete syntax
on various levels of abstraction (Sec. 6.2);

– I discuss my design targeting the complete, yet manageable, metamodel-level separa-
tion of abstract and concrete syntax representation as implemented in the ViatraDSM
framework (Sec. 6.3);

– I describe three different, but interoperable approaches and their implementation de-
tails (Sections 6.3.2, 6.3.3 and 6.3.6).

• I demonstrate the feasibility of our approach with the case study of a simple, but descriptive
example (domain-specific Petri net editor) (Chapter 7).

20

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 2

The State of the Art of Language
Engineering

2.1 Goals

Our approach, Multi-Domain Systems Engineering, intends to integrate the Model Driven Archi-
tecture and Domain-Specific Modeling development paradigms. The success of such an approach
is highly dependent on two key aspects: (i) domain language engineering and (ii) domain integra-
tion.

2.1.1 Language engineering

With models, we can capture static attributes, as well as dynamic behaviour, i.e. it is not only pos-
sible to describe the structure, but how this structure changes as the represented system operates.
To construct models, modeling languages are used. For textual languages, one can think of an
alphabet and a grammar. In this thesis, the term modeling language refers to a visual (graphical)
language. The rules and elements for modeling languages are defined by metamodels. These are
also models, constructed using a metamodeling language. A metamodeling language is defined
by the following features:

• Concrete syntax, which is a specification of all the visible features of a modeling language.
In textual languages, complex expressions in concrete syntax may be faster to write in a
compact form, but this also means that they can be difficult to read above a certain level of
complexity. In contrast, visual languages are generally easier to read, and, more importantly,
safe to write, because a good visual editor does not allow to create models with syntax
errors. (Note however, that semantic mistakes are much harder to eliminate - DSM tools
can be good at making such faults more apparent because these can be easier to detect on a
higher abstraction level).

• Abstract syntax defines the vocabulary of language concepts and how these can be com-
bined in models. The abstract syntax is also called the language metamodel. Apart from the
definition of language concepts and their relationships, metamodels also contain information
concerning taxonomy and ontology (abstraction and specialization). Metamodels are con-
structed using core metamodeling languages, which are one metalevel higher, and specify
what concepts can be used for language specification. An example of a core metamodeling
language is MOF.

21

Declarative Specification of Domain Specific Visual Languages István Ráth

• Well-formedness rules are constraints which must be satisfied by models. Typical exam-
ples are multiplicity constraints, aggregation (e.g. ”at most one parent for each model ele-
ment”), or language/domain specific constraints. In UML, such well-formedness rules may
be expressed as part of the model (multiplicity), or using a separate constraint description
language (OCL).

• Dynamic (operational) semantics, in contrast to the previous three features, models the
operational behaviour of language concepts. In design, simulators are just as important as
static descriptions because they allow the modeler to view the system as it will effectively
behave and interact with its surroundings, at a high level of abstraction.

• Transformations (Denotational/Translational semantics) specify how the abstract syntax
can be translated into a semantic domain (e.g. programming language). This is important
from a practical point of view, since models on their own are not very useful, they need to be
transformed to a lower level of abstraction so that the platform can execute the represented
system.

The special importance of transformations As it can be seen on Figure 1.4, our approach
integrates domain-specific models as various views of the plaform independent model structure. It
is also important to emphasize the possiblity of translations between these views, which makes it
possible to design one and the same system from different (requirement) domains (multi-domain
modeling). This is only possible if automated tool support is available to all five aspects of domain
specific metamodeling and model transformation. Current technology, however, only covers the
first three, with a separate code generator used for specifying denotational semantics. Simulation
(operational semantics) support is limited, as UML’s standardized solution, Action Semantics is
not precise enough, many tool providers experiment with complicated Application Programming
Interfaces, or other custom, non-intuitive techniques.

2.1.2 Domain integration

Some of present domain-specific modeling tools are custom solutions, not designed to be inte-
grated into an existing model-driven development architecture. In many cases, existing metamod-
els or code generators are hard to be reused. Moreover, although most DSM providers criticize
UML-based approaches, the reality is that UML is so widespead today that it simply cannot be
ignored. Thus, along with domain-specific code generators/serializers, support for UML export is
necessary as well.

2.2 Basis of comparison

As already discussed in 2.1, the usability of domain-specific visual languages in Model-Driven
Systems Engineering depends on how well DSM can be integrated into development processes.
This, in turn, stems from two key factors: (i) what aspects of language engineering can be used
to customize the DSM layer, and (ii) how can the DSM tools be seamlessly integrated into the
existing toolchain.

Although domain-specific modeling is not a new idea, a breakthrough such as UML’s rapid
adoption is still to come. However, there has been a consideable rise in interest as influential
software development houses realised the potential of DSM.

22

Declarative Specification of Domain Specific Visual Languages István Ráth

In the next section of the thesis, I give a brief cross-sectional view of the current state of the
art in DSM technology. I proceed roughly in a cronological order, comparing variouos approaches
using the following evaluation system:

2.2.1 Language engineering criteria

1. Concrete syntax

(a) Automated support for specifying the visual appearance of language elements, using
visual editors or templates (pre-defined visual elements for common concepts can
significantly speed up the creation of domain-specific editors.)

(b) Multi-domain visualization: Support for visualization of model elements from dif-
ferent domains in a single view. This is important because in many cases complex
systems need to be modeled in multiple domains, and it can be convenient to visualize
the various aspects in a single diagram.
An extended conceptualization of multi-domain modeling means that the same log-
ical instance of a model element can have attributes in multiple domains, meaning
that multi-domain models can be constructed and altered in multiple domain-specific
editors. For a more detailed explanation see Sec. 5.2.

(c) Diagram modeling support
The most important aspect of diagram modeling, apart from the possibilities to de-
scribe visual appearance in graphical editors, is the conceptual separation of logical
models and diagrams. As an example, in a typical UML modeling tool, the user sees a
tree-view based representation of all model elements, possibly arranged by some logic
(e.g. projects, solutions, or any kind of hierarchy). Diagrams are constructed by drag-
ging these model elements onto a canvas, or by using creation tools and drawing on
the canvas directly. However, the user decides what to visualize on a diagram: model
elements can exist without being represented on a diagram at all.
Diagram-model mapping means support for multiple concrete syntax representa-
tions, possibly using a custom mapping of model elements to diagram elements using
some flexible rule definiton language. This means that instead of sticking to the ”node
→ figure, edge → arrow” concept, the modeling software allows for more complex
mappings, e.g. displaying aggregate information in special diagram elements. This
technique requires a metamodel-level separation of the diagram (concrete syntax) and
logical (abstract syntax) models, by introducing a separate visualisation layer, where
diagrams are stored independently from logical models. However, since diagrams still
represent a projection of the logical modelspace, the editor must impose certain rules
that guarantee that there will be no inconsistency between models and their graphical
representation. For more details, see Chaper 6.

2. Abstract syntax
The core metamodeling approach of the modeling environment is important, since (i) it
should be as concise as possible to support mathematically precise transformations; (ii)
while being as flexible as possible to support integration of arbitrary (non-MOF/UML based)
models.

3. Well-formedness rules

(a) Static constraints: Modeling environments generally support simple static constraints
such as multiplicity or type-correctness at relationship endpoints.

23

Declarative Specification of Domain Specific Visual Languages István Ráth

(b) Language-specific constraints: These typically specify higher-level constraints such
as ”every model element has a unique name” etc. These constraints can be described
using a constraint descripton language or a special model transformation from the
modeling language to boolean values.

(c) Enforcement: Well-formedness constraints can be either enforced in an on-line fash-
ion, while the user is editing the model (in some cases, this is called syntax-driven
editing, whereby syntactically incorrect models cannot be constructed). The other
method, batch mode evaluation means that users are free to create models, and the
satisfaction of well-formedness constraints is evaluated at the user’s request - e.g. with
the model elements that violate constraints being highlighted.

4. Dynamic (operational) semantics
Support for model simulation at editing time. For example, if the system under design has
distinct states, a simulator could be used to visualize how the system variables change as a
state transition occurs.

5. Transformations (Denotational/Translational semantics)

(a) Model-to-model:
Support for translation between multiple domains. In the Multi-Domain Systems En-
gineering approach, systems can be modeled in multiple domains simultaneously. This
requires translations between models representing various domains.
Note that model simulation is also model-to-model transformation.

(b) Model-to-code: Code generators
Many programs provide template engines and a programming interface to traverse the
model space and generate formatted code output.

2.2.2 Integration criteria

1. Persistence
Support for storing models in relational databases, external model containers, various stan-
dard XMI/XML formats.

2. Documentation
Support for automated documentation generation, in various standars (UML for models,
JavaDoc for generated code, for example).

3. Advanced features
Support for the integration of DSM technology into the model-based development process
using run-time dynamic techniques, for examle a Web Service interface, or a relational
database backend.

2.2.3 Architectural properties

1. Generated editors or runtime framework
Many DSM frameworks use code generation to create domain-specific editors, while others
present a domain-specific view at run-time. The former approach is generally easier to im-
plement (and may be somewhat faster), while the latter is considered more agile, especially
for the language engineer, since changes in the domain metamodel immediately effect the
behaviour of the domain-specific editor without waiting for a (long) code regeneration to
finish.

24

Declarative Specification of Domain Specific Visual Languages István Ráth

2. Editor capabilites
This category is hard to approach objectively. Apart from standard graphical editing fea-
tures, such as move/resize/zoom/property grid, many tools support more advanced tech-
niques.

3. Accessibility
In this context, accesibility means how the tool can be tailored to the needs of a specific
domain. While in most cases a (visual) modeling-based approach is used for the definition
of at least the abstract syntax, some solutions provide extensive Application Programming
Interfaces (API) for the definition of code generators, simulators, etc. These APIs, while
definitely flexible, can also be considered rather cumbersome, especially in contrast to a
pure modeling-based approach.

2.2.4 Typical workflow

In this part, the typical workflow to create a domain-specific editor and an application code gener-
ator is described (as performed by the language engieer).

The results of the evaluation are summarized on Table 2.1.

2.3 Commercial products

2.3.1 MetaCase

Note: this short review of MetaCase technology is based on the official MetaCase homepage[27],
the official MetaEdit+ Technical Summary[28] and various publications by MetaCase employees
([38, 20]).

History MetaCase is a Finnish-American company involved in model-based development soft-
ware design since 1991. Their main product, MetaEdit+, dates back to 1995, and has won multiple
awards (Best Application Development Software at CeBIT ’95, Finnish National Prize for Inno-
vation in 2000, Best Commercial Tool at Net.Object Days / GPCE 2003). Nowadays, MetaEdit+
is regarded as the leading DSM implementation.

MetaEdit+ can be regarded as a proven, mature product, which makes it unique since all the
other implementations examined in this part of the thesis have not progessed beyond a prototype
status (with the possible exception of openArchitectureWare).

Architecture MetaEdit+ consists of three major components: (i) the Method Workbench for do-
main metamodeling, (ii) the MetaEdit+ Framework for modeling, and (iii) the Object Repository
server, which serves as the model container. MetaEdit+ is a multi-platform product: every com-
ponent has been ported to major operating systems including Microsoft Windows, Linux, Solaris,
and other commercial Unix variants.

Typical workflow The typical workflow is the following: (1) first, a domain language is
designed by the language engineer in the Method Workbench; (2) this language description is im-
ported into the MetaEdit+ Framework through the Object Repository, and used to create domain-
specific models by designers; (3) a code generator is constructed using a custom domain-specific
textual language; (4) documentation (reports) and application source code is generated from the

25

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 2.1: MetaCase MetaEdit+

models stored in the Object Repository using the pre-defined documentation generator and the
custom-made code generator. MetaEdit+ does not use code generation for domain-specific editors;
instead, the framework generates an interface from the domain language description at runtime.

Language Engineering support

Concrete syntax As MetaEdit+ is a commercial product with a relatively long history, consid-
erable effort was put into making the tool as user friendly as possible. Thus, this is the category
where MetaEdit+ is way ahead: with a built-in library for basic graphical elements, and an in-
tuitive Symbol Editor (for drawing and importing graphical symbols), users can design complex
concrete syntax elements without writing any code. Symbol elements can be conditional on prop-
erty values and can display values calculated by generators, allowing dynamic graphical behavior.
Commonly used symbols or parts of symbols can be stored in the Symbol Library for reuse.

Multi domain visualization MetaEdit+ appears to be restricted to editing in one domain per
project (but supports multiple views per domain).

Diagram modeling Apart from the traditional graphical views, MetaEdit+ offers the capa-
bility to view the same models as matrices, or tables, changing the view according to the users’
needs. However, MetaEdit+ lacks a separate diagram modeling layer, because representation is
always designed in strong correlation with the abstract syntax (i.e. logical model elements are
assigned a visual figure), therefore diagrams not separated from logical models.

Abstract syntax MetaEdit+ uses an own core metamodel, which basically describes a directed
graph with typed nodes and edges; nodes are called ’Objects’ and edges are called ’Relationships’.
Properties of arbitrary types can be assigned to both Objects and Relationships. Type constraints
for Relationship endpoints can also be specified.

26

Declarative Specification of Domain Specific Visual Languages István Ráth

Well-formedness rules Both static and language-specific well-formedness constraints are sup-
ported. With the ’Port Tool’, possible interfacing constraints when connecting objects can be
defined (although it is rather unclear how complex these constraints can be). MetaEdit+ identifies
rules inside and between models. For one modeling language you can define how its concepts can
be related to each other and how many connections (of certain type) are allowed between each
instance. For example, it may be defined that an instance of ’Initial State’ may have only one
triggering connection and that the instance must send the same notification event to at least two
places. This type of rule forces then all developers using MetaEdit+ to make correct definitions
for initial states. It is unclear whether all constraints are enforced during editing in an event-driven
manner (in effect making syntactic errors impossible), because it is also mentioned that it is possi-
ble to make reports which check the consistency of the models, which suggests a batch-mode type
constraint enforcement approach.

Dynamic semantics MetaEdit+ provides an API to read, create, and update model elements, as
well as control MetaEdit+ for scripting or simulation support. Moreover, a model-based approach
to simulation can also be used: with the ’Graph Tool’, ”it is possible to manage specifications
of whole modeling techniques, such as State Diagram and Component Diagram. Techniques are
composed of the Objects, Relationships and Roles defined with other tools, together with bindings
and rules on how these can be connected. Different techniques can be integrated with explosions,
decompositions and reusable modeling concepts.”

Thus, MetaEdit+ provides a mechanism for ”subtyping” your concepts with pre-defined dy-
namic semantics (e.g. State Machines), and the code generator will generate code based on the
generic template defined for the dynamic semantics description. However, customized model sim-
ulation support is NOT present in MetaEdit+, only some kind of code execution tracking mech-
anism is provided (which shows the ’Active State’, for example, if the generated source code
is step-debugged in a separate view). Note that available documentation on this topic is rather
unclear.

Transformations

Model-to-model MetaEdit+ was not designed to be a (mathematically precise) model-to-
model transformation system. Although the documentation mentions the possibility of creating
rules that define how the concepts of one modeling language can be related to concepts in another,
all publications suggest that MetaCase’s approach is based on the idea that code should be gener-
ated directly from domain-specific models, instead of going through several intermediate levels of
abstraction (e.g. PIM and PSM in MDA).

Model-to-code MetaEdit+ supports automatic code generation for predefined and user-defined
programming languages. The possibilities for automatically generating the code depend on the
methods used and target programming languages. Predefined code generators are available for
Smalltalk, C++, Java, Delphi (Object Pascal), SQL, CORBA IDL.

In MetaEdit+, a code generator is constructed using a domain-specific textual language[20],
based on a graph traversal approach.

Integration All the tools are integrated through the Object Repository, which maintains and en-
forces the consistency between the tools. Apparently, there is no support for external or relational
database model containers. MetaEdit+ offers pre-built reports for model analysis, checking and
documentation in Word, RTF, HTML, XML and XMI.

27

Declarative Specification of Domain Specific Visual Languages István Ráth

MetaEdit+ allows the user to build sophisticated tool integration between MetaEdit+ and other
tools. Alternative tool integration approaches include:

• Programmatic access to model data and MetaEdit+ functions via API

• Model importing and exporting as XML

• Command line parameters for automating MetaEdit+ operations

• Executing external commands via generators

With MetaEdit+, it is possible to make reports which check the consistency of the models,
analyse model linkages, create data dictionaries, produce documentation, generate code or config-
uration information and export models to other programs, such as simulators, version management,
external solvers etc. The advanced scripting commands allow the user to print designs in various
formats, handle output to several files, and even call external programs.

Advanced features The Object Repository can be integrated into the existing design envi-
ronment using SOAP/Web Services.

Success stories According to the official MetaCase homepage, MetaEdit+ has already been suc-
cessfully used in the following target application domains: Mobile devices, Embedded software,
Financial applications, Industrial automation, Web applications, Workflow applications, IP Tele-
phony services.

2.3.2 Microsoft DSL Tools

Note: this short review is based on the official Microsoft DSL Tools homepage[30], the official
DSL Tools Walkthroughs[31], and various publications by the designers ([17, 18, 14]).

The Microsoft Tools for Domain-Specific Languages is a suite of tools for creating, editing,
visualizing, and using domain-specific data for automating the enterprise software development
process. These new tools are part of a vision for realizing Software Factories, a new development
concept by Microsoft. In a nutshell, a Software Factory is a development environment configured
to support the rapid development of a specific type of application, thus, it is, in essence, Microsoft’s
approach to model-driven software development based on domain-specific modeling.

History In recent years, Microsoft has given indications of increased interest in model-driven
software development. Even Bill Gates stated that the most important innovation in the next
10 years is going to be visual modeling tools, ”that will reduce software coding by a factor of
five.” [40]

Microsoft’s vision of model-driven software development, Software Factories, was laid out in
a book[18] in 2004. In a nutshell, this approach argues that the software development industry is in
a desperate need of a paradigm shift, because, although the added value in software production is
tremendous, the production costs are at an unacceptably high level. Software production needs to
be industrialized, just like car production was at the beginning of the past century. The key to this,
as they conclude, is a model-driven development approach based on domain-specific modeling.

As a result, Microsoft began developing technologies that would turn this vision into reality.
The result, a suite called Microsoft DSL Tools, was released to the public in late 2004.

28

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 2.2: Microsoft DSL Tools, September 2005

Architecture The DSL Tools suite integrates into the powerful Visual Studio development plat-
form as a set of development environment plug-ins. The suite of tools is supported by a code
framework that makes it easier to define domain models and to construct a custom graphical de-
signer hosted in Visual Studio. The suite consists of:

• A new project wizard for creating a fully configured solution in which you can define a do-
main model that consists of a designer and a textual artifact generator. Running a completed
solution from within Visual Studio opens a test solution in a separate instance of Visual
Studio, allowing you to test the designer and artifact generator.

• A format and an updated graphical designer for defining and editing domain models.

• An XML format for creating designer definitions, from which the code for implementing
designers is generated. This allows you to define a graphical designer hosted in Visual
Studio without any hand coding.

• A set of code generators, which take a domain model definition and a designer definition
as input, and produce code that implements both of the components as output. The code
generators also validate the domain model and designer definition, and raise errors and
warnings accordingly (code generators for generating domain-specific editors).

• A framework for defining template-based artifact generators, which takes data (models)
conforming to a domain model as input, and outputs text based on the template. Parameters
in the template are substituted using the results of running a C# script embedded in the
template (code generators for domain-specific output).

Thus, the DSL Tools suite employs code-generated editors running in a separate Visual Studio
instance.

Typical workflow The typical workflow is the following: (1) define the domain metamodel
(which is called ”domain model” in the documentation) using the Domain Model Designer, start-
ing from a minimal language template, using the project wizard; (2) create the designer definition;
(3) create the text templates for the domain-specific output code generators; (4) define concrete

29

Declarative Specification of Domain Specific Visual Languages István Ráth

syntax representation using the provided graphical designer; (5) generate code and resources for
the domain-specific editor plug-in; (6) launch the created plug-in in a new Visual Studio instance
and edit domain-specific models; (7) use the domain-specific output code generator templates to
generate application source code.

Language Engineering support

Concrete syntax The DSL Tools suite provides a built-in graphical designer; the suite uses
an own metamodel for the description of shapes and decorators, which is rather limited in the
September 2005 release.

Multi-domain visualization Apparently, there is no planned support for this feature, as the
editors generated by the toolkit are currently meant to be standalone features (so there is no domain
editor framework within Visual Studio), bound to a single modeling language. However, support
for multiple diagram types per domain is planned.

Diagram modeling The DSL Tools suite supports the mapping of concrete syntax to abstract
syntax using a declarative description called diagram maps, which are embedded into the designer
definition XML file. However, similarly to MetaEdit+, these maps only support simple one-to-
one correspondence between visual and logical elements. Therefore, conceptual separation or a
separate visualisation modeling layer are absent from the DSL Tools suite.

Abstract syntax There are six predefined templates, and the generator wizard requires the user
to choose one as a starting point for the newly defined domain-specific modeling language. How-
ever, there is no need to code view classes in C#, as these graphic artifacts can be designed using
the provided graphical designer tool. The speciality of the DSL Tools suite is that not only the
appearance of the diagram elements can be customized, but the views, palettes, and other compo-
nents of the generated editor plug-ins as well.

• Minimal Language - A simple template that creates a very small, generic language to build
upon, including only two domain concepts, and a notation comprising one box and one line
(this is the generic directed graph with assigned types and properties).

• Simple Architecture Chart - A template that includes an example of each of the notational
elements currently supported.

• Entity Relationship - A template that can be used to create compartment shapes.

• Activity Diagrams - A template that demonstrates UML activity diagram notation.

• Class Diagrams - A template for UML class diagram notation.

• Use Case Diagrams - A template for UML use cases notation.

According to the documentation, the internal core metamodel is Microsoft’s own work, this is
also supported by their statements criticizing MOF and XMI [14].

Well-formedness rules At this state of development, only simple static constraints (e.g. type
and containment) are supported; only batch mode evaluation is available.

Dynamic semantics There is no current, nor planned support for dynamic semantics.

30

Declarative Specification of Domain Specific Visual Languages István Ráth

Transformations There is no current, nor planned support for model-to-model transformations.
Model-to-code transformations are supported through a template engine, based on C# scripts.

Integration The DSL Tools suite is integrated into Microsoft’s leading development platform,
Visual Studio. However, as the DSL Tools suite is essentially a technological demonstration, no
other integration options have been implemented (and the documentation is rather self contradic-
tory on this topic).

Persistence Models are stored and exported in XML files.

2.4 VMTS

Note: this short review is based on the official VMTS homepage[51], and a study comparing dif-
ferent prototype model transformation tools[11], co-authored by one of the principal authors of
VMTS: Tihamér Levendovszky.

The Visual Modeling and Transformation System (VMTS) is an integrated metamodeling and
model transformation system, developed at the Department of Automation and Applied Infor-
matics of the Budapest Univertity of Technology and Economics. For model visualisation and
domain-specific modeling, a tool called Adaptive Modeler is available. As of May 2006, the cur-
rent version of the suite is 1.0 Beta.

Figure 2.3: VMTS Presentation Framework - Adaptive Modeler 0.95

Architecture The VMTS is a client-server application with a relational database backend. On
the server side, the metamodeling core and the rewriting engine reside, while client side consists
of the Rule Editor, Modelers and other applications.

Typical workflow As of now, automatic generation of domain-specific editors for VMTS is only
partially supported, manual coding is required for visual syntax and editing functionality.

31

Declarative Specification of Domain Specific Visual Languages István Ráth

Concrete syntax The VMTS Presentation Framework is a class library which supplies: (i) built-
in base classes for the general presentation facilities of shapes (nodes) and lines (edges). (ii) Auto-
matic event handling for the common functionalities such as resizing, moving and selecting model
elements. (iii) Automatic serialization for the properties of the model elements. (iv) Sophisticated
presentation of attributes, model structure, visualization information and editing features[11].

Abstract syntax VMTS uses Attributed Graph Arhitecture Supporting Inheritance (AGSI) as
its core metamodel, which basically describes a directed labeled graph, where nodes can have
attributes and inheritance is supported between nodes.

Well-formedness rules OCL constraints (compiled into a .NET assembly) are supported, with
static constraints enforced at editing time.

Dynamic semantics None.

Transformations As VMTS was primarily intended to be a metamodeling and model trans-
formation framework, a powerful, graph transformation-based model transformation engine is
provided, using a UML-like notation.

Integration VMTS offers a Traversing Model Processor interface, where the model elements
appear as regular objects in a programming language, and traversing classes are also provided by
the framework. The types of these objects are obtained from the metamodel[11].

2.5 Eclipse

2.5.1 The Eclipse Integrated Development Environment

The Eclipse Project[7] is an open source software development project dedicated to providing a
robust, full-featured, commercial-quality, industry platform for the development of highly inte-
grated tools. It was developed by IBM from 1999, and a few months after the first version was
shipped, IBM donated the source code to the Eclipse Foundation.

The Eclipse project consists of many subprojects, the most important being the Eclipse Plat-
form, that defines the set of frameworks and common services that collectively make up ”integration-
ware” required to support a comprehensive tool integration platform. These services and frame-
works represent the common facilities required by most tool builders, including a standard work-
bench user interface and project model for managing resources, portable native widget and user
interface libraries, automatic resource delta management for incremental compilers and builders,
language-independent debug infrastructure, and infrastructure for distributed multi-user versioned
resource management.

The Eclipse Platform has an easily-extendable modular architecture, where all functionality is
achieved by plugins, running over a low-level core called Platform Runtime. This runtime core
is only responsible for loading and connecting the available plugins, every other functionality,
such as the editors, views, project management, is handled by plugins. The plugins bundled with
Eclipse Platform include general user interface components, a common help system for all Eclipse
components, project management and team work support.

32

Declarative Specification of Domain Specific Visual Languages István Ráth

2.5.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF)[8] is a Java framework and code generation facility for
building tools and other applications based on a structured model. EMF is also maintained by the
Eclipse Foundation within the scope of Eclipse Tools Project. EMF started out as an implemen-
tation of the OMG Meta Object Facility (MOF) specification, and evolved into a highly efficient
product for model-based software design.

EMF requires a metamodel as an input; it can import metamodels from different sources, such
as Rational Rose, XMI or XML Schema documents, or a special syntax can be used to annotate
existing Java source files with EMF model properties. Once an EMF model is specified, the built-
in code generator can create a corresponding set of Java implementation classes. These generated
classes can be edited to add methods and instance variables; additions will be preserved during
code-regeneration. In addition to simply increasing productivity, building an application using
EMF provides several other benefits like model change notification, persistence support including
default XMI and schema-based XML serialization, a framework for model validation, and a very
efficient reflective API for manipulating EMF objects generically. Most important of all, EMF
provides the foundation for interoperability with other EMF-based tools and applications.

