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Kivonat

Ahogy a beágyazott rendszerek egyre inkább életünk szerves részévé válnak, biztonságos
és hibamentes működésük egyre kritikusabb a felhasználók és a gyártók számára egy-
aránt. A tesztelési módszerekkel ellentétben a formális verifikációs technikák nem csak a
hibák jelenlétét, hanem hiányát is képesek bizonyítani, ezáltal kiváló eszközzé téve őket
biztonságkritikus rendszerek verifikációjához. Ennek egy módja a már elkészült forráskód
formális modellé alakítása és a modell ellenőrzése a hibás állapotok bekövetkezhetősége
szempontjából.

Sajnos a forráskódból formális modellt előállító eszközök gyakran állítanak elő ke-
zelhetetlenül nagy és komplex modelleket, így téve ellenőrzésüket rendkívül bonyolulttá
és időigényessé. Munkámban bemutatok egy olyan komplex folyamatot, amely képes for-
ráskódból formális modellt előállítani. A folyamat részeként fordítótervezésben gyakran
használt optimalizációs algoritmusokat (konstans propagálás, halott kódrészletek törlé-
se, ciklus kihajtogatás, függvények „inline”-olása) alkalmazok a bemeneten, illetve egy
programszelető algoritmus segítségével több egyszerűsített modellt állítok elő egy nagy
probléma helyett. A munkafolyamat végén egy korlátos modellellenőrző és egy k-indukciós
algoritmus segítségével verifikálom a kapott részproblémákat. Az optimalizációk hatékony-
ságát és hatását mérésekkel demonstrálom.
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Abstract

As embedded systems are becoming more and more common in our lives, the importance
of their safe and fault-free operation is becoming even more critical. Unlike testing, formal
verification can not only prove the presence of errors, but their absence as well, making
it suitable for verifying safety-critical systems. Formal verification may be done by trans-
forming the already implemented source code to a formal model and querying the resulting
model’s properties on the reachability of an erroneous state.

Sadly, source code to formal model transformations often yield unmanageably large
and complex models, resulting in an extremely high computational time for the verifier.
In this work I propose a complex workflow which provides a source code to formal model
transformation, with program size reduction optimizations. These optimizations include
constant propagation, dead branch elimination, loop unrolling, function inlining, extended
with a program slicing algorithm which splits a single large problem into multiple smaller
ones. At the end of the workflow, a bounded model checker and a k-induction algorithm
verifies these smaller slices. Furthermore, I provide benchmarks to demonstrate the usa-
bility and efficiency of this workflow and the effect of the optimization algorithms on the
formal model.
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Chapter 1

Introduction

Starting from the end of the late century, modern human society has an ever increasing
reliance on embedded computer systems. These systems are now present in almost every
aspect of our lives: we have them in our washing machines, cars and medical equipment,
etc. As the reliance upon these appliances grows, we also have a greater need to prove
their fault-free behavior, as even the smallest erroneous operation can cause a considerable
damage to property or – in a worse case – human lives. Several otherwise preventable
accidents can be credited to the lack of sufficient testing and verification. With these in
mind we have the natural desire for a reliable, mathematically precise proof regarding the
system’s proper operation.

For satisfactory verification of a system, we can use a modeling formalism with formal
semantics to model the system’s behavior and query that model’s properties. Such queries
usually target reachability (e.g. whether an erroneous state can be reached). However,
designing and defining a model for a project can be rather difficult and in many cases
the financial and time constraints do not make it possible. Many projects start right at
the implementation phase without sufficient planning and modeling. In the domain of
embedded systems, implementation is usually done in C. While there are many tools that
can be used to generate C code from a formal model, the reverse transformation (model
from a source code) is far less supported.

Another difficulty with this process is the size of the state space of the model generated
from the source code. As most verification algorithms have a rather demanding com-
putational complexity (usually operating in exponential time), the resulting model may
not admit efficient verification. A way to resolve this issue is to reduce the size of the
generated model. During program-to-model transformation this can be done by applying
some optimization passes on the input program to simplify it, thus simplifying the model
output as well.

The project presented in this work proposes a transformation workflow from C programs
to a formal model, known as control flow automaton. The workflow enhances this transfor-
mation procedure by applying some common optimization transformations used in com-
piler design. These optimizations are constant propagation, dead branch elimination, loop
unrolling, and function inlining [1]. Their application results in a simpler model, which
is then split into several smaller, more easily verifiable chunks using so-called program
slicing [31]. This allows the model checker to handle multiple small problems, instead
of a single large one. For evaluation reasons, a simple bounded model checker [7] and a
k-induction [29] based model checker was implemented as a verifier.
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Chapter 2 offers some background information on model checking and data dependency
analysis structures commonly used in compiler design, such as use-define chains, program
dependence graphs, dominator trees, and call graphs. Chapter 3 describes a verification
compiler, that is a compiler built for software verification support. This requires discussing
the construction of the previously mentioned dependency structures and the implemented
transformation algorithms. Chapter 4 discusses the implementation details of this compiler
and the verifiers. Chapter 5 evaluates and measures the effect of these transformations
on some verification tasks from the Competition on Software Verification [5]. Finally,
Chapter 6 concludes my work and offers some possible extensions for future improvement.

2



Chapter 2

Background

This chapter gives a brief introduction to the theoretical background of the algorithms
and structures used later in this work. Section 2.1 describes the theory of the formal veri-
fication techniques applied and Section 2.2 discusses some common formal representations
of programs suitable for dependency and control flow analysis.

2.1 Formal verification

Formal verification is an approach for program verification. Unlike other methods, formal
verification techniques are not only able to prove the presence of errors, but are capable
of proving their absence as well. This section presents the theoretical background of the
tools and structures used for formal verification of programs. Section 2.1.1 discusses several
basic definitions of mathematical logic needed for formal verification. Section 2.1.2 offers a
description of the formal model used throughout this work, Section 2.1.3 describes model
checking techniques in general and discusses the bounded model checking and k-induction
techniques in greater detail.

2.1.1 Mathematical logic for formal verification

Propositional logic is a branch of mathematical logic. The basic elements of the logic are
propositional variables (e.g. P and Q). A formula ϕ is constructed from propositional
variables and logical connectives such as > (true), ⊥ (false), ¬ (negation), ∧ (conjunction),
∨ (disjunction) and → (implication). An interpretation assigns a truth value to every
propositional variable.

The boolean satisfiability problem (SAT) is the problem of deciding whether a formula ϕ
is satisfiable, i.e. whether there is an interpretation which yields that ϕ is true. Despite
the problem’s NP-completeness [15], modern SAT solvers in cases can handle models with
millions of formulas [23]. However, describing a computer program using merely proposi-
tional variables and truth symbols is a rather complicated issue, resulting in impractically
large models.

First order logic (FOL) extends propositional logic with variables, function symbols, pred-
icate symbols and quantifiers. A first order interpretation is based on a domain, which
is a set that may contain any abstract objects (such as numbers, animals or teapots).
Function symbols are interpreted as functions over the domain, and predicate symbols are
interpreted as relations over the domain. First order logic is undecidable [11, 30].
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However, decidability can be achieved by semantically restricting first order logic to a class
of interpretations. The satisfiability modulo theories (SMT) problem [8] is the problem
of deciding whether a first order logic formula ϕ is satisfiable in a combination of certain
(usually quantifier free) theories. In our case, the theory (and interpretation) used is the
theory of integers, which interprets + as the well-known integer addition, ≤ as the usual
total order over integers, etc. Besides often being decidable, first order theories enable
reasoning over data structures commonly used in computer programs (e.g. arrays), thus
are convenient to describe program semantics.

2.1.2 Control flow automata

Control flow automata [4] aim to formally model program flow. The formal semantics and
the automaton-like description makes the formalism suitable for formal verification.

Definition 1 (Control flow automaton). A control flow automaton (CFA) is a triple
(L,E, `0) where

• L is a finite set of locations, representing values of the program counter,

• E ⊆ L × Ops × L is a set of edges, representing control flow, with the operations
performed when a particular path is taken during execution,

• `0 ∈ L is the distinguished initial or entry location. �

A path of a CFA is an alternating sequence π = (`0, e0, `1, e1, . . . , en−i, `n) of locations
`i ∈ L and edges ei ∈ E such that ei = (`i, α, `i+1) for some operation α. The length |π|
of the path is the number of edges it contains. A path is an initial path if and only if its
first location is the initial location of the CFA. Given an error location `e ∈ L, a path is
an error path iff its last location is `e. (Throughout this thesis, it is assumed that the
error location has no outgoing edges, thus the only error location in an error path is the
last one.) A path may or may not be feasible in the sense described later. A path is safe
if and only if it is not an error path or not a feasible path. A CFA is safe iff all its initial
paths are safe.

There are two common ways to encode control flow in a CFA. In the case of single-block
encoding the CFA contains a location for every value of the program counter. In the case
of large-block encoding, a block of sequential execution paths are merged into a single edge,
resulting in a smaller graph.

Example 1. The control flow automaton shown in Figure 2.1a models the behavior of
the max function. It represents each program counter value in its own location, thus it
is single-block encoded. Figure 2.1 shows the same model with large-block encoding. The
operation Havoc(X) means that the variable X is assigned to a nondeterministic value.
The operation Assume(ϕ) means that a branching decision was taken with ϕ being the
boolean expression satisfying the branch condition of the given path.

