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Kivonat

Az 1970-es évektől az elmúlt évtizedig az adatbázis-kezelés szinte kizárólag relációs tech-
nológiák alkalmazását jelentette. Az elmúlt évtizedben azonban több tucat olyan rendszer
jelent meg és terjedt el, amelyek nemrelációs adatmodellt használnak. Ezek az ún. NoSQL
rendszerek egyik csoportja a gráfadatbázis-kezelők, amelyek a tulajdonsággráf (property
graph) adatmodellt támogatják. Napjaink egyik legnépszerűbb gráfadatbázis-kezelő rend-
szere, a Neo4j, a Cypher lekérdezőnyelvet hozta létre arra, hogy a felhasználók és fejlesztők
gráfmintákat definiálhassanak. Az openCypher kezdeményezés 2015. végén indult azzal a
küldetéssel, hogy – a relációs adatbáziskezelés világának SQL nyelvéhez hasonlóan – egy
szabványos nyelvet definiáljon gráflekérdezések megvalósítására. Ennek célja, hogy a fel-
használók szabványos lekérdezéseket fogalmazhassanak meg, amelyek különböző gráfadat-
bázis rendszereken kiértékelhetők, így csökkentve azt a kockázatot, hogy csak egy adott
adatbázis rendszer képes a lekérdezéseik kiértékelésére (vendor lock-in).

A tanszéken fejlesztett ingraph rendszer célja, hogy openCypher nyelven definiált gráf-
lekérdezések hatékony kiértékelését tegye lehetővé. Az ingraph rendszerben jelenleg már
működik egy inkrementális lekérdezőmotor, amely képes arra, hogy az előre megadott,
folyamatosan kiértékelt lekérdezések eredményhalmazát hatékonyan karbantartasa. Ez a
megközelítés azonban rendkívül pazarlóan bánik a memóriával, így nem hatékony komplex,
egyszer lefuttatott lekérdezések kiértékelésére. Erre a problémára a lokális keresést alkal-
mazó algoritmusok használata célravezetőbbnek bizonyulhat. Munkám során egy meglévő
ilyen, a keresést kényszerkielégítési problémára visszavezető algoritmust módosítottam és
illesztettem az ingraph rendszerhez. A motor az openCypher nyelvben fellelhető minták
nagy részét támogatja, az egyszerű csomópont-, útvonal- és típuskritériumokon túl képes
negatív kondíciók kiértékelésére is, valamint kiterjeszthető további kényszerekkel, minták-
kal. A kiértékelés hatékonyságát és skálázhatóságát teljesítménymérésekkel igazoltam.
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Abstract

Since the 1970s database management had been almost exclusively based on relational
technologies. However, the last decade saw the birth and rise of dozens of systems facili-
ating nonrelational models. One particular branch of these so-called NoSQL systems are
graph databases, which usually employ the distinctive “property graph” model. Neo4j,
which is arguably the most popular such graph database provides its own language called
Cypher. Following the heritage of SQL, the openCypher initiative - established in 2015 -
set on a mission to standardize the language, with the incentive to reach general adoption
and compatibility between implementations.

The ingraph system, developed at the Department of Measurement and Information
Systems, features incremental query evaluation. This approach supports effective execu-
tion of repeated queries by caching interim results, however it is not suitable for running
complex one-off queries. For these, algorithms using graph exploration may prove far
more suitable. In my work, I extend and adapt a dynamic programming based polynomial
time algorithm for ingraph. My engine is already able to handle a wide range of patterns
defined on openCypher, such as vertex, edge and type criteria, negative patterns and can
be extended to support more constraints and patterns. I support the performance and
scalability properties of the system with benchmarks.
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Chapter 1

Introduction

Once regarded as an obscure notion of mathemathics and scientific research, graphs are
rapidly gaining ground in mainstream software development. The abstraction that left
a major footprint on many natural and applied sciences, such as biology, physics, elec-
trical engineering, computer science, computer networking, software engineering and so-
cial sciences is expected by many to be the foundational data model of a growing range
of non-scientific applications in the coming years. In fact, graphs can be leveraged in at
least four current disruptive trends [30] in software technology. In the field of financial
automation, graph-based transaction histories can revolutionize micropayment transac-
tion systems [42], knowledge graphs might finally bring about semantic web search, and
the Internet of Things along with mobile networks [26] are in essence highly dynamic and
volatile graphs.

1.1 Motivation

Naturally, the broad range of specific application requirements juxtaposed with the ab-
stract mathematical definition of graphs sprouted solutions tailored to the given domain
and seldom applicable anywhere else. Aiming at closing this gap, it is no surprise the
software industry is pushing forward to deliver general graph processing platforms. This
“revolution” is similar to that of relational database systems (RDBMS) and the SQL lan-
guage for OLTP1 in the 1970s, or Hadoop and MapReduce for big data ten years ago, suc-
cessfully pioneering direly needed workflows and eventually becoming industry standards.
Notwithstanding the potential the current graph processing initiatives have, admittedly
they are not expected to be capable of providing a silver bullet for all graph-related prob-
lems in the foreseeable future. If we take a closer look on the spectrum of these projects,
we find that they are almost exclusively centered around so called knowledge graphs2, a
model for encoding domain information in graph structures. Then, the developers of these
platforms are focusing on either

(a) creating a distributed system for running knowledge graph specific workloads or

(b) porting such processes to existing architecture.
1Online transacion processing
2also called semantic graphs in some jargon
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Neo4j, Inc., falls into the first category, and develops its own graph database technology3.
A building block of this database is “Cypher”, a SQL-like query language for knowledge
graphs. A standardized subset of this language is developed under the name openCypher
as an open specification with the goal of creating the de-facto query language for knowledge
graphs. openCypher already reached some success throughout its two-years-old infancy
by being adopted by a handful of commercial systems, most notably SAP HANA Graph
and AgensGraph.

The subject of this thesis is to create a supplementary execution engine for ingraph, an
openCypher backend developed by the Fault Tolerant Systems Research Group (FTSRG)
of Budapest University of Technology and Economics, with the mission statement of “pro-
viding a horizontally scalable graph query engine, which is able to perform complex graph
queries with 100M+ elements”. Although the main focus of the project is incremental eval-
uation4 (hence the name ingraph), the requirement to run conventional one-shot queries
arose recently. As ingraph is a completely in-memory database we felt that a graph ex-
ploration based approach would overperform a relational engine.

1.2 Structure of the thesis

The document follows a conventional structure and introduces the most important prelim-
inary subjects through an example. This is done in Chapter 2, opening with a particular
knowledge graph domain; followed by property graphs; Cypher, and a relational algebra
extension for it. We interrupt the string of property-graph related sections with the in-
troduction of a search-driven model querying algorithm developed by Gergely Varró et al.
in Chapter 3.

Next, we present the main contributions of this thesis. In Chapter 4, we discuss our
extensions to the search-driven algorithm to lay down the theoretical background for our
engine. Building on these extensions, in Chapter 5, we discuss the adaptation of the search
plan generation algorithm for property graphs, and present SRE, a search engine for the
ingraph engine. We also show preliminary performance experiments of the engine.

Finally, we discuss existing research and implementations on related topics in Chap-
ter 6 and summarize the results in Chapter 7.

3The company originally named Neo Technology has been rebranded after its sole product in 2017 as
Neo4j, Inc.

4this is closely related to to event stream processing as here a continuous stream of changes are run
through a constant – or in other terms, a standing – query, which generates a further stream as its output.
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Chapter 2

Preliminaries

2.1 Knowledge graph of a railway system

Knowledge graphs (abbrev. KG) have been in the focus of research since 2012 resulting in
a wide variety of published descriptions and definitions, some which are contradicting [13].
Here we use the most widely accepted one given by Paulheim [40]: “A knowledge graph
(i) mainly describes real world [sic] entities and their interrelations, organized in a graph,
(ii) defines possible classes and relations of entities in a schema, (iii) allows for potentially
interrelating arbitrary entities with each other and (iv) covers various topical domains.”1

It is useful to present an example with which the preliminary concepts and the body
of the work can be illustrated throughout the rest of the document. A data set is also
essential for testing and benchmarking the implementation itself. We derive both the
illustrative example and the benchmark data sets from the Train Benchmark (abbrev.
TB), a benchmark suite for continuous model queries on KGs [53]. Moreover, as Cypher is
a large and complex language, we must cherry-pick a limited set of features in the scope of
this thesis project. We chose our goals in terms of queries provided by Train Benchmark,
i.e., we demarcated the set of language features for inclusion that are simple, but are able
to express some TB queries.

As the name implies, Train Benchmark uses a domain-specific model of a safety-
critical system: railways. Our toy example features track elements, such as

1. Segments, interleaved with

2. Switches, together constituting a physical topology of railway tracks;

3. Routes, logical paths that require

4. Sensors for safe operation.

A Route can be understood as an ordered list consisting of the pairs (Switch,position),
telling whether the switch should be in straight or diverging position.

We have ten Segments and six Switches as illustrated by Figure 2.1a. Furthermore,
we define four logical Routes for trains with switch positions as seen on Figure 2.1b. The
direction is determined by the arrow on the final segment. Finally, Segments are monitored
by two Sensors as shown in Figure 2.1c.

1We avoid the related term semantic graph on purpose, as it has the connotation of W3C’s semantic
web specification, which is not a subject of this writing.
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(a) Plan of the track elements comprising the railroad, with arabic digits assigned to segments,
letters to switches.

(b) Four Routes in different colors, with the Segments and Switches they visit.

(c) Sensors with roman numerals, colored by the routes that require them and connected to the
track elements they monitor.

(d) On Tuesday 23rd January, 2018 at 09:55, these were the active routes and switch positions.

Figure 2.1: Illustrations for the running example.

The upper three figures share a common property: they only capture static (time-
invariant) aspects of the railway system. Separation of dynamic (time-varying) and static
properties is a common modeling practice. We provide a piece of dynamic information
as well: Figure 2.1d is a snapshot illustrating the switch positions and active routes at a
given point in time.

We ask the following four questions, included as well-formedness validation queries in
the TB:

PosLength Is there a segment whose length is not positive?

RouteSensor Is there route that has one or more unmonitored switches?

ConnectedSegments Is there a six-segment-long chain with a common sensor?

ActiveRoute Is there an active route with one or more switches in the wrong posi-
tion w.r.t. the route (possible derailment)2?

2this is the only query which relies on dynamic properties as well
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Segment

length : EInt

TrackElement

Switch

currentPosition : Position

Route

SwitchPosition

position : Position

Sensor

Semaphore

signal : Signal

RailwayContainer

Region

monitoredBy0..*

positions

0..*

follows0..*

requires 2..*

target

1

route1
elements

0..*
connectsTo

0..*

entry 1

exit 1

semaphores

0..*

routes

0..*

monitors0..*

regions

0..*

sensors 0..*active : EBoolean

Figure 2.2: The Train Benchmark metamodel shown in an Ecore diagram.

Looking at the figures once again, one can spot that the answers to some of these
questions are indeed positive. There is no segment with non-positive length of course, and
let’s assume that the rest of the routes have attached sensors as well in addition to those
shown in Figure 2.1c, as these were omitted to keep the example small. Thus, the first
two answers are negative. However, we can easily identify one six-segment-long chain with
a common sensor (segments 1 to 6). As for the last question, switches C & F are in the
wrong position for the purple route, detaching segment 10 from the track3.