EMF consists of two fundamental frameworks: the core framework and EMF.Edit. The core
framework provides basic generation and runtime support to create Java implementation classes
for a model.

EMF has a built-in serialization facility, which enables the developer to save (and load) in-
stances of the model into industry-standard XMI format. EMF also provides a notational and
persistence mechanism, on top of which model-manipulating tools can easily be constructed.

EMF.Edit is a framework which includes generic reusable classes for building editors for EMF
models. It provides content and label provider classes, property source support, and other conve-
nience classes that allow EMF models to be displayed using standard Eclipse user interface views
and property sheets. It also provides a command framework, including a set of generic command
implementation classes for building editors that support fully automatic undo and redo for models.
Finally, it provides a code generator capable of generating everything needed to build a complete
editor plugin for an EMF model. It produces a properly structured editor that conforms to the
recommended style for Eclipse EMF model editors. The code can then be customized without
losing connection to the model. For example, using GEF, a graphical editor can be created.

EMF and EMF.Edit together implement the Model-View-Controller (MVC) design scheme,
where EMF serves as the model, EMF.Edit serves as a controller and the user can freely decide
how the view is implemented. The connection between the controller and the model uses the
aforementioned EMF notification mechanism. EMF.Edit can also automatically generate a tree-
view based editor, which integrates into the Eclipse platform as a plugin.

2.5.3 Graphical Editing Framework

The Graphical Editing Framework (GEF) for Eclipse is an open source framework dedicated to
providing a rich, consistent graphical editing environment for applications on the Eclipse Platform.
In other words, it is a complex system, or graphical library, designed to make developing graphical
editors for Eclipse easy and quick. Eclipse is, apart from being a great development environment,
a general design tool in the sense that its modular plugin centered design enables the user to inte-
grate graphical modeling tools, interface editors and other GUI-driven components into this rich
environment, and have these work together flawlessly. In order to avoid confusing the users with

33

Declarative Specification of Domain Specific Visual Languages István Ráth

numerous different-looking and working interfaces, and to enable developers to create graphical
plugins quickly and efficiently, GEF was developed by the Eclipse Project.

The word Graphical in GEF is provided by Draw2D, a lightweight graphical component li-
brary. Lightweight means that Draw2D elements (unlike SWT1 widgets) do not require a separate
handle from the operating system window manager. The advantage of a lightweight system is that
an entire element hierarchy is seen as a single element from the outside, therefore the manage-
ment of the elements lies completely in the hands of the lightweight framework. That means an
increase of speed in case the number of elements is large. The lightweight library can generally
optimize the management of its elements at a greater extent than an ”outsider” window manager
could. Draw2D elements are called figures, and any Draw2D figure may contain other figures.
The only constraint imposed on a figure hierarchy is that child figures must lie entirely within the
boundaries of their parent. Draw2D includes a basic set of predefined figures (polygons, labels,
borders, buttons, arrows, ...) but developers might create their own user-drawn figures.

The Editing capabilities of GEF are very similar to the Eclipse Platform itself. It uses the
request-command abstraction scheme. That means that every user activity (keystrokes, mouse
operations) is first translated to requests. Such a request is more abstract than an OS-level mouse
of keyboard message. An example of a GEF request would be something like: Model object
Place0 has been dragged from position (15, 21) to position (42, 7). These requests are received by
the model elements involved and translated to one or more commands. A command is responsible
for the effective modification of the model.

Actions

Actions are very similar to requests, they represent certain user activity. The major difference be-
tween actions and requests are that requests are generated by GEF internally (eg. when the mouse
is dragged on a GEF-handled area of the screen), while actions can be generated programmati-
cally. Generally graphical editing operations create requests, whereas menu items, toolbar buttons
generate actions. Both requests and actions create commands to modify the model.

GEF follows the Model-View-Controller (MVC) pattern. MVC divides the responsibilities of
an editor and assigns them to three distinct elements. The model is solely responsible for repre-
senting the data being displayed. That includes serialization (if required) and model manipulation.
The model itself is not required to be aware that there is a graphical editor built upon it. The view,
on the other hand, is only responsible for the visualization of the model. The view does not care
about model manipulation, it just simply updates itself from time to time to reflect changes in the
model. What forms the bridge between the two is the controller. The controller is responsible
both for modifying the model according to user activities, and for updating views when the model
changes. The controller is the element, which accepts editing requests and modifies the model.
After the model has been modified, the controller asks the affected view elements to refresh them-
selves. GEF does not care about what kind of model we are using, the views are required to be
Draw2D figures and the controller is provided by GEF, it is called EditPart.

However from the developers perspective, it is the Framework that makes the difference: al-
though one can create a general purpose graphical interface with Draw2D or any other graphical
library, GEF was specifically designed for graphical editors. Thus, if the goal is to not only display
data, but also be able to manipulate it, one should consider using GEF instead of implementing
everything from scratch. GEF provides ready solutions for a list of common editor problems
(drag-and-drop, property sheet handling, tree-based visualization, clipboard support, ...) and the
parts of GEF are closely related to each other, and been tested together. GEF has already been

1Standard Widget Toolkit, the default widget library of Eclipse Platform products.

34

Declarative Specification of Domain Specific Visual Languages István Ráth

MODEL

VIEWVIEW

GEF EditPart
(Controller)User

sees

acts

modifies

updates

queries

notifies

Figure 2.4: MVC scheme inside the Graphical Editing Framework

successfully used for commercial applications, like UML editors, GUI builders and workflow
management software.

2.5.4 Domain-specific editors with EMF and GEF

Using EMF and GEF, editors for domain-specific visual languages can be implemented - although
not very easily. EMF has a lot of automated features, but connecting a GEF-based visualisation
layer to an EMF model is a tough job, certainly not suited for non-programmers/domain experts,
as demonstrated by [20, 32].

Typical workflow The typical workflow for creating an EMF-GEF-based editor could be the
following: (1) first, the domain metamodel is defined in some UML tool; (2) this metamodel is
imported into EMF, and EMF generates all the necessary implementation classes with notifica-
tion and serialisation support, etc; (3 - optional) using EMF.Edit, a tree-view based editor can be
generated - at this point, a usable, tree-based domain-specific editor, in the form of an Eclipse
plugin, is ready to be used (and it was automatically generated); (4) the necessary classes for GEF
are implemented manually; (5) a code generator is implemented manually, for instance with the
powerful Java Emitter Templates API (JET)[9].

Concrete syntax Automated support is only available for a tree-view based editor, everything
else has to be implemented manually. Draw2D includes a fairly rich set of common graphics
primitives.

Abstract syntax EMF uses an own core metamodel called ECore, which is almost identical to
Essential MOF (MOF 2.0). Every imported metamodel is mapped onto ECore concepts.

Well-formedness rules Only simple static constraints are supported, as EMF currently lacks
OCL support.

Dynamic semantics Since there is no automated support, dynamic semantics, and model trans-
formations in general can only be implemented using EMF’s model manipulation API.

35

Declarative Specification of Domain Specific Visual Languages István Ráth

Transformations As EMF is only a model container, no model-to-model transformation is sup-
ported. Code generation has to be implemented manually, however, the Java Emitter Templates
API is a very powerful template engine using a special template language (with JSP-like syntax).

Integration EMF supports XMI serialization, and can import metamodels from XML Schema
Descriptions, Rational Rose models, and XMI files.

2.5.5 Eclipse GMF

Even though both EMF and GEF are fairly powerful tools in the hands of a professional Java
programmer, the Eclipse developers have realised that, in their current from, these technologies are
simply inadequate for rapid language engineering. Thus, an intermediate framework was drafted,
which would serve as a generative bridge between EMF and GEF, whereby a diagram definition
would be linked to a domain model as input to the generation of a visual editor. This is The
Graphical Modeling Framework[15] project, which aims to provide the fundamental infrastructure
and components for developing visual design and modeling surfaces in Eclipse.

The Graphical Modeling Framework is currently in a beta stage draft, with a set of project
requirements[16], a project plan published on the website, and several downloadable pre releases,
which our review is based on.

Architecture GMF uses generated editors, which support the following features: Palette, Prop-
erties, Overview (bird’s eye view), Zoom, Navigator, Outline, Decorators, Keyboard bindings,
Direct editing, Drag and drop, Layout, Support standard graphical editor facilities (actions, rulers,
guides) provided by GEF, Provide support for compartments/subcompartments, feedback (in sta-
tus line) for constraint violation, advice, and Filter views.

Typical workflow The typical workflow to create a domain-specific editor and a code generator
is the following: (1) create an ”EMF model” (which is actually the domain metamodel); (2a) cre-
ate diagram metamodels; (2b) create diagram metamodels; (2c) create a mapping model between
the EMF model and the diagram model; (3) refine the domain metamodel on a graphical interface,
add OCL constraints; (4) design the visual representations for diagram elements using a graphical
interface; (5) generate the domain-specific visual editor; (6) use the generated Eclipse plug-in for
modeling; (6) manually implement a JET-based code generator; (7) generate application code.

Concrete syntax The GMT project plans a full-fledged visual toolkit based on Draw2D primi-
tives, using an intuitive graphical interface integrated into Eclipse.

Multi-domain visualisation GMF employs a separate diagram modeling layer; diagram
metamodels are stored using EMF and describe diagrams to the detail level of graphical attributes
(size, position etc). The mapping between diagrams and models is facilitated through generated
code, which is based on a mapping metamodel. The mapping allows for a partial one-to-many
mapping of the logical domain into multiple diagram domains, however a connection is always
represented by an edge, and a class is always represented by a node. Thus, the conceptual separa-
tion is, while extensive compared to other tools, still partial. For more details, see Sec. 6.2.

36

Declarative Specification of Domain Specific Visual Languages István Ráth

Diagram modeling support A diagram may contain multiple references to a single domain
model element, potentially with each having a different diagram representation. A diagramming
metamodel is provided to allow for diagram definitions. A mapping metamodel is provided to
allow for diagram to domain model mapping definitions.

Abstract syntax The GMF allows for the creation of a new EMF model using a graphic editor,
leveraging an ECore modeling surface.

Well-formedness rules Diagram and/or domain models may have constraints added which need
to be manifested as feedback in the graphical editor. For example, a constraint indicating that
circular relationships are not allowed should be indicated in the UI while attempting to make such
a connection (editing time enforcement). Constraints may be defined in the diagram and/or domain
models that are more appropriately checked in a batch mode, as is done with the EMF validation
framework. GMF should allow for constraints to be enforced using this or similar framework.
GMF will provide support for the Object Constraint Language (OCL).

Dynamic semantics None.

Transformations Only model-to-code generation using JET.

Integration

Persistence Diagrams are stored in files using XML/XMI capability of EMF. Alternative
persistence mechanisms are planned to be made available via extension points. Export: Printing,
Images; UML Diagram export support via Diagram Interchange Specification; Team integration
support.

2.5.6 openArchitectureWare

Note: this short review is based on the official openArchitectureWare homepage[35], and a publi-
cation by the principal authors, Markus Völter and Bernd Kolb[25].

The openArchitectureWare framework is a suite of tools and components assisting model-
driven software development. It is an open source project with around 10 active developers.

History Originally, the framework was developed as a commercial product by a German com-
pany called b+w GmbH[3]. As of 14 September 2003, the b+w Generator Framework is developed
as an open source project, hosted at SourceForge. Since the original code commit, many features
have been added. The openArchitectureWare framework has been successfully used in a wide
spectrum of industrial applications.

Architecture The openArchitectureWare framework (oAW) is a comprehensive tool suite for
model-driven software development. The project is made up of several components (all written in
Java):

• Core: A modular MDA/MDD generator framework supporting arbitrary import formats,
meta models, and output formats.

37

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 2.5: openArchitectureWare

• Utilities: A lot of useful utilities for the generator.

• Eclipse Plugin: Eclipse IDE support for openArchitectureWare.

• Metamodel Generator: Automating the manual development of Java metaclasses.

• Feature Modeling: Integrating openArchitectureWare with the pure::variants feature mod-
eling tool.

• GEF Editors: Generating GEF Editors for oaW models.

• Visio Integration: Reading visio models into oAW.

Typical workflow The typical workflow for creating a domain-specific visual editor and code
generator in oAW is the following:

1. The metamodel is created, either by manually coding Java classes or using the Metamodel
Generator (which can generate these Java classes from a UML model).

2. Java classes responsible for visual representation are implemented manually by the language
engineer.

3. The visual editor generator creates a GEF-based editor.

4. Models are created using this visual editor.

5. The templates are written in oAW-s own domain-specific template language (there is an in-
telligent editor available with Code completion and syntax-highlighting support available).

6. An existing model is imported and instantiated, which can be validated against the domain
metamodel.

7. The Generator will create an Eclipse editor, based on the domain metamodel.

8. Code can be generated using this editor and the templates.

38

Declarative Specification of Domain Specific Visual Languages István Ráth

Concrete syntax

Automated support Although there is a thin component library for GEF visualisation classes
available, concrete syntax representation classes have to be implemented manually.

Multi-domain visualisation Not supported. All editors generated in oAW are logically
bound to one metamodel.

Diagram-model mapping As the graphical editor generator is in a very early stage of de-
velopment, there is absolutely no automated support for a custom diagram-model mapping. The
generated GEF editors are rather simple, there is no conceptual separation between diagrams and
models.

Abstract syntax openArchitectureWare uses a very flexible approach, as there is no fixed core
metamodel, instead any Java class can be used as a metamodel element. This has obvious advan-
tages, but can be cumbersome because knowledge of the Java programming language is required
even for a basic metamodel definiton. Thus, a Metamodel Generator feature was soon added,
which can generate classes based on a UML model, in which case, stereotypes and tagges values
are required (there is a pre-defined base UML model).

Well-formedness rules Static constraints from UML models are supported. The static con-
straints can only be evaluated in batch mode. There is preliminary support for declarative meta-
model constraints.

Dynamic semantics There is no support for dynamic semantics.

Transformations Only model-to-code transformations are supported, using the powerful oAW
template engine and a domain-specific textual language for creating templates.

Integration

• UML tool support

– MagicDraw

– Enterprise Architect

– Poseidon

– Together/J

• Generator Utilities

– ANT integration

– Integration with JUnit

– Event-Based Modelmodifiers to update dependent parts of a model

– various frontends (instantiators), e.g. a generic XML reader, an instiator to read Mi-
crosoft Visio models

– a generic XML writer

– Invokers to handle ”cross-cutting concerns” in the generator

39

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 2.6: Petri net editor generated with Tiger

2.5.7 Tiger

Note: this section is based on the official Tiger website[43], the User Documentation[44], and a
publication by the authors[12].

The Tiger Project (Transformation-based generation of modeling environments) is a tool en-
vironment that allows to generate an Eclipse editor plugin based on the Graphical Editing Frame-
work (GEF) from a formal, graph-transformation based visual language specification.

At the current stage of development, the Tiger framework can generate GEF-based diagram
editors using combined domain and diagram metamodels, with a tool called Attributed Graph
Grammar System (AGG-Engine)[1]. Tiger’s approach is quite interesting for two reasons: (i)
some of GEF’s graphical concepts (such as drawing primitives, layout constraints) have been
included in the metamodel and thus Tiger is able to generate code which uses GEF’s advanced
graph layout algorithms to generate diagrams in an elegant fashion; (ii) in domain-specific editors
generated with Tiger, all editing actions are translated into high-level graph-transformation rules
which are executed within the model container - in other tools, basic editing functionality uses API
calls. The authors call this syntax-directed editing, which basically means the on-line enforcement
of well-formedness constraints, in effect making the creation of syntactically incorrect models
impossible. Note, however, that for simple static constraints this can be and actually is guaranteed
in most other tools using the traditional approach.

Architecture The Tiger project uses generated Eclipse plug-in editors, which currently provide
very basic editing capabilities. Models are stored in the AGG graph-transformation core.

Typical workflow The typical workflow to create a visual editor is the following: (1) create a Vi-
sual Language specification (which includes both abstract and concrete syntax) using the provided
Java classes (tiger.vlspec) - this currently requires manual coding; (2) load the Visual Language
into a separate software component and edit the syntax grammar; (3) use the tiger.generator com-
ponent to generate the GEF-based editor.

Concrete syntax Tiger provides a basic set of ShapeFigures which can be assigned to model el-
ements (these include Ellipse, Circle, RoundedRectangle, RectangleFigure, Polygon). Additional
attributes like color and size can be assigned to these ShapeFigures. Layout constraints (e.g. ”a
token is inside a place”) can be defined between ShapeFigures using Java language constructs.

40

Declarative Specification of Domain Specific Visual Languages István Ráth

Abstract syntax Tiger’s core metamodel describes a directed labeled graph. Nodes are called
NodeSymbolType, edges are called EdgeSymbolType; attributes (AttributeType) can be assigned to
both edges and nodes. In the Tiger core metamodel, nodes and edges need to be connected through
links (LinkType - these are the definitons for simple type constraints for edges.

Well-formedness rules Tiger uses grammar syntax to capture both static and language-specific
well-formedness rules (these are basically graph transformation rules).

Dynamic semantics Although support is planned, currently the specification and execution of
dynamic semantics is not supported.

Transformations As Tiger is based on a graph transformation engine, there is a possiblity to
support both model-to-model and model-to-code transformations; at the current stage, however,
none of them are.

Integration Not applicable due to the early stage of development; however as Tiger generates
Eclipse plug-ins,all standard integration features of Eclipse (e.g. Team Synchronization support)
are available.

2.6 Summary

The summary of our reviews can be seen on Table 2.1.

41

E
cl

ip
se

ye
s

ow
n

A
P

I
pl

an
R

un
-t

im
e

ye
s

G
T

A
S

M
ye

s
on

lin
e

ba
tc

h
ye

s
ye

s
V

P
M

ye
s

ye
s

ye
s

pl
an

V
ia

tr
a2

 D
S

M

E
cl

ip
se

E
cl

ip
se

E
cl

ip
se

no

E
cl

ip
se

V
is

ua
l

S
tu

di
o

S
O

A
P

14

no?*?ye
s

noye
s

13

?

X
M

I

X
M

I

R
el

.
D

B
M

S

X
M

L

X
M

L

ow
n

12

In
te

g
ra

ti
o

n

ba
si

c

P
ro

f.

*

B
as

ic

B
as

ic

P
ro

f.

P
ro

f.

10
8

7

3

A
rc

h
it

ec
tu

re
L

an
g

u
ag

e
E

n
g

in
ee

ri
n

g

11
9

T
ra

n
sf

o
rm

at
io

n
s

D
yn

a-
m

ic
S

em
an

ti
c

s

W
el

l-
fo

rm
ed

n
es

s

A
b

st
-r

ac
t

S
yn

-t
ax

C
o

n
cr

et
e

sy
n

ta
x

?
G

en
e-

ra
te

d
ye

s
G

T
pl

an
O

nl
in

e
?

ye
s

ye
s

A
G

G
no

no
?

N
o*

*
T

ig
er

A
P

I
G

en
e-

ra
te

d
JE

T
no

no
on

lin
e

ba
tc

h
ye

s
ye

s
E

C
or

e
ye

s
ye

s
ye

s
ye

s
G

M
F

A
P

I
*

JE
T

*
*

*
no

ye
s

E
C

or
e

*
*

*
no

E
M

F
/G

E
F

A
P

I
N

on
-

ge
n.

ye
s

G
T

no
?

ye
s

ye
s

A
G

S
I

?
ye

s
?

no
V

M
T

S

A
P

I
G

en
e-

r a
te

d
ye

s
no

no
ba

tc
h

?
ye

s
Ja

va

cl
as

s
no

no
no

no
oA

W

A
P

I
G

en
e-

r a
te

d
ye

s
no

no
ba

tc
h

no
ye

s
cu

st
om

ye
s

ye
s

no
ye

s
D

S
L

T
oo

ls

A
P

I
R

un
-

tim
e

ye
s

?
no

on
lin

e
ba

tc
h

ye
s

ye
s

cu
st

om
?

ye
s

no
ye

s
M

et
aE

di
t+

6
5

4
3/

2
3/

1
2

1

Ta
bl

e
2.

1:
T

he
su

m
m

ar
y

of
ou

rr
es

ea
rc

h

Declarative Specification of Domain Specific Visual Languages István Ráth

Legend to Table 2.1 See also 2.2 for detailed explanation.
1 - graphical syntax designer; 2 - multi-domain design; 3/1 - diagram-model conceptual separation;
3/2 - arbitrary diagram-model mapping; 4 - static constraints; 5 - language-specific constraints; 6 -
constraint enforcement; 7 - model-to-model transformations; 8 - model-to-code transformations; 9 -
runtime framework or generated editors; 10 - editing capabilities; 11 - accessbility; 12 - persistence;
13 - documentation generation; 14 - integration (advanced features)
‘*’: as EMF/GEF are not suited for automatic editor generation, most of the categories are left blank
because they all depend on the individual implementations.
‘**’: although Tiger has no automated support for the interactive design of concrete syntax repre-
sentation, an easy to use (albeit limited in capabilities) library is provided.

Evaluation

By looking at Table 2.1, the following conclusions can be drawn:

• Concrete syntax
Easy-to-use graphical syntax designers require a lot of effort to implement well. In commer-
cial products, such as MetaEdit+ or DSL Tools, this is considered a very imporant feature
because it ”sells” the software better, however, in research projects this is usually one of the
last development targets.

• Abstract syntax
All projects use a core metamodel which describes a typed, labeled graph with attributes (in
some cases, this core metamodel is an ECore or MOF model). This is fairly straightforward
because visual languages are, in essence, typed and labeled graphs with attributes.

• Concrete syntax - abstract syntax mapping
Although the usual separation of models and diagrams, which is found in most modeling
tools, is supported by most of the applications (most notably MetaEdit+ and Microsoft DSL
Tools), the language engineers hands are tied because nothing more than specifying the set
of elements displayable on a given diagram type, and their concrete appearance, can be
customised. The exception is GMF: it is the most modern approach, because diagrams are
handled almost independently from models (even at the metamodel level), however GMF is
fairly conservative in using the full potential of its approach because the mapping mecha-
nism is still limited to the connection - edge, class - node paradigm.

• Constraints
For simple constraints, all approaches use an on-line evaluation scheme, while languge-
specific constraints, if supported, are usually handled by a batch-mode OCL evaluator.

• Dynamic semantics / Simulation
It is apparent that - with the exception of Tiger - no project supports (or even plans to sup-
port) dynamic semantics modeling. In some cases, this feature could be added using the
application programming interface; the lack of a model-based approach to dynamic seman-
tics specification can be explained by the fact that it would require a model transformation
infrastructure, which only Tiger and VMTS use.

• Model-to-model transformations
Model-to-model transformations, if supported, are based on a graph transformation tech-
nique.

43

Declarative Specification of Domain Specific Visual Languages István Ráth

• Model-to-code transformations
Code generation is usually implemented with a template engine (e.g. JET), or a custom
domain-specific programming language, suited for easy modelspace traversal and formatted
code output.

• Architecture

– Most approaches use code-generated domain-specific editors because they are usually
easier to implement (although usually limited in capabilities, e.g. no multi-domain
support).

– With the exception of professional products, currently all projects provide fairly lim-
ited editing cabilities, in spite of the powerful integrated environments these editors
run in.

– Persistence: most projects use in-memory modelspace containers, with the exception
of VMTS (RDBMS backend), and MetaEdit+ (custom Object Repository server). All
products support serialization and model export into some standard XMI or XML for-
mat.

• Integration
While many projects support (on even rely on) external (meta)models for editor code gen-
eration, some require manual Java coding, or non-automatic model conversion by a pro-
fessional. Documentation generation, similarly to visual syntax editors, is unique to com-
mercial products (MetaEdit+, DSL Tools). Many projects integrate into popular Integrated
Development Environments (Visual Studio, Eclipse), which can be considered a must since
nowadays most software developer houses use these even for the smallest projets.

2.7 Our approach

It is clear from the review that while many initiatives provide support for some aspects of language
engineering, a comprehensive domain-specific modeling environment that integrates all aspects of
language engineering and provides efficient ways of domain integration is not yet existent. The
Multi-Doman Systems Engineering approach requires all of the above conditions to be met.

To provide this all-round solution, we created a domain-specific modeling framework built on
top of a powerful model transformation architecture: the ViatraDSM framework. With this ap-
proach, all aspects (with the exception of concrete syntax) of language engineering can be handled
within the same (programming) domain (i.e. a high-level domain specific language suitable for
defining metamodels and model transformations).

In our approach,

• the precise specification of domain-specific visual languages can be described using a high-
level formal language;

• the abstract syntax of these languages can be defined using visual and precise metamodeling
techniques;

• modeling constraints, model transformations, model simulation and code generation can be
uniformly specified by a combination of graph transformation and abstract state machines.

An overview of our approach, the ViatraDSM framework, is presented on Fig 2.7.
The implementation criteria for our system were as follows (see also the last row of Table 2.1):

44

Declarative Specification of Domain Specific Visual Languages István Ráth

Platform

VPM Modelspace

Domain
metamodel(s)

Domain
model(s)

DSM core
metamodel

Conceptual
metamodel

Conceptual
model

GTASM

Generated code

GTASM

DSM framework

GTASM
-simulation

Domain editor /
simulator

Import

External
tool

GTASM

Export

Figure 2.7: Our framework in the DSM approach

Architecture The system consists of two main components: (i) a model transformation frame-
work; and (ii) a domain-specific modeling environment. The model transformation framework
provides the necessary infrastructure model persistence, model-to-model and model-to-code trans-
formations, and model import/export. The domain-specific modeling environment presents domain-
specific views of the integrated modelspace, and provides rich editing and simulation facilities,
based on the services of the model transformation framework.

Runtime domain-specific editors Our approach uses a runtime framework for supporting
domain-specific editors, because this facilitates a more rapid development process for domain-
specific editors and simulators. This approach also makes supporting a multi-domain modeling
environment easier.

Editing capabilities The system is integrated into the Eclipse development environment.
The domain-specific editors make use of the standard workbench features (Properties view, undo-
redo support, copy-cut-paste support) as well as some advanced techniques (intelligent text com-
pletion and validation).

Accessibility In our approach, the domain-specific editors can be tailored to the needs of the
target application domain in various ways:

• an Application Programming Interface (API) is provided for the implementation of concrete
syntax, based on the GEF and Draw2D libraries;

• a set of domain-specific programming languages (VIATRA2 languages, see 3 for details) for
specifying modeling constraints, model transformations, model simulation and code gener-
ation;

45

Declarative Specification of Domain Specific Visual Languages István Ráth

• the system can also adapt to other model containers and model transformations environ-
ments as necessary.

Concrete syntax

Visual editors We use a highly customizable and platform independent graphical applica-
tion programming interface (GEF), which enables language engineers to create arbitrary concrete
syntax representations. We do not consider the automated visual support for concrete syntax de-
sign a high priority, but our flexible implementation allows for the integration of easy-to-use visual
syntax designers at a later stage of development.

