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Kivonat

A lekérdezések központi szerepet játszanak az adatvezérelt alkalmazásokban. A mo-
dellvezérelt szoftvertervezés (model-driven engineering, MDE) eszközei és transzfor-
mációi ersen támaszkodnak a modell-lekérdezések hatékony kiértékelésére. A szoft-
vermodellek mérete és komplexitása intenzíven n, ezért a jelenlegi MDE eszközökkel
gyakran komoly skálázhatósági problémák merülnek fel, amelyek csökkentik a fejlesz-
tés hatékonyságát és növelik annak költségeit.

A skálázhatósági kérdések központi témája az adatbázis-kezelés területén végzett ku-
tatásoknak. A NoSQL rendszerek részben megoldást kínálnak több kapcsolódó problé-
mára, de cserébe le kell mondanunk az SQL rendszerek által biztosított deklaratív ad-
hoc lekérdezések erejérl. A NoSQL rendszerek modellvezérelt alkalmazásokban történ
közvetlen alkalmazása jelenleg is nyitott kutatási kérdés, az ezekben futtatott lekérde-
zések ugyanis jelentsen bonyolultabbak, mint az általános adatbázis-kezel alkalmazá-
sokban használtak.

Diplomatervem célja, hogy az EMF-INCQUERY-ben alkalmazott inkrementális gráf-
mintailleszt technikákat elosztott, felhalapú infrastruktúrára adaptáljam. Bemutatok
egy olyan újszer architektúrát, amely elosztott, skálázható módon alkalmas lekérdezé-
sek inkrementális kiértékelésére. Az architektúra prototípusa, az INCQUERY-D rend-
szer képes egyetlen számítógéptl egy többgépes fürtig skálázódni, így képes nagy mo-
delleken komplex lekérdezések hatékony futtatására. Az INCQUERY-D további elnye,
hogy a lekérdezmotor független a mögöttes adatbázis adatmodelljétl.

Az elképzelés mködképességét mérési eredményekkel igazoltam egy RDF- és egy grá-
falapú adatbázis rendszerrel. Az eredmények bizonyítják, hogy az inkrementális lekér-
dezési technikák képesek hatékonyan mködni elosztott környezetben is.
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Abstract

Queries are the foundations of data intensive applications. In model-driven software
engineering (MDE), model queries are core technologies of tools and transformations.
As software models are rapidly increasing in size and complexity, traditional MDE
tools frequently exhibit scalability issues that decrease productivity and increase costs.

While such scalability challenges are a constantly hot topic in the database community
and recent efforts of the NoSQL movement have partially addressed many shortcom-
ings, this happened at the cost of sacrificing the powerful declarative ad-hoc query ca-
pabilities of SQL. Unfortunately, this is a critical problem for MDE applications, as their
queries can be significantly more complex than in general database applications. The
applicability of NoSQL databases in MDE applications is subject for future research.

In my thesis, I aim to address this challenge by adapting incremental graph search
techniques, known from the EMF-INCQUERY framework, to a distributed cloud in-
frastructure. I present a novel architecture for distributed, scalable incremental query
evaluation. INCQUERY-D, the prototype system can scale up from a single node to
a cluster of nodes that can handle very large models and complex queries efficiently.
INCQUERY-D is a backend-agnostic system, meaning that its query engine is indepen-
dent from the data model of the underlying database.

The feasibility of the approach is supported by early experimental results with both an
RDF and a graph database backend. The results prove that incremental query evalua-
tion techniques can work efficiently in a distributed environment as well.
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Chapter 1

Introduction

1.1 Context

Model-driven software engineering (MDE) plays an important role in the development
processes of critical embedded systems1. Advanced modeling tools provide support
for a wide range of development tasks such as requirements and traceability manage-
ment, system modeling, early design validation, automated code generation, model-
based testing and other validation and verification tasks.

Models representing sensor data, reverse engineered software models (e.g. abstract
syntax trees of existing source code) and geospatial models can contain well over 109

modeling elements [72]. The dramatic increase in complexity is also affecting critical
embedded systems in recent years. Modeling toolchains are facing scalability chal-
lenges as the size of design models constantly increases, and automated tool features
become more sophisticated.

1.2 Problem Statement and Requirements

Many scalability issues can be addressed by improving query performance. Incremental
evaluation of model queries aims to reduce query response time by limiting the impact
of model modifications to query result calculation. Such algorithms work by either (i)

1Section 1.1 and Section 1.2 are based on our earlier publication [55]. This thesis builds on the foun-
dations of [55] and significantly extends them in both theory and practice, as detailed at the end of
Section 6.1.
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building a cache of interim query results and keeping it up-to-date as models change
(e.g. EMF-INCQUERY [36]) or (ii) applying impact analysis techniques and reevaluat-
ing queries only in contexts that are affected by a change (e.g. the Eclipse OCL Impact
Analyzer [48]). This technique has been proven to improve performance dramatically
in several scenarios (e.g. on-the-fly well-formedness validation or model synchroniza-
tion), at the cost of increasing memory consumption. Unfortunately, this overhead is
combined with the increase in model sizes due to in-memory representation (found in
state-of-the-art frameworks such as EMF [76]).

In practice, these scalability problems imply that the users are forced to either split the
model into smaller models and handle them separately or cope with the slow query
and transformation performance. Both reduce the productivity advantages offered by
model-driven design.

A trivial solution would be to increase the amount of available memory. However, the
Garbage Collector (GC) used in most modern programming languages, including Java,
cannot handle heap sizes larger than 10 GB efficiently, thus introducing long pauses in
the application [26]. Of course, this problem is well-known in the Java community.
There are alternative Java Virtual Machines (JVMs) with specialized Garbage Collec-
tors, like Azul Systems’ JVM. However, the Azul JVM is a proprietary product and has
specific hardware requirements. Also, this does not solve the scaling problem entirely
– the model size is still limited by the total amount of memory in a single computer.

An alternative approach to tackling MDE scalability issues is to make use of advances
in persistence technology. As the majority of model-based tools uses a graph-oriented
data model, recent results of the NoSQL and Linked Data movement [65, 1, 2] are
straightforward candidates for adaptation to MDE purposes. Unfortunately, this idea
poses difficult conceptual and technological challenges: (i) property graph databases
lack strong metamodeling support and their query features are simplistic compared to
MDE needs, and (ii) the underlying data representation format of semantic databases
(RDF [49]) has crucial conceptual and technological differences to traditional meta-
modeling languages such as Ecore [76]. Additionally, while there are initial efforts to
overcome the mapping issues between the MDE and Linked Data worlds [53], even
the most sophisticated NoSQL storage technologies lack efficient and mature support
for executing expressive queries incrementally.
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1.3 Objectives and Contributions

We aimed to address the scalability challenge of MDE by adapting incremental graph
search techniques from EMF-INCQUERY to the cloud infrastructure—instead of ver-
tical scaling (putting more resources in the same workstation), we decided to opt for
horizontal scaling (using multiple computers).

On the theoretical side, we adopted EMF-INCQUERY’s existing incremental pattern
matching algorithm, the Rete algorithm. We extended the algorithm to work in a dis-
tributed environment and designed a novel architecture, which is capable of loading,
transforming and incrementally querying models, while utilizing the total amount of
memory in the cluster.

To build a scalable incremental query engine, we needed a distributed software stack.
This included a distributed database management system and a messaging frame-
work. We defined the evaluation criteria for these systems and evaluated them ac-
cordingly. Based on the architecture and the pattern matcher algorithm, we built a
system prototype and compared its performance to existing tools.

We extended an existing benchmark environment to evaluate the scalability character-
istics of the system and conducted benchmarks with different storage backends and
query engines.

1.4 Structure of the Thesis

The thesis is structured as follows. Chapter 2 introduces the background tech-
nologies and the motivation for building a distributed, incremental graph pattern
matcher. Chapter 3 provides an overview of a single-node incremental pattern macher,
EMF-INCQUERY, and details the architecture of a distributed approach, INCQUERY-D.
Chapter 4 shows an initial performance evaluation in the context of on-the-fly well-
formedness validation of software design models. Chapter 5 discusses the related
work. Chapter 6 concludes the thesis and presents our future plans.

12



Chapter 2

Background Technologies

Developing a scalable graph pattern matcher requires a wide range of technologies.
Careful selection of the technologies is critical to the success of the project. For
INCQUERY-D, we looked for technologies that can form the building blocks of a dis-
tributed, scalable model repository and pattern matcher. The potential technologies
are the ones that were designed with scalability in mind and have been deployed in
large-scale distributed systems successfully.

Usually, instance models are graph-like data structures. Therefore, we looked for
scalable graph databases. In this context, scalability requires distributed storage and
querying capabilities.

During the early phase of our research, we studied the architecture and limitations of
the candidate systems. For databases, we inspected the data sharding strategies, con-
sistency guarantees and transaction capabilities, along with the API and query meth-
ods. We also checked the support for asynchronous processing, notification and mes-
saging mechanisms.

In this chapter, we introduce the concepts and technologies that can form the basis of
a scalable, distributed, asynchronous system.

2.1 Big Data and the NoSQL Movement

Since the 1980s, database management systems based on the relational data model [38]
dominated the database market. Relational databases have a number of important ad-
vantages: precise mathematical background, understandibility, mature tooling and so
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on. However, due to their rich feature set and the strongly connected nature of their
data model, relational databases often have scalability issues [59, 75]. They are typi-
cally optimized for transaction processing, instead of data analysis (see data warehouses
for an exception). In practice, these render them impractical for a number of use cases,
e.g. running complex queries on large data sets.

In the last decade, large organizations struggled to store and process the huge amounts
of data they produced. This problem introduces a diverse palette of scientific and
engineering challenges, called Big Data challenges.

Big Data challenges spawned dozens of new database management systems. Typically,
these systems broke with the strictness of the relational data model and utilized sim-
pler, more scalable data models. These systems dropped support for the SQL query
language used in relational databases and hence were called NoSQL databases1 [19].
Because relational databases are not suitable for large-scale model-driven applications,
we experimented with numerous NoSQL databases.

2.2 Concepts

This section introduces the most important concepts used in this thesis.

2.2.1 Graph Data Models

Along the well-known and widely used relational data model, there are many other
data models. NoSQL databases are often categorized based on their data model (e.g.
key–value stores, document stores, column families). In this thesis, we focus on graph
data models.

The graph is a well-known mathematical concept widely used in computer science.
For our work, it is important to distinguish between different graph data models.

The most basic graph model is the simple graph, formally defined as G = (V,E), where
V is the set of vertices and E ⊆ V ×V is the set of edges. Simple graphs are sometimes
referred as textbook-style graphs because they are an integral part of academic litera-
ture. Simple graphs are useful for modeling homogeneous systems and have plenty of
algorithms for processing.

1The community now mostly interprets NoSQL as ”not only SQL”.
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Directed graph

Labeled graph

Semantic graphTyped graph Property graph

Add edge labels

Simple graph

Add directionality

Add propertiesAdd types Make 
labels URIs

Figure 2.1. Different graph data models (based on [71])

Simple graphs can be extended in several different ways (Figure 2.1). To describe the
connections in more detail, we may add directionality to edges (directed graph). To
allow different connections, we may label the edges (labeled graph).

Typed graphs introduce types for vertices. Property graphs (sometimes called attributed
graphs) add even more possibilites by introducing properties. Each graph element,
both vertices and edges can be described with a collection of properties. The properties
are key–value pairs, e.g. type = ’Person’, name = ’John’, age = 34. Semantic
graphs use URIs (Uniform Resource Identifiers) instead of labels, otherwise they have
similar expressive power as labeled graphs.

Graph models are present in many languages and environments. In the following, we
will present the ones most important for this thesis: the Ecore metamodeling language,
the TinkerPop framework and the Resource Description Framework (RDF).

Metamodeling

Metamodeling is a methodology for the definition of modeling languages. A meta-
model specifies the abstract syntax (structure) of a modeling language. Metamodels
are expressed using a metamodeling language that itself is a modeling language. The
metamodel can also be interpreted as the object-oriented data model of the language
under design. Metamodeling can be viewed as the grammar for a typed property graph,
so the created models are both typed graphs and property graphs.

15



Ecore

Figure 2.2. The Ecore kernel, a simplified subset of the Ecore metamodel

Ecore is the metamodeling language used by EMF. It has been developed in order to
provide an approach for metamodel definition that supports the direct implementation
of models using a programming language. The main rationale in introducing Ecore
separately that it is the de facto standard metamodeling environment of the industry,
and several domain-specific languages are defined using this formalism.

Figure 2.2 illustrates the core elements of the Ecore approach. The full metamodel
can be found in the EMF documentation [40]. The most important elements are the
following.