In the following section we procede with formalizing this model and queries in the
context of the Train Benchmark.

2.2 Train Benchmark: a railway metamodel & benchmark
suite

The Train Benchmark (TB), already mentioned in Section 2.1 is a macrobenchmark suite
developed by the Fault Tolerant Systems Research Group. The ultimate goal of TB is
to provide a cross-technology toolkit to measure the performance of continuous model
validation with graph-based models and queries. It defines a metamodel4 of a railway,
well-formedness constraints as queries, and transformations. The execution is performed
against typical workflow scenarios w.r.t. model-driven engineering. The framework also
provides instance model generators that generate models (graphs) scalable in size.
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2.2.1 Metamodel

We use the TB metamodel to describe our running example. The benchmark
suite uses Ecore as its modeling language, which is one of the de facto stan-
dard industrial metamodeling environments, used for defining several domain-specific
languages and editors [50]. The TB metamodel is presented as an Ecore di-
agram on Figure 2.2. Although the diagram only shows a partial metamodel
(as containment hierarchy is omitted), it is sufficient for the current discussion.

Figure 2.3: References are stored
as pointers to other
objects.

In fact, collating with Figure 2.1 and the track el-
ement enumeration in Section 2.1, the reader may
notice that only a subset of the classes and refer-
ences shown in the figure is required. Also we would
like to bring to attention those familiar with object-
oriented programming might already have noticed,
that the Ecore diagram closely resembles an UML
class diagram; in fact Ecore’s metamodel is a simpli-
fied version of UML’s MOF metamodel [2]. More-
over, Ecore is based on Java and its model storage is only a thin layer above the target
platform’s native mechanism, which includes the way references are handled.

An outline of mapping Ecore concepts to OO and property graphs is included on
Table 2.1 for clarity. We omit charting the Ecore instance model5 of the example, as it
contains more than 20 objects. Instead, we provide a property graph representation later.

2.2.2 Queries

Pattern matching, i.e., detecting patterns in a graph corresponds to finding a copy of some
predefined smaller graph, thus solving a subgraph isomorphism problem with a fixed size
subraph. We picked four of the TB’s pattern matching problems, the already mentioned
PosLength, RouteSensor, ConnectedSegments and ActiveRoute queries, shown in Figure 2.4.

In order to formalize these graph queries, we have to introduce property graphs, the
underlying data model of the Cypher language.

2.3 Property graph data model

Property graph is a formal model for KGs, able to capture rich semantic information in
separate graph elements.

2.3.1 Definition

As provided in [28], a property graph is defined as G = (V,E, st, L, T,L, T , Pv, Pe) where:

• V : the set of vertices6

3Note that the color of the segments in Figure 2.1d indicate the position of the adjacent switch from
which the segment forked; and not a property of the segments themselves.

4in model driven engineering terminology, we usually refer to instances as (instance) models, while
their “domain” is called “metamodel”, e.g., the Hungarian railway network model defined by the Train
Benchmark railway metamodel.

5we can also draw an analagy between the Ecore instance diagram and UML object diagram
6sometimes referred to as nodes
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segment: Segment

segment.length ≤ 0

(a) The PosLength pattern.

monitoredBy

requires target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG

(b) The RouteSensor pattern.
monitoredBy

connectsTo

connectsTo

connectsTo

connectsTo

connectsTo

monitoredBy

segment1: Segment

sensor: Sensor

segment2: Segment

segment3: Segment

segment4: Segment

segment5: Segment

segment6: Segment

monitoredBy

monitoredBy

monitoredBy

monitoredBy

(c) The ConnectedSegments pattern.
follows

route: Route
target

sw: SwitchswP: SwitchPosition

position currentPosition

swP.position ≠ sw.currentPosition

active = true

(d) The ActiveRoute pattern.

Figure 2.4: Implemented patterns from Train Benchmark [53].

• E: the set of edges7

• st : E → V ×V : the mapping function which assigns the source, and target vertices
of an edge.

• L : the set of possible vertex labels

• T : the set of possible edge types

• L = V → 2L: the mapping function which assigns each vertex a set of labels.

• T = E → T : the mapping function which assigns each edge a type.

Note that edges have types, while vertices have labels. The difference is that edges
have exactly one type, and vertices have a set of labels. To define the vertex properties,
let D =

∪
iDi, where D is the union of all the atomic domains Di. Additionally, let ε

represent ⊥ (the NULL value).

• Pv is the set of vertex properties. A vertex property pi ∈ Pv is a (total) function
pi : V → Di which assigns a property value from domain Di ∈ D to a vertex v ∈ V
if v has property pi, otherwise pi(v) returns ε.

7sometimes referred to as relationships
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OO Ecore Property graphs
class definition EClass instance vertex label or

type property
reference definition EReference instance edge label
attribute definition EAttribute instance property name
type EDataType instance (only primitives)

Table 2.1: Mapping object-oriented concepts to Ecore and property graphs [53].

• Pe is the set of edge properties. An edge property pj ∈ Pe is a (total) function
pj : E → Dj which assigns a property value from domain Dj ∈ D to a vertex e ∈ E
if e has property pj , otherwise pj(v) returns ε.

2.3.2 Our running example as a property graph

We use the mappings shown in Table 2.1 to derive a property graph instance from our
previous Ecore instance model. We transform EClasses to vertex labels as opposed to
values of the type property. As property graphs typically have no schema, we discard
metamodeling elements (EClasses, EReferences, etc.) without instances. On top of that,
as there is no clear indication how supertype relations should be handled in the bench-
mark specification [28], and as all of our queries use direct (concrete) types only, we omit
supertypes as well. Consequently, every vertex has a single label.

A gist of the property graph representation can be found in Figure 2.5. Most of
is straightforward, however, the mapping of SwitchPositions requires some elaboration.
As the TB’s metamodel is rooted in object-oriented programming, some of the concepts
are quite unintuitively in a property graph, namely SwitchPositions, where each instance
corresponds to each unique switch, position and route tuple in the TB metamodel. In the
context of the example, this means that there are different vertices for e.g., the straight
position of the A switch as required by the red route (Astr), and for the same position of
the same switch as required by the blue route (Astr).8 In fact, A and D is a rather strange
switches, as only one position is assigned to them this way.

2.4 Cypher: a query language for property graphs

Cypher is a declarative query language, originally created for the Neo4j graph
database [31]. Since then, it was adopted by other graph DB vendors, including SAP
HANA [3], AgensGraph [1], and most relevantly our project, ingraph.

2.4.1 Syntax

Cypher’s syntax is similar to that of SQL. Among the most common clauses are: MATCH
and WHERE, which are only slightly different than in SQL. MATCH is used for describing the
structure of the pattern searched for, primarily based on edges. WHERE is used to add
additional constraints to patterns. A simple example is shown in Source 2.4.1a. Cypher

8The savvy reader can notice that the original SwitchPosition objects could be easily mapped to edges
between Switches and Routes instead as edges can have properties, and we can use the edge type instead of
the vertex label. We decided we do not want to further complicate the discussion by including this extra
rule.
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L = {Segment,Route, SwitchPosition,Switch, Sensor}
T = {monitoredBy, target, requires, follows, positions, . . .}
Pv = {length, currentPosition, position, active}
Pe = ∅
V = {1, 2, . . . , 9, A,B, . . . , F,Astr, Astr, . . . , Estr, Ediv, Ediv, . . . ,Red,Blue,Green,Purple, I, II}
E = {Red_requires_I, . . . ,Blue_requires_II, I_monitors_1, 1_monitoredBy_I, . . . ,

II_monitors_F,F_monitoredBy_I, 1_connectsTo_A,A_connectsTo_1, . . .}
st : 1_connectsTo_A → ⟨1, A⟩,A_connectsTo_1 → ⟨A, 1⟩, . . .
L : 1 → {Segment}, . . . , A → {Switch}, . . . ,Red → {Route}, . . . , I → {Sensor}, . . .
T : {Red_requires_I → requires, . . . , 1_monitoredBy_I → monitoredBy, . . .

length : 1 → 750, 2 → 126, 3 → 42, . . .

...
position : Astr → str, Astr → str, . . . , Estr → str, Ediv → div, Ediv → div, . . .

currentPosition : A → str, B → div, C → str, . . .

Figure 2.5: The running example as a property graph.

MATCH (a:Acc)<-[:OWNS]-(p:Pers)
WHERE p.name = "Szakállas"
RETURN a, p.name

a: A simple pattern with
a WHERE clause.

MATCH (a)-[:LTE]->(b),
(a)-[:LTE]->(c)

RETURN a, b, c

b: Vertex matching
is homomorphic.

MATCH (d:Dog)
WHERE d.name = "Lucy"
CREATE (a:Dog {name: "Sam"}),

(a)-[:KNOWS]->(d),
(d)-[:KNOWS]->(a)

c: Queries can mutate
the graph.

Source 2.4.2: Simple Cypher examples.

additionally contains clauses for mutating data. CREATE and DELETE are used to create
and delete vertices and edges. SET and REMOVE are used to set values to properties and add
labels on vertices. It is important to note that we are only going to support non-mutating
query operations such as MATCH and WHERE in this work.

Graph patterns in Cypher use edge isomorphic matching, which means that for
matches of a pattern within a single MATCH clause, edges are required to be unique. This
criteria does not apply for vertices. This is illustrated in Source 2.4.1b, where vertices
are natural numbers, and the LTE edges are created from less than or equal to relations
according to the usual total ordering on natural numbers (see Figure 2.6 for an example).
This query can return a result containing a tuple with the same a and b values, but not
with the same b and c values.

Figure 2.6: Example graph with natural numbers as vertices and less than or equal to
(LTE) edges.
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2.4.2 openCypher

The openCypher project [34] is a community effort started in 2015 under the stewardship
of Neo4j, Inc., the company behind Neo4j. It aims to provide an open grammar and
textual semantics specification for Cypher. While there have been attempts to formalize
a subset of the language [28], defining precise formal semantics is a future goal of the
openCypher project. To compensate for lack of formal semantics, the Cypher Technology
Compatibility Kit (TCK) [33] project defines acceptance test covering major features of
the openCypher language that prospective implementors should meet.

2.4.3 Train Benchmark queries

MATCH (segment:Segment)
WHERE segment.length <= 0
RETURN

segment,
segment.length AS length

a: PosLength

MATCH (r:Route)-[:follows]->(swP:SwitchPosition),
(swP:SwitchPosition)-[:target]->(sw:Switch),
(sw:Switch)-[:monitoredBy]->(sensor:Sensor)

WHERE NOT (r)-[:requires]->(sensor)
RETURN r, sensor, swP, sw

b: RouteSensor

MATCH (route:Route {active: true})-[:follows]->(swP:SwitchPosition)
(swP:SwitchPosition)-[:target]->(sw:Switch)

WHERE swP.position <> sw.currentPosition
RETURN route, swP, sw

c: ActiveRoute

MATCH
(sensor:Sensor)<-[:monitoredBy]-(segment1:Segment),
(segment1:Segment)-[:connectsTo]->
(segment2:Segment)-[:connectsTo]->
(segment3:Segment)-[:connectsTo]->
(segment4:Segment)-[:connectsTo]->
(segment5:Segment)-[:connectsTo]->(segment6:Segment),
(segment2:Segment)-[:monitoredBy]->(sensor:Sensor),
(segment3:Segment)-[:monitoredBy]->(sensor:Sensor),
(segment4:Segment)-[:monitoredBy]->(sensor:Sensor),
(segment5:Segment)-[:monitoredBy]->(sensor:Sensor),
(segment6:Segment)-[:monitoredBy]->(sensor:Sensor)

RETURN sensor, segment1, segment2, segment3,
segment4, segment5, segment6

d: ConnectedSegments

Source 2.4.3: Cypher queries for the four TB patterns used in this thesis.