Multi-domain visualisation We consider multi-domain modeling and visualisation crucial,
therefore our approach provides full support for the integration of multiple domain-specific edi-
tors into a single environment, with the possibility of switching between various views instantly.
Moreover, our design allows for model and diagram elements from different domains be handled
within the same editor (e.g. a graphical interdomain model transformation designer). For a more
detailed discussion of this issue, see Chapter 5.

Diagram modeling support We consider the full conceptual separation of diagrams and
models a must, because a tree-based (or even textual) modeling environment can be faster to
work with in many scenarios. Moreover, the performance of the whole system can be improved
drastically if the user is free to decide what to visualise graphically. Furthermore, our approach
implements a separated diagram modeling layer, which supports the metamodel-level design of
diagrams, which are mapped to logical models through a mapping mechanism. The mapping can
be implemented using Java code, based on well-defined APIs, or using declarative techniques
(mapping metamodel), combined with native VIATRA2 transformation programs, executed in an
event-driven fashion. For more details, see Chapter 6.

Default concrete syntax representations While our approach relies on manual coding for
many aspects concerning the definition of concrete syntax, we provide support for a default, UML-
like graphical notation for models so that domain-specific editors can be developed rapidly without
any manual coding.

Abstract syntax Our approach is based on the VIATRA2 framework, which provides a flexi-
ble core metamodeling language (VPM, 3.1.1). We define a core metamodel for domain-specific
visual languages using VPM concepts, which is used by the runtime domain-specific editor frame-
work to provide model editing capabilities to various concrete domain editors and simulators. As
the system is to be integrated into an existing model-based development environment, existing
domain metamodels can be imported using the native import facilities of the VIATRA2 frame-
work (see 3.3), which can then be mapped automatically to our core domain metamodel, thereby
facilitating the generation of domain-specific editors for domains that are external to the system.

Well-formedness rules As the model transformation language of the VIATRA2 framework is
powerful enough to express arbitrary static and language-specific constraints in an intuitive way
(as demonstrated by the example in 7, our approach uses read-only transformations evaluated in
a batch-mode fashion for the enforcement of complex constraints. Static constraints that can be

46

Declarative Specification of Domain Specific Visual Languages István Ráth

handles by the VPM metamodel (containment, type correctness, multiplicity) are enforced in an
on-line fashion.

Dynamic semantics As the model transformation language of the VIATRA2 framework is ex-
pressive and intuitive enough for the specification of dynamic semantics (7), and the interpreter-
based execution of these model transformations is sufficiently efficient, our approach provides full
support for interactive model simulation.

Transformations As demonstrated in Chapter 3, the VIATRA2 framework provides a robust and
efficient environment for the specification and execution of model-to-model and model-to-code
transformations. In 7, we give a simple example for model-to-code transformations.

Integration

Persistence Our approach is based on the VIATRA2 modelspace container, which provides
support for a wide range of output formats, including tagged formats (XML variants) and textual
languages.

Documentation With the powerful transformation capabilities of VIATRA2, development
documentation can be generated on-the-fly from models of various abstraction levels.

Flexibility As our domain-specific modeling framework can be adapted to any model con-
tainer, the code generation facilities of EMF (JET) and other technologies can also be integrated
into our concept.

Typical workflow A language engineer would have to perform the following tasks to create a
domain-specific editor, simulator, and code generator:

1. Create a domain metamodel using an external tool, the VPM editor of our modeling envi-
ronment, or the VIATRA2 Textual Metamodeling Language.

2. Project this metamodel onto the core domain metamodel of the DSM framework (by spec-
ifying an appropriate transformation in the VIATRA2 Textual Command Language, or de-
signing one with the model transformation editor).

3. The DSM framework will instantly provide a domain-specific editor with a tree view.

4. Create a diagram metamodel, a mapping model, a mapping implementation (either by cod-
ing or using the mapping metamodel), and a the DSM framework will provide a basic UML-
like graphical notation for diagrams.

5. Using the API of the DSM framework, and Draw2D primitives, create a customized concrete
syntax representation.

6. Define dynamic semantics using the VIATRA2 Textual Command Language, or the model
transformation editor.

7. Define a code generator using the VIATRA2 Textual Command Language, or the model
transformation editor.

Note that the language engineer only has to learn one expressive domain-specific language for
all aspects of language engineering.

47

Declarative Specification of Domain Specific Visual Languages István Ráth

2.8 Example: Petri Net

In the thesis, the following simple but descriptive domain-specific visual language example will
be used for demonstrating the feasibility of our approach. In Chapter 7, a complete description of
building a domain-specific modeling tool based on the ViatraDSM framework’s facilities is given.

Petri nets (Fig. 2.8) (abbreviated as PN) are widely used to formally capture the dynamic
semantics of concurrent systems due to their easy-to-understand visual notation and the wide range
of available analysis tools. From a system modelling point of view, a Petri net model is frequently
used for correctness, dependability and performance analysis in early stages of design. Petri nets
are bipartite graphs, with two disjoint sets of nodes: Places and Transitions. Places may contain
an arbitrary number of Tokens. A token distribution defines the state of the modelled system. The
state of the net can be changed by firing enabled transitions. A transition is enabled if each of its
input places contains at least one token (if no arc weights are considered). When firing a transition,
we remove a token from all input places (connected to the transition by InArcs) and add a token
to all output places (as defined by OutArcs).

Figure 2.8: A sample Petri net with place capacities and arc weights

48

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 3

Interpreter-based model transformation
in VIATRA2

3.1 Metamodeling: Definition of Abstract Syntax

In this section, I conceptually follow [4].

3.1.1 Visual and Precise Metamodeling

Currently, most widely used metamodeling languages (e.g. ECore) are derived (with slight vari-
ations) from the Meta Object Facility (MOF) [29] metamodeling standard issued by the OMG.
However, as stated in [46], the MOF standard fails to support multi-level metamodeling, which is
typically a critical aspect for integrating different technological spaces where different metamod-
eling paradigms (e.g. EMF, XML Schemas) are used.

Therefore, the VPM (Visual and Precise Metamodeling) [46] metamodeling approach was
chosen in the VIATRA2 framework, which can support different metamodeling paradigms by sup-
porting multi-level metamodeling with explicit and generalized instance-of relations.

Entity

ModelElement

Relation

instanceOf supertypeOf

containment

from

to

multiplicity: enum
isAggregation: boolean

ID: string
Name: string
isFinalType: boolean

inverse

value: string

Figure 3.1: The VPM Metamodel

The VPM language consists of two basic elements: the entity (a generalization of MOF pack-

49

Declarative Specification of Domain Specific Visual Languages István Ráth

age, class, or object) and the relation (a generalization of MOF association end, attribute, link
end, slot). Entities represent basic concepts of a (modeling) domain, while relations represent the
relationships between other model elements1. Furthermore, entities may also have an associated
value which is a string that contains application-specific data.

Model elements are arranged into a strict containment hierarchy, which constitutes the VPM
model space. Within a container entity, each model element has a unique local name, but each
model element also has a globally unique identifier which is called a fully qualified name (FQN).

Fully qualified names are constructed in a different way for entities and relations:

• an Entity’s fully qualified name is the fully qualified name of its parent and the name of the
entity concatenated (separated with a dot).

• a Relation’s fully qualified name is the fully qualified name of source and the name of the
relation concatenated (separated with a dot).

• There is an entity with no parent: the root entity is the root of name hierarchy. The fully
qualified names of the children of the root entity equal the name of the child entity.

The construction of the fully qualified name imposes an important constraint on the VPM
modelspace: the containment hierarchy for entities must not contain loops, and for every relation,
it must be true that a finite traversal along the source endpoints ends up at an entity (otherwise,
the fully qualified name would be infinite). This constraint is enforced by the runtime VPM core
implementation.

All elements have a globally unique ID, which can not change during the life cycle of the
model element (in contrast, names are free to change).

There are two special relationships between model elements: the supertypeOf (inheritance,
generalization) relation represents binary superclass-subclass relationships (like the UML gener-
alization concept), while the instanceOf relation represents type-instance relationships (between
meta-levels). By using an explicit instanceOf relationship, metamodels and models can be stored
in the same model space in a compact way.

The formal transitivity rules of instantiation and inheritance are the following:

instanceO f (a,b) ∧ subtypeO f (b,c)⇒ instanceO f (a,c)
subtypeO f (a,b) ∧ subtypeO f (b,c)⇒ subtypeO f (a,c)

instanceO f (a,b) ∧ instanceO f (b,c) 6⇒ instanceO f (a,c)

If the isFinalType attribute of a VPM element is set to true, then only instances of that model
element can be created (i.e. the model element cannot be subtyped).

Relations have additional properties:

(i) Property isAggregation tells whether the given relation represents an aggregation in the
metamodel, when an instance of the relation implies that the target element of the relation
instance also contains the source element.

(ii) The inverse relation points to the inverse of the relation (if any). In a UML analogy, a
relation can be considered as an association end, and thus the inverse of a relation denotes
the other association end along an association.

1Most typically, relations lead between two entities to impose a directed graph structure on VPM models, but the
source and/or the target end of relations can also be relations.

50

Declarative Specification of Domain Specific Visual Languages István Ráth

(iii) Relations also have multiplicities, which impose a restrictions on the model structure. Al-
lowed multiplicity kinds in VPM are one-to-one, one-to-many, many-to-one, and many-to-
many. This information can be used by the pattern matcher search plan generator.

3.1.2 The VTML language

In VIATRA2, the textual metamodeling language supporting VPM is called VTML (Viatra Tex-
tual Metamodeling Language). The technicalities of VTML are demonstrated in Fig. 3.2 on a
simplified UML metamodel presented originally in the model transformation benchmark of [11].

Figure 3.2: Sample UML metamodel

The VTML equivalent of the metamodel is as follows.
entity(UML)
{

entity(Class);
entity(Association);
entity(Attribute);
relation(src,Association ,Class);
relation(dst,Association ,Class);
relation(parent ,Class ,Class);
relation(attrs ,Class ,Attribute);
multiplicity(attrs ,many -to-many);
relation(type ,Attribute ,Class);

}

The basic elements of the language are the element declarations defined as Prolog-like facts.
An entity can be declared in the form <type>(<name>), where type is the type of the given entity
and name is the name of the new entity. Type declarations are mandatory, because all entities must
have a type. If an entity has no definite type, it is instantiated from the basic VPM entity model
element. As entities may contain other model elements, the containment is done similarly to the
C language, where the program blocks are marked with braces ({}). Here, the contained elements
are represented in a block surrounded by braces after the container entity.

A relation can be defined similarly, but the source and target model elements must also be
marked. The syntax of relation definition is the following: <type>(<name>, <source>, <target>).
A relation is always contained by its source entity.

The containment hierarchy defines namespaces in the model space. This enables the definition
of the fully qualified name (FQN) of model elements. The FQN is equal to the list of containers of
a given model element from the model space root to the element, separated by dots. For example,
the FQN of the entity Association in the example is UML.Association, while the FQN of the
relation src is UML.Association.src. The local (short) name of a model element must be unique in
its container, this also ensures the uniqueness of FQNs.

Special relationships can be represented by the keywords supertypeOf, and subtypeOf for gen-
eralization, and typeOf, and instanceOf for instantiation. The syntax is the following: <relationship>(

51

Declarative Specification of Domain Specific Visual Languages István Ráth

<supplier>, <client>). For example, typeOf(UML.Class, Dog) defines that the entity Dog is an
instance of the metamodel element UML.Class. This way, a model element may have multiple
types to support multi-domain modeling.

The VTML language has also a namespace import definition that can be used to import names-
paces for the given VTML file. Model elements that are in the imported namespaces can be
referred to using their local names instead of the default fully qualified names for user’s conve-
nience. Namespace import has the following syntax: import <namespace>; For example, if we
want to create an instance model using the simplified UML metamodel above, we can use the
import UML; command to import the UML namespace. After that, elements of the metamodel
(like UML.Association) can be referred to using their local names (as Association).

3.2 The VTCL language

Transformation descriptions in VIATRA2 consist of several constructs that together form an ex-
pressive language for developing both model to model transformations and code generators. Graph
patterns (GP) define constraints and conditions on models, graph transformation (GT) [10] rules
support the definition of elementary model manipulations, while abstract state machine (ASM) [5]
rules can be used for the description of control structures.

The language that is created to implement all these concepts is the Viatra Textual Command
Language (VTCL). This language is primarily textual, but it will soon be extended by a graphical
editor that will support the graphical definition of model transformations.

3.2.1 Graph patterns

Graph patterns, negative patterns

Graph patterns are the atomic units of model transformations. They represent conditions (or con-
straints) that have to be fulfilled by a part of the model space in order to execute some manipulation
steps on the model.

A model (i.e. part of the model space) can satisfy a graph pattern, if the pattern can be matched
to a subgraph of the model using a generalized graph pattern matching technique presented in [45].

In the following example, a simple pattern can be fulfilled by class instances that do not have
parent classes.

/* C is a class without parents and with non-empty name */
pattern isTopClass(C) =
{

UML.Class(C);
neg pattern negCondition(C) =
{

UML.Class(C);
UML.Class.parent(P,C,CP); UML.Class(CP);

}
check (name(C)!="")

}

Patterns are defined using the pattern keyword. Patterns may have parameters that are listed
after the pattern name. The basic pattern body contains model element and relationship definitions,
which are identical to the VTML language constructs.

The keyword neg marks a subpattern that is embedded into the current one to represent a
negative condition for the original pattern. The negative pattern in the example can be satisfied, if
there is a class (CP) for the class in the parameter (C) that is the parent of C. If this condition can

52

Declarative Specification of Domain Specific Visual Languages István Ráth

be satisfied, the outer (positive) pattern matching will fail. Thus the pattern matches to top-most
classes in parent hierarchy.

There are also check conditions that are Boolean formulae which must be satisfied in order
to make the pattern true. In our example, we check whether the name of the class is empty. The
pattern can be matched to classes with non-empty names only.

A unique feature of the VTCL pattern language among graph transformation tools is that
negative conditions can be embedded into each other in an arbitrary depth (e.g. negations of
negations), where the expressiveness of such patterns converges to first order logic [39].

Pattern calls, OR-patterns, recursive patterns

In VTCL, a pattern may call another pattern using the find keyword. This feature enables the reuse
of existing patterns as a part of a new (more complex) one. The semantics of this reference is
similar to that of Prolog clauses: the caller pattern can be fulfilled only if their local constructs can
be matched, and if the called (or referenced) pattern is also fulfilled.

Alternate bodies can be defined for a pattern by simply creating multiple blocks after the
pattern name and parameter definition, and connecting them with the or keyword. In this case,
the pattern is fulfilled if at least one of its bodies can be fulfilled. The two features (pattern call
and alternate (OR) bodies) can be used together for the definition of recursive pattern. In a typical
recursive pattern, one of the bodies contains a recursive call to itself, and the other defines the stop
condition for the recursion. The following example illustrates the usage of recursion.

// Parent is an ancestor (transitive parent) of Child pattern
ancestorOf(Parent ,Child) =
{

UML.Class(ParentClass);
UML.Class.parent(X,Child ,Parent);
UML.Class(Child);

} or
{

UML.Class(Parent);
UML.Class.parent(X,C,Parent); UML.Class(C);
find parentOf(C,Child); // pattern call
UML.Class(Child);

}

A class Parent is the parent of an other class Child, if it is a direct parent of the child class (first
body), or it has a direct child (C), which is the parent of the child class (second body). The pattern
uses recursion for traversing multi-level parent-child relationships, and uses multiple bodies to
create a halt condition (base case) for the recursion.

The semantics of graph patterns

When a predefined graph pattern is called using the find keyword, this means that a substitution
for the free (unbound) parameters of the specified graph pattern has to be found that satisfies
the pattern. if it has no defined value. If there are bound variables passed as parameters, they
are treated as additional constraints, and they remain substituted (bound) throughout the pattern
matching process. By default, the free variables will be substituted by existential quantification,
which means that only one (non-deterministically selected) matching will be generated. If a vari-
able is universally quantified by the external forall construct (see Sec. 3.2.3), the matching will be
done (in parallel) for all possible values of the given variable.

53

Declarative Specification of Domain Specific Visual Languages István Ráth

3.2.2 Graph transformation rules

While graph patterns define logical conditions (formulas) on models, the manipulation of models
is defined by graph transformation rules [10], which heavily rely on graph patterns for defining
the application criteria of transformation steps. The application of a GT rule on a given model
replaces an image of its left-hand side (LHS) pattern with an image of its right-hand side (RHS)
pattern.

Figure 3.3: Sample graph transformation rule

The sample graph transformation rule in Figure 3.3 defines a refactoring step of lifting an
attribute from child to parent classes. This means that if the child class has an attribute, it will be
lifted to the parent.

The VTCL language allows both popular notation for defining graph transformation rules.
The first syntax of a GT rule specification corresponds to the traditional notation: it contains a
precondition pattern for the LHS, and a postcondition pattern that defines the RHS of the rule.
Elements that are present only in (the image of) the LHS are deleted, elements that are present
only in RHS are created, and other model elements remain unchanged.

gtrule liftAttrsR(in CP, in CS, in A) =
{

precondition pattern cond(CP,CS,A,Attr) =
{

UML.Class(CP);
UML.Class(CS);
UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
UML.Class.attrs(Attr ,CS,A);

}
postcondition pattern rhs(CP,CS,A,Attr) =
{

UML.Class(CP);
UML.Class(CS);
UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
UML.Class.attrs(Attr2 ,CP,A);

}
}

The graph transformations rules are defined using the gtrule keyword, and they are allowed to
have directed (in/out/inout) parameters. The LHS and RHS patterns share information on match-
ings by parameter passing.

The second format directly corresponds to the graphical (FUJABA [33]) notation as shown in
the following example.

gtrule liftAttrsR(in CP, in CS, in A) =
{

condition pattern cond(CP,CS,A) =
{

UML.Class(CP);
UML.Class(CS);

54

Declarative Specification of Domain Specific Visual Languages István Ráth

UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
del UML.Class.attrs(Attr ,CS,A);
new UML.Class.attrs(Attr2 ,CP,A);

}
}

The rule contains a simple pattern (marked with the keyword condition), that jointly defines
the left hand side (LHS) of the graph transformation rule, and the actions to be carried out. Pattern
elements marked with the keyword new are created after a matching for the LHS is succeeded (and
therefore do not participate in the pattern matching), and elements marked with the keyword del
are deleted after pattern matching.

In both cases, further actions can be initiated by calling any ASM instructions within the action
part of a GT rule, e.g. to report debug information or to generate code.

There is also a third format of graph transformation definition that is more likely to the pro-
cedural programming languages. The rule contains a precondition (LHS), like the previous one,
but instead of defining the RHS pattern we have to define the actions to be executed. The actions
can be any ASM instructions (see Section 3.2.3). The actions that are defined after the action
keyword are executed sequentially. It is important to note that the action section can also be used
with the other two forms of graph transformation definition, for example to create debug outputs
or generate code.

gtrule liftAttrsR(in CP, in CS, in A) =
{

precondition pattern cond(CP,CS,A,Attr) =
{

UML.Class(CP);
UML.Class(CS);
UML.Class.parent(Par,CS,CP);
UML.Attribute(A);
UML.Class.attrs(Attr ,CS,A);

}
action
{

new(UML.Class.attrs(Attr2 ,CP,A));
delete(Attr);

}
}

The interpreter of the VIATRA2framework supports all these formats simultaneously, so de-
velopers can choose the rule format that is more suitable for them.

Generic and meta-transformations

To provide algorithm-level reuse for common transformation algorithms independent of a certain
metamodel, VIATRA2 supports generic and meta-transformations, which are built on the multi-
level metamodeling support. For instance, we may generalize rule liftAttrsR as lifting something
(e.g. an Attribute) one level up along a certain relation (e.g. parent). The following example is the
generic equivalent of the previous GT rule parameterized by types taken from arbitrary metamod-
els during execution time.

gtrule liftUp(in CP, in CS, in A,
in ClsE , in AttE , in ParR , in AttR) =

{
condition pattern transClose(CP,CS,A,

ClsE , AttE , ParR , AttR) =

55

Declarative Specification of Domain Specific Visual Languages István Ráth

{
// Pattern on the meta-level
entity(ClsE);
entity(AttE);
relation(ParR ,ClsE ,ClsE);
relation(AttR ,ClsE ,AttE);
// Pattern on the model-level
entity(CP);
// Dynamic type checking
instanceOf(CP,ClsE);
entity(CS);
instanceOf(CS,ClsE);
entity(A);
instanceOf(A,AttE);
relation(Par,CS,CP);
instanceOf(Par,ParR);
del relation(Attr ,CS,A);
del instanceOf(Attr ,AttR);
new relation(Attr2 ,CP,A);
new instanceOf(Attr2 ,AttR);

}
}

Compared to liftAttrsR, this generic rule has four additional input parameters: (i) ClsE for
the type of the nodes containing the thing to be lifted (Class previously), (ii) AttE for the type of
nodes to be lifted (Attribute previously), and (iii) ParR (ex-parent) and (iv) AttR (ex-attrs) for the
corresponding for edge types.

When interpreting this generic pattern, the VIATRA engine first instantiates the type parame-
ters (ClsE, ParR, etc.) and then queries the instances of these types. As a result, the same rule can
be applied in various modeling languages.

Invoking graph transformation rules

To execute graph transformation rules they have to be invoked from a transformation program.
The basic invocation is done using the apply keyword. In this case, the actual parameter list of the
transformation has to contain a valid value for all input parameters, and an unbound variable for
all output parameters. A rule can be executed for all possible matches (in parallel) by quantifying
some of the input parameters using the forall construct. The following example illustrates some
possible invocations of our sample rule.

// simple execution of a GT rule
// all variables must be bound
apply liftAttrsR(Class1 ,Class2 ,Attrib);

// calling the rule for all attributes of a class
// variables Class1 and Class2 must be bound
forall A do apply liftAttrsR(Class1 ,Class2 ,Attrib);

// calling the rule for all possible matches
forall C1, C2, A do apply liftAttrsR(C1,C2,A);

3.2.3 Control Structure

To control the execution order and mode of graph transformation the VTCL language includes
some concepts that support the definition of complex control flow. As one of the main goals of

56

Declarative Specification of Domain Specific Visual Languages István Ráth

the development of VTCL was to create a precise formal language, we included the basic set of
Abstract State Machine (ASM) language constructs [5] that have formal semantics and correspond
to the constructs in conventional programming languages.

The basic elements of an ASM program are the rules (that are analogous with methods in OO
languages), variables, and ASM functions. ASM functions are special mathematical functions,
which store values in arrays. These values can be updated from the ASM program. These functions
are called dynamic. There are also static functions, which means that they cannot change their
values. For example, the basic mathematical functions (+,-,*,/) are static.

In VTCL, a special class of functions, called native functions, is also defined. Native func-
tions are user-defined Java methods that can be called from the transformations. These methods
can access any Java library (including database access, network functions, and so on), and also
the VIATRA2 model space. This allows the implementation of complex calculations during the
execution of model transformations.

ASMs provide complex model transformations with all the necessary control structures in-
cluding the sequencing operator (seq), rule calls to other ASM rules (call), variable declarations
and updates (let and update constructs) and if-then-else structures, non-deterministically selected
(random) and executed rules (choose), iterative execution (applying a rule as long as possible iter-
ate), and the deterministic parallel rule application at all possible matchings (locations) satisfying
a condition (forall).

These basic instructions, combined with graph patterns and graph transformation rules, form
an expressive, easy-to-use, yet mathematically precise language where the semantics of graph
transformation rules are also given as ASM programs. The following example demonstrates the
main control structures.

pattern isClass(C) =
{

//simple pattern that recognizes classes
UML.Class(C);

}
rule main() = seq
{

//Print out some text
print("The transformation begins...");
//Call a GT rule for all matches
forall C1, C2, A do apply liftAttrsR(C1,C2,A);
//Call other rule
call printFormatted (123);
//Iterate through all classes
forall Cl with find isClass(Cl) do seq
{

print("Found a class: "+name(Cl));
}
//Write to log
log(info ,"transformation done");

}
rule printFormatted(in C) =
{

//Print out the value
print("Value is : "+C);

}

57

Declarative Specification of Domain Specific Visual Languages István Ráth

3.3 VIATRA2 Architectural overview

3.3.1 The VIATRA2 framework

The VIATRA2 system is a standalone model container and transformation framework, which can
be integrated into the Eclipse IDE as a plug-in. In stand-alone mode, the VIATRA2 system runs as
a console application with a command-line console.

Within the Eclipse environment, additional integration components are available:

• a tree-view modelspace editor component, supporting the standard Properties view and
undo-redo functionality;

• an Eclipse view which provides an interface to the import/export/parser facilities;

• a Code output view component to visualize the textual output generated by code generators.

The current implementation of the system allows for multiple framework instances within a
single Eclipse workbench, thereby enabling users to work with multiple VPM model spaces (and
editors) simultaneously.

VPM Modelspace ModelGTASM models

Core interfaces

VTML
parser

VTCL
parser

VPML

Native importer
interface

GTASM
interpreter

Pattern
matcher

Importers

Eclipse integration components

editor GUI
Output
formatter

VIATRA2 Framework

Figure 3.4: The architecture of the VIATRA2 framework

As it can be seen on Fig. 3.4, the internal structure of the VIATRA2 framework can be split up
into four major components:

1. VPM modelspace container and VPM core interfaces

2. Pattern matcher

3. GTASM interpreter

4. Import/export facilities

Our development teamwork consisted of the implementation and optimization of the VPM
core, the pattern matcher, and the GTASM interpreter (marked with red on Fig 3.4).

58

Declarative Specification of Domain Specific Visual Languages István Ráth

VPM Core The VPM Core implementation defines a low-level, simple interface. This interface
ensures the integrity of the model. All other components, including the editors and importers, use
this interface for queries and modifications. The VPM Core also supports a notification mecha-
nism, an arbitrary depth undo/redo interface, and a simple global locking mechanism to provide
preliminary support for concurrent modifications and asynchronous transformations.

Import/export facilities To facilitate the integration of the VIATRA2 framework into an existing
model-driven development infrastructure, the native importer interface provides support for the
construction of import plug-ins which read native formats and instantiate models in the VPM
modelspace. The VIATRA2 language (VTML and VTCL) parsers are also implemented as native
importers (by András Balogh).

Pattern matcher Pattern matching is an experimental subject. The efficiency of the whole
model transformation system highly depends on the efficiency of model storage and pattern match-
ing. Therefore, we designed the VIATRA2 system so that it can be used as a framework of future
pattern matchers. There are experiments with different matchers (such as [48]). If they were in-
serted into the VIATRA2 framework then all features of the GTASM language would automatically
work with that implementation (eg. recursive pattern matching and merging sub-patterns).

