
Budapesti M¶szaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Méréstechnika és Információs Rendszerek Tanszék

Transitive reachability for e�cient
event-driven model transformations

MSc thesis

Candidate Advisor

Tamás Szabó Gábor Bergmann

December 3, 2012

2

FELADATKIÍRÁS

A feladatkiírást a tanszéki adminisztrációban lehet átvenni, és a leadott munkába eredeti,

tanszéki pecséttel ellátott és a tanszékvezet® által aláírt lapot kell belef¶zni (ezen oldal

helyett, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatban már nem kell

beleszerkeszteni ezt a feladatkiírást.

3

4

HALLGATÓI NYILATKOZAT

Alulírott Szabó Tamás, szigorló hallgató kijelentem, hogy ezt a diplomatervet meg nem

engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakiro-

dalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos

értelemben, de átfogalmazva más forrásból átvettem, egyértelm¶en, a forrás megadásával

megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerz®(k), cím, angol és magyar nyelv¶

tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhet®

elektronikus formában, a munka szövegét pedig az egyetem bels® hálózatán keresztül (vagy

autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és an-

nak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén

a dolgozat szövege csak 3 év eltelte után válik hozzáférhet®vé.

Budapest, December 3, 2012

Szabó Tamás

hallgató

Kivonat

Napjainkban a modellalapú szoftverfejlesztési módszerek egyre nagyobb szerepet kapnak,

mert a hardver és szoftver rendszerek komplexitása sokszor túlmutat azon a szinten, amely

még a hagyományos fejlesztési paradigmákkal kezelhet®. Ez a megközelítés szakterület

speci�kus fejlesztési környezetek létrehozásával lehet®vé teszi, hogy a szakterület ismer®i -

de nem feltétlenül csak szoftvermérnökök - is részt tudjanak venni a gyors prototipizálás-

ban, felgyorsítva ezzel a fejlesztés ütemét. A modellalapú szoftverfejlesztéshez szorosan

kapcsolódik a modelltranszformáció is, amellyel modellek közötti automatikus leképezést

tudunk megvalósítani, például kódgenerálást megvalósítva ezzel. Az elmúlt években történt

kutatások egyik fontos irányvonala volt ez a terület az informatikán belül, de a szakterületi

modellez® nyelvek kifejlesztése még mindig sokszor igényli több terület mélyebb ismeretét,

úgy mint metamodellezés, transzformációk, nyelvtervezés.

A diplomaterv készítése során a modellezési környezetnek az Eclipse Modeling Framework-

öt választottam, amely ipari standardnak tekinthet® a (meta)modellezés területén. Erre

épít az EMF-IncQuery keretrendszer, amely lehet®vé teszi modellek fölötti deklaratív lekér-

dezések hatékony megvalósítását. A hatékonyságot az inkrementális gráfminta-illesztés

segítségével éri el, amely azt jelenti, hogy a lekérdezések eredményeit egy folyamatosan

(minden modellmódosítás után) karbantartott gyorsítótárból tudja megválaszolni.

A diplomaterv egyik f® eredménye az EMF-IncQuery-re épít® eseményvezérelt szabályvé-

grehajtó motor elkészítése. Ezzel a kiegészítéssel lehet®ség nyílik arra, hogy lekérdezések

eredményhalmazának változásakor el®re de�niált akciókat lehessen automatikusan végre-

hajtani (tetsz®leges Java nyelven leírt lépéssorozat). Sok gyakorlati életben el®forduló

problémában szükség van a vizsgált modellen történ® tranzitív lezárt számítására, ezért

a munka során nagy hangsúlyt kapott a mintanyelv tranzitív lezárttal, mint nyelvi el-

emmel történ® kiterjesztése. Ehhez többféle tranzitív lezáró algoritmust implementáltam

és hasonlítottam össze a hatékonyságukat szintetikus teljesítményteszteken keresztül. A

diplomaterv másik fontos koncepcionális eredménye egy, a gráf er®sen összefügg® kompo-

nenseinek inkrementális karbantartásán alapuló régebbi algoritmus átdolgozott változata,

amely a leghatékonyabbnak bizonyult az általam vizsgált algoritmusok közül.

Az elkészült nyelvi kiegészítés és eseményvezérelt szabályvégrehajtó motor hatékonyságát

többféle esettanulmányon keresztül vizsgáltam meg; EMF-IncQuery validációs keretrend-

szere, Peer-to-Peer VoIP rendszerek sztochasztikus szimulációja és egy egyszer¶ Design

Space Exploration komponens kialakítása cloud-infrastruktúra modellek futási idej¶ rekon-

�gurációjához.

7

8

Abstract

Nowadays model driven software development (MDSD) is getting more and more impor-

tant as usually the complexity of hardware and software systems is far beyond the limit

which can be handled easily by traditional paradigms. This approach is an alternative to

create domain-speci�c development environments to help the rapid prototyping for not

only software engineers but for experts in the given domain too, speeding up the whole

development lifecycle of the product. Model transformation is tightly connected to MDSD

as it automates the mapping between di�erent kinds of models during development. The

MDSD related technologies have been an important research area in the past years, but cre-

ating domain-speci�c tools still requires expertise in a wide range of areas: metamodeling,

transformations, language design.

The thesis relies on the Eclipse Modeling Framework as the modeling environment which

is an industry standard platform used for (meta)modeling. EMF-IncQuery is based on this

technology and provides a pattern language to evaluate declarative queries over EMF

models e�ciently. This e�ciency is due to incremental graph pattern matching, that is,

the queries are answered using a cache that is continuously maintained after each model

manipulation.

One of the main conceptual results of the thesis is the EMF-IncQuery backed event-

driven rule execution engine. This extension allows attaching prede�ned actions (written

in Java) to queries and automatically executing them when a new match of a query appears

(or disappears). Nevertheless, in many practical problems transitive closure of models is

widely used which requires to extend the pattern language of EMF-IncQuery. During the

thesis work I have investigated various incremental and non-incremental transitive closure

algorithms and created prototype implementations to compare their runtime characteristics

using synthetic performance tests. As part of the work, I have adapted an algorithm which

is based on the incremental maintenance of the strongly connected components of the graph

and it came out to be the most e�cient out of the ones that I have implemented.

To illustrate the practical applications of the results I have carried out three case studies

as part of the thesis work: the validation framework of EMF-IncQuery, stochastic simulation

of Peer-to-Peer VoIP networks and a basic module for Design Space Exploration for runtime

recon�guration of cloud-infrastructure models.

9

10

Contents

Kivonat 7

Abstract 9

1 Introduction 13

2 Preliminaries 17

2.1 Running example - stochastic simulation of Peer-to-peer VoIP networks . . 17

2.2 Modeling preliminaries and the running example 18

2.3 Graph patterns, graph transformations and the RETE net 19

2.4 Transitive closure preliminaries . 21

2.5 The Union-�nd data structure . 23

2.6 EMF-IncQuery Base . 25

3 Transitive closure and its application 27

3.1 Notations used in this section . 28

3.2 Transitive closure operations . 28

3.3 Survey of transitive closure algorithms . 29

3.3.1 Static transitive closure algorithms 29

3.3.2 Incremental transitive closure algorithms 30

3.4 IncSCC . 34

3.5 Integrating the IncSCC algorithm into the RETE net 38

3.5.1 Integration with VIATRA2 . 39

3.5.2 Integration with EMF-IncQuery . 40

4 Event-driven rule execution engine 41

4.1 Survey of rule-based expert systems and model transformation frameworks . 41

4.2 Architecture overview . 42

4.3 Life cycle of activations . 43

4.4 The designed API of the Rule Engine . 45

4.5 Noti�cation mechanism and the Trigger Engine 47

4.6 Example from the context of stochastic simulation 48

5 Case studies 51

5.1 Validation Framework . 51

11

5.1.1 User interface extension . 52

5.1.2 The designed architecture . 53

5.1.3 Generated validation code . 54

5.1.4 Validation example from the context of stochastic simulation 56

5.2 Design space exploration . 57

5.2.1 Overview of the VIATRA2 based DSE framework 57

5.2.2 Overview of the EMF-IncQuery based DSE framework 58

5.2.3 Cloud infrastructure example . 60

5.2.4 Implementation notes - EMF transactions 63

5.3 Stochastic simulation . 63

5.3.1 Survey of stochastic network simulation tools 64

5.3.2 Simulation with graph transformations 64

5.3.3 Distributions and simulation execution 65

5.3.4 Connection with the Rule Engine . 66

6 Performance measurements 67

6.1 Benchmarking of the transitive closure algorithms 67

6.1.1 Measurement scenario . 67

6.1.2 Results and analysis . 68

6.2 Benchmarking of the Stochastic simulation framework 71

6.2.1 Measurement scenario . 71

6.2.2 Results and analysis . 72

6.3 Benchmarking of the Design Space Exploration component 74

6.3.1 Measurement scenario . 74

6.3.2 Results and analysis . 75

7 Conclusions 77

Bibliography 84

Appendix 85

A.1 Tarjan's algorithm . 85

A.2 IncSCC implementation details . 87

A.3 DFS-based generation of the transitive closure relation 91

A.4 Stochastic simulation source codes . 92

12

Chapter 1

Introduction

Model driven software development (MDSD) is getting more and more important nowadays

as the complexity of many software and hardware systems is far beyond the limit that can

be handled by traditional development paradigms. MDSD is about using domain-speci�c

languages to create models that express application structure and interactions between

its components. The developers work at a higher abstraction level during most of the

development cycle thus allowing non-experts to also understand the interaction between

the modules of the system. This approach has also the bene�t to grasp only the crucial parts

of the system architecture without delving into much unnecessary details. In the MDSD

context the aim is that developers deal only with high level models and additionally use

tools that can automate the other development tasks to the highest possible degree.

The models (either in some form of textual or graphical representation) are easily read-

able by end-users; however they need to be translated to the target platform in order to run.

For high level models, model transformation is used, where we de�ne transformation rules

for each model element. A transformation rule consists of a pre- and postcondition; when a

model element matches the precondition then the action de�ned in the postcondition can

be applied and the model element will be transformed. In general, the term model-to-model

transformation is used; a special case of this is model-to-text transformation which results

source code or documentation generation from the high level domain-speci�c models. Model

transformation can also be used for validation purposes; to check well-formedness require-

ments, enforce project speci�c design principles and derive metrics and other properties

from the high level model. For example, well-formedness checker transformation rules have

a precondition which de�nes the model elements and their connection which must not

appear in the model, however, if they do, then the postcondition can be applied and an

appropriate error marker can be placed on the user interface of the developer. Nevertheless,

in the domain of safety critical systems it is often required that the system's behavior must

be checked with certain formal veri�cation techniques (e.g. for Safety Integrity Level 4 the

use of formal methods is highly recommended [26]). In this scenario Petri nets can serve

as a high level model, which later can be used by model checking tools as described in our

paper [39].

The Eclipse Modeling Framework (EMF) is an industry standard Eclipse-based [7] mod-

13

eling framework for de�ning models and provides code generation facilities for building tools

and other applications based on the structured data model. It can be also easily integrated

with graphical editors thus allowing the creation of intuitive interfaces for model manip-

ulations. Because of these properties, in the thesis I will use EMF as the target platform

for modeling purposes.

Requirements against a model transformation framework

Model transformation requires evaluating certain queries on the source models. However,

when dealing with evolving models, it is often advantageous if we do not need to start

over in batch mode after every model modi�cation, rather perform prede�ned actions in

an event-driven manner (for example upon query-match appearance or disappearance).

Such frameworks address this issue by de�ning a pattern language to form the queries

and evaluate them e�ciently on the input models. It should support the de�nition of the

postcondition action which can be, for example, model manipulation, displaying some error

message or code generation. Rule based expert systems share a lot of common properties

with model transformation frameworks, however they lack EMF support which is the target

modeling platform of my thesis.

On the other hand, EMF-IncQuery [4] is a framework for de�ning declarative queries over

EMF models (treated as a graph model), and executing them e�ciently without manual

coding. The query language is based on the concepts of graph patterns (which is widely used

in many graph-based model transformation frameworks). High performance is achieved by

adapting the fundamentals of incremental graph pattern matching, which would be a great

advantage in a graph transformation framework as it provides low latency with a slight

memory overhead. One of the main contributions of my thesis work is the extending of

the EMF-IncQuery framework with the so called 'Rule Engine'. This additional module

will allow the user to de�ne transformation rules with precondition as an EMF-IncQuery

pattern and a postcondition written in the Java programming language. These rules can be

executed in an event-driven manner; when the source model is modi�ed it activates some

rules and they can be �red (like in the rule based expert systems) to perform transformation

activities.

Extending the pattern language of EMF-IncQuery

EMF-IncQuery has a pattern language with the expressiveness of the �rst order logic,

thus it is not possible to express recursive patterns with it, however it would be highly

desired in a lot of cases, for example when computing transitive closures over models. Tran-

sitive closures are frequently used in a number of modeling applications, e.g. to compute

model partitions or reachability regions in traceability model management, business process

model analysis, or stochastic simulation of complex systems. They may also provide the

underpinnings for n-level metamodeling hierarchies where transitive type-subtype-instance

relationships need to be maintained. During the thesis work I have experimented with var-

ious (incremental) transitive closure algorithms and adapted the one presented in [31] into

the EMF-IncQuery framework. The adaptation had three main requirements: (i) align with

the general performance characteristics of incremental graph pattern matching, (ii) handle

cyclic closures (closures in general graphs with cycles) correctly and (iii) support generic

14

transitive closures, i.e. the ability to compute closures of not only simple graph edges (edge

types), but also derived edges de�ned by binary graph patterns that establish a logical link

between a source and a target vertex. These contributions allow to use EMF-IncQuery as

a basic graph transformation environment with full support for transitive closure in the

pattern language.

Structure of the thesis

The rest of the paper is structured as follows; Chapter 2 introduces (meta)modeling,

graph transformation and transitive closure related preliminaries necessary to understand

the rest of the discussion, and describes brie�y the running example - the stochastic sim-

ulation of Peer-to-peer VoIP networks. Chapter 3 presents the various transitive closure

algorithms I have experimented with and also discusses the most interesting implementa-

tion details. Chapter 4 gives an in-depth introduction to the EMF-IncQuery based Rule-

and Trigger Engine, while Chapter 5 presents three case studies in-depth to demonstrate

the usage of the Rule Engine and the language extension. Detailed measurement results can

be found in Chapter 6 on the transitive closure algorithms and measurements concerning

the case studies. Finally, the summary of the thesis is given in Chapter 7 along with notes

on future work.

15

16

Chapter 2

Preliminaries

The following sections give a detailed overview about the preliminaries required to under-

stand the latter chapters of the thesis:

• Details on the running example in Section 2.1

• Modeling, metamodeling in Section 2.2.

• Introduction to graph patterns and graph transformations in Section 2.3.

• The transitive closure related de�nitions and examples in Section 2.4.

• Discussion about the Union-Find data structure in Section 2.5. The data structure

is used by a transitive closure algorithm, which will be discussed later.

• A brief introduction in Section 2.6 of the EMF-IncQuery Base library which provides

powerful query operations for EMF models.

2.1 Running example - stochastic simulation of Peer-to-peer

VoIP networks

In distributed and mobile systems with volatile bandwidth and fragile connectivity, non-

functional aspects like performance and reliability become more and more important. To

measure and pro�le these properties, stochastic methods are required. These systems, how-

ever, are characterized with high degree of architectural recon�guration. Viewing the ar-

chitecture of such systems as a graph, the problem is naturally evaluated with graph

transformations.

In the thesis, I will use the stochastic simulation of Peer-to-Peer VoIP systems (for

example Skype [13]) as a demonstrating example. In such systems, the network is modelled

as a graph with nodes of two types: clients and super nodes. The simple client nodes

represent the users of the VoIP network and in the presence of more hardware resources

they can be upgraded to work as super nodes, which operates as a router and manager

between clients. A connection between two nodes represent a link which can be used for

communication. Super nodes form an overlay network over the physical one and each

17

Figure 2.1: Three-tier model-metamodel relationship

client registers itself to a super node, through which it will establish and receive calls,

send messages, etc. The only central component in the network is the registration server,

which stores the user account information, handles the login procedure on the network

and knows the addresses of the super nodes. All other information regarding the users'

status and connection is stored in a distributed manner among the super nodes. If a super

node becomes unavailable because of hardware or link failure, the connected clients must

reconnect to another super node. Naturally, the aim is to avoid node-isolation, such node

cannot establish connection with another client.

Measuring the non-functional properties is crucial is such scenarios to maintain a certain

level of quality of service when the prototype system is deployed onto the Internet for daily

use. Stochastic simulation as a case study is discussed in Section 5.3 in-depth, while the

following sections give details about the key aspects of the domain of stochastic simulation.

2.2 Modeling preliminaries and the running example

A model is a projection of reality and is used to capture concepts related to the engineer's

task. Models are frequently used to describe a system and the communication between

the various components. Every model has a metamodel, which de�nes the concepts within

the given domain. A model conforms to its metamodel in the same way that a computer

program conforms to the grammar of the given programing language. A metamodel serves

as an abstract syntax and de�nes the possible elements and their connection for its instance

models.

The Eclipse Modeling Framework [36] is the leading industrial modeling ecosystem which

is an easy-to-use platform for creating domain speci�c tools. It provides code generation fa-

cilities and tooling (persistence, editing, noti�cation handling, etc.) for Java representation

18

(a) Metamodel (b) Instance model

Figure 2.2: Meta- and instance models of the running example

of models. The model of EMF models is the Ecore metamodel; every EMF model conforms

to this metamodel, which results a three-tier model-metamodel relationship between the

domain instance model (edited by the end-user), its metamodel and the Ecore metamodel

(see Figure 2.1).

Models and metamodels in the context of the running example

A simple metamodel for the running example is given in Figure 2.2a. The network is

de�ned as a graph that may consist of two kinds of nodes: they may either be simple

clients (instances of the type CL) or super nodes (SN) to which clients may connect

(through connections of type cnn). Additionally, super nodes form the overlay network

by connecting to each other through connections of type link. A sample instance model is

shown in Figure 2.2b.

2.3 Graph patterns, graph transformations and the RETE

net

For querying domain models, we often use graph patterns that constitute an expressive

formalism also used for various other purposes in model-driven development, such as cap-

turing general-purpose model queries including model validation constraints, or de�ning

the behavioral semantics of dynamic domain-speci�c languages. A graph pattern (GP) rep-

resents conditions (or constraints) that have to be ful�lled by a part of the instance model.

A basic graph pattern consists of structural constraints prescribing the existence of vertices

and edges of a given type. Languages usually include a way to express attribute constraints.

A negative application condition (NAC) de�nes cases when the original pattern is not valid

(even if all other constraints are met), in the form of a negative sub-pattern. A match (in

the matching set) of a graph pattern is a group of model elements that have the exact

same con�guration as the pattern, satisfying all the constraints (except for NACs, which

must be made unsatis�able).

A sample graph pattern is shown in Figure 2.3 from the running example, using a graph-

ical concrete syntax for illustration. This pattern expresses the logical linked relationship

between any two super nodes S1 and S2 (both are required to be of type SN) that are

19

Figure 2.3: Graph pattern example

Figure 2.4: Graph transformation rule example

connected by a relation of type link in either direction.

