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Summary

The graph data model is an important tool for modelling complex, highly interconnected data sets as
the human mind tends to model the world as objects (nodes) and their relationships (edges). Graphs
are used extensively in computer science, including algorithms for compiling, routing, and scheduling.
Still, data sets are rarely represented as a graph, mostly due to the dominance of the relational model
in database management systems. In this work, we focus on two key graph representation formats:
(1) Graphs of object-oriented models provide strong metamodelling features and are used in the

field of software engineering and model-driven engineering.
(2) Property graphs provide a concise and intuitive data model but lack advanced schema definition

and metamodelling techniques.
Even though both formats define a typed, attributed graph data model, there has been surprisingly

little convergence and exchange of ideas between these fields even on the conceptual level. One of
the common challenges of these fields is efficient evaluation of graph queries that consist of pattern
matching and traversal operations. In model-driven engineering, graph queries are used for model
validation, i.e. repeatedly checking for well-formedness constraints, which allows developers to catch
design flaws early and therefore improve their productivity. Graph queries are also used for running
model simulations and maintainingmultiple viewpoints. In databases, graph queries are used to extract
information from highly interconnected data sets, e.g. for financial fraud detection, analysing social
networks, and serving personalized recommendations. The use cases listed for both fields could benefit
significantly from applying incremental view maintenance techniques to speed up the performance
of repeated query evaluation. While model-driven engineering has a number of incremental query
frameworks (such as Viatra Query and eMoflon), databases offer less support for such techniques.

In this dissertation, we investigate the applicability of incremental view maintenance on property
graphs to improve the performance of repeated query evaluation. We show that most graph queries
can be reduced to an extended nested relational algebra, which can be further transformed into a flat,
incrementally maintainable format. To tackle scalability challenges that arise due to the space-time
tradeoff of incremental queries, we propose a distributed architecture that allows adding multiple
computing nodes to increase the resources available for query processing.

We assess the performance of the proposed approaches with the benchmarks specified in this
dissertation. To this end and to assist the benchmarking efforts of others, we present two cross-
technology macrobenchmarks for comparing the performance of graph processing workloads. The
Train Benchmark, originating from model-driven engineering, defines a set of graph queries that re-
peatedly check the correctness of a railway model instance while it is continuously updated. The
more database-oriented LDBC Social Network Benchmark’s new Business Intelligence (BI) work-
load defines on OLAP-style aggregation-heavy global graph queries, which employ complex pattern
matching and path traversal operations.

A key difficulty for benchmarks is to provide representative workloads. To ensure that the queries
cover the difficulties of real-world queries, we define common challenges of graph queries w.r.t. ex-
pressivity and performance. To characterize the representativeness of synthetic graphs, we adapt re-
cent findings from network science. These allow us to study the structure of graphs with edge-type
information, which is often overlooked by traditional graph analytical techniques. We apply these
findings to distinguish between real and synthetic graph models, and identify graph metrics that can
serve as an input for generating realistic graph instances.
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sszefoglaló
Gondolatainkban a minket körülvevő világot gyakran objektumokra (azaz csomópontokra) és

azok kapcsolatára (azaz élekre) képezzük le. A gráf adatmodell emiatt fontos eszköz komplex, sok
összeköttetéssel rendelkező adathalmazok modellezésére. A gráfokat kiterjedten használják a számí-
tástudományban, beleértve a fordítóprogramokban, hálózati útvonalkeresőkben és az ütemezőkben
használt algoritmusokat. Az adattárolás területén azonban még mindig a relációs adatmodell a domi-
náns és ritkának számít, hogy egy adathalmazt gráf formátumban reprezentáljanak és tároljanak.

Értekezésemben két fő gráfreprezentációs formátumra koncentrálok: (1) Az objektum-orientált
gráfmodellek erős metamodellezési képességekkel rendelkeznek és a szoftvertechnológia és a modell-
vezérelt szoftverfejlesztés területén elterjedtek. (2) A tulajdonsággráfok egy tömör és intuitív adatmo-
dellt adnak, de nem nyújtanak lehetőséget séma és metamodell definiálására.