2.1.3 Model checking

Model checking is a technique used for automatically proving a certain property of a formal
model by systematically exploring its state space [14]. In our case, the formal model is
a control flow automaton and the required property is the unreachability of an erroneous
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(a) A single-block encoded CFA. (b) A large-block encoded CFA.

Figure 2.1: A single-block encoded and a large-block encoded
CFA.

state. This notion can be formalized by marking a location of the control flow automaton
as an error location. Thus an instance of the model checking problem is a pair (A, `e) where
A = (L,E, `0) is a control flow automaton and `e ∈ L is the designated error location. The
problem targets whether there exists an unsafe initial error path π. If such path exists, it
is a counterexample for the property that can be reported to the programmer, otherwise
the property holds.

Checking for the graph-theoretical reachability of the error location from the initial lo-
cation yields false-positive results. It might be possible that an initial error path exists,
however, it is not evident whether that erroneous control flow path can be executed for
any inputs. Therefore model checking requires checking the semantic interpretation of the
input CFA and only reporting a counterexample if it is actually a feasible error path.

There are various approaches for software verification. Abstraction based model checkers
operate by ”hiding” certain details of the program. If the abstraction fails to model the
original system precisely (by hiding too much information), then the abstraction is refined,
until it faithfully represents the original input model [12]. Several software verification
tools use this approach, such as CPAChecker [6], BLAST [22], SLAB [9] and UFO [2].
Partial order reduction [19] is mostly used for verifying concurrent programs. If a program
runs multiple threads whose paths to a certain state overlap in some order, then many
of these orderings can be represented with only one of them. Abstract interpretation
methods [16] prove the unreachability of a certain state (in our case, the error state), by
iteratively extending an over-approximation of the set of reachable states. Bounded model
checkers [7], such as CBMC [13] use an approach which searches for error paths within a
given maximal length and reduces them to mathematical formulas. Because of its relative
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simplicity among the above approaches, I focus on bounded model checking in my work,
which is presented in detail in the following sections.

Checking feasability of program paths

We define feasibility of a path in a CFA in terms of satisfiability in SMT: the path is
feasible iff an SMT representing its execution is satisfiable. This way, feasibility of a CFA
path then can be checked by the SMT solver.

In order to obtain a suitable SMT representation of the path, assignments need to replaced
by equalities. This requires having different variables for each occurrences of a program
variable on the left-hand side. This can be done tracking indices for our variables and
incrementing it every time a new assignment to that variable is encountered. References
to the previous value of the variable are resolved by referencing to the lower index version
that variable.
Example 2. Consider the input CFA in Figure 2.2a. The automaton describes a program
which increases the variable i’s value until it reaches 2. On the other hand, the assertion at
the end of the program requires i to be equal to 0. Figure 2.2b shows the SMT representation
of the path (begin → 1→ 2→ 1→ 2→ 1→ 0→ error).

(a) A control flow automaton.

i1 = 0
i1 < 2

i2 = i1 + 1
i2 < 2

i3 = i2 + 1
¬(i3 < 2)
¬(i3 = 0)

(b) The SMT representation of
the 7 length error path in a.

Figure 2.2: An example control flow graph.

Refuting correctness with bounded model checking

A bounded model checker [7] traverses the state space of the program, searching for an
unsafe initial path of length at most k (the bound – hence the name bounded model
checker). If such a path is present, it is a counterexample to safety.

Generally, bounded model checking is not complete: it may not check all possible error
paths, thus cannot prove the correctness of the input program. On the other hand, a
bounded model checker can be sound, that is, it does not report false-positives. This
however requires the faithful (i.e. bit-precise) encoding of the program.

An overview of the bounded model checker algorithm is shown in Algorithm 1.

Proving correctness with k-induction

In order to enable proving properties, bounded model checking can extended to a technique
known as k-induction [29]. The basic idea of k-induction is applying inductive reasoning
on the length of program paths. For a given k, the steps of k-induction are the following:

6



Algorithm 1: Bounded Model Checking on Control Flow Automata.
Input: A control flow automaton A = (L,E, l0)
Input: An error location `e ∈ L
Input: A bound k ≥ 0
Output: A counterexample CEX(π) or UNKNOWN

1 foreach initial error path π such that |π| ≤ k do
2 if π is feasable then
3 return CEX(π)
4 end
5 end
6 return UNKNOWN

1. Base case: Show that all initial paths of length less than k are safe.
This is essentially bounded model checking, and a counterexample found during this
step is a counterexample to safety. Otherwise, the the analysis proceeds to the next
step.

2. Induction step: Show that all paths of length k are safe.
Suppose that during this step no counterexample is found, that is, all error paths
of length k are infeasible. It follows that a safe path of length k − 1 can only be
extended to a safe path of length k. As all initial paths of length less than k are
safe (induction base), it follows that all initial paths of length k are safe. Following
this reasoning, it can be seen that all initial paths of the program are safe, thus the
property is proved.
If an unsafe path of length k is found, it is a counterexample to induction, and the
safety of the program is neither proved, nor refuted. In this case the process can be
repeated with a greater k.

Note that if a program can be proved correct for a given k, it can also be proved correct
for k+1. However, even if the program is correct, k may be increased indefinitely without
ever proving correctness, as location reachability for programs is undecidable in general.

An overview of the k-induction algorithm can be seen in Algorithm 2.

2.2 Program representations

This section describes some data structures suitable for representing a program. Each
presented structure has a different purpose: some of them are convenient tools for language
agnostic program representation, others merely describe dependency relations of a given
program.

2.2.1 The C language

The C language was designed in 1970s by Dennis Ritchie at AT&T Bell Labs. Despite
its age, it is still the most widely used programming language in the world of embedded
systems1. Although it was never designed for embedded use, C’s simple syntax, relatively

1http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2016
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Algorithm 2: k-induction on Control Flow Automata.
Input: A control flow automaton A = (L,E, l0)
Input: An error location `e ∈ L
Input: A bound k > 0
Output: A counterexample CEX(π) or a counterexample to induction CTI(π) or

SAFE
1 cex ← BMC(A, `e, k − 1)
2 if cex = CEX(π) then
3 return cex
4 end
5 foreach error path π such that |π| = k do
6 if π is feasible then
7 return CTI(π)
8 end
9 end

10 return SAFE

rich standard library and low-level architecture made its position dominant in systems
programming, with compiler support for almost every microprocessor architecture.

2.2.2 Abstract syntax trees

In order to easily analyze the syntax of a parsed source code, compilers usually build a
graph (more precisely a tree) describing the syntactic structure of the given program [1]. In
this tree each instruction and expression is represented by a node, and a node’s children
are its subexpressions or contained instructions. The resulting graph is called Abstract
Syntax Tree, AST for short. The corresponding AST for the code shown in Listing 2.1
can be seen in Figure 2.3.

1 int main(void) {
2 int x = 2;
3
4 for (int i = 0; i < 3; i = i + 1) {
5 x = x + 1;
6 }
7
8 assert(x == 5);
9

10 return 0;
11 }

Listing 2.1: A simple C program.

2.2.3 Control flow graphs

Control flow graphs (CFG for short) [3] are language-agnostic intermediate representations
of computer programs. Almost every compiler uses them, and they are the main tools for
compiler optimizations. In order to reduce the graph’s size and to create a safe window
for local optimizations, it is usual to merge linear instructions into a single entity, called
the basic block. A basic block may only contain sequential instructions of a program and
have only one entry point (the first instruction) and one exit point (the last instruction).

8



Figure 2.3: AST representation of Listing 2.1.

However, it may have multiple predecessors and successors, and may even be its own
successor.

Definition 2 (Control flow graph). A control flow graph (CFG) is a tuple
(B,E, be, bq), where

• B = {b1, b2, ..., bn} is a set of basic blocks,

• E = {(bi, bj), (bk, bl), ...} is a set of directed edges, each representing a possible
execution path in the program,

• the marked be ∈ B is the special entry block, which all execution paths must begin
from, and

• bq ∈ B is the special exit block, which must be pointed to by edges from terminating
blocks. �

Throughout this work, for a control flow graph G, the notation pred(G) marks the set of
G’s predecessors, succ(G) marks the set of G’s successors.

Example 3. An example is shown in Figure 2.4. Figure 2.4a shows a simple C program,
Figure 2.4b shows its corresponding control flow graph. Notice the edges on the labels: in
many cases, it is useful to augment the edges, and store information on the reason why a
particular control path was chosen. In this case, the labels show how a path will be taken
depending on the result of the branching comparison.

9



1 int main(void) {
2 int sum = 0;
3 int prod = 0;
4 int x = 10;
5 int i = 0;
6
7 while (i < x) {
8 sum = sum + i;
9 prod = prod * i;

10
11 i = i + 1;
12 }
13
14 assert(sum == 45);
15 assert(prod == 0);
16
17 return 0;
18 }
19

(a) A simple C program.
(b) The control flow graph of the program
shown in (a).

Figure 2.4: An example control flow graph.

2.2.4 Flow graph dominators

It may not be a trivial task to recognize the control structures present within a control
flow graph, as it requires the recognition of several patterns, which may span through
multiple blocks. Luckily, the theory of flow graph dominators offers structures for easier
recognition of loops and branches [1]. The dominator relation shows us which instructions
(nodes) will always be executed before reaching to a certain point of the input program.
This information will later be used to find control dependency relations.