• EClass models classes (or concepts). EClasses are identified by name and can
have several attributes and references. To support inheritance, a class can refer to
a number of supertype classes.

• EAttribute models attributes, that contain data elements of a class. They are
identified by name and have a data type.

• EDataType is used to represent simple data types that are treated as atomic
(their internal structure is not modeled). Data types are also identified by their
name.

• EReference represents a unidirectional association between EClasses and is
identified by a name. Lower and upper multiplicities can be specified. It is also
possible to mark a reference as a containment that represents composition relation
between elements. If a bidirectional association is needed, it should be modeled
as two EReference instances that are mutually connected via their opposite ref-
erences.
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The rest of the details of Ecore has been ommitted for the sake of clarity, see [40] for
further reference.

TinkerPop framework

Figure 2.3. The TinkerPop software stack [11]

The TinkerPop framework is an open-source software stack for graph storage and
processing [28]. TinkerPop includes Blueprints, a property graph model interface.
Blueprints intends to fulfill the same role for graph databases as JDBC does for re-
lational databases. Most NoSQL graph databases implement the property graph in-
terface provided by Blueprints, including Neo4j (Section 2.3.2), Titan (Section 2.3.3),
DEX [24], InfiniteGraph [20] and OrientDB [21].

TinkerPop also introduces a graph query language, Gremlin. Gremlin is a domain-
specific language based on Groovy, a Java-like dynamic language which runs on the
Java Virtual Machine. Unlike most query languages, Gremlin is an imperative lan-
guage with a strong focus on graph traversals.

Gremlin is based on Pipes, TinkerPop’s dataflow processing framework. Besides
traversing, Gremlin is capable of analyzing and manipulating the graph as well.
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TinkerPop also provides a graph server (Rexster), a set of graph algorithms tailored
for property graphs (Furnace) and an object-graph mapper (Frames). The TinkerPop
software stack is shown in Figure 2.3.

Resource Description Framework

The Resource Description Framework (RDF) is a family of W3C (World Wide Web
Consortium) specifications originally designed as a metadata data model.

The RDF data model is based on the idea of making statements about resources in the
form of triples. A triple is a data entity composed of a subject, a predicate and an object,
e.g. ”John instanceof Person”, ”John is 34”.

Triples are typically stored in triplestores, specialized databases tailored to store and
process triples efficiently. Also, some triplestores are capable of reasoning, i.e. inferring
logical consequences from a set of facts or axioms. Triplestores are mostly used in
semantic technology projects.

Triplestores are usually queried via the RDF format’s query language, SPARQL (recur-
sive acronym for SPARQL Protocol and RDF Query Language).

The RDF data model is capable of expressing semantic graphs. Although the seman-
tic graph data model has less expressive power than the property graph data model,
by introducing additional resources for each property, a property graph can be easily
mapped to RDF.

Mapping Ecore to Other Data Models

Our intention to reuse EMF-INCQUERY for building INCQUERY-D required us to map
EMF’s metamodel, Ecore to the domain of property graphs and RDF models.

Ecore concept Property graph concept RDF concept
EClass instance nodes’ type property rdfs:Resource
EAttribute instance nodes’ property names rdf:Property
EReference instance edge label rdf:Property
EDataType instance Java primitive types rdfs:Datatype

Table 2.1. Mapping Ecore to property graphs and RDF

Table 2.1 shows a mapping from the concepts defined in Ecore to other modelling do-
mains.
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2.2.2 Sharding

To provide scalable persistence and processing for large amounts of data, the data has
to be split between multiple computers. This process is known as data sharding. Graph
sharding is a particularly difficult problem due to the strongly connected and mutable
nature of graphs. Efficient sharding of graphs is still an open research area [60].

Server 1 Server 2 Server 3Server 1 Server 2 Server 3 Server 1 Server 2 Server 3

1 2 3

Figure 2.4. Different partitionings of the same graph

To illustrate the problem, Figure 2.4 shows different partitionings of the same graph
in a three-node cluster. In case 1 most edges run between the servers and are there-
fore expensive to traverse. In case 2 , Server 2 is overloaded, taking more than three
quarters of the total load. Case 3 presents a more balanced sharding of the graph.
Unfortunately, for large graphs, balanced sharding is hard to achieve in practice.

Most graph partition problems are NP-hard and practical solutions to these problems
could be derived using heuristics and approximation algorithms [44]. Unfortunately,
open-source database implementations lack support for such algorithms.

2.2.3 Query Languages and Evaluation Strategies

In the context of this thesis, a query defines a graph pattern. The result of the query is a
set of subgraphs of the original graph. Graph patterns are useful for identifying patterns
in a set of connected data elements. They are especially widely used in the context
of model-driven engineering for formulating well-formedness validation constraints
(usually by defining patterns that violate these constraints) and graph transformations.

Query Language

Queries can be defined in both imperative and declarative languages. The theoretical
basis for most declarative query languages is first order logic. Both tuple relational
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calculus and relational algebra (widely used in query processing) are offshoots of first-
order logic.

As mentioned earlier, unlike most query languages, Gremlin is an imperative query
language describing graph traversals. For example, if John’s father is Jack and Jack’s
father is Scott, we may run the traversals shown on Listing 2.1.

1 gremlin> g.V(’name’, ’John’).out(’father’)

2 ==>Jack

3 gremlin> g.V(’name’, ’John’).out(’father’).out(’father’)

4 ==>Scott

Listing 2.1. Simple Gremlin queries

Query Evaluation Strategies

Query engines can be divided into two core categories: search-based and incremental
engines. The main difference between these approaches is the way they reevaluate
queries. While search-based engines process the whole data set (i.e. not just the data
elements affected by the change), incremental engines utilize some data structures to
be able to reevaluate the query based on the change set.

2.3 Graph Storage Technologies

In this section, we compare different graph storage technologies by systematically dis-
cussing their architecture and data model. We inspect their sharding strategies for dis-
tributed storage. We also present their query languages and evaluation strategies, with
particular emphasis on the support of distributed operations.

2.3.1 EMF Technologies

Eclipse is a free, open-source software development environment and a platform for
plug-in development. Eclipse comes with its own modeling technologies called EMF
(Eclipse Modeling Framework). EMF’s primary goals are application design and code
generation.
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Architecture

EMF models can be persisted as XMI (XML Metadata Interchange) documents. By
design, EMF models cannot be fragmented, i.e. they can only be used if they fit to
a computer’s main memory. There are different model repositories and persistence
frameworks which can handle large EMF models [73].

• CDO (Connected Data Objects), a distributed shared model framework for EMF
models and metamodels [42]. CDO provides an object-relational mapping from
Ecore to databases.

• Morsa [66] is a distributed model repository based on MongoDB [17], a popular
NoSQL database management system.

• Neo4EMF [30] provides a persistence framework based on Neo4j. It implements
an on-demand loading approach which separates EObjects and their data fields,
only instantiating the latter if they are accessed by a query.

Data Model

EMF uses the Ecore data model, discussed in Section 2.2.1.

Sharding

Due to the nature of XML documents, EMF models serialized to a single XMI document
cannot be sharded. CDO and Neo4EMF do not support automatic sharding, however
Morsa does so by using MongoDB’s sharding mechanism.

Query Language and Evaluation

OCL OCL (Object Constraint Language) is a declarative query language to describe
well-formedness constraints on UML models. These expressions typically specify in-
variant conditions that must hold for the system being modeled or queries over objects
described in a model.
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EMF-INCQUERY EMF-INCQUERY [35] is an Eclipse project developed by the Fault
Tolerant Systems Research Group in the Budapest University of Technology and Eco-
nomics. It provides IQPL (INCQUERY Pattern Language), a declarative language to
express queries over EMF models in the form of graph patterns. With the language
the user can express combined queries, negative patterns, property conditions, simple
calculations, calculate disjunctions and transitive closures, etc. on top of the models.
The goal of EMF-INCQUERY is to provide incremental query evaluation.

Our research work builds on EMF-INCQUERY, both in theory and practice. We used
the Rete algorithm (Section 3.2) which allowed us to reuse some of the existing code
base. We also utilized the methodology and environment, originally used to bench-
mark EMF-INCQUERY (Section 4.2).

2.3.2 Neo4j

Neo4j, developed by Neo Technology, is the most popular NoSQL graph database.
Neo4j is one of the most mature NoSQL databases. It is well documented and provides
ample tooling, including an Eclipse-based visualization application, Neoclipse [18].

Architecture

Neo4j can be deployed in two scenarios. In embedded mode, it runs in the same JVM
(Java Virtual Machine), as the client application. In this setup, the database cannot be
accessed by other applications. In server mode, the database can serve requests from
multiple clients over a REST (Representational State Transfer) interface.

Data Model

Neo4j implements the TinkerPop framework’s Blueprints property graph data model.
Neo4j is capable of loading graphs from GraphML [25] and Blueprints GraphSON [13]
formats (see Section A.1 for examples).

Sharding

Instead of sharding, Neo4j only supports replication of data to create a highly available
cluster. This implies serious scalability limitations to the system. As of December 2013,
the development team of Neo4j is currently working on improving the scalability of
the database in an ongoing project called Rassilon [3].
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Query Language and Evaluation

Neo4j can be queried in various ways. When deployed in embedded mode, the ap-
plication can use its Java-based core API. In both embedded and server mode, Neo4j
provides two query languages. The first is the TinkerPop framework’s imperative lan-
guage, Gremlin, primarily targeted for graph traversals. The second is Neo4j’s own
declarative query language for graph pattern matching, Cypher.

2.3.3 Titan

Titan is a distributed, scalable graph database from Aurelius, the creators of the Tin-
kerPop framework. To understand Titan’s complex architecture, we present two addi-
tional concepts: the MapReduce paradigm and the column family data model.

Asynchronous Parallel Processing with MapReduce The MapReduce paradigm de-
fines a parallel, asynchronous way of processing the data. As the name implies,
MapReduce consists of two phases: the map function processes each item of a list.
The resulted list is then aggregated by the reduce function. MapReduce is often used
for sorting, filtering and aggregating data sets. It is also used for fault-tolerant, dis-
tributed task execution.

The Column Family Data Model A column family is similar to a table of a relational
database: it consists of rows and columns. However, unlike in a relational database’s
table, the rows do not have to have the same fixed set of columns. Instead, each row
can have a different set of columns. This makes the data structure more dynamic and
avoids the problems associated with NULL values.

Architecture

Titan is not a standalone database, instead, it builds on top of existing NoSQL database
technologies and leverages Hadoop’s MapReduce capabilities. Titan supports various
storage backends, including Cassandra and HBase. In the following, we shortly cover
the technologies Titan builds upon. Both Titan and its dependencies are open-source
software, written in Java.
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Hadoop Hadoop is a distributed data processing framework inspired by Google’s
publications about MapReduce [39] and the Google File System [47]. Originally devel-
oped at Yahoo!, Hadoop is now an Apache project [7]. Like Google’s systems, Hadoop
is designed to run on commodity hardware, i.e. server clusters built from commercial
off-the-shelf products. Hadoop provides a distributed file system (HDFS) and a col-
umn family database (HBase). A typical Hadoop cluster consists of a single master
node which is responsible for the coordination of the cluster and worker nodes which
deal with the data processing. The MapReduce job is coordinated by the master’s job
tracker and processed by the slave nodes’ task tracker modules (Figure 2.5).

Figure 2.5. Hadoop’s architecture [62]

HDFS The Hadoop Distributed File System (HDFS) is a distributed file system, in-
spired by the Google File System and written specifically for Hadoop [7]. Unlike
other distributed file systems (e.g. Lustre [16]), which require expensive hardware
components, HDFS was designed to run on commodity hardware. HDFS tightly in-
tegrates with Hadoop’s architecture (Figure 2.5). The name node is responsible for stor-
ing the metadata of the files and the location of the replicas. The data is stored by the
data nodes.

HBase HBase [8] is a distributed column family database. It is developed as part of
the Hadoop project and runs on top of HDFS. The tables in an HBase database can
serve as the input and the output for MapReduce jobs running in Hadoop.
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Cassandra Cassandra is one of the most widely used NoSQL databases [6]. Origi-
nally developed by Facebook [61], Cassandra is now an Apache project. Cassandra
is a column family database with advanced fault-tolerance mechanisms. It allows the
application to balance between availability and consistency by providing tunable con-
sistency constraints. Cassandra is used mainly by Web 2.0 companies, including Digg,
Netflix, Reddit, SoundCloud and Twitter. It is also used for research purposes at CERN
and NASA [22].

Data Model



































               

 



   



   



  



  



   

Figure 2.6. Graph vertex mapped by Titan to a row in a Cassandra database

To store the graph, Titan maps each vertex to a row of a column family (Figure 2.6).
The row stores the identifer and the properties of the vertex, along both the incoming
and outgoing edges’ identifiers, labels and properties.

