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Kivonat

Ahogy a beágyazott rendszerek egyre inkább életünk szerves részévé válnak, biztonsá-
gos és hibamentes működésük egyre kritikusabb a felhasználók és a gyártók számára
egyaránt. A modellellenőrzés egy hatékony technika, mely nem csak a hibák jelenlétét,
hanem hiányát is képes bizonyítani, ezáltal egy kiváló eszköz biztonságkritikus rendsze-
rek verifikációjához. Az elmúlt évtizedek hatalmas áttöréseket hoztak a modellellenőrzés
terülén, de ennek ellenére még mindig nem része az általános szoftverfejlesztési mun-
kafolyamatnak. Ennek oka legtöbbször az elérhető modellellenőrző eszközök nehézkes
használata.

Munkánkban bemutatunk egy felhasználóbarát és hatékony szoftver-
modellellenőrző folyamatot, mely C programokat alakít át modellellenőrző-eszközök
bemeneti nyelvére. A folyamat során a bemeneti programot különböző instrumentációs
módszerekkel bővítjük, melynek segítségével a modellellenőrzés eredményét auto-
matikusan vissza tudjuk vetíteni az eredeti forráskódra. Hogy elkerüljük a bemeneti
nyelv teljes elemkészletének és lehetséges változatainak a feldolgozását, az LLVM
fordítóprogram-infrastruktúra keretrendszert és annak a köztes nyelvét használjuk a
leképezéshez. Az LLVM segítségével kiegészítjük a transzformációs folyamatot külön-
böző beépített és saját optimalizációs algoritmusokkal. A memóriakezelést megvalósító
utasítások leképezéséhez egy könnyen kiegészíthető memóriamodell keretrendszert
definiálunk, melynek segítségével különböző előnyökkel és hátrányokkal rendelkező
memóriamodellek implementálhatók.

A transzformációs folyamat végén kapott modelleket az általunk implementált korlá-
tos modellellenőrző algoritmusunkkal vagy a theta keretrendszer segítségével ellenőriz-
hetjük. Az implementált keretrendszerünk mindkét esetben felhasználóbarát és könnyen
érthető visszavetítést biztosít az eredeti forráskódra, mellyel képesek vagyunk egy vég-
rehajtható tesztkörnyezetet is generálni. A munkafolyamat működőképességét és haté-
konyságát mérésekkel demonstráljuk.
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Abstract

As embedded systems are becomingmore andmore common in our lives, the importance
of their safe and fault-free operation is becoming even more critical. Model checking
can prove both the presence and absence of certain errors in software systems, making
it suitable for verifying safety-critical systems. The field of model checking has made
a tremendous progress in the last decades, providing a great set of fast and effective
algorithms. However, despite all this, model checking is still not widely adopted in a
standard development workflow due to its poor accessibility.

In this work, we propose a user-friendly and efficient model checking workflow, that
is able to translate C programs into the language of multiple model checking engines. The
workflow uses a check instrumentation workflow to represent certain software properties
as reachability problems and automatically map verification results back to the level of
the original source code. In order to avoid translating from a possibly diverse set of input
language dialects, we make use of the LLVM compiler infrastructure framework and its
intermediate program representation. Furthermore, we shall use LLVM to extend the
transformation workflow with a set of built-in and custom optimization transformations.
To handle the ambiguity of memory-related language constructs, we propose a generic
memory model interface that may be used to implement memory models of different
strengths and trade-offs.

At the end of the workflow, the resulting models may be verified by our own imp-
lementation of the bounded model checking algorithm, or by using the CEGAR-based
theta model checking framework. We provide a traceability component, which is able
to represent verification verdicts in a user-friendly format and also able to generate an
executable mock environment that demonstrates found errors in an executable program.
In addition, we provide benchmarks to demonstrate the usability of this workflow.
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Chapter 1

Introduction

As our reliance upon safety-critical embedded software systems grows, so does our need
for the ability to prove their fault-free behavior. Software model checking techniques
can offer reliable proofs of the presence or absence of certain bugs in a computer system.
These algorithms operate on mathematically precise formal models which describe the
semantic behavior of the system under verification and are able to answer queries on its
properties.

Despite the vast amount of research, efficient algorithms [11, 12, 36] and promising
results [8], model checking techniques are still not widely present in a standard developer
workflow. Developers expect efficient, user-friendly, and accessible tools, with easy-to-
understand verification verdicts and as few false positives as possible [41, 16]. This signals
the definite need for model checking tools that are able to reason efficiently about already
implemented source code, yielding verification results in a human-readable format.

In this work, we present gazer, a formal verification frontend, designed to leverage the
power ofmodel checking techniques in a user-friendly and traceablemanner. We propose
a source-to-model transformation workflow to translate imperative computer programs
into formal models, which are then verified by model checking algorithms. We use
traceability instrumentation both on the input program and the formal model to map the
resulting verification verdict back to the original source code. This allows us to present a
human-readable error message to developers or to automatically generate an executable
test harness [31, 10] that can be used to understand and locate faults using widespread
developer tools, such as debuggers.

Our source-to-model transformation uses the intermediate representation of the LLVM
compiler infrastructure framework [44] to instrument, optimize, and translate the input
program into our own program representation format, which will be translated to the
language of a supported model checking engine. This offers us several benefits: by us-
ing an intermediate representation, we merely need to translate a small, well-defined
instruction set instead of directly parsing diverse and often ambiguous input languages.
This intermediate language is then instrumented with a set of so-called checks using our
extensible check instrumentation framework with built-in traceability support. Further-
more, LLVM comes with an extensible optimization pipeline, which we can use to speed
up verification by using LLVM’s rich built-in optimization library and by implementing
some additional transformations present in literature, such as program slicing [61] and
assertion lifting [42].

As LLVM retains the ambiguity of memory operations due to (possible) pointer aliasing,
the translation of memory-accessing instructions pose a challenge. Severalmemory models
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have been proposed [15, 48, 35, 60] to disambiguate and formally represent program
memory, each of them having their own advantages and shortcomings. Within gazer,
we define an extensible memory model interface and a toolchain that may be used to
conveniently implement an arbitrarymemorymodel. To demonstrate its applicability, we
implement our own proof-of-concept flat memory model.

To ease the transformation step, we introduce an intermediate formal model, that is
suitable to represent all instructions of the LLVM IR with formal semantics. This model
is then translated further into the language of one of our supported verification backends
(i.e. model checking engines), which in turn verify the formal model. One of these is our
own implementation of the bounded model checking algorithm [12] combined with a state-
of-the art inlining technique [43] and a small optimization of our own design. Another
is the highly configurable CEGAR [18] framework, theta [57, 36], developed at the ftsrg
Research Group of Budapest University of Technology and Economics.

Related work. Popular software model checking tools such as CBMC [21] and
CPAChecker [11] have traditionally shipped with their own parsers and compilation
processes. The Boogie verification language [45] provides a formalism which aims to be
a program representation that could be a convenient input for a variety of model check-
ing engines, such Corral [43] and VCC [22]. With the increasing popularity of LLVM,
more and more model checking tools have chosen to adopt an LLVM frontend, such as
LLBMC [48], Smack [51] (which translates the LLVM intermediate representation to the
language of Boogie and invokes Corral on it), and SeaHorn [34].

This thesis work is structured as follows. Chapter 2 offers some background informa-
tion on program representations, dependency analyses, and model checking techniques.
Chapter 3 describes the LLVM frontend of gazer, whereas Chapter 4 presents its sup-
ported verification backends and possible error trace formats. Chapter 5 gives a short
description about the architecture of gazer with some implementation details and a user
guide. Chapter 6 evaluates our workflow and measures the effects of certain transforma-
tion options. Finally, Chapter 7 concludes our work and lists possible directions for future
development.
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Chapter 2

Background

This chapter gives a brief introduction to the theoretical background of the algorithms
and data structures presented later in this work. Section 2.1 gives an overview of some
common program representations suitable for further analyses, whereas Section 2.2 lays
the theoretical groundwork upon which over our verification solutions will be built.

2.1 Program Representations

Control flow graphs (CFG) [4] are language-agnostic intermediate representations of im-
perative computer programs. As such, they are a very important part of a compiler, and
they are the main representation used for optimization and later code generation.

Definition 1 (Control flow graph). A control flow graph is a triple ((, �, B0), where

• ( = {B0 , B1 , . . . , B=} is a set of program instructions,

• � ⊆ ( × ( is a set of directed edges, each representing a possible execution path in
the program,

• B0 ∈ ( is the entry point, from which all execution paths must begin. �

As there is a one-to-one correspondence between program instructions and CFG nodes,
we shall use these terms interchangeably. For convenience, sometimes we shall refer to
an “invisible” exit node B@ , at which all execution paths terminate.

In order to reduce the graph’s size and to create a safe window for local optimizations,
it is usual to merge linear instructions into a single entity, called the basic block. A basic
block may only contain sequential instructions and has only one entry point (the first
instruction) and one exit point (the last instruction). However, it may have multiple
predecessors and successors, andmay even be its own successor. Therefore a control flow
graph can also be defined in the terms of basic blocks, where the CFG is a triple (ℬ , �, �0),
ℬ is the set of basic blocks, � is a set of directed edges between them, and �0 ∈ ℬ is
the entry block. Throughout this work, for a basic block � in a control flow graph, the
notation pred(�)marks the set of �’s predecessors, succ(�)marks the set of �’s successors.

Example 1. An example is shown in Figure 2.1. Figure 2.1a shows a simple C program, Fig-

ure 2.1b shows its corresponding control flow graph. Notice the edges on the labels: in many cases,

it is useful to augment the edges, and store information on the reason why a particular control path
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was chosen. In this case, the labels show how a path will be taken depending on the result of the

branching comparison.

1 int main(void) {
2 int sum = 0;
3 int prod = 0;
4 int x = 10;
5 int i = 0;
6
7 while (i < x) {
8 sum = sum + i;
9 prod = prod * i;
10
11 i = i + 1;
12 }
13
14 assert(sum == 45);
15 assert(prod == 0);
16
17 return 0;
18 }

(a) C program.

entry

sum := 0
prod := 0
x := 10

i := 0

Branch(i < x)

sum := sum + i
prod := prod + i

i := i + 1

True

Assert(sum == 45)
Assert(prod == 0)

Return(0)

False

exit

(b) Control flow graph.

Figure 2.1: An example control flow graph.

2.1.1 Control Flow Graph Dominators

It may not be a trivial task to identify the control structures present within a control
flow graph, as it requires the recognition of several patterns, which may span through
multiple blocks. Luckily, the theory of flow graph dominators offers structures for easier
recognition of loops andbranches [2]. Thedominator relation showsuswhich instructions
(nodes) will always be executed before reaching a certain point of the program. This
information will later be used to find useful dependency relations.

Definition 2 (Dominator). Let B and C be two nodes of a control flow graph. The node
B dominates C (denoted as B dom C) if all paths from the entry node to C contains B. If B ≠ C
then B strictly dominates C. If every other dominator of C dominates B, then B immediately

dominates C (B idom C). �

As it can be observed, according to this definition every node dominates (but not strictly
dominates) itself, and the entry node dominates all nodes of the graph. If we wish to
determine which instructions depend on the execution of a particular branch, we also
need to introduce the following definition.

Definition 3 (Post-dominator). Let B and C be two nodes of a flow graph containing a
single exit location. The node B post-dominates C (denoted as B pdom C) if all paths from C

to the exit node contains B. If B ≠ C then B strictly post-dominates C. If every other post-
dominator of C dominates B, then B immediately post-dominates C (B ipdom C). �

As every node can have at most only one immediate (post-) dominator, we can build a
tree structure in which a node’s parent will be its immediate (post-) dominator. This tree
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is called the dominator tree. The dominator tree allows easy and efficient queries on the
dominator information.

Example 2. Consider the flow graph shown in Figure 2.2a. Figure 2.2b shows its dominator tree,

Figure 2.2c shows its post-dominator tree. As it can be observed, if node & is a descendant of node

%, in the (post-) dominator tree, then % dom& (% pdom&) holds.

(a) A control flow graph. (b) Dominator tree. (c) Post-dominator tree.

Figure 2.2: An example control flow graph and its dominator and
post-dominator trees.

Dominance also allows us to see the range of influence of a particular instruction and
the point at which this influence ends. In order to do this, we need the definition of the
dominance frontier.

Definition 4 (Dominance frontier). Let B be anode in aflowgraph. The dominance frontier

of B (denoted as DF(B)) is the set of all nodes F such that B dominates a predecessor ? of
F, but B does not strictly dominate F. �

The dominance frontiers DF(B) of B tells us the points at which the dominance of B stops.
As an example, the dominance frontier of node � in Figure 2.2a is DF(�) = {�}.

2.1.2 Data Dependencies

Duringprogramanalysis, it is oftenuseful to knowwhether an instructionwrites variables
that are later read by another instruction. This information is captured by the notion of
data dependency [2].

Definition 5 (Definition, use). Let P be a program with � being its set of instructions.
Let E be a variable within P. Let B, C ∈ � be instructions in P.

1. The instruction B unambiguously defines the variable E if B explicitly assigns a value
to E. The instruction B ambiguously defines the variable E if B is an operation which
may or may not modify the value E.
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2. A definition is a pair 3 = (B, E) where B is an instruction and E is a variable ambigu-
ously or unambiguously defined by B. In that case B generates 3.

3. An use is a pair D = (C , E) such that C reads the value of E. �

In order to reason about the data dependencies of a particular instruction, we need to find
out which other instructionsmay have observable effects on it. In general, an instruction B
may affect another instruction C if it defines a variable E which C uses. As a variable may
be defined (i.e. assigned to) multiple times in a program, it is important to know which
is the definition we should take into account when analyzing the uses of E.

Definition 6 (Reaching definition). An instruction C kills the definition 3 = (B, E),
if C ≠ B ∈ � and C unambiguously defines E. Given a node G ≠ B, 3 is a reaching

definition for G, if there is a control flow path between B and G, where 3 is not killed along
that path, in which case 3 is said to be alive at G. If B has a reaching definition for G,
then G is said to be data dependent on B. �

Calculating the reachingdefinitions for a given instruction yields the variable assignments
which have direct impact on it. This information can be organized into a structure, which
contains every reaching definition of every use in our program. Such structure is called
a use-define chain [2].

Definition 7 (Use-define chain). Let P be a program. Let � = {31 , 32 , . . . , 3:} be the set
of P’s definitions, and * = {D1 , D2 , . . . , D=} the set of its uses. The use-define chain of P
is a set of pairs {(D1 , �1), (D2 , �2), . . . , (D= , �=)}, where �8 ⊆ � is the set of definitions
reaching D8 . �

Example 3. Consider the CFG describing a code snippet shown in Figure 2.3a and its correspond-

ing CFG in Figure 2.3b. The definition set of the snippet is � = {(81 , G), (82 , H), (84 , H), (85 , D)}.
The use set is* = {(82 , G), (83 , G), (85 , G), (85 , H)}. The use-define information of Figure 2.3b is

(82 , G) → {(81 , G)},
(83 , G) → {(81 , G)},
(85 , G) → {(81 , G)},

(85 , H) → {(82 , H), (84 , H)}.

Static Single Assignment

While use-define chains can be calculated using data-flow equations, most modern com-
pilers encode programs in a way that shows this information explicitly. The static single

assignment (SSA) form [53] does this by making sure that each program variable is as-
signed only once. If a variable (for example G) is assigned multiple times in the original
program, then it is broken up to several variables (G0, G1, . . . ), one for each assignment.

The main benefit of SSA-formed programs is that every use of a variable has exactly one
reaching definition, thus they explicitly show use-define information. This removes the
need to compute use-define chains separately (at the cost of a larger program representa-
tion and a less closer resemblance to the original program).

However, an issue arises at the merging point of divergent code paths. As each path may
contain a different definition of a given variable, we need to knowwhich definition to use
at the merging point. For this purpose, the concept of )-nodes was introduced.
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1 int main(void) {
2 int x = 0;
3 int y = 2 * x;
4 if (x == 0) {
5 y = 1;
6 }
7
8 int u = x + y;
9 }

(a) C code snippet.

(b) Control flow graph.

Figure 2.3: Use-define chains example.

