
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

Incremental Static Analysis
of Large Source Code Repositories

Bachelor’s Thesis

Author Advisors
Dániel Stein Gábor Szárnyas, PhD Student

Dr. István Ráth, Research Fellow

2014

Contents

Kivonat i

Abstract ii

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement and Requirements . 2
1.3 Objectives and Contributions . 2
1.4 Structure of the Thesis . 3

2 Background and Related Work 4
2.1 Big Data and the NoSQL Movement . 4

2.1.1 Sharding . 5
2.1.2 High Availability . 5
2.1.3 4store . 6
2.1.4 Query Languages and Evaluation Strategies 6

2.2 Modeling . 7
2.2.1 Metamodels and Instance Models 8
2.2.2 The Eclipse Modeling Framework 8
2.2.3 JaMoPP . 9
2.2.4 Graph Data Models . 10
2.2.5 Model Queries over EMF and RDF 13

2.3 Static Analysis in Practice . 14
2.3.1 Checkstyle . 14
2.3.2 FindBugs . 15
2.3.3 PMD . 15

2.4 Well-formedness Checking over Code Models 16

3 Overview of the Approach 18
3.1 Architecture . 18

3.1.1 Main Components . 18
3.1.2 Steps of Processing . 21
3.1.3 Serializing EMF Models into RDF 23

3.2 Incremental Processing . 23
3.2.1 Processing Changes in the Source Code 24
3.2.2 Incremental Query Evaluation . 25

3.3 Distributed Processing . 25

4 Elaboration of the Workflow 26
4.1 Case Study . 26

4.1.1 Workspace . 26
4.1.2 Source Code Snippet . 27
4.1.3 Well-formedness Rules . 27

4.2 Code Model Representation . 28
4.2.1 JaMoPP Metamodel . 28
4.2.2 JaMoPP Instance Model . 28
4.2.3 Database Contents . 29

4.3 Well-formedness Rules in Query Form . 31
4.4 Evaluating a Query . 34
4.5 Processing Changes . 34

5 Evaluation 36
5.1 Benchmarking Scenarios . 36

5.1.1 Validating the Initial Codebase . 36
5.1.2 Simulating a Change in the Source Code 37
5.1.3 Projects Selected for Verification 37

5.2 Benchmarking Environment . 38
5.2.1 Hardware . 39
5.2.2 Software . 39

5.2.3 Configuration . 39
5.3 Measurement Results . 40
5.4 Result Analysis . 44

5.4.1 Threats to Validity . 45

6 Comparison of Currently Used Static Analyzers 46
6.1 Configurations . 46

6.1.1 FindBugs . 46
6.1.2 PMD . 47
6.1.3 Checkstyle . 47
6.1.4 Columbus . 47

6.2 Measurement Results . 49
6.3 Result Analysis . 49

6.3.1 Threats to Validity . 50

7 Conclusions 51
7.1 Summary of Contributions . 51

7.1.1 Scientific Contributions . 51
7.1.2 Practical Accomplishments . 51

7.2 Limitation and Future Work . 52

Acknowledgments 53

List of Figures iv

Bibliography ix

Appendix x
H.1 JaMoPP metamodel . x

HALLGATÓI NYILATKOZAT

Alulírott Stein Dániel, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem
engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-
dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos
értelemben, de átfogalmazvamás forrásból átvettem, egyértelműen, a forrás megadásával
megjelöltem.
Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyel-

vű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáfér-
hető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán
keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyúj-
tott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított
diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2014. december 12.

Stein Dániel
hallgató

Kivonat
Nagyméretű, komplex szoftverek fejlesztésekor a közreműködők számának növekedé-
sével a kódban is gyakrabban fordulhatnak elő hibák. Ezek kiküszöbölésére jelenleg is
rendelkezésre állnak megoldások, mint például a statikus analízis, amely többek között
automatikusan ellenőrzi, hogy a kód megfelel-e a kódolási szabályoknak.
A statikus analízis a gyakorlatban sokszor lassú és drága művelet. Különösen folytonos

integrációs alkalmazása során jelent skálázhatósági kihívást, mert mindenmódosítás után
újra kell futtatni az ellenőrzést a teljes kódbázison. Ugyanakkor nagy igény jelentkezik
a statikus analízis technológiák gyorsítására, mivel a gyakorlatban a tesztelést és így a
fejlesztés egészét jelentősen gyorsíthatja, hiszen segíti a hibák korai szűrését.
Az egyik lehetséges megoldás az inkrementális feldolgozás. A szakdolgozat keretében

olyan rendszert készítettem, mely segítségével a felhasználók által definiált problémákra
magas szinten, gráfminták alapján lehet keresni. A rendszer inkrementalitásának lényege,
hogy a lekérdezések kiértékelése és riport első generálása után a rendszer hatékonyan fel
tudja dolgozni a kód változásait is, így a későbbi futások jóval hatékonyabbak.
A rendszer működőképességének igazolására olyan méréseket terveztem, melyek nyílt

forrású programkódok analízisfolyamatainak végrehajtásával betekintést nyújtanak a
rendszer skálázhatóságára az elemzett kódbázis méretének tükrében. Ezeket a mérése-
ket elosztott környezetben végeztem el.

i

Abstract

In large-scale complex software development, the number of coding errors are notice-
ably increasing with the number of contributors. Mitigatory solutions for this problem
exist, but they have their limitations. For example, static analysis methods that verify
that the code is compliant with coding conventions are frequently very resource inten-
sive in practice. Especially for continuous integration purposes, the size of the codebase
would require a scalable solution because for every changeset in the source, the entire
verification process needs to be reapplied on the whole codebase.
Incremental processing is one of the possible solutions for speeding up static analysis.
In my thesis I present a system that is able to search for coding problems based on high
level specifications by graph patterns. The system supports incremental evaluation by
processing source code changes and mapping them efficiently to stages of the processing
workflow. Hence, after the initial query evaluation and report generation, consecutive
runs are significantly more efficient.
To investigate the scalability of the described system, I present benchmark results that
are based on measurements carried out with open source code bases and standard coding
validation rules. These benchmarks were executed in a distributed environment.

ii

Chapter 1

Introduction

1.1 Context

Quality control plays an important role in large-scale software development. The more
developers work together on developing a software, the more versatile their coding style
and conventions are. To ensure the quality of the software source and help developers
with their tasks, a solution is needed to continuously review the mistakes in the code and
enforce the conventions.

Version
Control
System

Build
Environment

Development
Environment

Testing
Environment

Code
Analyzer

Figure 1.1: Continuous Integration workflow extended with Static
Analysis.

Version control systems and continuous integration (CI) [1] are widely used tools of the
modern software developers. Figure 1.1 shows an extended version of the generally used
continuous integration workflow.
The basic workflow consists of the following steps. The developer makes modifications
to the codebase using their Development Environment. The modifications are committed
into a Version Control System, and this commit triggers the Build Environment to build
the project. The Testing Environment can then perform runtime tests on latest build of

1

the project. After this process, the results — build and test logs — are presented to the
developer.
This information helps the developers with discovering bugs and failures before the soft-
ware is released. Producing this information often and early in the development work-
flow is vital for agile development.
In order to supplement the basic CI workflow, a proven method of enhancing software
quality is using static program analysis. During this method, the code is analyzed without
executing the application. In practice, this method is able to reveal problems that are
undetectable with testing and thus is able to aid the developer in creating high quality
software.

1.2 Problem Statement and Requirements

Static analysis techniques are often resource- and time-consuming. As the examined
project grows in complexity and in the number of contributors, the number and frequency
of source changes is increasing. Hence, static analysis requires even more resources.
For large code bases, static analysis may become so time-consuming that analyzing the
software for each change is not practical any more. A temporary solution to tackle this
problem is to process the changes in batches. To save resources, static analysis runs are
carried out for a joined group of changes, rather than for every individual commit.
In an ideal situation, even before committing the changes, the developers receive feed-
back about the problems their modifications would imply.

1.3 Objectives and Contributions

Our main objective is to provide a solution for reducing the time required by software
source analysis after a new modification is committed.
We aim to create a framework, ISAaC (Incremental Static Analyzer after Commit), that
transforms a source code repository into a code model representation graph and performs
code convention compliance checks.
Also, it should be able to process a subset of the repository, e.g. only the modifications
introduced by the latest commit. This way, the system will be capable of incrementally
processing the modifications in a commit. In this context, incremental processing means
that only the modifications and their effects are merged into a continuously stored and
updated report of the source project.
This framework requires a backend, e.g. a version control system, that is capable of send-
ing notifications of the changes in the source code repository. Version control systems
are not only able to provide the latest or the earlier revisions of the code, but also the
changes that happened between revisions.

2

Our framework uses a dedicated component to determine the effects of the changes in
addition to the changes provided by the version control system. This component also
calculates the source code artifacts that have to be reprocessed with static analysis. This
way, we only have to work on a subset of the source code, instead of reprocessing the
whole project after a modification occurs.
In order to evaluate our framework, we created a benchmarking environment and con-
ducted measurements on open-source software repositories.

1.4 Structure of the Thesis

This thesis is structured as follows. Chapter 2 introduces the background technologies
required to build an incremental static analyzer. Chapter 3 shows the overview of our
approach and gives detailed view of the main components of its architecture. Chapter 4
presents our implementation, ISAaC, and discusses the steps of the analysis. Chapter 5
demonstrates and evaluates the performance of ISAaC. Chapter 6 compares the currently
used static analyzers. Chapter 7 concludes the thesis and presents our future plans.

3

Chapter 2

Background and Related Work

In this chapter we introduce the conceptual foundations and technologies which form
the basis of our work. We discuss the building blocks required to create and incremental
static analyzer. We also investigate similar systems and discuss related work.

2.1 Big Data and the NoSQL Movement

One of the building blocks we are looking for is a database backend that is capable of
storing high volume of semi-structured data and can also evaluate queries which return
a large amount of data. This section loosely follows [2] and explains why we first turned
to NoSQL databases to store graph data.
Since the 1980s, database management systems based on the relational data model [3]
dominated the database market. Relational databases have a number of important ad-
vantages: precise mathematical background, understandability, mature tooling and so
on. However, due to their rich feature set and the strongly connected nature of their
data model, relational databases often have scalability issues [4, 5]. They are typically
optimized for transaction processing, instead of data analysis (see data warehouses for an
exception).
In the last decade, large organizations struggled to store and process the huge amounts
of data they produced. This problem introduces a diverse palette of scientific and engi-
neering challenges, called Big Data challenges.
Big Data challenges spawned dozens of new database management systems. Typically,
these systems broke with the strictness of the relational data model and utilized simpler,
more scalable data models. These systems dropped support for the Structured Query
Language (SQL) used in relational databases and hence were called NoSQL databases1 [6].
As NoSQL databases look more promising than relational databases to store high volume
of rich structured (graph) data, we experimented with NoSQL databases.

1The community now mostly interprets NoSQL as “not only SQL”.

4

CRUD
Interface

Database Cluster

Elastic
peer-to-peer

Master-Slave

(Web)
Application

Client Client Client

Figure 2.1: Big Data database architecture.

Figure 2.1 illustrates a “typical” Big Data database architecture. As we mentioned, many
NoSQL databases dropped the support for complex query languages like SQL. They have
an interface that provides the CRUD operations: Create, Read, Update and Delete. To
perform more complex actions, usually another component, e.g. a web application has
to translate them to a sequence of the CRUD operations.
Big Data databases are generally deployed in clusters in practice, as additional services,
like sharding and high availability are also needed while storing a high volume of data
to be available at any time.

2.1.1 Sharding

To provide scalable persistence and processing for large amounts of data, the data has to
be split between multiple computers. This process is known as data sharding.

2.1.2 High Availability

High-availability is crucial for near real time data consumer systems, but it is also prac-
tical for less time-sensitive use cases. A group of computers arranged into a database
cluster are able to provide continuous service even if parts of the system fail.
Without clustering, if a machine fails to provide the service to the clients (e.g. application
crashes, network communication issues), the whole systemmay become unavailable until
the problem is eliminated.
High availability clusters mitigate this problem, as a redundant and clustered, fault-
tolerant system can provide its services, while it is partially disabled. Until the failed

5

components are fixed (automatically or with manual help), other components take over
the tasks of the failed component.
Figure 2.1 shows two main approaches of cluster architecture, but they can vary for each
database type.

2.1.3 4store

Although triplestores have been around for more than a decade, they share many simi-
larities with NoSQL databases, including non-relational data model and support for large
amounts of data.
4store is an open-source, distributed triplestore created by Garlik [7] and written in C. It
is primarily applied for semantic web projects.

Architecture 4store was designed to work in a cluster with high-speed networks. 4store
server instances are capable of discovering each other using the Avahi configuration
protocol [8]. 4store offers a command-line and an HTTP server interface.

Data Model 4store’s data model is an RDF graph (discussed in Section 2.2.4). It
supports various RDF serialization formats, including RDF/XML, Turtle, etc. (see Sec-
tion 2.2.4), which is processed using the Raptor RDF Syntax Library [9].

Sharding The segmenting mechanism in 4store distributes the RDF resources evenly
across the cluster. 4store also supports replication by mirroring tuples across the cluster.