Source 2.4.3 shows the four TB patterns written in Cypher. The MATCH clause contains
graph patterns, with vertices enclosed in parentheses, edges in square brackets. Both
vertices and edges can be bound to fresh variables contrary to WHERE clauses that can
only use previously bound symbols, thus they always filter the results (i.e., the result of
a WHERE clause cannot contain more tuples than its input). In the WHERE clause one can

10



compose arbitrary boolean formulae from patterns, equality, relational operations, nullity
checks, etc., with the usual boolean operators. The RETURN clause is used to return the
results in a table (more formally a graph relation [28]) containing the specified variables
as columns.

Cypher is a complex and expressive language with advanced features. However, this
thesis focuses on a search driven approach for simpler pattern matching (navigational
queries according to the classification of [6]). Consequently, and also for the sake of
conciseness, some advanced language features were omitted from this thesis. Just to
mention some, Cypher supports transitive navigation along edges, aggregation, unwinding
lists and paths, optional matches and calling user-defined procedures [35]. The interested
reader is referred to [32] for a comprehensive specification.

It is important to note that Cypher along with the majority of other property graph
languages – such as Gremlin [44], G-CORE [5], GraphScript [39], and PGQL [57] (see
Section 6.1.1) – requires not only vertices, but edges to be effectively retrievable on their
own. For instance a query like MATCH ()-[m:monitoredBy]->() RETURN m might look
strange from an OO point of view, but is totally valid. This is contrary to EMF or object-
oriented databases (and their corresponding query languages), which focus on objects (cf.
vertices), and references (cf. edges) are only second-class citizens.

2.5 Relational Graph Algebra

Relational graph algebra is an extension of relational algebra with operations specific to
PGs, i.e., vertex and edge operations. The reason we include an overview on this subject
is because ingraph’s QPlan IR9, from which we construct our patterns is based on this.

#ops. notation name schema

0
..
(v:L) GetVertices ⟨v⟩

... (w:W)
(v:V) [e:E] GetEdgesUndirected ⟨v, e, w⟩

... (w:W)
(v:V) [e:E] GetEdgesDirected ⟨v, e, w⟩

1
...
(w:W)
(v) [e:E] (r) ExpandBoth sch(r) ∥ ⟨e, w⟩

...
(w:W)
(v) [e:E] (r) ExpandOut sch(r) ∥ ⟨e, w⟩

...
(w:W)
(v) [e:E] (r) ExpandIn sch(r) ∥ ⟨e, w⟩
̸≡variables (r) AllDifferent sch(r)

Table 2.2: Graph extensions for relational algebra from [28]. sch(r) denotes the schema
of relation r, a list containing r’s attribute names. Appending schemas is
denoted by ∥ .

Relational graph algebra (abbrev. RGA) was proposed by Hölsch and Grossniklaus [20]
and further refined by Marton, Szárnyas and Varró [28] to establish formal semantics
for Cypher based on relational algebra. In order to express graph-specific operations,
the fundamental relational algebra operators such as projection (πa1,a2,··· ,an A), selection
(σp1,p2,··· ,pn A), natual join (A ▷◁ B), left outer join (A ▷◁B), antijoin (A ▷B), etc.10, have
been extended with the ones shown in Table 2.2.

9intermediate representation
10To cover elementary relational algebra is out of scope here. Consult [14] for reference.
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The most important new operators are ones that allow formulas to express navigations
in the graph. Namely, the ExpandOut unary operator ...

(w:l1∧...∧ln)
(v) [e:t1 ∨ . . . ∨ tk] (r) adds

new attributes e and w to each tuple iff there is an edge e from v to w, where e has any
of types t1, . . . , tk, while w has all labels l1, . . . , ln. More formally, this operator appends
⟨e, w⟩ to a tuple iff st(e) = ⟨v, w⟩, l1, . . . , ln ∈ L(w) and T (e) ∈ {t1, . . . , tk}.

Similarly to the ExpandOut operator, the ExpandIn operator ...appends ⟨e, w⟩ iff st(e) =
⟨w, v⟩, while the ExpandBoth operator ...uses edge e iff either st(e) = ⟨v, w⟩ or st(e) = ⟨w, v⟩.

As a starting point for navigation, instead of primitive relations (tables), nullary op-
erators such as GetVertices ( ..), GetEdgesUndirected ( ... ), and GetEdgesDirected ( ... )
serve as terminals that return a relation representing vertices or edges. GetVertices can
optionally receive a label predicate, which can be expressed in terms of σ and ..:

..
(v:L) ≡ σL⊆l(v) ..

(v)

Similarly, the type predicate of GetEdgesDirected is

... (w:W)
(v:V) [e:E] ≡ σt(e)∈E ∧V⊆l(v)∧W⊆l(w) ... (w)

(v) [e]

GetEdgesBoth is analogous. Furthermore, ... can be expressed in terms of ...and ..:

... (w:W)
(v:V) [e:E] ≡ ...

(w:W)
(v) [e:E] ( ..

(v:V))

Again, ... is analogous. Equivalences such as these play an important role in logical
query optimization just like in traditional relational database systems [56, Chapter IV].11

The AllDifferent operator ̸≡e1,...,en operator – with e1, . . . , en representing edge vari-
ables – was created specifically for the purpose of representing the edge uniqueness con-
straint of Cypher (discussed in Section 2.4.1) in a concise manner:12

̸≡e1,...,en (r) = σ ∧
1≤i,j≤n

i̸=j

r.ei ̸= r.ej (r) (2.1)

The ConnectedSegments query is a fine example for using this operator as it has
many edges with the same type within a single MATCH clause. However, for the sake of
conciseness, we use a simpler example instead, presented in Source 2.4.1b.

πa,b,c ̸≡lte1,lte2

(
... (b)

(a) [lte1:LTE] ▷◁ ... (c)
(a) [lte2:LTE]

)
(2.2)

RGA expressions for the PosLength, RouteSensor and ActiveRoute patterns are shown
below.

πs,s.length
(
σs.length≤0

( ..
(s:Segment)

))
(PosLength)

11These equivalence rules also highlight that GetEdges∗ operators are essentially syntax sugar on top of
the GetVertices and Expand∗ operators.

12Note that for edges of different types, adding the criteria is superfluous as they would not match
regardless.
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πsw,swP,r,s

((
...
(s:Sensor)
(sw) [:monitoredBy] ...

(sw:Switch)
(swP) [:target]

...
(swP:SwitchPosition)
(r) [:follows] ..

(r:Route)
)

▷(
... (s:Sensor)

(r:Route) [:requires]
))

(RouteSensor)

πswP,sw,r

(
σr.active=true ...

(r:Route)
(swP) [:follows]σswP.position ̸=sw.currentPosition

...
(swP:SwitchPosition)
(sw) [:target] ..

(sw:Switch)

)
(ActiveRoute)
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Chapter 3

A dynamic programming based
search plan generation algorithm

The main contribution of this thesis is the adaptation of a dynamic programming based
search plan generation algorithm published in [61], proposed by Gergely Varró et al. to
speed up pattern matching on EMF (Eclipse Modeling Framework) models. Pattern match-
ing [60] is the process of binding variables so that they fulfill a finite set of constraints.
Thus, it belongs to the family of constraint satisfaction problems (CSP) which often present
a high complexity1. Therefore, in practical cases, they are tackled using some kind of
heuristic or combinatorial search methods so that they can be solved in a reasonable time.

This chapter introduces the original approach to the reader in detail, outlines its
strengths and shortcomings w.r.t. pattern matching on top of property graphs, and the
corollary adaptation barriers. We also propose some further improvements to the algo-
rithm.

3.1 Planning

The algorithm described in the paper comprises two-phases: planning and execution is
carried out separately. The goal of the planning phase is to create an efficient search
plan. Search plan cost is estimated in terms of the approx. size of the pattern matching
state space. As full optimization of the problem would be impracticable even for smaller
patterns because of exponentially growing planning state space2, authors employ a method
based on iterative dynamic programming, similar to the ones proposed by Kossman and
Stocker for optimizing joins in relational query engines [24].

The algorithm goes as follows. In each iteration a set of applicable operations are
selected that advance the search by binding a set of variables. Operations are characterized
by the following aspects:

type either check or extend
1In general, the CSP problem is NP-complete [58].
2 The planning state space should not be confused with pattern-matching (execution) state space. As the

name indicates, the first one corresponds to planning itself, i.e., depicts operation sequences with which
a pattern can be satisfied, while the latter represents a concrete pattern matching sequence being carried
out at runtime.
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applicability applicability constrains branching (thus largely filtering planning state space)
by forbidding operations to be selected at certain states. The applicability
criterion is simple:

• check operations can be only considered when every one of their refer-
enced variables are bound;

• extend operations can only be considered with one referenced variable
set to bound, the rest being free.

If less than the required amount of variables are bound, the operation is
called “future”; if more, “past”; if applicable, “present”.

weight extend operations are assigned a cost based on their approximate cardinality.
check operations are not considered for cost based optimization, rather they
are selected greedily. For extends, their cardinality (branching factor) is
retrieved from the instance model, leveraging the reflective3 abilities of EMF.

adornment the set of variables the operations sets to bound. For extend operations this
set normally contains one variable. It is an empty set for check operations.

The substance of the approach is to choose extend operations iteratively, and only
retain in each step those subplans that are in the k-best among those with the same amount
of bound variables. States with the same amount of free variables are totally ordered by
a cost property. The cost is calculated using an iteratively computable monotone cost
function shown on Section 3.1, which takes into account the cost of the previous state
ci−1, the cumulative branching factor pi−1 and the weight (estimated branching factor) of
the operation that produces the new state. Because of this, it is practical only to keep
the very best of any two variable adornment disjoint4 (abbrev. VAD) states, as they have
identical closure w.r.t. future operations so the better subplan’s descendants will always
outperform those of the other. This elimination of duplicates is sometimes referred to as
pruning. A generalized version of the cost function will be introduced later.

cn =

n∑
i=1

i∏
j=1

wj , iteratively c0 = 0, p0 = 1

ci = ci−1 + pi, pi = pi−1wi

Because only a constant amount is kept from the VAD states, we get a space bound
guarantee depending on the number of variables and the constant factor k, avoiding expo-
nential complexity. Furthermore, as check operations are applied instantly upon becoming
available, only extend operations are creating branches.

The outline of the algorithm is shown on Algorithm 3.1.1. In the

outer loop (3–17) we progress until there are no free variables left. The final transition’s
target state corresponds to a complete match. Note that because of
pruning, there can be only one final state.

middle loop (5–16) we iterate over each VAD state having the same amount of free vari-
ables.