3.3.2 The GTASM interpreter

The model transformation interpreter is a complex system (see Fig 3.5). The modular implemen-
tation makes it possible to have modules with diverse implementations.

GT rules

Program reader

Simple model
manipulation rulesASM rules

Find matches
or check pattern

Interpreter

Pattern
matcher

RHS
Solver

Pattern
builder
interface

Match
collector
interface

Do action
interface

VPM model

Query interface Modification interface

Domain model Program model

Figure 3.5: The architecture of the VIATRA2 GTASM interpeter

The pattern matcher interface

A higher level VPM model query interface is the pattern matcher. This interface requires a model
of patterns and methods to manipulate them.

59

Declarative Specification of Domain Specific Visual Languages István Ráth

The interpreter defines a constraint based pattern definition. Over this model the pattern
matcher interface defines a pattern builder. The pattern builder accepts variables, constants and
constraints between them.

For each variable its type must be specified. There are three types of variables:

1. ”find all” output variables (to be bound to all matches)

2. ”find one” output variables (to be bound to the first possible match)

3. input variables (caller must bind to a model element before calling pattern match)

The pattern matcher will return all matches where the ”find all” variables are matched to
different model elements.

The Java interface of pattern matcher allows the following types of constraints:

• constraint on one variable that defines the main type of the element (entity or relation)

• constraint on two variables (these constraint types cover all types of relations between model
elements in a VPM model)

• client defined constraints on one or more variables: these constraints are checked by a
method provided by the client of the module

The constraint based pattern definition is handy for client programs and for pattern matcher
implementations as well. The user defined constraints make the system easily configurable.

The RHS solver interface

Graph transformation rules have a right hand side (RHS) pattern. This pattern is the goal of the
transformation. The graph transformation technique finds all matches of the left hand side (LHS)
pattern and changes them to be like the RHS pattern. The RHS solver module computes the
difference between the LHS and RHS modules and applies the required action on the matching of
the LHS pattern.

The RHS solver module interface accepts the two patterns of the same model as the pattern
matcher. The additional information required for building a list of actions is to bind the variables
of LHS to the variables of RHS.

3.4 Summary

In this section, I introduced the VIATRA2 framework, which supplies the modeling and trans-
formation infrastructure of our Multi-Domain Systems Engineering approach. I gave the detailed
description of our research and development efforts concerning the implementation and optimiza-
tion of the framework.

In the next section, I describe our implementation of the domain-specific modeling framework
based on VIATRA2, and how the examples provided in this section can be used on an intuitive
graphical user interface.

60

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 4

The ViatraDSM Framework

In this chapter, I introduce the ViatraDSM framework, a tool supporting the construction of dy-
namic and visual modeling languages, built on top of the model transformation facilities of the
VIATRA2 framework. This tool was developed by Dávid Vágó and myself; an early version was
presented as a Scientific Students’ Association report in November 2005. Since then, it has ma-
tured greatly: numerous features, such as extensive simulation support, conceptually separated
diagrams, multi-domain modeling support, declarative mapping between logical models and di-
agrams have been developed. In this section, I provide a general overview of the ViatraDSM
framework and discuss its most important features in detail. Some aspects, which are the main
contribution of my master’s thesis, such as multi-domain modeling and diagram-logical model
mapping, are discussed in more detail in chapters 5 and 6.

4.1 Architecture

Figure 4.1 shows the overall architecture of our ViatraDSM framework. At first sight it looks com-
plex and hard to understand. In the next few sections I will elaborate the concepts of that figure,
giving detailed descriptions of every major component of our framework. But before going into
details about that architecture, I will examine what other architectures could have been possible,
and why we chose this particular version.

4.1.1 Editor generation or runtime framework?

The first question which arises when creating a DSM framework is how actual domain specific
editors will function. There are two major approaches, editor generation and runtime framework.
Editor generation means that based on the metamodels, the code of the domain specific editors are
generated by the DSM tool. This approach is used for example by the Eclipse Modeling Frame-
work (EMF). Using EMF, the domain metamodel is specified using an UML diagram or an XML
schema definition. From the definition the EMF generates both Java classes, which implement el-
ements of the metamodel, and a simple tree-structured editor, which allows the editing of models.

The other approach is a runtime framework, which means that there is a general (domain inde-
pendent) model editor, which takes the metamodel as one of its inputs, and uses that metamodel to
validate model editing actions. An example of this second approach could be the MetaEdit+ tool.

Consider the Petri net example to see the difference between these approaches. If we model
Petri nets using EMF, the framework will generate Java classes such as Place, Transition, which
implement the metamodel (eg. class Place will have methods like getCapacity()). A simple
Eclipse-based editor is also generated, which allows the editing of models. The domain rules (eg.

61

Declarative Specification of Domain Specific Visual Languages István Ráth

Modelspace Model

DSM Thin
Wrapper

DSM metamodel
mapping

Notification
mapping

Diagram Manager
Interface

Diagram model

Tree EditPartsDiagram EditParts

Plugin View Classes

Domain
actions

and
commands

Icons Labels, tooltips

Custom plugin components

Other

DSM core metamodel Domain metamodel

Eclipse Extension Point

GEF
VIATRA2

DSM Framework

Figure 4.1: Detailed architecture of the DSM framework

places have capacities, transitions do not) cannot be violated, since the structure of the generated
classes cannot be changed (generated class Transition will not have a getCapacity() method,
whereas class Place will).

On the other hand, if Petri nets are modeled using MetaEdit+, we first design the metamodel
and domain rules within that tool. Upon the creation and editing of models, the tool will not
generate a separate editor, but it will constantly check the provided metamodel to decide whether
a certain editing action is allowed or not. For example in case of Petri nets, when we want to
add capacity to a given model element, the editor will check on-the-fly in the metamodel, whether
the selected element can have a property called capacity or not. Giving a different example
for comparison, the difference between the two approaches is similar to the difference between
compiled (EMF) and interpreted (MetaEdit+) program execution.

Before designing our DSM framework, we studied both approaches, evaluating the advantages
and disadvantages. Editor generation (just like compiled program execution in general) has an
advantage in terms of speed. The metamodel is processed only once, when the implementation
classes and editor are generated. After code generation, the metamodel might be thrown away,
since everything it describes (model structure and constraints) is reflected in the generated code.
That gives also one of the most important weakness of editor generation, the difficulty of tracking
metamodel changes.

A domain language is not a static concept, it evolves and changes to keep up with changing
business processes. That means the domain language has to be updated from time to time. When
we have our domain specific editors generated, every (even the smallest) change in the metamodel
must be followed by the regeneration of the entire editor. That means a problem, if some custom
functionality has been added to the original editor after code generation. Since a DSM framework
must be general and should accept a large scale of different metamodels, generated editors tend
to be simple, providing only basic editing functions. Therefore a language engineer usually adds
more advanced features to the generated editor code to increase its usability and thus its effect on

62

Declarative Specification of Domain Specific Visual Languages István Ráth

Metamodel 2

Generated editor
Domain-specific

DS model 2

DSM framework
Domain-independent

Metamodel 1

Generated editor
Domain-specific

DS model 1

Metamodel 2Metamodel 1

DS model 2DS model 1

Figure 4.2: Difference between editor generation and runtime framework

productivity. However when the metamodel changes, a new editor will be generated and all the
extra features have to be added again to the freshly generated editor code. EMF has some mecha-
nism to detect user-made (in this case language engineer) changes in the generated code, and keep
the changed part intact when regenerating code, but that requires placing special tags in the source
code. Therefore it is uncomfortable and more importantly, if not handled correctly, it might cause
serious and hardly detectable faulty behaviour in generated editors.

On the other hand, a runtime framework approach can get rid of this problem by having a do-
main independent general editor and making use of the domain metamodel during editing. When
the metamodel changes, code need not be generated, just the editor must be told to use the updated
metamodel. Just like the difference between fat and thin client software. For fat clients (generated
editors), an update must be distributed to each client (adding all extra features again), providing
numerous steps for errors. For thin clients (runtime framework), only the software on the server
side must be updated (change the metamodel), and the clients will automatically adapt to the
modified system. The drawback of this runtime framework approach is reduced speed, since the
metamodel must be checked at every editing action to ensure the fulfillment of domain constraints.

After looking at both approaches closely, we decided to use the runtime framework method in
our DSM tool implementation. It is true, that the constant processing of the metamodel requires
some additional time at editing, but editing is in general carried out by a human user, therefore
the time required by checking domain constraints is negligible compared to the time needed by
the user to press keys and drag the mouse. However this time penalty has a greater impact on the
performance while running automated transformations. But with advanced techniques like meta-
model caching and notification collecting (see section 4.2.2 on implementation for details) that
problem can also be surmounted.

On the architectural diagram (figure 4.1) this runtime framework approach is reflected by
the element DSM metamodel mapping. That component is responsible for mapping a domain
metamodel inside the VIATRA2 model space to the internal metamodel representation, which is
then used to verify the fulfillment of domain constraints during editing. A detailed explanation of
that component will be given in section 4.2.2.

63

Declarative Specification of Domain Specific Visual Languages István Ráth

Editor

Node

Property

topNodes

contains Edge

propertiesproperties

Figure 4.3: Core domain metamodel of our DSM framework

4.1.2 Domain specific graphical representation

To support user-made graphical elements, there are two major ways, drawing and coding. In case
of drawing, the DSM tool provides a simple drawing module where the user can create the required
element by combining shapes, texts, colors and other graphical primitives. The alternative way,
coding, requires the user to effectively write some code, using the programming interface (API) of
the graphical library used by the DSM tool. The major differences between the two alternatives are
the level of user influence and the required user effort. Drawing is clearly simpler for the users. A
few mouse clicks and keystrokes require way less work then writing code using an API previously
unknown to the user. But with drawing, we only have the set of basic elements provided by the
DSM tool vendor, and that may greatly limit our possibilities. Writing code requires more work
from the user, but he will have a total control of what will appear in the editor. Looking back at
our mouse trap example, building the figure of a mouse from separate lines, circles and polygons
(say these are the only elements provided by the DSM tool) requires much more work than writing
a few lines of code, which displays a bitmap image.

Our choice about graphical model representation is reflected by the component Plugin View
Classes on figure 4.1. These view classes are the short pieces of code a language engineer has to
write to provide a custom (domain specific) graphical representation for model elements. Details
about these view classes will be given in section 4.2.3.

4.1.3 Modeling

Metamodel structure

In this part, I introduce the core domain metamodel, which defines the set of elements the language
engineer may use to build up the metamodel of his own domain.

Figure 4.3 shows the structure of the core domain metamodel; in the following paragraphs, the
elements of this metamodel are described in detail.

Editor is the topmost element in every domain. There exists only one single instance of Editor,
it serves as a model container for each domain. The relation topNodes links the topmost nodes to
this single container.

64

Declarative Specification of Domain Specific Visual Languages István Ráth

Node represents an entity in the domain metamodel. Nodes may arbitrarily be nested into each
other by the contains relation. The only constraint about containment is that every node must have
exactly one parent (topmost nodes have the Editor as their parent).

Edge is a relation that links two nodes together. At present, the four multiplicity constraints
supported natively by the VPM core (one to one, one to many, many to one, many to many) can
be assigned to edges.

Properties are simple (name, value) pairs, which may be assigned to any model element. On
diagram 4.3, only one Property entity and two properties relations are present for simplicity, but
in the actual implementation both have various subtypes. The entity Property has three subtypes,
TextProperty is a property, whose value can be any textual data (domain plugins may implement
custom property validators to restrict the value). ColorProperty is a property, which represents
a color in RGB format. It is used mainly as a property of custom diagram elements. Finally,
MultiProperty is a property, whose value may be only one of a predefined set of possible values
(eg. a boolean property which may have only true or false as its value). The relation proper-
ties has two subtypes both for nodes and edges. Any defined property can either be required or
optional (having relation names requiredProperties and optionalProperties respectively). When a
new model element is created, its required properties are created automatically, and a default value
is assigned. Optional properties can be added and removed from a model element at any time.

These four concepts are the basic elements a language engineer may use to build up a custom
domain metamodel. Exactly one Editor element must be used as a top-level model container.
Arbitrary hierarchies of nodes might be contained in that Editor container. Edges may run between
any two nodes, and both nodes and edges may have any number of required or optional properties.
Anything which is built using these abstract elements and the few aforementioned rules is a valid
domain metamodel.

However in a mathematical sense, the domain metamodel is not an instance, but a subtype of
the core domain metamodel. That means the element Place of a Petri net metamodel is not the
instance of the core metamodel element Node rather its subtype. It makes sense, since the concept
Place is not a node itself, but it is a special kind of node. So strictly mathematically, the core
metamodel and domain metamodels are at the same meta-level, but they describe domain specific
concepts at a different level of detail.

On figure 4.4, an example domain metamodel can be seen, a simplified metamodel for Petri
nets. The names inside the square brackets give the core metamodel supertypes of each element.
There is one Editor on the top, and the only topmost nodes may be Petri nets. Each Petri net may
contain Places and Transitions. Places may contain Tokens and may have a property called capac-
ity. There are two kind of edges, OutArc, which goes from a Place to a Transitions, whereas InArc
is the opposite, and edge from a Transition to a Place. Both kind of edges may have a property
entitled weight.

Summary The core domain metamodel defines basic concepts about abstract syntax, the do-
main metamodels refine these concepts to create domain specific elements, finally domain specific
models are simply instances of the domain metamodel.

65

Declarative Specification of Domain Specific Visual Languages István Ráth

Petri net Domain
[Editor]

Petri net
[Node]

Place
[Node]

Transition
[Node]

Arc weight
[Property]

Place capacity
[Property]

petriNets
[topNodes]

places
[contains]

transitions
[contains]

weight
[properties]

capacity
[properties]

OutArc
[Edge]

InArc
[Edge]

Token
[Node]

tokens
[contains]

Figure 4.4: Example of a domain metamodel (Petri net domain)

4.1.4 Diagrams

Diagrams are graphical representations of certain domain specific model elements. However dia-
grams themselves can be regarded as some kind of domain specific models in the diagram domain.
For example, if we design a Petri net, that will be a model in the Petri net domain, however if we
draw that Petri net using circles, rectangles and arrow, that picture will be a model in the Petri
net diagram domain. There is a one-way mapping between domain specific models and domain
specific diagrams. Every diagram defines a model (or model part) by itself, however a model does
not necessarily define a diagram. In other words, diagrams are projections of the logical model.

The ViatraDSM framework supports such separation of models and diagrams. Each domain
can have its own diagrams, each domain specific diagram is described by a domain diagram meta-
model. One domain may contain multiple diagram metamodels, which is helpful, when a given
model can be depicted in various formats. For example in the domain of UML, the same complex
UML model might be represented as a class diagram, a sequence diagram, or maybe some other
format. With multiple diagram metamodels for each domain, creating various kinds of diagrams
from the same model is a straightforward job.

In Chapter 6, the separation of diagrams and logical models is described in more detail.

Diagram metamodel structure

A domain specific diagram is described by a domain diagram metamodel. Such a metamodel
defines the structure of a diagram, describes what kind of model elements can be displayed on the
particular diagram, and how those elements should be displayed.

For example, a diagram metamodel for a UML class diagram could state that this kind of
diagram may display classes, associations and class fields in a structure, where fields are displayed
within the classes and associations are displayed as some kind of connection between classes. It

66

Declarative Specification of Domain Specific Visual Languages István Ráth

Diagram

DiagramElement

NodeFigureEdgeFigure

root

subElements

NodeEdge

model model

Property
properties

fromEdges

toEdges

modelbindings

Figure 4.5: Diagram metamodel of the DSM framework.

is important to note that a diagram metamodel does not say anything about the actual graphical
representation of the model element. In the case of the example above, it does not say that classes
are boxes and fields are lines of text, it just states that fields are displayed within the classes.

In order to support various domain diagram metamodels, some basic concepts have to be de-
fined, out of which diagram metamodels may be constructed. That set of basic concepts is called
the core diagram metamodel (see Fig. 4.5).

Diagram is the element which represents a single diagram in the ViatraDSM framework. It is
not bound to any model objects, it just joins the elements of the diagram into a single entity. It is
the graphical representation of the diagram as a whole.

DiagramElement represents a graphical element on the diagram. It has two subtypes, NodeFig-
ure and EdgeFigure. A DiagramElement may contain subelements, and have an arbitrary number
of properties. Diagram properties are always stored as string key-value pairs, because it depends
on the plugin-specific implementation how they will be used in the graphical rendering process.

EdgeFigures are the graphical representation of edges in the domain specific model. They may
contain a reference (the relation model) to the Edge model object they represent.

NodeFigures represent the nodes of the model. Just like EdgeFigures, they may also linked to
the model object they represent. Generally (but not necessarily) the children of a NodeFigure are
the figures representing the children of its model object. Additionally, NodeFigures reference their
EdgeFigures throgh two relations (fromEdges and toEdges).

The root relation Every Diagram has a root element, which is displayed as the Diagram’s back-
ground. This root element can be changed to support hierarchical zooming. For more details, see
4.1.4.

67

Declarative Specification of Domain Specific Visual Languages István Ráth

The special role of the modelbindigs relation The modelbindings relation is a special feature of
the diagram metamodel. Since not all DiagramElements (NodeFigures, EdgeFigures) necessarily
contain references to logical model elements, the ViatraDSM framework supports DiagramEle-
ments without logical model bindings (e.g. decorators, notes, etc). However, there may be cases
where such an element is indirectly connected to a logical element, through another DiagramEle-
ment which has a direct model reference. For instance, the designer may wish to assign several
floating text labels to a Petri net Place, which display the various static and dynamic properties
of that place (capacity, number of tokens), and can be edited and moved around freely. Such a
floating text label requires a separate diagram metamodel element (because, on the GEF level, a
separate EditPart is needed), however it has no direct model binding. In such cases, a modelbind-
ings relation should be added between the NodeFigure of the place and the NodeFigure of the
floating text label, which the framework uses to determine which place should be involved in the
modification of the logical model once something on the diagram is modified.

Note: strictly speaking, using this technique is optional. If the tool designer wishes to imple-
ment diagram-to-logical model mapping using a custom mapper interfaces implementation (e.g.
by manually coding the relevant functions of the plugin), these modelbindings relations can be
omitted. The modelbindings relation is only needed if there is no connection between the “model-
less” DiagramElement and its “model-bound” companion that is visible on the diagram model
level and the plugin designer wishes to use the built-in diagram-to-logical model mapping func-
tionality of the ViatraDSM framework.

Petri net diagram
[Diagram]

PetrinetFigure
[NodeFigure]

Place
[Node]

Transition
[Node]

pnd_root
[root]

OutArc
[Edge]

InArc
[Edge]

OutArcFigure
[EdgeFigure]

PlaceFigure
[NodeFigure]

TransitionFigure
[NodeFigure]

model model
tfigures

[subelements]
pfigures

[subelements]

petrinet [model]

model model

InArcFigure
[EdgeFigure]

Petri net
[Node]

outArcs
[toEdges]

inArcs
[toEdges]

outArcs
[fromEdges]

inArcs
[fromEdges]

Figure 4.6: Example of a diagram metamodel (Petri net domain)

On figure 4.6 an example of a domain specific diagram metamodel can be seen. We can see
that there is one logical Diagram entity, and one default root node, which serves as a container for
graphical elements. There are two kinds of NodeFigures, one for the places and the other for the
transition. In the case of edges, InArcs and OutArcs are represented with different figures.

One might notice the absence of the model element Token from this diagram metamodel. This

68

Declarative Specification of Domain Specific Visual Languages István Ráth

PlaceFigure
[NodeFigure]

Pos_x[Property]

Pos_y[Property]

TransitionFigure
[NodeFigure]

radius

[Property]

isHorizontal

[Property]

Figure 4.7: Petri net domain diagram metamodel - properties

is because in this particular example, Tokens have no direct graphical representation, they will
appear as numbers written inside the Place’s figure.

In this particular example, three diagram properties are defined (Fig 4.7): position coordi-
nates (x,y) for both transitions and places, a radius for places, and an orientation for transitions
(which determines whether the particular TransitionFigure instance should behave as a horizontal
or vertical rectangular figure).

Changeable root concept

Model elements on a complex, highly hierarchical diagram can be very difficult to find. Logical
zooming enables the user to ”zoom into” any selected node, and display only the contents of that
node. It is similar to the current directory concept of file systems. Without logical zoom, it would
be hardly possible to find anything on a diagram containing hundreds of elements.

In the diagram metamodel (Fig. 4.5) the relation root always points to the actual node the user
has zoomed into. The reason why this relation is included in the metamodel (compared to being
stored in some local variable during editing) is that when a diagram is saved, we would like to
retain that zooming information. Therefore if the users saves a diagram and loads it back later on,
the zoom settings will not be lost.

4.2 Implementation

In this section, I will introduce the concept of a domain plugin, and show how the ViatraDSM
framework and these domain plugins interact to form a multi domain editor. Following that, the
default implementation of a domain plugin will be discussed.

4.2.1 DSM framework and domain plugins

The ViatraDSM framework is built on top of Eclipse, it is an Eclipse plugin, which implements
a multi page editor. A multi page editor is one of the default editors of Eclipse, it is basically
a container for multiple editors, its actual appearance will be shown in section 4.4. In this case,
the different pages of that container will correspond to the editors of the different domains. A
multi domain editor still separates the domains at the editing phase, multi domain functionality
only means that multi domain diagrams may be created, and multi domain transformations may
be executed.

69

Declarative Specification of Domain Specific Visual Languages István Ráth

DSM Framework plugin

Domain X plugin

Basic implementation

Domain Y plugin

Extended implementation

- Domain-specific graphics

- Custom tree icons

- Complex editing actions

- Derived properties

Domain Z plugin

Basic implementation

- Custom tree icons

Figure 4.8: Plugin-oriented architecture of the DSM framework

In order to support multiple domains at the same time, the ViatraDSM framework must have
a mechanism to detect what are the domains, which are present. When the user starts our DSM
framework, it should somehow find information about the available domains. Our solution for that
problem was a plugin-oriented architecture. Our DSM framework itself does not know about any
domains, but separate domains can make the framework aware of themselves by connecting to the
framework and providing information. A domain plugin is an Eclipse plugin, which implements
a certain domain. So when the framework starts, it does nothing, but waits for separate domain
plugins to log in. Figure 4.8 shows this plugin-oriented architecture.

A domain plugin may log in to the DSM framework by providing four different pieces of
information. First, it must supply the domain metamodel. Second, a domain plugin must also
provide the root of the actual domain specific model. Each domain has a single root element, from
which every other model element of the domain is accessible by navigating through containment
relations, edges and properties. Third, a domain plugin must also provide a list of domain diagram
metamodels, and the available diagrams (diagram models), which correspond to these metamod-
els. Finally, the domain plugin must provide its own domain specific graphical editor, since our
framework only support a simple, tree-structured visualization of models.

The ViatraDSM framework contains a default domain plugin implementation, which uses VI-
ATRA2 as a model (and metamodel) container and also as a diagram model (and metamodel) con-
tainer. It also provides a GEF-based editor with some basic graphical figures (rectangular boxes
and arrows). Generally a language engineer does not need to create the entire domain plugin him-
self, but can use our extensible implementation.

As it can be seen on figure 4.8, the DSM framework can be extended to provide custom
icons in the tree view, add optional, derived properties, and so on. Our default domain plugin
implementation will use built-in icons, no additional properties, and therefore even if a language
engineer does not want to code, he can create a functional domain plugin. But since virtually every
small piece of our default implementation may be changed by the language engineer (or even a
language engineer may create his own domain plugin from scratch), our framework is completely

70

Declarative Specification of Domain Specific Visual Languages István Ráth

customizable.

4.2.2 VIATRA2 as the model container

In order for the ViatraDSM framework to function properly, both the core metamodels (both do-
main and diagram) and the metamodel of the used domains must be present in the initial model
space. The models being edited are also stored within the same model space. The first implemen-
tation problem we solved was how to map VIATRA2 model objects to core metamodel object, and
how to navigate in a domain specific model.

Thin wrapper implementation

Using VIATRA2 references has multiple problems, most importantly because of the lack of type-
safety. Copying the entire domain specific model using custom (type-safe) classes raises memory
usage and synchronization problems. We decided to go for the middle, and created an implemen-
tation, which combines the two, a type-safe implementation which does not create a copy of the
model. We call this approach thin wrapper. The idea was that we should create interfaces for each
core metamodel entity, but the implementation of these interfaces does not copy the model (thus
being thin), rather it stores a reference to a VIATRA2 model object (thus being a wrapper), and
uses a mapper utility to extract information upon queries. So we have interfaces like IDSMNode
or IDSMEdge, and the implementation of these interfaces stores a VIATRA2 reference. When the
getContainedNodes() method is called upon an IDSMNode object, the implementation uses a
mapper utility to extract the information from the VIATRA2 model space.

Using these interfaces introduces type-safety to the implementation, and thus the mapper util-
ity does not have to check the validity of the queries. We moved those checks from run-time
to compile-time. This approach also allows us to deal with models outside the VIATRA2 model
space, since these core metamodel interfaces might be implemented by a third party to support
EMF models for example.

One drawback of this thin wrapper implementation is that it still uses a mapper utility. A
lot of processing time is spared due to type-safety, but a thin wrapper still lags behind complete
model copy in terms of speed. A function which queries the VIATRA2 model space could not
possibly be as fast as just checking a few local variables. We tried a few optimization tricks, the
most promising was metamodel caching. It is sure that the entire domain specific model cannot be
copied, such a model might contain hundreds of complete Petri nets for example. However we may
copy the domain metamodel. No matter how large the model becomes, the metamodel remains the
same (generally small) size. Why would that increase the performance when the queries are run
on model element? Simply because most model queries begin with a metamodel query as a first
step. For example, if we want to read all the children nodes of a Petri net instance, first we have
to read the metamodel to find out that a Petri net has two kinds of children, places and transitions.
Without optimization, reading the children of a node requires two queries into the VIATRA2 model
space, one about the metamodel and a second about the model itself. If we cache the metamodel
within our DSM framework, we can spare one of those queries. Caching the metamodel requires
a negligible memory compared to model sizes, but the speed gain approximates twofold.

71

Declarative Specification of Domain Specific Visual Languages István Ráth

Notification support

Using a thin wrapper with metamodel caching is a rather efficient way of navigating in the model
along core metamodel relations. However, as it can be seen on figure 2.4, in a GEF-based editor,
the model must be capable of notifying its EditPart. These notification messages are sent to the
EditPart when something about the model changes (eg. a new place is added to the Petri net or
simply one of the edge weights are changed). This notification mechanism is necessary because
the model can be modified not only by the user, but by a transformation (simulation) run by the
VIATRA2 engine.