Query Language and Evaluation 4store uses the Rasqal RDF Query Library [10] to
support SPARQL queries (discussed in Section 2.1.4).

2.1.4 Query Languages and Evaluation Strategies

There are numerous strategies to define and execute a query. Queries can be expressed
in imperative programming languages over a data access interface such as the Eclipse
Modeling Framework (EMF, see Section 2.2.2), or with declarative languages, processed
by a query framework, such as OCL [11] or EMF-IncQuery [12].
Pattern matching, one of the various methods to retrieve data from a model is what we
base our approach on. Following [13], we define graph patterns and discuss how they
are used for querying.
Graph patterns are a declarative, graph-like formalism representing a condition (or con-
straint) to be matched against instance model graphs. The formalism is useful for various
purposes in model-driven development, such as defining model transformation rules or

6

defining general purpose model queries including model validation constraints. A graph
pattern consists of structural constraints prescribing the interconnection between nodes
and edges of a given type.
Graph patterns are extended with expressions to define attribute constraints and pattern
composition to reuse existing patterns. The called pattern is used as an additional set
of constraints to meet, except if it is formed as negative application condition (NAC)
describing cases when the original pattern does not hold.
Pattern parameters are a subset of nodes and attributes interfacing the model elements
interesting from the perspective of the pattern user.
A match of a pattern is a tuple of pattern parameters that fulfill all the following condi-
tions:

1. have the same structure as the pattern,

2. satisfy all structural and attribute constraints,

3. and does not satisfy any NAC.

When evaluating the results of a graph pattern, any subset of the parameters can be bound
to model elements or attribute values that the pattern matcher will handle as additional
constraints. This allows re-using the same pattern in different scenarios, such as checking
whether a set of model elements fulfill a pattern, or list all matches of the model.

SPARQL SPARQL (recursive acronym for SPARQL Protocol and RDF Query Language)
is an RDF query language. (RDF is discussed in detain in Section 2.2.4.) SPARQL can be
used to express queries across diverse data sources, whether the data is stored natively
as RDF or viewed as RDF via middleware. SPARQL contains capabilities for querying
required and optional graph patterns along with their conjunctions and disjunctions.
SPARQL also supports aggregation, subqueries, negation, creating values by expressions,
extensible value testing, and constraining queries by source RDF graph. The results of
SPARQL queries can be result sets or RDF graphs. [14, 15]
For an example SPARQL query, see Section 2.2.5.

2.2 Modeling

Modeling is a very versatile concept, the word itself may refer to various topics. In
the context of this thesis, by models we primarily mean data models. A data model,
or sometimes called domain model organizes the data elements, how relate to each one
another and what actions can be performed with them.

7

2.2.1 Metamodels and Instance Models

Metamodeling is a methodology for the definition of modeling languages. A metamodel
specifies the abstract syntax (structure) of a modeling language. [2]
The metamodel contains the main concepts and relations of the domain specific language
(DSL) and defines the graph structure of the instance models. To enrich the expressive
power of the language, attributes are added to the concepts. By doing this, the lan-
guage can be extended with predefined domains of data types (like integers, strings) that
are supported by the metamodeling language. Additionally, some structural constraints
might be specified with the elements like multiplicity.
Models describing a particular problem in the domain, called instance models, are defined
using the elements of the metamodel.

2.2.2 The Eclipse Modeling Framework

Eclipse is a free, open-source software development environment and a platform with
extensible plug-in system for customization. Eclipse comes with its own modeling tools,
with the core framework called Eclipse Modeling Framework (EMF).
The EMF project is a modeling framework and code generation facility for building tools
and other applications based on a structured data model. From a model specification
described in XMI, EMF provides tools and runtime support to produce a set of Java classes
for the model, along with a set of adapter classes that enable viewing and command-
based editing of the model, and a basic editor. EMF (core) is a common standard for data
models, many technologies and frameworks are based on. [16]

Ecore

Ecore is the metamodeling language used by EMF. It has been developed in order to
provide an approach for metamodel definition that supports the direct implementation
of models using a programming language. Ecore is the de facto standard metamodeling
environment of the industry, and several domain-specific languages are defined using
this formalism. [2]
Figure 2.2 shows only a small fraction of the metamodel, as there is many more classes
in the Ecore metamodel. The main classes are the following:

– EAttribute represents a named attribute literal, which also has a type.

– EClass represents a class, with optional attributes and optional references. To sup-
port inheritance, a class can refer to a number of supertype classes.

– EDataType is used to represent simple data types that are treated as atomic (their
internal structure is not modeled). Data types are identified by their name.

8

EClass
name : EString

EReference
name : EString
containment : EBoolean
lowerBound : EInt
upperBound : EInt

EDataType
name : EString

EAttribute
name
lowerBound : EInt
upperBound : EInt

eSuperTypes
0..*

eReferences
0..*

eAttributes
0..*

eOpposite
0..1

eAttributeType
1

Figure 2.2: An illustrative core part of Ecore, the metamodeling lan-
guage of EMF.

– EReference represents a unidirectional association between EClasses and is identi-
fied by a name. It is also possible to mark a reference as a containment that rep-
resents composition relation between elements. A bidirectional association should
be modeled as two EReference instances mutually connected via their opposite ref-
erences.

An Ecore model has a root object, representing the whole model. The children of this
root object are packages, and the children of those are classes.
More detailed illustrations of the metamodel can be found in the EMF Documenta-
tion [17].

2.2.3 JaMoPP

JaMoPP [18] is a set of Eclipse plug-ins that can be used to parse Java source code into
EMF-based models and vice versa. JaMoPP consists of:

– a complete Java 5 Ecore Metamodel,

– a complete Java 5 EMFText Syntax, and

– an implementation of Java 5’s static semantics analysis.

9

Through JaMoPP, every Java program can be processed as any other EMFmodel. JaMoPP
therefore bridges the gap between modeling and Java programming. It enables the ap-
plication of arbitrary EMF-based tools on full Java programs. Since JaMoPP is developed
through metamodeling and code generation, extending Java and embedding Java into
other modeling languages, using standard metamodeling techniques and tools, is now
possible. [18]
JaMoPP acts as a serialized file parser, when one wants to open a Java file programmat-
ically. It parses the file and returns an EMF model representing the contents of the file.
After this, it can be handled as an ordinary EMF model.

JaMoPP Metamodel Packages

The JaMoPP metamodel completely covers the Java 5 syntax with 18 packages, 80 ab-
stract and 153 concrete classes. The metamodel contains all elements of the Java lan-
guage, including the newly introduced elements in Java 5 [19]. Unfortunately Java 6
and later versions are not supported yet.
The JaMoPP metamodel packages and their main classes are listed in the Appendix Sec-
tion H.1.

2.2.4 Graph Data Models

In this section, we enumerate the different graph model types and demonstrate how
graph-oriented interpretation of software code model and NoSQL data representations is
alike. This section loosely follows [2].
Along the well-known and widely used relational data model, there are many other data
models. NoSQL databases are often categorized based on their data model (e.g. key–value
stores, document stores, column families). In this thesis, we focus on graph data models.
The graph is a well-known mathematical concept widely used in computer science. To
understand how the models are transformed in our approach, it is important to under-
stand the concept of different graph data models.
The most basic graph model is the simple graph, formally defined as G = (V; E), where V is
the set of vertices and E ⊆ V×V is the set of edges. Simple graphs are sometimes referred
as textbook-style graphs because they are an integral part of academic literature. Simple
graphs are useful for modeling homogeneous systems and have plenty of algorithms for
processing.
Simple graphs can be extended in several different ways (Figure 2.3). To describe the
connections in more detail, we may add directionality to edges (directed graph). To allow
different connections, we may label the edges (labeled graph).
Typed graphs introduce types for vertices. Property graphs (sometimes called attributed
graphs) add even more possibilities by introducing properties. Each graph element, both

10

Directed graph

Labeled graph

Semantic graphTyped graph Property graph

Add edge labels

Simple graph

Add directionality

Add propertiesAdd types
Make
labels URIs

Figure 2.3: Different graph data models (based on [20]).

vertices and edges can be described with a collection of properties. The properties are
key–value pairs, e.g. type = 'Person', name = 'John', age = 34. Semantic graphs
use Uniform Resource Identifiers (URIs) instead of labels, otherwise they have similar
expressive power as labeled graphs.

Resource Description Framework (RDF)

The Resource Description Framework (RDF) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata data model. The RDF data model
is based on the idea of making statements about resources in the form of triples. A triple
is a data entity composed of a subject, a predicate and an object, e.g. “John instanceof
Person”, “John is 34”.

<contact:Person>

<http://www.w3.org/

People/EM/contact#me>

<http://www.w3.org/
1999/02/22-rdf-
syntax-ns#type>

<contact:

mailbox>

"Dr."

"mailto:em@w3.org"

"Eric Miller"

<contact:

personalTitle>

<contact:

fullName>

Figure 2.4: W3C RDF example depicted as a graph.

11

From the example in [21], the graph database content is visualized on Figure 2.4. The
serialized statements in RDF/XML format of the database are found in Source 2.1.

<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>

</contact:Person>

</rdf:RDF>

Source 2.1: W3C RDF example in RDF/XML format.

In this example the following statements are expressed:

– People/EM identifies a Person

– his name is Eric Miller

– his title is Dr.

– his email address is em@w3.org

The RDF data model is capable of expressing semantic graphs. Although the semantic
graph data model has less expressive power than the property graph data model, by in-
troducing additional resources for each property, a property graph can be easily mapped
to RDF.
There are various serialization formats for RDF, including:

– Turtle [22] — an easy to read, compact format.

– N-Triples [23] — a simple, easy-to-parse, line-based format, where every line con-
tains a triple.

– N-Quads [24] — a superset of N-Triples, when multiple graphs are serialized.

– JSON-LD [25] — a JSON-based RDF format.

– RDF/XML [26] — an XML-based format, it was the first standard format of RDF.

The example in Source 2.1 was serialized in RDF/XML. The following RDF sources in this
report are mostly in Turtle format.
There are several graph databases that are able to import graphs from RDF or triplestore
formats (e.g. Neo4j [27], Titan [28, 29]/Cassandra [30, 29], Cayley [31], 4store [7]).

12

2.2.5 Model Queries over EMF and RDF

In this section, we demonstrate how queries can be performed on EMF and RDF data
models. First, we show how one can iterate over the elements stored in an EMF model
using the Java API provided by EMF (Section 2.2.2). Second, we present a graph pattern
(Section 2.1.4) formulated in SPARQL (Section 2.1.4).
Also in Section 3.1.3, we describe in detail how an EMF model can be transformed or
serialized into an RDF format making these two query methods interchangeable.

Java Queries over EMF Models

Using the Java API generated with EMF, it is possible to store and search information in
the created model. To do so, we have to iterate over the object stored in the model and
make sure that the result object and its relations fit to the pattern.

about : EString
fullName : EString
mailbox : EString
personalTitle : EString

Person
about : EString
fullName : EString
mailbox : EString
personalTitle : EString

Figure 2.5: W3C RDF example as an EMF class.

Figure 2.5 shows the metamodel of the example in Figure 2.4 and Source 2.1. The code
in Source 2.2 iterates over the whole model to find every name in the graph. The matches
are collected as follows: every object is examined, whether its type is Person. If it is, we
get its attribute with the identifier fullName. The return values are these attributes.

URI contactsUri = URI.createFileURI("contacts.xmi");
ResourceSet resourceSet = new ResourceSetImpl();
Resource resource = resourceSet.getResource(contactsUri, true);

List<String> names = new ArrayList<>();

TreeIterator<EObject> allContents = resource.getAllContents();

while (allContents.hasNext()) {
EObject next = allContents.next();

if (next.getClass() instanceof Person) {
names.add(((Person) next).getFullName());

}
}

return names;

Source 2.2: Java source executing a query over an EMF instance model.

13

SPARQL Query

The same query collecting the fullName attributes of each Person is expressed as a
SPARQL query in Source 2.3. The query declares that the results are connected to a
node of type contact:Person with an edge labeled as contact:fullName. The former re-
striction can be removed, if the metamodels specifies that contact:fullName label can
only connect values to contact:Person nodes.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX contact: <http://www.w3.org/2000/10/swap/pim/contact#>

SELECT ?Name
WHERE
{

?Person rdf:type contact:Person .
?Person contact:fullName ?Name

}

Source 2.3: Example SPARQL query over the shown RDF graph.

The results (shown in Table 2.1) of this SPARQL query and the previous Java iteration is
the same, and can be easily calculated manually with such a small instance model.

?Name
Eric Miller

Table 2.1: The results of the query executed on the graph in Figure 2.4.

2.3 Static Analysis in Practice

In this section we discuss four of the most widely-used static analysis solutions for Java.

2.3.1 Checkstyle

Checkstyle [32] is a development tool to help programmers write Java code that adheres
to a coding standard. By default it supports the Sun Code Conventions, but it is highly
configurable. It can be invoked with an ANT task and a command line program. [33]
The following paragraphs from [34] show the basic idea that Checkstyle follows for val-
idating the source files:
A Checkstyle configuration specifies which modules to plug in and apply to Java source
files. Modules are structured in a tree whose root is the Checker module. The next level
of modules contains:

– FileSetChecks — modules that take a set of input files and fire error messages.
– Filters — modules that filter audit events, including error messages, for acceptance.