Definition 8 (5-node). Given the uses of a variable G in a basic block � with the set of
possible reaching definitions {G1 , . . . , G=}, the )-node for G is a )G : pred(�) → {G1 , . . . , G=}
function. In otherwords, the)-node selects a single definition G8 depending on the control
flow paths the program took to reach �. �

Example 4. Figure 2.4a shows a simple C program with a diverging code path and a merging

point just before the return instruction. Figure 2.4b shows the SSA-formed CFG of this program.

Note that the definitions of the variable G have received different integer subscripts to make each

definition unique. The )-node of �4 selects the correct definition of the return value from the

available definitions.

1 int fn(int a, int cond)
2 {
3 int x = a;
4 if (cond) {
5 x = x * 2;
6 } else {
7 x = x - 2;
8 }
9
10 return x;
11 }

(a) A C program.

B1
x0 := a

branch(condition)

B2
x1 := x0 * 2

 True

B3
x2 := x0 - 1 

 False

B4
x3 := Φ({BB2. x2}, {BB3. x3})

return x3

(b) SSA-formed CFG.

Figure 2.4: SSA transformation of a simple C program.

Standard SSA construction algorithms use dominance frontiers to determine the place-
ment of )-nodes. SSA requires each definition 3 to dominate all of its uses. This property
is trivially satisfied for sequential paths. Definition 3 of some variable E dominates all
uses of E until it is killed by another definition 3′, at which point 3′ will dominate all uses
along said path. This property is satisfied until a merging point of divergent control flow
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is reached, therefore this is the place where we should put the )-nodes. As this is also the
point at which the dominance of definition 3 stops, it is found in the dominance frontier
of 3, DF(3).
After the )-nodes are placed, the algorithm performs a renaming pass, which renames
all uses of a variable E to the proper form. The standard SSA renaming algorithm [56],
presented in Algorithm 1, works by doing a preorder walk over the dominator tree.
When processing a block, the algorithm keeps track of the current dominating name of
each variable G using a stack (([G]) and a counter (�[G]) per variable. When a new name
is required for G, this new name is acquired by incrementing the counter �[G] and adding
its value as a subscript for G. This new name then gets pushed onto the stack of G, ([G].
In each block, we first insert new names for the values determined by the )-nodes. Then,
we process each instruction of a block – all uses of G are renamed so they refer to the
top element of ([G], whereas definitions push a new name to the top of ([G]. In the next
step, the algorithm fills in all the uses in the )-nodes of successor blocks, so they will use
the top of ([G] in the incoming value list. Then, in another pass, we recursively call the
rename procedure on each successor of � in the dominator tree. Lastly, we pop all newly
introduced names from the name stack of each variable.

Algorithm 1: Standard SSA renaming algorithm.
1 Function NewName(G)
2 8 := �[G]
3 push G8+1 onto ([G]
4 �[G] := 8 + 1
5 return “G8+1”
1 Procedure Rename(�)
2 foreach )-node in �, G← )(. . . ) do
3 rename G as NewName(x)
4 end
5 foreach assignment in �, G← H op I do
6 rewrite H as top(([H])
7 rewrite I as top(([I])
8 rewrite G as NewName(x)
9 end
10 foreach successor �′ in succ(�) do
11 fill in )-node parameters of �′ w.r.t. (
12 end
13 foreach successor �succ of � in the dominator tree do
14 Rename(�succ)
15 end
16 foreach definitions in �, G← )(. . . ) and G← H op I do
17 pop(([G])
18 end

2.1.3 Program Dependence Graphs

A program dependence graph [29] is a program representation which explicitly shows data
and control dependency relations between two nodes in a control flow graph. The control
dependencies show if a branch decision in a node affects whether another instruction gets
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executed or not, and data dependencies tell us which computations must be done in
order to have all required arguments of an instruction. Program dependence graphs
are constructs which allow easy and efficient querying on these properties. In order to
formalize the notion of control dependency, we shall define it using the theory of flow
graph dominators, described in Section 2.1.1.

Definition 9 (Control dependency). Let B and C be nodes in a flow graph. C is control

dependent on B if and only if:

• there exists adirectedpath% from B to Cwith anyD ∈ % (D ≠ B, D ≠ C)post-dominated
by C (C pdom D),

• B is not post-dominated by C. �

A program dependence graph is the result of the union of a control dependence graph and
a flow dependence graph. Control dependence graphs contain the edge B → C if C is control
dependent on B, whereas flow dependence graphs are merely the graph representations
of the use-define information described in Section 2.1.2, therefore they contain the edge
G → H if H is flow dependent on G.

Definition 10 (Program dependence graph). A program dependence graph is a 3-tuple
(+, �, �), where

• + = {E1 , E2 , . . . E=} is a set of instructions,

• � ⊆ + ×+ is a set of control dependency edges and

• � ⊆ + ×+ is a set of flow dependency edges.

The edge (E8 , E 9) ∈ � if E 9 is control dependent on E8 . The edge (E< , ED) ∈ � if ED is flow
dependent on E< . �

Example 5. The program dependence graph of the program shown in Figure 2.1a can be seen in

Figure 2.5. Solid lines represent control dependency, dashed lines represent flow dependency.

2.1.4 LLVM

LLVM [44] is a compiler infrastructure framework, which provides a language-agnostic
intermediate program representation (the LLVM IR), multiple optimization algorithms,
and has a frontend for several programming languages, such as C, C++, Fortran, Swift, or
Rust. In addition, LLVM offers support for a wide variety of backend architectures (such
as x86, ARM, SPARC).

The LLVM IR is a powerful intermediate representation in the form of a typed, SSA-based,
high-level instruction set in a three-address code [2] scheme. The representation is dual:
while it is defined as an assembly-like language, it may also be viewed and manipulated
as a control flow graph.

The highest-level entity of an LLVM IR program is the module, which corresponds to a
compilation unit in the input program. A module may contain a set of global variables,
functions, and auxiliary information such as metadata.
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Figure 2.5: Program dependency graph of the program and CFG
shown in Figure 2.1.

Functions are built from basic blocks, each block having a unique label, a set of sequential
instructions and terminator instruction at the end. The terminator is either used to manip-
ulate control flow (with instructions like br or switch), exit the function (ret) or mark
unreachable code paths (unreachable). Instruction values and arguments are stored in
so-called registers, which are required to be an SSA-form, thus they can be assigned to
only once. The )-nodes introduced by SSA are represented by the special phi instruction
which must be at the beginning of the block.

Types and Operations

The LLVM IR is a typed language, providing scalar types such as integers and floating-
point numbers. In addition, it provides composite types such as structures and arrays.
Instructions are polymorphic, meaning that an instruction may work with several input
types (e.g. an arithmetic instruction accepts different integer bit widths and SIMD vector
types).

Integers are represented as bit-vectors of different bit widths (as an example, i32 repre-
sents a 32-bit integer). LLVM has no knowledge about the sign of an integer value – it
merely stores bit patterns and different instructions may be used to interpret values as
signed or unsigned. As an example, sdiv divides two integers as signed values, while
udiv interprets them as unsigned before the performing the division. Simpler arithmetic
operations (add, sub, mul) do not have this distinction as two’s complement arithmetic is
the same for signed and unsigned values in their case.

The floating-point types supported by LLVM are the ones defined in the IEEE-754 [1]
standard: half, float, double, fp128, representing 16-bit, 32-bit, 64-bit, and 128-bit
floating-point types, respectively. Furthermore, there is support for the non-standard
types x86_fp80 and ppc_fp128, used by Intel x86 and PowerPC processor architectures.

The composite types most relevant to this work are arrays (for example, [10 x i32] is an
array of ten 32-bit integers) and structures (such as { i32, float }, which is a pair of an
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integer and a single precision float). LLVM also offers vector types for SIMD1 processing,
but vector types are out of the scope of this work.

In LLVM, pointers are syntactically similar to the pointer types of C. They are denoted
with an asterisk: i32* is a pointer to a 32-bit integer. Pointer arithmetic is calculated
using the getelementptr instruction, which is also used to calculate the offset of array or
struct members.

Casts between types are handled through explicit cast instructions. Integer casts, such
as sext or zext may be used to cast integer types to a larger bit width, either by sign-
extending or zero-extending the original number. The instruction trunc may be used to
truncate an integer value. Semantic transformations such as inttoptr, pointertoint,
fptoui, fptosi, uitofp, sitofp cast values to an entirely new type. In addition, the
bitcast instruction is used to reinterpret a given bit-vector as a value in another type.

Memory Accesses in LLVM

While registers are required to be in a strict SSA-form, this does not apply to the memory
state. A memory access can either be a write to an arbitrary memory location given by a
pointer (store) or a read from a location (load).2

Local variables which have their address taken cannot be represented by registers, thus
this done by using the alloca instruction. alloca allocates memory in the local scope
(the program stack in most implementations) for a particular type and returns a pointer
to the allocated memory. This pointer may then be used by all memory-manipulating
instructions as usual.

Example 6. Consider the C program in Figure 2.6a. Figure 2.6b shows the program encoded

in the LLVM IR, with some additional comments to help readability. Notice how the input

variable information is lost in the SSA-formed LLVM IR. Complex operations are broken down

into primitive instructions each of them doing one simple task, such as performing an addition,

doing a comparison, calculating and offset, etc.

One of the more notable instructions in the example is the phi node present at the beginning of

bb2. As it can be seen, bb2 has two predecessors: the entry block bb and the latch (that is, the block
which has edge for the next loop cycle of a loop). The )-node selects the initial value of i (zero)
if control comes from the entry block (i.e. this is the first loop iteration). Otherwise, it selects the

incremented value from the previous iteration.

The getelementptr (GEP for short) instruction in line 18 calculates the memory offset which we

will access.3 Finally, we write the value we got from the call (%tmp5) to the offset identified by the

pointer we obtained from the GEP instruction.

Figure 2.6c also shows the LLVM IR function in its control flow graph representation.

1Single instruction, multiple data: a parallel execution schemewhere a single process operates onmultiple
data at once.

2LLVM also offers the atomic read-modify-write (atomicrmw) and atomic compare-and-swap (cmpxchg)
instructions to manipulate memory in parallel programs, but these are out of the scope of this work.

3Note that theinboundsflagdoesnot indicate a checkof the buffer size: itmerelydescribes the instruction’s
behavior in the case of a pointer arithmetic overflow (i.e. what happens if we compute an address which is
outside of the address space).
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1 extern int read();
2
3 void fill(int* t, int siz)
4 {
5 for (int i = 0; i < siz; ++i) {
6 t[i] = read();
7 }
8 }

(a) A C program with memory access.
1 declare i32 @read()
2
3 define void @fill(i32* %arg, i32 %arg1) {
4 bb:
5 br label %bb2 ; unconditional jump to bb2
6
7 bb2:
8 %.0 = phi i32 [ 0, %bb ], [ %tmp9, %bb8 ] ; i
9 %tmp = icmp slt i32 %.0, %arg1 ; i < siz
10 br i1 %tmp, label %bb4, label %bb3 ; conditional jump based on %tmp
11
12 bb3:
13 br label %bb10
14
15 bb4:
16 %tmp5 = call i32 @read() ; tmp5 = read()
17 %tmp6 = sext i32 %.0 to i64
18 %tmp7 = getelementptr inbounds i32, i32* %arg, i64 %tmp6 ; &(t[i])
19 store i32 %tmp5, i32* %tmp7, align 4 ; t[i] = tmp5
20 br label %bb8
21
22 bb8:
23 %tmp9 = add nsw i32 %.0, 1 ; i += 1
24 br label %bb2
25
26 bb10:
27 ret void
28 }

(b) The LLVM IR assembly of the program.

CFG for 'fill' function

bb:
 br label %bb2

bb2: 
 %.0 = phi i32 [ 0, %bb ], [ %tmp9, %bb8 ]
 %tmp = icmp ult i32 %.0, %arg1
 br i1 %tmp, label %bb4, label %bb3

T F

bb4: 
 %tmp5 = call i32 @read()
 %tmp6 = sext i32 %.0 to i64
 %tmp7 = getelementptr inbounds i32, i32* %arg, i64 %tmp6
 store i32 %tmp5, i32* %tmp7, align 4
 br label %bb8

bb3: 
 br label %bb10

bb8: 
 %tmp9 = add nsw i32 %.0, 1
 br label %bb2

bb10: 
 ret void

(c) The control flow graph representation.

Figure 2.6: An LLVM IR example.
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Metadata and Debug Information

Within the LLVM IR, values (instructions, functions, modules, etc.) may have a set of
metadata attached to them. They may be used to convey additional information about a
particular value, which then may be used by the optimization passes or the code gener-
ator. The most prominent use of metadata (and the one we will concern ourselves with)
is the tracking of source-level debug information. Debug metadata includes informa-
tion about compilation units (!DICompileUnit), types (!DIBasicType, !DIDerivedType,
!DICompositeType, etc.), functions (!DISubprogram), variables (!DIGlobalVariable,
!DILocalVariable) and locations in the source program (!DILocation). Metadata nodes
may have child nodes and refer to others (e.g. a variable metadata node may refer to the
node about its type).

Run-time debug values are connected to the source-level variable metadata by so-called
debug intrinsic functions, or intrinsics for short. Intrinsic functions are a set of built-in
function declarations, that have some well-defined semantics within the compiler. These
functions may not have bodies, and must only be referred to by function calls. Within
LLVM, intrinsic functions are used to track debug information, insert assumptions for the
code optimizer, represent some common idioms4 and special instructions not supported
by the LLVM IR.5

Themost important intrinsic function fordebugging isllvm.dbg.value, which takes three
parameters: a register value (wrapped as a metadata node), a local variable metadata,
and a complex expression which tells the debugger how to derive the actual value from
the given register.

Example 7. Figure 2.7 shows some of the metadata nodes defined for the program shown in

Figure 2.6. Certain attributes have been removed in order to improve readability. As we can see,

the metadata contains information about each variable (!15, !16, !17), and their types (!12, !13).

Imagine line 8 in Figure 2.6b is followed by the debug intrinsic call:

call void @llvm.dbg.value(metadata i32 %.0, metadata !17,
metadata !DIExpression()), !dbg !20

This call indicates that variable i (indicated by !17) has been assigned a new value (%.0) at line
5. The source location is attached as a location metadata to this call (!20), from which the exact

line can be read out by following the scope information in !18).

2.2 Formal Verification

Model checking is a formal verification technique of mathematically proving correctness
or faultiness of computer programs by systematically exploring their state space [20].
Model checking has two main requirements: a formal model, that is, a well-defined model
of the system being checked, and a formal property, which must be proven about the
model (e.g. an unsafe state cannot be reached). Model checking builds heavily upon
mathematical logic, described in the following section.

4This includes intrinsics for the standard C library functions, such llvm.memcpy, llvm.memset, llvm.sin,
etc. In certain cases, the optimizer may even recognize a custom memory setting loop and transform it into
the corresponding intrinsic. Representing these basic library functions as intrinsics allows the optimizer to
make more informed decisions about certain operations.

5As an example, LLVMhas no built-in support for certain bit operations, such as byte swapping. However,
if the target architecture provides an efficient instruction for byte swaps, the llvm.bswap.* intrinsic may be
used to inform the code generator about this operation, so it can emit the proper CPU instructions.
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1 !0 = distinct !DICompileUnit(language: DW_LANG_C99, file: !1)
2 !1 = !DIFile(filename: "example.c", directory: "/tmp")
3 !9 = distinct !DISubprogram(name: "fill", scope: !1, file: !1, line: 3, type: !10, scopeLine: 4, unit

: !0, retainedNodes: !14)
4 !10 = !DISubroutineType(types: !11)
5 !11 = !{null, !12, !13}
6 !12 = !DIDerivedType(tag: DW_TAG_pointer_type, baseType: !13, size: 64)
7 !13 = !DIBasicType(name: "int", size: 32, encoding: DW_ATE_signed)
8 !14 = !{!15, !16, !17}
9 !15 = !DILocalVariable(name: "t", arg: 1, scope: !9, file: !1, line: 3, type: !12)
10 !16 = !DILocalVariable(name: "siz", arg: 2, scope: !9, file: !1, line: 3, type: !13)
11 !17 = !DILocalVariable(name: "i", scope: !18, file: !1, line: 5, type: !13)
12 !18 = distinct !DILexicalBlock(scope: !9, file: !1, line: 5, column: 2)
13 !20 = !DILocation(line: 0, scope: !18)

Figure 2.7: Some of the metadata defined for the program shown
in Figure 2.6.