Definition 3 (Dominator). Let P and Q be two nodes of a flow graph. P is said to
dominate Q (denoted as P domQ) if all paths from the entry node to Q contains P . �

As it can be observed, according to this definition every node dominates itself, and the
entry node dominates all nodes of the graph. If we wish to determine which instruc-
tions depend on the execution of a particular branch, we need to introduce the following
definition.

Definition 4 (Post-dominator). Let P and Q be two nodes of a flow graph. P is said
to post-dominate Q (denoted as P pdomQ) if all paths from Q to the exit node contains P .�

The (post-) dominator relation can be organized into a structure which allows us to perform
easy and efficient queries on the dominator information. This structure is a tree, called
the dominator tree. In order to build this tree, we will need to the following definitions.

Definition 5 (Immediate dominator). Let P and Q be two nodes of a flow graph. P
immediately dominates Q (denoted as P idomQ) if and only if:

• P domQ,

• every other dominator of Q dominates P . �

10



Definition 6 (Immediate post-dominator). Let P and Q be two nodes of a flow
graph. P immediately post-dominates Q (denoted as P ipdomQ) if and only if:

• P pdomQ,

• every other post-dominator of Q post-dominates P . �

The above definitions imply that a node may only have a single (post-) dominator. This
observation allows the (post-) dominator tree to be indeed a tree.

Definition 7 (Dominator tree). Let G be a flow graph, with a vertex set of V . A
dominator tree is a graph with the vertex set V , and includes the edge P → Q between
the nodes P , Q if and only if P idomQ. �

Definition 8 (Post-dominator tree). Let G be a flow graph, with a vertex set of V .
A post-dominator tree is a graph with the vertex set V , and includes the edge P → Q
between the nodes P , Q if and only if P ipdomQ. �

Example 4. Consider the flow graph shown in Figure 2.5a. Figure 2.5b shows its domi-
nator tree, Figure 2.5c shows its post-dominator tree. As it can be observed, if node Q is
a descendant of node P , in the (post-) dominator tree, then P domQ (P pdomQ) holds.

(a) A flow graph. (b) Dominator tree of a. (c) Post-dominator tree of a.

Figure 2.5: An example on (post-) dominator trees.

2.2.5 Use-define chains

During optimization, it is often useful to know whether an instruction writes variables
later read by another instruction. This relation is captured by the definition of flow
dependency [21, 27].

Definition 9 (Flow dependency). Let G be an input program. Let P and Q be in-
structions in G.
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1. Instruction P unambiguously defines variable V if P assigns a value to V .

2. Instruction P ambiguously defines variable V if P performs an operation which may
or may not change the value of V .

3. Q uses V if Q reads the value of V .

If P ambiguously or unambiguously defines V and Q uses V afterwards, without V being
redefined by another instruction, then Q flow depends on P . �

An example on ambiguous definitions is a function call with side-effects. As we need to
make safe and conservative decisions during optimization, we must also treat ambiguous
definitions as if they were unambiguous.

Definition 10 (Definition, use). Let G be an input program. Let I be the set of in-
structions in G. Let P,Q ∈ I. Let V be a variable in G.

1. The pair d = (P, V ) is a definition in G, if P ambiguously or unambiguously defines
V . In this case, instruction P generates d.

2. The pair u = (Q,V ) is a use in G, if Q uses V .

3. Instruction P kills the definition d if d = (X,V ) where X ∈ I,X 6= P , and P
unambiguously defines V . �

In order to find the flow dependency relation, we need to satisfy the restriction ”without
being redefined” of Definition 9. A redefinition of a variable occurs when an instruction
after the original definition but prior the use defines the same variable. Such redefinitions
kill the original definition, making it unnecessary to include them in the flow dependency
relation. However, if a redefinition is done after a branching decision, we must make
sure to check the other branching paths for redefinitions. If not all branching paths of
a branch contains a redefinition, then the effects original definition may be just as valid.
Furthermore, if instruction P only ambiguously defines V , then we may not be certain if
the effects of the original definition were invalidated, thus we must place a restriction on
definition killing not to include unambiguous definitions.

Definition 11 (Reaching definition). Let G be an input program. Let d = (P, V ) be
a definition, u = (Q,V ) be a use in G. The definition d reaches u if there is a control flow
path between P and Q where d is not killed along that path. �

Definition 11 formalizes the notion of ”without being redefined by another instruction”
in Definition 9. If there exists a definition d = (P, V ) that is a reaching definition of
u = (Q,V ), then Q flow depends on P [18]. With this knowledge, we can build a structure
containing every reaching definition of every use in our program. Such structure is called
a use-define chain [1].

Definition 12 (Use-define chain). Let G be a program. Let D = {d1, d2, . . . , dk} be
the set of P ’s definitions, and U = {u1, u2, . . . , un} the set of its uses. The use-define
chain of P is a set of pairs {(u1, D1), (u2, D2), . . . , (un, Dn)}, where Di ⊆ D is the set of
definitions reaching ui. �

Example 5. Consider the subgraph describing a code snippet shown in Figure 2.6. The
definition set of the snippet is D = {(i1, x), (i2, y), (i4, y), (i5, u)}. The use set is
U = {(i2, x), (i3, x), (i5, x), (i5, y)}. The use-define information of Figure 2.6 is
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(i2, x)→ ∅,
(i3, x)→ {(i1, x)},
(i5, x)→ {(i1, x)},

(i5, y)→ {(i2, y), (i4, y)}.

Figure 2.6: A control flow graph.

2.2.6 Program dependence graphs

A program dependence graph [18] is a program representation which explicitly shows data
and control dependency relations between two nodes in a control flow graph. The control
dependencies show if a branch decision in a node affects whether another instruction gets
executed or not. Data dependencies tell which computations must be done in order to
have all required arguments of an instruction. Program dependence graphs are constructs
which allow easy and efficient querying on these properties.

In order to formalize the notion of control dependency, we shall define it using the theory
of flow graph dominators, described in Section 2.2.4.

Definition 13 (Control dependency). Let G be a control flow graph. Let X and Y
be nodes in G. Y is control dependent on X if and only if:

• there exists a directed path P from X to Y with any Z ∈ P (Z 6= X,Z 6= Y )
post-dominated by Y (Y pdom Z),

• X is not post-dominated by Y . �

A program dependence graph is the result of the union of a control dependence graph and
a flow dependence graph. Control dependence graphs contain the edge X → Y iff Y is
control dependent on X. Flow dependence graphs are merely the graph representations of
the use-define information shown in Section 2.2.5, therefore they contain the edge P → Q
iff Q is flow dependent on P .

Definition 14 (Program dependence graph). A program dependence graph is a 3-
tuple (V,C, F ), where

• V = {v1, v2, . . . vn} is a set of instructions,
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• C ⊆ V × V is a set of control dependency edges and

• F ⊆ V × V is a set of flow dependency edges.

The edge (vi, vj) ∈ C if vj is control dependent on vi. The edge (vm, vu) ∈ F if vu is flow
dependent on vm. �

For practical and implementation reasons, the definition of control dependency is extended
in this work with another special case: if a node X is not control dependent on any nodes
according to Definition 13, it shall be control dependent on the entry node. This allows
us to always treat connected graphs in the algorithms presented later on.
Example 6. The program dependence graph of the program shown in Figure 2.4a can be
seen in Figure 2.7. Solid lines represent control dependency, dashed lines represent flow
dependency.

Figure 2.7: Program dependency graph of the program and CFG
shown in Figure 2.4.

2.2.7 Call graphs

A call graph [28] is a program representation whose vertices represent program functions
and its edges show whether a function calls another. This structure describes the in-
terprocedural communication of a program and the basic relationships of its procedures.
Naturally, this structure is not complete – it is rather complicated (if not practically impos-
sible) to include the function calls in an externally defined function. However, describing
the calling graph of a module and its internal functions provides a convenient structure
for basic interprocedural analysis.
Definition 15 (Call graph). A call graph of a program G is a pair (P,E) where P =
{p1, p2, . . . , pn} is the set of G’s procedures, and E ⊆ P ×P is a set of directed edges. An
edge (pu, pv) ∈ E denotes that procedure pu calls procedure pv within G. �

Example 7. The call graph of the program shown in Figure 2.8a can be seen in Fig-
ure 2.8b. Notice the fac function in the call graph: recursive functions reference them-
selves. If none of the included functions are recursive then the resulting call graph is
directed acyclic graph.
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1 int add(int x, int y) { return x + y; }
2 int sub(int x, int y) { return add(x, -y); }
3 int mul(int x, int y) { return x * y }
4 int fac(int x) {
5 if (x == 0)
6 return 1;
7
8 return mul(x, fac(x - 1));
9 }

10
11 int main(void) {
12 int sum = add(10, 20);
13 int diff = sub(35, sum);
14 int f = fac(diff);
15
16 return 0;
17 }

(a) A C program using multiple functions.
(b) The call graph of the program
shown in (a).

Figure 2.8: A program and its call graph

2.3 Summary

This section summarizes the purpose of the program representations and dependency
relations presented in the previous sections. Table 2.1 offers an overview of the presented
structures.
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Table 2.1: Summary of program representations.