14

– AuditListeners — modules that report accepted events.

Many checks are submodules of the TreeWalker FileSetCheck module. The TreeWalker
operates by separately transforming each of the Java source files into an abstract syntax
tree and then handing the result over to each of its submodules which in turn have a look
at certain aspects of the tree.
Checkstyle obtains a configuration from an XML document whose elements specify the
configuration’s hierarchy of modules and their properties.

2.3.2 FindBugs

FindBugs [35] is a free, open-source static analyzer, searching for problems and bugs in
Java code. It can identify hundreds of potential faults in the code, which are given a rank
1–20, and grouped into the categories: scariest (rank 1–4), scary (rank 5–9), troubling
(rank 10–14), and of concern (rank 15–20) [36].
According to FindBugs, the following can lead to bugs in the code:

– difficult language features

– misunderstood API methods

– misunderstood invariants when code is modified during maintenance

– garden variety mistakes: typos, use of the wrong boolean operator

FindBugs works by analyzing Java bytecode (compiled class files), which means that the
source code of the examined project is not required. It also implies that the source code
has to be compiled prior to checking.
Because its analysis is sometimes imprecise, FindBugs can report false warnings, which
are warnings that do not indicate real errors. In practice, the rate of false warnings
reported by FindBugs is less than 50%. [35]
FindBugs is distributed as a stand-alone GUI application, but there are also plug-ins
for popular developer tools, such as Eclipse [37], NetBeans [38], IntelliJ IDEA [39],
Maven [40] and Jenkins [41].

2.3.3 PMD

PMD is a free, open-source source code analyzer. It finds common programming flaws like
unused variables, empty catch blocks, unnecessary object creation, and so forth. It sup-
ports Java, JavaScript, XML, XSL. Additionally it includes CPD, the copy-paste-detector.
CPD finds duplicated code in Java, C, C++, C#, PHP, Ruby, Fortran, JavaScript. [42]
According to [43] PMD scans Java source code and looks for potential problems like:

15

– Possible bugs — empty try/catch/finally/switch statements

– Dead code — unused local variables, parameters and private methods

– Suboptimal code — wasteful String/StringBuffer usage

– Overcomplicated expressions — unnecessary if statements, for loops that could be
while loops

– Duplicate code — copied/pasted code means copied/pasted bugs

SonarQube

SonarQube [44] (formerly called Sonar) in a free, open-source quality management plat-
form for continuous inspection of source code quality. It is dedicated to continuously
analyze and measure technical quality.
Although Sonar provides code analyzers, reporting tools as core functionality, it is also
extensible with plug-ins, making it one of the most versatile source quality inspector.
Sonar supports more than 25 languages, including Java, C, C++, Objective-C, C#,
JavaScript and Python. It provides reports on coding standards, duplicated code, unit
tests and code coverage, potential bugs and others. Storing these reports makes it also
able to report trends in these reports over time.
SonarQube cooperates with continuous integration tools, like Maven [40], Jenkins [41],
and also has plug-in support for developer environments, such as Eclipse [37].

2.4 Well-formedness Checking over Code Models

This section follows [13].
Program queries are a common use case for modeling and model transformation tech-
nologies, including transformation tool contests. The program refactoring case of Gra-
BaTs Tool Contest 2009 [45] and the program understanding case of Transformation Tool
Contest 2011 [46] both rely on program query evaluation followed by some transforma-
tion rules. The refactoring case was reused in [47] to select a query engine for a model
repository, however, its performance evaluations do not consider incremental cases.
A series of refactoring operations were defined as graph transformation rules by Mens
et al. [48], and they were also implemented for both the Fujaba Tool Suite and the
AGG graph transformation tools. The Fujaba Tool Suite was also used to find design
pattern applications [49]. As a Java model representation, the abstract syntax tree of the
used parser generator was used, and the performance of the program queries were also
evaluated. However, because of the age of the measurements, they are hard to compare
with current technologies.

16

JaMoPP was used in [50] relying on the Eclipse OCL tool together with display of the
found issues in the Eclipse IDE. However, the search time of the tool were not measured.
The EMF Smell and EMF Refactor projects [51] offer to find design smells and execute
refactorings over EMF models based on the graph pattern formalism. As Java programs
can be translated into EMF models, this also allows the definition and execution of pro-
gram queries. However, there are no performance evaluations available for this tool.
Several tools exist for a related purpose, finding coding problems in Java programs, such
as the PMD checker [52], or the FrontEndART CodeAnalyzer [53], which is built on the
top of the Columbus ASG. These applications can be integrated into IDEs as plug-ins, and
can be extended with searches implemented in Java code or in a higher level language,
such as XPath queries in PMD.
Furthermore, several approaches allow defining program queries using logical program-
ming, such as JTransformer [54] using Prolog clauses, the SOUL approach [55] relying
on logic metaprogramming, while CodeQuest [56] is based on Datalog. However, none
of these include a comparison with hand-coded query approaches. The DECOR method-
ology [57] provides a high-level domain-specific language to evaluate program queries.

17

Chapter 3

Overview of the Approach

In this chapter, we will overview the architecture of the proposed approach, look at the
components one-by-one and discuss how they work together. We also discuss how the
approach may increase the efficiency of certain static analysis techniques by adapting
incremental query evaluation.

3.1 Architecture

In this section, we will discuss the components of the system, and how they cooperate,
in detail.

VCS Workspace Dependency
Graph

Abstract Syntax
Graph

Well-formedness
Rules

Query Execution Database

Main.java | ++----
Dependency.jar | +++++-
FIterator.java | ----
Cparser.java | ++

Automatic
Well-formedness

Rule Evaluation

Manual Execution
and Data Extraction

Automatic
Duplicating and Sharding

.
 jamoppdiscoverer
 ChangeProcessor.java
 CommandParser.java
 FileIterator.java
 iterators
 DepCollector.java
 FileDiscoverer.java
 InitIterator.java
 Main.java
 whitepages
 ConnectionMgr.java
 DependencyMgr.java
 pojo
 Dependency.jar

.jar

EMF

RDF

.java

MongoDB
4StoreValidation Report

<!>
<?>

<.>

JaMoPP

Figure 3.1: Overview of the system.

3.1.1 Main Components

VCS (Version Control System) Version control systems are the management systems of
changes to files (e.g. documents, software code, etc.). They store revisions of the current

18

set of files managed by the system. Each revision is differentiated with a timestamp, and
a person performing the changes are also associated with a revision.
Version control is one of the most essential collaboration tool. When developers work
on the same codebase, especially when the codebase is large, they need to share the
code and work on it at the same time. Using a VCS, one can investigate the version of
the codebase at a selected revision. Also, it is possible to determine the changes made
between two revisions, manage multiple development branches with the same root and
merge the changes made in these.
The role of this component is to determine the changes made to the codebase and to
provide the most current revision of files. Any VCS can be used with our approach,
as long as they are able to provide the list of added, modified and removed files. The
most known implementations are Git [58], Subversion (SVN) [59], Mercurial (Hg) [60],
Concurrent Versioning System (CVS) [61].

Workspace The workspace is the part of the (local or remote) file system, where the
sources of the projects are stored. All of the analyzed sources and the sources of their
dependencies are aggregated here. Only these sources are reachable for the analyzer.

Dependency Graph The dependency graph describes the dependencies between the
files of the source code. This graph contains a node for every classifier, such as classes
and interfaces. The connections between two nodes represent dependency relationships.
In this context, the definition of dependency is derived from the definition of Java depen-
dency. As the smallest unit of the processing in our approach is a source code file — and
in Java, the compilation units are also a files —, the simplified definition of dependency
is the following:
Compilation unit A depends on compilation unit B, if A uses a classifier (class, interface,
enum) inside B. A can not be compiled without previously compiling B.
For every file in the workspace the following information is stored providing additional
data about the source code:

– the relative path to the file,

– the package of the compilation unit,

– the fully qualified name of the outmost classifier in the compilation unit,

– the explicit dependencies of the file (the outgoing edges of the node),

– the list of files depending on this file (the incoming edges of the node),

– the list of interfaces that the main class implements,

– and the base class the main class in the file extends.

19

The Dependency Graph is stored in the Database and updated with every change, so in
every step of the process it is accessible for every component. From this graph it is quick
and easy to query the files required to process a file, and which files may be affected by
the change.

Abstract Syntax Graph Abstract Syntax Tree (AST) is a tree representation of the struc-
ture of the source code written in a programming language. It is abstract, because it does
not contain every detail in its representation. Each node of this tree identify a construct
in the source code.
Abstract Syntax Graph (ASG) is a graph built from the AST. The nodes in AST, where
identifiers were unresolved, referencing to elements not in the tree are resolved cross-
references in the ASG. (This makes the set of trees into a graph.)
Transforming AST into an ASG is done by traversing the AST, while looking up matching
references in every other accessible AST.
Every Java source file is parsed into an EMF-based model using JaMoPP. This model
is also considered as an AST. Without their dependencies also processed, these models
would have unresolved cross-references. To connect these unresolved references and
achieve a globally connected graph, we have to process the dependencies of the given
file (based on the Dependency Graph) and resolve the references.

Database The Database stores the content of the ASG between changes. Depending on
the size of the data to be stored and other minor restrictions, this can be a cluster or a
single database solution. The backend can be of any kind, as long as there is a graph
database interface available (with some restrictions, e.g. the database should be able to
evaluate elementary queries efficiently). For example 4store [7] and MongoDB [62] are
tested to work well as a backend, but using relational databases is also possible.

Well-formedness Rules With large code bases, there is a need to ensure the compliance
of the code to coding conventions, and static analysis is a way to enforce them. The set
of rules described by the users specify the conventions that should be verified in the
projects of the Workspace. Examples for these rules and conventions can be found in
Section 4.1.3.
In practice, many of these conventions are defined in language specifications (e.g. Oracle
Code Conventions for the Java Programming Language [63] or Google Java Style [64]).
Static analysis software, such as FindBugs (see Section 2.3.2), collect these conventions
into libraries. Also, generally users can specify their own conventions.
In our approach the we introduce a formalism to verify rules on code bases. This approach
based on standard formats, integrating them into an unified solution:

– we specify queries on the JaMoPP metamodel,

20

– represent these models as RDF graphs,
– and formulate the queries as SPARQL graph patterns.

Query Execution This component validates the model in the database with graph
queries based on the rules given by the user. A query can be evaluated either manually,
executing the queries on demand, or automatically, processing the changes incremen-
tally. In the latter the results of the queries are stored, and only the difference between
changes is propagated through the evaluating system.
In this thesis we mainly discuss how the incremental approach can be adapted for static
analysis.

Validation Report The result of the evaluation of the rules is the Validation Report.
This is presented to the user every time the evaluation is done.
Although in this thesis we do not elaborate on generating reports incrementally, our
approach makes it possible to produce validation reports efficiently.

3.1.2 Steps of Processing

The following enumeration presents the basic concept of the process parsing, storing and
querying a code base.

0. Set Up the Workspace
Every file in the project is checked out from the VCS and every dependency is placed
into the workspace.

1. Build the Dependency Graph
To collect every information mentioned in Section 3.1.1, every file is parsed and
the information is accessed with regular expressions. This is performed without
compiling the Java sources.
The relative path to the file is calculated and stored. The source code is investigated
line by line. If it contains the package identifier, an import or the name of the
classifier, it is stored in the appropriate collection.
The Dependency Graph itself is similar to a property graph. We parse every file
and collect the needed information. We create a node for each fully qualified name
(FQN) and connect it to its dependencies. If a node for the dependency FQN does
not exist yet, we create one for it. If a compilation unit with this FQN is later
processed, its properties will be connected to this node.
Note that the FQN may not be globally unique and using the FQN as unique value
is a great simplification of the problem of building a Dependency Graph. Handling
FQN values properly is out of the scope of this thesis and subject to future work.

21

Proper handling of subclasses, transient class hierarchy (connecting every super-
class of the classifier) is subject to future work as well.

2. Assemble Parts of the Abstract Syntax Graph
We process only one file and its dependencies at a time, making the approach more
memory-efficient and the processing granular. Serializing the ASG allows us to
assemble only parts of the ASG at a time. The transformation process, and how
it makes it possible to assemble the whole graph from part is described in Sec-
tion 3.1.3.
In this step, the following procedure is done for every file:

a) parse the file with JaMoPP (from now on referred as main file),
b) the model that was already parsed or parse all of its dependencies identified

using the Dependency Graph,
c) and parse every file in the same package as the main file, loading implicit

dependencies.

3. Transform and Store the Model into an RDF Graph
Using the reflective API of EMF, we iterate the objects stored in the model. For
every object, we assemble a property graph from the following information about
each object:

a) classes and superclasses of the object,
b) attributes of the object — the attributes are serialized with type information,
c) and references of the object.

This processing phase is detailed in Section 3.1.3.

4. Store the Full Graph in the Database
Right after a part of the ASG is assembled, it can be immediately stored in the
Database. This phase is implementation-dependent.

5. Execute the Queries
After the whole ASG is stored, the queries can be executed. This phase is also
implementation-dependent.