2.2.1 Mathematical Logic in Model Checking

Propositional logic is a branch of mathematical logic. The basic elements of the logic
are propositional variables (e.g. % and &). A formula ! is constructed from propositional
variables and logical connectives such as > (true), ⊥ (false), ¬ (negation), ∧ (conjunction), ∨
(disjunction) and→ (implication). An interpretation assigns a truth value to every proposi-
tional variable.

The boolean satisfiability problem (SAT) is the problem of deciding whether a formula !
is satisfiable, i.e. whether there is an interpretation which yields that ! is true. Despite
the problem’s NP-completeness [23], modern SAT solvers in cases can handle models
with millions of formulas [40]. However, describing a computer program using merely
propositional variables and truth symbols is a rather complicated issue, resulting in
impractically large models.

First order logic (FOL) extends propositional logicwith variables, function symbols, predicate
symbols and quantifiers. A first order interpretation is based on a domain, which is a set that
may contain any abstract objects (such as numbers, animals or teapots). Function symbols
are interpreted as functions over the domain, and predicate symbols are interpreted as
relations over the domain. First order logic is undecidable in general [17, 58].

However, decidability can be achieved by semantically restricting first order logic to a class
of interpretations. The satisfiability modulo theories (SMT) problem [13] is the problem of
deciding whether a first order logic formula ! is satisfiable in a combination of certain
(usually quantifier free) theories. In our case, the theory (and interpretation) used is the
theory of integers, bit-vectors, arrays, and floating-point numbers. As an example, the
theory of integers interprets + as the well-known integer addition, ≤ as the usual total
order over integers, etc., whereas the theory of bit-vectors defines these (and additional)
operators in terms of bit-vectors. In addition to being decidable, these first order theories
enable reasoning over data structures commonly used in computer programs (e.g. arrays),
thus are convenient to describe program semantics.

2.2.2 The Model Checking Problem

There are several program representations suitable formodel checking. While it is achiev-
able to performmodel checking using thewell-known control flowgraph formalism,most
algorithms are better suited for automaton-like systems. Therefore we use an automaton-
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like formalism which is able to represent program control flow in automata semantics,
known as the control flow automaton. A control flow automaton (CFA) [9] is a 4-tuple
(!, �, ℓ0 , ℓ@)where

• ! = {ℓ0 , ℓ1 , . . . , ℓ=} is a set of locations, representing values of the program counter,

• � ⊆ ! × ! is a set of transitions (edges), representing control flow,

• ℓ0 is the distinguished entry location,

• ℓ@ is the designated exit location.

Performing a jump along the path described by a particular transition is called firing. The
transition (ℓ1 , ℓ2) is labeled with the operations which get executed when the control flow
jumps from ℓ1 to ℓ2. Furthermore, transitions may have Boolean predicates called guards,
which mean that a transition can fire only if the guard evaluates to true.

In this work, we shall use control flow automata as formal models to represent computer
programs and a special error location ℓ4 to represent possible errors – if ℓ4 is a reachable
location in a possible execution, then the program is considered faulty. Thus an instance
of the model checking problem is a pair (A , ℓ4) where A = (!, �, ℓ0 , ℓ@) is a control flow
automaton and ℓ4 ∈ ! is the designated error location. In our work, we use ℓ4 to represent
erroneous behavior (failing assertions, division by zero, etc.) in a C program. The model
cheking problem targets whether there exists an executable program path � from ℓ0 to ℓ4
in A. If such path exists, it is a counterexample to the property that can be reported to
the programmer, otherwise the property holds.

Checking merely for the graph-theoretical reachability of the error location (i.e. not con-
sidering the semantics of the operations on the edges) yields false-positive results. It
might be possible that a path ;0 =⇒ ;4 exists, however, it is not evident whether that
erroneous control flow path can be executed for any inputs. Therefore model check-
ing requires checking the semantic interpretation of the input CFA and only reporting a
counterexample if it is actually a viable error path.

There are various solutions available for software model checking. Abstraction-based
model checkers operate by ”hiding” certain details of the program. If the abstraction
fails to model the original system precisely (by hiding too much information), then the
abstraction is refined, until it faithfully represents the original input model [18]. Several
software verification tools use this approach, such as CPAChecker [11], Ultimate Autom-
atizer [38], BLAST [39], SLAB [14], UFO [3], and theta [57]. Partial order reduction [32]
is mostly used for verifying concurrent programs. If a program runs multiple threads
whose paths to a certain state overlap in some order, then many of these orderings can
be represented with only one of them. Abstract interpretation methods [24] prove the
unreachability of a certain state (in our case, the error state), by iteratively extending an
over-approximation of the set of reachable states. Bounded model checkers [12], such as
CBMC [19], LLBMC [48], and Corral [43] use an approach which searches for error paths
within a givenmaximal bound and iteratively extends this bound if no errors were found.

From the ones listed above, our work uses two types of model checking algorithms:
bounded model checking and an abstraction-based one. Each of these are presented in
greater detail in Chapter 4.
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Chapter 3

LLVM for Model Checking

This chapter describes our use of LLVM as a frontend and optimization infrastructure for
our software verification framework. In this section we propose a workflow that is able
to transform C programs to control flow automata, using the LLVM IR as an intermediate
step. In order to reduce the size of the resulting models, we enhance this process with
compiler optimizations and program slicing. The resulting models can then be verified
using an arbitrary verification algorithm.

clang
C code

C code
C code

LLVM IR CFA

LLVM transformations

Automata
translation

Memory model

Figure 3.1: Transformation workflow.

An overview of the transformation workflow is shown in Figure 3.1. First, we take a
set of C source code files as an input. These source files are then parsed into LLVM’s
control flow graph representation, the LLVM IR (Section 2.1.4) using the Clang1 compiler.
If multiple input files are supplied, we automatically link them together into a single
LLVM IR module, using the llvm-link utility. The resulting CFG is then simplified
by applying a set of LLVM IR transformations, including instrumentation (Section 3.1),
built-in LLVMoptimizations and custom transformations (Section 3.2). The instrumented
and simplified program is then analyzed w.r.t. a memory model (Section 3.3) and finally
translated into a control flow automaton (Section 3.4).

3.1 Instrumentation

Instrumentation is the process of injecting certain monitoring, measurement or traceability
information into a program, without changing its functional behavior. In the context
of gazer, we shall use certain instrumentation passes to convey important information
to later analyses (such as the presence of undefined behavior and unsafe states in the
program) and help traceability.

1http://clang.llvm.org/
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3.1.1 Protecting Undefined Values

Undefined values may occur in many places in a C program, most notably when reading
uninitialized memory locations or when performing an operation that yields undefined
behavior. LLVM encodes undefined values with a special undef constant, available for
each LLVM type. Undefined values allow the optimizer to choose any bit-pattern for an
undefined value, enabling optimizationswhichwould not be legal otherwise. Aswewish
to optimize then verify the program, this may pose some problems.

As the compiler is free to pick any value for an undef, an aggressive optimization may
choose to eliminatewhole branches andbasic blocks just bypicking an arbitrary (but fixed)
value for a nondeterministic branch. This also means that safety properties depending
on undefined values may be removed as well. Note that these are valid and expected
transformations, yet they may take away the soundness of our later analyses.

Observe the LLVM IR code shown in Figure 3.2a. An aggressive optimization may
choose to pick the value of the undef in line 3 to be always zero, thus concluding that
the subsequent branching instruction will always take the true path. This may result
the complete removal of the assertion failure call, after which the verification algorithm
would falsely return that the program is safe.

Our solution is to replace each undef operand in an instruction with the result of a non-
deterministic function call to function gazer.undef_value. This protects the undefined
value from being removed by further optimizations passes and will provide useful infor-
mationwhen extracting traces from a counterexample (thiswill be discussed in Section 4.3
in more detail). Figure 3.2b shows the program after this transformation step.

1 define i32 @main() {
2 bb:
3 %tmp = icmp ne i32 undef, 0
4 br i1 %tmp, label %bb1, label %bb2
5
6 bb1:
7 br label %bb3
8
9 bb2:
10 call void @__assert_fail()
11 unreachable
12
13 bb3:
14 ret i32 0
15 }

(a) A simple program with undefined be-
havior.

1 define i32 @main() {
2 bb:
3 %undefv = call i32 gazer.undef_value.i32()
4 %tmp = icmp ne i32 %undefv, 0
5 br i1 %tmp, label %bb1, label %bb2
6
7 bb1:
8 br label %bb3
9
10 bb2:
11 call void @__assert_fail()
12 unreachable
13
14 bb3:
15 ret i32 0
16 }

(b) The instrumented code where the unde-
fined behavior is protected from being re-
moved by further optimization.

Figure 3.2: Undefined value protecting transformation example.

3.1.2 Checks

In order to derive a safety property from the input program, gazer instruments the
LLVM IR code with so-called checks. Checks usually insert pre- or postconditions for a
given instruction (e.g. the second operand of a division must not be zero). This is done
by inserting a branch condition before or after the given instruction to check whether
the required property is satisfied or not. If the condition is true, we continue program
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execution as usual, otherwise control flow is set to reach an error call. The error call
is special intrinsic function that indicates a property violation and signals it using an
error code, unique to each inserted check. By assigning a program location (acquired
from the compiled debug information) to each error code, this allows us to trace possible
counterexamples back to a location in the original source code. During verification, error
calls will be automatically translated to represent property violations in the language of
the verification backend.

Currently gazer supports the following checks.

• Assertion failureswith support for the common implementations of the assertmacro
in C (such as __assert_fail) and the __VERIFIER_error function found in the SV-
Comp benchmark suite [8].

• Division by zero.

• Signed integer over- and underflow.

Under the hood, checks are just regular LLVM transformations with special additions for
traceability support. As such, they are very convenient to write for anyonewho is familiar
with the syntax of the LLVM IR, and the common methods used to manipulate it. As a
result, our check instrumentation system offers a powerful, traceable and easily extensible
way to represent pre- or postconditions as reachability properties for a verification engine.

3.1.3 Traceability Instrumentation

As part of the instrumentation process, we also insert some traceability information into
the input LLVM module. These functions are simple markers, which are used by a trace
builder component (described in Section 4.3 in more detail) to track events back to the
LLVMIR level. Thiswill be required laterwhenwewish tomap the verification result back
to the original source-code, as discussed in Section 4.3. We currently use the following
the intrinsic functions for traceability.

• gazer.function_entry.T...(metadata fn, T args...): Marks the entry point
of a function fn, with the call arguments listed in args. The intrinsic is overloaded,
meaning that we will have a new declaration for each possible argument type.
As an example, for functions taking two integers, the function declaration will be
gazer.function_entry.i32.i32(metadata fn, i32 arg1, i32 arg2).

• gazer.return_void(metadata fn): Indicates that function fn has exited without
a return value.

• gazer.return_value.T(metadata fn, T ret_val): A function return, with the
return value of ret_val. Overloaded intrinsic.

These functions allow us to keep track of functions, their arguments and return values,
even after running transformations such as function inlining.

3.2 LLVM IR Transformations

This section describes the reduction techniques we perform on the LLVM IR in order to
reduce the size of the resulting formal model.
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3.2.1 Lifting Error Calls

After check instrumentation, error calls in the program are spread over all throughout ev-
ery procedure. In the verification phase, both supported model checking engines require
an entry point and a single reachability property in order to perform verification. As such,
these error calls must be combined into a single universal error location. Furthermore, as
the entry procedure may not contain an error call, the verification engine may conclude
that the program is safe by definition without looking into any function calls, yielding a
false negative result. In order to avoid this, the program has to be structured in a way
such that the verification engine does not falsely believe that function calls cannot fail.

A possible solution to this problem would be the inclusion of a global failure bit which is
set if a deep assertion fails in a called procedure. In the main procedure, calls to possibly-
failing functions then would be followed by a check of the failure bit, thus forcing the
verification engine to look inside the function for possible failures. This technique is
known as error-bit instrumentation. It has the benefit of being simple and not too intrusive,
however, it may unnecessarily guide the verification algorithm into calls that cannot fail.

Another solution is assertion lifting [42], in which we lift assertions (or in our case, error
calls) deeply nested in the call graph into the main procedure. Using this method, error-
bit instrumentation and global variables are avoided by copying the body of each function
that may fail into the main procedure. Assertion lifting operates on the observation that a
function either fails, or succeeds and returns a value. Therefore the transformation creates
a copy of a possibly failing function ℱ and inlines it into the main procedure. All call
sites referencing ℱ are transformed into nondeterministic branches choosing between an
invocation of ℱ or a jump to its inlined copy. These copies are then modified to branch
into the error call of the main procedure. It is sufficient to insert one copy per function as
different call sites may jump to the same error copy.

To represent failures in a traceablemanner, we insert one universal error call into themain
procedure, which will be reachable only through the always failing copies or the possible
error calls in main. Later on, this one error call will serve as the verification goal.

The copiesmay be optimized: the resulting copy can be stripped of the instructionswhich
are irrelevant to the failure case. On the contrary, error calls are completely removed in the
always-succeeding functions. Removed instructions are marked dead and are eliminated
by a subsequent run of LLVM’s dead code elimination (DCE) pass, reducing the size of
the duplicated functions. Further reductionmay be achieved by running a static program
slicing [61] algorithm on the resulting main procedure with the slicing criterion being the
universal call yielding the error code, as presented in Section 3.2.2.

Example 8. Consider the already-instrumented program shown in Figure 3.3a. The program

calls the function calc to calculate the quotient of two numbers. If the divisor is zero, the

function terminates with an error call. Figure 3.3b shows the program after assertion lifting –

the error checks and calls have been moved to into the main procedure. The error check copy of

calc in main is present in the basic block calc.fail, where we jump using nondeterministic a

branch. As we always assume that the failing copy exhibits erroneous behavior, the error check

has been transformed into an assume statement (verifier.assume). As we only use one copy

per procedure, we use the phi instruction to differentiate between the possible arguments of the

original call.
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1 declare void @gazer.error_call(i8)
2 declare i32 @read()
3
4 define i32 @calc(i32 %arg1, i32 %arg2) {
5 bb:
6 %error.cond = icmp eq i32 %arg2, 0
7 br i1 %error.cond, label %bb1, label %bb2
8
9 bb1:
10 call void @gazer.error_call(1)
11 unreachable
12
13 bb2:
14 %div = sdiv %arg1, %arg2
15 ret i32 %div
16 }
17
18 define i32 @main() {
19 bb:
20 %1 = call i32 @read()
21 %2 = call i32 @read()
22 %3 = call i32 @read()
23 %4 = call i32 @calc(i32 %1, i32 %2)
24 %5 = call i32 @calc(i32 %1, i32 %3)
25 br label %bb1
26
27 bb1:
28 ret i32 0
29 }

(a) The original program.

1 declare void @gazer.error_call(i8)
2 declare i32 @read()
3 declare void @verifier.assume(i1)
4
5 define i32 @calc(i32 %arg1, i32 %arg2) {
6 bb:
7 %div = sdiv %arg1, %arg2
8 ret i32 %div
9 }
10
11 define i32 @main() {
12 entry:
13 %1 = call i32 @read()
14 %2 = call i32 @read()
15 %3 = call i32 @read()
16 br i1 undef, label %calc.fail, label %bb1
17
18 bb1:
19 %4 = call i32 @calc(i32 %1, i32 %2)
20 br i1 undef, label %calc.fail, label %bb2
21
22 bb2:
23 %5 = call i32 @calc(i32 %1, i32 %3)
24 br label %bb3
25
26 calc.fail:
27 %calc.arg2 = phi i32 [ %2, %entry ], [ %3, %bb1 ]
28 %error.cond = icmp eq i32 %calc.arg2, 0
29 call void @verifier.assume(%error.cond)
30 br label %error
31
32 error:
33 %error_code = phi i8 [ 1, %calc.fail ]
34 call void gazer.error_call(i8 %error_code)
35 unreachable
36
37 bb3:
38 ret i32 0
39 }

(b) The transformed program after assertion lift-
ing.