Sharding

Titan uses the storage backend’s partitioner, e.g. Cassandra’s hash-based RandomPar-
titioner to shard the data. A more sophisticated partitioning system that will allow
for partitioning based on the graph’s static and dynamic properties (its domain and
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connectivity, respectively) is under implementation as of December 2013, but not yet
available.

Query Language and Evaluation

Titan supports the TinkerPop framework’s Gremlin query language. This implemen-
tation, Gremlin/Pipes, utilizes a depth-first search algorithm.

Faunus Although Titan was designed with scalability in mind, its query engine is
unable to cope with queries resulting in millions of graph elements. To address this
shortcoming, Aurelius developed a Hadoop-based graph analytics engine, Faunus.
Faunus has its own format called Faunus GraphSON. The Faunus GraphSON format
is vertex-centric: each row represents a vertex of the graph. This way, Hadoop is able
to efficiently split the input file and parallelize the load process. See Section A.1.3 for
an example of the Faunus GraphSON format. Unlike the Gremlin implementation in
Neo4j and Titan, the implementation in Faunus, Gremlin/Faunus, is based on breadth-
first search. It is important to note that Faunus always traverses the whole graph and
does not use its indices. This makes retrieving nodes or edges by type very slow (see
our typical workload in Section 3.4.2).

2.3.4 4store

4store is an open-source, distributed triplestore created by Garlik [4]. Unlike the other
tools discussed earlier, 4store is written in C. 4store is primarily applied for semantic
web projects.

Architecture

4store was designed to work in a cluster with high-speed networks. 4store server in-
stances are capable of discovering each other using the Avahi configuration protocol
[10]. 4store offers a command-line and an HTTP server interface.

Data Model

4store’s data model is an RDF graph. It supports the RDF/XML input format, which
is processed using the Raptor RDF Syntax Library [68].
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Sharding

Similarly to Titan’s partitioning, the segmenting mechanism in 4store distributes the
RDF resources evenly across the cluster. 4store also supports replication by mirroring
tuples across the cluster.

Query Language and Evaluation

4store uses the Rasqal RDF Query Library [69] to supports SPARQL queries.

2.3.5 Overview and Evaluation of Graph Storage Technologies

Tech-
nology Data model Distributed

operation Sharding Queries Identifier
generation

EMF Ecore Differs Differs OCL, IQPL Automatic
4store RDF Manual Automatic SPARQL Manual
Neo4j Property graph Manual Manual Cypher Manual
Titan Property graph Automatic Automatic Gremlin Automatic

Table 2.2. Overview of database technologies

Table 2.2 summarizes the relevant characteristics of the aforementioned database man-
agement systems. These characteristics are crucial for building a distributed pattern
matcher. According to these, Titan provides the most complete feature set. 4store and
Neo4j lack important features like automatic identifier generation, which has to be
implemented in the client application. Neo4j also misses automatic sharding, which
seriously hinders its scalability potential. EMF’s distributed operation and sharding
capabilities depend on the actual model repository and database backend being used.

2.4 Building Scalable Distributed Systems: Akka

Most distributed, concurrent systems use a messaging framework or message queue
service. The INCQUERY-D system also requires a distributed, asynchronous messaging
framework. For this purpose, we used the Akka framework.

Akka is an open-source, fault-tolerant, distributed, asynchronous messaging frame-
work developed by Typesafe [5]. Akka is implemented in Scala, a functional and
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Figure 2.7. Deploying a remote actor in Akka [5]

object-oriented programming language which runs on the Java Virtual Machine. Akka
provides language bindings for both Java and Scala.

Akka is based on the actor model [52] and provides built-in support for remoting.
Unlike traditional remoting solutions, e.g. Java RMI (Remote Method Invocation) and
CORBA (Common Object Request Broker Architecture), the remote and local interface
is the same for each actor. Actors have both a logical and a physical path (Figure 2.7).
This way, they can be transparently moved between machines on the network.

As of December 2013, the latest version (Akka 2.2) also supports pluggable transport to
use various transports to communicate with remote systems [5]. For serializing the
messages, Akka supports different frameworks, including Java’s built-in serialization,
Google Protobuf [23] and Apache Thrift [9].
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Chapter 3

Overview of the Approach

The primary goal of INCQUERY-D is to provide a scalable architecture for execut-
ing incremental queries over large models. Our approach is based on the follow-
ing foundations: (i) a distributed model storage system that (ii) supports a graph-
oriented data representation format, and (iii) a graph query language adapted from the
EMF-INCQUERY framework. The novel contribution of this thesis is an architecture
that consists of a (i) distributed model management middleware, and a (ii) distributed
and stateful pattern matcher network based on the Rete algorithm.

INCQUERY-D provides incremental query execution by indexing model contents and cap-
turing model manipulation operations in the middleware layer, and propagating change
tokens along the pattern matcher network to produce query results and query result
changes (corresponding to model manipulation transactions) efficiently. As the pri-
mary sources of memory consumption, i.e. both the indexing and intermediate Rete
nodes can be distributed in a cloud infrastructure, the system is expected to scale well
beyond the limitations of the traditional single workstation setup.

3.1 Incremental Query Evaluation

Some queries, e.g. well-formedness constraints in MDE are evaluated many times,
while the data set they are evaluated on only changes to a small degree. In these
cases, the idea of incremental query evaluation arises naturally: to speed up queries,
we should not start the evaluation all over again. Instead, we should rely on the (par-
tial) results derived during the previous executions of the query and process only the
changes that occured.
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In practice, incremental query evaluation algorithms typically use data structures for
caching the interim results. This means that they usually consume more memory, in
other words, they trade memory consumption for execution speed. This approach,
called space–time tradeoff, is well-known and widely used in computer science.

3.2 The Rete Algorithm

In the following, we provide an overview of the Rete algorithm, which forms the theo-
retical basis of EMF-INCQUERY and INCQUERY-D.

3.2.1 Incremental Pattern Matching Algorithms

Numerous algorithms were invented for the purpose of incremental pattern matching.
Mostly, these algorithms originate from the field of rule-based expert systems.

One of the most well-known is the Rete algorithm1, which creates a propagation net-
work. The network stores the partial matches found in the graph. The TREAT al-
gorithm [63] aims at minimizing memory usage, while having the same algorithmic
complexity as Rete. It stores only the input facts and the conflict sets, and does not
store partial pattern matches. Another candidate is the LEAPS algorithm [31], which is
claimed to provide better space–time complexity. However, we found that LEAPS is
difficult to understand and implement even on a single workstation, not to mention
the distributed case.

Rete has many improved versions (e.g. Rete II, Rete III, Rete-NT), however, unlike the
original algorithm, these are not publicly available. Because the original Rete algorithm
is well-understood by the EMF-INCQUERY team, we decided to build INCQUERY-D
on the same foundation. Experimenting with improved versions or alternative ap-
proaches is subject to future work.

3.2.2 Overview of the Rete Algorithm

The Rete algorithm was originally created by Charles Forgy [45] for rule-based expert
systems. Gábor Bergmann adapted the algorithm for EMF models and added many
tweaks and improvements to it [32].

1Rete is Latin for net.
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Figure 3.1. The structure of the Rete propagation network

The Rete algorithm defines an asynchronous network of communicating nodes (Fig-
ure 3.1). This is essentially a dataflow network. First, the network computes the set
of pattern matches in the graph. The main feature of the algorithm is that it is capable
of incrementally mainting the match set by propagating update messages (also known
as deltas, notification objects or tokens). Creating new graph elements (vertices or edges)
results in positive update messages, while removing graph elements results in negative
update messages.

The network consists of three types of nodes:

• Input nodes are responsible for indexing the model by type, i.e. they store the ap-
propriate tuples for the vertices and edges. The are also responsible for spawning
the update messages and propagating them to the worker nodes.

• Worker nodes perform a transformation on the output of their parent node(s) and
propagate the results. The worker nodes store partial query results in their own
memory (the details of this may vary depending on the implementation).

• Production nodes are terminators that provide an interface for fetching the queries’
results (the match sets) and also the queries’ change sets (the changes introduced
by the latest update message).
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3.2.3 Concepts in the Rete Algorithm

Here, we define the most important concepts in the Rete algorithm.

Data Representation

A tuple is an ordered list of elements, e.g. ⟨15, 23, 81, 2⟩, ⟨7, ′red′, true⟩ are tuples. The
Rete algorithm defined in [32] uses tuples to represent the vertices, edges and matches
of the (sub)patterns in the graph.

The items in a tuple are referenced by their index. Note that in our notation, the first
element has an index of 0. A pattern mask is an array of indices, µ = (µ0, µ1, . . . , µn−1),
which can be used to select certain elements in a tuple. For example, extracting the
items defined by the pattern mask µ = (1, 3) from tuple ⟨15, 23, 81, 2⟩ results in the
tuple ⟨23, 2⟩.

To use tuples for graph pattern matching, the vertices and edges in the graph have to
be mapped to tuples. In the following, we present these mappings, using the graph
in Figure 3.2 as an example. We presume that each vertex in the graph has a unique
identifier.

Segment

Id: 4
Segment_length: 56

Sensor

Id: 2

Route

Id: 1

TrackElement_sensor

Route_routeDefinitionSegment

Id: 3
Segment_length: 97

TrackElement_sensor

Figure 3.2. Example graph

Mapping Vertices to Tuples

A possible mapping of vertices is creating ⟨id , property value0, property value1, . . .⟩ tu-
ples. It is a common practice to store the tuples in different relations, each containing a
specific type:
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• Route = {⟨1⟩}

• Sensor = {⟨2⟩}

• Segment = {⟨3, 97⟩, ⟨3, 56⟩}

Here, the Segment relation consists of ⟨Id , Segment_length⟩ tuples. Note that the seman-
tics of the property values has to be stored separately from the tuples. This is closely
related to the concept of relational schemas in relational database design.

Mapping Edges to Tuples

Edges are mapped in a straightforward way: each (directed) edge is represented by a
⟨source vertex id , target vertex id⟩ pair. The edges on the example graph constitute the
following tuples:

• Route_routeDefinition = {⟨1, 2⟩}

• TrackElement_sensor = {⟨3, 2⟩, ⟨4, 2⟩}

In the following, we present the most common Rete nodes. We define each node’s
operation in relational algebra and also formulate the operations which are performed
upon receiving a positive or a negative update.

We use the conventional notations for the operations in relational algebra. These can
be found in any computer science textbook discussing relational database management
systems, e.g. [78].

3.2.4 Alpha nodes

Alpha nodes (Figure 3.3) have one input slot. They filter the content of the parent node
according to some criteria. In the following, the relation representing the input tuples
is denoted with r, the relation representing the output tuples is denoted with t. In
general, an alpha node performs an operation on the input relation:

t = α (r) .
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r

t

Alpha node

Figure 3.3. Graphical notation of an alpha node

If the alpha node receives an update ∆r, it performs the operation and computes the
change set. For positive updates, the result (t′) and the changeset (∆t) are:

t′ = α (r ∪∆r) = α (r) ∪ α (∆r) = t ∪ α (∆r) ⇒ ∆t = α (∆r) .

Similarly, for negative updates:

t′ = α (r \∆r) = α (r) \ α (∆r) = t \ α (∆r) ⇒ ∆t = α (∆r) .

Trimmer Node

The trimmer node is similar to the projection operation defined in relational algebra.
Specifically, if the pattern mask is denoted with λ, the result relation is

t = πR.λ0,R.λ1,...,R.λn−1 (r) .

Equality Node

The equality node checks whether certain elements in the tuple, selected by a pattern
mask µ are all equal:

t = σ(R.µ0=R.µ1)∧(R.µ0=R.µ2)∧...∧(R.µ0=R.µn−1) (r) .

Inequality Node

The inequality node works similarly to the equality node. However, it checks for tuples
where the selected elements (specified by µ1, µ2, . . .) are all different from the subject
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element (specified by µ0):

t = σ(R.µ0 ̸=R.µ1)∧(R.µ0 ̸=R.µ2)∧...∧(R.µ0 ̸=R.µn−1) (r) .

Predicate Evaluator Node

The result of the predicate evaluator node is defined as

t = σθ (r) ,

where the predicate θ is a propositional formula. The formula consist of atoms: bi-
nary operations (=, ̸=,≤, <,>,≥) between attributes and constants. The atoms are
connected by logical operators (∧, ∨ and ¬). This selects all tuples in r for which θ

holds.