3In software engineering, reflection is a property of a computer program which can be introspected and
modified at runtime [12].

4By variable adornment, we refer to a function that maps variables to either free or bound symbols.
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1 n := |aS0 |f; // number of free variables in S0

2 T[n][1] := S0;
3 for(i := n down to 1) {
4 S := T[i][j];
5 for(j := 1 to k) {
6 for(o ∈ Ope

S ) { //git for each present extension operation
7 S′ := nextState(S, o);
8 i′ := |aS′ |f;
9 position, duplicatePosition := determinePositionByCostOrder(T [i′], S′)

10 if(shouldInsert(S′, T [i′], position, duplicatePosition)) {
11 updateOperations(S′, S, o);
12 eliminateDuplicate(T [i′], duplicatePosition);
13 insert(T [i′], S′, position)
14 }
15 }
16 }
17 }
18 return T[0][1]

Algorithm 3.1.1: The procedure calculateSearchPlan(S0, k).

inner loop (6–15) we inspect each present extend operation for the state.

seq (7–9) we produce the next state from the operation. We determine its posi-
tion based on its cost, and any duplicates for pruning.

branch (10–14) if the cost is among the k lowest and it is not a duplicate or the existing
duplicate has greater cost; do

(i) update the operations by potentially moving some future opera-
tions to present ones, and discarding previously present ones,

(ii) eliminate the duplicate if exists,
(iii) insert the item.

The resulting algorithm has
O
(
|V |2 · |O|2

)
runtime complexity, where |V | is the number of free variables, |O| is the approx. number
of branches (applicable operations at a step).

The complete planning state space of the ActiveRoute pattern is shown in Figure 3.1a.
We were not able to find any indication in the paper on binding the initial (vertex) variable;
on the contrary, the original algorithm starts out with exactly one pre-existing binding.
To provide a more comprehensive example5, we include operations for binding the first
variable as well, called sRoute(r), sSwitchPosition(swP ) and sSwitch(sw) shown. The costs of
extend operations have been estimated for the instance model of the running example.
We also included costs for the start operations. Although inverse traversals on Ecore
models are not inherently feasible due to technical reasons6, we make a simplification
in the following discussion for illustration purposes and assume it’s perfectly alright to
navigate backwards. This omission is even more justified by the fact that we not have
such limitation with our PG indexer implementation.

5If we remove the root node and say, select a random starting vertex type the illustration becomes too
simplistic to be worthwhile.

6As mentioned in Section 2.3.2, Ecore has its roots in OOP, where references are only navigable forward.
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(a) Search space of the original algorithm. For each edge, the
operation’s (weight) is shown.

[a] sRoute(r) (4)
[b] sSwitchPosition(swP) (12)
[c] sSwitch(sw) (6)
[d] r.active = true
[e] swP.position ̸=

sw.currentPosition
[f] etarget(swP, sw) (1 | 2)
[g] efollows(r, swP) (3 | 1)

(b) Operations for ActiveRoute.
Estimated weight in paren-
theses for (normal | inverse)
traversal.

(c) Search space of the modified algorithm. For each edge, the
operation’s (cost,weight) is shown.

.

Figure 3.1: Search space of ActiveRoute during planning. Each (0 → 3) path describes
the steps comprising a (complete) pattern matching sequence. The x−1 no-
tation corresponds to an inverse traversal. For each node, the number in
parentheses shows the cost of the subplan according to Section 3.1. The val-
ues with striketrough (e.g., (30, 12) denote cost without pruning. Unexplored
parts of the search state graph are represented with grey nodes and edges.
Dashed lines denote check operations, solid lines denote extend operations.

17



(a) Routes in the railway example (repeat of Figure 2.1d to make the pattern matching example
easier to follow).
[a] sRoute(r), [b] sSwitchPosition(swP), [c] sSwitch(sw), [d] r.active = true,
[e] swP.position ̸= sw.currentPosition, [f] etarget(swP, sw), [g] efollows(r, swP)

(b) Operation costs (based on Figure 3.1b).

(c) The complete pattern matching state space of pattern ActiveRoute for sequence adgfe.

Figure 3.2: Pattern matching sequence of pattern ActiveRoute.

An important feature of the original algorithm is the model-sensitive cost estimation.
This means that the operation weights are obtained using statistical data collected from
the Ecore instance, viz. aggregate object and link counters (grouped by their corresponding
types) from which average branching factors are calculated. Namely, forward navigation
(cf. ExpandOut ...

(w)
(v)[e:E]) cardinality is calculated by dividing the link count by the source

object count, backward navigation by dividing the link count by the target object count.

3.2 Search plan evaluation

Search plan evaluation is touched by paper [61] exclusively when the resulting pattern
matching state space is compared to that of other search plan generation approaches.
The output of the planning phase is an ordered list of operations which are mapped to
platform-dependent constraint evaluation operations, which we refer to as tasks henceforth
in order to disambiguate the term. Each task binds zero (check) or one (extend) variable;
and as a single variable can have multiple substitutions, the list naturally unfolds a rose
tree7 of primitive constraint evaluation steps during execution. An existing adaptation
of the algorithm has been implemented by Búr et al. [9] for the Viatra query engine
(formerly called EMF-IncQuery), facilitating depth-first traversal. More sophisticated
methods could be examined, but are out of scope of our current discussion.

7A tree data structure with a variable and unbounded number of branches per node; a term commonly
used in functional programming.
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Figure 3.2 illustrates the execution part of the search plan of Figure 3.1a for the most
efficient operation sequence found by the planner, adgfe. We traverse the search tree using
depth first search, maintaining an initially empty result bag and a task stack. Popping the
top of the task stack (last column) and applying to the context of the current submatch
results in 0 or more children contexts. If a tree has no more tasks left, the substitution
tuple contained in the current context is appended to the results.

3.3 Strengths, shortcomings & adaptation barriers

3.3.1 Strength: Polynomial complexity for planning

The original paper gives a quantitative evaluation in which the approach is compared
with two others, viz. a domain-sensitive and a graph-based one8, and indicates signifi-
cantly better results for the model-sensitive approach. Furthermore, the complexity of
the algorithm, O

(
|V |2 · |O|2

)
, is favorable taking into account that the greedy algorithm

for database join optimization would require O
(
n3

)
where n is the number of relations

involved [24]. Note that the two problems are very similar as links can be mapped to
relations.

3.3.2 Shortcomings: Missing initial case & special handling of check
operations

We identified a few shortfalls or trade-offs that are not explicitly mentioned in the paper,
and list them hereby.

Missing initial case. The algorithm starts with exactly one bound variable, and the
authors do not state the reasons why this is the case; we can only guess that they want
to run pattern matching process from a given variable. However as such, it hinders the
method’s applicability in scenarios where there is no specific entry point for the search, as
in our case. The simplest resolution of the problem is to introduce a start operation type
with its adornment consisting of a single free variable.

Check operations are ignored from estimation. As we have shown, these operations
are applied immediately (greedily) upon becoming available. This is a trade-off between
optimality and performance, and is justified by the fact that these operations:

• can be applied in any order and will never conflict with any other operations, i.e.,
there is no state and check operation which lead to a state where some operations
(except the chosen one) are moved to the past set.

• are selective, i.e., they filter the set of candidates. Thus their cardinality is 0 ≤
wocheck ≤ 1. Most of the times applying them as early as possible yields very good
results.

However, the fact that these operations do not have weights assigned to them and in turn
do not take part in the cost estimation results in less accurate search plans while at the

8 The domain-specific approach uses the same algorithm, except that cost-estimation is exchanged to one
that has no information on the underlying model, instead it is based on the metamodel, thus is less accurate.
The graph-based approach uses a different algorithm. Results indicate that both are outperformed w.r.t.
the PM state space generated. Sadly, planning performance is not measured in paper [61].
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same time improving nothing in planning performance. Furthermore, we fail to understand
why the states generated by check operations are ignored from the state space. We argue
that the execution time of most check operations is comparable to that of an extend
operation. While equality and other relational checks are significantly faster than a hash-
table lookup usually required by navigation, property value checks can also result in the
latter on certain implementations; and some assertions like matching regular expressions
can take significantly longer. However, to maintain a simpler model, we assume that every
operation’s cost is 1 for each search step generated.
Taking into account the arguments of the previous paragraph, one of the problems that
arise can be immediately seen collating the plan’s final cumulative branching factor in
Figure 3.1a with that of the concrete execution in Figure 3.2, which shows overestimation
by a factor of 6 (estimated: 12, actual: 2). This is significant for such a small query. The
estimated and actual state space counting every arrow are 28 and 23, respectively. The
reader can notice that this is cheating, because in the original definition, checks do not
count towards the cost. Actually if we remove them, the difference becomes significant
(28 to 14); so the cost is not a very good estimation according to the original definition
either.
Introducing weights for check operations practically require some information which can
be obtained from the model similarly to extends if feasible. Another obstacle is that the
cost of these operations are not the same as their branching factor. In fact their cost
is uniformly 1 as they need to be checked once for each existing branch, however their
branching factor is 0 ≤ wocheck ≤ 1 as mentioned earlier. It is important to note that
immediate application and cost estimation are orthogonal to each other. In particular, we
can immediately apply an operation, refresh the cost, apply another, refresh the cost, and
so on, without altering anything else in the algorithm body.
We generalized the iterative cost calculation function, with the original motive to enable
the iterative calculation of arbitrary long operation sequence chunks (see Section A.1).
An unexpected collateral benefit of using the generalized version is that is also makes it
possible to have separate cost and weight estimation for atomic operations.

ci = ci−1 + piσi, pi = pi−1wi

In the equations above, w and σ denote the operation’s weight and cost, respectively.
Setting σ = w for every extend operation results in the original method. With this, we
can introduce costs and weights to check operations:

(f) r.active = true (0.5)
(g) swP.position ̸= sw.currentPosition (0.5)

Figure 3.1c shows the plan created by the modified algorithm and its execution is shown
in Figure 3.2. We can see that the estimation of the branching factor is much better (1.5×
overestimation). The estimated and actual state space – counting every arrow, as this
required by the modified definition – is 26 to 23. An evaluation tree of the runner-up
sequence cf−1eg−1d is shown in Figure A.2.1.
We would like to stress, however, that this is only an illustration, and a quantitative
evaluation would be required to prove the superiority of this method over the original.
This is not discussed in this thesis and is left for future work.
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adgfe cf−1eg−1d
c p c p

w/o check, original definition
28.00 12.00 30.00 12.00
14.00 2.00 22.00 2.00
2.00 6.00 1.36 6.00 overestimation

w/o check, new definition
28.00 12.00 30.00 12.00
23.00 2.00 38.00 2.00
1.22 6.00 0.79 6.00 overestimation

w/ check
26.00 3.00 42.00 3.00
23.00 2.00 38.00 2.00
1.13 1.50 1.11 1.50 overestimation

Table 3.1: Estimated weights for the operations and the degree of overestimation.

3.3.3 Limitation: Applicability for property graphs

The authors proposed the method to generate search plans specifically for Ecore models.
The implementation by Búr, which has the closest resemblance to our approach [8], comes
from this domain as well. We have already seen that there are several differences between
PGs and Ecore models in Table 2.1. In this section, we summarize the obstacles raised by
these differences.