Graph transformation is de�ned by a graph pattern and an action to perform manipu-

lation of the source model. The transformation is done by replacing some parts of the graph

by another graph. Formally, a graph transformation rule is a triplet r = (LHS,RHS,NAC),

where

• LHS is the left-hand side which de�nes the graph pattern that will be replaced

• RHS is the right-hand side which is the graph that will be glued to the model

• NAC is the negative application condition which prohibits the presence of certain

model elements and connections between them. If a match of the NAC can be found

then the rule can not be executed.

The NAC and LHS together is called the precondition of the rule and RHS is the

postcondition. The application of the rule r on an instance model will remove a sub-graph

which maps to LHS from the model and glue an image of RHS to it. A graph transformation

is a series of such rule applications from the initial model. A sample graph transformation

rule is given in Figure 2.4 where the left hand side pattern contains a NAC, that is, the

rule can only be applied if there is no linked connection between the two super nodes. As

a result of the rule execution, a linked relationship will be established between the two

nodes in either direction.

Graph transformation systems use pattern matching algorithms to determine the parts of

the model that correspond to the match set of a graph pattern. However, pattern matching

is usually the most expensive (in terms of computation) part of the transformation, result-

ing to be crucial in the performance characteristics of the underlying engine. Incremental

pattern matching engines (like EMF-IncQuery) aim to solve this issue by maintaining a

20

cache in which the matches of a pattern are stored explicitly. The match set is readily

available from the cache at any time without searching, and the cache is incrementally

updated whenever changes are made to the model. The result can be retrieved in constant

time - excluding the linear cost induced by the size of the match set itself -, making pat-

tern matching extremely fast. The trade-o� is space consumption of the match set caches,

model manipulation performance overhead related to cache maintenance, and possibly the

initialization cost of the cache.

RETE [21] is a well-known incremental pattern matching technique from the �eld of

rule-based expert systems. A RETE net consists of RETE nodes (not to be confused with

the vertices of the model graph), each storing a relation corresponding to the match set of

a partial pattern, i.e. the set of model element tuples that satisfy a given subset of pattern

constraints. RETE nodes are connected by RETE edges so that the content of a RETE

node can be derived from its parent nodes. The RETE edges propagate incremental updates

of the match sets, i.e. whenever the contents of a RETE node is changed, child nodes are

also updated using the di�erence (inserted or deleted tuples). There are three types of

nodes in the RETE net: (i) input nodes serve as the knowledge base of the underlying

model, e.g. there is a separate node for each entity or relation type, enumerating the set

of instances as tuples; (ii) intermediate nodes perform operations to derive a set of partial

matches; �nally, (iii) production nodes store the complete match set of a given pattern.

The stochastic simulation of the VoIP network can be performed with graph transfor-

mations. In this scenario, we de�ne various graph patterns as the left hand side value of

the graph transformation and put model manipulation actions on the right hand side. The

simulation can be executed for a given amount of time or for a given amount of transfor-

mation steps. After the execution is done, the non-functional properties can be measured

with so called probe rules that only check the existence of given subgraphs but do not

perform model manipulation.

2.4 Transitive closure preliminaries

The stochastic simulation problem is addressed with graph models and their transforma-

tions. To measure the quality of service, various probe rules are used and some of them

relies on the transitive closure of the base communication graph of the client nodes. The

following paragraphs give formal de�nitions for the graph related terms to further discuss

the running example.

Directed graph A directed graph (digraph) is a pair G = (V,E), where V is a �-

nite set of vertices and E ⊆ V × V is a set of ordered pairs called arcs or edges. When

multiple graphs are present, I will use V (G) and E(G) to represent V and E of the under-

lying graph G. A digraph G′ = (V ′, E′) is a subgraph of G = (V,E), if V ′ ⊆ V and E′ ⊆ E.

Path and cycles A sequence u0u1 . . . un(n > 0) of vertices in G is a walk from u0

to un if (ui−1, ui) is in E for each i ∈ [1..n]; the sequence is a path if it is a walk and

21

Figure 2.5: Transitive closure example - pconnected pattern

ui 6= uj whenever 0 ≤ i < j ≤ n. We say uiui+1 . . . uj−1uj is a subpath of u0u1 . . . un
for all 0 ≤ i < j ≤ n; when i 6= 0 or j 6= n, we say the subpath is strict. The sequence

u0u1 . . . un(n > 0) is a cycle if u0 = un and ui 6= uj for all 0 ≤ i < j ≤ n such that

(i, j) 6= (0, n). An arc on a cycle is called a cyclic arc. G is acyclic if it contains no cycles.

Transitive closure For a graph G, the irre�exive transitive closure G+ consists of (u, v)

pairs of elements (transitive closure relation) for which there is a non-empty path from u

to v in E. The de�nition can be generalised for any binary relation E over a domain D.

In case of generic transitive closure, the base relation E is a 'derived edge', de�ned by an

arbitrary two-parameter graph pattern, not restricted to simple graph edges. The current

thesis focuses on generic, irre�exive transitive closure, as it is the most general and �exible

approach.

Strongly connected component (SCC) A graph is strongly connected if all pairs

of its vertices are mutually transitively reachable. An SCC of a graph is a maximal subset

of vertices within a graph that is strongly connected. It is easy to see that the SCC of a

vertex v is the intersection of the set of ancestors and descendants of the vertex; and thus

each graph has a unique decomposition S into disjoint SCCs.

Reduced graph For a graph G = (V,E), the SCCs form the reduced graph Gc =

(S,Ec), where two SCCs are connected if any of their vertices are connected: Ec =

{(si, sj)|si, sj ∈ S ∧ ∃u ∈ si, v ∈ sj : (u, v) ∈ E}. It follows from the de�nitions that

a reduced graph is always acyclic.

Topological sorting The topological sorting of a directed graph is an ordering of its

vertices such that, for every edge (u, v), u comes before v in the ordering. A topological

sorting is possible if and only if the graph contains no cycles, that is, if it is a directed

acyclic graph (DAG). All DAG graphs have at least one topological sorting and it can be

computed in linear time.

The example in Figure 2.5 demonstrates transitive closure features in graph pattern

matching. A transitive closure over the overlay network of super nodes is speci�ed by

22

the pattern pconnected that de�nes the relationship between any two client nodes C1, C2

which are (i) either sharing a common super node to which they are both directly connected

by cnn edges, or (ii) their cnn connection is indirect in the sense that their super nodes

S1, S2 are reachable from each other through a transitive linked+ relationship. The latter

is the generic transitive closure of a derived edge de�ned by the binary linked pattern

(Figure 2.3).

To align with the performance characteristics of incremental pattern matching, it natu-

rally comes to mind to use incremental transitive closure algorithms. Great e�ort has been

put into the research of transitive closure algorithms and there are numerous static and

dynamic (incremental) algorithms available in the literature. Chapter 3 gives an in-depth

overview about some of these algorithms and their application inside the RETE net for

pattern matching purposes.

Tarjan's algorithm

Tarjan's algorithm [35] is used to compute the strongly connected component partition-

ing of a graph. The algorithm is based on depth-�rst search which starts from an arbitrary

node. During the traversal the nodes are placed on a stack in the order they are visited.

When the traversal returns from a subtree, the nodes are taken from the stack until the

root node of the current strongly connected component is found. Here, root node simply

means the �rst node from the SCC that was encountered during the traversal. If a node is

a root node, then it and all of the other nodes that were taken o� from the stack before it

form an SCC.

Section A.1 presents an iterative implementation of Tarjan's algorithm in Java.

2.5 The Union-�nd data structure

The union-�nd (or disjoint-set) data structure [37] keeps track of a set of elements par-

titioned into a number of disjoint subsets. There are usually two operations de�ned on a

union-�nd structure:

• union: merge two subsets into a single one

• �nd: determine which subset a particular element is in.

The union-�nd data structure can be extended to handle the delete operation too: remove

a given element from a set (the container set can be found with the �nd operation). In

order to de�ne the operations more precisely, some way of representing the sets is needed.

A common approach is to select a �xed element of each set, called as the representative

(which will represent the whole set).

There are several representations of a union-�nd data structure; for example linked

lists, forests etc. This section gives an overview about possible implementations for the

operations when the structure is represented with forests. In this case each set will be

represented by a tree with the representative node being the root of it.

MakeSet Creates a new set containing the single element x and initializing its parent

as itself.

23

Listing 2.1: Union-Find MakeSet operation

function MakeSet(x) {

x.parent := x

}

Find Finds the representative element of the set which contains the given element x.

Listing 2.2: Union-Find Find operation

function Find(x) {

if x.parent == x

return x

else

return Find(x.parent)

}

Union First it �nds the representative elements for each passed element and the merge

operation is performed on the representatives.

Listing 2.3: Union-Find Union operation

function Union(x, y) {

xRoot := Find(x)

yRoot := Find(y)

xRoot.parent := yRoot

}

Delete The delete operation is done by �rst �nding the representative node of the passed

element and then remove the element from the container set. If the representative node is

deleted, then it is required to promote a node from the set to be the new representative.

Listing 2.4: Union-Find Delete operation

function Delete(x) {

xRoot := Find(x)

Delete x from the container set whose representative node is xRoot

}

There are several enhancements for the union-�nd data structure to improve perfor-

mance:

• Path compression: it is a way of �attening the structure of the tree whenever Find

is called. The idea is to attach each node directly to the representative node of the

tree during the traversal. As a result, the tree is much �atter which speeds up future

Find calls not only on these elements but on those referencing them.

• Union by rank: the idea is to always attach the smaller tree to the root of the larger

tree when performing Union operations. Since it is the depth of the tree that a�ects

the running time, it is advantageous to increase the size of the tree only if necessary.

Always attaching to the larger tree will only increase the depth when the two trees

being merged are of equal depth. Note that, here the term rank is used, as depth is

no longer equal to it if path compression is also used.

These two techniques will result that the amortized time per operation is only O(α(n)),

where n is the number of elements in the structure and α(n) is the inverse Ackermann

function [12].

24

2.6 EMF-IncQuery Base

EMF-IncQuery Base [3] is an additional component over the EMF-IncQuery framework

and it aims to provide several useful features for querying EMF models:

• Inverse navigation along EReferences

• Finding all model elements by attribute value/type (i.e. inverse navigation along

EAttributes)

• Computing transitive reachability along given reference types (i.e. transitive closure

of an EMF model)

• Getting all the (direct) instances of a given EClass 1.

The point of EMF-IncQuery Base is to provide all of these in an incremental way,

which means that once the query evaluator is attached to an EMF model, as long as it

stays attached, the query results can be retrieved instantly (as the query result cache is

automatically updated). The �rst version of the component was developed by me and

it is now heavily used in the EMF-IncQuery framework. It is a lightweight, small Java

library that can be integrated easily to any EMF-based tool. The IncSCC (see Section 3.4)

transitive closure algorithm was integrated in order to provide reachability computation.

Some of the functionality can be found in some Ecore utility classes (for example ECross-

ReferenceAdapter) but these standard implementations are non-incremental, and are thus

do not scale well in scenarios where high query evaluation performance is necessary (such

as on-the-�y well-formedness validation or live view maintenance).

1EAttribute, EReference and EClass are part of the Ecore metamodel.

25

26

Chapter 3

Transitive closure and its application

Knowledge of transitive closure is useful in several scenarios; graph models in telecom-

munication, logistics or social networks. Motivating examples from the context of MDSD

include checking of type hierarchy of classes, containment hierarchy of objects and stochas-

tic simulation with graph transformation. However, in practice, the base graph is subject

to change: for example in the case of telecommunication networks, new links are added or

nodes become isolated because of link failures. In the context of large evolving graphs, the

e�cient computation of the new transitive closure relation after an update can be critical

to performance.

Types of transitive closure algorithms There are various transitive closure algo-

rithms in the literature which are characterized in the thesis with two properties: (i) how

the transitive closure relation is computed after the graph is modi�ed and (ii) whether the

algorithm is able to handle cyclic closures correctly:

• Static transitive closure algorithms: these algorithms recompute the whole transi-

tive closure relation from stretch after changes in the base graph occur. The Floyd-

Warshall [20] algorithm is a popular static algorithm, which is based on the Floyd -

all pairs shortest path graph algorithm.

• Dynamic or incremental algorithms: these algorithms maintain a cache of the tran-

sitive closure relation and are able to derive the new relation much faster than the

static ones after graph modi�cation. When an edge/vertex is inserted or deleted it is

enough to derive only the changes in the relation which results much better perfor-

mance characteristics with a slightly increased memory overhead. There are several

incremental algorithms to compute the transitive closure; these range from simple

approaches like DRED (Delete and REDerive) and Counting [23] to more complex

ones like King [29] and IncSCC which was presented in our paper [14].

Note that, some of the investigated algorithms are not able to handle cyclic closures

correctly, in other words, they give wrong reachability information if (directed) cycles are

present in the graph. Throughout the discussion, it will be explicitly stated whether the

given algorithm can be applied only on DAGs.

27

The chapter �rst gives a brief overview about the base requirements against a transitive

closure algorithm (Section 3.2) and presents a brief survey on the literature of transitive

closure algorithms in Section 3.3. The implemented algorithms are also discussed in-depth.

Section 3.4 introduces an adaptation of the algorithm presented in [31], which is based

on the incremental maintenance of strongly connected components. The adaptation of the

algorithm was presented in our paper [14]. Both the V IATRA2 [8] VTCL language and

the query language of EMF-IncQuery were extended with transitive closure as a language

element and as both of them use RETE for incremental graph pattern matching Section 3.5

describes the integration of IncSCC into the RETE net.

3.1 Notations used in this section

In the literature one can read mixed de�nitions about the terms incremental and fully

dynamic algorithms. An algorithm or a problem is called fully dynamic if both edge inser-

tions and deletions are allowed, and it is called partially dynamic if either edge insertions

or edge deletions (but not both) are allowed. In the case of edge insertions (respectively

deletions), the partially dynamic algorithm or problem is called incremental (respectively

decremental). However, incremental on the other hand, means that the changes are derived

upon modi�cations without the recomputation of the whole transitive closure relation. The

thesis does not distinguish between the fully dynamic and incremental properties and this

chapter describes algorithms that are able to handle edge deletion and insertion too.

The discussion is based on a directed graph G = (V,E), where V denotes the set of

vertices and E the set of edges in the graph, while |V | and |E| stand for the arity of

the set of vertices and the set of edges respectively. Consider a vertex v ∈ V and let ◦v
denote the vertices from which v is transitively reachable, and v◦ denotes the vertices

which are reachable from v. The term complexity is used to describe the performance

(time) complexity of the algorithms.

3.2 Transitive closure operations

Any program module computing the transitive closure G+ of a graph G is required to

expose a subroutine Construct(G) that builds a data structure for storing the result and

possibly auxiliary information as well. Afterwards, the following reachability queries can

be issued: Query(Src, Trg) returns whether Trg is reachable from Src; Query(Src, ?)

returns all targets reachable from Src (also denoted as Src◦), while Query(?, T rg) returns

all sources from where Trg can be reached (◦Trg); �nally Query(?, ?) enumerates the

whole G+.

In case of incremental computation, the following additional subroutines have to be ex-

posed: Insert(Src, Trg) updates the data structures after the insertion of the (Src, Trg)

edge to re�ect the change, while Delete(Src, Trg) analogously maintains the data struc-

tures upon an edge deletion. To support further incremental processing, both of these meth-

ods return the delta of G+, i.e. the set of source-target pairs that became (un)reachable

28

due to the change.

3.3 Survey of transitive closure algorithms

While there are several classical algorithms (depth- and breadth-�rst search, etc.) for com-

puting transitive reachability, e�cient incremental maintenance of transitive closure is a

more challenging task. As transitive closure can be de�ned as a recursive Datalog 1 [25]

query, incremental Datalog view maintenance algorithms such as Counting and DRED

[23] can be applied as a generic solution. There is also a wide variety [18] of algorithms

that are speci�cally tailored for the fully dynamic transitive reachability problem. Some of

these algorithms provide additional information (shortest path, transitive reduction), oth-

ers may be randomized algorithms (typically with one-sided error); the majority focuses on

worst-case characteristics in case of dense graphs. The spectrum of solutions o�ers various

trade-o�s between the cost of operations speci�ed earlier in this section. Even if the original

graph has a moderate amount of edges (sparse graph), the size of the transitive closure

relation can easily be a quadratic function of the number of vertices, raising the relative

cost of maintenance. A key observation, however, is that in many typical cases vertices

will form large SCCs. This is exploited in a family of algorithms [31][22] and one of the

main contributions of the thesis - namely the IncSCC algorithm [14] - is also based on this

idea. The algorithm maintains (a) the set of SCCs using a dynamic algorithm, and also

(b) the transitive reachability relationship between SCCs. Choosing such an algorithm is

justi�ed by simplicity of implementation, the sparse property of typical graph models and

the practical observation that large SCCs tend to form.

3.3.1 Static transitive closure algorithms

Depth �rst search The depth-(breadth-) �rst search algorithms can be used to compute

reachability information from a given vertex - by starting a single traversal.Query(Src, Trg)

is true if Trg is reached during the traversal started from Src, otherwise false. Naturally,

Query(Src, ?) can also be answered; it will consist of the vertices that are visited dur-

ing the traversal from Src. In the case of Query(?, T rg) the only di�erence is to re-

verse the direction of edges and start the traversal from Trg. The complexity of one

traversal is O(|V | + |E|) and the whole recomputation of the transitive closure relation

is O(|V |(|V |+ |E|)). The algorithm is able to handle cyclic closures correctly.

Floyd-Warshall algorithm [20] The Floyd-Warshall algorithm is based on the Floyd

all pairs shortest paths algorithm. It is implemented as a dynamic programming problem

and runs with O(|V |3) complexity (whole relation). The algorithm compares all possible

paths through the graph between each pair of vertices and continuously increases the inter-

val of intermediate vertices that can be used to form the current shortest path. Consider a

matrix P with dimensions |V |×|V |, where P [i][j] de�nes whether vertex j is reachable from

vertex i. The crux of the algorithm can be described with the pseudocode in Listing 3.1.

1Datalog is a truly declarative logic programming language that syntactically is a subset of Prolog.

29

Figure 3.1: Example graph for topological sorting

Listing 3.1: Floyd-Warshall algorithm

for each k in [0, n) {

for each i in [0, n) {

for each j in [0, n) {

P[i][j] = P[i][j] or (P[i][k] and P[k][j]);

}

}

}

Vertex i is reachable from vertex j, if (i) there is an edge between the two vertices or

(ii) there exists an intermediate vertex from the interval 1 . . . k, which is reachable from

vertex i and vertex j is reachable from it. G+ is stored explicitly in the matrix P and the

Query operations are answered based on the elements of the matrix. The algorithm is able

to handle cyclic closures correctly.

Transitive closure based on the topological sorting This solution can be applied

on DAG graphs, where the topological sorting is de�ned. The algorithm iterates through

the reversed topological sorting. Consider an iteration in which the current vertex is v;

the algorithm inserts the Cartesian product of the set of the source vertices of v (the ones

which have an outgoing edge that ends in n) and the (v
⋃
v◦) set (this is known from the

previous iteration) into the transitive closure relation. The algorithm works with a worst

case complexity of O(|V |3), from which O(|V |) is for computing the topological sorting.
The only topological sorting of the graph shown in Figure 3.1 is (a, b, d, c, e) and the

tuples are inserted into the relation in the following order: (1) the source vertices of e

is {c}, the reachable one is itself {e}, the Cartesian product is {c} × {e} = {(c, e)} (2)
{b, d} × {c, e} = {(b, c), (b, e), (d, c), (d, e)} (3) {b} × {c, d, e} = {(b, c), (b, d), (b, e)}, only
(b, d) is a new tuple (4) {a}×{b, c, d, e} = {(a, b), (a, c), (a, d), (a, e)} (5) processing vertex
a produces no new tuples.