3.2.5 Beta nodes

Mask λ
IX

s

IX

p

t

Beta node

Mask ρ

Figure 3.4. Graphical notation of a beta node

Beta nodes (Figure 3.4) have two input slots: the primary (p) and the secondary (s). Each
input slot has its own pattern mask: λ for the primary mask and ρ for the secondary
mask. Beta node implementations typically store the input relations in indexers (de-
noted with IX in the figure). The relation representing the result tuples is denoted with
t.
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Join Node

The join node implements the equijoin operation. This operation is often denoted simi-
larly to the natural join operation.

t = p ▷◁ s

The equijoin is determined by creating the Cartesian product of the relations and fil-
tering those tuples which are equal on the attributes defined by the pattern masks.

σ(P.λ0=S.ρ0)∧(P.λ1=S.ρ1)∧...(P.λn−1=S.ρn−1) (p× s)

The combined tuples are projected: from the attributes selected by the pattern mask,
we only keep the ones in p and drop the ones in s. If the join node is used to implement
a natural join operation, i.e. it joins the relations based on common attributes, the join
is defined as

p ▷◁ s = πP∪S
(
σ(P.λ0=S.ρ0)∧(P.λ1=S.ρ1)∧...(P.λn−1=S.ρn−1) (p× s)

)
,

where πP∪S denotes a projection operation which only keeps one of each common at-
tribute of the schemas over relations p and s.

Note that if the pattern masks are empty, the join operation is equivalent to creating
the Cartesian product of the relations. This may cause large (interim) results sets and
therefore, if possible, should be avoided. In query engine implementations, this is
usually assisted by query optimization techniques. Also, the user is sometimes forced
to reformulate her queries for better performance.

If the join node receives a positive update ∆p on the primary input slot, the result (t′) and
the change set (∆t) is determined as:

t′ = (p ∪∆p) ▷◁ s = (p ▷◁ s) ∪ (∆p ▷◁ s) = t ∪ (∆p ▷◁ s) ⇒ ∆t = ∆p ▷◁ s

If a positive update ∆s is received on the secondary input slot, the result and the change
set are:

t′ = p ▷◁ (s ∪∆s) = (p ▷◁ s) ∪ (p ▷◁ ∆s) = t ∪ (p ▷◁ ∆s) ⇒ ∆t = p ▷◁ ∆s
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For negative updates, the changeset is the same, but it is propagated as a negative update.
The result is t′ = t\(∆p ▷◁ s) and t′ = t\(p ▷◁ ∆s), for updates messages on the primary
and the secondary input slots, respectively.

Antijoin Node

The antijoin node implements the antijoin operation which collects the tuples from the
primary relation p which have no matching pair in the secondary relation s. The anti-
join operation may be expressed with the equijoin operation as follows:

t = p ▷ s = p \ πP (p ▷◁ s) ,

where πP denotes a projection operation which only keeps the attributes of the schema
over relation p.

As the antijoin operation is not commutative, handling the update messages requires
us to distinguish between the following cases:

• Update on the primary slot.

– Positive update: send a positive update for the incoming tuples for which
there are no matches on the secondary indexer.

t′ = (p ∪∆p) ▷ s = (p ▷ s) ∪ (∆p ▷ s) = t ∪ (∆p ▷ s) ⇒ ∆t = ∆p ▷ s

– Negative update: send a negative update with the tuples ∆t = ∆p ▷ s.

• Update on the secondary slot.

– Positive update: send a negative update for the tuples in the primary indexer
which match the incoming tuples.

t′ = p ▷ (s ∪∆s) = (p ▷ s)\ ((p ▷ s) ▷ ∆s) = t\ (t ▷ ∆s) ⇒ ∆t = t ▷ ∆s

– Negative update: send a positive update with the tuples ∆t = t ▷ ∆s.
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3.3 Incremental Pattern Matching on a Single

Workstation: EMF-INCQUERY

In the following, we will overview the architecture of a single-node incremental pattern
matcher, specifically EMF-INCQUERY.

3.3.1 Architecture

The Rete algorithm forms the foundation of EMF-INCQUERY’s query engine. Fig-
ure 3.5 shows the architecture of EMF-INCQUERY and the role of the Rete network
in the system.

EMF instance 
model

EMF-IncQuery 
base indexer

Notifications2

Results5

Rete network

Query evaluation 
interface

Query engine

Tuples4

Tuples3

EMF modeling application

Model manipulations1

Figure 3.5. EMF-INCQUERY’s architecture

A typical model transformation sequence is the following. The modeling application
manipulates the EMF instance model 1 . Upon modification, the model sends noti-
fications to EMF-INCQUERY’s base indexer 2 . The indexer propagates the modified
tuples to the Rete network as update messages 3 , which processes the updates and
sends the resulting tuples to the query evaluation interface 4 . The modeling applica-
tion can retrieve the results from the interface 5 .

3.3.2 Indexing and Initialization

Indexing is a common technique for decreasing the execution time of database queries.
In MDE, model indexing has a key role to high performance model queries. As MDE
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primarily uses a metamodeling infrastructure, all queries utilize some type attribute.
Typical elementary queries are listed below.

• Retrieving all node instances of a given type (e.g. get all nodes with the type
Person).

• Retrieving all edge instances of a given label (e.g. get all edges with the label
child).

• Retrieving a given node’s all incoming and/or outgoing edges of a given type
(e.g. get all outgoing child edges of a given node).

• Reverse navigation: retrieving the node on the other end of an edge (e.g. the
child relation is identical to the inverse of the parent relation).

EMF-INCQUERY uses the EMF API to run these queries efficiently.

3.3.3 Data Representation and Storage

EMF-INCQUERY works on in-memory EMF models. The Rete network represents the
data in tuples. Basically, the network’s tuples can contain two sorts of values: (i) point-
ers to an EMF model, (ii) Ecore scalar values (EString, EInt, etc. instances). This data
representation principle intends to keep the Rete network’s size as small as possible,
while allowing efficient processing. Because of the tuple representation, various oper-
ations, e.g. projection (π) and join (▷◁), can be simply defined using pattern masks [32].

3.3.4 Notification Mechanisms

Model change notifications are required by incremental query evaluation, thus model
changes are captured and their effects are propagated in the form of notification objects
(NOs). The notifications generate tokens that keep the Rete network’s state consistent
with the model.

3.3.5 Termination Protocol

As the Rete algorithm’s change propagation is asynchronous, the system must also im-
plement a termination protocol to ensure that the query results can be retrieved consis-
tently with the model state after a given transaction (i.e. by signaling when the update
propagation has been terminated). The correctness of the protocol is proved in [32].
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3.3.6 Configuration and Performance Optimization

For a given model, the system’s performance for a query is mainly determined by
the layout of the generated Rete network. Similarly to relational query optimization,
we can also optimize the Rete network’s layout. Currently, EMF-INCQUERY supports
basic optimizations. It utilizes node sharing, i.e. it detects if two Rete nodes would
store the same partial matches and merges them to a single node. More details are
available in [33].

3.4 Extensions for Distributed Scalability: INCQUERY-D

Developing a distributed, scalable, incremental pattern matcher introduces numerous
challenges. In the following, we will cover the INCQUERY-D’s architecture and our
main extensions to EMF-INCQUERY.

Server 0

Database 
shard 0

Transaction

Server 1

Database
shard 1
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shard 3
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Figure 3.6. INCQUERY-D’s architecture on a four-node cluster
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3.4.1 Architecture

The INCQUERY-D architecture in an example configuration is shown in Figure 3.6.
INCQUERY-D’s architecture consists of three layers: the storage layer, the middleware
and the production network. The storage layer is a distributed database which is respon-
sible for persisting the model (Section 3.4.3). The client application communicates with
the middleware 1 . The middleware provides a unified API for accessing the database
2 . It also sends change notifications 3 (Section 3.3.4) to the production network and

retrieves the query results from the production network 4 . The production network is
implemented with a distributed Rete network which provides incremental query eval-
uation (Section 3.2).

3.4.2 Indexing and Initialization

Efficient query processing requires some sort of indexing mechanism. Hence, the
INCQUERY-D middleware maintains type-instance indexes so that all instances of a
given type (both edges and graph nodes) can be enumerated quickly. These index-
ers form the bottom layer of the Rete production network. During initialization, these
indexers are filled from the database backend (Figure 3.6 2 ). In order to reduce the
initialization time, the underlying storage layer must be able to process these queries
efficiently.

3.4.3 Data Representation and Storage

Conceptually, the architecture of INCQUERY-D allows the usage of a wide scale of
model representation formats. Our prototype has been evaluated in the context of
the property graph and the RDF data model, but other mainstream metamodeling and
knowledge representation languages such as relational databases’ SQL dumps and
Ecore instance models (Section 2.2.1) could be supported, as long as they can be
mapped to an efficient and distributed storage backend.

For the storage layer, the most important issue from an incremental query evalua-
tion perspective is that the indexers of the middleware should be filled as quickly as
possible. This favors technologies where model sharding can be performed appropri-
ately (i.e. with balanced shards in terms of type-instance relationships), and elementary
queries can be executed efficiently.

41



INCQUERY-D’s middleware exposes an API that provides methods for manipulating
the graph. By allowing graph-like data manipulation we allow the user to focus on the
domain-specific challenges, thus increasing her productivity. The middleware trans-
lates the user’s operation to the backend’s query language and forwards it to the un-
derlying data storage.

In order to allow the Rete algorithm to work, each model element has to have a unique
identifier. Issuing a unique identifier in a distributed system is a non-trivial task and is
subject to future work (Section 6.2).

To support different data models, we only have to supply the appropriate connector
class to INCQUERY-D’s middleware. The current prototype supports 4store, Neo4j and
Titan.

3.4.4 Notification Mechanisms

While relational databases usually provide triggers for generating notifications, most
triplestores and graph databases lack this feature. Among our primary database
backends, 4store provides no triggers at all. Titan and Neo4j incorporate Blueprints,
which provides an EventGraph class capable of generating notification events, but
the events are only propagated in a single JVM (Java Virtual Machine). Implementing
distributed notifications would require us to extend the EventGraph class and use a
messaging framework. This is subject to future work (Section 6.2).

Because of the lack of support for distributed notifications, in INCQUERY-D’s proto-
type, notifications are controlled by the middleware by providing a facade for all model
manipulation operations (Figure 3.6 3 ). The notification messages are propagated
through the Rete network using the Akka messaging framework.

3.4.5 Termination Protocol

INCQUERY-D’s termination protocol works by adding a stack to the message. The
stack registers each Rete node the message passes through. After the message reaches
the production node, the termination protocol starts. Based on the content of the stack,
acknowledgement messages are propagated back on the network. When all relevant
input nodes (where the original notification token(s) started from) receive the acknowl-
edge messages, the termination protocol finishes.
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3.4.6 Configuration and Performance Optimization

The Rete algorithm (Section 3.2) utilizes both indexing and caching to provide fast
incremental query evaluation. INCQUERY-D’s horizontal scalability is supported by
the distribution of the pattern matcher’s Rete network. To enable this, the system must
be able to allocate the Rete nodes to different hosts in a cloud computing infrastructure.

The deployment and configuration of a distributed pattern matcher involves many
degrees of freedom and design decisions. The overall performance of the system is
influenced by a number of factors.

• For the storage layer, we may choose different database implementations due to
INCQUERY-D’s backend-agnostic nature. In this thesis, we used property graph
databases (Neo4j, Titan) and triplestores (4store).

• We may use different database sharding strategies (e.g. random partitioners or
more sophisticated sharding methods based on domain-specific knowledge).

• Using query optimization methods, we can derive Rete networks with different lay-
outs for the same query. The most efficient layout can be choosen based on both
query and instance model characteristics, e.g. to keep the resource requirement
of intermediate join operations to a minimum. [33] discusses the possible opti-
mizations in detail.

• We may choose different strategies to allocate the Rete nodes in the distributed sys-
tem. The optimization strategy may choose to optimize local resource usage, or
to minimize the amount of remote network communication. Note that in theory,
this is orthogonal to the database’s sharding strategy, i.e. these are two distinct
levels of distribution that do not directly depend upon each other. However, we
expect that keeping the Rete network’s type indexer nodes and the instances of
the given type on the same server would improve the speed of the initialization
and modification tasks significantly.

• We may implement dynamic adaptability to changing conditions. For example,
when the model size and thus query result size grows rapidly, the Rete network
may require dynamic reallocation or node sharding due to local resource limitations.
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Figure 3.7. The general workflow of incremental pattern matching with the Rete
algorithm

3.5 Workflow

In the following, we will describe the workflow behind the pattern matching process.
Starting from a metamodel, an instance model and a graph pattern, we will cover the
problem pieces that need to be solved for setting up an incremental, distributed pattern
matcher. The workflow is shown in Figure 3.7. First, we describe the workflow of
EMF-INCQUERY and then compare it to the workflow of INCQUERY-D.