6. Generate Report
Based on the results of the query execution, a report can be generated. This may
require the system to query additional information from the database. (For example
the location of the problem, or the content of surrounding lines.)

22

3.1.3 Serializing EMF Models into RDF

To serialize an EMF model, we have save every information stored inside it. Using the
Ecore utilities, it is rather easy. There are many solutions available, but it can be per-
formed manually as well. We save every information into an N-Triples document:

1. Iterate the list of contents inside the EMF model, for every object (EObject):
a) Get the identifier of the object (Unique Resource Identifier, URI).
b) Get the class and superclass of the object as an URI, and serialize these as

triples <object URI> rdf:type <class URI> ., for each class, meaning the
type of this object is <class>).

c) Get every attribute of the object. Get the URI of the attribute name and the
value literal. Serialize each of these attributes, one-by-one: <object URI>

<attribute name URI> <attribute literal> ., where the attribute value is
formatted as either untyped value or typed literal [65].

d) Get every reference of the object. Get the URI of the reference name and
the referenced object. Serialize each of these references, one-by-one: <object
URI> <reference name URI> <referenced object URI> ..

2. After saving this document, it can be parsed and saved again in any other RDF
format, for example the more compressed Turtle format.

The manually produced RDF document, where every triple is appended after each other
is then parsed again and saved in a compressed format to save space.
These triples (similarly to the edges in a property graph) refer objects by their resource
identifier (assembled using the EMF EcoreUtil helper class). The structure of these iden-
tifiers is the following: first an absolute path declares a resource containing a graph, and
a relative path to the referenced node.
This structure allows us to store the graph of only one compilation unit at a time. If the
referenced resource (in this case, compilation unit) had been saved, the referred node can
be found. If the referred resource is not stored yet, the reference endpoint can be still
stored. After the referred resource is stored, the two graphs are automatically connected.

3.2 Incremental Processing

In this section, we will discuss the defining characteristic of the incremental processing
approach. Processing data incrementally in this scenario means that while the sources
are changing, the results are stored and later updated rather than fully regenerated. After
successfully parsing, processing the files and evaluating the queries, the results are stored.
This method typically consumes more memory and disk storage, but in distributed pro-
cessing environments this can speed up the whole process. This approach, called space-

23

time trade-off, trading higher memory consumption for faster execution speeds, is well-
known and widely used in computer science.
Applying incremental processing is only efficient, when the time required for change-
set processing is proportional to the size of the changeset rather than the whole code
base [66, 67].

- root:/
Main.java#//
@classifiers.0/...

+ root:/
Main.java#//
@classifiers.1/...

Abstract Syntax
Graph

VCS Dependency
Graph

Well-formedness
Rules

Query Execution Database

Modification:
Main.java | ++----

.jar
Recalculated for

every file affected

.java

Validation Report

<!>
<?>

-<5345> +<6345><.>
- Main.java:15
+ Main.java:18

Incremental
Evaluation

Figure 3.2: Source code change propagating through the system.

3.2.1 Processing Changes in the Source Code

As shown in Figure 3.2, a change in the VCS initiates a sequence of processes. There
are two main steps for processing changesets: at first the dependency graph needs to
be updated. This update could result in additional files to be processed, as the changes
could affect other files.
Affected files can be the ones importing or being in the same package with a changed
file. Also every extending or implementing classifier that is a descendant of a changed
file in the class hierarchy is required to be reprocessed.
After the list of files to be reprocessed is calculated based on the Dependency Graph, the
second step begins. Every affected file is reprocessed in this step, one by one.
This fine-grained processing may take more time, but makes the changesets propagating
through the system smaller and easier to process. More importantly takes the consistent
graph into another consistent state.
There are three main types of changes:

1. New files are added
When a new file is added, all of its dependencies are either already in the de-
pendency graph, or as they are also in new files, will be added in this changeset

24

processing session. There may be nodes in the graph already referencing to this
file, so every one of them needs to be reprocessed in the second step.

2. Existing files are removed
When a file is removed, every other one depending on it needs to be reprocessed in
the second step. Also every dependency information of the file needs to be deleted.

3. Existing files are modified
When a file is modified, it needs to be treated as a file that was removed, then
added back. (As the granularity of the approach is file-level.)

3.2.2 Incremental Query Evaluation

Once the whole graph has been evaluated, it is feasible to monitor the changes and only
process the changeset with the Query Evaluating component. Incremental query eval-
uation means having the results of the first full evaluation stored in the memory. This
result is updated only with the changes coming through the Database.
After the initial query evaluation has been performed, the incremental query evalua-
tor waits for notification only about additions and removals of the graph. (See EMF-
IncQuery [12], IncQuery-D [68].)
Applying incremental query evaluation can result in a fraction of the response time com-
pared to the conventional evaluation method.

3.3 Distributed Processing

As discussed above in Section 3.1.2, the structure of RDF graph references makes it pos-
sible to process files one-by-one and store only the appropriate part of the graph under
construction in the Database. This also means that there is no need to process every file
of a big project or a big changeset sequentially. After the system collected the files for
reprocessing, they could be parsed separately, even distributed.

Transforming
and Saving

Workspace
Setup

Dependency
Discovery

Query
Execution

PC 1

PC 2

PC 3

PC 4

PC 1

PC 2

PC 3

PC 4

PC 1

PC 2

PC 3

PC 4

PC 1

PC 2

PC 3

PC 4

T S

T S

T S

T S

Q1 Q2

Q3

Q4 Q5

Q6

Figure 3.3: Workflow of the distributed processing.

25

Chapter 4

Elaboration of the Workflow

In this chapter we demonstrate the workflow of our approach, how it processes and
validates a sample source code. We also look at the input and output for each component
participating in the process.

4.1 Case Study

In this section, we present a smaller source code and show how the validation process is
carried out. We also take two well-formedness rules commonly used in practice.

4.1.1 Workspace

For this case study, we investigate a small calendar application that has a main class
and some utility classes. A snippet from the source code of a utility class is shown in
Source 4.1.
To present, what the Dependency Graph looks like in this scenario, Figure 4.1 contains a
part of the explicit and implicit dependencies inside of the workspace. The Utils package
contains two utility classes, and the main application class is connected to the snippet,
as the Calendar.java file (the main class) calls the toMonth method in Source 4.1.
The Snippet also depends on some JRE system library classes, such as java.lang.System
and java.lang.Object. For the sake of clarity, the remaining dependencies were omitted
from this visualization.

26

Workspace

App package

java.lang
packageUtils

package

Snippet.java

java.lang.Object

java.lang.System

Calendar.javaOtherUtil.java

Figure 4.1: Dependency Graph of the Workspace.

4.1.2 Source Code Snippet

public static String toMonth(int month) {
switch (month) {

case 1: return "January";
case 2: return "February";
case 3: return "March";
case 4: return "April";
case 5: return "May";
case 6: return "June";
case 7: return "July";
case 8: return "August";
case 9: return "September";
case 10: return "October";
case 11: return "November";
case 12: return "December";
default: return "Invalid month";

}
}

Source 4.1: Example Java source, showing a Switch with SwitchCases and a DefaultSwitch-
Case.

The code snippet found in Source 4.1 is presented in the Oracle Java Documentation [69]
explaining the switch language element. The method in the snippet contains a switch,
which has 12 “normal” cases and one default case. In Section 4.5 we discuss the differ-
ences between using a default case and omitting it.

4.1.3 Well-formedness Rules

The following rules are presented in [13] and are typical well-formedness rules for code
models.
The rule definitions and illustrations follow the original article. We added SPARQL
queries to demonstrate how these patterns could be translated to queries and search
for matches in the instance model persisted in the Database.

27

Switch without Default

Switches left without default cases can lead to serious problems as the code evolves. It
does not necessarily imply that a problem will occur, but the user needs to be informed
about the possibility.

Catch Problem

In a try-catch block, a catch() statement expects an Exception of a given type. If the
type of the Exception is the expected, the inner statements of the catch block are ex-
ecuted. These statements should not check the type of the Exception again with an
instanceof expression, as its type has been checked in the catch() statement. Instead of
the instanceof condition a new catch block should be added for the checked type, and
the statements should be moved there.
Again, it is not a necessity that a problem will arise, and there are situations, where the
problematic approach is correct. However, as a general rule of thumb, the user should
get a warning about such threats.

4.2 Code Model Representation

In this section, we show how the source code is represented after various steps of the
transformation process. While the previous section presented the original source snippet,
here we show the process of the transformation: how it is transformed into a model and
what format is the model serialized into. We also discuss the data pieces stored in the
database and the query methods used for retrieving them.

4.2.1 JaMoPP Metamodel

The JaMoPP metamodel has been already introduced in Section 2.2.3. To illustrate its
structure and make it easier to understand the queries in Section 4.1.3, the following
Ecore diagrams show the relevant subsets of the whole metamodel for the queries “Switch
without Default” (on Figure 4.2) and “Catch Problem” (on Figure 4.3).

4.2.2 JaMoPP Instance Model

As the source code snippet is parsed by JaMoPP, it is transformed into a JaMoPP Java
instance model. This instance model contains every information that JaMoPP was able
to extract. After parsing its dependencies into other instance models, the unresolved
references in these instance models are resolved, if they can be resolved at all (if the code
relies on 3rd party dependencies that are not in the Workspace, the references for these

28

Switch
(from statements)

NormalSwitchCase
(from statements)

DefaultSwitchCase
(from statements)

Expression
(from expressions)

SwitchCase
(from statements)

variable
1

cases
0..*

Figure 4.2: Part of the JaMoPP Java metamodel showing the class hi-
erarchy of the Switch and the various SwitchCase classes.

TryBlock
(from statements)

CatchBlock
(from statements)

InstanceOfExpression

InstanceOfExpressionChild

OrdinaryParameter
(from parameters)

ElementReference

ReferenceableElement
(from references)

Parameter
(from parameters)

Variable
(from variables)

catcheBlocks
0..*

parameter
1

child

1

target
1

Figure 4.3: Part of the JaMoPP Java metamodel showing the class
hierarchy of the TryBlock, CatchBlock and InstanceOf-
Expression classes (with related classes).

dependencies cannot be resolved). For this sample code, there are no other compilation
units, just dependencies to the JRE system library (e.g. java.lang.Object).
Figure 4.4 is a visualization of the instance model. The layout information and several
SwitchCases are excluded from this illustration.

4.2.3 Database Contents

The process of transforming from JaMoPP instance models into RDF graphs is specified
in Section 3.1.2. This specific instance model transformation is shown in Source 4.2.
The Switch block is assigned an XPath URI, as it shows the location of the block in
the tree hierarchy of the file. This sample Switch can be found in the first Classifier
(@classifiers.0), in its first Member (@members.0), and the Switch itself is that Member’s
second Statement (@statements.1).

29

Class Method toMonth

Namespace Classifier Reference

Ordinary Parameter month

Switch

Normal Switch Case

Normal Switch Case

Default Switch Case

Return

Identifier Reference

Figure 4.4: Part of the instance model visualized with the Sample Re-
flective Ecore Model Editor.

<http://www.emftext.org/
java/statements#//

Switch>

<root:/test.java#//
@classifiers.0/

@members.0/

@statements.1>

<root:/test.java#//
@classifiers.0/

@members.0/

@statements.1/@variable>

<http://www.emftext.org/
java/statements#//

Statement>

<http://www.emftext.org/
java/commons#//

Commentable>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.emftext.org/java/statements#//Switch/cases>

<http://www.emftext.org/java/statements#//Switch/variable>

<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

<http://www.emftext.org/
java/statements#//

DefaultSwitchCase>

<http://www.emftext.org/
java/commons#//

SwitchCase>

<http://www.emftext.org/
java/statements#//

NormalSwitchCase>

<root:/test.java#//
@classifiers.0/

@members.0/

@statements.1/@cases.2>

<root:/test.java#//
@classifiers.0/

@members.0/

@statements.1/@cases.1>

<root:/test.java#//
@classifiers.0/

@members.0/

@statements.1/@cases.0>

Figure 4.5: Part of a JaMoPP instance model in RDF format showing
a Switch with three SwitchCases, where one of them is a
DefaultSwitchCase.

The first three triples describe the switch itself: it is a Switch, a Commentable and a
Statement. This representation also allows us to search for abstract classes or super-
classes and get a heterogeneous collection as a result of a query.
The Switch has references to its SwitchCases (#//Switch/cases) and finally a Variable
reference (@variable). In Figure 4.5 and Source 4.2 we only show three SwitchCases, for
the sake of clarity. Although the difference between these SwitchCases is clearly visible:
all three of them are SwitchCases, but only the first two are NormalSwitchCases. The third

30

one is not a NormalSwitchCase, rather a DefaultSwitchCase. This is why a query pattern
could filter the default cases by their type. Additional triples about the SwitchCases and
the Statements inside them are excluded from this example.

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/statements#//Switch> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/commons#//Commentable> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/statements#//Statement> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.0> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.1> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.2> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/variable>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@variable> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.0>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//NormalSwitchCase> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.1>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//NormalSwitchCase> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.2>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//DefaultSwitchCase> ;

Source 4.2: Example triples stored in the Database.

Triples like these are stored in the Database. Every value is serialized (URIs, types, lit-
erals), and saved using the RDF graph interface supplied by the Database or a database
driver implemented by a third-party. The serialization is done by our software, but stor-
ing, querying and retrieving the triples is done by the Database.