VIATRA2 has built-in notification support, so for every VIATRA2 model object (IModelElement)
listeners can be registered. The registered listeners will be notified when that model object is
changed.

The major difficulty in implementing this notification mechanism was that one domain spe-
cific element (eg. a node) is made up of multiple VIATRA2 model elements. Thus an event
at DSM-level (eg. a new child node has been created) are made up by a sequence of multiple
VIATRA2-level notifications. The creation of a new child node for example requires four basic
VIATRA2 operations to be carried out in a defined order.

Our solution was very similar to the thin wrapper conception. We created two notification dis-
patcher classes (for the diagram and logical models - represented by the “Notification mapping”
component of the Thin Wrappers on Fig. 4.8), which have the sole responsibility of turning VIA-
TRA2 notifications to DSM notifications (like the thin wrapper turned domain specific queries into
VIATRA2-specific ones). We defined a pattern for each DSM notification. Such a pattern describes
what VIATRA2 notifications should occur and in what order to induce a DSM event. An example
for such a pattern could be: if a new entity (at VPM-level) is created, then it becomes instance of
a domain metamodel element, and then a relation is created linking this entity to another model
object of the same domain, this sequence means that at DSM-level a new child node has been
created. The notification dispatcher listens to every VIATRA2 model objects in a given domain,
and checks the incoming VIATRA2notification sequence for these patterns, and when it finds one,
it emits the corresponding DSM notification.

Extensibility

In the previous paragraphs I summarized how the handling of domain specific models can be per-
formed when those models are stored within the VIATRA2 model space. However, the ViatraDSM
framework is not bound to VIATRA2 . Since the model space is accessed through a thin wrapper
layer, an EMF-based (or even a relational database backed-based) implementation would be pos-
sible.

Implementing these domain specific model interfaces requires lots of work and great care nev-
ertheless. Basically there are four major components to implement. First, metamodel and model
query functions (get children nodes, and others) must be implemented. Second, model manipu-
lation function (add new child node, etc.) must also be implemented. Third, notification support
required by GEF EditParts must be added to model objects. Finally, a simple domain manager
class should be implemented. That domain manager is responsible for initializing the domain
model, finding the model and metamodel root elements and coordinating the work of the other
three components.

72

Declarative Specification of Domain Specific Visual Languages István Ráth

Model representation summary

For the representation of metamodels and models, the ViatraDSM framework gives complete free-
dom to the language engineer. The framework accesses and modifies the models through a well-
defined set of interfaces. Every domain plugin must contain an implementation of these interfaces.
A language engineer has the freedom to implement these interfaces himself, thus completely hid-
ing the metamodel and model representation from the DSM framework.

However, in most of the cases, the default implementation can be used (subclassed), which
uses the VIATRA2 model space for storing metamodels and models. This VIATRA2 implementa-
tion tries to be both fast and memory-saving, therefore it uses a thin wrapper conception, which
combines the low memory usage of the wrapper-less approach (using VIATRA2 reference inside
the DSM framework) and the fast processing speed of ”fat” wrappers (copying the entire domain
specific model). Our implementation also supports the notification mechanism required by GEF
by converting incoming VIATRA2 notifications to DSM-specific ones based on a few simple rules.
Both the thin wrapper and the notification dispatcher includes certain optimization techniques
which enable a smoother run of complex transformations and simulations.

4.2.3 Graphical representation

The default domain plugin implementation also provides functions for graphical model representa-
tion and editing. As a domain specific graphical editor, it provides a GEF-based extensible editor,
where actual graphical figures may be easily replaced by any custom figure.

VIATRA2 as the diagram container

The diagram models are also accessed through a similar thin wrapper layer like the logical mod-
els. The main advantage of this approach is that this enables VIATRA2 transformations to run on
diagram models (making, for instance, transformation-based mapping between the diagram and
its logical counterpart possible - for details, see 6).

GEF-based extensible editor

Our implementation includes a GEF-based (see 2.5.3) editor to edit these domain specific dia-
grams. In the MVC scheme of GEF, the model may be any arbitrary Java class, the only require-
ment is that model change notifications should be supported. The views are required to be Draw2D
figures, whereas the controller, called EditPart, is supplied by GEF. These GEF EditParts contain
the essence of GEF functionality, they transform basic user actions (keyboard and mouse events) to
a higher abstraction level, called requests, which are then transformed again to commands, which
are the placeholders for model manipulation activities.

Basic view implementation The ViatraDSM framework provides basic view class for Node-
Figures and EdgeFigures (and a white canvas as the default diagram root). Our NodeFigure is a
resizable rectangular box with the name of the represented model element in the header. The basic
EdgeFigure is a simple arrow leading between nodes. You can see screenshots of these figures in
section 4.4.

73

Declarative Specification of Domain Specific Visual Languages István Ráth

Extensibility

The various domain plugins may connect to the framework through various Java interfaces. They
must implement the IViatraDSMEditor interface, which inherits methods from the following
interfaces:

• IDSMOutlineContributor This interface is responsible for supporting various ways to
customize the appearance of the tree view (tree labels, tree icons, tree color, tree comparator
for a custom ordering of objects, DSM notification support, and plugins can even contribute
to the tree’s context menu).

• IDSMPropertyContributor Plugins may provide custom Property Descriptors for various
logical and diagram properties through this interface. This is useful if a special editor (such
as a File selector, for instance) is required for a given property.

• IDSMDomainContributor Plugins provide basic information about the domain they are at-
tached to through this interface. Additionally, the simulation/code generation engine of the
ViatraDSM framework uses this interface to determine what kind of simulation transforma-
tions/code generators are provided by the plugin.

• IDSMGraphicalEditingContributor This is the interface though which plugins provide
helper classes for graphical editing. The most important of these is the IViewFactory
instance. Additionally, plugins may provide custom creation tool icons which are displayed
on the graphical palette.

• IEditorPart This is a standard interface of the Eclipse workbench, every editor instance
must implement this.

Additional methods defined on IViatraDSMEditor provide support for the handling of vari-
ous workbench events, such as selection changed, focus gained and lost, save initiated.

The IViewFactory interface provides support for the creation of view classes based on the
metamodel specification (i.e. the ViatraDSM framework passes a metamodel instance to the plu-
gin, and gets a view class in return).

4.3 Transformations, simulation and code generation

An essential concept in our DSM framework is the support for transformations, both model trans-
formations and code generators. Basically every existing DSM tool provides code generation
functions, but only a few support model transformations. The advantage of model transformations
is that using them, the models can be simulated with the DSM tool. Simulations is just one use
of model transformation (however the most frequent use), but model transformations are more
powerful than just a plain simulation engine. Using model transformations, automated model
manipulation becomes possible. An example could be automated optimization, which we have
already mentioned as an example in the introduction of this chapter.

4.3.1 Requirements of transformation support

The ViatraDSM framework has a built-in transformation engine, which utilizes the facilities of
the underlying VIATRA2 framework. This transformation engine was developed by Dávid Vágó,
and thus in this section I only outline the various possibilities of model simulation (and code
generation). On the user interface, simulation execution appears as a separate element in the tree’s

74

Declarative Specification of Domain Specific Visual Languages István Ráth

context menu; it supports interactive simulation (meaning that the user can determine on non-
deterministic points how to continue) and diagram can track the state of the simulation engine as
well.

4.3.2 Describing transformations

Since the VIATRA2 framework is used for model transformation, simulation has to be specified by
graph transformation rules and abstract state machine programs. These technologies have already
been introduced in chapter 3. Transformations may be divided into two groups, the ones which
does not affect the model structure, and the ones which effectually modify the model. The first
group contains mostly code generators, but model checkers also belong there. Code generators
are transformations, which simply walk through the entire model, and at each model element, they
emit some kind of textual information. Most probably at the end of the round trip, these snippets
of texts assemble into some kind of meaningful source code of some kind. See 7 for an example
simulator, and 7 for an example code generator, a transformation which generates PNML code
from a Petri net model.

Model checkers are transformations, whose task is to check the fulfillment of certain well-
formedness rules. Certain wellformedness rules be expressed at metamodeling level (for example
our metamodel of Petri nets contained the wellformedness rule that two places may not be con-
nected), but certain others cannot (or would require heavy modification of the metamodel). To
check complex wellformedness rules, we can design a transformation, which walks throught the
entire model, just like a code generator, and checks the given rules for every model element. One
example for wellformedness rules, which may not (in our actual implementation) be expressed
in metamodels are relation multiplicities. If we want to introduce multiplicity constraints in our
domain specific editor, we must build a transformation, which check the entire model, and verifies
multiplicities.

4.3.3 Running transformations

The ViatraDSM framework supports the possibility to assign certain transformations to model el-
ements, and thus the execution of these transformations may be initiated from the user interface.
The framework currently provides support for two kinds of model transformations: simulation and
the checking of language-specific well-formedness constraints.

The results of a model-checking transformation can be observed in Eclipse’s Error Log view
(as supported by the VIATRA2 framework), while simulations can be tracked using ViatraDSM’s
user interface (as supported by the notification mechanism). Figures 4.9-4.11 show the three suc-
cessive steps in an example Petri net simulation.

The framework also provides support for influencing the execution of the simulation. For ex-
ample in the Petri net example, if we simply launch the simulation, we have no means to decide
whether the top or the bottom transition will fire. To provide complex debugging services, we pro-
vide a mechanism which enables the user to choose any arbitrary execution path himself whenever
the simulation arrives at a decision point.

On figure 4.12 we give an example of how such a guided simulation is executed. It shows
the first step of a Petri net simulation, where the possible execution path (fireable transitions) are
marked with red, and the user could choose the desired one by simple clicking on the chosen one.

75

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.9: Three steps of a Petri net simulation in the DSM framework (step 1)

Figure 4.10: Three steps of a Petri net simulation in the DSM framework (step 2)

76

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.11: Three steps of a Petri net simulation in the DSM framework (step 3)

4.4 User Interface

The user interface of a modeling tool is a key point in success, since developer productivity can
only be increased, if the GUI is simple, clear and easy to use.

On figure 4.13 the entire DSM framework is shown as it appears inside the Eclipse platform.
The appearance of our framework can be divided into three major components. In the middle we
see the graphical representation of the domain specific model. On the right, in an Eclipse view
entitled Outline we see a tree-structured representation of our model and our diagrams. Finally
at the bottom, we see the Eclipse Properties view, where model and diagram properties may be
changed.

Another important part are the little tabs at the bottom of the graphical editor. There are two
tabs there on this picture, Petri net and State machine. These are the domain, which are created
within the DSM framework. Unlike most of the existing DSM tools, our framework supports multi
domain editing (see 5), where models from different domain can be edited at the same time, multi
domain diagrams can be drawn or heterogeneous systems may be simulated. With those little tabs
we may instantly jump from one domain to another. User-initiated editing operations do not affect
domains other than the selected one, but multi domain transformations may cause model from
multiple domain to change.

4.4.1 Logical model view

The logical model in can be found in the Outline view in the form of a tree. The tree view has
two roots, one for the logical modelspace and one for the diagrams (which can be viewed, but not
edited).

Every item in the tree represents one model element. Each node is contained by its parent
node, and edges are contained by their source node. In the example on figure 4.17 we have two

77

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.12: Guided simulation of Petri nets

Petri nets (pn0 and pn1), and the latter has three places, two tokens (both in place p1) and two
transition and some arcs linking them together.

To edit the model in the tree view, the user has to use the context menu. Figure 4.14 shows two
examples, the left one appears, when a Petri net is selected, the right one appears, when a place is
selected. The context menu will contain only the appropriate actions for the selected element. You
can see on the example, that Petri nets have places and transition as possible children, whereas
places may contain tokens or outarcs (this is called syntax-driven editing).

For the creation and deletion of model elements, the user may use the context menu (actually
deletion also works with the Del key), but it is also possible to move elements from their par-
ent into an other element. That can be done by simple drag-and-drop, the framework will check
whether the operation is valid (eg. dragging tokens into a transition would be invalid). Clipboard
operations (copy, cut and paste) are also supported, and every action (or action sequence), which
modifies the model may be undone step by step. Each supported domain has its own clipboard
and undo stack, therefore the user may comfortably work with multiple domains at the same time.
Undoing transformations (thus also simulations) is supported, too. The undo and redo operations,
along with the clipboard functions are available through the Eclipse toolbar (see figure 4.15).

An other important feature in terms of editing is the property sheet (figure 4.16). This view
is provided by the Eclipse platform, and editors and other views may populate it with any set of
properties. As it can be seen in the example, it displays both modeling and diagram properties.
Every Property in our domain metamodel will be displayed on this property sheet, and the value
(which is in general an ordinary text value) can be edited there. Naturally, property change actions
can also be undone. For edges, the source and target endpoints may also be edited through the
property sheet (the other way of changing them is drag-and-drop in the tree view).

78

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.13: The graphical user interface of the ViatraDSM framework

Figure 4.14: Example of context menus (left: PetriNet, right: Place)

Figure 4.15: Toolbar for undo/redo, delete and clipboard operations.

79

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.16: Property sheet views (top: Place, bottom: OutArc)

4.4.2 Diagrams

A developer may access every possible editing action through the property sheet and the tree view,
but diagrams offer a more spectacular way of modifying the model. An example graphical editor
is shown on figure 4.17. On the left it contains a palette, which list the possible graphical editing
actions. Its main part is the actual graphical display of certain model elements.

The ViatraDSM framework (like many other modeling tools) separates the concepts of model
and diagrams. The model includes every element, which is present in our domain, whereas a
diagram only displays a subset of these elements. This introduces certain ambiguity, for instance,
when the user deletes something on the graphical view, the question arises whether it should be
only removed from the diagram, or also deleted from the model. Despite this small problem, sep-
arating the model and the diagrams is a good idea, since it lets users show only parts of the model.
A complex web-based application might be modeled with a statechart, which contains thousands
of states and transitions. If that entire statechart were represented as one single diagram, it would
quite confusing to a designer (we have had plenty of feedback regarding this problem for the first
VIATRA2 editor, which was also written by Dávid Vágó and myself). Separating the model from
the diagrams enables to have a large, complex model, but create diagrams only of certain small
submodels, in case of our web application example, the few dozen states, which are responsible
for user authentication for example.

Graphical diagrams are also displayed in the bottom half of the tree view. The main motive
behind this is that graphical elements can be found easier (especially considering the changeable
root functionality) in a tree layout, that on a visual diagram. The property sheet can also be useful
in graphical editing, because for example using the Property view the user may precisely position
and resize diagram objects (seee Fig. 4.16).

A more detailed elaboration on Diagrams, and the separation between diagrams and logical
models can be found in Chapter 6.

80

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 4.17: Petri net editor with custom graphical elements

81

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 5

Multi domain modeling

In this chapter, I discuss the ViatraDSM framework’s novel approach for integrating domain-
specific modeling languages across multiple domains. First, I describe (in Sec. 5.4) light-weight
techniques for integrating multiple domain-specific modeling languages into a consistent system
model in addition to traditional model transformation based domain integration. Using these novel
techniques, integration of DSMLs can be specified very easily compared with designing a complex
model transformation for the same problem in many cases. Then I present (in Sec. 5.5) how these
concepts can be used to create multi-domain models in the ViatraDSM framework.

5.1 Introduction

The ViatraDSM framework supports the multi-domain integration of domain-specific modeling
languages (DSMLs) in the following ways: (i) subclassing between metamodel elements of two
DSMLs, which is an extension of the UML profiling mechanism for an arbitrary ”host” DSML
(not only UML); (ii) multiple instantiation (typing) [46] where a model element may be typed
over multiple domain metamodels; and (iii) traditional model transformations as provided by the
VIATRA2 transformation framework. For all these solutions, the models of the different DSMLs
can be edited separately by the domain engineers, however, the underlying system model is kept
synchronized.

5.2 Domain integration

Complex systems are usually modeled from different perspectives, for example, UML offers sev-
eral diagram types for software design, e.g. class and deployment diagrams for structural model-
ing, activity and sequence diagrams for dynamic behaviour etc. Thus the separation of concerns
is essential in maintaining the clarity and accuracy of complex models.

The various modeling perspectives should be linked together in the underlying system model
in a consistent way. This means, in simple terms, that if something is changed in one of the
modeling domains (e.g. a method name is changed in a UML class diagram), this change has to be
automatically reflected in all other modeling domains (e.g. by changing the name in all sequence
diagrams as well).

Thus, domain integration means retaining the advantages offered by various domain-specific
tools, and providing automated support for generating a global and coherent system model from
small domain-specific submodels.

82

Declarative Specification of Domain Specific Visual Languages István Ráth

The traditional approach to domain integration is to use separate domain-specific tools for
various source domains and import their output into the target domain (see Sec. 5.4.1). This is
generally unidirectional, i.e. if a change in the target domain should be reflected in the source
domain, the only option is to manually figure out what needs to be changed in the source domain
and edit the models manually, or to write a second transformation.

These off-line (import/export based) transformational integration approaches can be slow, es-
pecially for large models, even if automated tool support is available. A lightweight solution is to
integrate all (meta)models into a single language, and use stereotype annotation (tagging) to assign
model elements to various domains (Fig. 5.1). This approach is used by the profiling mechanism
of UML. Whilst some tool support exists for defining and applying UML profiles, this technique
lacks certain advantages offered by flexible domain-specific editors as it is annoyingly easy to
construct ill-formed models with inappropriate stereotypes.

<<A>>

<<A,B>> <>

Editor for Domain A Editor for Domain B

Multi-domain Editor
for Domains A,B

Figure 5.1: Integrated multi-domain modeling

However, the metamodels in standard UML Profiles already incorporate deep knowledge of
a domain gathered from top domain experts, which is required for constructing editors and lan-
guages for that domain. Unfortunately, these existing metamodels are frequently ignored when
constructing a new language in a DSM framework. In the upcoming example, I demonstrate
that the metamodels of UML profiles are highly reusable when constructing domain-specific lan-
guages.

5.3 Example: Enterprise Security Policies and UML’s Performance
Profile

In this section, a simple example will be used to demonstrate how a custom domain-specific lan-
guage can be projected into an analysis domain corresponding to the UML Performance Profile.

The domain-specific modeling language is built from scratch by using a generic modeling
environment. In this case, the Enterprise Security Policy domain (see Fig. 5.2; which is an
extended version of the example presented in [37] as a complex case study) describes a simple
enterprise security and surveillance system installation and its security procedures (note: several
classes have properties which are omitted in Fig. 5.2 for the sake of simplicity).

The Enterprise Security Policy domain describes both deployment and procedural aspects of
enterprise surveillance systems. At the top of the containment hierarchy is the Installation entity,
to which Buildings, a Network and several Processes can be assigned. A Building consists of
Rooms, where Devices can be placed. Devices have deployment and operational cost properties

83

Declarative Specification of Domain Specific Visual Languages István Ráth

Enterprise
Security
Policy

Installation

Building

Device

Network Process

Room Activity

Doorlock
Actuator

Video
Camera

Security Card
Reader

Application
Server

Database
Server

Disk
Recorder

+connection
+uses

* *

**

* +prev

+next

*

+start

Figure 5.2: Enterprise Security Policy domain metamodel

which can be used for financial analysis and optimization.
The buildings are connected to the network infrastructure; individual devices can be assigned

individual connection properties (not shown in Fig. 5.2). Security policy Processes consist of
Activities, which can make use of several devices.

Since the application domain is capable of describing processes, it is a natural requirement to
analyze the performance and throughput of the system in a production environment. For modeling
performance related aspects, we use the standard UML Performance profile[34]. As a conse-
quence, the modeling environment should be extended to allow the projection of security policy
models into the UML Performance domain (Fig. 5.3).

Performance
Context

Workload PScenario PResource

Open
Workload

Closed
Workload PStep

PProcessing
Resource

PPassive
Resource

+resource

<<deploys>>

+host{ordered}
+root

+pred +succ

** *

*

Figure 5.3: UML Performance domain metamodel (extract)

The UML Performance domain describes Performance Contexts, which consist of Workloads,
Performance Scenarios, and Performance Resources. A scenario is made up of multiple, ordered
Performance Steps, which can make use of either Passive, or Processing resources. A scenario
can be analyzed with either Open, or Closed workloads.

84

Declarative Specification of Domain Specific Visual Languages István Ráth

5.4 Concepts for multi-domain integration

In this section, I discuss three modeling techniques for multi-domain modeling integration based
on (i) subclassing between metamodel elements of two languages, which is an extension of the
UML profiling mechanism for arbitrary ”host” languages (and not only UML); (ii) multiple in-
stantiation (typing) where a model element may be typed over multiple domain metamodels; and
(iii) traditional model transformations. In all these cases, the models of the different DSMLs can
be constructed separately by the domain engineers, however, the underlying system model is kept
integrated automatically by appropriate mechanisms.

5.4.1 Transformation-based integration

Transformation-based domain integration (Fig. 5.4) means that models from different domains
are mapped using model transformation techniques. In the general case, such a transformation
takes a valid model of the source domain, and produces its counterpart in the target domain. The
equivalence of the source and target models are preferably guaranteed by the formal verification
of the transformation.

DSM Core metamodel

Domain A metamodel Domain B metamodel

Domain A models

Domain B models

XForm

Domain A models
generated from

Domain B models

Figure 5.4: Transformation-based integration

The transformation-based integration is the most generic approach to multi-domain modeling.
Moreover, bidirectional translations are also possible in certain cases. However, for complex mod-
els, regenerating the whole target model after a small change in the source model can significantly
slow down the design.

Therefore, the main challenge of this approach is to provide support for incremental transfor-
mations which run transparently in the background while the user is editing the model. While
incremental transformations are of immense importance in the upcoming QVT standard, graph
transformation-based approaches provide much better support for integrating multiple domains or
views.

5.4.2 Metamodel-level integration by subclassing

However, in many cases, the transformation-based approach can be considered too heavyweight
concerning the amount of work required for specifying the links between two domains. This
is particularly true when the source and the target domain metamodels are structurally ’similar’.
This similarity can be expressed with a (partial) subclass relation between the domain metamodels
(Fig. 5.5).

85

Declarative Specification of Domain Specific Visual Languages István Ráth

DSM Core metamodel

Domain A metamodel Domain B metamodel

Domain A models Domain B models

{implicit}

generalization

instantiation

(a) Metamodel of Domain B is (partially) subclassed (tagged) so that
B’s models implicitly become A’s models as well.

DSM Core metamodel

Domain A metamodel Domain B metamodel

Domain A models Domain B models

(b) Partial subclassing (tagging) means that not every metamodel ele-
ment in Domain B is required to be tagged with a supertype from the
metamodel of Domain A.

Figure 5.5: Metamodel-level integration (subclassing)

This technique is a generalization of UML profiling mechanism for an arbitrary ”host” domain
[46]. In Fig. 5.5, element ”tagging” means the assignment of an additional supertype to the source
domain metamodel’s certain elements. This is possible if the underlying metamodeling framework
supports multiple inheritance.

This way, model instances of the source domain implicitly become instances of the target do-
main; however, care must be taken to ensure that they are valid instances, i.e. both static and
language-specific constraints must hold in both domains. In the simplest case, this may require
some further associations be added to the model (which are only required for the target domain);
however, in general, this is also a model transformation problem. The key difference is that typ-
ically only simple transformations are required here which only perform ”corrections” on the
models if they are not well-formed (instead of full translations as in the general case). In practice,
this means that they are easier to design and implement.

5.4.3 Model-level integration by multiple instantiation

The model-level integration approach (see Fig. 5.6) requires that a class in target domain can be
assigned explicitly as a type for a model element in the source domain. This assignment can be
carried out by user interaction or automatically.

The key difference between the model- and metamodel-level approaches is that by mapping
metamodels it is ensured that all model instances will be mapped onto the target domain, while

86

Declarative Specification of Domain Specific Visual Languages István Ráth

DSM Core metamodel

Domain A metamodel Domain B metamodel

Domain A models Domain B models

{explicit}

(a) Types from Domain A are assigned explicitly to model elements in
Domain B (either by the user or automatically using a mapping model).

DSM Core metamodel

Domain A metamodel Domain B metamodel

Domain A models Domain B models

{explicit}

(b) This mapping can be partial, because in most cases not all elements
from Domain B are relevant in Domain A.

Figure 5.6: Model-level integration (multiple instantiation)

model-level mapping is more customizable in the sense that the user decides what to project.
A major requirement for model-level domain integration against the underlying metamodeling

framework is a support for multiple instantiation [46], i.e. to allow to assign a type from each
domain to an instance-level model element.

5.5 Multi-domain modeling in ViatraDSM: An example

The example of Sec. 5.3 consists of two domains, the Enterprise Security Policy (ESP) designer,
and UML’s Performance profile. In this case, the goal is to provide a way for a performance
modeling expert to view the models created by the enterprise security experts directly from the
native UML Performance view based upon the multi-domain modeling support of ViatraDSM.

Since the domain metamodels are structurally similar, a combination of the metamodel-level
and transformation-based domain integration techniques will be used. One could also opt for
a model-level integration approach, however, in this specific case primary system design is car-
ried out in the ESP domain, and the UML Performance view is only used for the assignment of
performance-specific model properties.

First, the two editor metamodels for both of the domains are constructed. Next, the mapping
from the ESP domain to UML Performance is defined. The ESP domain incorporates both struc-

87

Declarative Specification of Domain Specific Visual Languages István Ráth

tural (Building-Network-Room-Device) and dynamic views (Processes). The following mapping
is used:

• Installation → PerformanceContext

• Device → PResource

– ApplicationCPU → PProcessingResource

– DatabaseCPU → PProcessingResource

– DiskWriter → PPassiveResource

– DoorlockActuator → PPassiveResource

– SecurityCardReader → PPassiveResource

– VideoCamera → PPassiveResource

• Process → PScenario

• Activity → PStep

The metamodel-level mapping ensures that every model instance constructed in the ESP do-
main will be visible in the UML Performance domain as well (naturally, this holds for the mapped
model elements). Furthermore, all constraints have to be fulfilled in both domains. In this case,
additional constraints are required to express that the containment structure of the language meta-
models is different.

In Fig. 5.7, the metamodel-level integration technique with transformation-based integration is
combined. When the containment tree structure of the source domain cannot be mapped directly
to the target domain by subclassing, additional model transformation steps may be required.