Edges as first-class citizens require altered definiton of operations. In Ecore,
models what we refer to as “edges” are essentially references between objects, and cannot
be retrieved on their own. They do not store properties and each reference’s identity is
tied to that of the source object, the target object and the reference’s name (as shown
in Figure 2.3). We have seen that in RGA and Cypher9 edges are handled as first-class
citizens, i.e., identifiers can be assigned to them and they might have properties like
vertices. In fact, every property graph implementation in our knowledge uses edges with
their own identity (usually represented with an underlying object), and are retrievable on
their own from the storage layer. This requires us to alter the original operations in a way
that they can reference variables assigned not only to vertices, but edges as well.

Schemaless operations require complete overhaul of the estimator functions.
As described by the original paper, extend operations carry information about the source
object’s class and the navigated reference’s name, which can be inferred from the query at
all times. This is used by the weight estimator to retrieve statistics from the underlying
platform.
In contrast to Ecore models, property graphs are schemaless, and – as we have already
mentioned earlier – edges are represented independently from vertices earlier; which make
the original estimation method inapplicable. Also, it is not necessary to specify either
labels or types in Cypher patterns, which makes finding a good estimation method even
more complicated. As the statistical analysis of dynamic graphs are out of scope, we
implemented only rudimentary method on in this thesis. We admit that this is a major
limitation of the current work.

Richer indexers. Stemming from the dynamic (schemaless) nature of property graphs,
creating an efficient indexer is more difficult than for Ecore (Chapter 5).

9and also in modern property graph languages, see Section 6.1.1
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Chapter 4

Overview of the approach

In this chapter we give a detailed presentation of the theoretical background behind our
search planner called SRE. The chapter starts out with describing the fundamental con-
cepts, such as constraints, patterns and operations. Next, we give a mapping from the
relational graph algebra tree used as the intermediate representation in ingraph to a pat-
tern based representation specific to SRE. Continuing, we lay out the design of the search
planner and the pattern compiler.

4.1 General Concepts

Constraints. We define a set of variables, a set of domains, and a set of constraints.
Variables and domains are associated: the domain of a variable contains all values the
variable can take. A constraint is composed of a sequence of variables, called its scope,
and a set of their evaluations, which are the evaluations satisfying the constraint [47].

X = {X1, X2, . . . , Xn}
D = {D1, D2, . . . , Dn}
C = {C1, C2, . . . , Cm}

An evaluation of the variables is a function from a subset of variables to a particular set
of values in the corresponding subset of domains. Constraints compose with conjunction,
that is a (full) variable evaluation satisfies the set of constraints if every constraint is
satisfied by the variable evaluation.

Constraint type. There is typing relation, mapping constraints to constraint types tC :
C → TC . Constraint types define a name, an ordered list of symbolic variables and an
implication relation for the constraint.
Note: C denotes a constraint, C the constraint set, tC constraint type, TC the set of
constraint types.

Implication relation. In SRE constraints form a preorder w.r.t. the function itC : CC
t →

2C, which we call implication. That is, c <:i
tC

d if c ∈ CC
t and d ∈ itC (c), which conveys

that every satisfiable evaluation of c is also a satisfiable evaluation of d with the variable
mapping given by fitC . Formally:
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Xc = Vars{tOc }
Xd = Vars{tOd }

c <:I
tC

d iff Xd ⊆ Xc ∧ ∀x1, . . . , xi, X1, . . . , Xi :

{X1, . . . , Xi} = XC ∧ c(X1|x1, .., Xi|xi) = true

=⇒ d(πVd
(X1|x1, .., Xi|xi)) = true

Example 1. c(1, 2, 3) a constraint with its type Name(tOc ) = Edge, Vars(tOc ) =
(source, link, target), and itOc (cEdge) = {cVertex(1), cVertex(3)}

Implication closure. We call the set of constraints implied by c its implication closure,
noted by c+. We denote the implication closure of a set of constraints the same way (C+)
such as C+ = c+1 ∪ . . . ∪ c+i iff C = {c1, . . . , ci}.

The special Known constraint. Furthermore we demand that every constraint imply
the special unary constraint ⊤(v) (also Known) for each of its variables.

Operations. An operation is defined as o(v1, v2, v3, . . . , vi) where vs are the variable bind-
ings of the operation. Similarly to constraints, operation have types too.

Operation requirements and postconditions. Each operation has a type that speci-
fies a name, an ordered list of symbolic variables and - here comes the difference between
constraints and operations - maps the operation to requirements and postconditions.

R = req(o)
P = post(o)

where R ⊂ C, R = R+,

P ⊆ C, P ⊂ R, P = P+

where R is the requirement set (or precondition set), P the postcondition set of the oper-
ation. On line 3 and 4 of the formula require these sets to be transitively complete w.r.t.
implications. The set of postconditions should be strictly larger than the requirements,
so that the operation satisfies at least one constraint. For each of the two sets, each
operation type specifies constraint types and a function that binds the operation type’s
symbolic variables to that of each of the constraint types.

Example 2. o(4) is an operation with a type specifying NametOo (o) = GetVertices.
Vars(tOo ) = (v), Req(tOo ) = ∅ and Post(tOo ) = {{Vertex : v}}. This means that req(o) = ∅
and post(o) = cVertex(4).

Notation analogous to constraints: O, O, tO, TO.

Operation bias. Operation types also define a function btO : OO
t → {R, I,D}. The three

values correspond to regular, immediate and deferred and govern how operations are chosen
by the planner. We will see more on this later.

Configuration.
C⟨TC ,TO, e, t⟩

is called the search configuration, where
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TC is a set of constraint types.
TO is a set of operation types.
e is a total function O → FeTO

mapping o to its operation type’s estimator function.
t is a total function O → FtTO

mapping o operation to its operation type’s task
function.

Scope.
S⟨C,Cf ,Cb,V, k,Ctxe⟩

is called the search scope1, where

C is the search configuration.
Cf is a set of free constraints. Note that it is invalid to have a constraint whose
constraint type is not in TC .
Cb is a set of bound constraints. We require Cf and Cb to be disjoint.
V is the set of variables referenced by the constraints in C.
k is the parameter already discussed in Section 3.1 used for tuning the search algo-
rithm between optimality and performance.
Ctxe Context provides the interface for accessing the underlying platform. During
planning an estimation context is needed. We use the term context-sensitive to refer
to the capability of inspecting the underlying graph elements.2

Operation applicability A set of operations can be split up into four categories with
respect to Cf and Cb.
If (a) RO ⊆ Cb and (b) PO ⊆ Cf we call the operation a present operation (O ∈ OPr

C ).
If item (a) holds and item (b) is violated, we call it a past operation (O ∈ OP

C ). If item (a)
is violated and item (b) holds we call it a future operation (O ∈ OF

C ) (OF ). We call
these three sets valid operations w.r.t. to C. If both is violated, the operation is invalid.
Our search planning algorithm will never create invalid operations. If we denote OC the
operations created for C, OF

C , OPr
C , OP

C is a full partitioning, thus e.g., the following
equation holds: OP

C = OPr
C ∪OF

C . Here we call OP
C the set of non-past operations.

4.2 Search planning

Our search algorithm comprises two phases

(a) planning: assembling an efficient search operation sequence,

(b) execution: evaluating the search operations on the underlying graph;

following the approach used by Varró et al. [61]. In this section, we discuss the planning
phase in detail.

Data structures
In the subsequent algorithms, we use various data structures, viz., lists, sets, sorted
sets, maps (sometimes also called associative arrays, dictionaries or hashes), sorted
maps and vectors.

1not to be confused with the scope of a constraint, mentioned earlier
2in lieu of model-sensitive used by MDE jargon.
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Set We assume the reader is familiar with this basic data structure for storing unique
elements efficiently. We use conventional mathematic notation for all operators, val-
ues, etc..

Sorted sets are sets with a particular total ordering relation between elements. They
are denoted with ∅≤, {a, b, c, . . .}≤, etc.. Additionally to set operations, one can get
the least element s =

∨
S≤s, z ∈ S, ∀z : s ≤ z. For simplicity we call this first in

the code.

Maps are partial functions with a finite set as domain called keys. Maps are denoted
with ∅M , {a → 1, b → 2, . . .}M , etc.. Domm is used to get the keys and m(x) to get
the value at x. Furthermore we use M\S to remove a set of keys from a map, M ∪N
to merge two maps where conflicting keys are included from N .

Sorted maps are similar to maps, but their domain is a sorted set. They are denoted
by ∅M≤ , {a → 1, b → 2, . . .}M≤ etc..

Vectors are

4.2.1 The compile_search_plan procedure

During planning, an operation sequence is created for the constraints using a dy-
namic search algorithm adapted from the one discussed in the previous chapter. Al-
gorithm 4.2.1 shows the pseudocode of the body of the search planner algorithm called
compile_search_plan, which gets as its single argument the search scope (S).

1 n = |Cf
S |; # number of free constraints in S

2 non_past_ops = flat_map(lambda ot: bindPost(Cf
S, ot), TO

CS )
3 [c, p] = [0, 1] # set the cost calculator
4 cell = ⟨non_past_ops, k, n, c, p,Cb

S ,C
f
S⟩

5 plans = {n → {
6 cells: {cell}<c ,
7 by_free: {Cf

S → cell}
8 } }M>

9 def run(plans):
10 keys = Dom plans
11 if keys is {0}: # finished searching
12 return first(plans(0).cells) # return best
13 j = first(keys)
14 column = plans(j)
15 return run(reduce(partial(step, k, CS), plans\{j}, column.cells))
16 return run(plans)

Algorithm 4.2.1: The procedure compile_search_plan(S).

We determine the initial number of free constraints, and store the value in n (line 6).
We partially construct all non-past operations for the constraints. This is done on the
next line using the bindPost function, which takes as input the free contraints in scope,
an operation type, and matches symbolic variables in each of the operation type’s post-
conditions against the given free constraint set, to create a partial binding of operations
in all ways that satisfy some constraints in the free constraint set.

On line 4 we initialize the initial state of the cost calculator.
Next, we create a cell tuple that contains the optimality parameter (n), the number

of free constraints (n), cost calculator attributes (c and p), the initial constraint set (Cb
S
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and Cf
S), and the initial non-past operation bindings (non_past_ops). Cells serve the same

purpose as the table cells in the original algorithm, i.e., they store information about a
partial binding, each of them adding a state to the planning state space. The cell created
here serves as the root state.

Next, we create a sorted map which stores columns (cf. the original algorithm), which
are (instead of vectors that one expects) objects having two properties: cells, by_free.
The first property is more important here, which is a sorted set that stores cells based on
their costs by descending order. This data structure is used to leverage efficcient access
and mutation on the most costly operation. We will return to the by_free property later.
The resulting column is keyed by n (the number of free constraints in the cell) and sorted
in descending order. The data structure was chosen for efficiency here as well. We define
the run recursive procedure on line 9. In the body of this procedure, we check if the
only remaining column is the one that has 0 free constraints (line 12). This serves as the
recursion’s base case and the last step of the compile_search_plan procedure as well. In
the other case, we remove the column from the plan, and reduce the column’s cells over
the modified plan with the step function.

The step function is expected to advance the search, i.e., create new states having
less free and more bound constraints. This justifies the removal of the current column as
new candidates will have less free variables, thus they will be attempted to be inserted
into columns specified by an index smaller than n.