As topological sorting is only de�ned for DAGs, this algorithm cannot handle cyclic

closures.

3.3.2 Incremental transitive closure algorithms

Counting

In [23] an incremental algorithm is presented based on Datalog queries to de�ne and main-

tain non-recursive views in databases. This implies that the algorithm can only be applied

on DAG graphs. The Counting algorithm works by storing the number of alternative deriva-

tions of each tuple in the transitive closure relation. This number is called count(t) and a

30

Figure 3.2: Example graph for the Counting algorithm

tuple t exists in the relation if and only if the count(t) value is greater than 0. Construct(G)

initializes the relation with the non-incremental topological sorting based algorithm.

Consider a relation G and let ∆(G) denote the changes made on G, while Gv refers

to the relation after incorporating the changes on G. With this notation we de�ne two

rules for computing the transitive closure; (r1) tc(u, v) ` e(u, v) meaning that the tc

(transitive closure) relation consists of the tuples de�ned by the edges of a graph and (r2)

tc(u, v) ` e(u,w)&tc(w, v) meaning that v is reachable from u, if there is an (u,w) edge

and v is reachable from w.

With every rule r of the form (r) : p ` s1& . . .&sn n delta rules (∆i(r)), 1 ≤ i ≤ n are

de�ned, and predicate ∆(p) is as follows:

(∆i(r)) : ∆(p) ` sv1& . . .&svi−1&∆(si)&si+1& . . .&sn.

Based on this de�nition we can derive 3 rules for the Counting algorithm. These rules

are used to compute the delta of G+ and the tuples are stored explicitly:

• (∆1(r1)): ∆(tc(u, v)) ` ∆(e(u, v)): the newly inserted/deleted edges

• (∆1(r2)): ∆(tc(u, v)) ` ∆(e(u,w))&tc(w, v): paths starting with the newly modi�ed

edges

• (∆2(r2)): ∆(tc(u, v)) ` ev(u,w)&∆(tc(w, v)): paths after incorporating the edge in-

sertion/deletion. This rule is applied repeatedly until a local �xpoint is reached.

The Counting algorithm is not able to deal with cyclic closures because of the 'cir-

cular deception' problem, that is, a cycle includes at least two count which will result

false reachability information after edge deletion. Consider the graph on Figure 3.2, here

count(b, d) = 2 because of the cycle. After deleting edge (b, d), the derivations of the rules

given above will result only −1 count for the tuple (b, d) which results that vertex d remains

reachable from every vertex in the cycle.

The transitive closure relation is implemented with two maps; one to index the tuples

forward and one for the reversed direction. This way, the Query operations are answered

with simple look-ups in the map data structure.

The Counting algorithm can be modi�ed to count the number of di�erent but not

necessarily independent paths between any two vertices. In this case the transitive closure

maintenance is quite simple; when an edge (u, v) is inserted (deleted) it simply computes

the Cartesian product of the vertices from which u is reachable (set S1) and the ones that

are reachable from v (set S2). Suppose x ∈ S1, y ∈ S2, then count((x, y)) = count((x, u)) ·
count((v, y)).

31

DRED - Delete and REDerive

A view-maintenance algorithm which works for recursive views is also presented in [23].

This simple algorithm explicitly stores G+ and Construct(G) uses the topological sorting

based algorithm like Counting.

The name comes from the handling mechanism of edge deletion:

[1−del] Delete a superset of derived tuples that need to be deleted. Suppose an (u, v) edge

is deleted and the overestimate is computed by a naive Cartesian product method

which marks the tuples (◦u
⋃
u)× (v

⋃
v◦) to be deleted.

[2−del] REDerive those tuples that have alternative derivations after incorporating the
changes made on the graph. This step is performed with similar rules that are used

in the Counting algorithm resulting to compute a local �xpoint.

[1− ins] Insert new tuples after edge insertion using the naive Descartes product method

(presented in the �rst step), but in this case those tuples will be inserted back into

the relation.

The �rst two steps are used to handle edge deletions, while the third step handles the

edge insertion.

This algorithm is able to handle cyclic closures too and the Query operations are directly

answered based on the map-backed relation of G+.

King's algorithm

In [29] algorithms are presented to compute approximate and exact shortest paths and

transitive closure in graphs. For transitive closure, it maintains k = dlog2(|V |)e forests
F1, F2, . . . , Fk where each Fi contains a pair of breadth-�rst search trees Invi and Out

v
i of

depth 2 for each vertex v ∈ V . Forest Fi is built from the graph which contains an (u, v)

edge if there is a directed path from u to v in the original graph with length greater than

2i−1 and smaller or equal to 2i.

During the thesis work I have implemented an algorithm which is highly in�uenced by

King's one. The overall idea is kept in my implementation but di�erent data structures are

used to maintain the transitive closure relation. Let A−→./B denote the natural join of the

sets A and B (both contain pairs of vertices), but with the restriction that a pair (u, v) is

only present in the resulting relation if ∃(u,w) ∈ A ∧ (w, v) ∈ B in this direction.

The algorithm stores G+ explicitly in levels:

• E0: the edges of the graph, the paths with a length of exactly 1.

• E1: the tuples that can be derived with the evaluation of E(0)−→./E(0), the paths with

a length exactly 2.

• E2: the tuples that can be derived with the evaluation of (E(1)−→./E(0))
⋃

(E(1)−→./E(1)),

the paths with a length of 3 or 4.

32

• . . .

• Ei: the tuples that can be derived with the evaluation of
⋃i−1
j=0(Ei−1

−→./Ej), the paths
with a length from 2i−1 + 1 to 2i.

When the graph changes, the levels can be maintained incrementally based on the changes

in the lower levels. On each level, each tuple is assigned a count value, that is, the di�erent

derivations of the tuple on the given level. However, the signi�cant level of a tuple t is the

lowest number i, such that t appears on Ei. Each tuple in the transitive closure relation is

assigned exactly one signi�cant level.

Signi�cant level movement The algorithm maintains the transitive closure relation based

on the tuples' signi�cant level. There can be two kinds of change in the signi�cant level:

• HOP_UP (the signi�cant level is incremented): when a tuple's derivation disap-

pears on a lower level then the signi�cant level moves up. It is also possible that

there are no more levels, where the tuple has derivation. In this case the tuple will

be deleted from the relation (the tuple's signi�cant level 'hops up to in�nity').

• HOP_DOWN (the signi�cant level is decremented): when a tuple's derivation

appears on a lower level then the signi�cant level moves down. It is also possible

that the tuple hasn't got any derivation yet, and this is the �rst path (the tuple's

signi�cant level 'hops down from in�nity').

Derivation of new tuples

In the case of a tuple (u, v) which hops up from level i to level j:

Derivation Action Step required if j = ∞ ?

(u, v)−→./(v, w)|k∈[0,i] (u,w) gets −1 count on level i+ 1 yes

(u, v)−→./(v, w)|k∈[0,j] (u,w) gets +1 count on level j + 1 no

(w, u)|k∈[i,j−1]
−→./(u, v) (w, v) gets −1 count on level k + 1 yes

Table 3.1: Derivation of new tuples in the King-like algorithm for HOP_UP

In the case of a tuple (u, v) which hops down from level j to level i:

Derivation Action Step required if j = ∞ ?

(u, v)−→./(v, w)|k∈[0,i] (u,w) gets +1 count on level i+ 1 yes

(u, v)−→./(v, w)|k∈[0,j] (u,w) gets −1 count on level j + 1 no

(w, u)|k∈[i,j−1]
−→./(u, v) (w, v) gets +1 count on level k + 1 yes

Table 3.2: Derivation of new tuples in the King-like algorithm for HOP_DOWN

The update mechanism

When an edge is inserted or deleted the level number will be 0, as it is an edge in the

base graph. The Insert and Delete methods derive the new tuples that will be inserted

/ deleted. The Insert method adds +1 count for the (Src, Trg) tuple on the given level

number.

33

Listing 3.2: King-like algorithm update method after edge insertion

function Insert(Src , Trg , levelNumber = 0) {

//it will be infinity if such tuple does not exist

oldSL = (Src , Trg). significantLevel

insert (Src , Trg) on level levelNumber

newSL = (Src , Trg). significantLevel

if (newSL < oldSL) {

handle HOP_DOWN based on the table above

}

}

The Delete method adds −1 count for the (Src, Trg) tuple on the given level number.

Listing 3.3: King-like algorithm update method after edge deletion

function Delete(Src , Trg , levelNumber = 0) {

oldSL = (Src , Trg). significantLevel

remove (Src , Trg) on level levelNumber

//it will be infinity if the tuple has no derivations anymore

newSL = (Src , Trg). significantLevel

if (newSL > oldSL) {

handle HOP_UP based on the table above

}

}

The initialization is done with the static formula Ei =
⋃i−1
j=0(E

∗
i−1
−→./E∗j), where the * is a

restriction to the tuples whose signi�cant level is on the given level. The Query operations

are answered based on the explicitly stored G+ relation.

'Jacob's ladder' problem and its solution

The pseudocode given in Listing 3.3 introduces an error with 'similar behavior like

the high voltage device, Jacob's ladder'. Consider a tuple t1 that we delete with no more

derivations, that is, its signi�cant level will be increased. The problem occurs if there exists

a tuple t2 such that t1 and t2 mutually reinforces each other's derivation. The deletion will

result that t1 will appear on an upper level in a new derivation. When t1 appears on an

upper level, t2 will also hop up from the lower level to the upper level. With this mutual

reinforcement t1 and t2 will keep hopping up continuously until the level number over�ows.

To overcome the presented problem, a tuple is only added to the transitive closure relation

if the levelNumber is smaller or equal to dlog2(|V |)e.

3.4 IncSCC

IncSCC is an algorithm to maintain strongly connected components incrementally which

is based on the ideas presented in [31] and [22]. A transitive closure algorithm based on

this idea is a key contribution of the thesis and this solution was applied in the pattern

language of the VIATRA2 and EMF-IncQuery frameworks.

The crux of the algorithm, from Poutré and Leeuwen's paper [31], is to reduce update

time and memory usage by eliminating unnecessary reachability information, namely, that

each vertex is reachable from every other vertex within the same SCC. Thus, the two

concerns of the algorithm are maintaining (i) a decomposition S of the graph into SCCs,

and (ii) transitive reachability within the condensed graph. The latter is a simpler problem

34

with several e�cient solutions, as the condensed graph is acyclic; our implementation relies

on the Counting algorithm which simply keeps track of the number of derivations of each

transitive reachability pair. The main di�erences opposed to the original algorithm are;

(i) the transitive closure relation is not stored explicitly in our solution (ii) they operate

with matrices of graphs opposed to our solution which is based on e�cient Union-Find data

structure implementation (see Section 2.5) and (iii) the solution is able to send noti�cations

about the changes in the transitive closure relation.

Implementing Construct(G) The SCC partitioning of the initial graph are computed

with Tarjan's algorithm [35] (see Section 2.4 for more details). Afterwards, the condensed

graph is constructed, and the Counting algorithm is initialized to provide reachability

information between SCCs.

Implementing Query() operations As the most signi�cant deviation from [31], the tran-

sitive closure relation G+ is not stored explicitly in our IncSCC solution to reduce the

memory footprint. However, reachability in graph G(V,E) can be reconstructed from the

partitioning S of SCCs and the reachability relation G+
c of condensed graph Gc(S,Ec),

since for s1, s2 ∈ S, u ∈ s1, v ∈ s2 : (s1, s2) ∈ G+
c if and only if (u, v) ∈ G+. Therefore

when receiving a reachability query, the vertices in question are mapped to SCCs, where

reachability information in the condensed graph is provided by the Counting algorithm.

Vertices enumerated in the answer are obtained by tracing back the SCCs to vertices. This

is solved by using the Union-Find data structure for the SCC partitioning (see Section 2.5

for details).

Implementing Insert(Src, Trg) First a look-up in S maps the vertices to SCCs. After-

wards, there are three possible cases to distinguish.

1. If Src and Trg are in di�erent SCCs, but no cycle will appear with the edge insertion,

then it is simply handled by the Counting algorithm. Computation of ∆(G+) is done

by the formula (◦Src
⋃
Src) × (Trg

⋃
Trg◦) having representative nodes of SCCs

on both sides of a tuple. The noti�cation is handled by Counting itself, and tuples

which have already existed with an alternative derivation are omitted. Note that,

these sources and targets are SCCs of the graph so it needs to be traced back to the

actual vertices when notifying observers of the transitive closure relation.

This case can be seen on Figure 3.3 where an edge (b, d) is inserted into the graph

(the edge being inserted is marked with red and the SCCs of the graph are marked

with blue rectangles). The only noti�cation issued is the tuple {b, d}. Note that, if
multiple edges are present between two vertices, then noti�cations are issued only

after the �rst appearance of such an edge.

2. If Src and Trg are in di�erent SCCs and the inserted edge results a cycle in the

condensed graph then the cycle is collapsed into a single SCC. The following steps

are required:

(a) Compute the intersection of the predecessor representative nodes of Src and

the successor representative nodes of Trg. These SCCs form the cycle.

35

Figure 3.3: IncSCC maintenance - two di�erent SCCs

Figure 3.4: IncSCC maintenance - SCC collapsing after edge insertion

(b) Delete the edges from the reduced graph going in and out from these SCCs and

after that the SCCs too (now being isolated vertices in the condensed graph).

(c) Merge the SCCs together by calling the Union operation on the Union-Find

structure.

(d) Add the newly collapsed SCC as a single vertex to the condensed graph.

(e) Insert the appropriate incoming and outgoing edges of this SCC. These edges

are derived with the use of the base graph.

Computation of ∆(G+) is done with a similar formula like in the previous case.

During the process the algorithm omits the noti�cations about the reachability tuples

which have already existed (and been noti�ed about); (i) when the current target

was already reachable from the current source and (ii) when source and target are

the same representative node. Again, tracing back of SCCs is needed when issuing

noti�cations on the relation.

This is presented on Figure 3.4 where the edge (a, b) is inserted. This results to col-

lapse the one-sized SCCs of the vertices a, b and c into one bigger SCC. According to

the noti�cation mechanism described before, the tuples {{b, a}, {b, c}, {b, d}, {c, a}}
are omitted.

3. If Src and Trg are in the same SCC there is no required action. This case can be

seen on Figure 3.5 where an edge (a, b) is inserted again into the graph. It would also

hold for self-cycles within the SCC, however, a �rst appearance of a self-reachability

tuple would be subject of noti�cation.

Implementing Delete(Src, Trg) The algorithm �rst performs a look-up in S to map the

vertices to SCCs; afterwards, we once again distinguish three possible cases.

36

Figure 3.5: IncSCC maintenance - inside an SCC

1. If Src and Trg are in the same SCC but Trg remains reachable from Src after the

edge deletion (as con�rmed by a breadth-�rst search in the subgraph associated to

the actual SCC), no further actions are required.

This is the case when an edge a, b is deleted from the graph presented on Figure 3.5

- however, in these scenarios, the edge marked with red is the one being deleted. No

reachability tuple will be ceased as vertex b still remains reachable from vertex a.

2. If Src and Trg are in the same SCC but Trg is no longer reachable from Src after

the edge deletion, then the SCC is broken up (using Tarjan's algorithm) into smaller

SCCs, because it is not strongly connected anymore. The following steps are required:

(a) Store the subgraph referring to the SCC being removed and compute the new

SCC partitioning with Tarjan's algorithm.

(b) Remove the incoming and outgoing edges of the SCC and after that the SCC

too.

(c) Remove the corresponding set from the Union-Find structure.

(d) Insert the new SCCs into the condensed graph and the appropriate incoming

and outgoing edges too.

∆(G+) = (◦Src
⋃
Src)× (Trg

⋃
Trg◦) , but omitting those tuples where (i) source

is still reachable from target (known from Counting) and (ii) source is the same as

target. These tuples are deleted from the transitive closure relation.

Figure 3.6 presents this case, where the SCC of vertices a, b and c will be broken up

into one-sized SCCs after the deletion of the (a, b) edge. No noti�cation will be issued

about the dismissal of the tuple {b, c} for example, as it is known from Counting,

that it still holds, even though the two vertices were in the same bigger SCC.

3. If Src and Trg are in di�erent SCCs, then the edge is deleted from the condensed

graph, which is in turn is handled by the Counting Algorithm. ∆(G+) is computed

similarly as in the previous case, but only those tuples must be omitted where source

is still reachable from target.

An example of this case is the one presented on Figure 3.3 where the edge (b, d) is

deleted. No changes in the SCC decomposition will occur, however, the tuple {b, d}
is ceased.

37

Figure 3.6: IncSCC maintenance - breaking up an SCC after edge deletion

Source code for the Insert and Delete operations can be found in Section A.2. Detailed

performance comparison for the described algorithms can be found in Chapter 6.

3.5 Integrating the IncSCC algorithm into the RETE net

This section describes how a transitive closure algorithm - which provides noti�cation

handling too - can be integrated into RETE. Transitive closure is represented by a RETE

node, like any other pattern. Generic transitive closure is achieved by attaching such a

RETE node to a parent node that matches a graph edge or an arbitrary binary graph

pattern (derived edge).

Figure 3.7 shows the transitive closure node in the RETE network. It is an intermediate

node which receives updates from a binary graph pattern (here denoted as binary relation

E) and forms a two-way interface between RETE and a transitive closure maintenance

algorithm. Whenever the RETE node for E+ receives an insertion / deletion update from

its parent node E, the Insert()/Delete() subroutine is invoked. The subroutine computes

the necessary updates to E+, and returns these delta pairs, which will then be propagated

along the outgoing edge(s) of the RETE node. Queries are invoked when initializing the

child nodes, and later as a quick look-up to speed up join operations against the node

contents. Alternatively, transitive closure could have been expressed as a recursive graph

pattern. This solution was rejected, as RETE, having �rst-order semantics without �xpoint

operators, might incorrectly yield a (still transitive) superset of the transitive closure: in

graph models containing cycles, obsolete reachabilities could cyclically justify each other

after their original justi�cation was deleted.

Case study example (transitive closure RETE node) Here the behavior of the RETE

node is demonstrated which computes the transitive closure E+ of the binary graph

pattern E, e.g. linked+ for the overlay network where linked is de�ned between su-

per nodes. Initially, as seen in Figure 3.7 (a), the parent node E stores linked, i.e. the

binary relation {(A,B), (B,C)}. Its child node E+ contains the set of reachable pairs:

{{A,B}, {A,C}, {B,C}}. Figure 3.7 (b) shows the insertion of edge (C,A) into E. RETE

propagates this update from the E to E+, where the operation Insert(C,A) is invoked to

adjust the transitive closure relation to {{A,B}, {A,C}, {B,A}, {B,C}, {C,A}, {C,B}},
i.e. the whole graph becomes strongly connected. The computed di�erence (delta) is the

insertion of {{B,A}, {C,A}, {C,B}} into E+, which is propagated in the RETE net-

38

Figure 3.7: Transitive closure node inside RETE

work to child nodes of E+. Finally, Figure 3.7 (c) shows an edge deletion. E+ is no-

ti�ed of the deletion of (B,C) from E, and invokes Delete(B,C). Thus E+ becomes

{{A,B}, {C,A}, {C,B}}, and the delta is the deletion of {{A,C}, {B,A}, {B,C}}.