Name Short description Function Section

C source code Widely used imperative
programming language

The primary input format
for the implemented pro-
gram

2.2.1

Abstract syntax
tree (AST)

Tree representation of the
syntactic structure of a
source code

Used for generating the
control flow graph repre-
sentation

2.2.2

Control flow
graph (CFG)

A language-agnostic pro-
gram representation

The basis of most trans-
formations and syntactic
analyses

2.2.3

(Post-) dominator
tree (DT)

Structure for querying the
dominator relation of a
flow graph

Branch and loop recogni-
tion, control dependency
description

2.2.4

Use-define chain
(UD-chain)

A structure which contains
all reaching definitions of a
variable use

Data dependency descrip-
tion

2.2.5

Program de-
pendency graph
(PDG)

A structure which explic-
itly shows all control and
data dependencies of a pro-
gram

Overall dependency analy-
sis of a program

2.2.6

Control flow au-
tomaton (CFA)

Language-agnostic control
flow representation with
formal automaton-like se-
mantics

Used as an output of
the transformation work-
flow and as the input of the
verifier

2.1.2
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Chapter 3

A Verification Compiler

The aim of the project presented in this work is to provide algorithms for transforming C
source code to a formal model for verification. As real-life computer programs are rather
complex and formal verification has a large computational complexity, it is desirable to
simplify the resulting formal model. Such simplification can be done by applying some
commonly used compiler optimization techniques on the input program. Such optimiza-
tions aim to reduce the program’s size and complexity.

An overview of the presented workflow can be seen in Figure 3.1. The compiler receives
a C source code as an input and at the end of the workflow, it outputs a control flow
automaton, suitable for verification. The first step, shown in Section 3.1.1 is to parse
the given C source code and produce an abstract syntax tree from it. Then the abstract
syntax tree is transformed into a control flow graph, used for transformations and opti-
mizations (Section 3.1.2). Finally, the control flow graph is transformed into a control
flow automaton, as described in Section 3.1.7.

C code
2.2.1

AST
2.2.2

CFG
2.2.3

CFA
2.1.2

DT
2.2.4

PDT
2.2.4

UD-chains
2.2.5

Call graph
2.2.7

PDG
2.2.6

3.2

3.1.1 3.1.2 3.1.7

3.1.4 3.1.4 3.1.3 3.1.6

3.1.5 3.1.5

Figure 3.1: Transformation workflow.

Many transformation and optimization algorithms require some information about the
program’s dependency relations. While extracting these relations from the control flow
graph is rather difficult, several helper structures (presented in Section 2.2) exist to allow
easier querying on a program’s properties. Most of these structures are built from the
control flow graph, sometimes with the help of other dependency structures. Section 3.1.4
describes the building of dominator and post-dominator trees. Use-define information
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calculation is presented in Section 3.1.3. The program dependency graph from a pro-
gram can be built by merging the control dependency and data dependency information
available from post-dominator trees and use-define chains, this procedure is discussed in
Section 3.1.5. Call graph construction is described in Section 3.1.6.

The optimizations presented in Section 3.2 aim to reduce the control flow graph’s size and
complexity. They all operate with control flow graphs being their input and output as
well. A summary of presented transformations and their required helper structures (apart
from the control flow graph) are shown in Table 3.1.

Table 3.1: A summary of the transformations presented in this work.

Optimization name Helper structures Section

Constant propagation Use-define chains 3.2.1
Dead branch elimination 3.2.2
Loop unrolling Dominator tree 3.2.4
Function inlining Call graph 3.2.5
Program slicing Program dependence graph 3.2.3

3.1 Building program representations

This section presents techniques and algorithms used to build the program representations
introduced in Section 2.2.

3.1.1 C code parsing

Source code parsing is the process of analyzing an input program’s syntactic structure.
Usually supported by a lexing phase, which transforms character sequences into tokens.
A token is a character string with an assigned meaning. As an example, all the characters
in an integer constant are grouped together in a single token, with the assigned meaning
being the fact that they represent an integer literal. With this information, the parser
can recognize certain patterns and structures following a set of rules. This set of rules is
the program’s syntax. As a program’s syntax is described hierarchically, the recognized
patterns can be arranged into a parse tree. The parse tree then can be simplified to an
abstract syntax tree, introduced in Section 2.2.2.

Currently only a small subset of the C language is supported. The current implementation
only allows the usage of control structures (such as if-then-else, do-while, switch,
while-do, break, continue, goto) and non-recursive functions. Types are only restricted
to integers and booleans. Arrays and pointers are not supported at the moment.

3.1.2 Building control flow graphs

Control flow graphs are built from the abstract syntax tree. For each control structure
in the abstract syntax tree the CFG building algorithm will build a suitable flow graph
representation and then append them together according to the control structure nesting
in the input program. The transformation can be done by following a set of rules, each
describing how a particular control structure can be transformed into its appropriate CFG
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representation. An overview of the transformation rules of common control structures is
shown in Figure 3.2.

L0
if (ϕ) {

L1
}
LQ

L0
if (ϕ) {

L1
} else {

L2
}
LQ

L0
while (ϕ) {

L1
}
LQ

L0
do {

L1
} while (ϕ);
LQ

L0
switch (X) {

case χ1: L1 break;
case χ2: L2
case χ3: L3 break;
case χ4:
case χ5: L4 break;
case χ6: L5 break;
default: L6 break;

}
LQ

Figure 3.2: CFG construction rules.

For the sake of allowing a somewhat uniform and safe input CFGs for the transformation
algorithms, the notion of normalized control flow graph is introduced. During implemen-
tation this prevents several erroneous input cases. A control flow graph is normalized
if

1. its basic blocks are maximal (it does not contain sequences split through multiple
blocks),
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2. it has no branching statements with all edges pointing to the same node and

3. it does not contain unreachable blocks (in the graph theoretical sense).

3.1.3 Calculating use-define information

This section presents the algorithms used for computing use-define chains from control
flow graphs.

Computing reaching definitions

The reaching definitions information can be calculated by solving the data flow equation

out[S] = gen[S] ∪ (in[S] \ kill[S])

where gen[S] is the set of definitions generated within the instruction S, kill[S] is the set
of definitions killed in S. The set in[S] contains all definitions which are not killed before
reaching S. The result set, out[S] is a set of all definitions which are alive at the exit point
of S [1].

For easier and faster computation, the reaching definitions problem is described here with
basic blocks. Using basic blocks for this task saves memory and computation time, for the
price of somewhat slower querying for local definitions.

In order to calculate out[S] for a basic block S, we need to compute several sets.

1. As gen[S] is the set of all definitions generated within S, it is straightforward to fill
this set up with the right values.

2. The set kill[S] contains all definitions killed within the block S. If a definition
d = (P, V ) is within the block S, all definitions of V which are not in S are killed
within S.

3. The set in[S] is the set of ”alive” definitions reaching the entry point of S. Due to this
definition, in[S] is the union of the definitions arriving from all of S’s predecessors.

Example 8. Consider the control flow graph shown in Figure 3.3 with its already com-
puted gen and kill sets. For the initial block (B1), the set of its incoming definitions
in[B1] = ∅. As the set difference of in[B1] and kill[B1] is empty as well, the set of
definitions leaving B1 is out[B1] = gen[B1] = {d1, d2, d3}.

The next block B2 redefines x and y, thus its kill set contains all definitions of x and y which
are not in B2. Its in[B2] set contains all the definitions coming from B1, also the definition
of a in B3, meaning that the reaching definitions of B2 are in[B2] = {d1, d2, d3, d6}. The
definitions leaving from B2 are out[B2] = {d3, d4, d5, d6}.

Following this logic, we can determine the in[B] and out[B] sets for each block B. Doing
so yields the sets in[B3] = {d3, d4, d5, d6}, out[B3] = {d4, d5, d6}, in[B4] = {d3, d4, d5, d6},
and out[B4] = {d3, d4, d6, d7}.

Algorithm 3 describes the computation of reaching definitions [1]. The algorithm computes
the in and out sets for each basic block B, then propagates this information through the
basic blocks. The algorithm halts if there are no more definitions to propagate, thus failing
to change any out sets. As this algorithm propagates changes forward, better performance
may be reached by arranging the blocks into depth-first order.
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gen[B1] = {d1, d2, d3}
kill[B1] = {d4, d5, d6, d7}

gen[B2] = {d4, d5}
kill[B2] = {d1, d2, d7}

gen[B3] = {d6}
kill[B3] = {d3}

gen[B4] = {d7}
kill[B4] = {d4, d5}

Figure 3.3: A control flow graph and its gen and kill sets.

Algorithm 3: Reaching definitions.
Input: A control flow graph G with kill[B] and gen[B] already calculated for each

basic block B.
Output: The sets in[B] and out[B] for each basic block B.

1 for each block B do out[B] := gen[B];
2 while changes in any out[B] set occur do
3 for each block B do
4 in[B] :=

⋃
P∈pred(B)

out[P ]

5 out[B] := gen[B] ∪ (in[B] \ kill[B])
6 end
7 end

Local reaching definitions

While the reaching definition algorithms presented operate on basic blocks, it is often
required to find reaching definitions for a particular instruction. Let B be a basic block,
containing the instruction P . To find in[P ], we need to find in[B] then walk along the
(sequential) instructions within B, applying the appropriate data flow equation for each
instruction.

Building use-define chains from reaching definitions information

After having in[S] and out[S] computed for each statement S, we can transform this
information into use-define chains. For each use uS in the input program, we find the DS

set of its reaching definitions. Naturally, d ∈ DS if and only if d ∈ in[S].