Figure 3.3: Assertion lifting example.
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3.2.2 Optimization Pipeline

LLVM comes with a plethora of built-in optimization passes, some of which we will use
to reduce the size of the resulting model. LLVM defines multiple types of optimizations,
depending on the target scope. Module passes act on the level of the whole module:
they may insert or remove functions, global variables and modify the program in any
way. A function pass, on the other hand is constrained to operate on a single function
at a time, whereas loop passes can only work on loops. Local peephole optimizations
are implemented as basic block passes, which can only modify the instructions in a single
block. Furthermore, LLVM’s pass manager is able to provide important analyses (such
as a dominator tree) and schedule passes in a way that it can avoid recomputing analysis
information if possible.

When executing the verification pipeline, we first begin with a set of early optimizations
– basic simplification of control flow (CFG simplification pass), common subexpression
elimination (CSE), removal of unused global values and unused function arguments.

An interesting optimization that we also use in this phase is what the LLVM terminology
calls SROA – scalar replacement of aggregates. This pass examines structures and small
arrays (remember that arrays in LLVM always have a known size) in a function, and
attempts to replace them with a set of scalar registers. As an example (shown in C for
readability), a struct definition struct S { int x; float y; }; s is replaced by two
variables, sx and sy. All operations on individual fields (e.g. s.x = a + b) are modified
to update the newly introduced scalars instead (sx = a + b).

A nice benefit of SROA is that it eliminates some trivial memory instructions, thus the
analyses and transformations that follow have an easier time reasoning about them.
As most optimizations are defined for LLVM registers, lifting aggregate operations also
enables transformations for individual aggregate members that would not have possible
without running SROA.

For easing interprocedural analysis, we also use function inlining (the procedure of re-
placing a function call with the callee’s body). In our work, we use it to obtain more
information on the behavior of an interprocedural program, as without more thorough
interprocedural analysis, function calls would act as black boxes. A model checker al-
gorithm may extract more information from the entire inlined function body than from
merely just a function call. Furthermore, one of our model checking backends (theta)
requires a single, call-free model as an input, thus inlining is a must in its case. Andwhile
our bounded model checker backend is able to handle function calls, inlining opens up
better optimization opportunities, thus we are generally able to generate a simpler model,
reducing verification time. If there is no recursion in the system, we are able to promote
global variables into locals.

Program Slicing

Program slicing is a technique first described by Mark Weiser [61]. He suggested that
while debugging a complex program, a programmer only pays attention to a smaller
subset of the entire source code. This subset contains only the instructions and variables
relevant to the problem being debugged. Attempting to formalize this practice, Weiser
gave the following definition for program slices:
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Definition 11 (Program slice). A program sliceP′ of a programP with respect to the criterion

of (B, +) is an executable subset of P, producing the same output and assigning the same
values to the variables + = E1 , . . . , E= as the original program P in its statement B. �

In ourwork,we shall useprogramslicing to remove instructionswhich are irrelevant to the
error call inserted by check instrumentation and assertion lifting. The most commonly
used approach for slicing is a technique known as backward slicing. Backward slicing
produces accurate slices, while retaining all instructions which are crucial to the slicing
criterion. Given a criterion instruction B, backward slicing finds all nodes on which
B transitively data depends. As some branching decisions may affect whether a particular
instruction is reachable or not, these also need to be included in the slice. These branching
decisions are the same as the control dependencies of a given instruction. Of course, these
dependencies can have dependencies which need to be taken into account. Therefore
backward slicing is done by retaining all instructions on which the criterion control or
flow depends transitively. This information can be queried from a program dependence
graph.

A backward slicer algorithm marks all nodes which are backwards reachable (walking
backwards on both data and control dependency edges) from the criterion node in the
program dependence graph [29, 50]. As the PDG explicitly shows the control and flow
dependency relations of every instruction, this method will include all required nodes in
the slice. Figure 3.4 shows an example of this procedure with the non-trivial assertion
node being the criterion. The red dashed edges represent flow dependency, blue edges
represent control dependency. The filled nodes are those backwards reachable from the
criterion node.

label %bb

label %bb3

label %bb2

label %bb6

  br label %bb2

  %tmp4 = add nuw nsw i32 %.0, %.01

  %.01 = phi i32 [ 0, %bb ], [ %tmp5, %bb3 ]

  %.0 = phi i32 [ 0, %bb ], [ %tmp4, %bb3 ]   %tmp5 = add nuw nsw i32 %.01, 1

  call void @assert(i1 zeroext true) #3

  br label %bb2

  %tmp = icmp ult i32 %.01, 10

  %tmp8 = icmp ne i32 %.0, 0

  br i1 %tmp, label %bb3, label %bb6

  call void @assert(i1 zeroext %tmp8) #3

  ret i32 0

Figure 3.4: PDG and a slice of a program.

3.3 Memory Models

While the translation of basic arithmetic instructions is straightforward, the same cannot
be said about memory operations. Memory operations and pointers introduce an ambi-
guity into the systemwhich cannot be modeled in a simple manner. Amemory model is an
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abstraction which can help us model systemmemory in a way that can be represented for
an SMT solver. Memory models may come in different flavors and may make trade-offs
between certain aspects of verification: a model may choose precision over speed, while
another may choose to drop soundness for fast verification.

The most straightforward memory model, called the flat memory model models the entire
memory as one large array of bytes. This model is simple, precise and can safely model
type-unsafe operations, such as bitcasts and unions. However, it suffers from scalability
issues as each operationmust reconstruct its value from a sequence of bytes. Furthermore,
the flatmodel has no knowledge about certain aliasing rules (such as distinct globals never
alias), therefore it cannot benefit from the inherent disjointedness of memory regions.

The Burstall model [15] splits memory into several arrays, one for each distinct type in the
system. The model is based on the assumption that pointers of distinct types never alias
– a statement that is true for several type-safe languages, such as Java. This offers better
performance, but is usually unsound for a type-unsafe language such as C.

A third, and emerging family of memory models is the one we can collectively refer to
as partitioned memory models [52, 60, 35]. A partitioned memory model relies on static
pointer analyses to determine aliasing rules and ensure that distinct alias groups are put
into separate arrays. This usually yields better performance, and by applying proper care,
can be made sound in the presence of type-unsafe memory operations.

The rest of this section is organized as follows. Section 3.3.1 describes our generic mem-
ory SSA framework, designed to provide a convenient translation interface for various
memory models. Section 3.3.2 describes our simple, proof-of-concept flat memory model
we have implemented within gazer.

3.3.1 Memory SSA

As discussed in Section 2.1.4, LLVM does not translate memory operations into an SSA
form. However, this makes translating and reasoning about memory operations more
difficult: it is not evident how an instruction modifies a particular memory location, and
querying a pointer alias analysis for this information can be costly. Memory SSA form [49]
attempts to solve this problem by constructing an explicit static single assignment form
for the variables stored in memory. In usual compiler implementations, memory SSA
usually does not provide an SSA form for each distinct variable in memory – rather, the
memory is represented as a single variable, and the memory SSA form is built for just one
memory object.2 Opposed to that, our memory SSA analysis is generic, and relies on the
underlying memory model to partition the memory and will generate a proper memory
SSA form for each partition.

In the memory SSA of gazer, each allocation site corresponds to a memory object. A
memory object is an abstract entity used to describe the type and allocation semantics of
a piece of memory, thus it is never referenced directly in the final automaton. Memory
objects may have memory object definitions, instructions that possibly change the value
at the location the memory object describes. Memory object uses are instructions which
possibly read the value referenced memory location of a memory object. In order to
ensure the SSA-property of memory SSA, we also need to introduce the concept of the

2This is the main point in which our implementation differs from the built-in memory SSA infrastructure
found in LLVM. Our tool offers a generic framework with the possibility to define multiple memory objects
– possibly introducing an increase in analysis time. In contrast, memory SSA in LLVM was designed with
analysis speed in mind, therefore it trades precision for performance.

23



memory )-nodes as a subset of memory definitions. As with a regular )-node, a memory
)-node also selects one single definition form a set of possible incoming definitions, based
on the control flow paths the program took to reach said node.

The memory SSA is partly built by the memory model. During memory analysis, the
memory model inspects the input program and inserts the memory objects based on
the allocation sites of the program. In the next step, the memory model makes another
pass over the program and annotates memory-accessing instructions with their possible
memory object definitions and uses. Each instruction may have multiple definitions and
uses due to the often occurring ambiguity of pointer usage. As certain instructions may
define or use a memory object in different ways, we distinguish between several types of
uses and definitions. Table 3.1 offers an overview of the memory object definition and
use types used by gazer.

Table 3.1: Memory objects definitions and uses.

Name Scope Description
Definitions
AllocaDef alloca instructions Represents an initial allocation of the object

on the stack, i.e. the declaration of a local
variable.

LiveOnEntry Functions Indicates that the memory object is alive
when entering function.

GlobalInit The entry function One-time initialization of a global variable.
StoreDef store instructions A definition through a store instruction.
CallDef call instructions Indicates that a call possibly modifies the

memory object.
PhiDef Basic blocks A memory object )-node placed by our

memory SSA construction algorithm.
Uses
LoadUse load instructions Use through a load instruction.
CallUse call instructions The call may read thememory object’s value,

either by passing a memory object as a call
parameter or through a global variable.

ReturnUse ret instructions Indicates that the memory object is alive
when the function returns.

After the memory model has placed all definitions and uses, we calculate an SSA-form
over the definitions. This is done by using the dominance frontier information, presented
in Definition 4. For each memory object we use the dominance frontier to calculate
the locations of the memory )-nodes and perform the standard SSA construction and
renaming algorithm to give a unique name to each memory object definition.

Example 9. Figure 3.5 shows a program with global variables annotated by our memory SSA

construction algorithm w.r.t. a flat memory model. Definition and use annotations are placed

according to the memory model, from which the final SSA-numbering and memory )-nodes were
placed by the memory SSA algorithm. Each definition annotation has a unique number given by

the SSA renaming algorithm and the name of the defined memory object. Use annotations store

the name of the used memory object and the number of its reaching definition.
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1 int a = 1, b = 1, c = 3;
2
3 int main(void) {
4 int input = 1;
5 while (input != 0) {
6 input = __VERIFIER_nondet_int();
7 if (input == 1) {
8 a = a + 1;
9 }
10 }
11 assert(!(a < b));
12 return 0;
13 }

(a) A C program with global variables.
1 ; Declared memory objects:
2 ; (0, "Memory", objectType=[Bv64 -> Bv8], size=Unknown)
3 ; (1, "StackPointer", objectType=Bv64, size=64)
4 ; (2, "FramePointer", objectType=Bv64, size=64)
5 define i32 @main() {
6 bb:
7 ; 0 := liveOnEntry(Memory)
8 ; 1 := liveOnEntry(StackPointer)
9 ; 2 := liveOnEntry(FramePointer)
10 ; 3 := globalInit(Memory, i32 1)
11 ; 4 := globalInit(Memory, i32 1)
12 ; 5 := globalInit(Memory, i32 3)
13 br label %bb1
14
15 bb1:
16 ; 8 := phi(Memory, { [7, bb8], [5, bb] })
17 %.0 = phi i32 [ 1, %bb ], [ %tmp3, %bb8 ]
18 %tmp = icmp ne i32 %.0, 0
19 br i1 %tmp, label %bb2, label %bb9
20
21 bb2:
22 %tmp3 = call i32 @__VERIFIER_nondet_int()
23 %tmp4 = icmp eq i32 %tmp3, 1
24 br i1 %tmp4, label %bb5, label %bb8
25
26 bb5:
27 ; load(Memory, 8, i32 %tmp6)
28 %tmp6 = load i32, i32* @a, align 4
29 %tmp7 = add nsw i32 %tmp6, 1
30 ; 6 := store(Memory)
31 store i32 %tmp7, i32* @a, align 4
32 br label %bb8
33
34 bb8:
35 ; 7 := phi(Memory, { [8, bb2], [6, bb5] })
36 br label %bb1
37
38 bb9:
39 ; load(Memory, 8, i32 %tmp10)
40 %tmp10 = load i32, i32* @a, align 4
41 ; load(Memory, 8, i32 %tmp11)
42 %tmp11 = load i32, i32* @b, align 4
43 %tmp12 = icmp slt i32 %tmp10, %tmp11
44 br i1 %tmp12, label %error, label %bb13
45
46 bb13:
47 ; ret(Memory, 8)
48 ret i32 0
49
50 error:
51 %error_phi = phi i16 [ 2, %bb9 ]
52 call void @gazer.error_code(i16 %error_phi)
53 unreachable
54 }

(b) The LLVM IR annotated with memory SSA information.

Figure 3.5: MemorySSA example.
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3.3.2 A Simple Memory Model

In this work, we use a simple flatmemorymodel to demonstrate the usability and capabil-
ities of our workflow. As discussed previously, the flat memory model encodes memory
as a single array of bytes. Therefore the only memory object we declare is" : Ptr→ Bv8,
where Ptr is the pointer type according to the target architecture (e.g. Bv32 or Bv64). Note
that the theory of arrays [47] within SMT (therefore within gazer) requires array stores to
be side-effect free. As such, writing the value E into an array� on location ? returns a new
array �′, which has the same values at every index as �, except for ?. In the following,
we denote such array stores as �′ = �[? ← E].
Each memory writing instruction will serve as a new definition of our single memory
object. Storing and loading values from this memory model requires us to break the
value down into its bytes andwrite them into the array, according to the endianness of the
platform. As an example, storing the 32-bit value G into " at location ? may be encoded
in the following fashion:

"1 = "[? ← G0..7]
"2 = "1[? + 1← G8..15]
"3 = "2[? + 2← G16..23]
"4 = "3[? + 3← G24..31]

where G8.. 9 represents the bits between 8 and 9 of the bit-vector G. Loads are en-
coded similarly, using bit-vector concatenation. Calculating pointer addresses using the
getelementptr instruction is done in a straightforward manner. Recall that a pointer %p
of type � not only represents a particular address in memory, but the pointer arithmetic
operations over blocks of the type of �. If � is = bytes long, then each pointer addition
over pointers of this type will advance the stored memory address of %p by = bytes. As
such, we can encode a getelementptr instruction with the base pointer @ of type � and
offset 8 as ? = @ + sizeof(�) · 8.
Allocations are handled by defining special memory objects for the stack and frame
pointers. An alloca instruction (thus, an alloca definition) allocates memory into the
main memory array starting from the offset shown by the stack pointer. When entering
a function, the frame pointer is moved into the current position of the stack pointer, and
upon exit, all memory locations on the stack past the frame pointer are invalidated (i.e.
reads from these locations return undefined values).

Calls are handled by passing in the single memory array into the called function as input–
output parameter, indicated by the call use and call definition annotations. Undefined
functions are assumed not to modify memory, unless they have a pointer operand, return
a pointer, or if their return value is void. While this can make the analysis unsound in
certain corner cases (e.g. a possible write of global variables in a undefined function), it
offers the huge benefit of avoiding a large number of false-positives.

3.4 Transforming the LLVM IR into CFA

This section describes our approach on transforming the LLVM intermediate representa-
tion into the control flow automaton formalism of gazer framework.
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3.4.1 Control Flow Automata within gazer

Our tool, gazer comes with its own control flow automata formalism, designed to be a
convenient intermediate representation between the LLVM IR and the input formalism
of the eventual formal verification algorithm. In order to provide a safe and easily
translatable format (in both directions), the control flow automata found in gazer have
the following restrictions.

1. Procedures must be in a single assignment form, where there is at most one assign-
ment for each variable in every path between two locations.

2. The control flow of the procedure must form a directed acyclic graph (DAG), thus
having loops is forbidden.

3. All procedures must be stateless – global variables are disallowed.

The first condition is a slight relaxation from the original definition of SSA (where it is
forbidden for a variable to be the target of an assignmentmore than once).3 This relaxation
is needed if we want to avoid having )-nodes in our CFA formalism without explicitly
encoding the path condition of each )-node entry.