4.2.2 The step procedure

We follow with the introduction of the step procedure, which is used to process a single
cell, during which we may create new cells and insert them into the plan. We have 3
separate categories for operations according to bias as we already mentioned it earlier:
these are regular, immediate and deferred operations.

Operation bias
Recalling the original algorithm, operations called check were chosen in a greedy
manner. This means that all present operations are immediately appended to the
search plan upon becoming available, which can reduce the amount of the search state
spaces significantly. As the original implementation inserts cells based on variables
and check operations do not change the variable adornment of a cell, appending these
does not result in any state transitions.

We wanted to support such immediate operations because of the state size re-
duction, and the fact we seldom achieve better search plans with the optimization of
certain operations. In the current algorithm however, we advance the search space
everytime an operation is chosen, because (as stated in the previous section) each
operation has to satisfy at least one constraint, and in so doing, the operation decre-
ments the number of free constraints; resulting in a cell in a new column. This means
that in each step, at most one immediate operation can be chosen. We still achieve
search space shrinkage with this as can be easily verifed.

Futhermore we add greedy operations for the opposite purpose as well - deferred
operations are only appended as a “last resort”, i.e., when no regular or immediate
operation can be appended in the current state.

This procedure is relatively simple. First, it groups non_past_bindings according to
their bias. Then it tries to create present bindings for immediate operations and if there
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exists at least one, an attempt is made to insert the first into the plans (line 5). Being
greedy, the algorithm returns in this case without considering any other operation. How-
ever, if an applicable immediate operation does not exist, an attempt is made to construct
applicable regular operations. Here, insertion of each regular operation is attempted on
line 8 (exactly like in the original algorithm). In case no regular operation exists, we fall
back to deferreds.

1 [non_past_bindings, …] = cell
2 [regulars, immediates, deferreds] = group_by(biastOC

, non_past_bindings)
3 O(I,Pr) = flat_map(lambda i: bindPre(Cb

S, i), immediates)
4 if O(I,Pr) is not ∅: # we have an immediate operation
5 return insert_cell(cell, k, CS, plans, first(O(I,Pr))) # greedy
6 O(R,Pr) = flat_map(lambda r: bindPre(Cb

S, r), regulars)
7 if O(R,Pr) is not ∅:
8 return reduce(partial(insert_cell, cell, k, CS), plans, O(R,Pr))
9 O(D,Pr) = flat_map(lambda d: bindPre(Cb

S, d), deferreds)
10 if O(D,Pr) is not ∅:
11 return insert_cell(cell, k, CS, plans, first(O(D,Pr))) # greedy

Algorithm 4.2.2: The procedure step(k, CS , plans, cell)

4.2.3 The insert_cell procedure

The insert_cell procedure attempts to insert a cell into the search plan. It gets the
previous state (cell) and the operation causing the state transition (o). It calculates the
operation’s weight and cost parameters with the help of the estimation context (which
provides access to the underlying platform) on line 4. On the next line, the algorithm up-
dates the cost with the generalized iterative cost function already mentioned in Chapter 3.
We adjust the set of free and bound constraints, to reflect the changes after the operation
is applied, i.e., move the satisfied constraints (post(o)) from free to bound. On line 8 we
create the prospective cell waiting to be inserted.

The prospective cell has to meet one of the following criteria to get inserted.

(a) If an existing cell has the same set of free constraints (Cf
S) as the prospective insert,

they are subject to pruning (line 13).3 In this case we retain the one with better
cost, and discard the other, that is, the prospective cell is inserted only if it is better
than the existing (line 14).

(b) If the prospective cell has no duplicate then we need to check if the column is full,
i.e.,, that there are already k items in the column (line 24). If the column is not full,
then we can insert the cell into the free slot any time (line 32).

(c) If the column is full however, we can only insert if it is better than the worst one
stored (line 33).

(d) Otherwise, we discard the cell and do not modify the plan.

In this algorithm we have seen the use of cells.by_free. It serves as a fast lookup to
check whether the candidate cell has a duplicate in the column.

3similarly to two cells having the same variable adornment in the original algorithm
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1 ⟨non_past_ops,k, n, c, p,Cb
S ,C

f
S⟩ = cell

2 i = |Cf
S\PO|

3 column = plans(i)
4 [σ, w] = eCS (o)
5 [next_c, next_p] = update_cost(σ, w)
6 next_Cf

S = Cf
S\post(o)

7 next_Cb
S = Cb

S ∪ post(o)
8 next_cell = create_search_plan_cell(k, i, next_c, next_p, next_Cf

S, next_Cb
S)

9

10 dupe = column.by_free(next_Cf
S) if next_Cf

S ∈ Dom(column.by_free) else None
11 is_full = count(column.cells) >= k
12

13 if dupe:
14 if (c < dupe.c): # this is better, evict dupe
15 return compose(
16 lambda p: update_in(p,
17 [i, 'cells'],
18 lambda cells: (cells\dupe) ∪ next_cell ),
19 lambda p: update_in(p,
20 [i, 'by_free'],
21 lambda by_free: by_free ∪ {next_Cf

S → next_cell}))(plans)
22 else:
23 return plan # don't change
24 elif (not is_full) or (c < first(column.cells).c):
25 add_cell = compose(lambda p: update_in(p,
26 [i, 'cells'],
27 lambda cells: cells ∪ next_cell),
28 lambda p: update_in(next_plans,
29 [i, 'by_free'],
30 lambda by_free: by_free ∪ {next_Cf

S → next_cell}))
31 if (not is_full):
32 return add_cell(plans)
33 else:
34 evicted = first(column.cells)
35 return compose(
36 add_cell,
37 lambda p: update_in(next_plans,
38 [i, 'cells'],
39 lambda cells: cells\dupe),
40 lambda p: update_in(next_plans,
41 [i, 'by_free'],
42 lambda by_free: by_free\next_Cf

S))(plans)
43 else:
44 return plans

Algorithm 4.2.3: The procedure insert_cell(cell, k, CS , plans, o)

4.3 Extending the search planner with patterns

The planner as described above only supports constraints in conjunctive form. However
we have seen in Source 2.4.3b that Cypher queries can contain negated patterns as well.4

In order to support queries that contain negative patterns, the search planning algo-
rithm has to be extended. We have seen in the previous sections that the planner works
by finding an operation sequence for the input constraints. The operation sequence, when
evaluated, yields all results that satisfy all the constraints. On the contrary, a negative

4They can also contain disjunctive patterns and have a special OPTIONAL modifier that permits NULL
values. In this thesis we include support for negative patterns

28



pattern means that given some non-empty, already satisfied (Cb) constraint set, and an
also non-empty set of some free constraints (Cf ), there exists no evalution that satisfies
(Cf ). Thus the negative pattern can be represented with a unique constraint that has to
be satisfied during search by a composite operation that comprises an inner subsearch. If
this operation finds a match, it returns a failure, else it returns the variables corresponding
to the (partial) binding it started the search from.

Patterns A subsearch, like the one corresponding to a negative Cypher pattern, is intro-
duced into sre under the same name - pattern. Similarly to constraints, patterns represent
a constraint to be satisfied via search, thus they can be input the search planner. However,
patterns get a unique, fresh type, which means that contrary to constraints, they can’t be
matched to platform operations, as simply there will be no operation that satisfies them.
This is why patterns also specify a unique, fresh operation type, which is added to the
search scope to satisfy that single pattern type. A pattern corresponds to what some
others refer to as a “pattern call”, i.e., it contains the bindings for variables, referring to
an outer pattern (if exists). We refer to a pattern definition as a pattern type. We chose
this naming to remain consistent with operations and constraints, where the term “call”
does not apply, and the relationships between them and their corresponding types are the
same as with patterns.

Pattern type. A pattern type is created whenever a new pattern is defined. Currently
we only support anonymous, in-place pattern definitions. This suffices for our use-case as
patterns cannot be reused in Cypher.

Pattern kinds. A family of pattern types. Only three pattern kinds are supported as of
now:

Unit the kind of primitive (atomic) constraints. Unit patterns do not modify the
parent search configuration in any manner:

• They do not require compilation, because they do not create a search scope.
• They do not add a constraint type, as platform specific constraints are natively

supported.
• They do not define operations as they have to be satisfied using platform specific

operations.
• They add one constraint to the parent search scope.

A pattern type with the kind Unit cannot be the root pattern.
Conj is the kind of conjuctive patterns defining a subsearch. Every pattern listed in
the body of the Conj pattern has to be satisfied.

• A subsearch is compiled for each pattern type of the Conj kind.
• Conj types add a unique, fresh constraint type tCi to the parent search configu-

ration.
• They also add a unique, fresh operation type tOi to the parent search configuration.

Naturally they add an estimator function, and a task function for the operation
type as well, and extend the domain of e and t in the configuration to map the
operation type to the specified estimation and task function respectively.

• they add one constraint (with the type of tOi to the parent search scope).

Neg the family of negative patterns. Negative patterns have an one inner Conj
pattern.

• A subsearch is not compiled, Neg pattern types use the underlying Conj search.
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1 compiled_specs = group_compiled_specs(map(lambda s: compile(s, Cparent, opts), specs))
2 C = compiled_specs.constraints
3 # the configuration modifications of the inner patterns are applied
4 # to the current configuration \sreconf_{\atom{this}}
5 TC = reduce(update_ct,Cparent, compiled_specs.constraint_types)
6 TO = reduce(update_ot,Cparent, compiled_specs.operation_types)
7 e = reduce(update_e, Cparent, compiled_specs.estimators)
8 t = reduce(update_t, Cparent, compiled_specs.tasks)
9 # create the configuration

10 Cthis = ⟨TC ,TO, e, t⟩
11

12 # create free and bound constraints
13 [Cf, P] = [(conj_pattern.reqs)+, (conj_pattern.constraints\conj_pattern.reqs)+]
14 V = vars(Cf ∪ Cb)
15 # create the scope
16 Sthis = ⟨Cthis,Cf ,Cb, V, k,Ctxe⟩
17 plan = compile_search_plan(Sthis)
18 return [
19 conj_pattern.constraint_type,
20 conj_pattern.op_type,
21 constantly([plan.c, plan.p]), # a zero arg function that returns the cost
22 constantly(conj_step(map(t, plan.ops)))
23 ]

Algorithm 4.3.1: The procedure compile(conj_pattern, Cparent, k, Ctxe)

• Neg types add a unique, fresh constraint type tCi to the parent search configura-
tion, same as Conjs.

• They also add a unique, fresh operation type tOi to the parent search configuration,
same as Conjs.

• they add one constraint (with the type of tOi to the parent search scope).
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Chapter 5

Adapting the search engine to
ingraph

This chapter summarizes the steps involving the adaptation of our search engine to in-
graph. We start by giving an architectural overview on ingraph, then we describe the
changes made to the indexer to support estimation and evaluation and collect the result-
ing engine operations. We conclude with mapping relational graph algebra operations to
constraints needed to translate queries into the input required by the engine.

5.1 The ingraph query engine

Figure 5.1: The workflow of query processing in the ingraph engine. Notation: rectangles
represent artifacts (query specification, query plan, etc.); hexagons represent
components (parser, compiler, etc.).

The ingraph project is a research prototype that aims to provide incremental query
evaluation of openCypher graph queries (Section 2.4.2) [16].