3.5.1 Workflow of EMF-INCQUERY

Based on the metamodel and the query specification, EMF-INCQUERY first constructs a
Rete network 1 and deploys it 2 . It loads the model (from the persistent storage)
to an in-memory storage 3 and traverses it to initialize the Rete network’s indexers.
The Rete network evaluates the query by processing the incoming tuples 4 . If the
modeling application modifies the model (through the EMF API), the modifications are
propagated through the Rete network, hence keeping it in a consistent state 5 . The
query results can be retrieved from the Rete network 6 . The modeling application
may modify the model and reevaluate the query again.

44



3.5.2 Workflow of INCQUERY-D

By design, the workflow steps of INCQUERY-D are similar to EMF-INCQUERY’s, dis-
cussed in Section 3.5.1. However, due to the system’s distributed nature, they are more
difficult to design and implement.

The main differences are the following. In INCQUERY-D, deploying the Rete net-
work 2 requires the deployment of remote actors (Section 2.4) on the servers. Both
the Rete indexers and the database are distributed across the cluster. Hence, loading
the model and initializing the Rete network needs network communication 3 . The
Rete network works using Akka’s remote messaging feature. The query results can be
retrieved from the Rete network (this may also require network communication) 4 .
The database shards can only be accessed through the middleware, which is repon-
sible for sending notifications to the Rete network’s appropriate indexers. After the
notifications are processed and the distributed termination algorithm finishes, the Rete
network is in a consistent state 5 . The results can be retieved by the client which may
modify the model and reevaluate the query again 6 .

3.6 Tooling for INCQUERY-D

As mentioned earlier, we aimed to build INCQUERY-D on top of EMF-INCQUERY’s
pattern language (IQPL) and its Rete network generator. Because EMF-INCQUERY has
an Eclipse-based user interface for defining and executing queries, we plan to provide
the same tooling environment. Also, for the allocation of Rete nodes, we created an
Eclipse-based editor and viewer.

To aid the system’s dynamic capabilities, we plan to develop a runtime model-based
dashboard to monitor the state of INCQUERY-D’s nodes. Currently, the INCQUERY-D
tooling generates an architecture definition file (arch), which is used for deploying
the distributed pattern matcher.

This file contains the Rete network’s layout and its allocation in the cloud (as of now,
the latter is defined manually). INCQUERY-D uses the architecture description for in-
stantiating the Rete network and initializing the middleware (Figure 3.8).

Using an architecture definition file has a number of advantages. It allows us decouple
the client-side dashboard and the server-side runtime. It also simplifies the experi-
ments with different Rete network layouts and mappings.
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To provide live feedback, we will adopt a live architecture model. The live model will
provide real-time details about the system’s current state, including the local resources
on each server, the Rete nodes’ memory consumption and so on.

3.7 Elaboration of the Example

To demonstrate INCQUERY-D’s approach, we elaborate an example in detail. We in-
troduce a case study, then formulate a query and show the workflow that executes the
distributed, incremental evaluation of the pattern defined by query.
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Figure 3.9. The EMF metamodel of the railroad system
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3.7.1 Case Study: Railroad System Design

Figure 3.10. A subgraph of a railroad system visualized

The example is built around an imaginary railroad system defined in the MOGENTES
EU FP7 [77] project. The system’s network is composed of typical railroad items, in-
cluding signals, segments, switches and sensors. The complete EMF metamodel is
shown in Figure 3.9. A subgraph of an instance model is shown in Figure 3.10.

We used a query that resembles a typical MDE application’s workload. The query,
called RouteSensor, looks for violations of a well-formedness constraint in the model.

RouteSensor

TrackElement_sensor

Route_routeDefinition SwitchPosition_switch

Route_switchPosition

switch: Switchsensor: Sensor

route: Route switchPosition: SwitchPosition

Figure 3.11. Graphical representation of the RouteSensor query’s pattern. The
dashed red arrow defines a negative application condition.

The RouteSensor query looks for Sensors that are connected to a Switch, but the
Sensor and the Switch are not connected to the same Route. In other words, all
sensors that are associated with a switch that belongs to a route must also be associated
directly with the same route.
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The graphical representation of the query is shown in Figure 3.11. Basically, the query
binds the type of the vertices, defines three edges and one negative edge, called NAC
(negative application condition).

1 package hu.bme.mit.train.constraintcheck.incquery

2

3 import "http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl"

4

5 pattern routeSensor(Sen, Sw, Sp, R) = {

6 Route(R);

7 SwitchPosition(Sp);

8 Switch(Sw);

9 Sensor(Sen);

10

11 Route.Route_switchPosition(R, Sp);

12 SwitchPosition.SwitchPosition_switch(Sp, Sw);

13 Trackelement.TrackElement_sensor(Sw, Sen);

14

15 neg find head(Sen, R);

16 }

17

18 pattern head(Sen, R) = {

19 Route.Route_routeDefinition(R, Sen);

20 }

Listing 3.1. The RouteSensor query in IQPL

The RouteSensor query in IQPL (INCQUERY Pattern Language) is shown on Listing 3.1.
This query binds the variables (Sen, Sw, Sp, R) to the appropriate type. It defines the
three edges as relationships between the variables and defines the negative application
condition as a negative pattern (neg find).

For comparison, we also present the RouteSensor query in SPARQL (RDF’s query lan-
guage) on Listing 3.2. Here, the types are defined with the rdf:type predicate, while
the edges are defined with base predicates. The negative application condition is de-
fined with the FILTER NOT EXISTS construction2.

1 PREFIX base: <http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5

6 SELECT DISTINCT ?xSensor

7 WHERE

8 {

9 ?xRoute rdf:type base:Route .

10 ?xSwitchPosition rdf:type base:SwitchPosition .

11 ?xSwitch rdf:type base:Switch .

12 ?xSensor rdf:type base:Sensor .

2Note that the two queries are slightly different: the SPARQL query returns only a set of Sensors,
while the IQPL query returns a set of (Sensor, Switch, SwitchPosition, Route) tuples.
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13 ?xRoute base:Route_switchPosition ?xSwitchPosition .

14 ?xSwitchPosition base:SwitchPosition_switch ?xSwitch .

15 ?xSwitch base:TrackElement_sensor ?xSensor .

16

17 FILTER NOT EXISTS {

18 ?xRoute ?Route_routeDefinition ?xSensor .

19 } .

20 }

Listing 3.2. The RouteSensor query in SPARQL

Given the mapping defined in Section 3.2.3, the RouteSensor query can be formalized
in relational algebra as:

πRoute

(
Route_switchPosition ▷◁ SwitchPosition_switch ▷◁

TrackElement_sensor ▷ Route_routeDefinition)

3.7.2 Local Search-Based Query Evaluation

Query evaluation is often implemented using local search-based algorithms [54].
Search-based approaches derive a search plan from the query specification and execute
the plan on the graph. A search plan is a totally ordered list of search operations, where
search operations represent the atomic units of pattern matching (a single step in the
matching process). A unit is either an extend operation which extends the matching by
a new element (e.g. match the target node along an edge), or a check operation used
for checking constraints between pattern elements (e.g. whether an edge runs between
two nodes). [54].

Table 3.1 presents a possible search plan for the RouteSensor pattern. A possible imple-
mentation of the NAC (negative application condition) is the definition of a negative
subpattern (a Route_routeDefinition edge from Route nodes to Sensor nodes).

Compared to incremental approaches, search-based algorithms do not cache the partial
matches and are therefore not able to maintain the match set without reevaluating the
whole query. Search-based approaches are often assisted by advanced search plan
generation techniques which use metamodel analysis and other heuristics.
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operation type
1 route instance of Route check
2 source of e1 is route extend
3 e1 instance of Route_switchPosition check
4 target of e1 is switchPosition extend
5 switchPosition instance of SwitchPosition check
6 source of e2 is switchPosition extend
7 e2 instance of SwitchPosition_switch check
8 target of e2 is switch extend
9 switch instance of Switch check
10 source of e3 is switch extend
11 e3 instance of TrackElement_sensor check
12 target of e3 is sensor extend
13 sensor instance of Sensor check
14 NAC for the Route_routeDefinition edge check

Table 3.1. Search plan for the evaluation of the RouteSensor query’s pattern
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Figure 3.12. INCQUERY-D’s workflow

3.7.3 Workflow of the Example

Following the workflow defined in Section 3.5, we will cover the steps for deploying
and operating a distributed pattern matcher. The actual workflow for the RouteSensor
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query is shown in Figure 3.12.

Constructing a Rete Network

First, using EMF-INCQUERY’s tooling, the query (routeSensor.iqpl, see List-
ing 3.1) is analyzed and parsed to an EMF model 1 . The metamodel
(railroad.ecore) is shown in Figure 3.9. Based on the query 2 and the meta-
model 3 EMF-INCQUERY builds a pattern system (PSystem). The PSystem is trans-
lated to a Rete recipe, which defines a Rete layout 4 , that guarantees the satisfaction
of the constraints. The Rete layout is shown in Figure 3.13.

SwitchPosition_
switch

Route_
routeDefinition

TrackElement_
sensor

Route_
switchPosition

Production node

Join node

Join node

Antijoin node

IX IX

IX IX

IX IX

Figure 3.13. The RouteSensor query’s layout

Deploying the Rete Network

The Rete nodes are allocated to the cluster’s servers by providing the infrastructure
mapping 5 . In INCQUERY-D’s prototype, the Rete nodes defined in the recipe are al-
located manually on the cloud servers (called Machines). The Rete nodes are associated
with the machines by infrastructure mapping relationships. INCQUERY-D’s tooling cur-
rently provides an Eclipse-based tree editor to define machines and the infrastructure
mapping relationships.

The tooling is capable of visualizing the Rete network and its mapping to the machines
(see Figure 3.14). The Rete network is deployed to the Akka instances running on the
servers 6 .
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Figure 3.14. The yFiles viewer in INCQUERY-D’s tooling

Evaluating the Query

The query is evaluated by initializing the Rete network 7 and reading the results from
its production node.

Maintaining the Query Results

In order to provide query results that are consistent with the model, we need maintain
the Rete network’s state. Suppose we have the graph shown on Figure 3.15 and we
decide to delete the Route_routeDefinition edge between vertices 2 and 1.

Figure 3.16 shows the distributed Rete network containing the partial matches of the
original graph. When we delete the edge between vertices 2 and 1, the Route_-

routeDefinition type indexer (an input node) receives a notification from the mid-
dleware and sends a negative update 1 with the tuple ⟨2, 1⟩. The antijoin node processes
the negative update and propagates a negative update 2 with the tuple ⟨3, 4, 2, 1⟩. This
is received by the production node, which initiates the termination protocol 3 , 4 . Af-
ter the termination protocol finishes, the indexer signals the client about the successful
update. The client can now retrieve the results from the production node. The client
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Figure 3.15. A modification on a Train Benchmark instance model

may choose to retrieve only the change set, i.e. only the tuples that have been added or
deleted since the last modification.

Server 0 Server 1 Server 2 Server 3

SwitchPosition_
switch

Route_
routeDefinition

TrackElement_
sensor

Route_
switchPosition

Join node

Production node

Join node

Antijoin node

 3, 4  2, 3  4, 1  2, 1 

 3, 4, 2 

 3, 4, 2, 1 

 3, 4, 2, 1 

negative 
update

 3, 4, 2, 1 

negative
update
 2, 1 

update propagation 
finished

update 
propagation 

finished

3

2

1

4

IX IX

IX IX

IX IX

Figure 3.16. Operation sequence on a distributed Rete network
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Chapter 4

Evaluation of Performance and
Scalability

We developed a prototype of INCQUERY-D to evaluate the feasibility of the approach.
In the following chapter, based on the work for EMF-INCQUERY, we introduce a dis-
tributed performance benchmark. We present the benchmark environment and ana-
lyze the results, with particular emphasis on the scalability of our approach.

The prototype of INCQUERY-D is based on the architecture presented in Chapter 3. A
working prototype is beneficial for a number of reasons. First, it serves as a proof con-
cept by demonstrating that a distributed, incremental pattern matcher is feasible with
the technologies currently available. On the other hand, it gives us the opportunity
to define and run benchmarks, so that we can evaluate the scalability aspects of the
system.

4.1 Dimensions of Scalability

A distributed system’s scalability has multiple dimensions. Usually, when aiming for
horizontal scalability, the most emphasized dimension is the number of processing nodes
(computers) in the system. However, there are other important aspects that include
local resources of the servers, network communication overhead, etc. The main goal of our
benchmark was to measure the scalability of INCQUERY-D with respect to the model
size and compare it to other non-incremental query technologies.
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4.2 Foundations: the Train Benchmark

The Train Benchmark was designed at the Fault Tolerant Systems Research Group [58,
56] to measure the efficiency of model queries and manipulation operations in different
tools. The Train Benchmark is primarily targeted for typical MDE workloads, more
specifically for well-formedness validations.