4.3 Well-formedness Rules in Query Form

To validate the well-formedness rules specified in Section 4.1.3, we need to translate the
rules into database queries. The following figures and SPARQL queries show how these
rules can be formulated as queries over the JaMoPP metamodel and the 4store database.

31

Switch without Default

The representation of the well-formedness rule described in Section 4.1.3 interpreted
over the JaMoPP metamodel looks like the pattern on Figure 4.6. We search for Switch
instances that either have no cases at all, or none of their cases are DefaultSwitchCase.
(The red rectangle around sc: DefaultSwitchCase means that there should be no pat-
terns, where a Switch and a DefaultSwitchCase is connected with an edge labeled as
cases.)

sw: Switch

sc: DefaultSwitchCase

cases

Figure 4.6: Graph pattern representation of the “Switch without De-
fault” problem.

The same pattern is formulated as the SPARQL query in Source 4.3. We are search-
ing for nodes that are of type http://www.emftext.org/java/statements#//Switch.
We also try to find other nodes nodes connected with an edge labeled as
http://www.emftext.org/java/statements#//Switch/cases. Also, the connected nodes
have to be of the type http://www.emftext.org/java/statements#//DefaultSwitchCase.
There is no negation as a language element in SPARQL 1.0, so we have to use another
solution. We make these are optional, and invalidate the found Switch node as a result,
if sc is bound.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

SELECT ?sw
WHERE
{

?sw rdf:type <http://www.emftext.org/java/statements#//Switch> .

OPTIONAL {
?sw <http://www.emftext.org/java/statements#//Switch/cases> ?sc .
?sc rdf:type <http://www.emftext.org/java/statements#//DefaultSwitchCase>

}
FILTER (!BOUND(?sc))

}

Source 4.3: SPARQL query searching for switches, where the “Switch without Default” prob-
lem pattern matches.

32

Catch Problem

The representation of the well-formedness rule described in Section 4.1.3 interpreted over
the JaMoPP metamodel looks like the pattern on Figure 4.7. We search for CatchBlock
instances that have a parameter of the type OrdinaryParameter. We also search for an
InstanceOfExpression that has a InstanceOfExpressionChild (connected with an edge
labeled as /child), and the child is connected (labeled as /target) to the same parameter
that the CatchBlock is connected to.

cb: CatchBlock io: InstanceOfExpresion

ioChild:
InstanceOfExpresionChild

cbParam:
OrdinaryParameter

child

Figure 4.7: Graph pattern representation of the “Catch Problem”
problem.

The same pattern is formulated as a SPARQL query in Source 4.4. Similarly to the pre-
vious SPARQL query, we are also translating the pattern into a SPARQL query. In this
pattern there is no negation, meaning every triple shown on Figure 4.7 is expressed nam-
ing the nodes and binding the connections between them. If there is a match for the
pattern, it is a result of the query.

SELECT ?cb
WHERE
{

?cb <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.emftext.org/java/statements#//CatchBlock> .

?cb <http://www.emftext.org/java/statements#//CatchBlock/parameter>
?cbParam .

?io <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.emftext.org/java/expressions#//InstanceOfExpression> .

?io <http://www.emftext.org/java/expressions#//InstanceOfExpression/child>
?ioChild .

?ioChild <http://www.emftext.org/java/references#//ElementReference/target>
?cbParam

}

Source 4.4: SPARQL query searching for catch blocks, where the “Catch Problem” problem
pattern matches.

33

4.4 Evaluating a Query

In this section, we discuss the evaluation of the query specified in Source 4.3. This
SPARQL query searches for Switches, which either do not have any cases or if they have,
none of them are DefaultSwitchCase. This query is formalized with the following rela-
tional calculus expression:

{
sw ∣∣ Switch (sw) ∧ ¬∃sc(Switch:cases (sw; sc) ∧ DefaultSwitchCase (sc))}

The result set of this expression will be empty, if run on the instance model (shown on
Figure 4.5) of the sample snippet described in Section 4.1. This source only has one
Switch, and one of the cases is a DefaultSwitchCase.

4.5 Processing Changes

In this section, we investigate the consequences of the default case being removed from
Source 4.1. As the system is notified that a file (the one containing the source snippet)
was modified, it needs to be reprocessed.

public static String toMonth(int month) {
switch (month) {

case 1: return "January";
case 2: return "February";
case 3: return "March";
case 4: return "April";
case 5: return "May";
case 6: return "June";
case 7: return "July";
case 8: return "August";
case 9: return "September";
case 10: return "October";
case 11: return "November";
case 12: return "December";
default: return "Invalid month";

}
}

Source 4.5: Modified source code snippet.

1. The path of other compilation units depending on this file are collected for repro-
cessing. (As Figure 4.1 shows, the files depending on the snippet in Source 4.1 are
the ones in the same package and the Calendar.java. These files are the candidates
for reprocessing.)

2. The dependency information for this file is removed, recalculated and saved again.
As there is no change in the imports, there is no difference between the two versions.

3. The RDF serialization of the previous code version is removed from the Database.

34

4. The second part of the process starts, every file affected is reprocessed, transformed
into a JaMoPP model. The model is serialized into an RDF file and it is stored in
the Database.

Our solution updates a file by removing and adding it again, without optimization. Using
a difference generating algorithm can reduce the amount of data sent to the Database.
The difference between the two serialized models is only the deletion of three triples.
The triples highlighted in Source 4.6 will be removed from the database, so the query
will return a match.

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/statements#//Switch> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/commons#//Commentable> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
a <http://www.emftext.org/java/statements#//Statement> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.0> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.1> ;

<root:/test.java#//classifiers.0/members.0/statements.1>
<http://www.emftext.org/java/statements#//Switch/cases>

<root:/test.java#//classifiers.0/members.0/statements.1/cases.2> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1>
<http://www.emftext.org/java/statements#//Switch/variable>

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@variable> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.0>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//NormalSwitchCase> ;

<root:/test.java#//@classifiers.0/@members.0/@statements.1/@cases.1>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//NormalSwitchCase> ;

<root:/test.java#//classifiers.0/members.0/statements.1/cases.2>
a <http://www.emftext.org/java/commons#//SwitchCase> ,

<http://www.emftext.org/java/commons#//DefaultSwitchCase> ;

Source 4.6: Modifications in the Database.

sw
<root:/test.java#//

@classifiers.0/
members.0/

@statements.1>

Table 4.1: The results of the query after the source modification.

35

Chapter 5

Evaluation

In order to evaluate the performance of the current implementation and compare it to
existing static analyzers, we conducted a series of benchmarks. After discussing the setup,
we present the benchmark results run on various projects and well-formedness rules.
As the main novelty of our approach is its capability for incremental processing, we
simulate a change in the code and measure the time for our implementation to process the
changes. This measurement is also presented and interpreted. We expect the incremental
processing time to be a fraction of the time required to fully process the whole original
project.

5.1 Benchmarking Scenarios

In this section, we discuss the measured parameters of each benchmarking scenario. We
also discuss how each parameter is measured and what source projects they are measured
on.

5.1.1 Validating the Initial Codebase

First, we validate the codebase as a whole. The Workspace only contains the sources
for the one project to be processed. No libraries or additional files are present in the
Workspace.
Initially we measure four main phases of processing:

1. building the Dependency Graph,

2. transforming the source code into Abstract Syntax Graph,

3. persisting the ASG to the Database,

4. evaluating the well-formedness queries.

36

5.1.2 Simulating a Change in the Source Code

For a certain project, we manually modify the source code to eliminate one violation of
the well-formedness constraints. In this benchmark, we measure the time required to
propagate the changes from source code to the execution of the query:

1. updating the Dependency Graph,

2. transforming the modified and affected sources into Abstract Syntax Graph,

3. updating the persisted ASG in the Database,

4. and re-evaluating the well-formedness queries.

5.1.3 Projects Selected for Verification

From several projects verified in [13], we selected the ones in Table 5.1. Their number
of code lines are of different magnitudes, which allowed us to assess the scalability of
our approach. Also we tried to collect projects covering most of the well-formedness
constraint validations published in the article.
We benchmarked our approach on the following sources:

Project Name Version SLOC Size
Physhun 0.5.1 4 227 0.202 MB
Java DjVu 0.8.06 41497 1.2 MB
Xalan 2.7 338316 12.8 MB

Table 5.1: Selected source code repositories.

All of these source projects are open-source software, with several contributors. The large
amount of contributors, with different skills and background, imply that there are more
coding styles and conventions applied in the codebase. Hence, these project are ideal
candidates for evaluating our approach.

Physhun

Physhun is a framework for modeling, building and executing processes as Finite State
Models in J2SE and J2EE environments. It allow complex processes to be laid out
and managed graphically which promotes rapid development and ease of maintenance.
Physhun is lightweight enough to run in simple standalone applications, but flexible and
powerful enough to be used for orchestration in SOA. Physhun allows processes to be
long lived, persistent and transactional. Processes can be purely synchronous, or can be
interacted with asynchronously as is common in Workflow processes. [70]

37

53 text files.
53 unique files.
0 files ignored.

http://cloc.sourceforge.net v 1.60 T=0.23 s (234.9 files/s, 18733.0 lines/s)

Language files blank comment code

Java 53 598 1457 2172

SUM: 53 598 1457 2172

Source 5.1: Source analysis of Physhun.

Java DjVu Viewer

Java DjVu provides an open source applet, and desktop viewer Java virtual ma-
chines. Versions of Java supported include Microsoft Java, Sun Java 1.1 and later, and
J2ME. [71]

70 text files.
70 unique files.
0 files ignored.

http://cloc.sourceforge.net v 1.60 T=0.69 s (101.2 files/s, 60013.0 lines/s)

Language files blank comment code

Java 69 4677 13243 23570
Bourne Shell 1 1 0 6

SUM: 70 4678 13243 23576

Source 5.2: Source analysis of Java DjVu Viewer.

Xalan-Java

Xalan-Java is an XSLT processor for transforming XML documents into HTML, text, or
other XML document types. It implements XSL Transformations (XSLT) Version 1.0 and
XML Path Language (XPath) Version 1.0 and can be used from the command line, in an
applet or a servlet, or as a module in other program. [72]

5.2 Benchmarking Environment

In this section, we describe the hardware and software components used in the bench-
marks. We also discuss the configuration of the components and present the steps for
each benchmark.

38

962 text files.
953 unique files.
24 files ignored.

http://cloc.sourceforge.net v 1.60 T=4.48 s (207.5 files/s, 75577.6 lines/s)

Language files blank comment code

Java 907 45546 126812 165248
HTML 22 48 394 268

SUM: 929 45594 127206 165516

Source 5.3: Source analysis of Xalan-Java.

5.2.1 Hardware

All of the benchmarks were carried out on one of the DigitalOcean [73] Virtual Private
Servers (VPS). Two virtual machines were booked for the benchmarks in the Amsterdam 3
region, both of them had the following specification:

– 4 CPU cores (Intel® Xeon® CPU E5-2630L v2 @ 2.40 GHz)

– 8 GB memory

– 80 GB SSD storage

5.2.2 Software

The following software components were installed on the machines (only the components
relevant to the benchmarks are listed):

– Ubuntu 14.04.1 LTS (GNU/Linux 3.13.0-32-generic x86_64)

– Java 7 (1.7.0_67)

– 4store (v1.1.5)

5.2.3 Configuration

The first machine was used to process and transform the sources and execute the queries.
Both of these machines were used as database backend servers in a two-node 4store
cluster as well. These machines, although probably being in close physical proximity,
communicated through the public network.

39

5.3 Measurement Results

In this section, we present the benchmark results of our approach in different phases of
processing.
Every benchmark was run at least ten times, and every result presented here is the median
of the measurements, filtering out some of the effects of running the measurements in
the cloud.

Processing the Entire Codebase

The following benchmarks were run as the sources were added for the first time. The list
of freshly added source files — given to our implementation for processing — contained
every file in the source directory.

Building the Dependency Graph Figure 5.1 shows the time required for building the
Dependency Graph for the fist time. The name of each project and the number of source
lines of code (SLOC) is displayed on the horizontal axis, while the measured time in
seconds is on the vertical axis. Note that the vertical axis is logarithmic.

1.49
1.95

11.42

1

10

100

Physhun

4 227

Java DjVu

41 497

Xalan

338 316

T
im

e
 [

s]

Figure 5.1: Time required to build the Dependency Graph.

It is also notable that the SLOC does not correlate with the time required to create the
Dependency Graph, it is rather affected by the number of files processed. These projects
have 53, 70 and 962 files iterated in the process, respectively.

Transforming the Code into an ASG Figure 5.2 shows the time required to assemble
the ASG from parts for the fist time. As on the previous figure, the name of each project
and the appropriate number of source lines of code (SLOC) is displayed on the horizontal

40

axis, while the measured time in seconds is on the vertical axis of this figure. Note that
the vertical axis is also logarithmic.

81.79

395.61

2 134.11

1

10

100

1000

10000

Physhun

4 227

Java DjVu

41 497

Xalan

338 316

T
im

e
 [

s]

Figure 5.2: Time required to transform the code into an ASG.