The second and third restrictions have twomajor consequences. First, in order to represent
loops, they must be encoded as tail-recursive functions. For this encoding to be possible,
we must impose a limitation on the input program: all loops in the input CFG must
be natural loops, that is, the loop must have a single entry point (the loop header) which
must dominate all nodes within the loop. Flow graphs which only contain natural loops
are called reducible flow graphs [37] and most programs in practice are reducible. It can
be easily seen, that all structured programs (i.e. programs without goto) fall into this
category. Even when using goto statements, the only way to build an irreducible control
flow is by jumping into the middle of a loop from the outside, which is extremely rare.
Furthermore, irreducible control flow poses challenges way beyond the verifiability of the
input program, as most loop recognition and optimization algorithms in compilers also
assume that all loops are natural.

Second, the CFA formalism does not include any global variables, but manages global
state by passing global values as procedure inputs, and reading them as procedure out-
puts. This allows gazer’s built-in analysis algorithms to reason more efficiently about the
properties of the formal model as they are not required to track any global information.

3.4.2 Transformation of Control Flow

At the end of the workflow, the (optimized) LLVM IR is transformed into our control
flow automaton formalism. The transformation process introduces two new locations
in the CFA for each basic block in the program, which will represent the entry and exit
points of the block, respectively. We also add an edge between these locations, which is
labeled with the instructions of the block. For branching blocks, we add edges between
the predecessor block’s exit location and the entry locations of the successors blocks. For
conditional branches, a guard condition is also placed on the edges: the boolean predicate

3Strictly speaking, the literature [28, 7] would refer to programs in this form as dynamic single assignment-
formed (DSA). In DSA form, a variable may be present on the left side of an assignment more than once, but
it is guaranteed that at most one assignment of a variable would be executed during any program execution.
However, as SSA is a much more common term, we will continue to refer to this program representation as
SSA-formed.
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of the branch condition (say ?) for the "then" path and its negated form (¬?) for the "else"
path.

Another issue comes with the handling of )-nodes, as our CFA formalism does not
offer support for the )-node construct. However, as the semantics of the )-node can be
interpreted as a statement which picks a value for a variable, given all incoming edges
to that variable’s block. An equivalent representation can be achieved by eliminating the
)-node and labeling the incoming edges with the corresponding assignments. Note that
this transformation satisfies the single assignment requirement of our CFA formalism.

Translation of Loops

Loops are a very important special case of our translation algorithm. As our CFA formal-
ism does not support loops, wemust encode loops as stateless tail-recursive functions. To
present our transformation algorithm, we make use some of the terminology described
in the following definition.
Definition 12. Let ! be a natural loop, and the basic block � be an arbitrary block in !.

• � is a latch block if � has an outgoing edge which targets the loop header. Edges
between a latch block and the header are called back-edges.

• � is a exiting block if � has a successor �′ outside of the block. In such case, �′ is
called an exit block. �

Let ! be a loop,A! its corresponding automaton. In the first step, we create a newvariable
for each value defined within !. In order to do this, let %x be an arbitrary LLVM register,
E the variable corresponding to %x inA!.

1. If %x is has a use within the loop, but is defined outside of the loop, E will become
an input argument.

2. If %x is definedwithin the loop, then E will be a local variable of the new automaton.

3. If %x is a )-node, defined in the loop header, E will be an input argument.

4. If %x is defined within the loop (possibly as a )-node in the header) and has uses
outside of the loop, E shall be an output argument.

During translation, the back-edges of the loop (the edges from within the loop targeting
the loop header) are represented by recursive call transitions to A!. As A! is required
to be a DAG, said call transition’s source is the location corresponding to the end of the
source block of the back-edge. There are two kinds of calls to A! in the system: first,
the recursive call within the loop, second the “original” entry point into the loop from
the outside. If the call is in the entry point, each regular input variable will be passed
into the call as they are. For inputs obtained from the header )-nodes, we pass the value
corresponding to the loop header predecessor in the )-node entry list. In the case of
the tail-recursive call, )-node input arguments will have the value of the )-node for its
predecessor latch block.
Example 10. Figure 3.6 offers and example of this transformation, with the presence of )-nodes
and multiple loop exits. The program in Figure 3.6a is transformed into two automata: one for the

main control flow (shown in Figure 3.6b) and a recursive automaton for the loop (Figure 3.6c). The

variables corresponding to %i and %sum became both inputs and outputs in the loop automaton,

while the variable corresponding to %limit is a simple input.
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entry:
 %limit = call i32 @nondet()
 br label %loop.header

loop.header: 
 %i = phi i32 [ 0, %entry ], [ %i1, %loop.calculate ]
 %sum = phi i32 [ 0, %entry ], [ %s, %loop.calculate ]
 %cond = icmp slt i32 %i, %limit
 br i1 %cond, label %loop.body, label %loop.end

T F

loop.body: 
 %a = call i32 @nondet()
 %ec = icmp slt i32 %a, 0
 br i1 %ec, label %error, label %loop.calculate

T F

loop.end: 
 ret i32 %sum

error: 
 ret i32 1

loop.calculate: 
 %i1 = add nsw i32 %i, 1
 %s = add nsw i32 %sum, %a
 %c = call i32 @__VERIFIER_nondet_int()
 %c1 = trunc i32 %c to i1
 br i1 %c1, label %loop.end, label %loop.header

T F

(a) The source CFG with a loop.

entry (0)

2

3

limit := undef

exit (1)

8

Call loop(loop/i := 0,
   loop/sum := 0,

   loop/limit := limit) -> 
(sum <= loop/sum_out,

 __output_selector0 <= loop/__output_selector)

4

[Eq(__output_selector0,0)] [Eq(__output_selector0,0)]

6

[Eq(__output_selector0,1)]

5

RET_VAL := sum

7

RET_VAL := 1

(b) The translated main procedure.

entry (0)

2

3

loop/cond := BvSLt(loop/i,loop/limit)

exit (1)

[Not(loop/cond)]
loop/__output_selector := 0
loop/sum_out := loop/sum

4

[loop/cond]

5

loop/a := undef
loop/error.cond := BvSLt(loop/a,0)

[loop/error.cond]
loop/__output_selector := 1
loop/sum_out := loop/sum

6

[Not(loop/error.cond)]

7

loop/i1 := Add(loop/i,1)
loop/s := Add(loop/sum,loop/a)

loop/c := undef
loop/c1 := Select(Eq(loop/c,0),False,True)

[loop/c1]
loop/__output_selector := 0
loop/sum_out := loop/sum

8

[Not(loop/c1)]

Call loop(
  loop/i := loop/i1,

  loop/sum := loop/s,
  loop/limit := loop/limit)  -> 

(loop/sum_out <= loop/sum_out,
  loop/__output_selector <= loop/__output_selector)

(c) The translated loop automaton.

Figure 3.6: Transformation of a SSA-formed CFG into a CFA.
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3.4.3 Translation of Memory Instructions

Memory instructions are handled by querying the constructed memory SSA and the
memory model that produced it. Each memory object definition 3< will have a corre-
sponding variable E< in the CFA. If the definition indicates that its memory object is
alive upon entry, the variable E< will become an input variable. If the definition is alive
upon exit (indicated by a return use), E< shall become an output variable. Memory object
definitions in loops are handled similarly as discussed for regular LLVM registers.

Access to memory are translated according to the rules defined by the memory model.
When encountering a memory use (such as a load), the memory model is asked to
translate the load instruction into a valid assignment. If the pointer referenced by the
load is ambiguous, the memory model may choose to generate a sequence of if-then-else
expressions to resolve the pointer value during verification time.

3.4.4 Optimizations during Transformation

In order to reduce the size and complexity of the generated automata, the translation
process applies certain optimizations. The most notable is variable elimination, where
certain variables are eliminated by inlining their assigned values into their users. In order
to do so, we inspect assignments in the form of E := �, where E is a variable in the CFA,
and � is an arbitrary expression. As the automaton is in a single assignment form, we
can assume that E is not defined anywhere in the procedure4. As such, all uses of E are
dominated by this assignment, and can be replaced with �. Note that this is not possible
on the LLVM IR level: LLVM’s three-address code scheme requires a new variable for
every operation, thus it does not allow us to replace instructions with complex nested
expressions.

In order to avoid building overly large expressions and to avoid losing useful traceability
information, variable elimination has a few restrictions.

• Variables obtained from call instructions are never eliminated, as they might be
needed to produce a traceable counterexample.

• If the CFAwas translated from a loop, variables that correspond to loop outputs are
not eliminated.

• Variables translated from )-nodes are never eliminated, as their definitions are
ambiguous due to the semantics of our ) translation algorithm.

By default, we only eliminate a variable if it has only one use and has no eliminated
operands. This keeps the size of expressions at a manageable level. However, there
exists an “aggressive” variable elimination setting, in which we eliminate all variables
that satisfy the restrictions listed above.

4The only exception to this assumption are the variables obtained from )-nodes, as discussed in Sec-
tion 3.4.2. Due to this reason, we never perform this transformation on these kinds of variables.
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Chapter 4

Verification

This chapter describes the verification backends offered by gazer. Section 4.1 presents
our inlining-based bounded model checker algorithm, while Section 4.2 describes the
backend built upon the theta model checking framework. Section 4.3 describes the
process in which we trace possible counterexamples from the formal verification backend
back to the LLVM IR level, and furthermore, to the original C code.

4.1 Bounded Model Checking

A bounded model checker (BMC) algorithm [12] traverses the state space of the program,
searching for an erroneous path from the initial state of length at most : (the bound –
hence the name boundedmodel checker). If such an error path is present, it is refutation of
correctness. If no error paths were found for a given :, the algorithm increases the bound
to : + 1.

As the algorithm can only prove safety for a bound of :, but has no information whether
it is safe for : + 1, the bound may grow indefinitely. Due to this reason bounded model
checking is not complete: it may not check all possible error paths, thus it cannot prove
correctness. However, with a proper (i.e. bit-precise) encoding, BMC can be a very
effective method to discover errors in a program without any (or a minimal) number of
false-positives [8].

The algorithm works as follows: given a control flow automaton A = (!, �, ℓ0 , ℓ@), an
error location ℓ4 ∈ !, and a bound : ≥ 0, we encode all possible ℓ0 =⇒ ℓ4 paths as a single
SMT formula. The encoding needs to replace assignments with equivalence predicates,
thus it requires having a unique variable for each occurrence of a program variable on the
left-hand side. This property is satisfied out of the box by using gazer’s CFA formalism,
as it is SSA-formed by definition. Furthermore, our CFA formalism guarantees that an
automaton is always a DAG, thus we can construct a topological sort of its locations. This
allows us to do the encoding with a simple dynamic programming approach.

Let ℓ8 ∈ ! be an arbitrary location in A, where 8 is the index of said location in the
topological sort. Let SMT(ℓG , ℓH) be the function which represents the SMT encoding of
the edge between ℓG and ℓH . Let T be an array where T [8] is contains the SMT encoding
of all paths between ℓ0 and ℓ8 . Initially T [8] = ⊥ for every ℓ8 ∈ !. The algorithm fills the
values of T according to the following rules:

31



T [0] := >
T [8] :=

∨
ℓ?∈pred(ℓ8)

(T [?] ∧ SMT(ℓ? , ℓ8)).

When this process finishes, we can get the encoding of all ℓ0 =⇒ ℓ4 paths by querying T
with index of ℓ4 in the topological sort. As the CFA formalism guarantees that a variable
may be defined at most once in each path starting from ℓ0, this encoding introduces no
inconsistencies. Furthermore, with 8 and ? being the indices of a topological sort, it is
guaranteed that ℓ? ∈ pred(ℓ8) contains a valid encoding by the time we process ℓ8 .

Example 11. Consider the CFA shown in Figure 4.1a. Node labels show the index of each location

in a topological sort. The SMT encoding process of the bounded model checker algorithm is shown

in Figure 4.1b. Note how the nondeterministic definition of variable G is not present in formula –

there is no need to encode it as all of its uses will be treated as undefined values. The path condition

for the error location (and thus the verification condition) is the formula calculated in T [6].

entry (0)

1

i0 := 0
 x := undef

2

 [Bool Gt(Int x, 0)]

3

 [Bool Not(Bool Gt(Int x, 0))]

exit (5)

4

 i1 := Int Add(Int i0, 1)  i1 := Int Sub(Int i0, 1)

 [Bool Eq(Int i1, 0)]

error (6)

 [Bool Not(Bool Eq(Int i1, 0))]

(a) A simple control flow automaton.

T [0] := >
T [1] := (80 = 0)
T [2] := T [1] ∧ (G > 0)
T [3] := T [1] ∧ ¬(G > 0)
T [4] := (T [2] ∧ (81 = 80 + 1))

∨ (T [3] ∧ (81 = 80 − 1))
T [5] := T [4] ∧ (81 = 0)
T [6] := T [4] ∧ ¬(81 = 0)

(b) The SMT encoding of all path
conditions.

Figure 4.1: SMT encoding example.

In order to reduce formula size and lift some of the burden on the SMT solver, we have
implemented a set of term simplification rules. These rewriting rules include simple
constant propagation, arithmetic simplification, and some logical optimization for if-
then-else expressions.
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4.1.1 Inlining Techniques

If no errors were found for a given bound :, the BMC algorithm needs to increase the
bound to : + 1. To do this, the algorithm must unroll loops and inline procedure calls to
account for these control structures. As our CFA formalism requires loops to be encoded
as recursive procedures, increasing the bound always means inlining a procedure into
another one. As such, we shall discuss bound increases as terms of inlining (possibly
recursive) procedures.

The easiest solution is to perform this statically, where the algorithm just inlines all
procedures up to a maximum bound in one pass, encodes the resulting automaton into
an SMT formula, and passes said formula to an SMT solver. While this approach is simple,
it scales poorly for large programs due to a potentially exponential increase in program
size.

A slightly more sophisticated method is to inline iteratively, increasing the bound every
time the programwas proved to be correct for the bound of :. This delays the exponential
explosion of the state space andmay be noticeablymore effective than eager static inlining
if an error is present at a lower bound than the defined maximum.

Stratified Inlining

Stratified inlining [43] further improves this concept by using under- and over-
approximations to decide which procedures should be inlined. First, an under-
approximated program is checked whether a property violation could be found without
going through any calls. If not, then we over-approximate each call in the program with
the summary of their called procedures. If a (possibly spurious) counterexample � was
found, we inline all calls which were present in �, and start the process again.

The process (slightly adapted to our CFA formalism) is described in Algorithm 2. The
algorithm operates on an entry automaton A (i.e. the program) and tracks the set � of
all call transitions found in A. The cost of a call transition is its depth in the call chain
– initially all calls have the cost of 1. If inlining a procedure with a cost of F lifts a call
transition 2 intoA, then the cost of 2 shall be F + 1.

Each iteration of the loop in line 2 searches for property violations up to the current value
of :. The loop in line 3 performs the under- and over-approximation loop described
above. First, we under-approximate all calls by blocking execution from going through
them. This can be achieved by annotating call transitions with “assume false” guards.
This yields the modified program A′, which then encoded into a formula and checked
using an SMT solver. If the formulawas satisfiable, we have found a valid counterexample
�, thus we can return with Cex(�).

If no errors were found in the program stripped of its call transitions, we create an
over-approximation. To do this, we split the call transition set � into sets �1 , �2. Calls
which have a cost lower than the current bound are put into �1 and will later be over-
approximated. Calls in �2 will stay blocked as their cost is higher than the current bound.

Given a call 2 in �1, the simplest form of over-approximation summaries are havocs over
all variables possibly modified by executing 2. Once again, due to our SSA-formed CFA
format, no explicit havocs are required: a simple over-approximation with “assume true”
is enough to leave variables unconstrained. In more advanced cases, static analysis
methods (such as abstract interpretation) could be used to calculate procedure invariants
that may be used as summaries [30, 5].
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If the over-approximated program was proven to be correct and �2 is empty, then all call
transitions have been over-approximated, thus the original program is also correct. If
there are still some call transitions present (i.e. �2 is not empty), the current verification
bound must be increased (line 18).

If the over-approximated program yielded a satisfiable formula and thus a (spurious)
counterexample �, we check which over-approximated call transitions were present in �.
All such calls are inlined intoA and the algorithm jumps back to line 3.