4.2.1 Benchmark Goals

The Train Benchmark measures the response time of the system under load. The bench-
mark models a ”real-world” MDE workload by simulating a user’s interaction with the
model. In this sequence, the user loads the model and validates it against a set queries
(defining well-formedness constraints). The user edits the model in small steps. The
user’s work is more productive and less error-prone if she receives the results of the
validation instantly after each edit. Therefore, the user would like to reevaluate well-
formedness queries quickly.

Instance model 
Metamodel 
Query specification

Result set Result set

1

2 3

2

3

4

4

Model

Load Transformation RevalidationFirst validation

Query engine

Figure 4.1. Execution sequence of the Train Benchmark

The benchmark defines four distinct phases, also shown in Figure 4.1.

1. Load: load the serialized instance model to the database 1 .

2. First validation: execute the well-formedness query on the model 2 .

3. Transformation: modify the model 3 .

4. Revalidation: execute the well-formedness query again 4 .
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To assess the scalability of the tools, the benchmark uses instance models of growing
sizes, each model containing about twice as many model elements as the previous
one (Section 4.2.2). Running the same validation sequence on different model sizes
highlighted the limitations of the tested query engines.

Scalability is also evaluated against the complexity of the queries. The benchmark de-
fines different queries, each testing different aspects of the query engine (filtering, join
and antijoin operations, etc.). To achieve a successful run, the tested tool is expected to
evaluate the query and return the identifiers of the model elements in the result set.

4.2.2 Generating Instance Models

Due to both confidentiality and technical reasons, it is difficult to obtain real-world
industrial models and queries. Also, using confidential data sets hinders the repro-
ducibility of the conducted benchmarks. Therefore, a generator was developed which
creates instance models which mimic real-world models.

We used the railway system metamodel, defined in Section 3.7. The instance models are
generated pseudorandomly, with pre-defined structural constraints and a regular fan-
out structure (i.e. nodes of a given type have similar indegree and outdegree) [56].
The generator is capable of generating models of different sizes and formats, including
EMF, OWL, RDF and SQL. We also developed a generator for the property graph data
model. In Section A.3, we provide some examples about mapping the EMF metamodel
to the framework of property graphs.

4.2.3 Original Results for Non-distributed Tools

The Train Benchmark was designed to work with different tools originating from var-
ious technological spaces, e.g. EMF-based tools (EMF-INCQUERY, Eclipse OCL), se-
mantic web technologies (AllegroGraph, Sesame, 4store), NoSQL databases (Neo4j),
etc.

Figure 4.2 shows the incremental transformation and validation time for the RouteSen-
sor query, discussed in Section 3.7.1. The results clearly show the advantage of incre-
mental query engines. Both Eclipse OCL Impact Analyzer and EMF-INCQUERY scale
very well (their characteristic is almost constant to the model size and linear to the size
of the result set), while non-incremental tools scale linearly at best, which renders them
inefficient for lange models.
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Figure 4.2. Train Benchmark: reponse times for incremental query evaluation, mea-
sured on a single node [58]
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Figure 4.3. Train Benchmark: memory consumption of the tools [58]

Figure 4.3 shows the memory consumption of the diffent tools. It is apparent that the
incremental tools’ space–time tradeoff causes them to consume more memory.

4.3 Distributed Train Benchmark

Based on the Train Benchmark, discussed in Section 4.2, we created an extended ver-
sion for distributed systems. The main goal of the distributed Train Benchmark is the
same as the original’s: measure the reponse time and inspect the scalability of different
tools. Specifically, the main goal was to compare the performance of INCQUERY-D to
distributed, non-incremental query technologies.
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4.3.1 Distributed Architecture

The distributed benchmark defines the same phases as the original Train Benchmark
(Figure 4.1). The benchmark is controlled by a distinguished node of the system, called
the coordinator. The coordinator delegates the operations (e.g. loading the graph) to the
distributed system. The queries and the model manipulation operations are handled
by the database management system which runs them distributedly and waits for the
distributed operation to finish (effectively creating a synchronization point after each
operation).

4.3.2 Benchmark Limitations

It is possible that the incoming data sets lack a globally unique identifier. In this case,
we need to automatically generate unique identifiers. While some systems (e.g. Titan)
support this, other systems (e.g. 4store) do not have such feature. For these systems, the
INCQUERY-D middleware should be able to generate unique identifiers. This feature
is subject to future work (Section 6.2). In the current benchmark, we worked around
this by enforcing the generator to create models with numeric unique identifiers1.

A common reason for designing and implementing distributed systems is that they are
capable of handling a large number of concurrent requests. This way, more users can
use the system at the same time. In the distributed Train Benchmark, the system is
only used by a single user. Simulating multiple users and issuing concurrent requests
is also subject to future work (Section 6.2).

4.3.3 Generating Instance Models

For Neo4j, we expanded the generator with a property graph generator module. The
generator creates a graph in a Neo4j database and uses the Blueprints library’s
GraphMLWriter and GraphSONWriter classes to serialize it to GraphML (Sec-
tion A.1.1) and Blueprints GraphSON (Section A.1.2) formats.

Titan’s Faunus framework requires a third format called Faunus GraphSON (Sec-
tion A.1.3). To use Faunus, we extended the property graph generator to generate
Faunus GraphSON files as well.

1Unlike for property graphs, numeric unique identifiers are not required by the RDF data model.
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4.4 Benchmark Environment

We used the distributed Train Benchmark (Section 4.3) to evaluate INCQUERY-D’s per-
formance and compare it to non-incremental solutions. In the following section, we
will discuss the benchmark setup and the environment in detail.

4.4.1 Benchmark Setup

We tested INCQUERY-D with three storage backends: first with Neo4j (Section 2.3.2),
then with 4store (Section 2.3.4) and Titan (Section 2.3.3). In both cases, the system was
deployed on a four-node cluster.

As a non-incremental baseline, we used Neo4j’s and 4store’s own query engines. While
we also planned to use Titan’s query engine, our experiments showed that even for
medium-sized graphs, the system was unable to run even the elementary queries (e.g.
retrieving vertices by type), not to mention the more complex ones.

The benchmark follows the phases defined in the distributed Train Benchmark. Note
that the main difference between the batch and incremental scenarios is that the latter
maintain a distributed Rete network, which allows efficient query (re)evaluation.

4.4.2 Hardware and Software Ecosystem

As the testbed, we deployed our system to a private cloud. The cloud is managed
by Apache VCL (Virtual Computing Lab) and is also used for educational purposes.
Therefore, during the benchmark, the network and the host machines could be under
load from other users as well. We consider the effect of these in Section 4.8.

The detailed configuration of the servers are provided below.

Hardware

Each virtual machine used two cores of an Intel Xeon L5420 CPU running at 2.5 GHz
and had 8 GBs of RAM. The host machines were connected with gigabit Ethernet net-
work connection.
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Software

For the benchmarks, we used the following software stack. The technologies are dis-
cussed in Chapter 2.

• Ubuntu 12.10 64-bit
• Oracle Java 7 64-bit
• Neo4j 1.8
• 4store 1.1.5
• Titan 0.3.2
• Faunus 0.3.2
• Hadoop 1.1.2
• Cassandra 1.2.2
• Akka 2.1.2

4.4.3 Benchmark Methodology and Data Processing

Both during the development and in runtime we ensured the functional equivalence of
the measured tools. During the development, we followed the Train Benchmark’s well-
defined specification [56]. This precisely defines the steps for each phase, e.g. the num-
ber of elements to modify in each transformation and the amount of transformation–
validation cycles. In runtime, we checked the result set for correctness against the ref-
erence implementation.

The benchmark coordinator software used the Train Benchmark’s framework to collect
data about the results of the benchmark. We measured the execution time of the pre-
defined phases. The execution time includes the time required for the coordinator’s
operation, the computation and IO operations of the cluster’s computers and the net-
work communication (to both directions). The execution times were determined using
Java’s System.nanoTime() method.

The results were processed by an R script [27] capable of aggregating and visualizing
the results.

4.5 Benchmark Results with Neo4j

During the earlier phases of the research, we conducted measurement using only
Neo4j. These results were published in [57]. The benchmark’s setup was slightly dif-
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ferent, with the main difference being that due to the lack of sharding in Neo4j, we
sharded the graph manually. This had some important implications.

• The batch queries ran on all shards separately and their results were aggregated
by the coordinator. The transformations also ran separately.

• The incremental queries were evaluated with a distributed Rete network. The ele-
mentary model queries (for filling the indexers) were ran on all shards separately
and aggregated by the indexers. The transformations also ran separately.

Because the graph was sharded to disjoint partitions with no edges between them, this
can be viewed as an ideal case of graph sharding. Therefore, we can use the results to
inspect an ”ideal” sharding strategy’s impact on the performance. We present the most
important results of the benchmark.
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Figure 4.4. Total execution times for 50 validations

Figure 4.4 shows that for validation, INCQUERY-D with Neo4j consistently outper-
forms Neo4j’s query engine.

Figure 4.5 shows that for transformation and revalidation, INCQUERY-D with Neo4j is
about two orders of magnitude faster than Neo4j’s query engine.
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4.6 Benchmark Results with 4store and Titan

This section presents the benchmark results with 4store and Titan. Unlike the bench-
mark with Neo4j (Section 4.5), this benchmark used truly distributed storage backends.
Unfortunately, we found that the query engine in Titan is not capable of executing
queries with large (interim) result sets, hence the batch Titan tool is not present in the
results.
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The execution times for the load and first validation phases are shown in Figure 4.6.
As expected, due to the overhead of the Rete network’s construction, the batch tool is
faster for small models. However, it is important to observe that even for medium-
sized models (with a couple of million elements), the INCQUERY-D tools start to edge
ahead. This shows that the Rete network’s construction overhead already pays off for
the first validation.
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Figure 4.7. Execution times for transformation

The execution times for the transformation phase are shown in Figure 4.7. The incremen-
tal tools provide faster transformation times due to the fact that instead of querying the
database, the modeling application can rely on the query layer’s indexers. Even for
medium-sized models, the INCQUERY-D tools are more than two orders of magnitude
faster than the batch tool.

The incremental tools have an even greater advantage for revalidation times, shown in
Figure 4.8. For medium-sized models, they are more than three orders of magnitude
faster than the batch tool.

This shows that INCQUERY-D is not just capable of processing models with tens of
millions of elements (well beyond the capabilities of single-node tools), but also, it
provides sub-second revalidation times.

Figure 4.9 shows the total execution time for a sequence: loading the model, then run-
ning transformations and revalidations 50 times. Due to the large number of transfor-
mations and revalidations, incremental tools are significantly faster. For example, for
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a model with 6 million elements, the batch tool took almost 6 hours, while the 4store-
based incremental tool took less than 5 minutes.

4.7 Result Analysis

The results clearly show that the initialization of the Rete network adds some overhead
during the load and first validation phases. However, even for medium-sized models, this
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is easily outweighed by the high query performance of the Rete network.

The almost constant characteristic of the execution times of the INCQUERY-D tools’
transformation and validation phases confirm that a distributed, scalable, incremental
pattern matcher is feasible with current technologies. Based on the results, we can
conclude that while network latency is present, the distributed Rete network still al-
lows sub-second on-the-fly model validation operations. It is also important to observe
the similar characteristic of INCQUERY-D’s and EMF-INCQUERY’s transformation and
validation times (Figure 4.2, Figure 4.7 and Figure 4.8).

Another important observation is that for INCQUERY-D tools, the execution time is
approximately proportional to the size of the change. For batch tools, it is proportional
to the size of the model.

Note that these results and scalability characteristics do not apply for every workload
profile. For example, if the user modifies large chunks of the model and issues queries
infrequently, batch query evaluation methods may result in faster execution.

The high memory consumption of the Rete algorithm was one of our main motiva-
tions to build a distributed system. For very large models (beyond 108 model el-
ements), we ran into cases where the Java Virtual Machine ran out of or had just
enough memory. This resulted in OutOfMemoryError: Java heap space and
OutOfMemoryError: GC overhead limit exceeded exceptions, respectively.
Introducing a Rete node sharding or other fault-tolerance mechanisms for these cases is
subject to future work (Section 6.2).

The results show that the 4store-based INCQUERY-D prototype is consistently faster
in the load phase than the Titan-based one. This is due to 4store’s simpler architecture
and different data model, which is better suited to the INCQUERY-D middleware’s
elementary model queries.