To create the ASG, JaMoPP needs to parse every line of information, rendering the time
required to create the ASG proportional to the number of lines or the byte size of the
project. This correlation is visible on Figure 5.2.

Persisting the ASG Figure 5.3 shows the time required to load the ASG into the
Database for the first time. As on the previous figure, the name of each project and the
appropriate SLOC is displayed on the horizontal axis, while the measured time in seconds
is on the vertical axis on this figure. Note that the vertical axis is also logarithmic.

8.73

28.01

255.79

1

10

100

1000

Physhun

4 227

Java DjVu

41 497

Xalan

338 316

T
im

e
 [

s]

Figure 5.3: Time required to persist the ASG in the Database.

41

Executing Queries Figure 5.4 shows the time required to execute the queries on the
Database for the fist time. Note that the unit of the time on the vertical axis of this
diagram, contrary to the other diagrams, is millisecond, and the vertical axis is scaled
linearly.

87
115.5 109

87

99 104.5

0

50

100

150

200

250

Physhun

4 227

Java DjVu

41 497

Xalan

338 316

T
im

e
 [

m
s]

Switch without Default Catch Problem

Figure 5.4: Time required to execute the queries.

The time required to execute these queries is not only proportional to the size of the
projects, but it is also proportional to the number of constraint violations of the projects
(detailed in Table 5.2).

Query Results The number of results of the query executions are collected in Table 5.2.
To make sure that the results of our approach were correct, we manually confirmed the
existence of found violations in the DjVu sources, and to ensure the validity, we also
compared our result to the ones published in [13].

Our Approach Expert Audit
Physhun DjVu Xalan Physhun DjVu Xalan

Switch without Default 0 15 32 0 14 26
Catch Problem 0 0 17 0 0 17

Table 5.2: Constraint violations found in the source projects.

The difference in some of these numbers may be attributed to the different version of the
source projects (the article did not share the precise version numbers, but for our request,
the authors provided approximations of the version numbers used in their benchmarks).

42

Processing an Incremental Update

In this section, we describe how we make a change in the sources, eliminate the problems
violating the well-formedness rules, and notify the tool about the change. We measure
the time required to process these changes to assess the viability of our approach.

Changes Made in the Source Code We make a change to a source file of Java DjVu,
violating the “Switch without Default” well-formedness rule. The results of the query for
this rule (presented in Source 4.3) show violations in the files listed in Source 5.4.

djvu/com/lizardtech/djvu/anno/Mapper.java
djvu/com/lizardtech/djvu/anno/Poly.java
djvu/com/lizardtech/djvu/anno/Rect.java
djvu/com/lizardtech/djvu/JB2Codec.java
djvu/com/lizardtech/djvu/text/DjVuText.java
djvu/com/lizardtech/djvubean/anno/AnnoManager.java
djvu/com/lizardtech/djvubean/keys/DjVuKeys.java
djvu/com/lizardtech/djvubean/menu/DjVuMenu.java
djvu/com/lizardtech/djvubean/toolbar/PopupChoice.java

Source 5.4: Compilation units violating the “Switch without Default”
well-formedness rule.

In one of these files (DjVuText.java), we add a new default case (see Source 5.5) to the
problematic switch block eliminating the violations.

default: System.err.println("ERR");

Source 5.5: Added default case.

Incremental Processing After the whole original sources were processed, and the mod-
ification has been carried out, we repeat the processing, although with an important dif-
ference. This time, our implementation is notified about the modified file and it is only
processing the sources affected by the change (as it is specified in Section 4.5).
Figure 5.5 shows the time required to carry out each phase for the first time and doing
the same the incremental manner. The name of each phase is displayed on the horizontal
axis, while the measured time in seconds is on the vertical axis. Note that the vertical
axis is logarithmically scaled.
It is important to note that the incremental approach is creating the ASG one order of
magnitude faster than processing the whole project. Figure 5.3 and Figure 5.5 shows
different values, because the comparing benchmarks were using an updated storing algo-
rithm, which stored the models in a parallel fashion. Although the model modification
is smaller than the model for the whole project, removing parts from the database was

43

1.56

345.95

27.53

0.97

23.35 27.87

0.1

1

10

100

1000

Building the

Dependency Graph

Creating the

Abstract Syntax Graph

Persisting

the Model

T
im

e
 [

s]

First Time Process

Incremental Change

Figure 5.5: Comparison of times needed to process the whole project
or only incremental modification.

slower than adding new ones. This caused the incremental algorithm to store the model
in the nearly same amount of time.
The analysis of the results is presented in Section 5.4.

5.4 Result Analysis

In this section, we discuss the benchmark results and try to predict how this system would
cope with inputs of different size.
As expected, the time required to process is proportional to the size of the input sources.
Figure 5.2 and Figure 5.3 shows that the processing and loading times are almost linearly
proportional to the number of source lines of code, more specifically to the byte size of
the sources. JaMoPP needs to parse every byte of the source and create the model. Next,
we load these models together and try to resolve the references between them. Also, we
iterate through the contents of the model and serialize it (see Section 3.1.3). All of these
are proportional to the size of the source.
It is more difficult to derive conclusions from Figure 5.1. In a naive implementation,
the time required to create the Dependency Graph is proportional to the byte size of the
sources. However, if the algorithm is optimized correctly, it can be proportional to the
number of source files, as only a part of the sources is needed.
Figure 5.5 confirms the validity of our approach, as the incremental iteration only takes
a fraction of the time required to process the whole project.
The results show that the time required to create the ASG is two orders of magnitude
greater than building the Dependency Graph and one order of magnitude greater than

44

the time of persisting the model. Figure 5.5 also shows that we successfully reached one
of our objectives and decreased the time required to create the ASG to the magnitude of
the persisting time.

5.4.1 Threats to Validity

Although we made everything to make our measurements valid, there may be factors
beyond our control that affect the measurement results. In this section, we try to list the
possible mistakes and also discuss the steps taken to mitigate their effects.

Benchmarking in the Cloud As a multiple access system, our virtual servers in the
cloud can be easily affected by virtual neighbor machines using the same resources. The
virtual machine manager can also limit the usage of these resources, if our machines
disturb the other ones. We can neither control the resources assigned to our machines,
nor influence their precise location and connections.
Our mitigation strategy is to run each benchmarks multiple times. To achieve this, we
run each benchmark at least ten times and treat their median as the correct value.

Methodological Mistakes It is possible that we made mistakes while implementing our
approach. It may not adhere the specification correctly, not perform the transformations
correctly or measures correctly. For example, our implementation does not save the
attributes of the model, as they are not used in the queries.
To check the validity of the results, we either checked the sources manually, or — as a
form of expert audit — compared our results of others.

Measurement Mistakes Wemay have committed mistakes in the measurements or was
led to the wrong conclusions evaluating these mistakes. In this thesis we performed a
smaller set of measurements. Measuring with bigger source repositories and more well-
formedness rules is subject to future work.

45

Chapter 6

Comparison of Currently Used
Static Analyzers

In this chapter we compare different static analyzer tools introduced in Section 2.3.

6.1 Configurations

This section presents how we configured each of these tools to analyze the Java DjVu
project and search for switches without a default case.

6.1.1 FindBugs

In order to analyze a project with FindBugs [35], it has to be compiled first. As a bytecode
analyzer, the scope of the bugs FindBugs can find is limited to what it can recover from the
bytecode. Having the code compiled, the command in Source 6.1 searches for problems
labeled as the “SwitchFallthrough” category.
For example the following patterns are filled under this category according to [74]:

– SF: Switch statement found where one case falls through to the next case
(SF_SWITCH_FALLTHROUGH)
This method contains a switch statement where one case branch will fall through
to the next case. Usually you need to end this case with a break or return.

– SF: Switch statement found where default case is missing (SF_SWITCH_NO_DEFAULT)
This method contains a switch statement where default case is missing. Usually
you need to provide a default case.
Because the analysis only looks at the generated bytecode, this warning can be incorrect
triggered if the default case is at the end of the switch statement and doesn’t end with a
break statement.

46

$ findbugs -textui -visitors SwitchFallthrough javadjvu/classes/

Source 6.1: Command running FindBugs.

6.1.2 PMD

As a source code analyzer, PMD [42] does not require the source code to be compiled.
PMD executes static analysis based on rules that the user selects during configuration.
For example, these could contain an XPath [75] expression (similar to a graph pattern
we used in our approach) that specifies a certain problem.
There are many rulesets distributed with PMD, and one of these, the De-
sign ruleset contains the SwitchStmtsShouldHaveDefault rule [76] that marks the
//SwitchStatement[not(SwitchLabel[@Default='true'])] XPath expression as problem-
atic. Source 6.3 is an extract from the ruleset only focusing on switches without a default
case. The command in Source 6.2 executes PMD with the configuration.

$ run.sh pmd -d javadjvu/src/ -f text -R ~/PMD-noswitchdefault.xml

Source 6.2: Command running PMD.

6.1.3 Checkstyle

Checkstyle [32] is also a source code analyzer, hence it does not require the source code
to be compiled. Checkstyle is distributed with many standard checks, containing the
MissingSwitchDefault check [77] as well. It is implemented using the visitor pattern
over the AST of the source code, and using our own visitor classes, Checkstyle can be
also extended with additional checks. To use the standard check, the configuration in
Source 6.5 has to be provided to the script.

$ java -jar checkstyle-6.1-all.jar -c ~/CS-MissingSwitchDefault.xml -r ~/javadjvu/src/

Source 6.4: Command running Checkstyle.

6.1.4 Columbus

We also benchmark Columbus, the tool measured in the foundation of this thesis, [13].
Columbus itself does not validate the code, the well-formedness validation is carried out
by the framework using Columbus.
The following definition is closely based on [78].

47

<?xml version="1.0"?>

<ruleset name="Design"
xmlns="http://pmd.sourceforge.net/ruleset/2.0.0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://pmd.sourceforge.net/ruleset/2.0.0

http://pmd.sourceforge.net/ruleset_2_0_0.xsd">

<description>
The Design ruleset contains rules that flag suboptimal code implementations.
Alternate approachesare suggested.

</description>

<rule name="SwitchStmtsShouldHaveDefault"
language="java"
since="1.0"
message="Switch statements should have a default label"
class="net.sourceforge.pmd.lang.rule.XPathRule"
externalInfoUrl="http://pmd.sourceforge.net/pmd-5.2.1/

pmd-java/rules/java/design.html#SwitchStmtsShouldHaveDefault">
<description>
All switch statements should include a default option to catch any
unspecified values.

</description>
<priority>3</priority>
<properties>

<property name="xpath">
<value>

<![CDATA[
//SwitchStatement[not(SwitchLabel[@Default='true'])]

]]>
</value>

</property>
</properties>

</rule>
</ruleset>

Source 6.3: PMD configuration.

<?xml version="1.0"?>
<!DOCTYPE module PUBLIC

"-//Puppy Crawl//DTD Check Configuration 1.3//EN"
"http://www.puppycrawl.com/dtds/configuration_1_3.dtd">

<module name="Checker">
<module name="TreeWalker">

<module name="MissingSwitchDefault"/>
</module>

</module>

Source 6.5: Checkstyle configuration.

Columbus [78] is a reverse engineering framework, which has been developed in coop-
eration between the Research Group on Artificial Intelligence in Szeged, the Software
Technology Laboratory of the Nokia Research Center and FrontEndART Ltd. Columbus
is able to analyze projects and to extract data according to the Columbus Schema.
The main motivation behind developing the Columbus system was to create a tool which
implements a general framework for combining a number of reverse engineering tasks,

48

and to provide a common interface for them. Thus Columbus is a framework which
supports project handling, data extraction, data representation, data storage and filtering.
First, the Java source code is parsed into a model with the free version of SourceMe-
ter [79]. SourceMeter is a source code analyzer tool, which can perform deep static
analysis of the source code of Java systems. This free version of SourceMeter for Java
contains many useful source code metrics, powerful clone detection capabilities, and
professionally prioritized and selected PMD coding rule violations. [80]
Second, the framework presented in [13] analyzes the model for problems. We bench-
marked different search methods (ASG, EMF, IQP, IQU, described in [13]). The ASG
method was the fastest (min. 2 385 ms), and the IQU method was the slowest (max.
38 220 ms).

$./SourceMeter-Java-5.1.1-x86-linux-free/SourceMeter.sh -DprojectName=djvu
-DprojectBaseDir=~/djvu-findbugs -DresultsDir=Results -DrunPMD false

$ java -Xms100M -Xmx5000M -XX:MaxPermSize=256m -XX:+UseCompressedOops
-XX:-UseParallelGC -jar ./framework.jar sourcemeter/asg/djvu.ljsi
-case ASG nodefaultswitch

Source 6.6: Command running Columbus.

The following software were used:

– Java SourceMeter version: 5.1

– Ant version: 1.9.3

– Java version: 1.7.0_72

6.2 Measurement Results

Figure 6.1 shows how much time is required to process the source project (Java DjVu).
As FindBugs requires the project to be compiled in advance, the compile time is also
presented in Figure 6.1. Note that the horizontal axis showing the required time to
analyze the project is logarithmic.