3.5.1 Integration with VIATRA2

The main objective of the V IATRA2 [8] (VIsual Automated model TRAnsformations)

framework is to provide a general-purpose support for the entire life-cycle of engineering

model transformations including the speci�cation, design, execution, validation and main-

tenance of transformations within and between various modeling languages and domains.

The stochastic simulation case study was carried out with the V IATRA2 framework. In

its core engine it uses the RETE net for incremental graph pattern matching.

The VIATRA Textual Command Language (VTCL)

From the VIATRA documentation: VIATRA2 has its own programming language called

VTCL. Transformations written in VTCL are stored in .vtcl �les, and each of them de-

scribes a so-called machine of the GTASM (Graph Transformation Abstract State Machine)

formalism. The de�nition of the control �ow of the transformation is similar to the math-

ematical formalism of Abstract State Machines (ASM), and looks just like a conventional

programming language (with a syntax somewhat resembling C); this is extended by the

declarative features of graph transformations. For more information on the exact syntax

and language constructs please see the VIATRA2 documentation ([8]).

Running example aspects

To support transitive closure as a language element a RETE node was implemented

which is backed by the IncSCC algorithm. On the frontend this appears as an annotation

39

to be used for the computation of the transitive closure of a given pattern. The following

example is from the stochastic simulation case study. Here the linked pattern is de�ned

with the VIATRA2 VTCL language and transitiveClosureOfLinked is a pattern which

is customized with the annotation to represent the transitive closure of the linked pattern

(set with the ofPattern attribute).

Listing 3.4: Transitive closure support in the VIATRA2 VTCL language

shareable pattern linked(S1,S2) = {

SN(S1);

SN(S2);

SN.link(E1,S1 ,S2);

} or {

SN(S1);

SN(S2);

SN.link(E2,S2 ,S1);

}

@Incremental(reinterpret=transitiveClosure , ofPattern=linked)

pattern transitiveClosureOfLinked(S1, S2) = {}

3.5.2 Integration with EMF-IncQuery

The EMF-IncQuery framework also uses a RETE implementation for pattern matching and

it has an XText [10] based pattern language to de�ne queries. It is equipped with similar

constructs like the VTCL of VIATRA2 but it does not deal with graph transformations.

In this case, the transitiveClosureOfLinked pattern is simpli�ed as the + operator is

introduced for transitive closure computation.

Listing 3.5: Transitive closure support in the pattern language of EMF-IncQuery

pattern linked(S1 : SN , S2 : SN) = {

SN.link(S1, S2);

} or {

SN.link(S2, S1);

}

pattern transitiveClosureOfLinked(S1 : SN, S2 : SN) = {

find linked +(S1, S2);

}

40

Chapter 4

Event-driven rule execution engine

Model transformations are a core technology in the context of MDSD. It provides the basic

fundamentals to propagate information between the various models during the product

lifecycle. The primary use cases for model transformations are mapping between models

but they are also widely used for code generation, simulations or executing validation

constraints. Model transformations can be implemented in various ways [32]:

• Simply as a conventional program written in a programming language such as Java

or C++

• With the use of a dedicated model transformation framework such as the VIATRA2

model transformation framework.

• Combining native tools for the di�erent parts of the work�ow resulting a hybrid

transformation engine.

The target modeling framework of the thesis is EMF and although EMF-IncQuery incor-

porates an e�cient graph pattern matching engine to query these models, it lacks support

for executing transformation rules. One of the main contributions of the thesis is an exten-

sion to EMF-IncQuery which allows to attach client-de�ned rules to the framework and

execute them in an event-driven manner.

This chapter �rst gives a brief overview in Section 4.1 about the existing approaches

for rule-based expert systems and model transformation frameworks. Section 4.2 and Sec-

tion 4.3 introduce the EMF-IncQuery-based approach along with implementation details in

Section 4.4. An additional extension for automatic rule execution is discussed in Section 4.5

and an example use-case is given in Section 4.6.

4.1 Survey of rule-based expert systems and model transfor-

mation frameworks

Rule based expert systems In its simplest form the Prolog programming language [17] can

be thought of as a rule engine. It has its roots in the �rst-order logic and it is a declarative

programming language where the logic is expressed in terms of relations, represented as

41

facts and rules. The computation is initiated by running a query over these relations.

However, the domain objects can be captured only with low level types thus not applicable

to create complex domain-speci�c tools. On the other hand, JBoss Drools [5] is one of

the leading open-source solutions for business rule management systems primarily tailored

for the Java language. Drools is based on the RETE engine (like EMF-IncQuery) but

adapts it as a more sophisticated object-oriented version opposed to the one presented

in the original paper. It is capable of running rules written in numerous programming

languages (Python, C#, Groovy) due to pluggable language extensions. The underlying

knowledge base is represented as simple Java objects, but Drools is also �exible enough to

match the semantics of the problem domain with domain speci�c languages via XML. The

engine CLIPS [1] (C Language Integrated Production System) is also based on a RETE

implementation. It also deals with rules and facts and is written in pure C, although CLIPS

incorporates a complete object-oriented language COOL for writing expert systems. The

Eclipse based framework, Jess is a re-implementation of the rule-based portion of CLIPS

with the Java programming language.

Model and graph transformation frameworks

Apart from VIATRA2, GROOVE [34] is also a RETE-based graph transformation frame-

work. Primarily it is intended to be used as a software model checking framework. The

state space exploration is achieved by graph transformation, that is, it attempts to gen-

erate the whole state space by �ring all applicable graph transformation rules. GROOVE

uses non-attributed, edge-labelled graphs without parallel edges to represent the explored

state space. TefKat [30] is a model transformation framework and it operates on the Eclipse

Modeling Framework. It has a declarative SQL-like language to de�ne transformation rules

(with additional syntactic sugars like object literals) and change propagation is done by

model merging.

4.2 Architecture overview

Figure 4.1 presents the designed architecture of the event-driven rule execution engine. The

full stack is based on the EMF-IncQuery framework, which is used to execute queries over

EMF models (for more details on the query language of EMF-IncQuery see [4]). Agenda,

rule and activation are well-known terms from the context of rule-based expert systems

(like JBoss Drools). A rule consists of a precondition (Left Hand Side - LHS part) which

de�nes the condition that should met in order to the postcondition (Right Hand Side -

RHS part) to become executable. The RHS in this context is not to be confused with

the graph transformation rule's RHS or postcondition. There it usually de�nes some kind

of model manipulations, however in this context, arbitrary actions (for example simply

printing to the standard output, updating a user interface, etc.) can be set. In the context

of the Rule Engine, the LHS consists of an EMF-IncQuery pattern and the RHS is a list

of actions written in Java. An activation is a created for a rule when the preconditions

(LHS) are fully satis�ed with some domain model elements and the rule becomes eligible

for execution (or in other words becomes �reable). An activation references the rule and

42

Figure 4.1: Event-driven rule execution engine architecture

the matched facts (model elements), and placed onto the agenda. The agenda keeps track

of the changes of the activations (ie. the rules which are eligible to be applied) and provides

an interface to query the applicable activations at any time.

The Rule Engine manages the lifecycle of the activations in the context of EMF-

IncQuery and is able to maintain multiple agendas for di�erent models. Activations are

maintained after pattern match appearance, disappearance or update (meaning that the

activation is still �reable, but the model elements that ful�ll the LHS of the rule are

updated). The Trigger Engine is a thin layer on top of the Rule Engine, which can be

used to automatically execute applicable rules on the model. This way no user code is

needed to �re the applicable activations, however there are certain scenarios when only the

Rule Engine will be used, as the activation �ring is done on an individual basis.

This stack is provided for the end users and sample use cases are shown on the �gure.

Design space exploration (DSE) and the stochastic simulation engine are built

on the Rule Engine and use a self-managed rule execution strategy, however the EMF-

IncQuery Validation Framework and databinding facilities rely on the Trigger Engine.

Although the thesis does not deal with model to model transformations (M2M), it can be

easily implemented on top of the Trigger Engine too. A similar approach is presented in

[33] for creating trigger-based model transformations on top of VIATRA2.

4.3 Life cycle of activations

Figure 4.2 presents the state machine of the activations' lifecycle. The entry point is the

Inactive state, where the activation is not present in the agenda. In the Active states

the activations are eligible for execution (�ring). The end user can de�ne whether the

Disappeared and Updated states will be used in the lifecycle.

• Appeared: the model elements that ful�ll the LHS of the rule have just appeared

in the model, resulting the creation of an applicable activation in the agenda. The

user has not yet �red the activation.

43

Figure 4.2: The activations' lifecycle

• Disappeared: the pattern match which ful�lled the LHS of the rule has disappeared
after the activation was �red. The activation becomes �reable again so that the end

user can process the disappearance of the pattern match.

• Updated: after the activation �ring, the model elements (more speci�cally the values
of their attributes) that ful�ll the LHS have been modi�ed. This results that the

activation becomes �reable again.

The �reable activation's state is changed to Fired if it is applied. It can only be �red again

if multiple �ring of the same activation is enabled. This feature is used, for example, in

Design Space Exploration (Section 5.2). Note that, it does not make sense to use multiple

�ring and the Disappeared and Updated states at the same time and it is enforced by

the Agenda to not to do so.

Match appearance

Inactive⇒ Appeared the precondition is satis�ed and a new activation is created (this

activation instance will be modi�ed later, no new activation will be created in the

other states).

Disappeared⇒ Fired a previously �red activation's match appears again. The activation

cannot be �red.

Match disappearance

Appeared⇒ Inactive the match of the activation disappears resulting to remove it from

the agenda.

Fired⇒ Disappeared the match of a previously �red activation disappears resulting to

become �reable again.

Updated⇒ Disappeared the match of the activation which was in the Updated state dis-

appears. The activation remains �reable after the state-change.

44

Match update

Fired⇒ Updated the model elements of the match of a previously �red activation are

modi�ed. The activation becomes �reable again.

Appeared⇒ Appeared self-loop to be used for consecutive model element manipulations

for an activation which is in the Appeared state. The activation was not �red yet and

remains �reable.

Updated⇒ Updated self-loop to be used for consecutive model element manipulations for

an activation which is in the Updated state. The activation remains �reable.

Activation �ring

Active⇒ Fired, Updated⇒ Fired,Disappeared⇒ Inactive the activation is �red and

the postcondition of the activation's rule is applied. When the �ring is done from the

Disappeared state, the activation is removed from the agenda.

Fired⇒ Fired this transition is only allowed if multiple �ring of the same activation is

enabled.

4.4 The designed API of the Rule Engine

The Rule Engine was implemented in Java as an Eclipse plug-in and the class diagram is

presented on Figure 4.3.

• RuleEngine: it is a singleton class which is responsible to create and maintain

multiple agendas for the various instance models.

• Agenda: an agenda is associated to an instance model and it provides an unmodi�-

able view for the collection of activations. Clients can create and remove rules through

the agenda.

• Rule: a rule de�nes the underlying logic of the application which uses the Rule

Engine. The rule's precondition is an EMF-IncQuery pattern and the postcondition

is implemented in Java as an IMatchProcessor (the interface is de�ned in EMF-

IncQuery) and one can de�ne di�erent jobs for match appearance, disappearance

and update.

• Activation: an activation consists of the EMF-IncQuery pattern's match and the

activation's state. Depending on the state, the appropriate job of the rule is executed

upon �ring.

• ActivationMonitor: instances of this class are used by clients to monitor and pro-

cess the collection of activations within an agenda on an individual basis. This means

that while the agenda always provides an up-to-date view of the applicable activa-

tions, an ActivationMonitor instance accumulates all the activations and the user

45

can clear the collection in the monitor when it is needed (for example after those

have been processed). Upon instantiation it can be set to be �lled with the initial

collection of activations.

Figure 4.3: Rule engine class diagram

46

4.5 Noti�cation mechanism and the Trigger Engine

Event-driven transformation execution is triggered by the changes in the domain model.

The Rule Engine registers callbacks in the RETE net to receive noti�cations when a pattern

match of a maintained rule's LHS appeared or disappeared, resulting a change in the

collection of activations. Nevertheless, RETE does not issue noti�cations about the model

element manipulations within a pattern match parameter, but those also need to be tracked

in order to update the activation according to the lifecycle presented in Section 4.3. This

requires to observe the values of the pattern match parameters' attributes and it is achieved

with EMF databinding 1, which provides facilities to bind two data/information sources

together in the context of EMF models and maintain synchronization between those. The

rules de�ne listeners for the model manipulations and bind them to the parameters of the

pattern matches (which ful�ll the LHS of the rule and result an activation). After that,

these listeners will be automatically called - in a one-way synchronization scheme - when

changes in the attributes' values occur. The rules then update the activations to re�ect

the changes in the pattern matches and their parameters' values. Through the rules the

agenda provides an up-to-date view of the activations and those can be �red with the use

of the Trigger Engine or some other external strategies.

Trigger Engine

The aim of the Trigger Engine is to provide a mechanism to automatically execute

�reable activations without the need to write any client code. The main idea is that the

Engine uses the ActivationMonitor of an Agenda and de�nes (i) when to �re an activation

and (ii) which activation should be �red from the collection of �reable ones. This way the

user should not worry about whether the Rule Engine has reached a consistent state in

the aspect of activation updates, because the Trigger Engine handles this issue.

At the current state of development the Trigger Engine exposes the so called Automat-

icFiringStrategy which does two things:

• The strategy is invoked by the Rule Engine after a match appearance/disappear-

ance/update, which causes the event-driven behavior.

• Upon calling it selects the �rst �reable activation from the attached Agenda instance.

It can be seen that this is a very basic way of the timing and execution of the trans-

formations, but it is su�cient for many scenarios (including the Validation Framework

of EMF-IncQuery Section 5.1). In the future the Trigger Engine can be extended with

additional �ring strategies in order to provide more complex transformation execution.

The whole process of the �ow of noti�cations is visualized on Figure 4.4.

1Databinding [2] is often used on user interfaces, when, for example, we want to bind a UI widget to
a data source and automatically update the contents of that widget when the data source is changed.
This approach deals with one-way synchronization, however, it is also possible to provide two-way syn-
chronization e.g. between an input �eld and an information source. In this approach, when the user edits
the contents of the input �eld, the data source is automatically updated.

47

Figure 4.4: Event-driven transformation execution - �ow of noti�cations

4.6 Example from the context of stochastic simulation

Listing 4.1 presents the VIATRA2 graph transformation rule (written in the VIATRA2

VTCL language) to create a new linked connection between any two super nodes which is

not yet connected (in the current direction). The action keyword precedes the postcondition

of the rule.

Listing 4.1: Graph transformation rule in VIATRA2

gtrule AddLink () = {

precondition shareable pattern lhs(S1,S2) = {

SN(S1);

SN(S2);

neg find linked(S1,S2);

}

action {

let I1 = undef in new(SN.link(I1,S1 ,S2));

}

}

In the context of EMF-IncQuery and the Rule Engine, �rst the precondition is formalised

with an EMF-IncQuery pattern (see Listing 4.2). For more details on the linked pattern

see Section 3.5.

Listing 4.2: Precondition of the graph transformation rule in EMF-IncQuery

pattern AddLinkPrecondition(S1 : SN, S2 : SN) = {

neg find linked(S1, S2);

}

48

EMF-IncQuery provides code-generation facilities and an appropriate type-safe Inc-

QueryMatcher class will be generated for the AddLinkPrecondition pattern. Instances of

the IncQueryMatcher class keep track of the matches of the given EMF-IncQuery patterns.

This matcher class will be used for the rule instantiation. In this case, only the afterAp-

pearanceJob is set for this rule, which will be an instance of AddLinkPreconditionProcessor

(Listing 4.3).

Listing 4.3: Postcondition of the graph transformation rule in EMF-IncQuery

public class AddLinkPostcondition extends AddLinkPreconditionProcessor {

@Override

public void process(SN S1, SN S2) {

S1.getLink ().add(S2);

}

}

The whole rule is put together with the Java code presented in Listing 4.4. First a rule

is created for the AddLinkPrecondition pattern by passing the generated factory of the

AddLinkPreconditionMatcher. After that, the AddLinkPostcondition job is assigned to the

rule.

Listing 4.4: Rule instantiation in the Rule engine

Rule <AddLinkPreconditionMatch > addLinkRule =

agenda.createRule(AddLinkPreconditionMatcher.factory(), false , false);

addLinkRule.afterAppearanceJob = new AddLinkPostcondition ();

Example triggers Suppose the addLinkRule is de�ned in the agenda and from now on,

if two super nodes can be found in the network model which are not connected to each

other then an activation with Appeared state will be created. The source of this trigger can

be the designer by editing the model or some external tool which automatically creates

model elements. Later on, if, for example the name of the super nodes are modi�ed then

the activation will become �reable again but now with Updated state. The source of this

trigger can be again the designer, but in this case the mechanism is originated from the

EMF databinding rather than the RETE net like in the previous case.

49

50

Chapter 5

Case studies

This chapter presents three case studies that heavily rely on the work presented in the

previous chapters;

• The Validation Framework of the EMF-IncQuery tool to check constraints against

EMF models (Section 5.1). This component is based on the Rule & Trigger Engine,

and the pattern language of EMF-IncQuery was also extended with transitive closure

as a language element.

• A Design Space Exploration (DSE) framework (Section 5.2) which is an EMF-

IncQuery port of an original implementation based on VIATRA2. It is built on top

of the Rule Engine and also uses the extended pattern language, however, it does not

rely on the Trigger Engine as the activation �ring is done by the DSE engine itself.

• A stochastic simulation framework - extended with e�cient transitive closure support

- which aims to provide a design-time analysis tool for dynamic and network systems

(Section 5.3). This tool depends on the VIATRA2 framework.

5.1 Validation Framework

EMF-IncQuery provides the so called Validation Framework which can be used to check

well-formedness constraints on various EMF instance models. A typical validation scenario

with the framework is as follows:

1. Create a metamodel and instance model for the given domain.

2. De�ne patterns with the language of EMF-IncQuery. Out of these patterns the user

can de�ne (with annotation) which one should be treated as a constraint by the

engine.

3. Initiate the validation on the given instance model with the set of previously created

patterns. This can be achieved from the user interface of EMF-IncQuery, by providing

pluggable context menu extensions to the pattern and instance model editors.

51

4. The constraints are evaluated on the model and upon violation, problem markers will

appear on the user interface. The current implementation uses the Problems View (a

view inside the workbench) of Eclipse, where various project-speci�c problem indi-

cators are placed. These markers can have di�erent severities (information, warning

and error), typically a label which tells the crux of the problem and they can be

traced back to the source of the problem (either a portion of code, a model element

or even a miscon�gured setting in a con�guration �le).

5. A key aspect of the solution is that the problem markers are data-bound to the

problem sources, meaning that the model changes are automatically re�ected on the

user interface. This means, if the constraint violation is no longer present in the

model, the appropriate marker is automatically removed or when the corresponding

model elements are updated, but those still violate a constraint, the label of the

marker is updated.