3.1.4 Calculating dominator relation

The dominator relation is calculated by using a data flow equation somewhat similar to
the one presented in Section 3.1.3. The data flow equation is based on the observation
that if p1, p2, . . . , pk are the predecessors of a block n, then node d 6= n dominates n if and
only if d dom pi for every 1 ≤ i ≤ k [1]. This means that finding the set of n’s dominators
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D(n) requires finding the dominator set D(pi) of every pi ∈ pred(n). This can be described
by the equation

D(n) = {n} ∪
⋂

p∈pred(n)
D(p)

which means the every node’s dominator set contains the node itself and the intersection
of its predecessors’ dominators. Solving this equation for all nodes yields the complete
dominator relation.

The algorithm begins by setting an initial approximation for each node. For every node n,
except the entry node n0, the initial approximation is the whole node set. For the entry
node n0, the initial value is D(n0) = {n0}, as due to the dominator relation’s definition
the entry node is only dominated by itself. This will serve as a basis for further refinement.
In each step, we refine the dominator relation by excluding nodes from D(n) which do not
dominate the node n’s predecessors.

Algorithm 4: Dominator computing algorithm.
Input: A flow graph G with the vertex set N , and an entry node n0 ∈ N
Output: The dominator relation D(n) for each n ∈ N

1 D(n0) := {n0}
2 for each node n ∈ N \ {n0} do D(n) := N ;
3 while changes in any D(n) set occur do
4 for each node n ∈ N \ {n0} do
5 D(n) := {n} ∪

⋂
p∈pred(n)

D(p)

6 end
7 end

Because in the algorithm the dominator information is propagated forward, it is beneficial
performance-wise to arrange the nodes into depth-first order, just like in the case of the
computation of reaching definitions.

In order to build the dominator tree from the dominator relation, we need to find for
each node n its immediate dominator. Due to the definition of immediate dominators
(Definition 5), this requires traversing the set D(n) for each n, and finding the node d
which is dominated by every node v ∈ D(n) \ {d, n}. When such a node is found, it is set
to be the parent of n in the dominator tree.

While there are other, faster and more widely used algorithms available [25], the complexity
of their implementation compared to the efficiency gained was deemed unfavorable.

Another issue arises when we wish to compute the post-dominator relation of a flow graph.
Luckily, this can be easily nullified by finding the dominator relation of the reverse of the
input graph (i.e. the graph with the same vertex set but with each edge pointing in the
reverse direction).

Let G be a flow graph with the entry node n0 and exit node nq. Let G′ be is G’s reverse.
If a node n is post-dominated by a node d in G, then all n→ nq paths must contain d. As
the exit node of G′ is n0 and all paths are reversed, all n0 → n paths will contain d, thus
d will dominate n in G′. Using this observation, we can easily find the post-dominator
relation of a graph, by merely using its reverse as the input for the algorithms presented
above.
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3.1.5 Building program dependence graphs

As discussed in Section 2.2.6, program dependence graphs are merely a union of a control
dependence graph and a flow dependence graph. In order to build the PDG, we only need
to build these two structures and merge them together.

A difficulty of this approach is the problem of the different vertex sets: the dominator
relation and control dependence graphs can be built using basic blocks, but the flow
dependency relation is only sensible in the context of instructions. In order to save com-
putational time, the control dependency relation is calculated using basic blocks. After
that calculation, the basic blocks of the input CFG are split into individual nodes for data
flow analysis.

Ferrante and others [18] offer a simple and fast algorithm for control dependency calcu-
lation. Let S consist of all edges (A,B) in the control flow graph such that B is not an
ancestor of A in the post-dominator tree (B may not post-dominate A). Let L denote the
least common ancestor of A and B in the post-dominator tree. L may only be A, or A’s
parent in the post-dominator tree (see [18] for proof). This gives us two cases.

1. If L is the parent of A, then all nodes in the post-dominator tree on the path between
L to B, including B, but not L, should be marked control dependent on A.

2. If L = A, then all nodes in the post-dominator tree on the path from A to B,
including A and B, should be marked control dependent on A.

This means that given a (A,B) edge in the CFG, we can achieve the desired effect by
traversing backwards in the post-dominator tree from B to A’s parent, marking all nodes
visited before A’s parent as control dependent on A.

After finding the control dependency relation, the PDG building algorithm splits the
basic blocks and reapplies the relation on the individual instructions. If a block Y (with
the instruction set of {y1, y2, . . . , yn}) is control dependent on block X (containing the
instructions {x1, x2, . . . , xt}), then all instructions yi ∈ Y will be control dependent on
xt. If a block was not control dependent on any blocks, the algorithm marks all of its
instructions control dependent on the entry node.

Example 9. Consider the control flow graph shown in Figure 3.4a. Its control dependency
graph is shown in Figure 3.4b. The control dependency graph of the same program following
the block splitting is shown in Figure 3.5.

Following the construction of the control dependence graph, extending it with the required
flow dependency edges is a simple matter. This requires querying the use-define informa-
tion for each instruction and finding its reaching definitions. If an instruction X has a
reaching definition for instruction Y , then we add a X → Y edge to the graph. Doing this
for all instructions will yield the finished program dependency graph.

3.1.6 Call graph construction

Call graphs are built by the analysis of multiple control flow graphs and function decla-
rations. The process takes a set of control flow graphs (representing function definitions)
and function declarations as an input. This set will serve as the vertex set of the result call
graph. The call graph construction algorithm examines every instruction of every function

23



(a) A control flow graph. (b) The control dependency graph of a.

Figure 3.4: A control dependency graph example.

Figure 3.5: The control dependency graph in Figure 3.4, after
block splitting.

definition, searching for function calls. If a call was found in a function A to a function
B, an A→ B edge is inserted into the call graph.

Naturally, this process cannot find function calls in a function which has no definition,
furthermore it may not recognize calls to functions referenced by function pointers. This
means that the resulting call graph might not represent every interprocedural call of the
program.

3.1.7 Transforming a CFG to a CFA

At the end of the workflow, the (optimized) control flow graph is transformed into a
control flow automaton. The transformation algorithm is rather straightforward: in the
case of single-block encoding, each instruction is transformed into a location, with the
instruction’s effect (e.g. x := 5) being placed on the location’s outgoing edges. Branching
statements are transformed to locations with multiple outgoing edges, each marked with
an assume statement, containing the satisfying branch condition formula.

Transformation to large-block encoding can be done by creating a location for every basic
block of the program, and marking its outgoing edges with the appropriate statement lists.
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3.2 Optimization algorithms

This section presents a list of optimization techniques commonly used by compilers and
code analysis tools. Each optimization attempts to reduce the program size in order to
simplify the formal model being used as the verifier input.

3.2.1 Constant propagation and folding

Constant propagation and folding are techniques present in almost every compiler. Con-
stant folding provides a way to simplify every expression of the input program, while
constant propagation allows the substitution of constants in place of variables with a
known value.

Constant folding

Complex expressions with constant operands may be simplified during compile time by
recognizing and evaluating them. Consider the following expression:

(120− 15 · 8) · x

A constant folding algorithm traverses the tree describing this expression, computes and
merges nodes with known values and replaces the entire expression with an equivalent but
simpler one, in this case the literal 0. Figure 3.6 shows this process on the above example.

Figure 3.6: Constant folding example.

There are several rules which may be used to simplify the expression even further. For
example, it is known that anything multiplied by zero results in zero. Some of the applied
mathematical axioms are (where E denotes an expression with an unknown value):

E + 0 = 0 + E = E
E · 0 = 0 · E = 0
E · 1 = 1 · E = E

E ∨ true = true ∨ E = true
E ∧ false = false ∧ E = false

E/1 = E
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Constant folding provides a way to simplify each expression in the program. Further
analysis and constant propagation techniques can be applied to allow even greater simpli-
fication.

Local constant propagation

The aim of this transformation is to substitute constants in place of variables whose values
are known during compile time. This requires determining if a variable has a constant
value (i.e. yields the same value for every execution of the program), and replacing each
occurrence of this variable with its constant value. Supported by constant folding, this
optimization may significantly reduce the size of an expression. Furthermore, applying
constant propagation for branching statements, it may even detect branches which could
never be executed.

Example 10. The code snippet shown in Figure 3.7a presents a primitive C function
which could be improved by constant propagation. The result of the transformation (in
conjunction with constant folding) can be seen in Figure 3.7b.

1 int calculate(int p) {
2 int x = 13;
3 int y = 9;
4 int z = 3;
5
6 return x * y - 39 * z + x * p;
7 }

(a) A simple C program snippet, with some
constant variables.

1 int calculate(int p) {
2 int x = 13;
3 int y = 9;
4 int z = 3;
5
6 return 13 * p;
7 }

(b) The program in (a), after constant prop-
agation and folding.

Figure 3.7: A constant propagation example.

Local constant propagation runs inside basic blocks only. Basic blocks provide safe win-
dows for this optimization, because between a block’s entry and exit points, only sequential
instructions may change a variable’s value. This makes it impossible for a variable to have
an ambiguous value from multiple different sources. Local constant propagation thus only
propagates between a particular block’s entry and exit points.

To achieve this, the algorithm keeps track of each variable defined within the block in
a table. If an assignment’s right-hand side is a constant, we put its variable (the left-
hand side) into the table along with the constant. If the right side is an expression of
unknown value, we delete the defined variable from the table. With this structure, we can
introduce new rules into the constant folding algorithm, telling it to replace occurrences
of the variables contained in the table with their assigned constant value. Algorithm 5
offers a description of this procedure.