6.3 Result Analysis

Note that these benchmarks were carried out for information purposes only, since the
tools are not completely comparable.
These results show that, for now, the currently used static analyzers are faster than our
tool. The main difference between the approaches is the method of processing the soft-
ware being verified. FindBugs works on bytecode, Checkstyle and PMD parses the source
into several ASTs, while ISAaC builds an ASG.

49

4.09 8.42

4.35

2.14

28.36

52.19

375.04

1 10 100 1000

FindBugs

PMD

Checkstyle

Columbus

ISAaC inc.

ISAaC

Time [s]

Compile

Analyze

Figure 6.1: Time required to analyze the original and the modified
project with different tools.

Checkstyle, FindBugs and PMD use in-memory data structures, ISAaC persists every
model in a (distributed) database. This may slow down ISAaC on smaller projects, but it
is designed to be able to scale with larger, even multiple projects. At some point, these
scenarios may reach the limit of the other tools.
With proper optimization, using the incremental approach in every phase and processing
in a distributed manner (discussed in Section 3.3), the speed of our tool is in the same
order of magnitude as the others.
Examining these tools with a workload of validating more than one well-formedness
rule showed that additional rules can slow them down. The runtime characteristics of
ISAaC differ from the other tools. First, the slower transforming phase has to be carried
out, making the subsequent processes (such as querying) faster. Running the queries in
parallel makes ISAaC less sensitive to the number of well-formedness rules.
Also, our approach can find problems across multiple files or even multiple projects.
These projects are not required to be processed at the same time. Processing connected
projects subsequently can reveal additional related problems throughout the projects.

6.3.1 Threats to Validity

Although every tool was configured to perform only the necessary functions, without
in-depth knowledge of their inner workflow and undocumented options, they may not
operate in their most effective and efficient manner.
Since the benchmarking environment and methods were the same as in Section 5.2, the
threats to validity mentioned in Section 5.4.1 remain as well in this comparison.

50

Chapter 7

Conclusions

This chapter summarizes the contributions presented in the thesis.

7.1 Summary of Contributions

We presented ISAaC, a modular, extensible, and scalable proof of our novel concept to
perform incremental static analysis on source code repositories. Our proposal is based
on software code modeling, model transformation and graph pattern matching. The
feasibility of the approach was evaluated using manual validation and benchmarking.

7.1.1 Scientific Contributions

We achieved the following scientific contributions:

– We proposed a novel architecture for building an incremental static analyzer using
standard formats and interchangeable components.

– We proposed an approach to transform Java source code into RDF graph data model
in a distributed manner.

– We provided an algorithm to update the graph data model incrementally.

7.1.2 Practical Accomplishments

We achieved the following practical accomplishments:

– We created a modular, extensible and scalable incremental static analysis frame-
work.

– We created a tool for transforming Java source code into RDF graph data model.
– We designed a benchmark to evaluate the approach.

51

7.2 Limitation and Future Work

The approach currently has the following limitations:

– The limitations of JaMoPP are projected to the whole approach. Projects using
the new language elements of Java 6, 7 or 8 are not yet supported by the current
implementation.

– The fully qualified names of the classifiers in the Workspace have to be unique.
This is a significant simplification compared to the Java Classpath, but our concept
can be extended in a straightforward way to remove this limitation.

The following tasks are subjects to future work:

– The benchmarks were only run on three source projects. More benchmarks are
useful to improve the precision of the determination of the complexity of the phases
of the analysis.

– Additional, more complex well-formedness rules could be formalized as graph pat-
terns and used in our tests and benchmarks.

– Validation report generation was out of the scope of this thesis. However, in real use
cases the developers should be informed about the current results of the analysis.

– Integration with version control and CI systems. After each commit a commit, the
incremental analysis should be automatically invoked.

– Incremental query evaluation using IncQuery-D [2]. Instead of the on-demand
query execution, IncQuery-D can be used to apply automatic and incremental
query execution triggered by changes that can be calculated easily using informa-
tion available within ISAaC. IncQuery-D works in a distributed manner, which
allows it to scale for models with more than 100 million elements.

– Integration to the Eclipse IDE. If the static analysis is integrated to the develop-
ment environment, the developer receives instant and context-aware results, which
greatly increases their productivity.

52

Acknowledgments

First, I would like to thank Zoltán Ujhelyi for providing the scientific foundations for my
research and insight into software model verification and also for helping benchmarking
Columbus.
I would like to thank my supervisors Gábor Szárnyas and Dr. István Ráth for their friendly
advice and enthusiasm. Also, I wish to express my gratitude to Benedek Izsó for his help
with RDF and SPARQL, Áron Tóth for helping my work in the cloud and all other col-
leagues in the Fault Tolerant Systems Research Group who provided numerous valuable
observations and suggestions.
Last but not least, I am deeply grateful to my family and friends for their continuous
support.

53

List of Figures

1.1 Continuous Integration workflow extended with Static Analysis. 1

2.1 Big Data database architecture. 5
2.2 An illustrative core part of Ecore, the metamodeling language of EMF. . . 9
2.3 Different graph data models (based on [20]). 11
2.4 W3C RDF example depicted as a graph. 11
2.5 W3C RDF example as an EMF class. 13

3.1 Overview of the system. 18
3.2 Source code change propagating through the system. 24
3.3 Workflow of the distributed processing. 25

4.1 Dependency Graph of the Workspace. 27
4.2 Part of the JaMoPP Java metamodel showing the class hierarchy of the

Switch and the various SwitchCase classes. 29
4.3 Part of the JaMoPP Java metamodel showing the class hierarchy of the Try-

Block, CatchBlock and InstanceOfExpression classes (with related classes). 29
4.4 Part of the instance model visualized with the Sample Reflective Ecore

Model Editor. 30
4.5 Part of a JaMoPP instance model in RDF format showing a Switch with

three SwitchCases, where one of them is a DefaultSwitchCase. 30
4.6 Graph pattern representation of the “Switch without Default” problem. . 32
4.7 Graph pattern representation of the “Catch Problem” problem. 33

5.1 Time required to build the Dependency Graph. 40
5.2 Time required to transform the code into an ASG. 41
5.3 Time required to persist the ASG in the Database. 41
5.4 Time required to execute the queries. 42

iii

5.5 Comparison of times needed to process the whole project or only incre-
mental modification. 44

6.1 Time required to analyze the original and the modified project with differ-
ent tools. 50

iv

Bibliography

[1] Continuous Integration. http://www.martinfowler.com/articles/
continuousIntegration.html. Accessed: 2014-10-26.

[2] Gábor Szárnyas. Superscalable modeling. Master’s thesis, Budapest University of Technol-
ogy and Economics, Budapest, 12/2013 2013.

[3] E. F. Codd. A relational model of data for large shared data banks. Commun. ACM,
13(6):377–387, June 1970.

[4] Adam Jacobs. The pathologies of big data. Commun. ACM, 52(8):36–44, August 2009.

[5] Sherif Sakr. Supply cloud-level data scalability with NoSQL databases. http://www.ibm.
com/developerworks/cloud/library/cl-nosqldatabase/index.html, March
2013.

[6] NoSQL Databases. http://nosql-database.org/, May 2013.

[7] 4store. http://4store.org/, October 2013.

[8] Avahi. http://www.avahi.org/, October 2013.

[9] Redland RDF Libraries. Raptor RDF Syntax Library. http://librdf.org/raptor/,
October 2013.

[10] Redland RDF Libraries. Rasqal RDF Query Library. http://librdf.org/rasqal/, Oc-
tober 2013.

[11] Object Management Group. Object Constraint Language Specification (Version 2.3.1), 2012.
http://www.omg.org/spec/OCL/2.3.1/.

[12] EMF-IncQuery. http://incquery.net/incquery, May 2013.

[13] Zoltán Ujhelyi, Ákos Horváth, Dániel Varró, Norbert István Csiszár, Gábor Szőke, László
Vidács, and Rudolf Ferenc. Anti-pattern detection with model queries: A comparison of
approaches. In IEEE CSMR-WCRE 2014 Software Evolution Week. IEEE, IEEE, 02/2014 2014.
IEEE Best Paper Award, Acceptance rate: 31%.

[14] SPARQL 1.1 Query Language. http://www.w3.org/TR/sparql11-query/. Accessed:
2014-10-24.

[15] Steven Harris and Andy Seaborne. SPARQL 1.1 query language. W3C recommendation,
W3C, March 2013. http://www.w3.org/TR/2013/REC-sparql11-query-20130321/.

v

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.ibm.com/developerworks/cloud/library/cl-nosqldatabase/index.html
http://www.ibm.com/developerworks/cloud/library/cl-nosqldatabase/index.html
http://nosql-database.org/
http://4store.org/
http://www.avahi.org/
http://librdf.org/raptor/
http://librdf.org/rasqal/
http://www.omg.org/spec/OCL/2.3.1/
http://incquery.net/incquery
http://www.w3.org/TR/sparql11-query/

[16] The Eclipse Project. Eclipse Modeling Framework. http://www.eclipse.org/emf,
October 2012.

[17] EMF documentation. Package org.eclipse.emf.ecore. http://download.
eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/
package-summary.html, October 2013.

[18] JaMoPP. http://www.jamopp.org/index.php/JaMoPP. Accessed: 2014-10-18.

[19] Florian Heidenreich, Jendrik Johannes, Mirko Seifert, and Christian Wende. Jamopp: The
java model parser and printer. Techn. Univ., Fakultät Informatik, 2009.

[20] Marko A. Rodriguez and Peter Neubauer. Constructions from dots and lines. CoRR,
abs/1006.2361, 2010.

[21] RDF Primer — Turtle version . http://www.w3.org/2007/02/turtle/primer/. Ac-
cessed: 2014-10-18.

[22] Gavin Carothers and Eric Prud’hommeaux. RDF 1.1 turtle. W3C recommendation, W3C,
February 2014. http://www.w3.org/TR/2014/REC-turtle-20140225/.

[23] Andy Seaborne and Gavin Carothers. RDF 1.1 n-triples. W3C recommendation, W3C,
February 2014. http://www.w3.org/TR/2014/REC-n-triples-20140225/.

[24] Gavin Carothers. RDF 1.1 n-quads. W3C recommendation, W3C, February 2014.
http://www.w3.org/TR/2014/REC-n-quads-20140225/.

[25] Markus Lanthaler, Manu Sporny, and Gregg Kellogg. JSON-ld 1.0. W3C recommendation,
W3C, January 2014. http://www.w3.org/TR/2014/REC-json-ld-20140116/.

[26] Dave Beckett. RDF/xml syntax specification (revised). W3C recommendation, W3C, Febru-
ary 2004. http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/.

[27] Neo Technology. Neo4j. http://neo4j.org/, 2013.

[28] Titan. https://github.com/thinkaurelius/titan, May 2013.

[29] Titan – Big Data with Cassandra. http://www.slideshare.net/knowfrominfo/
titan-big-graph-data-with-cassandra, August 2012.

[30] Apache Cassandra. http://cassandra.apache.org/, May 2013.

[31] google/cayley. https://github.com/google/cayley. Accessed: 2014-10-25.

[32] checkstyle – Checkstyle 6.1.1. http://checkstyle.sourceforge.net/. Accessed:
2014-12-07.

[33] checkstyle/checkstyle. https://github.com/checkstyle/checkstyle. Accessed:
2014-12-07.

[34] checkstyle – Configuration. http://checkstyle.sourceforge.net/config.html.
Accessed: 2014-12-07.

[35] FindBugs™ - Find Bugs in Java Programs. http://findbugs.sourceforge.net/. Ac-
cessed: 2014-10-25.

vi

http://www.eclipse.org/emf
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://download.eclipse.org/modeling/emf/emf/javadoc/2.9.0/org/eclipse/emf/ecore/package-summary.html
http://www.jamopp.org/index.php/JaMoPP
http://www.w3.org/2007/02/turtle/primer/
http://neo4j.org/
https://github.com/thinkaurelius/titan
http://www.slideshare.net/knowfrominfo/titan-big-graph-data-with-cassandra
http://www.slideshare.net/knowfrominfo/titan-big-graph-data-with-cassandra
http://cassandra.apache.org/
https://github.com/google/cayley
http://checkstyle.sourceforge.net/
https://github.com/checkstyle/checkstyle
http://checkstyle.sourceforge.net/config.html
http://findbugs.sourceforge.net/

[36] FindBugs 2™ - Find Bugs in Java Programs. http://findbugs.sourceforge.net/
findbugs2.html. Accessed: 2014-10-25.

[37] Eclipse Project. http://www.eclipse.org, October 2012.
[38] Welcome to NetBeans. https://netbeans.org/. Accessed: 2014-10-25.
[39] IntelliJ IDEA— The Best Java and Polyglot IDE. https://www.jetbrains.com/idea/.

Accessed: 2014-10-25.
[40] Apache Maven. http://maven.apache.org, October 2012.
[41] Welcome to Jenkins CI! | Jenkins CI. http://jenkins-ci.org/. Accessed: 2014-10-25.
[42] PMD. http://pmd.sourceforge.net/. Accessed: 2014-12-07.
[43] PMD – Welcome to PMD. http://pmd.sourceforge.net/pmd-5.2.1/. Accessed:

2014-12-07.
[44] SonarQube™. http://www.sonarqube.org/. Accessed: 2014-10-25.
[45] Javier Pérez, Yania Crespo, Berthold Hoffmann, and Tom Mens. A case study to evaluate

the suitability of graph transformation tools for program refactoring. International Journal
on Software Tools for Technology Transfer, 12(3-4):183–199, 2010.