The workflow of the query engine and the proposed integration of the SRE components
is shown in Figure 5.1. First, the query is compiled using the following steps and artifacts:

1. openCypher query specification: the query as a string.

2. query parser: an Xtext-based parser [15], using the openCypher grammar of the
Slizaa project [43].
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3. query syntax graph: the abstract syntax graph of the query.

4. compiler: transforms the syntax graph to a query plan.

5. qplan: a query plan formulated in graph relational algebra.

Second, the query is evaluated by either the IRE incremental engine, discussed in [54],
or the SRE search-based engine, the central topic of this thesis work. The details for the
compilation and evaluation steps for the incremental engine are out of scope for this work
and are discussed in [51].

Efficient basic retrieval operations for graph elements is a prerequisite for search-based
evaluation [64]. ingraph uses an indexer that allows efficient retrieval for vertices based
on their labels, and for edges based on their type and start/end vertices.

5.2 Clojure

At the time the implementation of SRE started, the primary languages used in the ingraph
project was Xtend and Java [27], with a lesser amount of Scala code. We already depre-
cated Xtend for any new functionality because the language has been stagnant for some
time, with virtually no community and most original authors focused on developing Xtext.
The author initially had preference for Scala, a statically typed language because of its
rich, complex type system [10], support for functional programming and concise syntax
compared to Java. However, according to early results, implementing a proof-of-concept,
purely functional, type-safe, single-threaded evaluation machine proved far more challeng-
ing than reasonable, especially that the evaluation machine is one of simplest components
of the engine. The author felt that Scala compile time were unsatisfactorily long for the
early experimentation phase, and it hindered productivity. While Java is notably better
w.r.t. compile time, the author has a strong preference against Java and he deemed a
REPL-driven dynamic programming language with fast feedback loop far more suitable
for prototyping a proof-of-concept implementation. Clojure [19, 18] is a LISP-dialect for
the JVM, with emphasis on approachability and interactive development, so it was a nat-
ural choice for writing the core components of sre. For the interoperability layers, such
the indexer or the relational tree to constraint compiler, we used Scala.

5.3 Mapping relational algebra operators to constraints

ingraph uses an RGA-based tree representation for the query, which we have to transform
to constraints that we input the search planner. Table 5.1 shows the mapping between
the RGA expressions and the corresponding constraints.

As many of the RGA operations have different versions depending on the included
label or type predicates, we marked these with asterisks in the both the operation and
the corresponding added constraint instead of creating separate rows, sparing some space.
One can see that many of the relational algebra operators have overlapping constraints.
This is partly because we created the constraints in such a way, that they don’t provide
information about e.g., how an edge should be navigated. A DirectedEdge(v, e, w) can
correspond to either and ...

(w)
(v)[e] or a ...

(v)
(w)[e]. Choosing an efficient navigation is up to the

planner.
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expression constraint set description
..
(v) { Vertex(v) } The GetVertices RGA operator

corresponds to a single Vertex constraint.

... (w)
(v) [e] All navigation related operators are

mapped to a DirectedEdge constraint.

...
(w)
(v)[e] (r) { DirectedEdge(v, e, w) }

...
(v)
(w)[e] (r)

̸≡P (r)
{PropFa ̸=b(a, b) | a, b ∈
P, a ̸= b} PropF is an atomic constraint wrapper

for a propositional formula, which gets
the variables referenced in the formula
(which is in this case an inequality
check) as parameters. It is atomic in the
sense that formula is not further
analyzed and broken up into constraints.

R ▷◁ S
{PropF(vRn = vSn) |n ∈
sch(R) ∩ sch(S)} equality constraints are created for each

variable pair used for joining. In the case
of a natural join, variables with the same
names are chosen.

σF (r) { PropFF(ViF . . .) } each selection operation corresponds to
n-ary PropF constraint. The variables of
the constraint are the variables of the
corresponding formula.

Table 5.1: Mapping the relation graph algebra operators to constraints

(defconfig Ingraph)

(defconstraint Known [known])
(defconstraint Element [element] < Known [element])
(defconstraint Edge [edge] < Element [edge])
(defconstraint Vertex [vertex] < Element [vertex])
(defconstraint HasLabels [vertex labels] < Vertex [vertex] Known [labels])
(defconstraint HasType [edge type] < Edge [edge] Known [type])
(defconstraint Property [element key value]

< Element [element] Known [key] Known [value])
(defconstraint DirectedEdge [source edge target] <

Vertex [source]
Edge [edge]
Vertex [target])

(defconstraint GenUnaryAssertion [x cond] < Known [x] Known [cond])
(defconstraint GenBinaryAssertion [x y cond] < Known [x] Known [y] Known [cond])
(defconstraint Constant [x value] < Known [x])

Source 5.3.1: The set of constraints defined for ingraph

The constraints shown in tbl:constraint-mapping are implemented in the engine with
our own Config DSL, written in Clojure. Config bears the same semantics as in the
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previous chapter (C). In this DSL, constraints after < are the implications of the one
defined on the left side of the operator.

5.4 Platform operations

The search engine requires platform support in two contexts: estimation and evaluation.
Estimation is required during the planning phase, as described by Chapter 4.

Estimation In the context of estimation, the current state of the underlying graph is
observed to give an estimate branching factor for the search operations with the
methods show in Source 5.4.1.

trait EstimationMethods {
def getNumberOfVertices(): Int
def getNumberOfEdges(): Int
def getNumberOfLabels(): Int
def getNumberOfTypes(): Int
def getAverageNumberOfLabelsPerVertices(): Float
def getNumberOfVerticesWithLabel(label: String): Int
def getNumberOfEdgesWithType(`type`: String): Int

}

Source 5.4.1: Methods for branching estimation in the Indexer

Evaluation The evaluation context is not used by the planner, only the executor (second
phase of the algorithm). The platform-specific methods used for navigating and
accessing properties of graph elements are shown on Source 5.4.2.

trait Indexer {
def edgesBySourceAndTarget(source: IngraphVertex, target: IngraphVertex)
def edgesBySourceAndTargetAndType(source: IngraphVertex,

target: IngraphVertex,
`type`: String)

def vertexById(id: Long): Option[IngraphVertex]
def edgeById(id: Long): Option[IngraphEdge]
def vertices(): Iterator[IngraphVertex]
def verticesByLabel(label: String): Iterator[IngraphVertex]
def edges(): Iterator[IngraphEdge]
def edgesJava(): JIterator[IngraphEdge]
def edgesByType(label: String): Iterator[IngraphEdge]

}

trait IngraphVertex extends IngraphElement {
def edgesOutByTypeJavaIterator(key: String): JIterator[IngraphEdge]
def edgesOutJavaIterator: JIterator[IngraphEdge]
def edgesInByTypeJavaIterator(key: String): JIterator[IngraphEdge]
def edgesInJavaIterator: JIterator[IngraphEdge]

}

trait IngraphEdge extends IngraphElement {
def inverse(): IngraphEdge
def source():IngraphVertex
def target(): IngrapVertex

}

Source 5.4.2: Methods for getting elements and traversing the property graph
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We closely model the platform support by our search engine operations, from which a
couple are shown in Source 5.4.3.
(defop GetVertices [vertex] -> Vertex [vertex])
(defop

GetVerticesByLabels [vertex labels]
Known [labels] -> Vertex [vertex] HasLabels [vertex labels])

(defop
GetEdges [source edge target] -> DirectedEdge [source edge target])

(defop
GetEdgesByType [source edge target type]
Known [type] -> DirectedEdge [source edge target]

HasType [edge type])
(defop

AccessPropertyByKey [element key val]
Element [element] Known [key] -> Property [element key val]
:opts {:immediate true})

(defop
ExtendOut [source edge target]
Vertex [source] -> DirectedEdge [source edge target])

(defop
ExtendIn [target edge source]
Vertex [target] -> DirectedEdge [source edge target])

(defop
ExtendOutByType [source edge target type]
Vertex [source] Known [type] -> DirectedEdge [source edge target]

HasType [edge type])
(defop

ExtendInByType [target edge source type]
Vertex [target] Known [type] -> DirectedEdge [source edge target]

HasType [edge type])

Source 5.4.3: The set of operations defined for ingraph

5.5 Evaluation

●
●

●

●

●
●

PosLength RouteSensor ConnectedSegments

1 2 1 2 1 2
0.01
0.02
0.05
0.1
0.2
0.5

1
2
5

k

E
xe

cu
tio

n 
tim

e 
[s

]

Figure 5.2: Planning times for the Train Benchmark queries.

We ran the engine on workloads specified in the Train Benchmark. We measured both
the planner’s performance, and the efficiency of the resulting search plans. The benchmark
was performed on a MacBook Pro with 8 GB RAM and an i5 CPU. We used JDK 8 and
Clojure 1.8. The source code is available the ingraph repository.1

Figure 5.2 shows planning times for the three queries and k values 1 and 2. Figure 5.3
shows execution times for graph of increasing size (1, 2, . . . , 64). On both figures, the x

1https://github.com/FTSRG/ingraph
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Figure 5.3: Search execution times for the Train Benchmark queries.

axis uses a log2 scale, while the y axis uses a log10 scale. Figure 5.2 shows that the number
of variables in a pattern is a key factor in the planing time. For the most complicated
pattern, ConnectedSegments, planning takex approx. 5 seconds. Figure 5.3 shows that
query evaluation is the characteristics of the evaluation follows a low-order polynomial.
However, evaluation time is rather slow for large graphs. We tried to mitigate the problem
by using ahead of time compilation (AOT) compilation strategies2, but this did not result
in a significant speedup.

5.6 Conclusion

In this chapter, we presented and approach to adapt the search engine to the ingraph query
engine. Our work highlighted that mapping query representations from graph relational
algebra expressions to constraints is cumbersome in many cases. Based on this experi-
ence, an intermediate representation different from relational algebra could yield more
a straightforward mapping. A prime candidate for this role is the dataflow dependency
graph approach [41] used in the Cypher for Apache Spark project [38, 29], and discussed
in Section 6.1.1 in more detail.

2https://clojure.org/reference/compilation
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Chapter 6

Related work

In this chapter, we cover related work from two key aspects: (1) defining and evaluating
queries on propery graphs, and (2) search-based graph query evaluation. We also briefly
present the 2015 Transformation Tool Contest case that featured the Train Benchmark.

6.1 Queries on property graphs

A recent survey by Angles et al. [6] gives an excellent overview on property graph queries,
with a particular emphasis on the difference between graph patterns (Sec. 3 of said paper)
and navigational queries (Sec. 4, ibid.). Based on this classification, this thesis work
touches on both of these graph query processing aspects: it mainly focuses on navigation,
but also aims to incorporate pattern matching-style features, such as projection, filtering
and negative conditions.

6.1.1 Query languages

While this thesis discusses openCypher queries, its approach could be adapted to other
declarative property graph languages. Here, we examine the state-of-the-art property
graph query languages today with a focus on their features related to search-based query
processing. Many languages offer (at least partial) support for regular path queries
(RPQs) [63, 6] that allow users to express complex traversals. While local search-based
algorithms are a good fit for evaluating RPQs, very little research was conducted for
applying about the intersection of local search algorithms and RPQs [22].

openCypher and Cypher 10

Cypher 10 [46, 5] is the next release of the Cypher language, scheduled for release in 2018.
Key novelties in Cypher 10 will include support for support for multiple graphs, subqueries
and relational path queries. Subqueries can be tackled efficiently using a local-search based
approach, as already demonstrated by existing systems such as Viatra [59].