Global constant propagation

Global constant propagation allows folding rules to be propagated between basic blocks.
This is not a trivial task: several assignments may be able to reach a single basic block
and we must make sure to only propagate constant definitions which do not override other
reaching definitions of the block being optimized.

This is achievable by utilizing the use-definition information described in Section 3.1.3. A
global constant propagator enhances local propagation by querying the UD-chain for solely
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Algorithm 5: Local Constant Propagation.
Input: A basic block B
Output: A revised basic block B′

1 for i < B instruction count do
2 I := B[i]
3 if I is an assignment then
4 L := The variable defined by I
5 R := The right-hand side of I
6
7 if R is constant then M [L] := R
8 else M [L] := ∅
9 end

10 B′[i] := constant_fold(I, M)
11 end

reaching constant assignments at the beginning of each block. For all such assignments
we insert a new rule into the table containing the constant definition information.

3.2.2 Dead branch elimination

Dead branch elimination is the process of recognizing and deleting unreachable parts of
code. Normally used in conjunction with constant propagation, dead branch elimination
removes instruction and execution paths which were discovered as inviable. Such path
maybe the true path of a branch comparison which is always failing.

In most compilers, dead code elimination consists of two slightly different procedures: dead
instruction elimination and dead branch elimination. Dead instruction elimination is the
process of finding dead variables which are written but never read again, then removing
every instruction writing them. On the other hand, dead branch elimination removes
whole control structures which were deemed unreachable. Dead instruction elimination
is not required in this project as program slicing (presented in Section 3.2.3) will remove
dead instructions from the code as a side-effect.

Dead branch elimination is done by iterating through all branching comparisons in
the input program and finding those which have a literal as condition (for exam-
ple: Branch(False)). Then the algorithm deletes all branching paths that cannot be
taken according to the branch criteria constant.

3.2.3 Program slicing

Program slicing is a technique first described by Mark Weiser [31]. He suggested that while
debugging a complex program, a programmer only pays attention to a smaller subset of
the entire source code. This subset contains only the instructions and variables relevant
to the problem being debugged. Attempting to formalize this practice, Weiser gave the
following definition for program slices:

Definition 16 (Program slice). A program slice P ′ of a program P with respect to the
criteria of (S, V ) is an executable subset of P , producing the same output and assigning the
same values to the variables V = {V1, . . . , Vn} as the original program P in its statement S.�
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1 int i = 0;
2 int sum = 0;
3
4 while (i < 11) {
5 sum = sum + i;
6 i = i + 1;
7 }
8
9 printf("i=%d\n", i);

10 printf("sum=%d\n", sum);
11

(a) A simple C program snippet.

1 int i = 0;
2
3 while (i < 11) {
4 i = i + 1;
5 }
6
7 printf("i=%d\n", i);
8

(b) Slice of (a) with the criteria of (9, {i}).

Figure 3.8: A slicing example.

Example 11. The example shown in Figure 3.8a presents a simple C code snippet which
calculates the sum of the natural numbers less than 10, and then outputs it, followed by
the output of the loop counter variable. A slice of this program with respect to the criteria
of (9, i) is shown in Figure 3.8b. As it can be observed, the only statements preserved are
those relevant to the criteria output.

During program size reduction, we shall use program slices to split the input program
into smaller chunks, each being a slice for a single assertion in the input program. This
will result in smaller verifiable problems instead of a single large one. Considering that
the model checkers usually operate in exponential time, this may enable a reduction in
verification running time.

Calculating slices using program dependence graphs

The problem of computing program slices can be represented by a reachability problem
in the program dependence graph, as it was described by Ottenstein and Ottenstein [26].
The main idea is to find the criteria node in the PDG and walk backwards along the edges,
finding all reachable nodes from this node. Nodes visited during this procedure should be
included in the slice, all others can be disposed.

Figure 3.9: Slicing on the assert node using a program dependence
graph. Solid lines represent control dependence, dashed lines show
data dependence, filled nodes are those backwards reachable from
the assert node in the PDG.

As the program dependence graph explicitly shows dependency relation of every node,
this method will include all required nodes in the slice, while discarding all unambiguously
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irrelevant nodes. An example of this process can be seen in Figure 3.9. In this example,
the slicer works with the criteria of the assert statement and its variable i. As this assertion
makes no use of the value of the variable sum, all of its assignments are sliced away and
are no longer present in the slice. Naturally, all assignments to i are needed and kept. The
branch condition is also kept because the incremental assignment’s execution depends on
it.

Extracting slices from the control flow graph

The algorithm presented in the previous section allows us to mark instructions (nodes) in
a control flow graph unneeded for a particular slice. However, due to the blocked structure
of the control flow graphs used, additional measures are needed to extract the slice from
the original CFG.

There are two cases for how the removal of a particular instruction i can effect the original
control flow graph. If i is marked unneeded in its block B, but there are other instructions
which are not marked like so, then i can be simply removed from B. If all of B’s instruction
were deemed irrelevant for the slice, then the whole block B need to be deleted.

Deleting a block requires rewiring all of their incoming edges into the targets of their
outgoing edges. This is not always trivial: if a block marked for deletion is actually a
branching one, while its parent is a simple jumping instruction, then this rewiring requires
more effort than merely replacing the head of a particular edge.

To solve this problem, we shall search for entire unneeded regions, made up from the
subgraph of multiple unneeded blocks. These regions are required to have exactly one exit
point, and at least one entry point. After finding such a region, an algorithm rewires the
entry points into the exit point and removes all blocks from this region. It repeats this
procedure until it is capable of finding any regions.

These regions are found by placing all unneeded blocks into a queue and polling the queue
each block a time. Then the algorithm traverses lastly polled block’s children and parents.
If a parent was not marked unneeded, then we shall call it an entry point. If a child was
not marked unneeded, then we shall mark it as the exit point. There can be only one exit
point for a connected subgraph of unneeded blocks: if such a subgraph S had connections
to several needed blocks, then their execution would have depended on at least one block
in S, meaning that needed blocks were control dependent on unneeded blocks, which is
impossible.

3.2.4 Loop optimization

This section presents the method of loop recognition in a flow graph, and describes a loop
optimization, known as loop unrolling.

Recognition of loops

For convenience, this work only discusses the recognition and optimization of natural loops.
Natural loops are loop constructs which contain a header that dominates all nodes in the
loop. Furthermore it contains at least one edge back to the header, called the back edge.
In order to satisfy this definition, a loop must have only one entry point (its header),
because otherwise the header would not dominate all nodes in the loop.
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Most program loops in practice fall into the above category. It can be easily seen, that
if a program only uses if-then-else, while, do-while, continue, and break statements,
all loops in the program will be natural loops, because these control structures do not
make jumping into the middle of a loop possible. Even most of the programs using goto
statements conform to this restriction. Flow graphs which do not contain jumps into the
middle of loops are called reducible flow graphs [20].

As natural loops can only contain one header and must contain at least one back edge,
recognizing them requires finding edges whose heads dominate their tails. An edge n→ h,
is a back edge if h domn. In that case n is the header of the loop. Determining whether a
node is a loop header is done by examining whether it dominates one of its predecessors.
Finding all nodes in a loop (with the header h) can be done by searching for all nodes v
which are dominated by h, but also can reach h (i.e. there is a directed path from v to h).

Loop unrolling

Loop unrolling is a technique for partially eliminating loops from a control flow graphs.
As loops introduce a great complexity into the program, their (partial) elimination may
reduce the model checker’s running time, even at the cost of increased input size. For a
loop with the entry condition ϕ, loop unrolling is done by inserting a branching node with
the branch condition ϕ before the loop header. If the branch condition is not satisfied,
the control flow jumps to the loop’s exit. If the branch condition was satisfied, then the
control flow goes to a copy of the loop’s body. This copy then jumps to the initial loop
header. This operation can be repeated arbitrary times, resulting in a ”more unrolled”
loop, with the cost of a significantly greater graph.

Example 12. Consider the control flow graph shown in Figure 3.10a. Figure 3.10b shows
this graph after loop unrolling with the depth of 1.

(a) A control flow graph. (b) The graph in a, after loop unrolling.

Figure 3.10: Loop unrolling example.

3.2.5 Function inlining

Function inlining is the procedure of replacing a function call with the callee’s body. In
the compiled code, this eliminates the overhead of the function call with the cost of an
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increased target size. In this work, function inlining is used to eliminate all inlineable
function calls from the input program, as function calls can act as ”black boxes”. A model
checker algorithm may extract more critical information from the entire inlined function
body from merely just a function call.

Inlining is done by recognizing inlinable functions in the program. A function is inlineable if
its definition is available and that definition does not contain a recursive call. After finding
such functions, the algorithm orders them in the ascending order of their degree in the call
graph. This ordering optimizes the results by allowing functions containing no inlineable
function calls to be the first to be inlined. After building this queue, the algorithm polls
a procedure P contained within and traverses backwards from its appropriate node in the
call graph, finding all procedures which call P .

After finding all such procedures, we search for the exact location of the calls and perform
the actual inlining there. This requires splitting the block in which the function call is
placed and replacing the call node with the entire callee body. The function parameters
are replaced with the actual arguments of the function call, and the callee’s return value
(if it exists) is copied to the call site.

Example 13. Consider the control flow graphs shown in Figure 3.11. The example con-
tains two functions: main and calc. In Figure 3.11a we can see their control flow graphs.
Figure 3.11b shows main after the block splitting. Finally, the resulting graph is shown in
Figure 3.11c.

(a) Control flow graphs of
functions main (top) and calc
(bottom).