A prior validation framework was part of the VIATRA2 tool; during the thesis work

I have adapted the solution to work in the EMF-IncQuery context. The new version is

implemented as a thin layer on top of the Rule and Trigger Engine (see Chapter 4 for

more details). It uses the Rule Engine to create transformation rules from the user-de�ned

constraints (EMF-IncQuery patterns). The precondition of these rules will met if certain

model elements violate the de�ned constraints and the transformation action will place/up-

date/remove the appropriate problem marker in the Problems View. The postcondition is

written in Java and it implements the IMatchProcessor interface. Additionally, the Trig-

ger Engine is used to automatically �re the activations after a model manipulation resulting

to update the user interface.

5.1.1 User interface extension

The Validation Framework exposes the @Constraint annotation to mark patterns as vali-

dation constraints. The de�nition of the annotation and its attributes is the following (from

the EMF-IncQuery documentation):

Constraint: This annotation is used to mark a pattern for use in the EMF-IncQuery

Validation Framework.

• location: The location of constraint represents the pattern parameter (the object)

which the constraint violation needs to be attached to.

• message: The message to display when the constraint violation is found. The message
may refer the parameter variables between $ symbols, or their EMF features, such

as in $Parameter.name$.

• severity: Possible values: 'error' and 'warning'.

• targetEditorId: An Eclipse editor ID where the Validation Framework should reg-

ister itself to the context menu. Use * as a wildcard if the constraint should be used

always when validation is started.

52

5.1.2 The designed architecture

The class diagram of the framework-related components is shown on Figure 5.1.

Figure 5.1: Validation Framework class diagram

• Constraint: the Constraint (abstract) class is used for the extension point de�nition
in the EMF-IncQuery framework. One may annotate arbitrary patterns with the

@Constraint annotation (for more details see Section 5.1.1), marking the pattern as

it will be used for validation purposes later. A Constraint subclass will be generated

for every such pattern with additional information about the corresponding EMF-

IncQuery pattern and the ones extracted from the annotation's attributes; target

editor id, label of the problem marker and severity. More information on the code

generation mechanism is given in Section 5.1.3.

• ConstraintAdapter: an instance of this class is assigned to every domain model

which is loaded into the Validation Framework. Along with the domain model, the

corresponding editor is also referenced (the one the model was loaded from) because

it is possible to edit the same domain model in di�erent kinds of editors or in dif-

ferent instances of the same editor. The Framework listens to the lifecycle of editors

53

and upon editor closing, the appropriate problem markers will be removed from the

Problems View.

The adapter collects the constraints from the ValidationUtil class and uses an Agenda

to create the transformation rules that will update the user interface. The Marker-

PlacerJob, MarkerEraserJob and MarkerUpdaterJob are used, respectively, to create

a marker upon pattern match appearance, remove the marker when the match disap-

pears and update the marker when the corresponding model elements are changed.

• ValidationUtil: the class collects the necessary helper methods to interact between
the user interface and the Validation Framework, collects the available constraints

from the workspace of the host Eclipse and manages the lifecycle of the Constrain-

tAdapters.

5.1.3 Generated validation code

The EMF-IncQuery framework keeps track of the @Constraint annotations and if at least

one is present on a pattern, a corresponding plug-in will be generated containing all the

artifacts which are necessary for the Validation Framework. The name of the generated

plug-in is originated from the name of the EMF-IncQuery project (which contains the

annotated pattern(s)), but will end with .validation. This .validation plug-in can be used

in a runtime Eclipse 1 con�guration and the Validation Framework can be initialized from

the context menu of the designated target editor.

The code generator is implemented with Xtend [9] which is a statically-typed program-

ming language. Xtend compiles into Java source code and is a powerful library on top of

the Java Development Kit with several additional facilities; for example lamda expressions,

multiple dispatch, operator overloading, etc.

The crux of the type-safe Constraint subclass generation is done with template expres-

sions and a portion of the corresponding code is given in Listing 5.1. Templates can be

de�ned between the special characters '�' and '�' and basically the method de�nes simple

string concatenations to produce the code.

The getSeverity() and getMessage() methods extract the necessary information from the

@Constraint annotation, while the getLocation() method uses the passed pattern match

to get the appropriate pattern parameter which will be the location object. This location

object will be used in the problem marker as a link to trace back to the actual model

element.

The getMatcherFactory() returns the generated factory of the IncQueryMatcher, asso-

ciated to the annotated pattern. This factory will be used by the ConstraintAdapter class

to create the pattern matcher for the constraint.

1During Eclipse development we distinguish between the host and runtime Eclipse con�gurations. The
developer usually implements the various plug-ins in the host Eclipse, where the numerous development
tools are installed too. After that, one can select the necessary plug-ins (from to host workspace) to form a
runtime Eclipse con�guration, where only these plug-ins will be loaded. This way it is much easier to main-
tain the dependent plug-ins of a project and also reduces the hardware resources needed for development.
The runtime Eclipse con�guration will always run in a separate Java Virtual Machine.

54

Listing 5.1: Xtend template for Constraint generation

private static String annotationLiteral = "Constraint"

...

def getElementOfConstraintAnnotation(Annotation annotation , String elementName) {

val ap = annotation.getAnnotationParameterValue(elementName)

if(ap != null && ap.size == 1) {

return (ap.get(0) as StringValue).value

} else {

return null

}

}

...

def patternHandler(Pattern pattern , Annotation annotation) '''

package <<pattern.packageName >>;

...

// imports are omitted here

...

public class <<pattern.name.toFirstUpper >><<annotationLiteral >>

<<pattern.annotations.indexOf(annotation)>>

extends <<annotationLiteral >><<<pattern.matchClassName >>> {

private <<pattern.matcherFactoryClassName >> matcherFactory;

public <<pattern.name.toFirstUpper >><<annotationLiteral >>

<<pattern.annotations.indexOf(annotation)>>() throws IncQueryException {

matcherFactory = <<pattern.matcherFactoryClassName >>.instance ();

}

@Override

public String getMessage () {

return "<<getElementOfConstraintAnnotation(annotation , "message ")>>";

}

@Override

public EObject getLocationObject(<<pattern.matchClassName >> signature) {

Object location = signature.

get("<< getElementOfConstraintAnnotation(annotation , "location ")>>");

if(location instanceof EObject){

return (EObject) location;

}

return null;

}

@Override

public int getSeverity () {

return ValidationUtil.getSeverity(

"<<getElementOfConstraintAnnotation(annotation , "severity ")>>");

}

@Override

public BaseGeneratedMatcherFactory <<<pattern.matcherClassName >>>

getMatcherFactory () {

return matcherFactory;

}

}

'''

55

5.1.4 Validation example from the context of stochastic simulation

Suppose the designer is creating the instance model of a stochastic simulation experiment.

During editing, we would like to give support for the designer to be able to check whether

the model is error-free. In this case study only one constraint is used, which prohibits the

existence of a client node that is not connected to at least one super node. This constraint

is presented in Listing 5.2. The notConnectedClient pattern is used as a constraint (see the

@Constraint annotation de�nition) which matches when connectedClient does not have a

match for the given CL (client) node.

Listing 5.2: Validation Framework constraint example

package org.eclipse.viatra2.emf.incquery.stochsim.patterns

import "http :// org.eclipse.viatra2.emf.incquery.stochsim.model"

@Constraint(location = "CL", message = "Client node $CL.name$ is disconnected !",

severity = "error", targetEditorId = "*")

pattern notConnectedClient(CL : CL) {

neg find connectedClient(CL);

}

pattern connectedClient(CL : CL) {

CL.cnn(CL, _SN);

}

On Figure 5.2 an instance model is given with two super nodes S1 and S2 and a client

node CL1 which is not connected to any of the super nodes. The Validation Framework

can be initialized from the context menu of the tree viewer editor. The constraints are

collected from the workspace of the host Eclipse and those are evaluated on the loaded

instance model. A constraint violation results an error marker in the Problems View (which

is the bottom view on the �gure). The severity of the constraint was de�ned as 'error' and

the CL1 model element is assigned as the location of the constraint violation. Suppose the

model is changed by the designer; for example a new connection is established between

the CL1 node and one of the super nodes. The state of the activation - that was �red to

create the error marker - changes from Fired to Disappeared and it is automatically applied

(again) by the Trigger Engine. This results the immediate removal of the corresponding

error marker from the Problems View, meaning that the designed model is error free.

Figure 5.2: Validation Framework example model and constraint violation

56

Note that, the marker is data-bound to the corresponding model elements (and their

attributes) - in this case CL1 - of the match, so that when the violating model elements

are modi�ed, e.g. renamed, the literal of the marker is updated in the Problems View even

if the match set itself does not change. If the designer editor (where the validation was

initialized from) is closed the appropriate markers are also disposed of.

5.2 Design space exploration

Design space exploration (DSE) [24] is a process to compare and analyze functionally equiv-

alent implementation alternatives, which meets all design constraints in order to identify

the most suitable choice (solution) based on various metrics, such as performance, cost or

reliability. DSE is widely used in many areas where model-driven development is already

popular; it is a challenging problem for the design of safety critical systems, runtime recon-

�guration of IT systems or automotive design scenarios. DSE can be used at design-time to

choose between the various solutions and also during runtime, for example, to recon�gure

the model of a cloud infrastructure to meet certain target functions and properties.

There are two requirements for a DSE solution: (i) it must be reachable from the initial

state through a sequence of applications of given exploration rules (ii) it must meet the

global constraints of the given problem. While traditional DSE problems use only numerical

constraints (e.g. time, cost, etc.), nowadays' software and hardware systems require to

de�ne complex structural constraints of the graph-based model of the system-under-design.

Nevertheless, when applying DSE during runtime the framework must handle dynamic

creation and deletion of model elements too.

In [24] a VIATRA2 based solution is presented for guided design space exploration.

During the thesis work portions of this approach were adapted to make it work on EMF

models and to use EMF-IncQuery as the underlying graph pattern matching framework.

The aim of the tool was to create a proof of concept solution for EMF models and the

Rule Engine was the component which eased the development in many aspects. Indeed,

the automatically updated Agenda is really useful in the DSE scenarios and the major part

of the implementation e�ort could be focused on the exploration strategies/techniques.

A detailed survey of existing DSE solutions in given in [24].

5.2.1 Overview of the VIATRA2 based DSE framework

A schematic overview of the architecture of the VIATRA2-based tool is given on Figure 5.3.

DSE can be thought of as traversing through the search tree of the system-under-design.

In this solution the system states are stored as nodes of a graph, operations are de�ned as

graph transformations and goals and constraints are given as graph patterns. Naturally,

the aim is to �nd the optimal solution under the shortest possible time and this needs

to leave out certain parts of the search tree where it is guaranteed that no solutions can

be found. To reduce the number of alternatives that are evaluated, several hints are used

during exploration:

57

• Rule dependency to de�ne a partial ordering between the transformation rule

applications. This is derived from the analysis on the Petri net abstraction of the

system.

• Occurrence vector is used to de�ne the maximal application number of a given

rule during exploration.

• Cut-o� criteria is used to identify dead end states.

• Selection criteria de�nes priorities between the applicable exploration rules.

The search process consists of the following steps:

1. Check operation applicability: check executability of transformation rules.

2. Evaluate criteria: based on the hints, applicable rules are selected from the ones

that are �reable.

3. Cut-o�: if the cut-o� criteria is met or no applicable rule is present, then the state

is a dead end and can be cut o�.

4. Select rule: select a rule from the evaluation results which will be applied by the

engine.

5. Apply rule: a new state will be reached with the rule application. Recording of the

model manipulations are required in order to be able to backtrack the step if it is

needed later.

6. Check new state: checking global constraints and goals on the current state. If it is

an invalid state, then the exploration must be backtracked to the parent state. If the

state represents a solution, the engine saves it and it may stop if only one solution is

needed.

7. Continue search: the process is started again from the new state or from the parent

state after a backtrack.

The framework can be extended with various exploration strategies; depth- or breadth-

�rst search (possibly with depth limit) and heuristics based algorithms like A*, etc.

5.2.2 Overview of the EMF-IncQuery based DSE framework

During the thesis work I have adapted the framework presented in Section 5.2.1 to work on

top of the EMF-IncQuery framework and the Rule Engine. The components denoted with

red text (Figure 5.3) are included in my prototype implementation, that is, the current

state of the new framework uses rule priorities as guidance to reduce the number of states

being explored. In this case these priorities are set by the designer not by some external

tools and the exploration is applicable for EMF instance models with rule postcondition

written in Java (for the Rule Engine). This solution is aimed to be used at runtime for

exploring solutions in a dynamically changing model.

58

Figure 5.3: Architecture of the VIATRA2 based DSE tool

• Design problem description

� Initial state is given by the starting EMF instance model. All states are reach-

able from this initial model during exploration.

� Goals are de�ned as EMF-IncQuery patterns. If in the current state, all patterns

(which correspond to a goal) have a match then the state represents a solution.

If the current state does not satisfy all of the goals then it is possible that further

rule applications will result in an expected solution. Note that these patterns

are often parameterless queries which only check the existence of certain model

elements. It can be set for the framework to �nish exploration when a solution

is found or continue it until a given number of states are explored.

� Global constraints are like goals, but they are used to restrict the valid states

during exploration. In fact, if at least one of the global constraints is violated

in the current state then the DSE framework backtracks to the previous state

as it is not possible to reach a goal on that speci�c branch of the search tree.

Such constraints are often used to prohibit the existence of a certain structure

in the model.

� Exploration/transformation rules are de�ned with the Rule Engine, that

is, an EMF-IncQuery pattern as the precondition and a Java IMatchProcessor

as the postcondition. See Section 5.2.3 for a speci�c example.

• Design space exploration: the framework is much like the VIATRA2 based con-

forming to much of the existing interfaces.

• Exploration strategy: the prototype implementation contains a depth-�rst search

based exploration strategy with �xed depth-count for the traversal. In this scenario,

the algorithm knows the length of the optimal trajectory for the given problem and

sets a depth limit for the traversal by 1.5 times of the optimal length. Also, if a

solution is found with length L, the algorithm sets the depth limit to L− 1, meaning

59

that from this point only shorter solutions are taken into account. If the optimal

trajectory is found, the exploration is stopped.

• Guidance

� Rule priorities can be de�ned for the exploration rules with annotations.

The rules and their priorities are stored in a map structure, where the key is

the priority value and the value is a list containing the rules with the given

priority. If there are two or more active (�reable) rules with di�erent priorities

are present, then the framework applies the one with the lower priority value.

For rules with the same priority value, the �rst from the list is �red.

5.2.3 Cloud infrastructure example

This section gives an example for the various terms presented in Section 5.2.2 through the

design of a simple cloud infrastructure and the evaluation of the prototype tool was also car-

ried out with this example. The used metamodel is presented on Figure 5.4. A cloud model

(CloudModel) represents the cloud infrastructure which is under (re)con�guration. Cloud-

CompNode is the superclass of all components within the model. Cloud nodes (CloudNode)

are units of cloud based con�gurations and are the top elements inside a cloud model. High

availability clusters (ClusterNode) and servers (ServerNode) can be added onto cloud nodes.

Databases (DbNode) are installed on servers and applications (AppNode) are executed over

databases. Servers can also be deployed on clusters while storage elements (StorageNode)

can only operate on clustered servers.

Figure 5.4: Metamodel of the cloud infrastructure

60

Initial state

The initial state consists of a CloudModel instance.

Global constraints

Listing 5.3 presents the limitedUnusedNodes and nonClusteredDB constraints. The �rst is

used to prohibit the existence of more than 5 unused CloudCompNode instances, that is,

the ones on which no other nodes are deployed. The second constraint is used to make sure

that a DbNode instance is always deployed on top of two clustered ServerNode instances.

The rest of the patterns are helper patterns which are used in the constraints.

Listing 5.3: Cloud infrastructure DSE global constraints

// Global constraint - no matches

pattern limitedUnusedNodes () = {

N == count find unusedNode(_Node);

check(N > 5);

}

// Global constraint - no matches

pattern nonClusteredDB(DB) = {

DbNode(DB);

ServerNode(server1);

ServerNode(server2);

server1 != server2;

find nodeOnHost(DB ,server1);

find nodeOnHost(DB ,server2);

neg find serversOnCluster(server1 ,server2);

}

// Helper patterns

pattern unusedNode(Node) = {

CloudCompNode(Node);

neg find nodeOnHost(_OnNode , Node);

}

pattern nodeOnHost(Node ,Host) = {

CloudCompNode.onRelation(Node , Host);

}

pattern serversOnCluster(server1 , server2) = {

ServerNode(server1);

ServerNode(server2);

server1 != server2;

ClusterNode(cluster);

find nodeOnHost(server1 , cluster);

find nodeOnHost(server2 , cluster);

}

Exploration rules

Some exploration rules are given through the following listings (for in-depth details see the

source code); �rst the precondition is given as an EMF-IncQuery pattern and after that

the Java postcondition used by the Rule Engine.

61

AddDBToServer : the rule can be applied on two (free) ServerNode instances and as a

result a DbNode instance will be created on top of the two servers.

Listing 5.4: AddDBToServer rule precondition

pattern addDBToServerGT(server1 , server2) = {

ServerNode(server1);

ServerNode(server2);

server1 != server2;

find nodeOnHost(server1 ,Host);

find nodeOnHost(server2 ,Host);

neg find busyServer(server1);

neg find busyServer(server2);

}

Listing 5.5: AddDBToServer rule postcondition

public class AddDBToServerJob extends AddDBToServerGTProcessor {

@Override

public void process(ServerNode server1 , ServerNode server2) {

DbNode db = CloudFactory.eINSTANCE.createDbNode ();

db.setName ("DB"+ server1.getName ()+ server2.getName ());

db.getOnRelation ().add(server1);

db.getOnRelation ().add(server2);

server1.getModel (). getComponents ().add(db);

}

}

AddAppToDB : an application node can be deployed on two DbNode instances (if an

other application is not deployed on them yet). Upon rule application the appropriate

onRelation references are set.

Listing 5.6: AddAppToDB rule precondition

pattern addAppToDBGT(db1 , db2) = {

DbNode(db1);

DbNode(db2);

db1 != db2;

neg find busyDB(db1);

neg find busyDB(db2);

}

Listing 5.7: AddAppToDB rule postcondition

public class AddAppToDBJob extends AddAppToDBGTProcessor {

@Override

public void process(DbNode db1 , DbNode db2) {

AppNode appNode = CloudFactory.eINSTANCE.createAppNode ();

appNode.setName ("A"+db1.getName ()+db2.getName ());

appNode.getOnRelation ().add(db1);

appNode.getOnRelation ().add(db2);

db1.getModel (). getComponents (). add(appNode);

}

}

62

Goals

The expected solutions/goals are discussed in Section 6.3.1 along with the analysis of the

measurements results.

5.2.4 Implementation notes - EMF transactions

The crucial aspect of a design space exploration engine is to e�ciently (i) execute the ex-

ploration rules and (ii) provide a mechanism to backtrack the current state to the previous

(parent) state. The approach deals with the �rst part with the use of the Rule Engine

(Chapter 4), however, for the latter, the EMF Model Transaction (EMF-MT) API is used.