Performance
Context

PResource

Installation

Building

Device

Room

GroceryStore

Shop

Lobby

LobbyCam

+buildings

+rooms

+devices

+resources

:buildings

:rooms

:devices

{neg, new}
:resources

Video
Camera

Figure 5.7: Multi-domain models

In this particular case, Device instances associated to a given Installation can be reached in
three navigational steps in the ESP domain, however in the UML Performance Profile PResources
are directly contained by Performance Context instances. This means that for already existing
Device instances, such as LobbyCam being contained as a valid PResource by the GroceryStore
performance context, a new relation of type resources must be added (marked by new keyword

88

Declarative Specification of Domain Specific Visual Languages István Ráth

in Fig. 5.7). This simple ”correction” is implemented by the following VIATRA2-native model
transformation program:

namespace DSM.machines.UML_Performace;

import DSM.metamodel.SecuritySystem.SecuritySystemEditor;
import DSM.metamodel.UML_Performance.UMLPerformanceEditor;

machine resourceCorrector
{
gtrule deviceConnector(in I, in D) =
{
precondition pattern lhs(PC,D) =
{
// describe the model in the
// SecuritySystem domain
Installation(I)
{

Installation.Building(B)
{

Installation.Building.Room(R)
{

Installation.Device(D);
}

}
}
// describe the model in the
// PerformanceContext domain
PerformanceContext(PC)
{

PerformanceContext.PResource(PRes);
}
// check that the instances matched
// are indeed the same
check(I==PC)
check(PRes==D)
// check that the presources relation
// has not been added previously
neg pattern p(PC,D) =
{

PerformanceContext(PC);
Installation.Device(D);
PerformanceContext.presources(R,PC,D);

}
}
postcondition pattern rhs(PC,D) =
{

PerformanceContext(PC);
Installation.Device(D);
// add the presources relation
PerformanceContext.presources(R,PC,D);

}
}
rule main() = seq
{
// perform the transformation for all models
forall Installation , Device below ’DSM ’.’model ’

with apply deviceConnector(Installation ,Device) do skip;
}

}

89

Declarative Specification of Domain Specific Visual Languages István Ráth

The end result can be seen on Fig. 5.8. The screenshot extracts show the same physical model
instance from two different perspectives. As the user is editing the model in the ESP domain,
the changes are instantly visible in the UML Performance domain. However, these are domain-
specific views, thus in each editor only those details are visible which are relevant for the given
visual language.

(a) UML Performance (b) Enterprise Security Policy

Figure 5.8: Domain-specific editors: the same model element in two different domains

90

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 6

Mapping between abstract and concrete
syntax

6.1 Introduction

The importance of arbitrary abstract-to-concrete syntax mapping in visual languages is best sup-
ported by the simplicity argument: abstract syntax representation tends to be too complicated
and difficult to look through for the human user. The reason for this phenomenon lies in the
fact that most of the information in the abstract syntax representation is encoded in a structural
fashion, while concrete syntax is usually more compact. For instance, a String property in a
Class instance might be represented as a relation pointing from the Class entity to an instance of
datatypes.String in abstract syntax, and a simple label on the graphical node representing the
Class in concrete syntax (see Fig. 6.1).

As discussed in Chapter 2, traditional domain-specific modeling environments such as MetaEdit+
offer only a single modeling layer which means that the language engineer is limited to assign-
ing a graphical representation to each metamodel element, based on their role (node or edge). In
contrast, in recent initiatives, such as Eclipse’s General Modeling Framework[15], the modeling
and diagram layers are conceptually separated, meaning that diagrams are stored on a separate
modeling layer which is mapped onto the logical model using generated Java code (based on a
declarative mapping model). However, this conceptual separation is only partial, because GMF
only allows for logical nodes being mapped to diagram nodes, and logical edges to diagram edges.
Thus, the language engineer can use this technique to create diagrams which present a projection
of the logical modelspace, however there is no support for more useful constructs such as aggre-

Test:Class

�2� :String

weight: Attribute

Test

weight: 2

Abstract syntax Concrete syntax

Figure 6.1: Abstract vs. concrete syntax representation

91

Declarative Specification of Domain Specific Visual Languages István Ráth

gations (information obtained from many model elements mapped to a single diagram element).
The problem of mapping between abstract and concrete syntaxes of a visual language is similar

to the problem in the domain of textual languages (as discussed in [52, 22]). The important dif-
ference is that in textual languages a separate “visualisation” modeling layer between the abstract
syntax representation (e.g. an Abstract Syntax Tree) and the visual source code representation is
absent. In visual languages, diagrams display a “projection”, or aspect of the logical modelspace;
its equivalent in textual languages would be an aspect-oriented editor which would enable the de-
veloper to only see certain aspects of the source code.

The most important research result presented in this thesis is declarative support for the ar-
bitrary mapping between abstract and concrete syntax (logical and diagram models) in the Via-
traDSM framework. The most important features of the implementation are:

• The mapping technique allows for arbitrary bidirectional mapping between abstract and con-
crete syntax models (logical and diagram models), and provides declarative support based
on a mapping metamodel and VIATRA2 transformations.

• Diagram and logical models share the same modelspace, making VIATRA2-native GTASM
transformations between abstract and concrete syntax models possible.

• The mapping interfaces follow the plugin architecture of the ViatraDSM framework by al-
lowing the plugin author to design and implement mapping in both directions in a flexible
way (e.g. by using pure Java code, or mostly declarative techniques).

• The mapping metamodel allows for future automatic generation based on a concrete syntax
metamodel, further minimizing the amount of manual coding required to build a domain-
specific visual editor.

6.2 Architecture

ViatraDSM and GMF share the following modeling layer concepts (the terminology is taken from
official GMF documentation):

1. domain (language) metamodel, which defines the logical concepts of the language (ab-
stract syntax);

2. diagram metamodel, which defines a diagram metamodel, including the graphical appear-
ance of model elements (concrete syntax);

3. mapping definition, to create a bridge between the domain metamodel and its visual repre-
sentation;

4. tooling definition, which defines how the user can edit models.

In the case of ViatraDSM, a separate tooling definition is only in a planning stage, because
currently the framework provides a creation tool for every diagram metaelement, and the selection
tool for standard editing actions (e.g. deleting, moving, resizing, reparenting, retargeting edges).
These possibilites can be extended by allowing the toolsmith to define custom tools which perform
custom editing actions (a special tool for increasing a property’s value, for example).

It is important to note the difference between the model level and the metamodel level separa-
tion of logical models and diagrams.

92

Declarative Specification of Domain Specific Visual Languages István Ráth

Eclipse/GEF

View classes

Diagram model Logical modelMapping

Tree view

Transformations

Diagram editing Abstract syntax editing

Plugin

VIATRA2 modelspace

Figure 6.2: Mapping architecture

• On the model level, most tools separate the two layers by giving the user (almost) complete
control over what parts of the logical model are visualized. This means, that the user either
creates logical models by editing the model on a diagram, or visualizes existing elements by
dragging them onto a diagram, for instance. However, diagrams strictly follow the structure
of the logical model, i.e. a single logical entity is always represented by a single graph-
ical entity. This makes the graphical editing easier to implement, because the graphical
representation can be directly mapped onto the logical domain.

• The metamodel level separation, as implemented by both ViatraDSM and GMF, enables the
language engineer to define visualization independently. Logical and diagram metamodels
are constructed separately. This means that the GUI-driven editing only affects the diagram
models directly, and the required changes to the logical model are generated by a mapping
interface.

The mapping between the logical and diagram models can be approached in two ways: either
by completely separating the two layers and implementing bidirectional synchronization be-
tween them. This is the broadest conceptualization of abstract syntax-concrete syntax separation,
however, due to its generality, this approach can be difficult to implement for the toolsmith.

The other approach, bidirectional mapping makes use of the fact that the user can only apply
a limited and well-defined set of modifications to the diagram through the graphical interface.
Therefore, this approach maps the editing actions of the user to the logical model (see Fig. 6.3).
As the user is editing the models visually, the user’s editing actions are transformed into compund
commands that affect the logical and diagram models.

This mapping interface is also responsible for reflecting the changes of the logical models in
diagrams. Logical models can be altered independently of the diagram model in two main ways:
(i) the user can edit the logical models using the tree view, (ii) and the transformation engine can
execute simulation steps, or other transformation actions. The changes of the logical model are
coded into notification objects which are distributed according to the event-listener design pattern.
The mapper interface supplies a listener, which receives these notification objects, and maps them

93

Declarative Specification of Domain Specific Visual Languages István Ráth

Diagram
model

Logical
model

Mapping interface
request

Logical
model

commands

Logical
model

notification

Diagram model
commands

Mapping
metamodel

GTASM
programs

D2L
mapping

L2D
mapping

Figure 6.3: Mapping interface

p0:Place

t0:Token

:tokens

t1:Token t2:Token

:tokens :tokens 3

p0_p0:PlaceFigure
:model

Logical model Diagram model Diagram

tokenCount
:Property

:properties

Figure 6.4: Presentation layers in the ViatraDSM framework

to valid diagram-specific commands which alter the diagram model and thus eventually change
the appearance of diagrams.

The specification of this bidirectional mapping mechanism should ideally be fully declarative,
in order to avoid the necessity of writing complicated and critically important code. GMF solves
this problem by employing an EMF-based mapping definition, which plays a crucial role in the
code generation process. This mapping definition, however, has inherent limitations. For example,
GMF only allows the mapping of EClasses to nodes, and EReferences to edges. That is, it imposes
a restriction on how diagram definitions can be assigned to logical models.

Although GMF allows for a partial representation of the logical model (meaning that not every
logical feature has a graphical counterpart), it is rather limited in providing support for more
advanced mappings. For instance, attributes or properties are frequently used in diagrams for the
expression of the amount of model subelements assigned to a container. In a Petri net editor, for
example, place nodes can contain token nodes. It is common to visualize the amount of tokens
assigned to a place by displaying a single integer attribute as a decorator of the place’s graphical
representation (see Fig. 6.4). With the GMF approach, it’s not possible to establish such a logical
link between the amount of tokens assigned to the place, and its attribute.

Thus, with ViatraDSM mapping facilities, my most important goal was to overcome this
restriction, first by designing an effective mapping programming interface, and by providing a
declarative ”bridge” to this interface using the mapping metamodel and VIATRA2 transforma-
tions.

In the next section, the three approaches to mapping implementation are discussed in detail.

94

Declarative Specification of Domain Specific Visual Languages István Ráth

6.3 Techniques

The implementation behind the mapping interface on Fig. 6.2 can be constructed in three (plus
one) ways:

• by using manually written code (utilizing a well-defined application programming inter-
face);

• by constructing a mapping model based on the mapping metamodel, which is interpreted
by the ViatraDSM framework, and controls the translation of editing requests to commands
and model notification objects to diagram commands;

• as a special command class, GTASM transformations can be invoked in both directions; the
changes made by these transformations are automatically mapped into the DSM modelspace
by the framework’s notification layer.

• Due to the flexible API design, all of these approaches can be intermixed according to the
needs of the plugin engineer.

6.3.1 The presentation layer of ViatraDSM

Before discussing the implementation details of the mapping mechanism, I give a short insight
into the internals of GEF and the presentation classes of the ViatraDSM framework.

The ViatraDSM framework’s presentation layer is based on the Graphical Editing Frame-
work’s (see 2.5.3) Model-View-Controller scheme. In GEF, the model may any kind of Java
class, whereas the view and controller classes must implement the IFigure and EditPart inter-
faces. The GEF controller, called EditPart, is a heavy controller, meaning that almost all of the
rendering and editing functionality is delegated to the controller classes.

Generally, an EditPart takes care of the following tasks:

• maintaining references to the model and view objects;

• instantiating the view class;

• listening to the model’s changes and refreshing the view;

• handling user interaction.

GEF’s default model-to-diagram mapping

Upon the initialization of the graphical editor, GEF creates an EditPart tree, based on the model,
which corresponds to the containment hierarchy of figures on the diagram. More precisely, the
model is recursively queried through the getModelChildren() method of the EditParts, which
must return a list of the EditPart’s model elements’ children. Although it is possible to cus-
tomize what parts of the model are displayed on the diagram by applying various tricks to the
getModelChildren() implementation, this is not very practical, because the model is still tra-
versed in a top-down depth-first search, making an arbitrary model-to-diagram mapping impossi-
ble.

This means the GEF was designed to only display diagrams which strongly correspond to the
model’s structure. Therefore, a separate modeling layer for diagrams has to be introduced in order
to allow for an arbitrary mapping between logical models and diagrams. However, this requires a

95

Declarative Specification of Domain Specific Visual Languages István Ráth

mapping mechanism which makes appropriate alterations to the logical model as the user is edit-
ing the diagrams, and tracks the links between the logical model and its appearance on the diagram.

The EditParts are included in the ViatraDSM framework, and all plugin-dependent function-
ality (view instantiation, view refresh) are handled through the various interfaces described in
Section 4.2.3 (IDSMGraphicalEditingContributor, IViewFactory).

User interaction

In GEF, the handling of user events (Requests) is implemented in the following way:

1. First, a Request is issued by GEF, or by a custom Tool (which may be selected from the
Palette).

2. Next, the target EditPart’s understandsRequest() method is called, which queries the
EditPart whether is supports the given Request or not.

3. If the answer was positive, the Request is transformed into a Command instance through the
EditParts performRequest() method; the Command contains code which can modify the
model using information obtained from the Request object.

4. Finally, the Command is placed onto the CommandStack, which supports undo-redo opera-
tions, and is executed by the framework.

This pattern has a major drawback: implementing all the cases for various requests would
clutter the source code of EditParts too much. Moreover, typically the same code is shared among
various types of EditParts, however introducing custom superclasses for this purpose is not always
possible. Therefore, GEF introduced the notion of EditPolicies, which are delegate classes to
handle the Request - Command mapping. EditPolicies can be attached to EditParts by overriding
the createEditPolicies() method.

EditPolicies are associated to Roles, which define the context of the operation. The most
important pre-defined roles are the following (denoted with their internal string IDs):

• Component role. Component editpolicies handle the deletion of model elements.

• Connection bendpoints role. This role handles the creation and deletion of connection bend-
points.

• Connection endpoints role. If the endpoints of a connection (EdgeFigure) are movable (on
the target NodeFigure), this editpolicy creates the appropriate commands.

• Connection role. This role is responsible for the deletion of connections.

• Container role. A container editpolicy handles the creation and moving of nodes.

• Graphical node role. This role handles the creation and retargeting/resourcing of connec-
tions between source and target nodes.

• Layout role. The layout role is responsible for the setting of layout constraints based on
information obtained from a Constraint object, provided by GEF (and the LayoutManager
class assotiated to the Diagram).

96

Declarative Specification of Domain Specific Visual Languages István Ráth

• Direct edit role. Direct editing requests, where a user edits some attributes directly on the
diagram, using a cell editor (a small editor box, e.g. a textbox that pops up for editing the
name of a diagram element if the user performs a double click), are handled though the
direct edit editpolicies.

Implementation details

In ViatraDSM, most of the editpolicies described above are provided by the framework. They
are the entry point of the mapping mechanism, because the general structure of an editpolicy
implementation looks like this:

public Command createCommand(Request r)
{

// create a compound command, which will
// encompass both diagram-specific and
// logical model-specific commands

CompoundCommand compound = new CompoundCommand();

<< create diagram model-specific commands,
add them to the compound >>

<< invoke the mapper, and query for a
logical model-specific command >>

<< if it is valid, add it to the compound >>

return compound;
}

Some editpolicies cannot be provided by the framework, because they depend on how certain
diagram-specific properties are handled by the view classes. These include:

• LayoutEditPolicy: as Diagram properties are string key-value pairs, it is best to leave how
constraints are encoded into property values in the hands of the plugin author.

• DirectEditPolicy: as direct editing can affect various parts of figures, even those which have
no diagram model element assigned, this editpolicy has to be implemented by the plugin
author as well.

• BendpointEditPolicy: as bendpoints can be stored in strings in a multitude of ways, this
editpolicy is also delegated to the plugin.

However, default implementations of these classes are provided for the Basic family of view
components, which is part of the ViatraDSM framework.

6.3.2 Java interfaces

In this section, the Java interfaces of the mapping mechanism are discussed in detail.

The core interface is called IDSMMapper, which is referenced by the IDSMGraphicalEditing-
Contributor interface. That is implemented by all editor plugins, thus an IDSMMapper instance

97

Declarative Specification of Domain Specific Visual Languages István Ráth

must be provided by all domain specific editors. The IDSMMapper interface provides access
to two companion interfaces: IDSMCommandMapper and IDSMNotificationMapper. More pre-
cisely, the instances of these two can be queried; they correspond to the two mapping components
(directions) on Fig. 6.3.

Diagram-to-model mapping

Diagram-to-model mapping can be implemented using the IDSMCommandMapper interface. The
methods define a stateless request-command mapper, meaning that the mapper has no access to
previously issued requests or executed commands. This may seem like a major restriction, how-
ever in practice special editing action sequences are rarely used in graphical editors (e.g. requiring
the user to perform certain actions in a given order to achieve a single modification of the model).
However, previously executed commands can be accessed if the plugin author provides a custom
implementation of this interface, because the Command Stack of the editor may be visible to the
Mapper if the author enables that.

The interface contains methods for all the different scenarios that may involve the modification
of the logical model, i.e. deletion and creation of diagram elements, resourcing and retargeting
of edges, moving, layouting of nodes, and direct edit events as well. These methods receive
references to the request object, optional information placeholders (e.g. constraints), and the thin
wrapper adaptors of diagram (meta)elements. It is important to note that the commands provided
by the IDSMCommandMapper instance are executed after the modifications have been committed
to the diagram model. This is a design decision: this approach makes it easier to implement the
mapping with model transformations because the modified diagram model is already in the model
space when the transformation executes.

Model-to-diagram mapping

Model-to-diagram mapping can be implemented using the IDSMNotificationMapper interface.
An IDSMNotificationMapper instance can be constructed in two ways:

• Stateful implementation. By creating a DSM logical model notification listener which re-
ceives all notification levels from the ViatraDSM framework’s notification dispatcher object
and translates them into Commands valid on the diagram model;

• Stateless implementation. In this case, the framework calls the getDiagramModification()
method of the IDSMNotificationMapper instance after each emitted dsm logical model no-
tification event, and executes the returned command on the diagram model.

It should be noted that the stateful approach is considered to be experimental, and there exists
no declarative support for it (yet). The reason for this is because the DSM notification layer
currently does not support transactions, and thus at the present stage transformations cannot issue
transaction begin and transaction end messages which would enable the stateful mapper
to generate commands based on a pre-defined pattern of modification sequences.

More generally, the main challenge of implementing the logical model→ diagram mapping is
the fact that while we can take advantage of the fact that the diagram model may only be modified
using a well-determined set of user actions (requests) in the case of diagram-model mapping,
in the reverse direction this is not true. In other words, the logical model may be modified by
transformations (simulation) and abstract syntax editing by the user as well, and in order to achieve
truly arbirtary model-to-diagram mapping, any sequence of notification objects may be mapped to
a given command (sequence) which modifies the diagram.

98

Declarative Specification of Domain Specific Visual Languages István Ráth

Trigger-based stateless approach It is possible to implement arbitrary logical model-to-diagram
mapping within the constraints of the stateless implementation, although with a performance
penalty. The trigger-based approach uses certain types of notification events as triggers which
scan the logical modelspace, and look for a given pattern around the notification source. If that
has been found, they emit a commandsequence for the model (this can be generalised to the whole
modelspace, although the principle of locality should be employed to the maximum to ensure
acceptable performace).

6.3.3 The Mapping metamodel

The mapping metamodel forms the basis of the second technique mentioned in Sec. 6.3. As
previously established, the stateless mapping is basically the generation of a command (sequence)
based on a request, the target model elements, and some additional contextual information (or, in
the case of model-to-diagram mapping, commands are generated based on information contained
in notification objects).

In designing metamodel-based declarative support for mapping constructs, the most important
question to answer is the level of abstraction. In this case, answering this question was simple,
because the context was already given: the metamodels must support the mapping of Requests
/ Notification objects to Commands. Thus, I designed a Mapping metamodel which consists of
multiple submodels. In the following section, these will be discussed in detail.

The Command metamodel

The Command metamodel (Fig. 6.5) describes an ordered sequence of Command objects, the
CommandSequence. Commands are associated to a CommandType classifier, which is actually
an extensible enumeration (Create, Delete, Modify). Commands may have an arbitrary number of
Parameters, which can be bound to ModelElements.

CommandSequence

CommandParameter

ModelElement Logical
Command

Diagram
Command

CommandType

type

next

cmd

params

commands first

reference

*

*

GTASM
Command

Figure 6.5: Command metamodel

There are three types of commands: Logical Commands, Diagram Commands, and a special
class called GTASM Commands. This distinction is required because the ViatraDSM framework
implementation uses different base classes for each of these. The GTASM command is a special
command class which can pass parameters to a GTASM transformation program and invoke it.

Request and Notification metamodels

The Request and Notification metamodels (Fig. 6.6) describe the contextual information which
is used in the generation of commands. Both Request and Notification are typed containers for
Context Elements / Notification Elements, which can be associated to Model Elements.

99

Declarative Specification of Domain Specific Visual Languages István Ráth

Request

ContextElement DiagramElement

RequestType
type

req

reference
*

elements

Notification

Notification
Element ModelElement

NotificationType
type

not

reference
*

elements

Figure 6.6: Request and Notification metamodels

Both the Request and Notification classes can be easily generated from actual Java objects.

Binding and Trigger metamodels

The Tigger and Binding metamodels (Fig. 6.7) define the “glue” between the commands’ Pa-
rameters and request/notification Context Elements / Notification Elements. This way, a logical
relationship can be established between the information present in a Request / Notification object
and a sequence of Commands. The BindingType / TriggerType attribute is a reference to a built-in
enumeration of the ViatraDSM framework, which describes how the objects should be mapped on
the Java level.

Binding

ContextElement Parameter

outin
* *

BindingType
type

Trigger

Notification
Element

Parameter

outin
* *

TriggerType
type

Figure 6.7: Binding/Trigger metamodel

Mapping rules metamodel

The main part of the Mapping metamodel is shown on Fig. 6.8. A concrete Mapping can either
be a logical-to-diagram mapping (L2DMapping) or a diagram-to-logical mapping (D2LMapping)
construct. Both consist of rules (L2DMappingRule and D2LMappingRule), which map a Request
or Notification object to a Command sequence, using as many Bindings or Triggers as necessary.

100

Declarative Specification of Domain Specific Visual Languages István Ráth

Mapping

D2LMapping L2DMapping

D2LMappingRule
* *

L2DMappingRule

Command
Sequence

BindingRequest

*
Command
Sequence

TriggerNotification

*

Figure 6.8: Mapping metamodel

6.3.4 Using the mapping metamodel

Some knowledge of the mapping mechanism is required to use the mapping metamodel efficiently.
The basic rules are:

1. A mapping is identified by its Request attachment. In other words, only one mapping rule
should be defined for a given RequestType - ContextElement(s) pattern. Naturally, this
applies to Notification mappings as well.

2. RequestTypes, NotificationTypes, BindingTypes and TriggerTypes are identified by the lo-
cal name of their representing model element. Some types are provided by the ViatraDSM
framework (see sec. 6.3.5), the plugin author can provide custom BindingType and Trigger-
Type implementations (the set of RequestTypes and NotificationTypes cannot be extended,
yet).

3. The ModelElements which can be referenced by notification objects and command parame-
ters should be valid metamodel elements in the Diagram and Editor (logical model) domains.

On Fig. 6.9, a simple example for a mapping model is shown. In this case, the creation of
an InArcFigure between a TransitionFigure and a PlaceFigure is mapped onto the creation of
an InArc between the corresponding Transition and Place instances (note that for simplicity, the
appropriate metamodel references from the Target and Source context elements and parameters
have been omitted).

Creating a mapping model such as the one shown on Fig. 6.9 requires knowledge of the var-
ious requests, commands, and bindings of the ViatraDSM framework. For instance, the designer
has to be aware that a CreateConnection request has three context elements, a source node figure,
a target node figure, and a connection figure type; similarly, a CreateEdge command has a source
node, a target node, and a connection type; a ModelBinding ensures that the Diagram Element ref-
erenced by the contextelement will be queried for its model association and the resulting logical
model element will be assigned as the out parameter.

It would have been possible to include all the various Bindings, Requests, Notifications, Com-
mands in the metamodels. However, the metamodel-based mapping approach was not primarily

101

Declarative Specification of Domain Specific Visual Languages István Ráth

PetriNetD2LMapping:D2LMapping

InArcMappingRule:D2LMappingRule

r: Request

CreateConnection:
RequestType

Source:
ContextElement

Target:
ContextElement

ConnectionType:
ContextElement

c: LogicalCommand

cs: CommandSequence

CreateEdge:
CommandType

InArcFigure
[EdgeFigure]

Source:
Parameter

Target:
Parameter

EdgeType:
Parameter

sb:
Binding

ModelBinding:
BindingType

tb:
Binding

InArc
[Edge]

:type

:type

:elements

:parameters

:reference :reference

:type:type

:first

:in

:in

:out

:out

Figure 6.9: Mapping model example: Petri net edgefigures and edges

meant to be designed by the tool author directly, but rather generated by a (future) automated map-
ping generator. Therefore, extending the mapping metamodel to include all possible combinations
is unnecessary; tool authors should rather use the model transformation-based approach.

6.3.5 Interpreting mapping models

The mapping models are read by an interpreter, which implements the IDSMMapper interface. The
interpreter creates an internal hashmap-based representation (the request mapper and notification
mapper registries), which is used at run-time whenever the mapping interface is queried by the
EditPolicies.

The generation of a command sequence for a given request is based on the following process:

1. A key is generated for the request. The key is based on the request type, the names of the
context elements, and the names of any possible referenced model elements (more precisely,
the typenames are used, as metamodel elements are referenced).

2. The request mapper registry is queried for an entry using the generated key. If no result is
returned, the generation process ends.

3. The result of the query is a binding and commandsequence descriptor, which can be used to
instantiate command and binding classes and call their appropriate performBinding() and
set() methods.

4. The binding classes are instantiated and used with the request’s context elements to obtain
command parameters.

5. The command classes are instantiated, their parameters are set and the result is returned.

102

Declarative Specification of Domain Specific Visual Languages István Ráth

The generation of a command sequence based on a notification is identical to the process de-
scribed above, with a slight difference: in that case, the notification mapper registry and triggers
are used.

In the following sections, currently supported request, notification, binding, and trigger types
are briefly described.

Request types

• CreateNewNodeFigure. The user created a node figure, by using a creation tool (i.e. the
node figure has no pre-existing counterpart in the logical model).

• CreateRepresentingNodeFigure. The user dragged a node from the logical model (tree) onto
the diagram.

• CreateNewConnection. The user created a new edge figure by using a creation tool.

• CreateRepresentingConnection. The user dragged an edge from the logical model onto the
diagram.

• RetargetConnection. The user retargeted a connection by moving its target endpoint onto a
different nodefigure.

• ResourceConnection. The user resourced a connection by moving its source endpoint onto
a different nodefigure.

• DeleteNodeFigure. The user deleted a nodefigure.

• DeleteConnection. The user deleted a connection figure.

• MoveNodeFigure. The user moved a node figure into a different container.