[46] Tassilo Horn. Program understanding: A reengineering case for the transformation tool con-
test. In Pieter Van Gorp, Steffen Mazanek, and Louis Rose, editors, Proceedings Fifth Trans-
formation Tool Contest, Zürich, Switzerland, June 29-30 2011, volume 74 of Electronic Pro-
ceedings in Theoretical Computer Science, pages 17–21. Open Publishing Association, 2011.

[47] Javier Espinazo Pagán and Jesús García Molina. Querying large models efficiently. Infor-
mation and Software Technology, 56(6):586 – 622, 2014.

[48] TomMens, Niels Van Eetvelde, Serge Demeyer, and Dirk Janssens. Formalizing refactorings
with graph transformations. Journal of Software Maintenance and Evolution: Research and
Practice, 17(4):247–276, 2005.

[49] Jörg Niere, Wilhelm Schäfer, Jörg P. Wadsack, Lothar Wendehals, and Jim Welsh. Towards
pattern-based design recovery. In Proceedings of the 24th International Conference on Software
Engineering, ICSE ’02, pages 338–348, New York, NY, USA, 2002. ACM.

[50] Mirko Seifert and Roland Samlaus. Static source code analysis using OCL. Electronic Com-
munications of the EASST, 15(0), January 2008.

[51] Thorsten Arendt and Gabriele Taentzer. Integration of smells and refactorings within the
Eclipse Modeling Framework. In Proceedings of the Fifth Workshop on Refactoring Tools, WRT
’12, pages 8–15. ACM, 2012.

[52] PMD. PMD checker, 2014. http://pmd.sourceforge.net/.
[53] FrontEndART Software Ltd. QualityGate CodeAnalyzer, 2014. http://www.

frontendart.com/.
[54] Daniel Speicher, Malte Appeltauer, and Günter Kniesel. Code analyses for refactoring by

source code patterns and logical queries. In 1st Workshop on Refactoring Tools, WRT 2007,
pages 17–20, 2007.

vii

http://findbugs.sourceforge.net/findbugs2.html
http://findbugs.sourceforge.net/findbugs2.html
http://www.eclipse.org
https://netbeans.org/
https://www.jetbrains.com/idea/
http://maven.apache.org
http://jenkins-ci.org/
http://pmd.sourceforge.net/
http://pmd.sourceforge.net/pmd-5.2.1/
http://www.sonarqube.org/
http://pmd.sourceforge.net/
http://www.frontendart.com/
http://www.frontendart.com/

[55] Coen De Roover, Carlos Noguera, Andy Kellens, and Vivane Jonckers. The SOUL tool suite
for querying programs in symbiosis with Eclipse. In Proc. of the 9th International Conference
on Principles and Practice of Programming in Java, PPPJ ’11, pages 71–80. ACM, 2011.

[56] Elnar Hajiyev, Mathieu Verbaere, and Oege Moor. codequest: Scalable source code queries
with Datalog. In Dave Thomas, editor, ECOOP 2006 – Object-Oriented Programming, volume
4067 of Lecture Notes in Computer Science, pages 2–27. Springer Berlin Heidelberg, 2006.

[57] N. Moha, Y. Guéhéneuc, L. Duchien, and A. Le Meur. DECOR: A method for the specifi-
cation and detection of code and design smells. Software Engineering, IEEE Transactions on,
36(1):20–36, 2010.

[58] Git. http://git-scm.com/. Accessed: 2014-10-09.

[59] Apache Subversion. https://subversion.apache.org/. Accessed: 2014-10-09.

[60] Mercurial SCM. http://mercurial.selenic.com/. Accessed: 2014-10-09.

[61] Concurrent Versions System - Summary [Savannah]. http://savannah.nongnu.org/
projects/cvs. Accessed: 2014-10-09.

[62] MongoDB. http://www.mongodb.org/, October 2013.

[63] Code Conventions for the Java Programming Language: Contents. http://www.oracle.
com/technetwork/java/javase/documentation/codeconvtoc-136057.html.
Accessed: 2014-10-26.

[64] Google Java Style. http://google-styleguide.googlecode.com/svn/trunk/
javaguide.html. Accessed: 2014-10-26.

[65] Apache Jena - Typed literals how-to. https://jena.apache.org/documentation/
notes/typed-literals.html. Accessed: 2014-10-25.

[66] Gábor Bergmann, Ákos Horváth, István Ráth, Dániel Varró, András Balogh, Zoltán Balogh,
and András Ökrös. Incremental evaluation of model queries over emf models. In
Model Driven Engineering Languages and Systems, 13th International Conference, MODELS’10.
Springer, Springer, 10/2010 2010. Acceptance rate: 21%.

[67] Gábor Szárnyas, Benedek Izsó, István Ráth, Dénes Harmath, Gábor Bergmann, and Dániel
Varró. Incquery-d: A distributed incremental model query framework in the cloud. In
ACM/IEEE 17th International Conference on Model Driven Engineering Languages and Systems,
MODELS 2014, Valencia, Spain, 2014. Springer, Springer. Acceptance rate: 26%.

[68] Benedek Izsó, Gábor Szárnyas, István Ráth, and Dániel Varró. IncQuery-D: incremental
graph search in the cloud. In Proceedings of the Workshop on Scalability in Model Driven
Engineering, BigMDE ’13, pages 4:1–4:4, New York, NY, USA, 2013. ACM.

[69] The switch Statement (The Java™ Tutorials > Learning the Java Language > Language
Basics). http://docs.oracle.com/javase/tutorial/java/nutsandbolts/
switch.html. Accessed: 2014-10-13.

[70] Physhun - J2EE Finite State Machine Framework. http://physhun.sourceforge.
net/. Accessed: 2014-10-16.

viii

http://git-scm.com/
https://subversion.apache.org/
http://mercurial.selenic.com/
http://savannah.nongnu.org/projects/cvs
http://savannah.nongnu.org/projects/cvs
http://www.mongodb.org/
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://www.oracle.com/technetwork/java/javase/documentation/codeconvtoc-136057.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
http://google-styleguide.googlecode.com/svn/trunk/javaguide.html
https://jena.apache.org/documentation/notes/typed-literals.html
https://jena.apache.org/documentation/notes/typed-literals.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/switch.html
http://physhun.sourceforge.net/
http://physhun.sourceforge.net/

[71] Java DjVu Viewer | SourceForge.net. http://sourceforge.net/projects/
javadjvu/. Accessed: 2014-10-16.

[72] Xalan-Java Version 2.7.1. http://xml.apache.org/xalan-j/. Accessed: 2014-10-
16.

[73] SSD Cloud Server, VPS Server, Simple Cloud Hosting | DigitalOcean. https://www.
digitalocean.com/. Accessed: 2014-10-22.

[74] FindBugs Bug Descriptions. http://findbugs.sourceforge.net/
bugDescriptions.html#SF_SWITCH_FALLTHROUGH. Accessed: 2014-11-20.

[75] Michael Dyck and Jonathan Robie. XML path language (XPath) 3.1. W3C working draft,
W3C, April 2014. http://www.w3.org/TR/2014/WD-xpath-31-20140424/.

[76] PMD Java – Ruleset: Design. http://pmd.sourceforge.net/pmd-5.2.1/
pmd-java/rules/java/design.html#SwitchStmtsShouldHaveDefault. Ac-
cessed: 2014-11-20.

[77] checkstyle – Coding. http://checkstyle.sourceforge.net/config_coding.
html#MissingSwitchDefault. Accessed: 2014-11-20.

[78] Rudolf Ferenc, Ferenc Magyar, Árpád Beszédes, Ákos Kiss, and Mikko Tarkiainen.
Columbus–tool for reverse engineering large object oriented software systems. 2001.

[79] SourceMeter - Free-to-use, Advanced Source Code Analysis Suite. https://www.
sourcemeter.com/. Accessed: 2014-12-07.

[80] SonarQube - Open Wonderland. https://sonarqube.sourcemeter.com/
dashboard/index/701903. Accessed: 2014-12-07.

ix

http://sourceforge.net/projects/javadjvu/
http://sourceforge.net/projects/javadjvu/
http://xml.apache.org/xalan-j/
https://www.digitalocean.com/
https://www.digitalocean.com/
http://findbugs.sourceforge.net/bugDescriptions.html#SF_SWITCH_FALLTHROUGH
http://findbugs.sourceforge.net/bugDescriptions.html#SF_SWITCH_FALLTHROUGH
http://pmd.sourceforge.net/pmd-5.2.1/pmd-java/rules/java/design.html#SwitchStmtsShouldHaveDefault
http://pmd.sourceforge.net/pmd-5.2.1/pmd-java/rules/java/design.html#SwitchStmtsShouldHaveDefault
http://checkstyle.sourceforge.net/config_coding.html#MissingSwitchDefault
http://checkstyle.sourceforge.net/config_coding.html#MissingSwitchDefault
https://www.sourcemeter.com/
https://www.sourcemeter.com/
https://sonarqube.sourcemeter.com/dashboard/index/701903
https://sonarqube.sourcemeter.com/dashboard/index/701903

Appendix

H.1 JaMoPP metamodel

annotations

Concrete classes for the Java annotations
and abstract classes for the items that could
be annotated.

arrays

Classes describing the dimensions and types
of arrays, or the instantiation of the arrays.

classifiers

Class, AnonymousClass, Interface,

Enumeration, Annotation

commons

Core package of the metamodel,
containing abstract classes.
Commentable, NamedElement,

NamespaceAwareElement

containers

CompilationUnit, Package

expressions

The expressions package contains the
classes describing the assignments,
castings, and, or, equality and other
expressions, and their abstract child nodes
to be superclasses for other expressions.
ExpressionList, EqualityExpression,

EqualityExpressionChild,

NestedExpression

generics

The generics package contains classes
describing the constraints used in generic
classifiers, methods e.g.
ExtendsTypeArgument.

imports

The imports package contains classes
describing the various import cases e.g.
ClassifierImport, PackageImport,

StaticClassifierImport,

StaticMemberImport .

x

instantiations

The instantiations package contains
describing different types of constructor
calls.

literals

The literals package contains classes
describing literal values for the primitive
data types e.g. BooleanLiteral,
CharacterLiteral. It also contains many
representations for the
IntegerLiteral, LongLiteral,

DecimalLiteral, FloatLiteral,

also
Super, NullLiteral, This .

members

Method, Field, Constructor

modifiers

Abstract, Final, Native, Public,

Protected, Private, Static,

Synchronized, Transient, Volatile

operators

The operators package contains classes for
the Java operators.
Equal, NotEqual, GreaterThan,

RightShift, MinusMinus

parameters

Classes representing the method
parameters OrdinaryParameter,
VariableLengthParameter, and the
Parametrizable abstract class for Methods
and alike.

references

The references package contains classes
representing references to other items.
IdentifierReference, MethodCall,

StringReference,

ReflectiveClassReference,

PrimitiveTypeReference, SelfReference

statements

Switch, TryBlock, CatchBlock,

WhileLoop, ForLoop,

ExpressionStatement, Return

types

The types package contains classes for
classifier or type references, primitive
types.
Boolean, Byte, Char, Double, Float,

Int, Long, Short, Void

variables

Variable, LocalVariable,

AdditionalLocalVariable

(Fields are found in the members package.)

xi

	Kivonat
	Abstract
	Introduction
	Context
	Problem Statement and Requirements
	Objectives and Contributions
	Structure of the Thesis

	Background and Related Work
	Big Data and the NoSQL Movement
	Sharding
	High Availability
	4store
	Query Languages and Evaluation Strategies

	Modeling
	Metamodels and Instance Models
	The Eclipse Modeling Framework
	JaMoPP
	Graph Data Models
	Model Queries over EMF and RDF

	Static Analysis in Practice
	Checkstyle
	FindBugs
	PMD

	Well-formedness Checking over Code Models

	Overview of the Approach
	Architecture
	Main Components
	Steps of Processing
	Serializing EMF Models into RDF

	Incremental Processing
	Processing Changes in the Source Code
	Incremental Query Evaluation

	Distributed Processing

	Elaboration of the Workflow
	Case Study
	Workspace
	Source Code Snippet
	Well-formedness Rules

	Code Model Representation
	JaMoPP Metamodel
	JaMoPP Instance Model
	Database Contents

	Well-formedness Rules in Query Form
	Evaluating a Query
	Processing Changes

	Evaluation
	Benchmarking Scenarios
	Validating the Initial Codebase
	Simulating a Change in the Source Code
	Projects Selected for Verification

	Benchmarking Environment
	Hardware
	Software
	Configuration

	Measurement Results
	Result Analysis
	Threats to Validity

	Comparison of Currently Used Static Analyzers
	Configurations
	FindBugs
	PMD
	Checkstyle
	Columbus

	Measurement Results
	Result Analysis
	Threats to Validity

	Conclusions
	Summary of Contributions
	Scientific Contributions
	Practical Accomplishments

	Limitation and Future Work

	Acknowledgments
	List of Figures
	Bibliography
	Appendix
	JaMoPP metamodel