It provides automatic data integrity for EMF models when multiple model manipulations

occur simultaneously. Key points regarding the use of EMF MT are as follows:

• TransactionalEditingDomain: it is an EMF MT service which extends the standard

EditingDomain's functionality by applying transactional semantics for reading and

writing the model. Using the service results that the model can only be manipulated

within a transaction from now on.

• Command : represents an executable (possibly undoable, redoable) portion of code

that manipulates the model. One can still use arbitrary Java code to manipulate the

EMF model; the DSE engine uses the RecordingCommand to record the e�ects of

rule executions and wrap them into a Command structure that can undo or redo the

changes. The backtracking of operations is achieved by undoing these changes.

• CommandStack : the command stack collects all the commands that were executed

on a given EditingDomain. The undo() operation of the CommandStack pops the

top of the stack and undoes the last command if it is undoable.

5.3 Stochastic simulation

To support the design-time analysis of dynamic systems, a simulation framework for gen-

eralized stochastic graph transformation [28] has been introduced in [38], built on the

foundations of the RETE-based pattern matching infrastructure of VIATRA2. The Graph-

based Stochastic Simulation (GRaSS) uses graph transformation rules that are augmented

with probability distributions governing the delay of their application, for the purpose to

derive continuous-time semi-Markov processes to verify stochastic properties of the system-

under-design. As part of the thesis work, the transitive closure language extension was also

introduced into VIATRA2 (via annotation) and it became possible to use it in the GRaSS

tool. In our paper [14], we have carried out a case study with this language extension

where we used it in statistics-collecting probe rules as well as in behavioral rules resulting

to improve the expressive power of the tool. The main result of this work is that it is now

possible to de�ne parts of a complex simulation step with e�cient transitive closure sup-

port in a declarative way. The implementation outperforms the previous VIATRA2 based

approaches and the full performance evaluation is given in Section 6.2.1.

63

We have presented a simple modeling scenario for a Skype-like system in [14] originated

from [38][27]. The concepts, metamodel and example instance model of the system is

presented throughout Chapter 2.

5.3.1 Survey of stochastic network simulation tools

Generalised stochastic graph transformation (as supported by the GRaSS tool [38]) has

been presented as a modelling language that is intuitive as well as very expressive. In the

context of peer-to-peer VoIP simulation, the use of real-valued attributes and generalised

probability distributions can help in representing tra�c at a higher level; indeed, realistic

modelling of jitter and bandwidth have shown to be possible [27][28]. As always with

discrete event systems [16], the size of the system can be a problem, and the queue of

the possible events at each simulation step can grow very large. Previously, with basic

dedicated tools such as ns2 [15] and GloMoSim [41], simulations of at most hundreds

or thousands of network nodes were possible. With today's advanced tools, networks of

thousands to tens of thousands of nodes have become feasible on a modern workstation

[40]. The performance of the transitive closure extension is highly relevant to match the

scalability of the GRaSS tool. Additionally, as transitive closures can now be used both in

statistics-collecting probe rules as well as behavioral rules, the expressive power of the tool

has also been extended.

5.3.2 Simulation with graph transformations

In order to experiment with the characteristics of a continuously changing Skype network,

the graph based model of the system is used. To illustrate the behaviour of the network we

have used several graph transformation rules, each one of them assigned a probability dis-

tribution. During a simulation run, the execution of transformation rules is automatically

scheduled according to a round-based scheme that maintains a priority queue. The execu-

tion engine, with the aid of the incremental pattern matcher, keeps track of enabled and

disabled rules by registering changes in the match sets of the rule precondition patterns.

Probe rules - the ones without postcondition - are used to measure important properties

of the network throughout the simulation runs.

The majority of the rules were presented in [38] with slight �ne-tuning for the extended

pattern language. The VIATRA2 VTCL code of the rules are given in the appendix.

Behavioral rules

CreateClient (Listing A.4.1) Creates a new client node when applied, however it can

only be applied if the number of disconnected nodes is less than 5. This is used to avoid

the creation of too many isolated nodes during simulation.

DeleteClient (Listing A.4.2) Deletes an isolated client node.

64

ConnectClient (Listing A.4.3) Connects a client node to the super node which has

the fewest clients connected to it. This way load balancing mechanism can be introduced

to the simulation.

DisconnectClient (Listing A.4.4) Disconnects a client node from the super node that

it was connected to.

UpgradeClient (Listing A.4.5) Upgrades a client node to a super node, if (i) the super

node it is connected to has at least 4 connections to clients and (ii) there are at least 3

isolated clients available. As a result, a new super node is created and the isolated clients

will be connected to this new node. Figure 5.5 displays the process of upgrading a client.

Figure 5.5: Stochastic simulation - UpgradeClient rule

DowngradeSuperNode (Listing A.4.6) Downgrades super node S1 which is linked

to super node S2, resulting to remove S1 and create a new client node which is connected

to S2.

AddLink (Listing A.4.7) Establishes a new link between two super nodes which are

not currently linked.

Probe rules

P_NetworkSize (Listing A.4.8) Probe rule used to log the size of the network; num-

ber of super nodes and client nodes together.

P_ConnectedOverlayPairs (Listing A.4.9) Probe rule to report the number of pair-

wise linked overlay (SN - Super Node) pairs. This rule uses the transitive closure of the

overlay network for computing the reachability regions. More details on the transitiveClo-

sureOfLinked pattern can be found in Section 3.5.1.

5.3.3 Distributions and simulation execution

The stochastic graph transformation system is de�ned as a triplet S = 〈R,G0, F 〉; R is

the set of rules (εR is the corresponding set of events), G0 is the initial graph model and

65

F : εR → (R → [0, 1]) assigns each event a continuous distribution function. The engine

uses exponential distribution functions, that is, F (x) = 1 − eλx if x > 0 and 0 if x ≤ 0.

The exponential distribution function is memoryless (or forever young) which means that

the probability of an event does not depend on the past events, only on the current state

of the system.

The execution of simulations is described in-depth in [38].

During the simulation one can set the number of runs per experiment and the maximal

depth; either by the number of steps or simulation time. The implementation uses the SSJ

Java library [6], which provides facilities to deal with probability distributions and collects

statistics.

5.3.4 Connection with the Rule Engine

Currently the GRaSS tool is implemented as a VIATRA2 extension, but it naturally comes

to mind that in an EMF-IncQuery version the Rule Engine could be easily applied as an

option to create the model transformation rules. In fact, the solution would probably not

need the Trigger Engine as the activation �ring in this scenario is evaluated by a more

complex, time-dependent logic.

66

Chapter 6

Performance measurements

This chapter presents three benchmarking scenarios to evaluate the performance charac-

teristics of the various components developed as part of the thesis work:

• Performance comparison of the transitive closure algorithms (described in Chapter 3)

over graph models.

• Benchmarking of simulations carried out with the stochastic simulation framework

(presented in Section 5.3). These measurements mainly dealt with the transitive

closure extension in the VIATRA2 framework based on the DRed and IncSCC algo-

rithms. It also proves the applicability of incremental transitive closure computation

within a complex case study.

• Experimenting with the Design Space Exploration component (described in Sec-

tion 5.2).

The performance measurements were carried out on Intel Core i5 2,5 GHz, 8GB RAM,

Java Hotspot Server vm build 1.7.0_07-b10 on 64-bit Windows 7 Professional. Eclipse 4.2

x64 (Juno) release was used as the measurement environment in all scenarios. Throughout

the stochastic simulations 4 RETE threads were used in the VIATRA2 framework.

6.1 Benchmarking of the transitive closure algorithms

6.1.1 Measurement scenario

To compare the performance characteristics of the implemented transitive closure algo-

rithms I have used two directed graph models (one dense and one sparse):

• Erd®s-Rényi graph [19]: the p parameter of this graph de�nes the probability that a

given edge exists in the graph, independently of other edges. The �rst measurement

scenario used this graph, with p = 0, 005 while increasing the number of vertices from

1000 to 20000. A key observation for this model is that it results a lot of edges even

for a small values of p; a graph with 20000 vertices will have about 2 million edges

after generation.

67

• MinMax graph: the name is originated from the generation method of this graph;

minDegree de�nes the minimum out-degree of a vertex, while maxDegree de�nes

the maximal out-degree. During model generation each vertex will be assigned a uni-

form random number between [minDegree,maxDegree] which de�nes the number

of outgoing edges. DAG generation is done by only allowing to insert an edge where

the index of the target vertex is larger than or equals to the index of the source

vertex. The DAG version was generated with minDegree = 2 and maxDegree = 5,

while the number of vertices ranged from 1000 to 10000. The non-DAG version used

the same parameters but the number of vertices reached 100000.

The measured parameters and properties consist of the following ones:

• Number of vertices and edges in the generated graph, and in case of non-DAG graphs,

the number of SCCs in the initial model.

• The wall-times for the incremental transitive closure algorithms; the time spent to

initialize the transitive closure relation and the average time spent for relation main-

tenance after a series of random edge insertion / deletion. The time values are always

in milliseconds.

• The initialization time (in milliseconds) for the static transitive closure algorithms.

Experiments were carried out for the DRed, King, Counting and IncSCC incremental

algorithms and for the FW - Floyd Warshall and DFS - depth-�rst search based static

algorithms (see Chapter 3 for more information). During measurements the time limit was

set to 2 minutes.

6.1.2 Results and analysis

Table 6.1 presents the �rst series of measurements on the Erd®s-Rényi graph. A key ob-

servation is that the static algorithms do not scale well for larger models and also the

large amount of edges a�ects the performance in a negative way. The King algorithm is

not presented in this series, because even for the smallest graph, the initialization time ex-

ceeds 2 minutes. Another important fact is that DRed handles edge deletions with �xpoint

computation on the transitive closure relation which costs more computation time when

the relation is large. It can be seen that from 3000 vertices the whole graph is strongly

connected. IncSCC takes advantage over this property and maintains the reduced graph

e�ciently, however the initialization takes more than 2 minutes for the Tarjan algorithm

implementation on the graph with 20000 vertices. Indeed, its performance is a�ected by

the number of edges in the graph, which is more than 2 million for that graph.

Table 6.2 presents the measurement results on MinMax DAGs. In this scenario the King

implementation's update time is competitive with the results of IncSCC, however, the

initialization time follows a rapid growth in time with the increasing model size and for a

graph with 5000 vertices it takes more than 2 minutes. The update time for Counting and

IncSCC is almost exactly the same, which is the expected result, as in this case, IncSCC

68

Erd®s-Rényi (0,005) DRed FW

vertices # edges # SCCs init insert delete init

1000 5063 14 546 214 33116 2341

3000 45149 1 18310 4232 >120000 55130

5000 124470 1 116596 17961 >120000 >120000

10000 500324 1 >120000 - - -

20000 2000135 1 - - - -

Erd®s-Rényi (0,005) IncSCC DFS

vertices # edges # SCCs init insert delete init

1000 5063 14 140 0 8 1264

3000 45149 1 415 0 10 28860

5000 124470 1 1390 0 33 114301

10000 500324 1 19536 0 186 >120000

20000 2000135 1 152832 0 1064 -

Table 6.1: Measurements on transitive closure algorithms - Erd®s-Rényi graph

works as a simple wrapper for Counting, passing all edge insertions and deletions to be

handled by the latter one. Note that, however, the two implementations use a di�erent

method for initialization.

MinMax graph (2,5) DRed Counting FW

vertices # edges DAG? init insert delete init insert delete init

1000 3541 yes 372 14 230 219 0 6 1560

3000 10472 yes 981 0 3097 1295 0 4 39032

5000 17589 yes 2782 3 6817 3385 0 137 > 120000

10000 35036 yes 10581 0 29501 16896 0 265 -

MinMax graph (2,5) KING IncSCC DFS

vertices # edges DAG? init insert delete init insert delete init

1000 3541 yes 8518 33 2 218 0 8 187

3000 10472 yes 129527 24 17 1201 0 11 828

5000 17589 yes >120000 - - 3182 0 167 1762

10000 35036 yes - - - 15070 0 269 10952

Table 6.2: Measurements on transitive closure algorithms - MinMax DAG

Measurement results on MinMax non-DAGs are presented in Table 6.3. Here, again,

King is not included because the initialization takes more than 2 minutes on the smallest

graph. IncSCC scales well along the increasing model sizes and the average update time

also remains under 0,5 seconds for each case. Note that, there is major di�erence between

the scalability of static algorithms for cyclic and acyclic graphs; for example the DFS-

based algorithm generates the relation for the MinMax DAG with 10000 vertices under 11

seconds, while it takes more than 2 minutes for non-DAG version (see Listing A.3.1 for

more details). The scaling of runtime is also visualized on Figure 6.1 (note that, the metric

of the y-axis is logarithmic with base 10).

Summarizing the key experiences from the measurement results, it can be seen that:

• The King implementation's initialization is not e�cient, which is due to the multilevel

data structure used to store the relation. The performance of its update mechanism

is competitive with the relation maintenance of IncSCC or Counting.

• Most of the algorithms - except IncSCC - scale poorly for larger graphs because they

do not utilize the existence of large SCCs in the graph. For a quite dense graph, there

69

MinMax graph (2,5) DRed FW

vertices # edges # SCCs DAG? init insert delete init

1000 3548 26 no 1295 235 23150 2293

3000 10559 114 no 14556 2528 >120000 49422

5000 17495 186 no 75629 14378 >120000 >120000

10000 34874 330 no >120000 - - -

30000 104749 1044 no - - - -

50000 174407 1746 no - - - -

100000 350251 3348 no - - - -

MinMax graph (2,5) IncSCC DFS

vertices # edges # SCCs DAG? init insert delete init

1000 3548 26 no 47 5 21 1232

3000 10559 114 no 124 0 11 17738

5000 17495 186 no 204 0 16 65506

10000 34874 330 no 406 21 31 >120000

30000 104749 1044 no 5133 0 151 -

50000 174407 1746 no 23073 0 223 -

100000 350251 3348 no 90654 0 478 -

Table 6.3: Measurements on transitive closure algorithms - MinMax Non-DAG

is high probability that a newly inserted / deleted edge will not a�ect the structure

of the reduced graph.

• Fixpoint computation dominates the runtime of DRed and Counting (and with this,

implicitly IncSCC too). On Table 6.4 a portion of a YourKit [11] CPU pro�ling

snapshot can be seen for the Counting algorithm on a MinMax DAG graph with

10000 vertices, after initialization and a series of graph manipulations. The transitive

closure relation contains more than 6 million tuples (stored explicitly) and the relation

manipulation dominates the whole runtime. Own time means the time spent in the

given method, also expressed as the percentage of the total runtime. Note that, the

increased runtime is due to the detailed method call instrumentation.

• Memory consumption: Table 6.5 presents a portion of a YourKit Memory snapshot

for the IncSCC algorithm run on the MinMax non-DAG with 100000 vertices. The

objects that are reachable from GC roots via strong references take 60 MB of heap

space. Shallow size of an object is the amount of memory allocated to store the object

itself, not taking into account the referenced objects. Retained size of an object is

its shallow size plus the shallow sizes of the objects that are accessible, directly or

indirectly, only from this object. This value is presented in the table for the given

classes.

Name Time (ms) Own time (ms) Invocation count

java.util.HashMap.put(Object, Object) 41931 41931 (21 %) 25536240

java.util.HashMap.get(Object) 33008 33008 (16 %) 25718235

.TcRelation.put(Object, Object) 76201 24941 (12 %) 12822578

java.util.HashSet.add(Object) 20918 20918 (10 %) 12822578

.CountingTcRelation.addTuple(Obj, Obj, int) 82627 16563 (8 %) 6353402

java.util.HashMap.containsKey(Object) 15661 15661 (8 %) 12657477

java.util.HashMap$KeyIterator.next() 14413 14413 (7 %) 20169748

Table 6.4: Yourkit pro�le results - hot spots

70

Figure 6.1: Measurements on transitive closure algorithms - scaling on Min-

Max Non-DAG

Class Name Shallow Size (bytes) Retained Size (bytes)

java.util.HashMap$Entry[] 3964880 59195184

java.util.HashMap 464408 59194408

java.util.HashMap$Entry 19800096 55870832

. . . .measurements.MinMaxGraph 40 33860280

java.util.ArrayList 5729952 28863176

java.lang.Object[] 13507312 23194104

java.lang.Integer 12782320 12782320

. . . .graphimpl.Graph 48 10867912

. . . .incscc.IncSCCAlg 48 8652064

. . . .incscc.UnionFind 24 6910032

. . . .incscc.UnionFindNodeProperty 2400000 2400000

Table 6.5: Yourkit pro�le results - memory snapshot

6.2 Benchmarking of the Stochastic simulation framework

6.2.1 Measurement scenario

To �nd out the performance di�erences between various pattern matching algorithms for

transitive closure, I ran a series of measurements on simpli�ed stochastic model simulation

processes (see Section 5.3 for more information on the framework). The simulation aims

to analyse the probability of the network being (fully) connected (so that each client can

communicate with every other one, through their direct super node connections and the

transitive overlay links between super nodes). The connectivity measure was registered

through the P_ConnectedOverlayPairs probe which reports the size of the match set of

the transitiveClosureOfLinked pattern (Listing 3.4) after each simulation step.

A simulation run consisted of 2000 steps (rule applications). Along with the total exe-

cution time of the run, the wall times for various sub-phases were registered - such as the

time it took to propagate updates through the transitive closure RETE node - using code

instrumentation.

The experiments were carried out with three di�erent strategies of evaluating graph

71

patterns and transitive closure:

1. Local search pattern matching as implemented in VIATRA2.

2. RETE-based incremental matching with the DRed algorithm for transitive closure.

3. RETE with IncSCC for transitive closure.

The measurement environment is characterized with the following metrics:

• NSCC: number of isolated but strongly connected components in the initial con�gu-

ration.

• NSN: number of super nodes per SCC in the initial con�guration.

• NCL: number of client nodes connected to every super node in an SCC.

A model with NSCC = 2, NSN = 2, NCL = 3 is visualized on Figure 6.2. The number

of model elements is 2× 2× (3 + 1) = 16.

Figure 6.2: Stochastic simulation model visualization

The performance of these solutions were investigated with two series of experiments. The

�rst series considered various model structures induced by di�erent probability weights of

the addLink rule. It was run on an initial model of 2000 vertices in 20 (NSCC) isolated

components, each containing 10 super nodes (NSN) and 9 client nodes (NCL) per super

node. The second series settled on a �xed value 0,005 of addLink weight, and considered

increasingly larger model sizes (from 1000 to 10000 nodes), initially divided into 10 to 100

(NSCC) isolated components similarly to the �rst series.

6.2.2 Results and analysis

Table 6.6 shows the results of the �rst experiment series. For each value of addLink, the

table displays (i) the values of the probes (as well as the number of strongly connected

components) averaged over an entire simulation run; (ii) for each of the three solutions the

total execution time (in milliseconds) and, in case of the incremental algorithms, (iii) the

time spent initializing and updating the transitive closure node (expressed as a percentage

of total time).

Table 6.7 shows the results of the second experiment series. Here, the rate of the addLink

rule is set to 0,005 and the model size is continuously increasing.