• SetConstraint. The user applied a new graphical constraint on the diagram element (e.g.
resize, move around, set radius, etc).

• AddBendpoint. The user added a new bendpoint to an edgefigure.

• DeleteBendpoint. The user deleted a bendpoint from an edgefigure.

Notification types

• NewNode. A new child node has been created.

• NewEdge. A new source/target edge has been created.

• NewProperty. A new property has been created.

• DeleteNode. An existing child node has been deleted.

• DeleteEdge. An existing source/target edge has been deleted.

• DeleteProperty. An existing property has been deleted.

• ChangeName. The name of the model element has changed.

• ChangePropertyValue. The value of the property has changed.

103

Declarative Specification of Domain Specific Visual Languages István Ráth

Predefined Commands

• Logical Commands

– ChangeEdgeSource. Sets the source of an edge.

– ChangeEdgeTarget. Sets the target of an edge.

– ChangeProperty. Sets a new property value.

– CreateEdge. Creates an edge (precondition: source and target must exist).

– CreateNode. Creates a node.

– CreateProperty. Creates an optional property.

– DeleteEdge. Deletes an edge.

– DeleteNode. Deletes a node (precondition: all properties and source/target edges must
be deleted).

– DeleteProperty. Deletes a property.

– MoveNode. Moves the node to a different container.

– RenameElement. Renames a model element (edge, node).

• Diagram Commands

– ChangeEdgeFigureSource. Sets the source of an edgefigure.

– ChangeEdgeFigureTarget. Sets the target of an edgefigure.

– ChangeDiagramProperty. Sets a new diagram property value.

– CreateEdgeFigure. Creates an edge figure.

– CreateNodeFigure. Creates a node figure.

– DeleteEdgeFigure. Deletes an edge figure.

– DeleteNodeFigure. Deletes a node figure (precondition: all source/target edgefigures
must be deleted).

– MoveNodeFigure. Moves a node figure to a different container.

– RenameDiagramElement. Renames a diagram element.

Predefined bindings

This can be extended by plugins by implementing the IDSMBinding interface. The collection of
binding implementations can be queried on the IDSMCommandMapper interface.

The following bindings are provided by the framework:

• ModelBinding. This binding is used for finding the appropriate model elements in the logi-
cal model for their representating elements in the diagram model, using the model relation
that is pointing from diagram elements to logical model elements (see Fig. 4.5). The bind-
ing simply uses the thin wrapper adaptor layer provided by the ViatraDSM framework to
navigate through the model relation and retrieves the corresponding logical model element.

• PropertyValueBinding. This binding can be used to extract a String object from a property
(logical or diagram both work).

104

Declarative Specification of Domain Specific Visual Languages István Ráth

Predefined triggers

This can be extended by plugins by implementing the IDSMTrigger interface. They can be queried
using the IDSMNotificationMapper instance.

• ModelTrigger. Analogously to the ModelBinding, this trigger is used for finding a possible
diagram representation for a given logical model element. Currently, the implementation
is slow because the thin wrapper layer does not support “inverse” queries along the model
relation.

• PropertyTrigger. This is essentially the same as PropertyValueBinding.

6.3.6 GTASM transformations

The third technique introduced in Sec. 6.3 is based on the capabilities of the VIATRA2 model
transformation engine. The basic idea is the following: instead of constructing commands that al-
ter the modelspace directly, the interpreter invokes a native GTASM transformation (with option-
ally passing arguments obtained through the bindings/triggers), which scans the diagram models
(or the logical model, in the case of L2D mapping), and applies graph transformation rules (or
pure ASM rules, depending on the author’s preference).

This approach can be more intuitive for the toolsmith than using the mapping metamodel,
because graph patterns are better comprehensible for humans. However, this is a more general
approach and thus somewhat slower to interpret than the mapping models.

For example, recall the mapping introduced on Fig. 6.9, in which the creation of an InArcFig-
ure between a TransitionFigure and a PlaceFigure was mapped to the creation of an Edge between
the Transition and Place instances corresponding to the TransitionFigure and PlaceFigure.

PF:PlaceFigure

TF
:TransitionFigure

IAF:InArcFigure

P:Place

T:Transition

:model

:model

PF:PlaceFigure

TF
:TransitionFigure

IAF:InArcFigure

P:Place

T:Transition

:model

:model

IA
:InArc

:model

Precondition Postcondition

Figure 6.10: Mapping transformation example: Petri net edgefigures and edges

That scenario can be visualised using a graph pattern as shown on Fig. 6.10. Elements high-
lighted in blue are part of the diagram model, while elements in white are logical model elements.
It is important to note that the transformation approach takes advantage of the fact that the trans-
formation program is executed after the diagram model has been modified, thus the precondition
pattern can be successfully matched.

This simple graph transformation rule, and an ASM machine capable of invoking it using
arguments provided by the framework, can be programmed in VTCL, the native transformation
specification language of VIATRA2, in the following way:

105

Declarative Specification of Domain Specific Visual Languages István Ráth

namespace DSM.machines.PetriNet;

import DSM.metamodel.PetriNet.PetriNetDiagram.PetriNetFigure;
import DSM.metamodel.PetriNet.PetriNetEditor.PetriNet;

machine inArcMapper
{
gtrule inArcMapping(in PF, in TF, out InArc) =
{

precondition pattern diagram(PF,TF,InArcF ,P,T) =
{
// first, the diagram model is described
PlaceFigure(PF);
TransitionFigure(TF);
InArcFigure(InArcF);
PlaceFigure.pnd_inarcs(PFin ,PF,InArcF);
TransitionFigure.pnd_t_inarcs(TFin ,TF,InArcF);
// second, the logical model is described
Place(P);
Transition(T);
// third, the association between them is established
// by domain-specific subclasses of the model relation
PlaceFigure.pnd_place_model(PFm,PF,P);
TransitionFigure.pnd_transition_model(TFm,TF,T);

}
postcondition pattern editor(P,T,InArcF ,InArc) =
{
// the InArcFigure needs to be declared because
// the pnd_inarc_model relation will use it as target
InArcFigure(InArcF);
// the postcondition describes how
// the logical model will look like
Place(P);
Transition(T);
Transition.InArc(InArc ,T,P);
// and how the newly created InArc will be connected
// to the logical model
InArcFigure.pnd_inarc_model(PFInArcM ,InArcF ,InArc);

}
}
rule main(in PlaceFFQN , in TransitionFFQN) = seq
{

let PlaceF = ref(PlaceFFQN) in
let TransitionF = ref(TransitionFFQN) in
// the input parameters are the fully qualified names
// of the PlaceFigure and TransitionFigure instances
// the ref() rule binds them to model elements in the modelspace
seq
{
choose X with apply inArcMapping(PlaceF ,TransitionF ,InArc) do skip;
// in this simple example, the machine only applies the rule

}
}

}

The GTASMCommand class This transformation program is invoked using the special GTASM-
Command class. That command class is instantiated in a special way by the framework: using a
reference to the GTASM machine, the command class can support an arbitrary number of param-

106

Declarative Specification of Domain Specific Visual Languages István Ráth

eters; however the bindings / triggers are still determined by an appropriate mapping model.
The transformation-based mapping approach is especially useful in logical model to diagram

model mappings. As already discussed in 6.3.2, truly arbitrary mapping would require a stateful
notification listener, and transaction support, however even that would not be entirely sufficient. If
the user is editing the logical model using the tree-based abstract syntax editor, the transactional
nature of complex editing action sequences cannot be guaranteed.

For instance, the language engineer wishes to map a Source Node-Edge-Association Node-
Edge-Target Node pattern to a Source NodeFigure-EdgeFigure-Target NodeFigure triplet. The
pattern in the logical model can be constructed in a number of ways, and thus a stateful notification
follower implementation would require all of these ways to be specified so that the creation of the
pattern can be detected.

However, if the user decides to edit a different portion of the modelspace, and return to the
incomplete pattern later, the notification tracker would not be able to detect the construction of
the complex pattern. Therefore, in this case, a GTASM transformation, which is invoked on the
creation of all the elements in the pattern, is much simpler, and in fact the only solution. Although
it is resource consuming to execute a transformation program each time the user performs an
action on the GUI, the user is typically much slower than todays computers so this is not much of
a problem anymore.

6.4 Summary and future improvements

In this chapter, the capabilities of the ViatraDSM framework regarding the mapping between ab-
stract and concrete syntaxes of visual languages were discussed. The importance of the conceptual
and metamodel-level separation of abstract and concrete syntax representation is supported the fol-
lowing arguments:

• the conceptual (model-level) separation of diagrams and models enables the user to select
what to visualize and what to hide;

• the metamodel-level separation enables the tool designer to tailor the graphical appearance
of the language precisely to the needs of the application domain while the abstract syntax
representation can still be optimized for code generation or other types of model transfor-
mation.

The ViatraDSM framework achieves these goals by providing an array of imperative (Java
code) and declarative (models, transformations) approaches which can be used to implement map-
ping in both directions (logical-diagram, diagram-logical).

The diagram-to-logical model mapping is based on a stateless translator which receives Re-
quests from the user interface and provides Commands which modify the logical model. As the
user can only perform a limited set of possible modification actions (requests), this approach
is sufficient for a practically arbitrary mapping. However, the language engineer can opt for a
transformation-based approach, where instead of generating commands directly, a model transfor-
mation is applied.

The logical model-to-diagram mapping can be implemented in two ways: either by a state-
less command generating notification tracker, or using a trigger-oriented model transformation
approach. That way, the logical modelspace is scanned every time a (pre-defined) modification

107

Declarative Specification of Domain Specific Visual Languages István Ráth

occurs and a model transformation program is run which constructs the appropriate structures in
the diagram model.

The main components of the implementation are: (i) Java interfaces and framework classes
which facilitate the administration of mapping rules provided by domain plugins; (ii) the mapping
metamodel, which is a complex set of metamodels designed to enable the language engineer to
define mapping using purely declarative techniques; (iii) an interpreter and implementation classes
which can read mapping rules from the model space and execute them by invoking the VIATRA2
transformation engine where appropriate.

The current implementation could be improved and extended in the following ways:

• The CommandMapper currently does not have access to the previous state of the diagram
model, however in some scenarios that would be useful. This can be overcome currently by
creating a Java implementation which accesses the Command Stack.

• As mentioned earlier, a stateful implementation of logical-to-diagram mapping would re-
quire transaction support. However, that would only be useful for automated logical model
modifications (simulation).

• An improvement which will be soon implemented is extendable RequestTypes. That is
required for custom tools, which can be defined and implemented by the language engineer
to perform complex operations at a single mouse click, for instance (e.g. increate the number
of tokens in a place).

• Another improvement could be allowing reverse queries along the model relation and its
subtypes. The current implementation of the thin wrapper interfaces does not allow this,
however it would speed up notification mapping by a factor of two at least.

108

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 7

Case study: Petri net editor

In the previous chapters, theoretical foundations, design considerations, and implementation de-
tails were discussed. While plenty of simple examples were provided to ease understanding, I felt
necessary to include a chapter which gives a complete overview of the process of constructing a
domain-specific modeling language using the ViatraDSM framework. The example domain will
be, as introduced in Sec. 2.8, the domain of Petri nets.

Step 1: Initial planning

The first step is to get a few Petri net experts together to work out the basic domain structure and
domain rules. During the design of a domain specific editor, it is always important to have an
expert of the given domain working on the project. His knowledge and expertise is a key factor in
successfully adopting the DSM method within a company. Most probably the editor is created to
increase the productivity of your developers. Therefore the usability and correctness of a domain
specific editor and code generator is an essential point. If the editor is difficult to use, its model
structure is incoherent or the code generated contains faults, the productivity would rather drop
than increase. Only with a deep understanding of the domain can we assure that our editor gets
a positive approval. Therefore an expert with a good understanding and deep knowledge of the
domain is indispensable.

Step 2: Planning features

The ViatraDSM framework offers a wide range of possibilities from a simple editor using the
built-in implementation for model representation and diagrams up to fully customizable editors
with custom model representation, custom graphical elements and so on.

For instance, if the editor is to be used only for modeling and graphical display (e.g. only
for documentation and not for code generation), the default implementation classes are sufficient.
However if we need to access models outside the VIATRA2 framework and our graphical rep-
resentation requires 3D rendering, we need to provide our own implementation of the domain
metamodel and diagram interfaces.

Two model transformation features are implemented in this example: the simulation of Petri
nets, and the generation of PNML[36] code. Since transformations are only available for VIA-
TRA2-based models, the default VIATRA2-based implementation for model representation will be
used.

109

Declarative Specification of Domain Specific Visual Languages István Ráth

The editor is required to look familiar for users who have experience with other Petri net tools,
so the tool will employ custom graphical elements (using a circle for Petri net places instead of
built-in rectangular boxes); the underlying graphical technology will be the default presentation
layer of the ViatraDSM framework.

The mapping betweeen concrete and abstract syntax will be the most simplistic: places will
correspond to node-like place figures, transitions to transition nodes, with inarc and outarcs shown
as straight connections (bendpoints will be possible, too).

Step 3: Creating the domain metamodel

The first step in the implementation is the construction of the domain metamodel, that is, the struc-
ture and rules of the domain specific language.

This task should be carried out by the domain experts, since they fully understand the structure
of the given domain. When designing the domain metamodel, the only thing the user needs to take
care of is to use only the concepts defined by the core domain metamodel (Fig. 4.3). The Petri net
domain metamodel is presented on Figure 7.1.

Petri net Domain
[Editor]

Petri net
[Node]

Place
[Node]

Transition
[Node]

Arc weight
[Property]

Place capacity
[Property]

petriNets
[topNodes]

places
[contains]

transitions
[contains]

weight
[properties]

capacity
[properties]

OutArc
[Edge]

InArc
[Edge]

Token
[Node]

tokens
[contains]

Figure 7.1: Step 3: Petri net domain metamodel

The domain expert has multiple ways of inputting this metamodel into the VIATRA2 model
space. First, he may design it using the VIATRA2-specific graphical editor. If the expert is more
familiar with textual languages, he may create a VTML file which contains the metamodel. A
sample VTML code excerpt is provided below:

entity(petriNet)
{

entity(place);
supertypeOf(place ,DSM.coremetamodel.Editor.Node);
entity(transition);
supertypeOf(transition ,DSM.coremetamodel.Editor.Node);
entity(token);
supertypeOf(token ,DSM.coremetamodel.Editor.Node);
relation(inArc ,transition ,place);

110

Declarative Specification of Domain Specific Visual Languages István Ráth

supertypeOf(inArc ,DSM.coremetamodel.Editor.Node.Edge);
relation(outArc ,place ,transition);
supertypeOf(outArc ,DSM.coremetamodel.Editor.Node.Edge);
relation(tokens ,place ,token);
relation(places ,petriNet ,place);
relation(transitions ,petriNet ,transition);
supertypeOf(tokens ,DSM.coremetamodel.Editor.Node.contains);
supertypeOf(places ,DSM.coremetamodel.Editor.Node.contains);
supertypeOf(transitions ,DSM.coremetamodel.Editor.Node.contains);
// define the properties
entity(placeCapacity);
relation(capacity , place , capacity);
supertypeOf(capacity ,DSM.coremetamodel.Editor.Node.properties);
entity(arcWeight);
relation(weight , inArc , arcWeight);
relation(weight , outArc , arcWeight);
supertypeOf(inArc.weight ,DSM.coremetamodel.Editor.Node.Edge.properties);
supertypeOf(outArc.weight ,DSM.coremetamodel.Editor.Node.Edge.properties);

}

Finally, if a metamodel of the required domain exists already in some other modeling tool, he
can use the various importers supplied with the VIATRA2 framework. In this latter case, after the
import, the expert must ”tag” the elements of his metamodel using our core metamodel concepts.
That means, for every element of his metamodel, he must tell whether that should be a node, an
edge or a property, assigning an appropriate supertype from the core metamodel.

Step 4: Designing diagrams

Now that the structure of the domain is defined, the tree-structured editor provided in the Outline
view of Eclipse is ready to use. For diagrams, some other metamodels have to be designed.

Each domain has exactly one domain metamodel (designed in step 3), but it may have numer-
ous diagram metamodels. Each diagram metamodel describes one kind of diagram, which may be
constructed using the element of the given domain. For Petri nets only one diagram will be used,
which may contain places, transitions, inarcs and outarcs.

To design the Petri net diagram, the language engineer needs to use concepts included in the
core diagram metamodel (Fig. 4.5).

Figures 7.2 and 7.3 show the Petri net diagram metamodel. By comparing it to figure 7.1 one
may notice the similarities. In this case, the diagram metamodel has a very similar structure to
the domain metamodel itself, simply because of the fact that on diagrams we would like to see the
same hierarchy than in the model.

Step 5: Designing the mapping between diagrams and models

In this step, the mapping between concrete syntax (diagram models) and abstract syntax (editor or
logical models) is designed and implemented. In the case of the Petri net editor, this mapping will
be very simple: Places and Transitions will be displayed as Node figures, and inarcs and outarcs
will be rendered as EdgeFigures. Basically, this means a one-to-one correspondence, however
Tokens are not represented on the diagram directly. The number of tokens associated to a place

111

Declarative Specification of Domain Specific Visual Languages István Ráth

Petri net diagram
[Diagram]

PetrinetFigure
[NodeFigure]

Place
[Node]

Transition
[Node]

pnd_root
[root]

OutArc
[Edge]

InArc
[Edge]

OutArcFigure
[EdgeFigure]

PlaceFigure
[NodeFigure]

TransitionFigure
[NodeFigure]

model model
tfigures

[subelements]
pfigures

[subelements]

petrinet [model]

model model

InArcFigure
[EdgeFigure]

Petri net
[Node]

outArcs
[toEdges]

inArcs
[toEdges]

outArcs
[fromEdges]

inArcs
[fromEdges]

Figure 7.2: Petri net diagram metamodel

PlaceFigure
[NodeFigure]

Pos_x[Property]

Pos_y[Property]

TransitionFigure
[NodeFigure]

radius

[Property]

isHorizontal

[Property]

Figure 7.3: Petri net diagram metamodel - properties

will be shown as a digit inside a label, contained by the appropriate PlaceFigure. This means, that
direct editing of that label will be mapped to creation/deletion of tokens from the given place.

Since the whole mapping model is fairly large, only the relevant portion of it is shown on
Figure 7.4. In that case, the number of tokens property, edited by the user (using direct edit or
the property sheet), is bound to the number of Tokens assigned to the Placem, using a command
sequence consisting of creation and deletion commands (deletion commands are not shown on
Fig. 7.4 for the sake of simplicity). The rest of the mapping can be implemented using similar
rules or GTASM transformation programs (for another example, refer to 6.3.6).

Step 6: Implementing custom graphical elements

Arriving at step 6, the domain metamodel and diagram metamodel is already in place, describing
both the structure of the domain and the various graphical representations. Up to this point, no
manual coding was necessary (except if mapping was implemented using Java code).

112

Declarative Specification of Domain Specific Visual Languages István Ráth

PetriNetD2LMapping:D2LMapping

TokenMappingRule:D2LMappingRule

r: Request

DirectEdit:
RequestType

Source:
ContextElement

ConnectionType:
ContextElement

c: LogicalCommand

cs: CommandSequence

CreateNode:
CommandType

tokens
[properties]

Container:
Parameter

Type:
Parameter

sb:
Binding

Token
[Node]

:type

:type

:elements

:parameters

:reference

:reference

:first

:in :out

ValueBinding:
BindingType

tb:
Binding

:type

:in :out number:
Parameter

ModelBinding:
BindingType

:type

Figure 7.4: Mapping model example: Petri net tokens

If the language engineer decides to stop here, and he does not want to do any Java coding, he
has the option to use the default implementation for the views and the graphical editor. That would
result in a user interface shown on figure 7.5. All nodes are represented as rectangular boxes, and
neither the tools on the palette nor the entries in the tree editor have custom icons.

To use custom graphics, first, the language engineer designs icons, that will be used in the tree
and on the palette. That is not a difficult job to do, any application may be used, which can save
images in a format understood by Eclipse SWT (that can be PNG, GIF, BMP and may others).

The second thing to do is creating a custom graphics editor, where model elements are not
represented as boxes, rather something more domain specific. In case of Petri nets, little circles
for places, where the number of tokens in that place is written inside the circle, will be used.
Transitions will be represented by small filled black rectangles. Using a GEF-based editor, that
requires the engineer to implement these custom figures as Draw2D classes.

Besides providing a large set of pre-defined symbols, Draw2D allows its figures to be com-
pletely user-drawn, so every pixel of the graphical editor may be under the control of the language
designer. This is not the place to discuss detailed Draw2D coding, but just to have an idea of how
much coding is required, the constructor of the PlaceView class is given as an example:

113

Declarative Specification of Domain Specific Visual Languages István Ráth

Figure 7.5: Step 5: Petri net editor without custom graphical elements

public PlaceView(IDSMMetaDiagramElement meta)
{

propertyHelper = new DSMViewPropertyHelper(this, meta);

this.setLayoutManager(new BorderLayout());
iLabel = new Label();
add(iLabel, BorderLayout.TOP);

iPlace = new Ellipse();
iPlace.setPreferredSize(new Dimension(40, 40));
add(iPlace, BorderLayout.CENTER);

iTokenLabel = new Label("0");
iPlace.setLayoutManager(new BorderLayout());
iPlace.add(iTokenLabel, BorderLayout.CENTER);

}

The whole PlaceView class is 85 lines of Java code long.

Step 7: Bringing it all together

This step requires the construction of the domain editor plugin class, which connects all the dif-
ferent components created so far. In addition to the editor class, a view factory is provided which
handles the instantiation of the view classes.

The domain editor plugin class extends the DSMSimpleEditor class provided by the Via-
traDSM framework, and overrides a couple of methods allowing the editor to use custom icons

114

Declarative Specification of Domain Specific Visual Languages István Ráth

and diagram elements. The API documentation is quite extensive, so an engineer with minimal
experience in Java should have no problems creating the plugin class. However, the automatic
generation of plugin and supporting classes is planned.

Now the DSM editor is ready to use (see figure 7.6. Comparing it to figure 7.5, it can be
seen that the icons in the tree and on the palette are replaced by the custom ones, and nodes and
transitions have nicer looking figures.

Starting from scratch, the engineer has arrived at a working domain specific editor only by
drawing a domain and a diagram metamodel, constructing mapping rules, and writing some code
(alltoghether less than 500 lines). But a working tree-only editor is possible even without Java
coding.

Figure 7.6: Step 6: Petri net editor with custom graphical elements

Step 8: Simulation

In order to enable the design-time simulation for the Petri net editor, the language engineer must
describe the dynamic behaviour of Petri nets. These rules must be given as a set of graph transfor-
mation rules and abstract state machine programs, in VIATRA2’s native transformation language.
The syntax and semantics of these rules have been detailed in chapter 3.2.

The following example is a simple Petri net simulator. It simulates one atomic transition of a
Petri net. The graph transformation rule that finds an enabled transition has a negative condition
as well.

The first code snippet is the frame of the simulation program. The program finds one transition
that can be fired at the state that is represented by the model. The second step is to delete tokens
from the input places. Then tokens on the output places are created, and last the mark from the
transition to be fired is deleted. The whole procedure is an atomic step of the Petri net.

115

Declarative Specification of Domain Specific Visual Languages István Ráth

machine psim
{

rule main()=seq
{

// Find a transition and mark it
choose T below Model do apply mark_fireable(T);
// Delete tokens from in places
forall P do apply delete_in_tokens(P);
// Create tokens at out places
forall P do apply create_out_tokens(P);
// Delete the mark from fireable token
forall T do apply delete_fireable(T);

}
...

}

A transition can be fired if it has no input places (the first negative pattern means this). Input
places do not block the transition if they are marked. This rule is represented by the second
negative pattern (double negation). The transition that can be fired at the state is marked with
relation that connects the transition with itself. This new relation is generated by the RHS of the
following transformation rule.
{

...
gtrule mark_fireable(inout T) =
{

precondition pattern lhs(T) =
{

petriNet.transition(T);
// Transition is allowed if it has no in places
neg pattern t_neg(T)=
{

petriNet.transition(T);
petriNet.place(P);
petriNet.place.outArc(Out,P,T);
// Or if all in places has a token
neg pattern t_negneg(P)=
{

petriNet.place(P);
petriNet.token(Tok);
petriNet.place.mark(Mark ,P,Tok);

}
}

}
// Mark the transition we found with an edge from and to it
postcondition pattern rhs(T) =
{

petriNet.transition(T);
petriNet.transition.markTransable(M,T,T);

}
}
...

}

The following rule deletes one token from each in place of the firing transition. This rule is
called with forall semantics on variable P, so all in places will match this rule once. The variable
Tok will match for each place one token that is on that place. This variable has no forall semantics,
so only one token will be selected for each place.

gtrule delete_in_tokens(inout P) =

116

Declarative Specification of Domain Specific Visual Languages István Ráth

{
precondition pattern lhs(P, Tok) =
{

petriNet.transition(T);
petriNet.transition.markTransable(M,T,T);
petriNet.place(P);
petriNet.place.outArc(Out,P,T);
petriNet.token(Tok);
petriNet.place.mark(Mark ,P,Tok);

}
// Tok is not part of RHS pattern, so it will be deleted.
postcondition pattern rhs(P, Tok) =
{

petriNet.place(P);
}

}

An additional rule creates one token on each output place of the transition.

gtrule create_out_tokens(inout P) =
{

precondition pattern lhs(P) =
{

petriNet.transition(T);
petriNet.transition.markTransable(M,T,T);
petriNet.place(P);
petriNet.transition.inArc(In,T,P);

}
// Tok is not part of LHS pattern, so it will be created.
postcondition pattern rhs(P) =
{

petriNet.token(Tok);
petriNet.place(P);
petriNet.place.mark(Mark ,P,Tok);

}
}

}

The last rule deletes the marking relation from the marked transition. After deleting the mark
from the firing transition the petri net is in consistent state again and the atomic step of simulation
is ready.

{
...
gtrule delete_fireable(inout T) =
{

precondition pattern lhs(M,T) =
{

petriNet.transition(T);
petriNet.transition.markTransable(M,T,T);

}
// The mark is not part of RHS so it will be deleted.
postcondition pattern rhs(M,T) =
{

petriNet.transition(T);
}

}
...

}

117

Declarative Specification of Domain Specific Visual Languages István Ráth

The transformation programs have to be connected to the plugin by appropriate mapping mod-
els and code segments. The simulation engine was developed by Dávid Vágó, and its detailed
description can be found in his masters thesis. After the appropriate mappings are in place, petri
nets can be fired in the editor at the user’s will. On Figure 7.7, two transitions are marked fireable
(the graphical representation of marking, red highlight, has to be coded manually, by modifying
the view classes). The user can decide which one to fire.