Existing implementations use different approaches to represent Cypher queries. The
Cypher engine in the Neo4j database uses logical plans that consist of mostly rela-
tional algebraic operators with a few graph-specific extensions, most notably Expand and
VarExpand [55]. For optimization, the planner follows an approach similar to the dynamic
programming algorithm of System R [49].
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As part of the openCypher project, QUIL (query intermediate language) was pro-
posed as a model to represent Cypher queries in a compact and portable way [41]. The
idea of QUIL is to create a dataflow dependency graph of building blocks, each of which de-
scribes a query part using a declarative syntax similar to the constraints used by the search
planner (see Section 5.3 for the mapping from graph relational algebra to constraints1).
The dataflow dependency graph requires as few ordering between building blocks as possi-
ble, which makes this representation more “planner-friendly”, i.e., it is easier to optimize
than relational algebra-based representations.

The Cypher for Apache Spark project (abbrev. CAPS) [38] uses a building block-
based approach inspired by QUIL. It then transforms the intermediate representation to
Spark’s DataFrames API and uses Spark’s query planner, Catalyst for optimization [29].

PGQL

PGQL [57] is “an SQL-like query language for property graph”2 developed by Oracle Labs.
It mixes graph query features such as pattern matching for vertices, edges and paths with
SQL-like capabilities such as aggregation and ordering. It also supports RPQs, multiple
graphs and temporal data types.

G-CORE

G-CORE [5] is a language developed by the Linked Data Benchmark Council’s [7] Query
Language task force. G-CORE has many similarities to cutting-edges industrial graph
query languages (including ASCII-art syntax and support for regular paths queries), but
has a few distinguishing features:

1. It handles paths as first class citizens. According to the typical definition, a graph
consists of vertices and edges, i.e., G = (V,E), plus their labels and properties.
In contrast, G-CORE uses the concepts of path property graph, defined as a set of
vertices, edges and paths, i.e., G = (V,E, P ), with paths also having their own labels
and properties.

2. It is designed to support composability, therefore the output of a graph query is a
graph (and not a table as in Cypher, PGQL, etc.).

Up to our best knowledge, the challenges introduced by these features have not yet
been investigated in the context of graph search algorithms. Also, as of 2017, G-CORE
does not yet have a reference implementation of any kind. Hence, adapting search-based
strategies to support (a meaningful subset of) the language with a prototype implemen-
tation demonstrating its usability and performance would yield a promising novel line of
research.

Gremlin

Gremlin [44] is a functional query language supporting both imperative and declarative
style queries, also allowing users to use a mix of the two manners. This way, users can

1It can be observed that the given %any-node(v) construct of QUIL corresponds to the Vertex(v)
constraint of our approach and where connected(v, e, w) – with given v, e and w variables – to
... (w)

(v) [e].
2http://pgql-lang.org/
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formulate queries with the approach that best fits their needs: imperative for low-level
optimizations and declarative with a runtime query planner.

GraphScript

GraphScript [39] is SAP’s high-level imperative language for defining analytical workloads
and graph traversals. Due to its imperative nature, the search plan is explicitly specified
in the implementation, which leaves little chance for applying sophisticated optimization
methods.

6.1.2 Query engines

Neo4j [31] is arguably the most popular graph database [11]. It uses a mix of search-based
and relational approaches: its “expand” operator is supported by and efficient indexing
and storage layer, while many of its operators (e.g., aggregation, filtering) are purely
relational.

The SAP HANA database provides a Graph Extension [45] that is able to evaluate
queries in openCypher and GraphScript.

Graphflow [23] is an active graph database, developed at the University of Waterloo.3
It uses a relational engine based that calculates non-incremental queries using the Generic
Join algorithm [36] and also supports incremental (active) queries with the Delta Generic
Join algorithm [4].

GRAPE (Graph Rewriting and Persistence Engine) is a domain-specific language
embedded to Clojure, that generates Cypher code from the query specification.

6.2 Search-based graph queries

6.2.1 Database technologies

Although the term local search is seldom used, similar techniques are present in the
database research community.

Trinity is a prototype engine, developed by Microsoft Research [64], operating on
the RDF data model [62]. It evaluates queries in a distributed in-memory execution
environment. It uses a technique called graph exploration, which is similar to local search.

Zhao et al. [65] proposed a sophisticated query optimization method for graph queries.
The optimization uses neighborhood and path analysis for speeding up the queries. Krause
et al. [25] defined a SQL-based query language for graph pattern matching. For evaluating
graph queries, their approach uses the SAP HANA database, including its optimization
engine.

6.2.2 Model-driven technologies

FunnyQT [21] is a local search-based model query and transformation engine. Similarly
to the implementation of this thesis work, FunnyQT is also built on Clojure. It does not

3http://graphflow.io/
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use a planner as the search plan is determined by the order of vertex and edges symbols
in the pattern specification.

The rest of this subsection discusses earlier local search-based approaches and is based
on the related work section of paper [54] by Gábor Szárnyas et al.

The Fujaba [37] graph transformation tool performs local search starting from the ver-
tex selected by the system designer and extends the matching step-by-step by neighboring
vertices and edges. Fujaba fixes a single, breadth-first traversal strategy at compile-time,
using simple heuristics, e.g., that navigation along an edge with an at most one multiplicity
constraint precedes navigations along edges with arbitrary multiplicity.

PROGRES [48] uses a sophisticated cost model for basic operations and generates the
search plan at compile-time by a greedy algorithm. GrGen.NET [17] provides a dynamic,
runtime optimization engine, which uses a mix of heuristical and cost-based techniques [17].

6.3 Train Benchmark in the Transformation Tool Contest

The Train Benchmark [53] (Section 2.2) was presented as a case for contestants at the 2015
Transformation Tool Contest by Gábor Szárnyas et al. [52]. The case authors provided a
Viatra (then called EMF-IncQuery) solution with an incremental and a search-based
implementation. Contestants provided solutions with various model transformation tools
in the model-driven engineering community (ATL, FunnyQT, NMF, and SIGMA), many
of which used search-based algorithms and tackled the problem efficiently.
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Chapter 7

Summary and future work

In this thesis, we investigated the applicability of search-based pattern matching on
openCypher property graph queries. In this chapter, we first summarize our theoreti-
cal contributions and practical accomplishments, then outline future research directions.

Theoretical contributions

• We studied the dynamic-programming based model-sensitive planning algorithm by
G. Varró et al. [61]. We identified adaptation challenges that prevent straightforward
applicability of this algorithm for property graph queries (Section 3.1–3.1).

• We suggested improvements to the original algorithm and presented an example
which showcases the superiority of our approach (Section 3.3).

• We extended the set of constraints and operations used to capture query seman-
tics and generate high-quality search plans. We incorporated these changes to the
planner algorithm to support property graph queries (Chapter 4).

• We defined a mapping from relational graph algebra to the extended set of constraints
(Section 5.4–5.3).

Practical accomplishments

• Implemented the planner algorithm in Clojure (Section 5.2).

• Conducted performance experiments to assess the performance of the planning and
evaluation on three queries of the Train Benchmark framework [53] (Section 5.5).

We believe that this work opens up interesting future research directions and po-
tential collaboration between the graph database and model-driven engineering research
communities. In particular, we propose the following research questions for future work:

• How to mix relational operators, such as left outer join aggregation, union, sorting
and limiting, with search-based pattern matching?1

1Some of these operators, such as aggregation, require a data model that supports multiset semantics,
while others require list semantics. Graph search algorithms typically operate on sets, so combining them
with relational operators that use multiset or list semantics is not yet investigated in depth.
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• How to support nested data structures of the data model, such as lists and maps,
along with nesting and unnesting constructs of the query language2 using search-
based query engines?

• How to create an efficient query plan for regular path queries (RPQs) for search-
based evaluation?

2For example, Cypher’s collect() function and UNWIND clause.
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Appendix

A.1 Generalized cost function

The monotonic cost function has been originally defined as

cn =

n∑
i=1

i∏
j=1

wj

We’ve seen that this function can be computed iteratively by

c0 = 0, p0 = 1, ci = ci−1 + pi, pi = pn−1wi

where w is the operation’s weight. One can also see that it can be sliced up into multiple
iteratively computable parts:

n∑
i=1

i∏
j=1

wj =
k∑

i=1

i∏
j=1

wj +
n∑

i=k+1

i∏
j=1

wj

=

k∑
i=1

i∏
j=1

wj +

k∏
j=1

wj

n∑
i=k+1

i∏
j=k+1

wj

which gives the recursive definition:

i, k, n ∈ N, i ≤ k < n

cii = 0, pii = 1, pii−1 = cii−1 = wi

cni = cki + pki c
n
k , pni = pki p

n
k

Now, we can introduce arbitrarily partitioned composite operations, which will prove useful
for subqueries:

ci = ci−1 + piσi, pi = pi−1wi

We call w and σ the operation’s weight and cost respectively.

A.2 ActiveRoute evaluation with costs
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A.3 Source code of the traversal

The Clojure source code of the execution engine is included hereby.

(ns sre.execution.executor
(:require [clojure

[set :refer :all]
[zip :as z]]
[clojure.algo.generic.functor :refer :all]
[sre.core :refer :all]
[sre.plan.task :refer [ISearch search]]
[clojure.pprint :as pprint])

(:refer-clojure :exclude [name])
(:import [clojure.lang LazySeq PersistentList]))

(defrecord ZipperNode [variables ctx ^PersistentList left])
(def search-tree-zipper

(partial z/zipper
(fn [^ZipperNode node] (some? (:left node)))
(fn [^ZipperNode node]

(let [[first & rest] (:left node)
heads (search (:type first) (:bindings first)

(:variables node) (:ctx node))
children (map #(->ZipperNode %1 (:ctx node) rest) heads)]

(if-not (empty? children) children))) ; convert empty list to nil or
else strange things happen :(↪→

(fn [^ZipperNode _ ^LazySeq c] c)))
(def dft (partial iterate #(p :next (z/next %))))
(def take-until-end (take-while (complement z/end?)))
(def filter-leaf (filter #(or (false? (z/branch? %))

(empty? (z/children %)))))
(def filter-complete (filter #(-> % z/node :left nil?)))
(def map-variables (map #(-> % z/node :variables)))
(defn remap-keys [m key-map] (reduce-kv (fn [a k v] (assoc a (key-map k) v)) {} m))
(defn rebind-variables [variables bindings key-map]

(-> variables (select-keys bindings) (remap-keys key-map)))
(defn conj-step-search [this bindings variables ctx]

(let [{subtasks :subtasks outer-vars :outer-vars inner-vars :inner-vars} this
key-map (zipmap bindings outer-vars)
variables (rebind-variables variables bindings key-map)
find-matches (fn [x] (eduction take-until-end

filter-leaf
filter-complete
map-variables

(map #(p :rebind-vars (rebind-variables % outer-vars
(map-invert key-map))))↪→

(dft x)))]
(find-matches (search-tree-zipper (->ZipperNode variables ctx subtasks)))))
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