72

addLink
Graph properties (avg.) Local search DRed IncSCC

SCCs Net Overlay Total Total Tc Total Tc
size connectivity time time time [%] time time [%]

0,005 15,30 428,55 107,56 54833 17236 13,9 18833 1,3

0,01 15,22 420,44 111,72 51681 16875 14,8 16461 1,9

0,05 16,74 417,13 133,70 50533 22295 15,3 19228 1,8

0,1 18,65 415,53 149,70 55562 21297 17,4 18736 1,9

1 11,45 459,25 1663,45 151913 47211 59,9 20707 3,3

2 5,27 509,01 4543,02 309476 67718 70,5 21008 3,9

5 2,63 594,35 7480,20 579774 97755 78,2 26643 3,6

Table 6.6: Stochastic simulation measurement results - varying addLink rate

NSCC
Graph properties (avg.) Local s. DRed IncSCC

SCCs Net Overlay Total Total Tc Total Tc
size connectivity time time time [%] time time [%]

10 7,36 1000 30,51 19812 4963 24,1 6150 3,6

20 15,26 2000 106,80 48672 19441 14,1 17571 1,7

30 25,77 3000 223,89 102071 53928 10,7 43353 0,8

40 33,44 4000 379,97 191927 97360 11,4 96684 0,3

50 43,09 5000 625,27 314261 177918 9,4 173031 0,4

60 53,72 6000 903,19 492659 300378 9,0 309973 0,2

70 61,91 7000 1206,53 713140 434165 8,9 456706 0,2

80 74,12 8000 1548,99 930715 633987 7,9 647776 0,1

90 84,13 9000 2023,90 1283557 894999 7,4 892698 0,1

100 94,69 10000 2549,10 1770635 1209676 7,1 1240087 0,1

Table 6.7: Stochastic simulation measurement results - �xed addLink rate

The �rst series of experiments reveals that as the probability weight of addLink in-

creases, the frequent rule executions make the graph more and more connected. DRed

performance signi�cantly degrades for more connected graphs (e.g. as larger and larger

number of pairs have to be rederived after deletion), to the point that transitive closure

maintenance dominates the total execution time of the simulation. IncSCC however takes

advantage of SCCs and runs e�ciently in all cases, having a negligible impact on the overall

runtime of the simulation and RETE maintenance. Local search in VIATRA2 is orders of

magnitudes slower than either of the incremental approaches.

The second measurement series veri�es that IncSCC can be e�ciently applied in this

scenario too, as there are only a small number of SCCs compared to the model size (for

example 94 SCCs in a graph with 10000 vertices) thus the maintenance of the reduced

graph does not require a lot of computation. It also demonstrates that IncSCC has a

better complexity characteristic on large models than DRed, while both scale signi�cantly

better than the Local Search solution. The simulation time with DRed and IncSCC peaks

at ∼ 1200 seconds and with Local Search it is increased with an additional ∼ 550 seconds.

73

Figure 6.3: POWER_ON_SMALL DSE problem goal

6.3 Benchmarking of the Design Space Exploration compo-

nent

6.3.1 Measurement scenario

The performance evaluation of the Design Space Exploration component (Section 5.2) was

carried out with three di�erent goals. These expected solutions di�er in the trajectory

length and are characterized by the expected con�guration/structure of the system:

• CLUSTERED_DB_SMALL: the expected solution must have two DbNode in-

stances installed. The optimal trajectory consists of 9 rule applications and one of

the shortest solutions is: addCloudNode → addClusterToCloud → addServer −
ToSocket → addServerToSocket → addDBToServer → addClusterToCloud →
addServerToSocket→ addServerToSocket→ addDBToServer.

• CLUSTERED_DB_BIG: the expected solution must have three DbNode in-

stances installed. The optimal trajectory consists of 13 rule applications.

• POWER_ON_SMALL: the expected solution must have an AppNode instance

and a StorageNode instance installed. The optimal trajectory consists of 14 rule

applications and the resulting model stack is shown on Figure 6.3. Note that, the

CloudModel instance (on the bottom), already exists in the initial model.

The main goal of the measurements was to get an overview about the performance

characteristic of the simple EMF-IncQuery-backed solution opposed to the VIATRA2-

based one. Both engines used a depth-�rst search like traversal algorithm and were executed

without guidance and also with priorities. Priorities were assigned to rules in an order that

leads to a solution under the smallest number of steps possible. According to Figure 6.3, this

means that the addCloudNode rule was assigned 5, addClusterToCloud 4, and so on, ending

with addAppToDB being assigned priority value 1 (the one with the highest priority).

Measured parameters (averaged over a series of explorations):

74

• The number of solutions found during the exploration.

• Length of the shortest solution found and whether it is the optimal one.

• The number of visited states for the given exploration (a limit of 500000 states

was used for each run).

• Total runtime of the exploration (in milliseconds); if the optimal solution is not

found during the exploration it is the time required to explore 500000 states in the

given scenario.

6.3.2 Results and analysis

Table 6.8 presents the measurement results for the three scenarios. Key observations:

• It can be seen that for all scenarios, the number of solutions found and the length of

the shortest solution found is the same for the two solutions with slight di�erences.

• Exploration time is about 1, 5 times longer for the EMF-IncQuery-backed solution

than it is for the VIATRA2-based one in the CLUSTERED_DB_SMALL case, and

about 2 times longer in the other two cases. Based on YourKit pro�ling, it is clear

that the transaction handling of the VIATRA2 framework is much more e�cient

than the one provided by EMF (based on the times spent in the lock/unlock/commit

calls during transaction handling). Additionally, change propagation in EMF about

model manipulations involves a lot of operations with collections and those increase

the runtime of the exploration.

• Using priorities is only bene�cial for smaller models, as with increasing state space

size, a random (unguided) exploration strategy �nds more solutions and the shortest

one is also closer to the optimal trajectory. This is due to the fact that priorities

strictly set the order of rule applications opposed to random �rings. A good example

for this is the CLUSTERED_DB_BIG scenario, where the unguided EMF-IncQuery

strategy �nds 5 solutions with the shortest being 14 in length, while the strategy with

priorities only �nds one solution with a length of 16.

• Without depth limit or global constraints on the number of rule applications the

exploration is not feasible as there are certain rules that can always be applied and

this would result an in�nite state space.

The EMF-IncQuery based solution is only a proof of concept at the current state of

development which needs further optimization and incorporation of additional techniques

in order to reduce the state space and cut o� unnecessary branches in the search tree. A

more e�cient transaction handling or just simply an e�cient operation redo functionality

(as there are no parallel access present which would require transactions) in EMF models

would result better performance characteristics.

The measurements were carried out with a version of the VIATRA2-based solution that

is of equal capabilities (guidance with priorities or no guidance at all based on a depth-�rst

75

Length of Exploration Number of Length of # of
Problem optimal strategy sol. found shortest visited Runtime [ms]

solution sol. found states

DB_SMALL 9
VIATRA no guid. 5 9 (optimal) 435217 42968
EIQ no guid. 5 9 (optimal) 421588 77056

VIATRA priority 3 9 (optimal) 206864 21056
EIQ priority 3 9 (optimal) 207893 35141

DB_BIG 13
VIATRA no guid. 4 15 500000 50612
EIQ no guid. 5 14 500000 99244

VIATRA priority 1 16 500000 59176
EIQ priority 1 16 500000 100521

POWER_ON 14
VIATRA no guid. 3 16 500000 51085
EIQ no guid. 3 15 500000 102652

VIATRA priority 1 16 500000 55151
EIQ priority 1 16 500000 110294

Table 6.8: Measurements results on Design Space Exploration

search like algorithm). However, in [24] a more sophisticated solution is presented which

utilizes additional techniques like occurrence vectors and rule-dependency.

76

Chapter 7

Conclusions

Over the past few years the concepts of model driven software development have proved

to be an e�cient paradigm when it comes to design or implement large distributed and

safety critical systems. Although numerous tools are present for the various modeling pur-

poses and a wide range of research e�ort has been put into the underlying techniques, it

is still very expensive for a company to adapt the toolset of MDSD. The Eclipse Modeling

Framework tries to overcome these di�culties by de�ning a common platform for model

creation, management and code generation and both the open-source and commercial soft-

ware industry have produced several novel tools to extend these functionalities.

Among these tools, EMF-IncQuery aims to provide an e�cient declarative framework to

de�ne queries over EMF models. The thesis focuses on this framework and investigates the

special requirements of both applied and research use-cases. These investigations revealed

that (i) the computation of transitive reachability over models is widely used in many

scenarios and (ii) several applications would take advantage of an extension which allows

the de�nition of model transformation rules over the EMF models. Usability and perfor-

mance of these solutions were investigated with three case studies from di�erent modeling

scenarios.

Results of the thesis work

Transitive closure related results

During the �rst part of the thesis work I have experimented with transitive closure algo-

rithms and their applications. These involved several static algorithms (Floyd-Warshall,

graph traversal and topological sorting based solutions) and also fully-dynamic ones, like

Counting, DRed and King. The performance characteristics of the various prototypical

implementations were investigated through synthetic experiments and based on the expe-

rience gained from these measurements I have adapted an interesting approach too. This

solution (named IncSCC) is based on the incremental maintenance of the strongly con-

nected components of the graph and it came out to be the most e�cient out of the ones

that I have experimented with.

This part of the work was presented at the Sixth International Conference on Graph

77

Transformation in a publication entitled Incremental pattern matching for the e�cient

computation of transitive closure [14]. The IncSCC algorithm was integrated into the EMF-

IncQuery Base library which is now able to provide e�cient computation of transitive

closure too. Additionally, transitive closure as a language element is now present in the

pattern language of EMF-IncQuery, which required to integrate the algorithm into the

RETE net in order to interact with it when evaluating model queries.

Rule execution engine related results

To support the de�nition of transformation rules in the EMF-IncQuery context, I have

designed a robust component called the Rule Engine. With this engine one can create

model transformation rules over an EMF model by de�ning the precondition of the rule

as an EMF-IncQuery pattern and the required steps as statements written in Java. The

Rule Engine provides similar functionality like a rule-based expert system. It provides

the so called Agenda which is a component responsible for maintaining the activations of

the de�ned rules. Optionally, these activations can be automatically �red by the Trigger

Engine, without the need to write any client code.

Case studies

The work included the evaluation of three case studies which use either the language

extension, the Rule- and Trigger Engine or both of them:

• Stochastic simulation of P2P network systems: the VIATRA2-based approach was

extended by the introduction of transitive closure into the pattern language. This

allowed to de�ne some of the steps of a simulation scenario more e�ciently opposed

to the prior solutions o�ered by the VIATRA2 framework.

• Validation Framework of the EMF-IncQuery tool: it is now possible to de�ne complex

structural constraints over EMF models with transitive closure support. Moreover,

one can initialize the validation from the user interface and the Rule- and Trigger

Engine take care of the automatic creation, update and disposal of problem markers

in the Problems View of Eclipse.

• Design Space Exploration component: a proof of concept adaptation was created

from the VIATRA2-based solution. The component is backed by the EMF-IncQuery

framework and uses the Rule Engine to keep track of the applicable activations.

During the thesis work I was a member of the EMF-IncQuery team and the project

became an o�cial subproject under the Eclipse Modeling Framework Technology (EMFT)

Container Project (November 2012). Both the transitive closure extension and the Rule (&

Trigger) Engine were integrated into the project. Note that, the implementations and class

diagrams presented in the thesis re�ect the state of development as it was in November of

2012.

78

Future work

Model transformation extension

Extending the pattern language of EMF-IncQuery with model transformation constructs

would be bene�cial for several reasons:

• The construction of transformation rules would be much easier opposed to the solu-

tion when the user has to write the postcondition in Java.

• With a well-de�ned language extension the editor would be automatically capable of

checking the syntax of the transformation rules.

• One may restrict the actions that can be expressed with these constructs as the

current implementation in the Rule Engine allows arbitrary Java code to be used in

the rule postcondition.

Further development of transitive closure algorithms

A prospective follow-up of the started work would be to investigate parallel transitive

closure algorithms to (i) achieve further speed-up during the relation maintenance and

(ii) to be able to handle even larger models. There are several existing multithreaded

approaches but it still remains a hard problem because it is easily possible that the overhead

introduced by the parallel algorithm represses the expected characteristics. This has already

happened with my attempt to create a divide-and-conquer like transitive closure algorithm

with the Fork/Join Framework introduced in Java SE 7.

Stochastic simulation framework adaptation

A novel application of EMF-IncQuery would be to apply it in model-based simulations. The

simulation of P2P networks was introduced in a VIATRA2-based approach and adapting

that solution would result that the designer would be able to use the powerful pattern

language of EMF-IncQuery. However, this approach also needs to extend the language

with a model transformation component �rst.

79

80

Bibliography

[1] CLIPS project. http://clipsrules.sourceforge.net.

[2] Data Binding Overview in the .NET Framework. http://msdn.microsoft.com/

en-us/library/ms752347.aspx.

[3] EMF-IncQuery Base documentation. http://viatra.inf.mit.bme.hu/incquery/

documentation/base.

[4] EMF-IncQuery framework. http://viatra.inf.mit.bme.hu/incquery.

[5] JBoss Drools Documentation. http://www.jboss.org/drools/documentation.

[6] SSJ - Stochastic Simulation in Java. http://www.iro.umontreal.ca/~simardr/ssj/

indexe.html.

[7] The Eclipse Foundation. http://www.eclipse.org/.

[8] VIATRA2 framework. http://viatra.inf.mit.bme.hu/viatra2.

[9] Xtend project. http://www.eclipse.org/xtend.

[10] Xtext project. http://www.eclipse.org/Xtext.

[11] YourKit Pro�ler Tool. http://www.yourkit.com/overview/index.jsp.

[12] Wilhelm Ackermann. Zum hilbertschen aufbau der reellen zahlen. Mathematische

Annalen, 99:118�133, 1928. 10.1007/BF01459088.

[13] S. A. Baset and H. G. Schulzrinne. An Analysis of the Skype Peer-to-Peer Inter-

net Telephony Protocol. INFOCOM 2006. 25th IEEE International Conference on

Computer Communications. Proceedings, pages 1�11, April 2006.

[14] Gábor Bergmann, István Ráth, Tamás Szabó, Paolo Torrini, and Dániel Varró. Incre-

mental pattern matching for the e�cient computation of transitive closure. In Hartmut

Ehrig, Gregor Engels, Hans-Jörg Kreowski, and Grzegorz Rozenberg, editors, Graph

Transformations, volume 7562 of Lecture Notes in Computer Science, pages 386�400.

Springer Berlin / Heidelberg, 2012.

[15] L. Breslau, D. Estrin, K. Fall, S. Floyd, J. Heidemann, A. Helmy, Huang P., S. Mc-

Canne, K. Varadhan, Y. Xu, and H. Yu. Advances in network simulation, 2000.

81

http://clipsrules.sourceforge.net
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://msdn.microsoft.com/en-us/library/ms752347.aspx
http://viatra.inf.mit.bme.hu/incquery/documentation/base
http://viatra.inf.mit.bme.hu/incquery/documentation/base
http://viatra.inf.mit.bme.hu/incquery
http://www.jboss.org/drools/documentation
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://www.iro.umontreal.ca/~simardr/ssj/indexe.html
http://www.eclipse.org/
http://viatra.inf.mit.bme.hu/viatra2
http://www.eclipse.org/xtend
http://www.eclipse.org/Xtext
http://www.yourkit.com/overview/index.jsp

[16] C. G. Cassandras and S. Lafortune. Introduction to discrete event systems. Kluwer,

2008.

[17] Alain Colmerauer and Philippe Roussel. The birth of prolog. In The second ACM

SIGPLAN conference on History of programming languages, HOPL-II, pages 37�52,

New York, NY, USA, 1993. ACM.

[18] Camil Demetrescu and Giuseppe F. Italiano. Dynamic shortest paths and transitive

closure: algorithmic techniques and data structures. J. Discr. Algor, 4:353�383, 2006.

[19] P. Erd®s and A Rényi. On the evolution of random graphs. In PUBLICATION

OF THE MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF

SCIENCES, pages 17�61, 1960.

[20] Robert W. Floyd. Algorithm 97: Shortest path. Commun. ACM, 5(6):345�, June

1962.

[21] Charles L. Forgy. Rete: A fast algorithm for the many pattern/many object pattern

match problem. Arti�cial Intelligence, 19(1):17�37, September 1982.

[22] Daniele Frigioni, Tobias Miller, Umberto Nanni, and Christos Zaroliagis. An exper-

imental study of dynamic algorithms for transitive closure. ACM JOURNAL OF

EXPERIMENTAL ALGORITHMICS, 6:2001, 2000.

[23] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining views

incrementally (extended abstract). In IN: PROC. OF THE INTERNATIONAL

CONF. ON MANAGEMENT OF DATA, ACM, pages 157�166, 1993.

[24] Abel Hegedus, Akos Horvath, Istvan Rath, and Daniel Varro. A model-driven frame-

work for guided design space exploration. In Proceedings of the 2011 26th IEEE/ACM

International Conference on Automated Software Engineering, ASE '11, pages 173�

182, Washington, DC, USA, 2011. IEEE Computer Society.

[25] Shan Shan Huang, Todd Je�rey Green, and Boon Thau Loo. Datalog and emerging

applications: an interactive tutorial. In Proceedings of the 2011 ACM SIGMOD In-

ternational Conference on Management of data, SIGMOD '11, pages 1213�1216, New

York, NY, USA, 2011. ACM.

[26] International Electrotechnical Comission. IEC 61508: Functional safety in electrical

/ electronic / programmable electronic safety-related systems, 2010.

[27] Ajab Khan, Reiko Heckel, Paolo Torrini, and István Ráth. Model-based stochas-

tic simulation of P2P VoIP using graph transformation. In Proceedings of the 17th

International Conference on Analytical and Stochastic Modeling Techniques and Ap-

plications, 2010.

[28] Ajab Khan, Paolo Torrini, and Reiko Heckel. Model-based simulation of VoIP net-

work recon�gurations using graph transformation systems. In Andrea Corradini and

82

Emilio Tuosto, editors, Intl. Conf. on Graph Transformation (ICGT) 2008 - Doc-

toral Symposium, volume 16 of Electronic Communications of the EASST, 2009.

http://eceasst.cs.tu-berlin.de/index.php/eceasst/issue/view/26.

[29] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and

transitive closure in digraphs. In 40th Annual Symposium on Foundations of Computer

Science, 1999., pages 81�89. IEEE, 1999.

[30] Michael Lawley and Jim Steel. Practical declarative model transformation with tefkat.

In Proceedings of the 2005 international conference on Satellite Events at the MoDELS,

MoDELS'05, pages 139�150, Berlin, Heidelberg, 2006. Springer-Verlag.

[31] Johannes A. La Poutré and Jan van Leeuwen. Maintenance of transitive closures and

transitive reductions of graphs. In Graph-Theoretic Concepts in Computer Science,

International Workshop, WG '87, volume 314 of Lecture Notes in Computer Science,

pages 106�120. Springer, 1988.

[32] Istvan Rath. Event-driven Model Transformations in Domain-speci�c Modeling Lan-

guages. PhD thesis, Budapest University of Technology and Economics, Budapest,

Hungary, March 2011.

[33] István Ráth, Gábor Bergmann, András Ökrös, and Dániel Varró. Live model trans-

formations driven by incremental pattern matching. In Proceedings of the 1st interna-

tional conference on Theory and Practice of Model Transformations, ICMT '08, pages

107�121, Berlin, Heidelberg, 2008. Springer-Verlag.