Figure 7.7: Guided simulation of Petri nets

Step 9: Code generation

In the ViatraDSM framework, code generation is also based on VIATRA2 transformations. Code
generator transformations were also mentioned in chapter 3.2.

In the case of the current example, code generation is implemented as a PNML generator.
Such a code generator transformation iterates over the entire Petri net structure, and at each node
(place or transition) it emits snippets of PNML code.

The following example generates a (domain-specific) Petri Net Markup Language file from
the Petri net in the VPM model.

machine petri2pnml
{
// This ASM function is a mapping from the VPM entity
// that represents a place
// to the count of tokens at that place
asmfunction tokenCount/1;
rule main(in ModelName) = seq
{
let Model=ref(ModelName) in seq
{

118

Declarative Specification of Domain Specific Visual Languages István Ráth

// Count tokens at all places
iterate choose P below Model with find place(P) do seq
{
forall Tok do apply count_token(P,Tok);

}
// print the heading of the PNML file (open tags)
call print_head();
// print all places
forall P below Model do apply print_place(P);
// print all transitions
forall T below Model do apply print_transition(T);
// pring all edges
forall I below Model do apply print_in_arc(I);
forall O below Model do apply print_out_arc(O);
// print tail of the PNML file (close tags)
call print_tail();

}
}

}

The following simple print rules matches on the place model element and prints XML tags
with appropriate attributes. Similar rules can be constructed for all model elements.
gtrule print_place(P) =
{
// print a place
precondition lhs(P) =
{
petriNet.place(P);

}
action
{
print("<place id=\"");
print(name(P));
print("\">");
print("<name ><text >");
print(name(P));
print("</text ></name >");
print("<initialMarking ><text >");
print(tokenCount(P));
print("</text ></initialMarking >");
print("</place >");

}
}

The model stores each token as a separate entity, but PNML requires the number of them,
so they must be counted. The following rule matches on a place with a token, and updates the
appropriate entry in the tokenCount/1 ASMFunction.
gtrule count_token(in P, inout Tok) =
{
precondition lhs(P, Tok) =
{

petriNet.place(P);
petriNet.token(Tok);
petriNet.place.tokens(Mark ,P,Tok);

}
action
{
if(tokenCount(P)==undef) tokenCount(P)=0;
update tokenCount(P)=tokenCount(P)+1;

119

Declarative Specification of Domain Specific Visual Languages István Ráth

}
}

The code generator transformation is integrated into the ViatraDSM framework through some
additional coding (overriding a method) in the plugin editor class.

Step 10: Constraint checker

The Petri net metamodel also supports place capacity, which is a positive integer, assigned to
places, it is logical to enforce the validity of this language-specific constraint using the functional-
ity provided by the modeling environment. The constraint on the model is to have a less or equal
number tokens at each place than the capacity of the given place.

The following code can be used to check the constraint:

[...]
rule main(in ModelName) = seq
{
let Model=ref(ModelName) in seq
{
// Count tokens at all places
forall P below Model with find place(P) do seq
{
// the count_token rule from the previous
// example is called at this point.
forall Tok do apply count_token(P,Tok);
call checkPlace(P);

}
}

}

The following rule checks whether the condition specified by the constraint holds on the
matched place-capacity subgraph:

rule checkPlace(in P) = seq
{
choose C with find capacity(P, C) do seq
{

// this machine uses the same tokenCount/1 ASMFunction
// as the previous example
if(value(C)<tokenCount(P)) do

log("Error: too many tokens on place: "+name(P)+"\n");
}

}

This pattern selects the appropriate place-capacity pairs from the modelspace:

pattern capacity(P, C) =
{

petriNet.place(P);
petriNet.capacity(C);
petriNet.place.capacity(CO,P,C);

}
}

120

Declarative Specification of Domain Specific Visual Languages István Ráth

Using the editor

The domain specific editor is now ready. The end user (domain expert) can easily create and edit
Petri nets, using domain specific graphical elements. By default, the Petri nets and diagrams are
saved along with the entire model space in VPML, the native XML format of VIATRA2 models.
The editor can simply generate standard PNML description with a single click, interactive simula-
tion can be started from the context menu, and models can be checked against a simple constraint
to check the capacities of places.

121

Declarative Specification of Domain Specific Visual Languages István Ráth

Chapter 8

Conclusions

Today, domain specific modeling gathers ground in the area of software development. Unlike
UML, which tries to be a single modeling language as general as possible, DSM follows the idea
of creating separate modeling languages for every specialized application domain.

Since domain specific models are on a higher abstraction level than general UML models, ap-
plication source code is easier to generate and many times results in a more comprehensive gener-
ation process, consequently a leap in developer productivity. However, whilst for UML modeling
there are a number of industrial tools available, domain specific modeling languages are harder
and more expensive to construct, simply because of the complexity of the task. Thus, language
engineering frameworks are being developed, at software houses ranging from small open source
projects to industry giants like Microsoft.

At the beginning of our research, I studied many existing and upcoming language engineering
tools to get a good and thorough view of what others were trying to achieve, and what could
be possible with this technology. The result of this initial research is presented in this thesis in
Chapter 2. The most important conclusions were the following:

• Weak domain integration. Most of existing DSM tools separate the models of the distinct
domains (by generating standalone editors), therefore modeling the interaction between het-
erogenous components of a complex system is difficult.

• No integrated support for simulation and model checking. While some vendors experiment
with enabling some simulation abilities based on pre-defined dynamic patterns such as finite
state machines, this area of language engineering is widely ignored in current tools. Addi-
tionally, whilst support for the checking of more complex constraints based on the Object
Constraint Language (OCL) is being developed for GMF, for instance, this is not based on
a model transformation approach.

• Simplistic approach to diagrams. With the exception of the most modern approach, GMF,
language engineering frameworks are stuck at the level of “class → node, association →
edge” type of diagram mapping. This is acceptable for simple domains, however, particu-
larly if abstract syntax is optimised for code generation, or model transformation purposes,
a separate visualisation modeling layer that can be tailored to the needs of the human user,
is hardly omittable.

Interestingly, the initial conceptualisation of the ViatraDSM framework began at approxi-
mately the same time as GMF was drafted. Many of the ideas that the designers of GMF have

122

Declarative Specification of Domain Specific Visual Languages István Ráth

come up with are very straightforward, and since we missed those features from existing mod-
eling environments as well, it was natural to add them to the ViatraDSM framework. Therefore,
many aspects of ViatraDSM and GMF are very similar, as both use GEF and Eclipse.

The key difference, however, which separates our design from all other language engineering
products is the fundamental idea of encompassing all important engineering aspects in the model
transformation domain. This concept arose from the fact that most of the implementation behind
the VIATRA2 framework is the work of András Schmidt, Dávid Vágó and the author of this thesis.
The first motivation to develop the ViatraDSM framework, therefore, was that while VIATRA2
was a promising transformation tool, it lacked an intuitive modeling interface.

Based on our implementation, the VIATRA2 framework has become an official subproject of
the Eclipse Generative Model Transformers project [49] in September, 2005. This open source
contribution is dominantly based on the results of our Scientific Students’ Association report, and
the masters theses of András Schmidt, Dávid Vágó and myself.

The ViatraDSM framework was designed and developed in strong co-operation with Dávid,
and we also got valuable feedback from colleagues, especially Dániel Tóth, who used it for his
own master’s thesis. The results emphasized in this thesis, multi domain modeling and the diagram
modeling layer are my own work, carried out during the last semester.

The ViatraDSM framework Our achievement presented in this thesis, the ViatraDSM frame-
work, is a domain specific language engineering environment built on top of the model transfor-
mation capabilities of the VIATRA2 engine. The design process, as documented in this thesis,
produced the following results:

• A formal method for the precise specification of domain specific visual languages has been
developed (the DSM Core metamodel, Sec. 4.1.3).

• This specification was projected into the VIATRA2 modelspace, along with a prototype
implementation.

• Additionally, model transformation-based technologies were developed to uniformly spec-
ify constraints, simulation rules, and code generation, using VIATRA2’s native transforma-
tion languages (Chapters 4, 3, and 7).

• The implementation of the ViatraDSM framework prototype was refined, resulting in the
code base that is described in detail in Chapter 4. The main advantages of our implementa-
tion are:

– it can be adapted to arbitrary modeling frameworks;

– it is a memory efficient implementation;

– it supports modeling and mode transformation in multiple domains;

– it enables the model-based development of domain-specific visual languages (without
manual coding) but also provides a flexible solution for language engineers by manual
coding.

Multi domain modeling As an individual project, I developed the fundamentals for multi-
domain modeling based on multiple aspects (Chapter 5). I described (in Sec. 5.4) light-weight
techniques for integrating multiple domain-specific modeling languages into a consistent system

123

Declarative Specification of Domain Specific Visual Languages István Ráth

model in addition to traditional model transformation based domain integration. Using these novel
techniques, integration of DSMLs can be specified very easily compared with designing a com-
plex model transformation for the same problem in many cases. Then I presented (in Sec. 5.5)
how these concepts can be used to create multi-domain models in the ViatraDSM framework.

Abstract - concrete syntax separation I designed multiple techniques to facilitate the mapping
between the abstract syntax and concrete syntax model layers of visual languages (Chapter 6). The
features implemented are very important, both from the perspective of the language engineer and
the end user. The language engineer benefits from greater freedom in designing the concrete and
abstract syntax representations of the language, while still retaining the possibility to create default
mappings between the two layers in a simple fashion. End users experience greater freedom in
constructing models visually.

The most important features of the implementation are:

• The mapping technique allows for arbitrary bidirectional mapping between abstract and con-
crete syntax models (logical and diagram models), and provides declarative support based
on a mapping metamodel and VIATRA2 transformations.

• Diagram and logical models share the same modelspace, making VIATRA2-native GTASM
transformations between abstract and concrete syntax models possible.

• The mapping interfaces follow the plugin architecture of the ViatraDSM framework by al-
lowing the plugin author to design and implement mapping in both directions in a flexible
way (e.g. by using pure Java code, or mostly declarative techniques).

• The mapping metamodel allows for future automatic generation based on a concrete syntax
metamodel, further minimizing the amount of manual coding required to build a domain-
specific visual editor.

Case study Finally, I demonstrated the feasibility of our approach by discussing a descriptive
language engineering example, the creation of a Petri net editor with simulation, code generation,
and model checking capabilities. In ten steps, such a modeling tool can be constructed with
minimal Java coding (mostly writing simple view classes for custom graphical representation and
some “glue code”). However, as the range of possibilities offered by the ViatraDSM framework
is wide, a simple, tree-based domain specific editor can be created with an absolute minimum of
manual coding.

Future work

From an architectural viewpoint, the most missing feature of the ViatraDSM framework is the lack
of an automated mechanism of enforcing complex language-specific constraints. While contraint-
checking transformations can be run, there is no way of guaranteeing the “correctness” of models,
apart from simple static constraints supported natively by the underlying VPM modeling infras-
tructure (containment, multiplicity, type correctness). It is important to note that this feature is
missing from all domain-specific frameworks, because enforcing constraints in an on-line fashion
is not always possible, because there may be scenarios where a temporarily invalid model state
must be accepted so that the user can finish her editing actions which may lead to a correct model.
Most tools check OCL constraints at user request, and highlight invalid model parts. This is one

124

Declarative Specification of Domain Specific Visual Languages István Ráth

important feature which will be added to the ViatraDSM framework in the near future.

Concerning graphical representation, there are two major aspects of the language engineer-
ing process which are currently time consuming and complicated for the designer. One of these
aspects is the construction of visualisation classes, where Java coding is required. A straightfor-
ward idea is to implement a simple visual editor for Draw2D classes, similarly to the one found
in many DSM tools, such as Microsoft’s DSL Tools suite, and generate source code which can be
used by the framework. The other aspect is the mapping mechanism. While considerable efforts
were made to simplify a generally complicated problem of model synchronisation to an accept-
able level, a mechanism which would enable the (at least partial) automatic generation of mapping
rules would significantly reduce the time required to construct a visual language.

On the implementation side, the ViatraDSM framework does not currently offer the rich ren-
dering capabilities found in professional software like GMF or MetaEdit+. In fact, I have at-
tempted utilizing GMF’s presentation layer over the ViatraDSM infrastructure, however GMF
proved to be too intergated with EMF, and the EMF philosophy (generated editors) for this to be
possible. In this area, much could be improved, however ViatraDSM was primarily conceived as
a prototype to test and develop new ideas, we did not consider the development of fancy graphics
a priority.

The most important goal to reach is the total elimination of Java coding. Currently, visual-
isation classes, as well as “glue code”, logic connecting the various compoments that make up
a domain specific editor (including the plugin class and helper classes) need to be implemented
manually. However, as the code generation capabilities of VIATRA2 are powerful enough, we plan
to enable the automatic generation of these code fragments using VIATRA2-based models.

125

Declarative Specification of Domain Specific Visual Languages István Ráth

Bibliography

[1] AGG Project website
http://tfs.cs.tu-berlin.de/agg/

[2] Apache Velocity Project
http://jakarta.apache.org/velocity

[3] b+w GmbH website
http://www.architectureware.de

[4] András Balogh, Dániel Varró: Advanced Model Transformation Language Constructs in the
VIATRA2 Framework, September 2005, Accepted to SAC 2006, Model Transformation Track

[5] E. Börger and R. Särk: Abstract State Machines. A method for High-Level System Design
and Analysis, Springer-Verlag, 2003.

[6] Compuware: Landmark Study Reveals 35 per cent Productivity Gains for Businesses Using
Model-Driven Architecture, 21 July, 2003
http://www.compuware.co.uk/pressroom/news/21072003 02.htm

[7] Eclipse Project website
http://www.eclipse.org

[8] Eclipse Modeling Framework website
http://www.eclipse.org/emf

[9] Eclipse Corner Articles: Introduction to Java Emitter Templates (JET)
http://www.eclipse.org/articles/Article-JET/jet tutorial1.html

[10] H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg (eds.): Handbook on Graph Gram-
mars and Computing by Graph Transformation, vol. 2: Applications, Languages and Tools, in:
World Scientific, 1999.

[11] Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel, Tihamer Levendovszky, Ulrike
Prange, Gabriele Taentzer, Daniel Varro, and Szilvia Varro-Gyapay: Model Transformation by
Graph Transformation: A Comparative Study, Model Transformations in Practice Workshop,
2005. In press.

[12] Karsten Ehrig, Claudia Ermel, Stefan Hänsgen, Gabriele Taentzer: Towards Graph Transfor-
mation Based Generation of Visual Editors using Eclipse
http://tfs.cs.tu-berlin.de/∼karstene/public/gEEHT04.pdf

[13] C. Ermel and M. Rudolf and G. Taentzer: In [10], chapter The AGG-Approach: Language
and Tool Environment, World Scientific, 1999, pages 551–603.

126

http://tfs.cs.tu-berlin.de/agg/
http://jakarta.apache.org/velocity
http://www.architectureware.de
http://www.compuware.co.uk/pressroom/news/21072003_02.htm
http://www.eclipse.org
http://www.eclipse.org/emf
http://www.eclipse.org/articles/Article-JET/jet_tutorial1.html
http://tfs.cs.tu-berlin.de/~karstene/public/gEEHT04.pdf

Declarative Specification of Domain Specific Visual Languages István Ráth

[14] David S. Frankel - Steve Cook: Domain-Specific Modeling and Model Driven Architecture,
in: MDA Journal, January 2004
http://www.bptrends.com/publicationfiles/01-04COLDomSpecModelingFrankel-Cook.pdf

[15] General Modeling Framework website
http://www.eclipse.org/gmf

[16] GMF Project Requirements
http://www.eclipse.org/gmf/requirements.html

[17] Jack Greenfield: The Case for Software Factories, in: ITArchitect Magazine, August 24,
2004
http://www.itarchitect.co.uk/articles/display.asp?id=96

[18] Jack Greenfield: Software Factories: Assembling Applications with Patterns, Models,
Frameworks, and Tools, in: Microsoft Developer Network Technical Articles, November 2004
http://msdn.microsoft.com/library/en-us/dnbda/html/softfact3.asp

[19] Martijn Iseger: Domain-specific modeling for generative software development, April 17,
2005
http://www.itarchitect.co.uk/articles/display.asp?id=161

[20] Steven Kelly: Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM, in: OOPSLA:
19th Annual ACM Conference on Object-Oriented Programming, Systems, Languages, and
Applications, 2004
http://www.softmetaware.com/oopsla2004/kelly.pdf

[21] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Videira Lopes, C., Loingtier, J.-M.,
and Irwin, J: Aspect-oriented Programming, in: Proceedings of ECOOP, 1997
http://www.cs.ubc.ca/∼gregor/papers/kiczales-ECOOP1997-AOP.pdf

[22] Paul Klint and Ralf Lämmel and Chris Verhoef: Toward an engineering discipline for gram-
marware. In ACM Transactions on Software Engineering Methodology, Vol.14, No.3, 2005.
pp.331-380.
http://doi.acm.org/10.1145/1073000

[23] Thomas Klein and Ulrich Nickel and Jörg Niere and Albert Zündorf: From UML to Java
And Back Again, University of Paderborn, 2000, tr-ri-00-216

[24] Kobryn, C.: UML 2001: A standardization Odyssey. Communications of the ACM, 42(10),
1999

[25] Bernd Kolb, Markus Völter: openArchitectureWare and Eclipse, 2004
http://architecturware.sourceforge.net/data/oawEclipse.pdf

[26] J. Larrosa and G. Valiente: Constraint Satisfaction Algorithms for Graph Pattern Matching,
in: Mathematical Structures in Computer Science, Vol. 12, No. 4, 2002, pages 403–422.

[27] MetaCase website
http://www.metacase.com

[28] MetaEdit+: Technical Summary
http://www.metacase.com/papers/MetaEditPlus.pdf

127

http://www.bptrends.com/publicationfiles/01-04 COL Dom Spec Modeling Frankel-Cook.pdf
http://www.eclipse.org/gmf
http://www.eclipse.org/gmf/requirements.html
http://www.itarchitect.co.uk/articles/display.asp?id=96
http://msdn.microsoft.com/library/en-us/dnbda/html/softfact3.asp
http://www.itarchitect.co.uk/articles/display.asp?id=161
http://www.softmetaware.com/oopsla2004/kelly.pdf
http://www.cs.ubc.ca/~gregor/papers/kiczales-ECOOP1997-AOP.pdf
http://doi.acm.org/10.1145/1073000
http://architecturware.sourceforge.net/data/oawEclipse.pdf
http://www.metacase.com
http://www.metacase.com/papers/MetaEditPlus.pdf

Declarative Specification of Domain Specific Visual Languages István Ráth

[29] Meta Object Facility Specification
http://www.omg.org/docs/formal/02-04-03.pdf

[30] Microsoft DSL Tools website
http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx

[31] Microsoft DSL Tools Walkthroughs
http://go.microsoft.com/fwlink/?LinkId=43636

[32] William Moore, David Dean, Anna Gerber, Gunnar Wagenknecht, Philippe Vanderheyden:
Eclipse Development using the Graphical Editing Framework and the Eclipse Modeling Frame-
work, in: IBM RedBooks, 17 February 2004
http://www.redbooks.ibm.com/abstracts/sg246302.html

[33] U. Nickel, J. Niere, and A. Zündorf: Tool demonstration: The FUJABA environment, in:
The 22nd Int. Conf. on Software Engineering (ICSE), ACM Press, Limerick, Ireland, 2000.

[34] The Object Management Group: UML Profile for Schedulability, Performance, and Time
Specification,
http://www.omg.org/cgi-bin/doc?formal/2005-01-02

[35] openArchitectureWare website
http://www.openarchitectureware.org

[36] The Petri Net Markup Language Specification
http://www.informatik.hu-berlin.de/top/pnml/pnml.html

[37] Dorin Bogdan Petriu and C. Murray Woodside: A Metamodel for Generating Performance
Models from UML Designs, UML 2004 - The Unified Modelling Language: Modelling Lan-
guages and Applications. 7th International Conference, Lisbon, Portugal, October 11-15, 2004.
Proceedings, 2004. editors: = Thomas Baar and Alfred Strohmeier and Ana M. D. Moreira and
Stephen J. Mellor, Vol. 3273, Ser. Lecture Notes in Computer Science, Springer.
ftp://ftp.sce.carleton.ca/pub/cmw/csm-uml04.pdf

[38] Risto Pohjonen: Boosting Embedded Systems Development with Domain-Specific Model-
ing, 2004
http://www.metacase.com/papers/RTC04 Pohjonen.pdf

[39] A. Rensink: Representing first-order logic using graphs, in: H. Ehrig, G. Engels, F. Parisi-
Presicce, and G. Rozenberg (eds.), Proc. 2nd Int. Conf. on Graph Transformation (ICGT 2004),
Rome, Italy, vol. 3256 of LNCS, pp. 319335. Springer, 2004.

[40] Rich Seeley: ADT at Gartner ITxpo: Gates sees more modeling, less coding, 30 March, 2004
http://www.adtmag.com/article.asp?id=9166

[41] Charles Simonyi: The Death of Computer Languages, The Birth of Intentional Programming,
1995
http://research.microsoft.com/research/pubs/view.aspx?type=TechnicalReport&id=4

[42] Dave D. Straube and M. Tamer Özsu: Query Optimization and Execution Plan Generation
in Object-Oriented Data Management Systems, Knowledge and Data Engineering, 1995, Vol.
7, No. 2, pages 210–227.

128

http://www.omg.org/docs/formal/02-04-03.pdf
http://lab.msdn.microsoft.com/teamsystem/workshop/dsltools/default.aspx
http://go.microsoft.com/fwlink/?LinkId=43636
http://www.redbooks.ibm.com/abstracts/sg246302.html
http://www.omg.org/cgi-bin/doc?formal/2005-01-02
http://www.openarchitectureware.org
http://www.informatik.hu-berlin.de/top/pnml/pnml.html
ftp://ftp.sce.carleton.ca/pub/cmw/csm-uml04.pdf
http://www.metacase.com/papers/RTC04_Pohjonen.pdf
http://www.adtmag.com/article.asp?id=9166
http://research.microsoft.com/research/pubs/view.aspx?type=Technical Report&id=4

Declarative Specification of Domain Specific Visual Languages István Ráth

[43] Tiger Project website
http://tfs.cs.tu-berlin.de/tigerprj/

[44] Tiger User Documentation
http://tfs.cs.tu-berlin.de/tigerprj/papers/userdoc.pdf

[45] Dániel Varró: Automated Model Transformations for the Analysis of IT Systems, PhD The-
sis, 2004
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2004/phd thesis.zip

[46] Dániel Varró, András Pataricza: VPM: A visual, precise and multilevel metamodeling
framework for describing mathematical domains and UML (The Mathematics of Metamodel-
ing is Metamodeling Mathematics), in: Journal of Software and Systems Modeling, October,
2003

[47] Dániel Varró and Gergely Varró and András Pataricza: Designing the Automatic Transfor-
mation of Visual Languages, Vol. 44, No. 2, Elsevier, pages 205–227, in: Science of Computer
Programming, August 2002

[48] Gergely Varró, Katalin Friedl, Dániel Varró: Graph Transformation in Relational Databases,
In Proc. GraBaTs 2004: International Workshop on Graph Based Tools. In press.

[49] VIATRA2 Framework. An Eclipse GMT Subproject.
http://www.eclipse.org/gmt/

[50] Attila Vizhanyo and Aditya Agrawal and Feng Shi: Towards Generation of Efficient Trans-
formations, Proc. of 3rd Int. Conf. on Generative Programming and Component Engineering
(GPCE 2004), pages 298–316, October 2004, editors: Gabor Karsai and Eelco Visser, Vol.
3286, Ser. LNCS, Vancouver, Canada, Springer-Verlag

[51] VMTS Website
http://avalon.aut.bme.hu/∼tihamer/research/vmts

[52] David S. Wile: Abstract Syntax from Concrete Syntax. In Proceedings of the 19th Interna-
tional Conference on Software Engineering. Boston, MA. May, 1997. 472-480.

[53] A. Zündorf: Graph pattern-matching in PROGRES, Proc. 5th Int. Workshop on Graph Gram-
mars and their Application to Computer Science, pages 454–468, 1996, Vol. 1073, Ser. LNCS,
Springer-Verlag

129

http://tfs.cs.tu-berlin.de/tigerprj/
http://tfs.cs.tu-berlin.de/tigerprj/papers/userdoc.pdf
http://www.inf.mit.bme.hu/FTSRG/Publications/varro/2004/phd_thesis.zip
http://www.eclipse.org/gmt/
http://avalon.aut.bme.hu/~tihamer/research/vmts

	Introduction
	Models in software engineering
	The evolution of approaches
	CASE
	UML
	Model Driven Architecture

	Problems with MDA
	Domains in MDA
	Transformations in MDA

	Domain-specific modeling
	Motivation for DSM

	MDSE = MDA + DSM
	ViatraDSM: a tool supporting MDSE
	Objectives

	The State of the Art of Language Engineering
	Goals
	Language engineering
	Domain integration

	Basis of comparison
	Language engineering criteria
	Integration criteria
	Architectural properties
	Typical workflow

	Commercial products
	MetaCase
	Microsoft DSL Tools

	VMTS
	Eclipse
	The Eclipse Integrated Development Environment
	Eclipse Modeling Framework
	Graphical Editing Framework
	Domain-specific editors with EMF and GEF
	Eclipse GMF
	openArchitectureWare
	Tiger

	Summary
	Our approach
	Example: Petri Net

	Interpreter-based model transformation in VIATRA2
	Metamodeling: Definition of Abstract Syntax
	Visual and Precise Metamodeling
	The VTML language

	The VTCL language
	Graph patterns
	Graph transformation rules
	Control Structure

	VIATRA2 Architectural overview
	The VIATRA2 framework
	The GTASM interpreter

	Summary

	The ViatraDSM Framework
	Architecture
	Editor generation or runtime framework?
	Domain specific graphical representation
	Modeling
	Diagrams

	Implementation
	DSM framework and domain plugins
	VIATRA2 as the model container
	Graphical representation

	Transformations, simulation and code generation
	Requirements of transformation support
	Describing transformations
	Running transformations

	User Interface
	Logical model view
	Diagrams

	Multi domain modeling
	Introduction
	Domain integration
	Example: Enterprise Security Policies and UML's Performance Profile
	Concepts for multi-domain integration
	Transformation-based integration
	Metamodel-level integration by subclassing
	Model-level integration by multiple instantiation

	Multi-domain modeling in ViatraDSM: An example

	Mapping between abstract and concrete syntax
	Introduction
	Architecture
	Techniques
	The presentation layer of ViatraDSM
	Java interfaces
	The Mapping metamodel
	Using the mapping metamodel
	Interpreting mapping models
	GTASM transformations

	Summary and future improvements

	Case study: Petri net editor
	Conclusions