Algorithm 2: Stratified inlining algorithm.
Input: A control flow automatonA = (!, �, ;0 , ;@)
Input: An error location ℓ4 ∈ !
Input: A maximum bound MAX > 0
Output: Success, Cex(�) or BoundReached

1 � := call transitions inA
2 for : := 1 to MAX do
3 while true do
4 A′ := A[∀2∈C 2 ← false]
5 ! := SMT encoding of all ℓ ′0 =⇒ ℓ ′4 paths inA′
6 if ! is satisfiable then
7 � := the error path from !
8 return Cex(�)
9 end
10 �1 := {2 ∈ � | cost(2) ≤ :}
11 �2 := {2 ∈ � | cost(2) > :}
12 A′ := A[∀2∈�1 2 ← summary(2), ∀2∈�2 2 ← false]
13 ! := SMT encoding of all ℓ ′0 =⇒ ℓ ′4 paths inA′
14 if ! is unsatisfiable and �2 = ∅ then
15 return Success
16 end
17 if ! is unsatisfiable and �2 ≠ ∅ then
18 break
19 end
20 � := the error path from !
21 A := all {2 ∈ �1 | 2 ∈ �} calls inlined intoA
22 � := call transitions inA
23 end
24 end
25 return BoundReached

Optimization

Many modern SMT solvers offer support for incremental solving, a technique where a
formula may be pushed onto or popped from the solver in a stack-like (LIFO) manner.
Push inserts a new solver state, which will preserve its list of asserted formulae between
invocations and the lemmas deducted from said formulae. Popping the solver state
removes each formula that was added after the latest push, but preserves all learned
lemmas stored in the “lower” scopes. This opens up an optimization opportunity where
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we can avoid encoding the entirety of the program in each under- or over-approximation
step, and do the encoding incrementally.

We will operate on the observation that after an unsuccessful under-approximation (i.e.
the under-approximated formula was unsatisfiable), all possibly feasible error pathsmust
go through a call. As such, a location fromwhich all error paths involving at least one call
transition offers us a convenient place to save the solver state. In our implementation, we
pick the lowest common ancestor (LCA) of all call transitions (more precisely, their edge
source locations) in the dominator tree of the automaton, denoted by ℓlca. The fact that
ℓlca dominates all call transitions means that every path starting from the entry node and
going through a call must contain ℓlca. Furthermore, as ℓlca is the closest of all common
dominators, it allows us push as much information onto the solver as possible. Also note
that such node always exists in a flow graph with an entry point – if nothing else, it is the
entry location.

Due to our automata being DAGs, we can provide a fast algorithm to calculate ℓlca. We
exploit the fact that if ?1 , ?2 , . . . , ?: are the predecessors of a node =, then node 3 ≠ =

dominates = if and only if 3 dom ?8 for every 1 ≤ 8 ≤ : [2]. This means that finding the
set of =’s dominators �(=) requires finding the dominator set �(?8) of every ?8 ∈ pred(=).
Furthermore, due to the definition of dominance, every node dominates itself. This can
be summarized by the following equations:

�(=0) = {=0}
�(=) = {=} ∪

⋂
?∈pred(=)

�(?)

which mean that every node’s dominator set contains the node itself and the intersection
of its predecessors’ dominators. Using this, we can calculate ℓlca in a single pass (without
building the dominator tree) by going through the topological sort and building the
dominator sets1 and maintaining a special �′ set of possible ℓlca candidates. After finding
the dominator information, ℓlca will be the element from �′ having the largest index in
the topological sort.

The final algorithm. The optimized algorithm works by calculating path conditions
from a current starting location, denoted by ℓstart. Initially, the starting location ℓstart is the
entry location ℓ0. The algorithm extends the stratified inlining presented in Algorithm 2
with the following steps.

1. During under-approximation, we push the path condition !1 of all ℓstart =⇒ ℓ4
paths to the solver state. If the under-approximated formula was unsatisfiable, !1
is popped from the solver.

2. In the next step, we calculate the lowest common dominator of all call transitions,
denoted by ℓlca. We push the path condition of ℓstart =⇒ ℓlca onto the solver, thus
encoding all call-free paths between the current starting point and the LCA node.
Note that this formula will never popped from the solver – this information will
always be present in subsequent solver queries.

3. The over-approximation stepwill then push the path condition !2 of all ℓstart =⇒ ℓlca
paths onto the solver. If the over-approximation step is unsuccessful, we pop !2,

1Our implementation uses bit-vectors to represent such sets as they have a smaller memory footprint and
provide O(1) insertion time.
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set ℓstart to be equal to ℓlca, and either start the under-approximation step again or
increase the bound as in the original algorithm.

Figure 4.2: Our stratified inlining process.

Example 12. Figure 4.2 offers an example of our inlining process. Assume that clouds in the

graph represent (possibly) large call-free node clusters. Assignments and guards are stripped from

the transitions to improve readability. Initially, the automaton contains two calls: the transitions

between ℓ3 → ℓ7 and ℓ4 → ℓ6. Locations colored in green show the locations at which a new path

condition was pushed onto the solver.

When executing the BMC algorithm, we begin by encoding all ℓ0 =⇒ ℓerror paths while under-

approximating calls by adding assume false guards to them. If the under-approximation was

unsuccessful, we pop the last condition from the solver and we calculate the path condition between

the entry location and the lowest common dominator of the call transitions (ℓ2). This path condition
is then pushed onto the solver and we begin over-approximation: we calculate the condition between

ℓ2 and ℓerror. If the over-approximated formula was satisfiable, we pop the last formula from the

solver, inline calls present in the counterexample (in this instance, ℓ3 → ℓ7) and start with the

under-approximation step once again. If this step is yet again unsuccessful, we set ℓ6 as the new

starting point (marked with yellow color), pushing the encoding between ℓ2 and ℓ6 onto the solver.

4.2 CEGAR-based Model Checking with theta

Counterexample-Guided Abstraction Refinement (CEGAR) is an automatic algorithm
that starts with a coarse initial abstraction and refines it based on the counterexamples
until the proper precision is reached [18, 36]. CEGARwas first described using transition
systems and predicate abstraction, but since then many variants have been developed.
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The abstraction algorithm maintains an abstract reachability graph (ARG) which is an over-
approximation of the state space over an abstract domainwith a given initial precision. As
it is an over-approximation, if no erroneous state is reachable in the ARG, then the whole
program can be considered safe. On the other hand, reachability of an error state (shown
by an abstract counterexample) may or may not indicate the presence of an actual error. If
the abstract counterexample is feasible in the original model, the program is considered
unsafe. Otherwise, a refinement algorithm adjusts the precision of the abstraction.

In our work, we shall use theta [57], a highly configurable CEGAR framework, which
incorporates many variants of the algorithm. As discussed above, the framework ex-
plores the abstract state space in a given abstract domain with a given exploration strategy.
Currently, Boolean predicate abstraction [33, 6], Cartesian predicate abstraction [6] and
explicit value [19] domains are supported. Supported exploration strategies are breadth-
first (BFS), depth-first (DFS), and error-oriented [36]. The framework supports refinement
based on binary [25], backward binary [36] or sequence interpolation [59], as well as un-
sat cores [46]. The model is then checked again with the refined abstraction and this
procedure is repeated until the model is proven to be safe or a feasible counterexample is
found.

Translating Programs into the Format of theta

One of distinguishing features of theta is that it is able to handle multiple input for-
malisms, such as symbolic transition systems, timed automata, and control flow au-
tomata. Each input formalism has its own domain-specific language (DSL), in which said
formalism can be represented. As we use control flow automata within gazer, our main
task is the translation of gazer automata into the CFA format of theta. Currently, theta
imposes strict restrictions upon its input format. As an example, automaton calls are not
supported – all procedures must be inlined into the main procedure. Furthemore, cur-
rently there is no support for bit-vectors and floating-point operations, thus these must
over-approximated by using unbounded mathematical integers and undefined values,
respectively. While it is possible to approximate floating-point operations using rational
arithmetic, our current implementation only replaces them with undefined values at the
moment.

As there is no support for recursion in theta, we must transform our recursive automata
into cyclic ones, i.e. replace all tail-recursive automaton calls with loops. We do this
by traversing the call graph of the input system, starting from the entry procedure, and
looking for tail-recursive procedures. If we find a tail-recursive automaton A with the
entry location ℓ0, we inline into the entry automaton Amain. All locations and edges of
A are cloned into Amain, such that each ℓ8 location in A will have a corresponding ℓ ′

8
in

Amain. Naturally, the same applies to the edges and variables ofA.

The recursive call is transformed into a back-edge, pointing to the inlined entry location
clone ℓ ′

8
. Input and output arguments placed on the original call transition are replaced

with the corresponding assignments. The original procedure call in Amain is replaced
with a simple transition into ℓ ′

8
, where all inlined input variables are initialized to the

values of the call parameters.

During the recursive-to-cyclic transformation, we maintain a map of locations and vari-
ables back into the original CFA, which will be later used for traceability information
(Section 4.3). Next, we build an internal theta CFA syntax tree, whichmaps theta entities
into our automaton representation. Finally, this syntax tree is serialized into the textual
format of the theta CFA DSL, which is then passed to the model checker.
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4.3 Traceability

One important characteristic of software model checking algorithms is that they can pro-
duce a counterexample. This counterexample is a tracewhich describes how an erroneous
state may be reached from the entry point of the program. However, counterexamples
may come in many abstraction levels and formats, such as:

• the violation model extracted from (and in the language of) the underlying SMT
solver,

• a custom trace which maps assignments to the formal model used by the model
checking engine,

• a standardized witness format [8] which then may be used by other tools to validate
the counterexample.

The further away the counterexample is from the source language, the harder it is for a
programmer to understand and interpret the results. Whilemany tools offer visualization
and interpretation aids to help the user trace the counterexample back to the original
program, these are often not sufficient enough to be adopted into a proper software
development workflow. Studies [41, 16] show that false positives (i.e. unreproducible
counterexamples) and hard-to-understand tool outputs are two major reasons of why
analysis tools are still not widely adopted by developers.

Due to the reasons listed above, providing informative and reproducible error traces
was one of the most important goals during development. To achieve this, we have
leveraged the power of some instrumentation methods (as described in Section 3.1) and
LLVM’s source-level metadata and debug information. We have developed a convenient,
language-agnostic, source-level error trace representation format, whichwill be generated
from the counterexamples coming from the verification backends.

4.3.1 The Trace Format of gazer

Traces within gazer are composed of trace steps. A trace step is a single event of interest,
such as a variable assignment or entering a function. Currently we support the following
kinds of trace steps:

• variable assignments,

• entering a function,

• returning from a function (with or without a return value),

• calls to external functions,

• undefined behavior.

Certain trace steps, such as assignments refer to trace variables, which store the name,
location, size, and encoding (signed, unsigned, float, etc.) of said variable. All values
related to a particular trace variable are represented in the appropriate encoding of the
variable. This is important because LLVM and the underlying verification engine has no
distinction between signed or unsigned types – all they see are bit-vectors, with different
operations, thus the resulting counterexample will make no distinction either. Storing
the proper encoding allows us to avoid presenting a negative number as the value of an
unsigned variable to the developer.
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4.3.2 From Counterexamples to Traces

Figure 4.3 gives a brief overview of our trace transformation process. Verification back-
ends yield counterexamples in their own custom counterexample format. Our process
translates these counterexamples into the trace format of gazer, using the traceability
information available in the LLVMmodule. The translation process begins with the coun-
terexample acquired from the used verification backend. This is translated into a coun-
terexample format designed for theCFA formalismusedwithin gazer, whichwewill refer
to as the raw trace. The raw trace is an alternating sequence of (ℓ0 , �0 , ℓ1 , �1 , . . . , �=−1 , ℓ4).
Each ℓ8 is a location along an error path between ℓ0 and ℓ4 , while �8 is a set of actions
(i.e. assignments) that get executed when control jumps from one location to another.
Note that these actions are different from the edges used within a CFA, as contrary to
CFA edges, these assignments may also represent interprocedural information and global
state.

Counterexamples returned by the verification backends are first translated into raw traces.
For the BMC backend, this requires tracking each inlined location and variable back to its
original automaton. In the case of the theta backend, its native counterexample format2
must be parsed and translated into a raw trace.

Verification algorithmCounterexampleCounterexample
parserRaw traceTrace builderTrace

Figure 4.3: Our trace transformation workflow.

The raw trace is then transformed into the final trace format by “replaying” it over
the original LLVM module. During trace construction, we maintain the mapping
Σ : Vars → Exprs, which will contain the actual value of each variable at the time
we process ℓ8 . Starting from ℓ0, for each location ℓ8 , we update Σ according to the as-
signments in �8 . We use the encoded traceability information to determine which LLVM
block the location ℓ8 corresponds to. Then we iterate over each instruction in the block,
searching for traceability intrinsics and other instructions of interest. These are handled
according to the following rules.

• llvm.dbg.value(v, var, e): A new assignment event for the variable var with
the current value of v. Complex expressions (the expression described by e) are not
supported at the moment.

• gazer.function.entry.*(fn, args...): A new function entry event into the
function fn with the argument list args.

• gazer.function.return_value.*(fn, v): A new function exit event from the
function fn and return value of v.

• %1 = gazer.undef_value.*(): We store the information that reading the value of
%1 results in undefined behavior. Note that reaching this function (inserted dur-
ing the process described in Section 3.1.1) does not necessarily indicate undefined
behavior – it only occurs of the value of this register is actually read.

Calls to other nondeterministic functions insert a nondeterministic call event, which will
be used later on in our test harness generationprocess. Operations using register operands
marked as “possibly-undefined” trigger the insertion of an undefined behavior event.

2A structured LISP-like S-expression tree.
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Variables, program locations and scopes are found and resolved using the LLVM source-
level debugging and metadata tools described in Section 2.1.4. The variable encoding
(signed, unsigned, floating-point, etc.) is determined by reading the type metadata
available for each variable.

After the process finished, the resulting trace will contain all important steps of a possibly
erroneous execution. This trace may then be transformed and represented in several
ways, one of which is the textual error message printed out for the developer. As the
text message lists values and variables as they are in the orignal C program, it offers an
easy-to-understand error message.

Example 13. Consider the possible counterexample snippet from the theta verifier, shown in

Figure 4.4c. This counterexample is interpreted for the theta CFA, therefore we translate it into

the raw trace formatwhich is defined for the CFA formalism of gazer, shown in Figure 4.4b. Finally,

this raw trace is transformed into the final trace format using the inserted LLVM instrumentation

and metadata, resulting in a trace similar to 4.4a.

1 #0 in function main():
2 call x() return 3 at 9:14
3 p1 := 3 at 9:14
4 call x() return 0 at 12:14
5 p2 := 0 at 12:14
6 call x() return 4 at 15:14
7 p3 := 4 at 15:14
8 call x() return 5 at 18:14
9 p4 := 5 at 18:14
10 ...

(a) The final trace.

1 (
2 (main/loc0, {}),
3 (main/loc1, {
4 main/tmp = 3,
5 main/tmp35 = undef
6 }),
7 (main/loc2, {
8 main/tmp = 3,
9 main/tmp35 = 0
10 }),
11 ...
12 )

(b) The raw trace.

1 (Trace
2 (CfaState loc0
3 (ExplState))
4 (CfaState loc1
5 (ExplState (main_tmp 3)))
6 (CfaAction
7 (havoc main_tmp35))
8 (CfaState loc2
9 (ExplState (main_tmp 3)
10 (main_tmp35 0)))
11 (CfaAction
12 (havoc main_tmp36))
13 ...

(c) theta counterexample.

Figure 4.4: Trace transformation example.

4.3.3 Executable Test Harnesses

Anotherway to report error traces in amore developer-friendlymanner is by representing
them as so-called executable mock environments [31, 10]. Such an environment is a module
which may be linked together with the original program, thus producing an executable
test harness that triggers the erroneous execution. This offers several benefits. First of
all, developers may check and validate counterexamples easily, just by executing the test
harness. Furthermore, as the test harness is a simple executable, the full repertoire of
debugging utilities (such as gdb) is available to the developer to understand the bug
found by the verification algorithm.