(b) The control flow graphs
shown in Figure 3.11, after
block splitting.

(c) The resulting control flow
graph of main, after the func-
tion inlining.

Figure 3.11: The function inlining procedure.
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Chapter 4

Implementation

This chapter describes relevant implementation details of the developed project. Sec-
tion 4.1 gives an overview of the overall architecture, Section 4.2 describes the technologies
used for C source code parsing. Section 4.3 describes the architecture and implementation
of the data structures and algorithms presented in Section 3.1 and Section 3.2. Finally,
Section 4.4 describes the implemented verifier.

4.1 Architecture

An overview of the program architecture can be seen in Figure 4.1. The system has
three main components: the parser, the optimizer and the verifier. The parser handles C
source code parsing and the intermediate representation generation. The optimizer module
is responsible for running optimizing transformations, performing program slicing and
constructing the control flow automaton used as the verifier input. The verifier component
(implemented as a bounded model checker with k-induction) performs the verification on
its input model.

Parser Optimizer Verifier

Dependency
analysis

Optimization
algorithms

Figure 4.1: Architecture of the implemented program.

The optimizer may run a configurable number of optimization passes. Optimizations
may require a certain dependency information, therefore they can query the dependency
structures of the program at any time.

All components are implemented in Java1, with additional dependencies to certain Eclipse2

libraries. The program also makes use of the theta formal verification framework, devel-
oped at the Fault Tolerant Systems Research Group of Budapest University of Technology
and Economics. It defines several formal tools (mathematical languages, formal models)
and algorithms. It also provides a set of utilities for convenience, such as expression

1https://www.java.com/en/ (version 8)
2http://www.eclipse.org/
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representations and interfaces to SAT/SMT solvers, which are used in the project’s imple-
mentation. The work discussed here extends this framework with an interface and toolset
for C code verification.

4.2 C code parsing

C code parsing is done by using an external library, the parser component of the Eclipse
CDT plug-in. CDT (short for ”C Developer Tools”) offers several tools to ease C/C++
development, such as syntax highlighting, content assist and some simple static analysis
tools. To support these features, the plug-in contains a parser library which can be easily
referenced from any Java project.

The plug-in handles the lexing and parsing phases and returns an abstract syntax tree.
However, during implementation several problems arose during processing. The most seri-
ous one was the way the CDT ASTs handled traversals. The framework places restrictions
on the traversal paths in the trees, namely traversals can only be preorder or postorder,
however sometimes it is needed to traverse through a custom way.

To solve this, CDT’s AST was transformed into a custom AST representation. This repre-
sentation is relatively simpler (contains less classes and nodes, filters out some redundancy)
and allows more flexible usage. This new custom representation also allows for greater
modularity, as it would be easy to change the parser service in the future. All later AST
transformations make use of this custom representation.

4.3 Optimizer implementation

This section describes the implementation details of the optimizer module. The optimizer
is built on three main components: the intermediate representation, a set of dependency
analysis tools and a configurable number of optimizer algorithms.

4.3.1 Intermediate language implementation

The class diagram in Figure 4.2 offers an overview of the intermediate representation archi-
tecture. The class GlobalContext represents a compilation unit, with all its functions and
global variables. A procedure/function is described by a Function class, which contains
a list of its basic blocks. A BasicBlock instance contains multiple instructions (IrNode
instances). There are two types of instructions: terminating and non-terminating. Ter-
minating instructions (TerminatorIrNode), such as branches, unconditional jumps and
return statements end the instruction list of a basic block and provide information about
the possible control flow paths leading to the next block. Non-terminator instructions
(NonTerminatorIrNode) are simple statements which do not affect control flow.

Several instructions make use of the theta framework’s expression (Expr) interfaces. Sev-
eral expression classes implement this interface, such as classes for representing basic
arithmetic operators, variable references and comparisons. Variable and global variable
declarations (VarDecl) are also represented with theta’s appropriate classes.
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Figure 4.2: Class diagram of the intermediate representation.

4.3.2 Dependency graphs

Dependency analysis is performed by constructing several helper structures for dependency
queries, as it was discussed in Section 3.1. Such structures have practically no common
functionality or signature, therefore there is no shared parent interface for them. While
having no public constructors, each dependency class offers a static method for building its
required dependency relation and returning a new instance of the required class. Table 4.1
summarizes the implemented dependency classes.

Table 4.1: Dependency classes and the structures they implement.

Class name Data structure Description

ProgramDependency Program dependence graph Requires a UD-chain and a post-
dominator tree

DominatorTree (Post-) dominator relation Both relations implemented in the
same class

LoopInfo Loop headers and bodies Loop recognition and description

UseDefineChain Use-define information Use-define chains, reaching defini-
tions

CallGraph Call graph Interprocedural information, func-
tion description

4.3.3 Transformations

Figure 4.3 shows the class diagram of the optimization module. The core element of the
transformation workflow is the Optimizer class. This class handles and runs optimization
passes and it is responsible for converting the optimized control flow graph (a Function
instance) into a control flow automaton (an instance of the CFA interface – also provided
by the theta framework).
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Figure 4.3: Class diagram of the Optimizer module.

Optimizations are configurable, an arbitrary number of them can be registered into the
optimizer. Optimizations can be:

• function optimizations (FunctionTransformer) operating on a single function and

• context optimizations (ContextTransformer) operating on the whole context and
all of its functions.

Currently implemented function optimizations are the constant propagator (operating
both locally and globally), dead branch eliminator and the loop unroller. The function
inlining transformation is a context optimization, as it needs to operate on all functions.

The optimizer also handles program slicing. As currently only function slicing is supported,
the optimizer uses a FunctionSlicer instance to perform this operation on a function.
After finishing with the optimization and transformation passes, the optimizer generates
a list of control flow automata from each extracted slice. These smaller slices then later
will be used as the verifier’s input.

4.4 Verifier

Currently the verifier is implemented as a simple bounded model checker extended with a
k-induction algorithm, as described in Section 2.1.3. The model checker is implemented as
a BoundedModelChecker class, which handles error path search and SMT transformation.
The resulting SMT formula is checked with the Z3 SMT Solver [17], whose solution will
either serve as a counterexample if the formula was satisfiable. If the formula was proved
to be unsatisfiable, the algorithm will keep searching for an error path until it reaches its
maximum bound or is able to prove the program’s safety.

The verifier operates on a collection of control flow automata, with each CFA being a slice
extracted from the input program. If a CFA was deemed faulty, then the whole program
is reported as erroneous.
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Chapter 5

Evaluation

This chapter evaluates the effect of the transformations presented in Chapter 3 on the size
of the model and the performance of verification. As it was discussed in Section 4.4, the
verifier is implemented as a bounded model checking algorithm with k-induction. However,
the verification algorithm can be replaced with a more efficient verification technique at any
time. Section 5.1 describes the benchmarking environment and the chosen optimizations,
Section 5.2 presents the actual benchmarking results. Finally, Section 5.3 summarizes the
results and makes conclusions on the efficiency of the presented transformations.

5.1 Benchmark environment

This evaluation focuses on two types of measurements: the size of the control flow au-
tomata used as the verifier input and the results of a benchmarking session on the verifier
run time. The size of an automaton is currently measured by two factors: the number of
its locations and edges. The performance benchmarking was done by measuring the run
time of the verifier on every input CFA.

Due to the slicing operation, a single input model may get split into several smaller slices.
In this evaluation, each of these slices is benchmarked. However, it must be noted that
during real-life model checking, it is sufficient to find one failing assertion among all slices
for reporting that the input program is faulty. The bounded model checking algorithm can
report either FAILURE if the input model was faulty or PASSED if it could prove the model’s
correctness. If a proof of correctness could not be found within the given maximum bound,
the verifier reports UNKNOWN. If the verifier exceeded the given time limit without reaching
the maximum bound, the benchmark framework returns TIMEOUT.

The verifiable input programs can be separated in three categories. The first category is a
collection of simple, easily verifiable models, while the other two are verification tasks are
from the annual Competition on Software Verification (SV-COMP) [5]. The verification
task categories are listed below.

trivial Used initially for implementation testing, this test suite contains some trivially
verifiable tasks, such as no-operations, primitive locking mechanisms, summarization
and greatest common divisor algorithms.

locks An SV-COMP task set aiming at control flow structures verification. Each task
describes a locking mechanism with integer variables and simple if-then-else struc-
tures.

36



ECA Another SV-COMP task set, ECA (Event-Condition-Action) systems describe event
driven reactive systems. The events are represented by nondeterministic integer
variables, the conditions are simple if-then-else statements. While syntactically
simple, verifying these programs requires verifying some of the largest models in the
competition repertoire.

All measurements were performed with the following configuration:

• Intel(R) Core(TM) i7-3632QM CPU @ 2.20GHz,

• 16 GB RAM,

• Arch Linux with Linux Kernel 4.7.6-1-ARCH 2016 x86_64 GNU/Linux,

• Java 8.

5.2 Benchmark results

This section presents the benchmark results for each benchmark category. Unless noted
otherwise, the measurement results of each category are shown in a table with four
columns. The first column is test’s name, the second contains its measurement results
without any optimizations. The third and four columns show the measurement results
with using slicing and the full optimization set, respectively. Columns containing the
measurement results are also split into several subcolumns. The legend of the subcolumn
labels is shown in Table 5.1.

Table 5.1: Subcolumn labels and their associated meanings.