[34] A. Rensink. The groove simulator: A tool for state space generation. In J.L. Pfaltz,

M. Nagl, and B. Böhlen, editors, Applications of Graph Transformations with Indus-

trial Relevance (AGTIVE), volume 3062 of Lecture Notes in Computer Science, pages

479�485, Berlin, 2004. Springer Verlag.

[35] Robert Tarjan. Depth-�rst search and linear graph algorithms. SIAM Journal on

Computing, 1(2):146�160, 1972.

[36] The Eclipse Project. Eclipse modeling framework. http://www.eclipse.org/emf.

[37] Ronald L. Rivest Cli�ord Stein Thomas H. Cormen, Charles E. Leiserson. Introduction

to algorithms, chapter 21 - Data structures for Disjoint Sets, pages 498�524. MIT Press

and McGraw-Hill, second edition edition, 2001. ISBN 0-262-03293-7.

[38] Paolo Torrini, Reiko Heckel, and István Ráth. Stochastic simulation of graph trans-

formation systems. In David Rosenblum and Gabriele Taentzer, editors, Fundamen-

tal Approaches to Software Engineering, volume 6013 of Lecture Notes in Computer

Science, pages 154�157. Springer Berlin / Heidelberg, 2010. DOI: 10.1007/978-3-642-

12029-9_11.

83

http://www.eclipse.org/emf

[39] Bartha T. Darvas D. Szabó T. Jámbor A. Vörös, A. and Á. Horváth. Parallel satura-

tion based model checking. In IEEE Computer Society, editor, The 10th International

Symposium on Parallel and Distributed Computing (ISPDC 2011), pages 94�101, 2011.

http://dx.doi.org/10.1109/ISPDC.2011.23.

[40] E. Weingärtner, F. Schmidt, H. V. Lehn, T. Heer, and K. Wehrle. Slicetime: a plat-

form for scalable and accurate network emulation. In Proceedings of the 8th USENIX

conference on Networked systems design and implementation, NSDI'11, pages 19�33,

Berkeley, CA, USA, 2011. USENIX Association.

[41] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A library for parallel simulation

of large-scale wireless networks. In Workshop on Parallel and Distributed Simulation,

pages 154�161, 1998.

84

Appendix

A.1 Tarjan's algorithm

An iterative version of Tarjan's algorithm written in Java (SE 6).

Listing A.1.1: Tarjan's algorithm

public static <V> SCCResult <V> computeSCC(IGraphDataSource <V> g) {

int index = 0;

Set <Set <V>> ret = new HashSet <Set <V>>();

Map <V, SCCProperty > nodeMap = new HashMap <V, SCCProperty >();

Map <V, List <V>> targetNodeMap = new HashMap <V, List <V>>();

Map <V, Set <V>> notVisitedMap = new HashMap <V, Set <V>>();

// stores the nodes during the traversal

Stack <V> nodeStack = new Stack <V>();

// stores the nodes that are in the same strongly connected component

Stack <V> sccStack = new Stack <V>();

boolean sink = false , finishedTraversal = true;

// initialize all nodes with 0 index and 0 lowlink

Set <V> allNodes = g.getAllNodes ();

for (V n : allNodes) {

nodeMap.put(n, new SCCProperty (0, 0));

}

for (V n : allNodes) {

if (nodeMap.get(n). getIndex () == 0) {

index ++;

sccStack.push(n);

nodeMap.get(n). setIndex(index);

nodeMap.get(n). setLowlink(index);

notVisitedMap.put(n, new HashSet <V >());

List <V> targetNodes = g.getTargetNodes(n);

if (targetNodes != null) {

targetNodeMap.put(n, new ArrayList <V>(targetNodes));

}

nodeStack.push(n);

while(! nodeStack.isEmpty ()) {

V currentNode = nodeStack.peek ();

85

sink = false; finishedTraversal = false;

SCCProperty prop = nodeMap.get(currentNode);

//if node is not visited yet

if (nodeMap.get(currentNode). getIndex () == 0) {

index ++;

sccStack.push(currentNode);

prop.setIndex(index);

prop.setLowlink(index);

notVisitedMap.put(currentNode , new HashSet <V>());

// storing the target nodes of the actual node

if (g.getTargetNodes(currentNode) != null) {

targetNodeMap.put(currentNode ,

new ArrayList <V>(g.getTargetNodes(currentNode)));

}

}

if (targetNodeMap.get(currentNode) != null) {

if (targetNodeMap.get(currentNode).size() == 0) {

targetNodeMap.remove(currentNode);

// remove node from stack , the exploration of its children has finished

nodeStack.pop();

List <V> targets = g.getTargetNodes(currentNode);

if (targets != null) {

for (V targetNode : g.getTargetNodes(currentNode)) {

if (notVisitedMap.get(currentNode). contains(targetNode)) {

prop.setLowlink(Math.min(prop.getLowlink (),

nodeMap.get(targetNode). getLowlink ()));

} else if (sccStack.contains(targetNode)) {

prop.setLowlink(Math.min(prop.getLowlink (),

nodeMap.get(targetNode). getIndex ()));

}

}

}

finishedTraversal = true;

}

else {

//push next node to stack

V targetNode = targetNodeMap.get(currentNode). remove (0);

//if _t has not yet been visited

if (nodeMap.get(targetNode). getIndex () == 0) {

notVisitedMap.get(currentNode).add(targetNode);

nodeStack.add(targetNode);

}

}

}

//if _node has no target nodes

else {

nodeStack.pop();

sink = true;

}

// create scc if node is a sink or an scc has been found

if ((sink || finishedTraversal) &&

86

(prop.getLowlink () == prop.getIndex ())) {

Set <V> sc = new HashSet <V>();

V targetNode = null;

do {

targetNode = sccStack.pop();

sc.add(targetNode);

} while (! targetNode.equals(currentNode));

ret.add(sc);

}

}

}

}

return new SCCResult <V>(ret , g);

}

A.2 IncSCC implementation details

Implementation of the Insert operation in the IncSCC algorithm (Java SE 6).

Listing A.2.1: IncSCC algorithm update operation after edge insertion

public void edgeInserted(V source , V target) {

V sourceRoot = sccs.find(source);

V targetRoot = sccs.find(target);

// Different SCC

if (! sourceRoot.equals(targetRoot)) {

// source is reachable from target?

if (counting.isReachable(targetRoot , sourceRoot)) {

Set <V> predecessorRoots = counting.getAllReachableSources(sourceRoot);

Set <V> successorRoots = counting.getAllReachableTargets(targetRoot);

//1. intersection

Set <V> isectRoots = CollectionHelper.

intersection(predecessorRoots , successorRoots);

isectRoots.add(sourceRoot);

isectRoots.add(targetRoot);

// notifications must be issued before Union -Find modifications

if (observers.size() > 0) {

Set <V> sourceSCCs = new HashSet <V>();

Set <V> targetSCCs = new HashSet <V>();

sourceSCCs.add(sourceRoot);

sourceSCCs.addAll(predecessorRoots);

targetSCCs.add(targetRoot);

targetSCCs.addAll(successorRoots);

// tracing back to actual nodes

for (V sourceSCC : sourceSCCs) {

for (V targetSCC : CollectionHelper.

difference(targetSCCs , counting.getAllReachableTargets(sourceSCC))) {

boolean needsNotification = false;

87

if (sourceSCC.equals(targetSCC) && sccs.setMap.get(sourceSCC).size()

== 1 && graphHelper.getEdgeCount(sourceSCC) == 0) {

needsNotification = true;

}

else if (! sourceSCC.equals(targetSCC)) {

needsNotification = true;

}

//if self loop is already present omit the notification

if (needsNotification) {

notifyTcObservers(sccs.setMap.get(sourceSCC),

sccs.setMap.get(targetSCC), Direction.INSERT);

}

}

}

}

//2. delete edges , nodes

List <V> sources = new ArrayList <V>();

List <V> targets = new ArrayList <V>();

for (V r : isectRoots) {

List <V> _srcList = graphHelper.getSourceSCCsOfSCC(r);

List <V> _trgList = graphHelper.getTargetSCCsOfSCC(r);

for (V _source : _srcList) {

if (! _source.equals(r)) {

reducedGraph.deleteEdge(_source , r);

}

}

for (V _target : _trgList) {

if (! isectRoots.contains(_target) && !r.equals(_target)) {

reducedGraph.deleteEdge(r, _target);

}

}

sources.addAll(_srcList);

targets.addAll(_trgList);

}

for (V r : isectRoots) {

reducedGraph.deleteNode(r);

}

//3. union

Iterator <V> iterator = isectRoots.iterator ();

V newRoot = iterator.next ();

while (iterator.hasNext ()) {

newRoot = sccs.union(newRoot , iterator.next ());

}

//4. add new node

reducedGraph.insertNode(newRoot);

//5. add edges

Set <V> containedNodes = sccs.setMap.get(newRoot);

for (V _s : sources) {

if (! containedNodes.contains(_s) && !_s.equals(newRoot)) {

reducedGraph.insertEdge(_s, newRoot);

88

}

}

for (V _t : targets) {

if (! containedNodes.contains(_t) && !_t.equals(newRoot)) {

reducedGraph.insertEdge(newRoot , _t);

}

}

}

else {

if (observers.size() > 0 && graphHelper.getEdgeCount(source , target) == 1) {

counting.attachObserver(countingListener);

}

reducedGraph.insertEdge(sourceRoot , targetRoot);

counting.detachObserver(countingListener);

}

}

else {

// Notifications about self -loops

if (observers.size() > 0 && sccs.setMap.get(sourceRoot).size() == 1 &&

graphHelper.getEdgeCount(source , target) == 1) {

notifyTcObservers(source , source , Direction.INSERT);

}

}

}

Implementation of the Delete operation in the IncSCC algorithm (Java SE 6).

Listing A.2.2: IncSCC algorithm update operation after edge deletion

public void edgeDeleted(V source , V target) {

V sourceRoot = sccs.find(source);

V targetRoot = sccs.find(target);

if (! sourceRoot.equals(targetRoot)) {

if (observers.size() > 0 && graphHelper.getEdgeCount(source , target) == 0) {

counting.attachObserver(countingListener);

}

reducedGraph.deleteEdge(sourceRoot , targetRoot);

counting.detachObserver(countingListener);

}

else {

//get the graph for the scc whose root is sourceRoot

Graph <V> g = graphHelper.getGraphOfSCC(sourceRoot);

//if source is not reachable from target anymore

if (!BFS.isReachable(source , target , g)) {

List <V> reachableSources = null;

List <V> reachableTargets = null;

SCCResult <V> _newSccs = SCC.computeSCC(g);

// delete scc node (and with its edges too)

reachableSources = reducedGraphIndexer.getSourceNodes(sourceRoot);

reachableTargets = reducedGraphIndexer.getTargetNodes(sourceRoot);

if (reachableSources != null) {

Set <V> tmp = new HashSet <V>(reachableSources);

for (V s : tmp) {

reducedGraph.deleteEdge(s, sourceRoot);

}

89

}

if (reachableTargets != null) {

Set <V> tmp = new HashSet <V>(reachableTargets);

for (V t : tmp) {

reducedGraph.deleteEdge(sourceRoot , t);

}

}

sccs.deleteSet(sourceRoot);

reducedGraph.deleteNode(sourceRoot);

Set <Set <V>> newSccs = _newSccs.getSccs ();

Set <V> roots = new HashSet <V>();

//add new nodes and edges to the reduced graph

for (Set <V> _scc : newSccs) {

V newRoot = sccs.makeSet ((V[]) _scc.toArray ());

reducedGraph.insertNode(newRoot);

roots.add(newRoot);

}

for (V _root : roots) {

List <V> sourceNodes = graphHelper.getSourceSCCsOfSCC(_root);

List <V> targetNodes = graphHelper.getTargetSCCsOfSCC(_root);

for (V _s : sourceNodes) {

V _sR = sccs.find(_s);

if (!_sR.equals(_root))

reducedGraph.insertEdge(sccs.find(_s), _root);

}

for (V _t : targetNodes) {

V _tR = sccs.find(_t);

if (!roots.contains(_t) && !_tR.equals(_root))

reducedGraph.insertEdge(_root , _tR);

}

}

//Must be after the union -find modifications

if (observers.size() > 0) {

V newSourceRoot = sccs.find(source);

V newTargetRoot = sccs.find(target);

Set <V> sourceSCCs = counting.getAllReachableSources(newSourceRoot);

sourceSCCs.add(newSourceRoot);

Set <V> targetSCCs = counting.getAllReachableTargets(newTargetRoot);

targetSCCs.add(newTargetRoot);

for (V sourceSCC : sourceSCCs) {

for (V targetSCC : CollectionHelper.

difference(targetSCCs , counting.getAllReachableTargets(sourceSCC))) {

boolean needsNotification = false;

if (sourceSCC.equals(targetSCC) && sccs.setMap.get(sourceSCC).size()

== 1 && graphHelper.getEdgeCount(sourceSCC) == 0) {

needsNotification = true;

}

else if (! sourceSCC.equals(targetSCC)) {

needsNotification = true;

}

//if self loop is already present omit the notification

if (needsNotification) {

90

notifyTcObservers(sccs.setMap.get(sourceSCC),

sccs.setMap.get(targetSCC), Direction.DELETE);

}

}

}

}

}

else {

//only handle self -loop notifications - sourceRoot equals to targetRoot

if (observers.size() > 0 && sccs.setMap.get(sourceRoot).size() == 1 &&

graphHelper.getEdgeCount(source , target) == 0) {

notifyTcObservers(source , source , Direction.DELETE);

}

}

}

}

A.3 DFS-based generation of the transitive closure relation

Listing A.3.1: DFS-based algorithm - transitive closure relation generation

private void deriveTc () {

tc.clear ();

this.visited = new int[gds.getAllNodes (). size ()];

nodeMap = new HashMap <V, Integer >();

int j = 0;

for (V n : gds.getAllNodes ()) {

nodeMap.put(n, j);

j++;

}

for (V n : gds.getAllNodes ()) {

oneDFS(n, n);

initVisitedArray ();

}

}

private void initVisitedArray () {

for (int i=0;i<visited.length;i++) {

visited[i] = 0;

}

}

private void oneDFS(V act , V source) {

if (!act.equals(source)) {

tc.addTuple(source , act);

}

visited[nodeMap.get(act)] = 1;

List <V> targets = gds.getTargetNodes(act);

if (targets != null) {

for (V t : targets) {

if (visited[nodeMap.get(t)] == 0) {

oneDFS(t, source);

}

}

91

}

}

A.4 Stochastic simulation source codes

Listing A.4.1: Stochastic simulation - CreateClient rule

gtrule CreateClient () = {

precondition pattern lhs() = {

neg find discnn5 ();

}

action {

let C = undef in new(CL(C) in DSM.model.amod1);

println (" client created ");

}

}

Listing A.4.2: Stochastic simulation - DeleteClient rule

gtrule DeleteClient () = {

precondition find disconnected(C)

action {

println (" disconnected client deleted: "+C);

delete(C);

}

}

Listing A.4.3: Stochastic simulation - ConnectClient rule

gtrule ConnectClient () = {

precondition shareable pattern lhs(S,C) = {

find disconnected(C); // disconnected client

find SN_MinClients(S);

}

action {

let I = undef in new(CL.cnn(I,C,S));

println (" client connected to supernode: "+S);

}

}

Listing A.4.4: Stochastic simulation - DisconnectClient rule

gtrule DisconnectClient () = {

precondition shareable pattern lhr(S,C,E) = {

SN(S);

CL(C);

CL.cnn(E,C,S);

}

action {

delete(E);

println (" client disconnected from supernode: "+S);

}

}

Listing A.4.5: Stochastic simulation - UpgradeClient rule

gtrule UpgradeClient () = {

precondition shareable pattern lhr_slim(S,C) = {

find connectedToRichSN(C,S);

find globalManyDisconneced ();

92

}

action {

let I1 = undef , S1 = undef in seq {

new(SN(S1) in DSM.model.amod1);

let Ix = 0, E = undef in

iterate choose C1 with find disconnected(C1) do seq {

new(CL.cnn(E,C1,S1));

update Ix = Ix+1;

if (Ix==3) fail;

}

new(SN.link(I1,S,S1));

println (" client "+C+" upgraded to supernode: "+S1);

delete(C);

}

}

}

Listing A.4.6: Stochastic simulation - DowngradeSuperNode rule

gtrule DowngradeSupernode () = {

precondition find linked(S1,S2)

action {

let C = undef , I1 = undef in seq {

new(CL(C) in DSM.model.amod1);

new(CL.cnn(I1 ,C,S2));

println (" supernode "+S1+" downgraded to client "+C);

delete(S1);

}

}

}

Listing A.4.7: Stochastic simulation - AddLink rule

gtrule AddLink () = {

precondition shareable pattern lhr(S1,S2) = {

SN(S1);

SN(S2);

neg find linked(S1,S2);

}

action {

let I1 = undef in new(SN.link(I1,S1 ,S2));

println (" redundant link added between supernodes "+S1+" and "+S2);

}

}

Listing A.4.8: Stochastic simulation - P_NetworkSize rule

gtrule P_NetworkSize () = {

precondition pattern lhs(N) = {

Node(N);

}

action {

skip;

}

}

Listing A.4.9: Stochastic simulation - P_ConnectedOverlayPairs rule

gtrule P_ConnectedOverlayPairs_LS () = {

precondition find transitiveClosureOfLinked(S1, S2)

93

action {

skip;

}

}

94

	Kivonat
	Abstract
	Introduction
	Preliminaries
	Running example - stochastic simulation of Peer-to-peer VoIP networks
	Modeling preliminaries and the running example
	Graph patterns, graph transformations and the RETE net
	Transitive closure preliminaries
	The Union-find data structure
	EMF-IncQuery Base

	Transitive closure and its application
	Notations used in this section
	Transitive closure operations
	Survey of transitive closure algorithms
	Static transitive closure algorithms
	Incremental transitive closure algorithms

	IncSCC
	Integrating the IncSCC algorithm into the RETE net
	Integration with VIATRA2
	Integration with EMF-IncQuery

	Event-driven rule execution engine
	Survey of rule-based expert systems and model transformation frameworks
	Architecture overview
	Life cycle of activations
	The designed API of the Rule Engine
	Notification mechanism and the Trigger Engine
	Example from the context of stochastic simulation

	Case studies
	Validation Framework
	User interface extension
	The designed architecture
	Generated validation code
	Validation example from the context of stochastic simulation

	Design space exploration
	Overview of the VIATRA2 based DSE framework
	Overview of the EMF-IncQuery based DSE framework
	Cloud infrastructure example
	Implementation notes - EMF transactions

	Stochastic simulation
	Survey of stochastic network simulation tools
	Simulation with graph transformations
	Distributions and simulation execution
	Connection with the Rule Engine

	Performance measurements
	Benchmarking of the transitive closure algorithms
	Measurement scenario
	Results and analysis

	Benchmarking of the Stochastic simulation framework
	Measurement scenario
	Results and analysis

	Benchmarking of the Design Space Exploration component
	Measurement scenario
	Results and analysis

	Conclusions
	Bibliography
	Appendix
	Tarjan's algorithm
	IncSCC implementation details
	DFS-based generation of the transitive closure relation
	Stochastic simulation source codes