Executable mock environments are built by generating a definition for each external
function declaration and providing an implementation which returns values that trigger
the faulty behavior. After linking the mock environment together with the original
program, developers may simply execute and debug the resulting program and find
the possible assertion failures and arithmetic exceptions. For elusive errors found due
to undefined behavior (such as signed arithmetic under- and overflow), the erroneous
behavior can be triggered during execution by using code instrumentation methods such
as sanitizers.3

3https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
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Example 14. Consider the program shown in Figure 4.5a, which demonstrates an error if the

value of variable y is such that the addition causes the value of x to overflow. The generated mock

environment4 shown in Figure 4.5b and Figure 4.5c provides an implementation which tracks how

many times the function was called and returns an appropriate value. The first call is the loop

iteration limit, and the second is the value of y within the loop – a value high enough that causes

the addition to overflow, thus yielding zero as the result.

1 #include <assert.h>
2
3 unsigned __VERIFIER_nondet_uint(void);
4
5 int main(void)
6 {
7 unsigned i = 0;
8 unsigned c = __VERIFIER_nondet_uint();
9
10 unsigned x = 1;
11 while (i < c) {
12 unsigned y = __VERIFIER_nondet_uint();
13 x = x + y;
14 ++i;
15 }
16
17 assert(x != 0);
18
19 return 0;
20 }

(a) An example program.

1 unsigned __VERIFIER_nondet_uint(void)
2 {
3 static unsigned test_vector[] = { 1, 4294967295 };
4 static unsigned test_cnt = 0;
5
6 return test_vector[test_cnt++];
7 }

(b) C implementation of the mock environment.

1 @gazer.test_vector0 = private constant [2 x i32] [i32 1, i32 -1]
2 @gazer.test_cnt0 = private global i32 0
3
4 define i32 @__VERIFIER_nondet_uint() {
5 entry:
6 %0 = load i32, i32* @gazer.test_cnt0
7 %1 = add i32 %0, 1
8 store i32 %1, i32* @gazer.test_cnt0
9 %2 = getelementptr inbounds [2 x i32], [2 x i32]* @gazer.test_vector0, i32 0, i32 %0
10 %3 = load i32, i32* %2
11 ret i32 %3
12 }

(c) LLVM IR implementation of the mock environment.

Figure 4.5: Mock environment generation example.

4While the example shows a C implementation of the mock environment to help readability, our tool
currently emits mock environments only in the LLVM IR. However, as the concept is universal, it is very easy
to write a mock generator that emits C code.
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Chapter 5

Implementation

This chapter describes some of the implementation details of gazer. Section 5.1 gives
an overview of the overall architecture, Section 5.2 describes some of our most notable
technical solutions that could potentially be applied in other contexts as well. Section 5.3
concludes this chapter with a short user documentation and usage example.

5.1 Architecture

Figure 5.1 presents an overview of the gazer architecture. The system is divided into
several libraries. The core library, GazerCore contains all components related to types, ex-
pressions and control flowautomata. This core library acts as the link between the verifica-
tion frontend (GazerLLVM) and backends (GazerBMC, GazerTheta). As the boundedmodel
checker requires an SMT-solver to operate, we also provide an interface for the Z3 [27]
SMT solver (GazerZ3Solver).

The verifier component (GazerVerifier) offers useful interfaces for the verification back-
ends, so that they can tie into the verification process seamlessly. The traceability library
(GazerTrace) is used to produce counterexample traces and is present in every step of the
verificationworkflow. Verification libraries are bundled togetherwith the LLVM frontend
and the traceability component into separate tools such gazer-bmc and gazer-theta.

All components were implemented in C++17, with dependencies on LLVM [44], the Boost
software libraries1 and the Z3 theorem prover [27]. The implemented tool is available
online2 under an open-source license.

5.2 Technical Solutions

This section lists some of the notable technical challenges and solutions we have encoun-
tered during the development of gazer. All the solutions described in the following has
required the author to further expand his knowledge about software architectures and
C++ alike. We believe that the solutions presented below would be of interest to anyone
wishing to implement a tool similar to gazer.

1https://www.boost.org/
2https://github.com/ftsrg/gazer
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Figure 5.1: The architecture of gazer.

5.2.1 Lifetime Management

The central entity of the gazer infrastructure is the GazerContext class. It uniquely owns
each type, variable, and expression, managing their lifetimes. Types and variables live
“forever” and they are only deleted when their enclosing context is destroyed. Expres-
sions, on the other hand, are reference-counted and allocated using the so-called flyweight

pattern.

Flyweight is a structural design pattern that caches redundant immutable objects in a
shared repository and returns lightweight handles to them. Objects are stored in and
created by the so-called flyweight factory. Each time there is a request for a new object, the
flyweight factory checks whether it already exists in the cache. If no such item is present
in the cache, the flyweight factory will construct a the new object, place it into the cache,
and return a handle to it. Otherwise, it just returns a handle to the already existing cached
object.

In the case of gazer, the flyweight factory is a class called ExprStorage, which is imple-
mented as an intrusive hash table. As expression classes are immutable, all information
about them is known at the time of construction. When a new expression object is re-
quested, we calculate its hash code from the constructor arguments and check whether
the expression storage already contains it. If so, we merely increment the reference count
and return a handle to the stored expression, otherwise a new expression is constructed.
This offers us two main benefits.

• Expressions belonging to the same context are semantically equal if and only if
their addresses are equal. This means that instead of traversing a possibly huge
expression tree to check semantic equivalence, we can do so by a mere pointer
comparison.

• Memory usage is reduced, as an expression cannot be allocated simultaneously at
different places. This is considerable in the case of constants as they are frequently
repeated.
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Reference counting is done via intrusive smart pointers (built upon the intrusive_ptr
utility from the Boost C++ library), which we call ExprRef. If an expression’s reference
count drops to zero, the smart pointer automatically deletes it.3

Figure 5.2 shows the structure of the expression storage with an example of four ex-
pressions. As both reference counting and the hash table bucket list is intrusive, their
bookkeeping data are embedded within the allocated expression object.

ExprStorage

AddExpr

left

refCount = 1
nextPtr = NULL

IntLiteralExpr

value = 0
refCount = 1

nextPtr = NULL

IntLiteralExpr

value = 5
refCount = 4

nextPtr

right

EqExpr

left

refCount = 1
nextPtr = NULL

right
ExprRef<IntLiteralExpr>

ExprRef<EqExpr>

ExprRef<IntLiteralExpr>

Figure 5.2: A possible state of the expression storage.

5.2.2 Expression Pattern Matching

In order to reduce expression size and help the underlying solver or model checking
engine, we perform some automatic reductions on the generated expressions. In gazer,
we do this by using a set of tree-based pattern matching utilities. Each expression class
has its ownmatcher, and eachmatchermay accept additional matchers to perform further
matching on operands or a terminal to bind an operand to variable.

Matchers are implemented using the advanced template metaprogramming features of-
fered by newer versions of C++, such as variadic templates4 and if constexpr.5

The code in Figure 5.3 shows an usage example: given the expression in input, we use a
set of and (m_And), and or (m_Or) matchers.6 After finding the operands we are interested
in, we bind them using the m_Expr terminal matcher. Having recognized the pattern, we
can return a smaller, optimized expression using the bound operands.

3This is not entirely trivial as deleting considerably deep expression trees may overflow the call stack.
On deletion, each expression will call the destructors of its operand pointers, which may destroy their
expressions, thus calling operand destructors, and so on. This can cause an overly large call sequence chain
of destructors and deletion functions. We overcome this issue collecting each expression that will be deleted
and destroying them in one go, reusing the intrusive linked list pointers to avoid heap allocation during
expression destruction.

4https://en.cppreference.com/w/cpp/language/parameter_pack
5https://en.cppreference.com/w/cpp/language/if#Constexpr_If
6The naming convention is based on the similar instruction pattern matching utility found in LLVM.
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1 ExprRef<> input = ...
2 ExprRef<> f1, f2, f3;
3 if (match(input, m_And(m_Or(m_Expr(f1), m_Expr(f2)), m_Or(m_Specific(f1), m_Expr(f3)))) {
4 // (F1 | F2) & (F1 | F3) -> F1 & (F2 | F3)
5 return AndExpr::Create(f1, OrExpr::Create(f2, f3));
6 }

Figure 5.3: Expression rewriting using patterns.

Using this, we can perform expression simplification by defining a set of pattern-matching
rules. As expressions are immutable, we can perform this step right at the point of
construction, thereforeweuse a special FoldingExprBuilder class to construct and return
already optimized expressions. Expressions built through the folding expression builder
are guaranteed to be constant-folded, and we also define about 30 complex patterns to
simplify expressions further.

5.2.3 Expression Visitors

Visitor is a well-known design pattern used to traverse heterogeneous data structures and
perform some type-dependent actions. In the context of gazer, visitors are used to trans-
late our expression language onto the representation of the theorem prover. However,
translating the possibly large formulas built during bounded model checking (using the
method discussed in Section 4.1) may overflow the call stack.

In order to mitigate this problem, we introduced our own expression walker interface
(called ExprWalker), which avoids recursion by using an explicit stack on the heap instead
of the normal call stack. This allows us to avoid stack overflow errors in the case of large
input expressions at the cost of imposing slightly more restrictions on the implementing
classes. The order of the traversal is fixed to be post-order and a particular visitation
step may query the class for the result of an already translated operand. This traversal
order is convenient for expression rewriting and transformations, however it disallows
custom traversals. To speed up transformations, visitors often wish to use caches to store
the result of an already executed transformation. Our expression walker interface allows
this by providing the methods shouldSkip and handleResult. The former method can
query the cache and return true if it was hit, thus skipping the transformation of the input
expression. The latter function may be used to insert already translated entries into the
cache.

While the easiest way to provide a proper stack representation on the heap is by allocating
each stack frame as a separate node, this comeswith some obvious performance penalties.
To avoid this, we have implemented a custom stack-like allocator, which allocates slabs
of a given size (the default setting is 4 kilobytes) in a LIFO-like fashion, implemented as
a linked list. If a slab is full, the allocator allocates another slab and appends it to the
beginning of the slab list. When a slab gets empty, the allocator removes it from the list
and deallocates the memory assigned to it. Our custom stack frames therefore allocated
on the heap through this stack-like allocator and initialized using C++’s placement new7

syntax.

7https://en.cppreference.com/w/cpp/language/new#Placement_new
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5.3 Usage

As discussed previously, gazer comes with two verification backends: the built-in
bounded model checking engine and the one using the theta model checker. These
are deployed into two separate executables: gazer-bmc and gazer-theta. Each tool ac-
cepts a list of .c, .ll and .bc files, which are compiled and linked into a single LLVM IR
module using Clang and llvm-link. The Clang compilation phase accepts some of the
most common C compiler flags, such as preprocessor macro definitions (-D), include
search paths (-I), and warning message preferences (-W). Later stages define their own
set of settings. These settings and their arguments are summarized in Table 5.1.

Note that some of settings are forced in certain situations. For example, --inline and
--math-int is a forced setting (meaning that they are implicitly turned on) in case of
gazer-theta, as the underlying theta model checker does not support function calls and
bit-vectors.

Apart from the environment settings, gazer-theta accepts all algorithm settings spec-
ified by theta, such as abstract domain (--domain), predicate splitting (--predsplit),
refinement strategies (--refinement), and so on.8 These settings are then passed to the
theta verification engine.

Example 15. Consider the C program shown in Figure 5.4a (example.c). This program may

attempt to divide by zero for certain values of k. We can verify this program with either verification

backend:

gazer-bmc --trace --test-harness=harness.ll --bound 10 example.c
gazer-theta --trace --test-harness=harness.ll --refinement=SEQ_ITP

--search=BFS example.c

The former command executes the bounded model checking workflow (with the maximum bound

of 10) on example.c, while the latter uses the theta framework with the sequence interpolation

refinement and BFS search strategies.

In both cases, the verifier will return the verification verdict and error trace shown in Figure 5.4b.

As discussed in the previous chapters, gazer may strip away some of the variables it proves to

be irrelevant to the verification task. However, such removed variables may still show up in the

trace as undefined values (indicated by the text “???”). This behavior can be turned off using the

--no-optimize and --elim-vars=off flags.

As the error trace shows, division by zero may occur the ioread32 function returns -11. The

requested test harness (harness.ll) contains the definition of each function which was declared

but not defined within the input module. Linking this test harness against the original module

yields an executable which may be used to replay the error scenario, as shown in Figure 5.4c.

8The interested reader is invited to consult the theta paper [57] and website (https://github.com/
FTSRG/theta) for further information.
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Table 5.1: Command-line options.

Clang compilation settings
-D=<macro[=<value>]> Define <macro> to <value> (or 1 if <value>

is ommited).
-I=<dir> Add <dir> to the include search paths.
-W=<warning> Enable the specified warning.
LLVM frontend settings
--inline Inline all non-recursive function calls into the

entry procedure.
--inline-globals Lower global variables into locals. May only

be used together with --inline.
--no-assert-lift Do not perform assertion lifting.
--no-optimize Do not run LLVM optimizations passes.
LLVM IR translation settings
--elim-vars Variable elimination setting. Accepted val-

ues are: off, normal (default), aggressive.
--math-int Represent integer values as unbounded inte-

gers instead of bit-vectors.
--no-simplify-expr Do not simplify expressions.
Traceability settings
--trace Print counterexample trace.
--test-harness=<file> Write test harness into <file>.
Bounded model checking settings (gazer-bmc only)
--bound=<bound> Set the maximum verification bound to

<bound>.
--eager-unroll=<bound> Unroll <bound> iterations eagerly.
Theta environment settings (gazer-theta only)
--theta-path=<dir> Full path to theta-cfa JAR file, defaults to

the gazer-theta directory.
--lib-path=<dir> Full path to the directory containing the Z3

libraries required by theta. Defaults to the
gazer-theta directory.

--model-only Donot run the verification engine, just dump
the CFA in theta’s format.
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1 #include <stdio.h>
2
3 extern int ioread32(void);
4
5 int main(void) {
6 int k = ioread32();
7 int i = 0;
8 int j = k + 5;
9
10 while (i < 3) {
11 i = i + 1;
12 j = j + 3;
13 }
14
15 k = k / (i - j);
16
17 printf("%d\n", k);
18
19 return 0;
20 }

(a) A simple C program.

1 Verification FAILED.
2 Divison by zero in example.c at line 15 column 11.
3 Error trace:
4 ------------
5 #0 in function main():
6 call ioread32() returned -11 at 6:13
7 k := -11 (0b11111111111111111111111111110101) at 6:13
8 i := 0 (0b00000000000000000000000000000000)
9 j := ???
10 i := 0 (0b00000000000000000000000000000000)
11 i := 1 (0b00000000000000000000000000000001) at 11:15
12 j := ???
13 j := ???
14 i := 1 (0b00000000000000000000000000000001)
15 i := 2 (0b00000000000000000000000000000010) at 11:15
16 j := ???
17 j := ???
18 i := 2 (0b00000000000000000000000000000010)
19 i := 3 (0b00000000000000000000000000000011) at 11:15
20 j := ???
21 j := ???
22 i := 3 (0b00000000000000000000000000000011)
23 i := 3 (0b00000000000000000000000000000011)
24 j := 3 (0b00000000000000000000000000000011) at 10:5

(b) The error trace.
1 clang example.c harness.ll -o example_test
2 ./example_test
3 [1] 19948 floating point exception (core dumped) ./example_test

(c) Checking the executable test harness.

Figure 5.4: Usage example on a small C program.
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Chapter 6

Evaluation

This chapter presents an evaluation of our implemented tool. Our goal is twofold: first,
we want to demonstrate the applicability of our transformation workflow. Second, gazer
offers a variety of transformation options, which we would like to compare to each other.

Section 6.1 of this chapter describes our benchmark goals and environment, Section 6.2
discusses our benchmark results. Finally, Section 6.3 summarizes our findings.

6.1 Benchmark Environment

The verification task set is acquired from the annual Competition on Software Verification
(SV-Comp) [8] benchmark suite. They may be split into four distinct categories.

locks This task set consists of small (100-150 LOC) locking mechanisms described using
nondeterministic integers and if-then-else constructs.

eca The ECA (event-condition-action) category describes event-driven reactive systems
frommoderate-sized programs to large ones (600-70000 LOC). The events are repre-
sented by nondeterministic integer variables, the conditions are simple if-then-else
statements. While syntactically simple, verifying these programs requires verifying
some of the largest models in the competition repertoire.

ssh-simplified These tasks describemoderate-sized (500-600 LOC) server-client systems.
While these systems are rather complex, verifying the server-client communication
is not part of this task, such factors are abstracted away with nondeterministic
variables.

bitvectors The task set consists of simple bitvectors manipulations, such as addition,
casting, etc. Most programs in this task set are small in size (100-300 LOC), but
require bit-precise modeling of the system.