In accordance with the original Train Benchmark’s results, the distributed Train Bench-
mark proved that incremental tools have an advantage for transformation and well-
formedness validation sequences. Compared to the Train Benchmark, we managed
to work with significantly larger models with more than 50 million model elements.
Based on the results, we expect INCQUERY-D to also perform well on different data
sets and queries.
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4.8 Threats to Validity

To guarantee the correctness of our benchmarks, we laid out some rules to ensure the
precision of the results.

First, to start each benchmark sequence independently, we turned the operating sys-
tem’s caching mechanisms off. The execution time of the validation and transformation
phases were determined by running them 50 times and taking the median values (we de-
cided to take the median instead of the mean value, because the former is less sensitive
to transient effects). This way, we could measure the Java Virtual Machine’s warmup
effect, which would also occur in a real-world model query engine running for several
hours or even longer.

As discussed in Section 4.4.2, our servers could be influenced from the workload
caused by other users of the same cloud. To minimalize the effect of this and other
transient loads, we ran the benchmark five times and took the minimum value for each
phase. We also disabled file caching in the operating system, so that the serialized
model always must be read from the disk.

Despite our efforts, transient effects could still be present in the results. However, their
effect is only a threat for smaller model sizes, where the measured execution times are
low. For larger models, the main targets of our work, due to longer execution times,
the transient effects do not threat the validity of the benchmark results.

4.9 Summary

Our benchmarks proved that the proposed architecture is capable of provid-
ing scalable, incremental query evaluation. INCQUERY-D’s scalability characteris-
tics confirmed that despite the additional network latency, it is possible to keep
EMF-INCQUERY’s almost constant performance characteristics in a distributed envi-
ronment. The results show the model size barrier, primarily caused by limitations of
memory, can be pushed further using a horizontal scaling approach.

It is important to note that our benchmark did not cover all aspects of distributed
scalability. For example, simulating multiple users, measuring the exact memory con-
sumption and network traffic of each server is subject to future work (Section 6.2).
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Chapter 5

Related Work

A wide range of special languages have been developed to support graph-based rep-
resentation and querying of computer data. This chapter collects the research and
development works that are related to INCQUERY-D.

5.1 Eclipse-Based Tools

A class-diagram like modeling language is Ecore of the EMF (Eclipse Modeling Frame-
work, discussed in Section 2.3.1), where classes, references between them and at-
tributes of classes describe the domain. Extensive tooling helps the creation and trans-
formation of such domain models. For EMF models, OCL (Object Constraint Lan-
guage) is a declarative constraint description and query language that can be evaluated
with the local-search based Eclipse OCL [41] engine. To address scalability issues, in-
cremental impact analysis tools [48] have been developed as extensions or alternatives
to Eclipse OCL.

5.2 Rete Implementations

As a very recent development, Rete-based caching approaches have been proposed
for the processing of Linked Data (bearing the closest similarity of our approach).
INSTANS [70] uses this algorithm to perform complex event processing (formulated
in SPARQL) on RDF data, gathered from distributed sensors.
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Diamond [64] uses a distributed Rete network to evaluate SPARQL queries on Linked
Data, but it lacks an indexing middleware layer so their main challenge is efficient
data traversal.

The conceptual foundations of our approach are based on EMF-INCQUERY [36], a tool
that evaluates graph patterns over EMF models using Rete. Up to our best knowledge,
INCQUERY-D is the first approach to promote distributed scalability by distributed in-
cremental query evaluation in the context of model-driven engineering. As the architec-
ture of INCQUERY-D separates the data store from the query engine, we believe that the
scalable processing of RDF and property graphs can open up interesting applications
outside of the MDE world.

Acharya et al. described a Rete network mapping for fine-grained and medium-
grained message-passing computers [29]. The medium-grained computer connected
processors in a crossbar architecture, while our approach uses computers connected
by gigabit Ethernet. The paper published benchmark results of the medium-grained
solution, but these are based only on simulations.

5.3 Benchmarks

This section is based on [56]. Benchmarks have been proposed earlier, mainly to track
improvements of a query engine, or to compare tool performance for a given use case.

5.3.1 RDF Benchmarks

SP2Bench [74] is a SPARQL benchmark that measures only query throughput. The
goal of this benchmark is to measure query evaluation performance of different tools
for a single set of SPARQL queries that contain most language elements. The artificially
generated data is based on the real world DBLP bibliography; this way instance models
of different sizes reflect the structure and complexity of the original real world dataset.
However, other model element distributions or queries were not considered, and the
complexity of queries were not analyzed.

The Berlin SPARQL Benchmark (BSBM) [37] measures SPARQL query evaluation
throughput for an e-commerce case study modeled in RDF. The benchmark uses a
single dataset, but recognizes several use cases with their own query mix. The dataset
scales in model size (10 million to 150 billion), but does not vary in structure.
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SPLODGE [50] is an approach, where SPARQL queries were generated systematically,
based on metrics for a predefined dataset. The method supports distributed SPARQL
queries (via the SERVICE keyword), however the implementation scaled only up to
three steps of navigation, due to the resource consumption of the generator. The paper
did not mention instance model complexity, and only the adequacy of the approach
was demonstrated with the RDF3X engine, the effect of queries with different metrics
combinations to different engines was not tested.

5.3.2 Model Transformation and Graph Transformation Benchmarks

There are numerous graph transformation benchmarks that do not focus specifically
on query performance. However [34] aims to design and evaluate graph transfor-
mation benchmark cases corresponding to three usage patterns for the purpose of
measuring the performance of incremental approaches on different model sizes and
workloads. These scenarios are conceptual continuations of the comprehensive graph
transformation benchmark library proposed earlier in [79], which gave an overview
on typical application scenarios of graph transformation together with their charac-
teristic features. [46] suggested some improvements to the benchmarks described
in [79] and reported measurement results for many graph transformation tools. As
model validation is an important use case of incremental model queries, several model
query and/or validation tools have been measured in incremental constraint valida-
tion benchmarks [67, 43, 36].
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Chapter 6

Conclusions

This chapter summarizes the contributions presented in the thesis.

6.1 Summary of Contributions

We presented INCQUERY-D, a novel approach to adapt distributed incremental query
techniques to large and complex model-driven software engineering scenarios. Our
proposal is based on a distributed Rete network that is decoupled from the sharded
graph databases by a middleware layer. The feasibility of the approach has been eval-
uated using a benchmarking scenario of on-the-fly well-formedness validation of soft-
ware design models. The results are promising as they show nearly instantaneous
query re-evaluation as model sizes grow well beyond 50 million elements.

During the research and development of INCQUERY-D so far, I achieved the following
results.

6.1.1 Scientific Contributions

I achieved the following scientific contributions:

• I proposed a novel architecture for building a distributed, scalable, incremental
graph query engine over different storage backends. The architecture was pub-
lished in [55].
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• I designed and implemented a distributed, asynchronous version of the Rete algo-
rithm.

• I extended the termination protocol used EMF-INCQUERY to work in a dis-
tributed environment.

• I extended the Train Benchmark to work in a distributed environment.

• I conducted a benchmark to measure INCQUERY-D’s response time and scalability
characteristics. For the benchmark’s baseline, I created distributed non-incremental
benchmark scenarios.

6.1.2 Practical Accomplishments

I achieved the following practical accomplishements:

• Based on the Rete algorithm, I created a distributed incremental query engine’s proto-
type, which is not only detached from the data storage backend, but also agnostic
to the storage backend’s data model. To prove this, the query engine was tested
with both property graphs and RDF graphs.

• I created JUnit [15] unit tests for the Rete algorithm’s implementation.

• I used the Akka framework’s test kit to create test cases for the Akka actors which
operate the distributed Rete network.

• I extended the Train Benchmark with a new instance model generator, which can
produce property graphs and serialize them in various formats: GraphML,
Blueprints GraphSON and Faunus GraphSON.

• I developed INCQUERY-D’s prototype, including the query layer, the middleware
and the integration to different storage technologies. The prototype consists of
more than 5000 lines of Java code and approximately 500 lines of configuration
and deployment scripts.

• I elaborated automated deployment tools based on EMF-INCQUERY’s existing
technologies.

• I experimented with modern non-relational database management systems with
a focus on NoSQL graph databases and triple stores. For the purpose of bench-
marking different tools, I created scripts to install various graph storages.
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– I deployed a manually sharded Neo4j cluster. I formulated the appropriate
Cypher queries and created the connector class in INCQUERY-D’s middle-
ware to access Neo4j.

– I implemented scripts to install the Titan graph database and its ecosystem on a
cluster. Titan’s ecosystem includes technologies on different maturity levels,
including the Apache Cassandra database, the Apache Hadoop MapReduce
framework with the HDFS distributed file system, the TinkerPop graph
framework and the Faunus graph analytics engine. I formulated the nec-
essary Gremlin queries and created the connector class in INCQUERY-D’s
middleware.

– I implemented scripts to install the 4store triplestore on a cluster. I formu-
lated the necessary the SPARQL queries and created the connector class in
INCQUERY-D’s middleware.

• The analysis of the results confirmed the feasibility of the approach and showed
its superiority to current open-source graph query engines.

• I implemented scripts for automating the benchmark and operating a cluster of Akka
microkernels.

This thesis significantly extends the contributions of our earlier results [55]. It discusses
the theoretical background and practical difficulties, including the detailed presenta-
tion of the architecture (Chapter 3). The benchmark evaluation has been extended to
include truly distributed graph database backends (Chapter 4) as INCQUERY-D, as pre-
sented here, features backends with automatic sharding, automatic deployment of the
Rete nodes and an Eclipse-based tooling environment.

6.2 Limitations and Future Work

INCQUERY-D’s current implementation has some limitations, the most important ones
are the following.

1. The Rete nodes are allocated manually. The user has to define the mapping be-
tween the Rete network and the infrastructure. However, given a mapping, the
system is capable of automatically deploying the Rete network.
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2. Only a subset of the nodes defined in the Rete algorithm are implemented. For
example, the current implementation does not support recursive patterns and
transitive closures.

3. The Eclipse-based tooling does not cover the whole workflow. The user is re-
quired to do some manual work, e.g. running scripts manually.

For future work, we plan to address the aforementioned limitations.

1. The allocation of the Rete nodes will be supported using techniques like CSP
(Constraint Satisfaction Problem) solvers and DSE (Design Space Exploration)
[51]. We plan to further explore advanced optimization challenges such as dy-
namic reconfiguration and fault tolerance.

2. We will complete the implementation of the nodes defined in Rete algorithm.

3. The tooling is under active development with plans for a live monitoring feature.

We also plan to extend the distributed Train Benchmark to model different real-world
workloads, e.g. simulating multiple users issuing concurrent requests. We will add a
unique identifier generator to the middleware, which will allow us to use multiple data
sources (which may have different element with the same identifiers). INCQUERY-D
already has been designed with different metamodeling languages in mind. In the
future, we will create the mapping from more modeling languages, thus working to-
wards a query engine on a federated database system.

Another direction is experimenting with programming languages that are better suited
to asynchronous algorithms, e.g. Erlang and Scala, a Java-based functional object-
oriented programming language. For our storage layer, we plan to test distributed
in-memory databases, e.g. Hazelcast [14] and to extend proven solutions, like Titan,
with a distributed notification layer. Also, we are constantly looking for alternative
scalable persistent graph database technologies.
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Appendix A

Graph Formats

In this chapter, we provide examples for the different graph serialization formats, in-
cluding property graphs and RDF graphs. The examples describe a small instance
model based on the railway system metamodel, shown in Figure A.1.

Figure A.1. An example graph based on the railway system metamodel

A.1 Property Graph Formats

A.1.1 GraphML

The GraphML format [25] is the most widely used graph representation format, based
on XML (Extensible Markup Language). It has strong tooling support between graph
databases and graph visualizing tools.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <graphml xmlns="http://graphml.graphdrawing.org/xmlns" xmlns:xsi="http://www.w3.org/2001/

XMLSchema-instance" xsi:schemaLocation="http://graphml.graphdrawing.org/xmlns http://

graphml.graphdrawing.org/xmlns/1.1/graphml.xsd">
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3 <key id="type" for="node" attr.name="type" attr.type="string" />

4 <graph id="G" edgedefault="directed">

5 <node id="1">

6 <data key="type">Sensor</data>

7 </node>

8 <node id="2">

9 <data key="type">Route</data>

10 </node>

11 <node id="3">

12 <data key="type">SwitchPosition</data>

13 </node>

14 <node id="4">

15 <data key="type">Switch</data>

16 </node>

17 <edge id="0" source="2" target="1" label="ROUTE_ROUTEDEFINITION" />

18 <edge id="1" source="2" target="3" label="ROUTE_SWITCHPOSITION" />

19 <edge id="2" source="3" target="4" label="SWITCHPOSITION_SWITCH" />

20 <edge id="3" source="4" target="1" label="TRACKELEMENT_SENSOR" />

21 </graph>

22 </graphml>

Listing A.1. A graph based on the railway system metamodel stored in GraphML format

A.1.2 Blueprints GraphSON

Blueprints GraphSON [13] is a JSON-based (JavaScript Object Notation) format. It is
not as well supported as the GraphML format (Section A.1.1), but it is less verbose and
more readable.