Label Description

# CFA model index (for sliced programs)
L CFA location count
E CFA edge count
S Verification result, F stands for FAILURE, T for TIMEOUT,

U for UNKNOWN, and P for PASSED
R Verification run time (in milliseconds)

The full optimization set contains slicing, dead branch elimination and constant propaga-
tion. Loop unrolling is omitted due to the fact that it produces significantly larger models
with more redundant information. These models posed a challenge to the bounded model
checker algorithm. However it must be noted, that back edge reduction side effect of this
transformation may be helpful for other model checking algorithms.

The trivial task set

The trivial task set consist of several simple programs, some of them containing only a
single assertion. The measurement results of this set are shown in Table 5.2. As the input
programs are already small, the slicing operation only results in a modest reduction in
program size. Furthermore, because of the input models’ size, the running times of the
verifier are not comparable: their differences are well within the margin of error.
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Table 5.2: Benchmarks results for the trivial program set.

Name No optimization Slicing only Full Optimization
L E S R # L E S R # L E S R

gcd0 11 11 F 4 0 11 11 F 4 0 11 11 F 4

ca-ex-const 11 13 F 58 0 4 3 P 1 0 3 2 P 1
1 9 9 F 61 1 8 8 F 60
2 7 7 F 21 2 6 6 F 26

ca-nop 3 2 F 1 0 3 2 F 1 0 3 2 F 1

gcd0-const 9 9 F 18 0 9 9 F 20 0 9 9 F 20

ca-lock 8 8 F 5 0 8 8 F 4 0 8 8 F 6

The locks task set

A verification task in the locks section contains multiple assertions. This allows the
creation of many smaller slices, which all can be verified individually. While all slices are
measured and benchmarked in this operation, in real life scenarios it is sufficient to prove
that at least one slice is erroneous.1

Table 5.3 shows a benchmark summary of three verification tasks. Each task was split
into several slices, with most slices having only a portion of the original program’s size.
In each case, the smallest slice’s node and edge count is 90% smaller than the original
program’s. On average, the slicer algorithm reduces node and edge count both by 75%.
Other optimization algorithms only reduce both numbers only slightly. The only error-free
program in Table 5.3 is locks10. As it can be seen, the original program was too large
for the k-induction algorithm to prove the model’s faultiness. However, after being split
into smaller slices, the verification algorithm finished almost instantly.

For most slices, running time lengths are so short that their meaningful comparison is
impossible. On the other hand, the model size reductions in locations and edges are
promising results.

The ECA task set

The ECA task set is special in the sense that a program is split into several different veri-
fication tasks. Multiple files define the same program, but with a different error condition
each time. As a single verification task contains only one assertion, the slicer algorithm
yields a single slice for each input program. Because only the error conditions differ for
each task, these slices are extremely similar.

Despite the fact that ECA only uses primitive language constructs, the resulting model
is huge and complex, even after optimization transformations. The models contain if-else
constructs inside a loops. This yields an exponential number of possible error paths. The
bounded model checking algorithm is rather ineffective for such problems and thus, it
cannot handle these models in a reasonable amount of time, resulting in a timeout in all
cases.

1This also allows efficient parallelization: each slice can be verified on a separate thread.
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Table 5.3: Benchmarks results for the locks program set.

Name No optimization Slicing only Full Optimization
L E S R # L E S R # L E S R

locks10 98 138 T - 0 32 45 P 2 0 31 43 P 2
1 30 42 P 2 1 29 40 P 2
2 28 39 P 1 2 27 37 P 1
3 26 36 P 1 3 25 34 P 1
4 24 33 P 1 4 23 31 P 1
5 22 30 P 1 5 21 28 P 1
6 20 27 P 1 6 19 25 P 1
7 18 24 P 1 7 17 22 P 1
8 14 18 P 1 8 13 16 P 1
9 14 18 P 1 9 13 16 P 1

locks15 145 207 F 27 0 59 79 F 24 0 58 77 F 25
1 108 165 F 10 1 107 163 F 14
2 42 60 P 1 2 41 58 P 1
3 40 57 P 1 3 39 55 P 1
4 38 54 P 1 4 37 52 P 1
5 36 51 P 1 5 35 49 P 1
6 34 48 P 1 6 33 46 P 1
7 32 45 P 1 7 31 43 P 1
8 30 42 P 1 8 29 40 P 1
9 28 39 P 1 9 27 37 P 1
10 26 36 P 1 10 25 34 P 1
11 24 33 P 1 11 23 31 P 1
12 22 30 P 1 12 21 28 P 1
13 20 27 P 1 13 19 25 P 1
14 18 24 P 1 14 17 22 P 1
15 14 18 P 1 15 13 16 P 1
16 14 18 P 1 16 13 16 P 1

locks14 136 194 F 30 0 56 75 F 20 0 55 73 F 22
1 105 161 F 10 1 104 159 F 8
2 40 57 P 1 2 39 55 P 1
3 38 54 P 1 3 37 52 P 1
4 36 51 P 1 4 35 49 P 1
5 34 48 P 1 5 33 46 P 1
6 32 45 P 1 6 31 43 P 1
7 30 42 P 1 7 29 40 P 1
8 28 39 P 1 8 27 37 P 1
9 26 36 P 1 9 25 34 P 1
10 24 33 P 1 10 23 31 P 1
11 22 30 P 1 11 21 28 P 1
12 20 27 P 1 12 19 25 P 1
13 18 24 P 1 13 17 22 P 1
14 14 18 P 1 14 13 16 P 1
15 14 18 P 1 15 13 16 P 1
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Table 5.4: Benchmarks results for the ECA program set.

Name No optimization Slicing only Full Optimization
L E S R # L E S R # L E S R

eca0-label00 391 459 T - 0 309 377 T - 0 307 374 T -

eca0-label20 391 459 T - 0 309 377 T - 0 307 374 T -

eca0-label21 391 459 T - 0 309 377 T - 0 307 374 T -

eca0-label44 391 459 T - 0 309 377 T - 0 307 374 T -

The programs of this category contain two functions: an entry function (main) and a
computation function which contains all program logic except event polling. In order
to handle the system as a whole, function inlining is enabled for the ”no optimization”
category as well.

The measurement results are shown in Table 5.4. As it can be seen, the slicing algorithm
extracted slices with the same size for every error condition. The size reduction of the
slicer is considerable, node size is reduced by 21%, edge count is reduced by 17%. Further
optimizations reduce these numbers only slightly.

5.3 Summary

The program slicing operation is able to notably reduce program size, resulting in up to
90% reduction (both in node and edge count) in some extreme cases. As proving only
one slice’s faultiness is enough for failing models, this may enable a considerable speed
up if the erroneous slice is found early. However, for error-free models, checking multiple
slices instead of one large program can introduce an overhead. This could be mitigated
by checking the smaller slices in parallel operations.

The other optimization algorithms (constant propagation, dead branch elimination) reduce
the input program’s size only modestly. This is probably due to the fact that the SV-Comp
entry programs are already simplified and the slicing algorithm is able to cast away dead
instructions and branches (as they are not relevant for the slicing criteria). The effect of
these optimizations on more real-life programs and without slicing support is a target of
further evaluation.

The measurement results clearly show the limitations of the implemented bounded model
checking algorithm. The verifier timed out on almost all realistically sized programs,
allowing only small programs to be verified. Due to the small running time, most running
time measurement differences are within the margin of error. As the verification method
is completely replaceable and this bounded model checking was merely implemented for
the workchain’s completeness, this is not a large issue. However, further investigation
is required for runtime evaluation. Future evaluations may replace the bounded model
checker with a CEGAR-based [12] or a symbolic [10] algorithm.
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Chapter 6

Conclusion

This work presented a transformation workflow for generating optimized formal model rep-
resentations of C programs. I examined several program analysis methods and structures
used in compiler design: data flow computation for use-define chain construction, domi-
nator relation and dominator trees, program dependence graphs, call graphs (Section 2.2
and Section 3.1). Furthermore I adapted and implemented four optimization algorithms
(constant propagation, dead branch elimination, function inlining, loop unrolling) along
with a program slicing algorithm, all used for program model simplification (Section 3.2).
For benchmarking purposes I implemented a verifier component with a bounded model
checking algorithm and a k-induction algorithm (Section 2.1.3 and Section 4.4). The de-
veloped project was built as modular components, therefore any module can be replaced
or extended for further improvement.

The evaluation of the above methods (Chapter 5) showed that program slicing is promising
technique for program size reduction especially for verification. While the other optimiza-
tion methods proved to be much less efficient, their program size reduction may still be
valuable. As the runtime evaluation proved to be difficult because of the implemented
verifier’s performance, further evaluation is in order with other, more effective verification
algorithms.

Future work. The project has several opportunities for future improvements and feature
additions.

• Extending the support for more features of the C language. Such features could be
arrays, pointers, structs, etc.

• As only a subset of all possible optimization algorithms were implemented, the list
can be extended with other transformations, such as interprocedural program slicing.

• LLVM [24] is a compiler infrastructure framework, which provides a language-
agnostic intermediate representation (LLVM IR) with multiple optimization algo-
rithms and has a frontend for several programming languages, such as C, C++,
Fortran, Swift, or Rust. Adding support for the LLVM IR would extend the range
of supported languages and would also implicitly add multiple fine-tuned optimiza-
tions into the workflow.

• The workflow can be extended with traceability information, which can be used to
show the counterexample in the original program code.
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