Our experiment was done using the BMC and theta backends, with the combination of
several flags presented in Table 5.1. The LLVM IR translation process was tweaked using
the --elim-vars, no-optimize and --no-simplify-expr flags. For the locks and ECA
categories, we also experimented with using mathematical integers instead of bit-vectors
using the --math-int flag.

Contrary to previous experiences with our old frontend [54], preliminary measurements
have established that program slicing was not doing any meaningful reductions in the
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case of gazer. Upon further investigation, we have found that picking the single error
call as the criterion instruction introduced most of the program as a dependence of the
error call into the PDG, not allowing the slicer to remove any instructions apart from
some traceability instrumentation (which we wanted to retain). As such, we have chosen
to omit program slicing from this experiment. Furthermore, while our proof-of-concept
flat memory model worked for small programs with simple array operations, it did not
scale well for any practical benchmarks. Therefore we have decided to drop the memory
model and enable inlining for all benchmark programs. Another issue came with the
representation of larger programs for the theta backend: programs in the ECA task
set were taking too long to verify, despite working well with our previous frontend.
Combined with the fact that theta is unable to handle bit-vector operations, this meant
that we had to restrict the evaluation of theta to the locks task set.

As there are 3 variable elimination settings, 2 optimization settings, 2 expression sim-
plification settings and 2 integer representation strategies, the total number of possible
configurations is 3 · 2 · 2 · 2 = 24 for the BMC backend. In the case of theta, we also ex-
perimented with different abstract domains (PRED_CART, PRED_BOOL, EXPL), interpolation
strategies (SEQ_ITP, BW_BIN_ITP) and precision granularity settings (GLOBAL, LOCAL). As
the mathematical integers setting is forced for the theta backend, the final number of
configurations is 3 · 2 · 2 · 3 · 2 · 2 = 144. With a such large number of possible configura-
tions, we have chosen to use a pairwise combination [26] of settings (meaning that final
configuration set covers all combinations of any two settings), generated by the PICT1

tool.

All measurements were carried out on the following configuration:

• Intel Xeon Platinum 8167M CPU @ 2.00 GHz,

• 320 GB RAM (memory limit of 16 GB),

• Ubuntu Linux with Linux Kernel 4.15.0, 2019 x86_64 GNU/Linux.

6.2 Benchmark Results

This section presents the benchmark results for each benchmark category. All measure-
ments were ran 3 times with a time limit of 5 minutes. We consider a verification run
verified (i.e. successful) if it successfully verifies the input model at least once within the
given time limit.

Unless indicated otherwise, results will be shown in a table with four columns. The
first column lists the used configuration flags (except those which are present in every
configuration, such as --inline), while the second column contains the number and
ratio of the verified models. The third column shows the sum of the total verification
time (without timeouts – all runs resulting in a timeout have a verification time of zero),
including the compilation, instrumentation, optimization, and verification phases. In the
case of the BMC backend, the additional fourth column shows the total time spent within
the SMT solver.

Each table is first ordered by the ratio of verified programs (the further ahead a configu-
ration is in the table, the more programs it verified), while the secondary sorting is based
on total verification time (i.e. faster configurations show up earlier).

1https://github.com/microsoft/pict
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6.2.1 Evaluation of the BMC Backend

This section presents our measurement results using the bounded model checker
backend of gazer. All measurements were ran with inlining enabled and
the maximum bound of 12. Therefore all commands were in the form of

gazer-bmc --inline --inline-globals --bound=12 <config> <input>,
where <config> stands for one of the configuration combinations presented below.

The locks task set

Measurement results of the locks benchmark suite are shown in Table 6.1. As we can see,
the boundedmodel checking algorithmperformed extremelywellwith all configurations.
While certain configurations were slightly slower, the magnitude of the verification times
(most combinations verified 13 programs just under a second) does not allow us to declare
any meaningful difference between configurations.

Table 6.1: Benchmarks results for the locks program set, using our BMC backend.

Configuration Verified Total time Solver time
--elim-vars=aggressive --math-int 13/13 < 1s < 1s
--elim-vars=normal 13/13 < 1s < 1s
--elim-vars=off --math-int --no-simplify-expr 13/13 < 1s < 1s
--elim-vars=normal --no-simplify-expr 13/13 < 1s < 1s
--elim-vars=normal --math-int --no-simplify-expr --no-optimize 13/13 < 1s < 1s
--elim-vars=aggressive --no-simplify-expr --no-optimize 13/13 1.5s < 1s
--elim-vars=off --no-optimize 13/13 2.3s < 1s

The ECA task set

Themeasurement results for the ECA task set is shown in Table 6.2. Aswe can see, turning
off variable elimination greatly degrades the performance of the verification algorithm,
resulting in a timeout more than half of the cases. Unsurprisingly, changing the integer
representation from bit-vectors to unbounded mathematical integers results in the best
performance.

As this benchmark set has resulted in themost meaningful results, we present themedian
verification time of each program with the best configuration combination in Table 6.3.
As we can see from the results, the bounded model checking algorithm scales fairly well,
being able to find the problems in programs with more than 10000 lines of code. Note
that there is amismatch between the expected and actual verification verdict in the case of
two input programs, eca4_label09_false.c and eca4_label11_false.c. This is due to
the incomplete nature of the bounded model checker algorithm: as the maximum bound
was set to be 12, it could not find the problem in these programs within the given bound,
therefore the verifier returned SAFE.

The column Iterations tells how many iterations (i.e. bound increases) has the algorithm
performed. One advantage of the stratified inlining algorithmas opposed to static inlining
is that the verification algorithm can terminate as soon as it encounters an error, clearly
shown by the iteration count.
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The bitvectors task set

Table 6.4 shows our results for the bitvectors program set. All configurations were able
to verify all programs, but similarly to the ECA task set, turning off variable elimina-
tion yields the worst performance. Interestingly, the best configurations are the ones
without LLVM optimizations (--no-optimize) with expression simplification turned on,
followed by the ones without expression simplification. While our pairwise combination
method does not allow us to derive definitive conclusions, the results suggest that LLVM
optimizations slightly slow the verifier down.

Table 6.2: Benchmarks results for the ECA program set.

Configuration Verified Total time Solver time
--elim-vars=aggressive --math-int 15/18 607s 496s
--elim-vars=normal --math-int --no-simplify-expr --no-optimize 15/18 680s 559s
--elim-vars=normal 15/18 839s 727s
--elim-vars=normal --no-simplify-expr 14/18 516s 427s
--elim-vars=aggressive --no-simplify-expr --no-optimize 14/18 686s 600s
--elim-vars=off --math-int --no-simplify-expr 7/18 114s 102s
--elim-vars=off --no-optimize 7/18 193s 180s

Table 6.3: Individual results of the best-performing ECA benchmark.

Program name Size (LOC) Expected result Actual result Time Solver time Iterations

eca1_label00_true.c 594 SAFE SAFE <1s <1s 12

eca1_label15_false.c 594 UNSAFE UNSAFE <1s <1s 5

eca1_label20_false.c 594 UNSAFE UNSAFE <1s <1s 7

eca1_label31_true.c 594 SAFE SAFE <1s <1s 12

eca2_label00_true.c 617 SAFE SAFE <1s <1s 12

eca2_label13_false.c 617 UNSAFE UNSAFE <1s <1s 3

eca3_label00_true.c 1669 SAFE SAFE 13s 11s 12

eca3_label09_false.c 1669 UNSAFE UNSAFE 2s 1s 6

eca4_label00_true.c 4827 SAFE SAFE 51s 39s 12

eca4_label09_false.c 4827 UNSAFE SAFE 76s 64s 12

eca4_label11_false.c 4827 UNSAFE SAFE 74s 61s 12

eca4_label29_true.c 4827 SAFE SAFE 52s 40s 12

eca5_label00_false.c 11141 UNSAFE UNSAFE 70s 57s 8

eca5_label02_true.c 11141 SAFE SAFE 234s 201s 12

eca6_label00_false.c 9484 UNSAFE UNSAFE 38s 28s 6

eca6_label03_true.c 9484 SAFE TIMEOUT 300s - -

eca7_label00_true.c 73698 SAFE TIMEOUT 300s - -

eca7_label03_false.c 73698 UNSAFE TIMEOUT 300s - -

The ssh-simplified task set

The ssh-simplified benchmark set (measurements shown in Table 6.5) further verifies our
suspicion that turning off LLVM optimizations actually improves performance. Same as
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Table 6.4: Benchmarks results for the bitvectors program set.

Configuration Verified Total time Solver time
--elim-vars=aggressive --no-optimize 4/4 11s 10s
--elim-vars=normal --no-optimize 4/4 16s 14s
--elim-vars=aggressive --no-simplify-expr 4/4 24s 22s
--elim-vars=normal --no-simplify-expr 4/4 34s 32s
--elim-vars=off --no-simplify-expr --no-optimize 4/4 163s 160s
--elim-vars=off 4/4 170s 166s

Table 6.5: Benchmarks results for the ssh-simplified program set.

Configuration Verified Total time Solver time
--elim-vars=normal --no-optimize 9/12 146s 139s
--elim-vars=aggressive --no-optimize 9/12 156s 147s
--elim-vars=off --no-simplify-expr --no-optimize 9/12 165s 156s
--elim-vars=normal --no-simplify-expr 9/12 266s 260s
--elim-vars=aggressive --no-simplify-expr 9/12 307s 300s
--elim-vars=off 8/12 16s 11s

in the case of the benchmarks shown previously, turning variable elimination off greatly
reduces performance.

6.2.2 Evaluation of the theta Backend

This section presents our measurement results using the theta backend. As dis-
cussed in Section 6.1, we had to restrict the evaluation of this backend to the
locks task set. All measurements were run with a command in the form of

gazer-theta --inline --inline-globals --math-int <config> <input>,
where <config> is one of the possible configuration combinations.

The measurement results are shown in Table 6.6. While the verification seems to be
somewhat (10-15 seconds) slower compared to the results of the BMC backend, note that
each invocation of theta requires starting a Java virtual machine, introducing some fixed
overhead into the verification workflow.

As with our experiences using the BMC backend, turning off variable elimination still
seems to cause a noticeable drop in performance. Interestingly, the last configuration was
only able to verify 7 programs out of 13 within the given time limit. While backward
binary interpolation (BW_BIN_ITP) has offered good performance in conjunction with
multiple abstract domains when variable elimination was turned on, turning variable
elimination off completely broke the performance of this combination.

6.3 Summary

The evaluation and measurement results show the applicability of gazer. Given the right
configurations, the bounded model checker backend performs fairly well, being able to
verify larger programs. On the other hand, the theta CFA generation algorithm seems to
generate models which are difficult to handle for theta.
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Table 6.6: Benchmarks results for the locks program set, using the theta backend.

Configuration Verified Total time
--elim-vars=aggressive --no-optimize --domain=PRED_CART
--refinement=BW_BIN_ITP --precgranularity=GLOBAL

13/13 12s

--elim-vars=normal --no-simplify-expr --domain=PRED_CART
--refinement=SEQ_ITP --precgranularity=GLOBAL

13/13 12s

--elim-vars=normal --domain=PRED_BOOL --refinement=SEQ_ITP
--precgranularity=GLOBAL

13/13 12s

--elim-vars=aggressive --domain=EXPL
--refinement=BW_BIN_ITP --precgranularity=LOCAL

13/13 12s

--elim-vars=normal --no-simplify-expr --no-optimize
--domain=EXPL --refinement=BW_BIN_ITP
--precgranularity=LOCAL

13/13 12s

--elim-vars=aggressive --no-simplify-expr
--no-optimize --domain=PRED_BOOL --refinement=SEQ_ITP
--precgranularity=LOCAL

13/13 12s

--elim-vars=off --domain=EXPL --refinement=SEQ_ITP
--precgranularity=GLOBAL

13/13 13s

--elim-vars=off --no-simplify-expr --no-optimize
--domain=PRED_CART --refinement=SEQ_ITP
--precgranularity=LOCAL

13/13 17s

--elim-vars=off --no-optimize --domain=PRED_BOOL
--refinement=BW_BIN_ITP --precgranularity=GLOBAL

7/13 78s

Interestingly, LLVM optimizations have regressed the performance of the verifier, rais-
ing the argument that while an optimization may be useful for speeding up executable
programs, it may not prove as helpful when trying to improve program verification.

Sadly, while program slicing has proven to be extremely effective with our previous fron-
tend [54], it has failed to perform any meaningful reductions on our check-instrumented
programs. Furthermore, the scalability issues with our flat memory model has pre-
vented us from performing proper measurements on programs with memory accesses.
Investigating these performance issues and their causes should be a direction of further
development.
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Chapter 7

Conclusion

The goal of this work was to provide an efficient and user-friendly model checking work-
flow for C programs, a goal which we believe we have met. During the preparation
of this thesis, we have examined the theoretical background of compiler design, pro-
gram dependency analyses, and software model checking. We have presented several
program analysis (e.g. dominance, program dependence, memory analyses, etc.) and
transformation (e.g. source-to-model transformation, optimization, program slicing, etc.)
algorithms. We also described twomodel checking algorithms: boundedmodel checking
with stratified inlining and CEGAR. We have also proposed a small and simple optimiza-
tion technique for the bounded model checking algorithm.

From the practical point of view, we have implemented a moderate-sized (17000 lines
of code) formal verification framework in C++, with a full source-to-model transforma-
tion workflow, a memory model and a built-in bounded model checker. We have used
traceability instrumentation to translate low-level verification verdicts into a meaningful
format on the source-code level. We have also added support for the generation of exe-
cutable test harnesses, i.e. mock environments that allow developers to investigate faults
in a familiar environment with tools such as debuggers.

We evaluated gazer on parts of the Competition on Software Verification benchmark set.
The implemented workflow has demonstrated its usability, albeit certain parts of it show
signs of poor scalability. We believe that by applying some tweaks and improvements
on these components will allow gazer to be an efficient, accessible and user-friendly
model checking library.

Contributions. The following list gives a brief overview of the main theoretical and
practical contributions of this work.

• The design and implementation of gazer, its expression library with some conve-
nience utilities (Section 5.2), and a control flow automaton formalism (Section 3.4.1).

• The LLVM frontend of gazer (Chapter 3), in which we have implemented a check
instrumentation workflow to represent software safety properties as reachability
problems with built-in traceability support (Section 3.1). In order to reduce the size
of the program, we have used a set of built-in LLVM optimizations from LLVM’s
transformation library. In addition, we implemented some other transformations
present in the literature, such as program slicing and assertion lifting (Section 3.2).
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• A generic, extensible memory SSA implementation for LLVM (Section 3.3.1), de-
signed to allow the convenient implementation of awide variety ofmemorymodels,
out of which we have shipped a proof-of-concept flat memorymodel (Section 3.3.2).

• The translation of LLVM instructions into our control flow automaton formalism,
w.r.t. a memory model (Section 3.4).

• The implementation of a bounded model checking algorithm using the stratified
inlining technique, extended with a optimization step of our own (Section 4.1).

• Seamless integration of the theta model checking framework into our verification
workflow (Section 4.2).

• The traceability component of gazer, which presents verification results in a human-
readable trace format and generates executable test harnesses to further aid the
investigation of the erroneous behavior (Section 4.3).

Future work. While the implemented workflow may be considered complete, there are
still several directions of future development.

• The implemented flat memory model is very simple and scales poorly. The im-
plementation of a more refined memory model (either by the optimization of the
current one or by the implementation of new ones) would allow us to verify real-
world programs with memory operations.

• According to measurements, the theta backend currently suffers from performance
problems, likely introduced by the way the CFA generation algorithm has built its
input model. This requires further investigation and an eventual fix.

• While our boundedmodel checking backend offers goodperformance, it is currently
not complete: certain techniques, such as k-induction [55] could be used to prove
correctness of fault-free programs.

• Currently, gazer only considers sequential programs: support may be added for
parallel programs and operations.
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