1 {

2 "vertices":[

3 {

4 "type":"Sensor",

5 "_id":1,

6 "_type":"vertex"

7 },

8 {

9 "type":"Route",

10 "_id":2,

11 "_type":"vertex"

12 },

13 {

14 "type":"SwitchPosition",

15 "_id":3,

16 "_type":"vertex"

17 },

18 {

19 "type":"Switch",

20 "_id":4,

21 "_type":"vertex"

22 }

23 ],
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24 "edges":[

25 {

26 "_id":0,

27 "_type":"edge",

28 "_outV":2,

29 "_inV":1,

30 "_label":"ROUTE_ROUTEDEFINITION"

31 },

32 {

33 "_id":1,

34 "_type":"edge",

35 "_outV":2,

36 "_inV":3,

37 "_label":"ROUTE_SWITCHPOSITION"

38 },

39 {

40 "_id":2,

41 "_type":"edge",

42 "_outV":3,

43 "_inV":4,

44 "_label":"SWITCHPOSITION_SWITCH"

45 },

46 {

47 "_id":3,

48 "_type":"edge",

49 "_outV":4,

50 "_inV":1,

51 "_label":"TRACKELEMENT_SENSOR"

52 }

53 ]

54 }

Listing A.2. A graph based on the railway system metamodel stored in Blueprints GraphSON format

A.1.3 Faunus GraphSON

In the Faunus GraphSON format [12], each line is a separate JSON (JavaScript Object
Notation) document representing a vertex in the graph. This way, the file can be split-
ted to blocks efficiently and processed on Hadoop nodes in a parallel way.

1 {"type":"Sensor","_id":1,"_outE":[],"_inE":[{"_id":0,"_outV":2,"_label":"ROUTE_ROUTEDEFINITION

"},{"_id":3,"_outV":4,"_label":"TRACKELEMENT_SENSOR"}]}

2 {"type":"Route","_id":2,"_outE":[{"_id":0,"_inV":1,"_label":"ROUTE_ROUTEDEFINITION"},{"_id":1,

"_inV":3,"_label":"ROUTE_SWITCHPOSITION"}],"_inE":[]}

3 {"type":"SwitchPosition","_id":3,"_outE":[{"_id":2,"_inV":4,"_label":"SWITCHPOSITION_SWITCH"}]

,"_inE":[{"_id":1,"_outV":2,"_label":"ROUTE_SWITCHPOSITION"}]}

4 {"type":"Switch","_id":4,"_outE":[{"_id":3,"_inV":1,"_label":"TRACKELEMENT_SENSOR"}],"_inE":[{

"_id":2,"_outV":3,"_label":"SWITCHPOSITION_SWITCH"}]}

Listing A.3. A graph based on the railway system metamodel stored in Faunus GraphSON format
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A.2 Semantic Graph Formats

A.2.1 RDF/XML

RDF/XML is an XML-based (Extensible Markup Language) format for serializing RDF
triples.

1 <?xml version="1.0" encoding="UTF-8"?>

2 <rdf:RDF

3 xmlns="http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#"

4 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

5 xmlns:swrl="http://www.w3.org/2003/11/swrl#"

6 xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

7 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

8 xmlns:owl="http://www.w3.org/2002/07/owl#"

9 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

10

11 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl">

12 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Ontology"/>

13 </rdf:Description>

14

15 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Segment">

16 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

17 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Trackelement"/>

18 </rdf:Description>

19

20 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Switch">

21 <rdf:type rdf:resource="http://www.w3.org/2002/07/owl#Class"/>

22 <rdfs:subClassOf rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Trackelement"/>

23 </rdf:Description>

24

25 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#1">

26 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Sensor"/>

27 </rdf:Description>

28

29 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#2">

30 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Route"/>

31 </rdf:Description>

32

33 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#3">

34 <rdf:type rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#Switch"/>

35 </rdf:Description>
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36

37 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#4">

38 <rdf:type rdMapping Ecoref:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#SwitchPosition"/>

39 </rdf:Description>

40

41 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#3">

42 <TrackElement_sensor rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#1"/>

43 </rdf:Description>

44

45 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#4">

46 <SwitchPosition_switch rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#3"/>

47 </rdf:Description>

48

49 <rdf:Description rdf:about="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#2">

50 <Route_routeDefinition rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#1"/>

51 <Route_switchPosition rdf:resource="http://www.semanticweb.org/ontologies/2011/1/

TrainRequirementOntology.owl#4"/>

52 </rdf:Description>

53

54 </rdf:RDF>

Listing A.4. A graph based on the railway system metamodel stored in RDF format

A.3 Mapping Ecore to Property Graphs

Mapping the Ecore kernel’s concepts to property graphs is not a trivial task. We de-
veloped the property graph generator module for the Train Benchmark based on the
railroad system’s Ecore metamodel (Section 3.7.1), which meant the Ecore concepts had
to be mapped to property graphs. Following the mapping defined in Section 2.2.1, we
created the equivalent instance models for property graphs as well. Below, we provide
some examples about the mapping:

• Segment is an EClass instance. In a property graph, types cannot be repre-
sented explicitly. Instead, for each node representing a Segment instance, we
add a type property with the value Segment.

• Segment_length is an EAttribute instance. For each graph node represent-
ing a Segment, we define a property with the value Segment_length.
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• TrackElement_Sensor is an EReference instance. For each edge represent-
ing a TrackElement_Sensor instance, we add the TRACKELEMENT_SENSOR

label.

• EInt in an EDataType instance. Each attribute with this type, e.g. the Sensor
class’ Segment_length attribute, is defined with the Java primitive type int.
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A.4 Train Benchmark Queries

In the following, we present the queries defined in the Train Benchmark. These queries
were widely used during the development of INCQUERY-D, both for functional tests
and performance benchmarks of different query engines, including INCQUERY-D it-
self.

We describe the semantics and the goal of each query. We also show the associated
graph pattern and relational algebra query. The metamodel of the railroad system is
shown in Figure 3.9.

A.4.1 Relational Schemas

For formulating the queries in relational algebra we define the following relational
schemas for representing the vertices (objects) in the graph (instance model).

• Route (id)

• Sensor (id , Segment_length)

• Signal (id)

• Switch (id)

• SwitchPosition (id)

• TrackElement (id)

The edges (relationships) are represented with the following relational schemas:

• Route_entry (Route, Signal)

• Route_exit (Route, Signal)

• Route_switchPosition (Route, SwitchPosition)

• Route_routeDefinition (Route, Sensor)

• SwitchPosition_switch (SwitchPosition, Switch)

• TrackElement_sensor (Switch, Sensor)

• TrackElement_connectsTo (TrackElement ,TrackElement)
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A.4.2 Graph Patterns

Blue rectangles and arrows mark simple constraints, while red rectangles and arrows
represent negative application conditions. The query return with the nodes in hollow
blue rectangles. Additional constraints (e.g. arithmetic comparisons) are shown in the
figure in text.

A.4.3 PosLength

Description

The PosLength well-formedness constraint requires that a segment must have positive
length. Therefore, the query (Figure A.2) checks for segments with a length less than
or equal to zero. The SPARQL representation of the query is shown in Listing A.5.

Goal

The query checks whether an object has an attribute. If it does, the value is checked.
Checking attributes is a real world use case, although a very simple one. Note that
simple string checking is also measured in the Berlin SPARQL Benchmark [37], and it
concludes that the string comparison algorithm dominates the query time.

1 PREFIX base: <http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5

6 SELECT DISTINCT ?xSegment

7 WHERE

8 {

9 ?xSegment rdf:type base:Segment .

10 ?xSegment base:Segment_length ?xSegment_length .

11

12 FILTER (?xSegment_length <= 0)

13 }

Listing A.5. The PosLength query in SPARQL

segment: Segment

segment.Segment_length   0

Figure A.2. The PosLength query’s pattern
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Relational algebraic form

The PosLength query can be formalized in relational algebra as:

πSensor_id (σSegment_length≤0 (Sensor))

A.4.4 RouteSensor

The RouteSensor query is discussed in Section 3.7.1.

A.4.5 SignalNeighbor

Description

The SignalNeighbor well-formedness constraint requires that routes that are connected
through sensors and track elements have to belong to the same signal. Therefore, the
query (Figure A.3) checks for routes which have an exit signal and a sensor connected
to another sensor (which is in a definition of another route) by two track elements, but
there is no other route that connects the same signal and the other sensor. The SPARQL
representation of the query is shown in Listing A.6.

Goal

This pattern checks for the absence of circles, so the efficiency of the join operation is
tested. One-way navigable references are also present in the constraint, so the efficient
evaluation of these are also tested. Subsumption inference is required, as the two track
elements can be switches or segments.

1 PREFIX base: <http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5

6 SELECT DISTINCT ?xRoute1

7 WHERE

8 {

9 ?xRoute1 rdf:type base:Route .

10 ?xSensor1 rdf:type base:Sensor .

11 ?xSensor2 rdf:type base:Sensor .

12 ?xSignal rdf:type base:Signal .

13 ?xTrackElement1 rdf:type base:Trackelement .
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14 ?xTrackElement2 rdf:type base:Trackelement .

15

16 ?xRoute1 base:Route_exit ?xSignal .

17 ?xRoute1 base:Route_routeDefinition ?xSensor1 .

18 ?xTrackElement1 base:TrackElement_sensor ?xSensor1 .

19 ?xTrackElement1 base:TrackElement_connectsTo ?xTrackElement2 .

20 ?xTrackElement2 base:TrackElement_sensor ?xSensor2 .

21

22 ?xRoute3 rdf:type base:Route .

23 ?xRoute3 base:Route_routeDefinition ?xSensor2 .

24 FILTER ( ?xRoute3 != ?xRoute1 )

25

26 OPTIONAL {

27 ?xRoute2 rdf:type base:Route .

28 ?xRoute2 base:Route_entry ?xSignal .

29 ?xRoute2 base:Route_routeDefinition ?xSensor2 .

30 } .

31 FILTER (!BOUND(?xRoute2))

32 }

Listing A.6. The SignalNeighbor query in SPARQL

TrackElement_connectsTo

Route_routeDefinition

Route_entry

TrackElement_sensor TrackElement_sensor

Route_routeDefinition

Route_routeDefinition

Route_exit
route1 != route3

trackElement1: TrackElement

sensor1: Sensor

route1: Route

signal: Signal

trackElement2: TrackElement

sensor2: Sensor

route3: Routeroute2: Route

Figure A.3. The SignalNeighbor query’s pattern

Relational algebraic form

The SignalNeighbor query can be formalized in relational algebra as:

πRoute_entry.Route
(
σRoute_entry.Route ̸=Route_routeDefinition2 .Route

(
Route_entry ▷◁ Route_routeDefinition1 ▷◁ TrackElement_sensor1 ▷◁

TrackElement_connectsTo ▷◁ TrackElement_sensor2 ▷◁ Route_routeDefinition2 ▷

(Route_exit ▷◁ Route_routeDefinition3 )))
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A.4.6 SwitchSensor

Description

The SwitchSensor well-formedness constraint requires that every switch must have at
least one sensor connected to it. Therefore, the query (Figure A.4) checks for switches
that have no sensors associated with them. The SPARQL representation of the query is
shown in Listing A.7.

Goal

This query checks whether an object is connected to a relation. This pattern is common
in more complex queries, e.g. it is used the RouteSensor and the SignalNeighbor queries.

1 PREFIX base: <http://www.semanticweb.org/ontologies/2011/1/TrainRequirementOntology.owl#>

2 PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

3 PREFIX owl: <http://www.w3.org/2002/07/owl#>

4 PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

5

6 SELECT DISTINCT ?xSwitch

7 WHERE

8 {

9 ?xSwitch rdf:type base:Switch .

10

11 OPTIONAL {

12 ?xSensor rdf:type base:Sensor .

13 ?xSwitch base:TrackElement_sensor ?xSensor .

14 } .

15 FILTER (!BOUND(?xSensor))

16 }

Listing A.7. The RouteSensor query in SPARQL

TrackElement_sensor
switch: Switch sensor: Sensor

Figure A.4. The SwitchSensor query’s pattern

Relational algebraic form

The SwitchSensor query can be formalized in relational algebra as:

Switch ▷ Sensor
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