Bár mindkét formátum típusos, attribútumokkal ellátott gráf adatmodellt definiál, ezidáig megle-
pően kevés együttműködés történt a két terület művelői között. A területek egy fontos közös kihívása
a gráflekérdezések hatékony kiértékelése, melyek gráfmintákból és gráfbejáró műveletekből állnak. A
modellvezérelt tervezés területén ezen gráfminták egyik felhasználása a validáció, melynek során ún.
jólformáltsági kényszerek ismételt ellenőrzésével biztosítják, hogy a modellben található hibák a fej-
lesztési folyamat során hamar kiderüljenek. A gráflekérdezések használatosak modellszimulációra és
többszörös nézeti pontok karbantartására is. Az adatbázis-kezelés területén a gráflekérdezések lehetővé
teszik, hogy információt nyerjünk ki sok összeköttetéssel rendelkező adathalmazokból, pl. pénzügyi
csalások detekciójára, közösségi hálózatok elemzésére és személyre szabott ajánlások kiszolgálására. A
két területen felsorolt alkalmazási esetek mindegyike profitálhatna inkrementális nézetkarbantartási
technikák alkalmazásából, ezek ugyanis lehetővé tennék az ismételt lekérdezéskiértékelés teljesít-
ményének növelését. Míg a modellvezérelt tervezés területén több inkrementális lekérdezőmotor is
elérhető (pl. Viatra Query, eMoflon), a gráfadatbázisok kevésbé támogatják ezeket a technikákat.

Értekezésembenmegvizsgálom az inkrementális nézetkarbantartás alkalmazhatóságát a tulajdon-
sággráf adatmodellre. Megmutatom, hogy a legtöbb gráflekérdezés lefordítható egy kiterjesztett be-
ágyazott (többszintű) relációalgebra nyelvre, ami tovább transzformálható egy lapos (egyszintű), ink-
rementálisan karbantartható formára. Az inkrementális lekérdezésekhez alkalmazott tár–idő csere
miatt felmerülő skálázhatósági kihívások megoldására egy olyan elosztott architektúrát javaslok, ami
megengedi több számítási csomópont alkalmazását, ily módon növelve a lekérdezésfeldolgozásra el-
érhető erőforrások mennyiségét. Részletesen megvizsgálom továbbá a javasolt megközelítések tel-
jesítményét, melyhez bemutatok két technológiafüggetlen benchmarkot (teljesítménymérési keret-
rendszert). Ezek lehetővé teszik adott gráflekérdező motorok különböző terhelési profilokon nyújtott
teljesítményének összehasonlítását. A modellvezérelt tervezés területéről származó Train Benchmark
keretrendszer olyan gráflekérdezéseket definiál, amik ismételt módon ellenőrzik folyamatosan módo-
sított vasúti példánymodellek helyességét. Az inkább adatbázisokra fókuszáló LDBC Social Network
Benchmark új „üzleti intelligencia” terhelési profilja sok aggregációt igénylő globális gráflekérdezé-
seket definiál, ami komplex mintaillesztési és útvonalkeresési műveleteket igényel.

A benchmarkokkal szemben támasztott egyik fő követelmény, hogy repezentatív terhelési pro-
filt nyújtsanak. Annak érdekében, hogy a lekérdezések lefedjék a valós rendszerekben alkalmazott
párjaik kihívásait, összegyűjtöttem a kifejezőerőre és teljesítményre vonatkozó gyakori kihívásokat.
Ezen túl a szintetikusan generált gráfok reprezentativitásának biztosítására a hálózatkutatás eredmé-
nyeit használtam. Ezekkel jobban jellemezhető az éltípusokat is tartalmazó gráfok struktúrája, amit
a hagyományos gráf analitikai technikák gyakran figyelmen kívül hagynak. A szerzett ismereteket
felhasználva bemutatom, hogyan lehetséges megkülönböztetni valós és szintetikus gráfokat, majd
azonosítom azokat a metrikákat, amik bemenetként szolgálhatnak valósághű gráfok generálására.
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Chapter1

Introduction

1.1 Background

1.1.1 A Brief History of Graph Data Processing

As a branch of mathematics, graph theory has been in existence for almost three centuries [Die12].
While graphs were studied in the early 20th century [Kőn31; Kőn36], graph research was catalysed
when a number of practical applications were discovered during the Second World War. Since the
1950s, the boom of information technology further boosted the development of graph theory and
algorithms. The advancements in graph theory were also adopted by other domains, including social
and natural sciences, which could use these techniques to argue about graph-shaped structures.

Starting from the 1960s, researchers studied a number of theoretical and practical aspects of graph
processing and analysis. As a result, they established new fields by the 1970s, including graph rewrit-
ing systems [EPS73; Roz97] and social network analysis [Gra73; WF94]. During this time, the database
management research community defined the graph-based network data model, published by the
CODASYL (Conference on Data Systems Languages) Consortium [Dat70; Dat78]. However, it had
little influence as it was soon superseded by the less implementation-oriented and more flexible re-
lational data model [Cod70; DC74] that allowed system developers to decouple the query compiler
from the query execution code and paved the way for using high-level declarative query languages.

As relational database managements systems (RDBMSs) were both novel and dominant at the
same time, there was little activity in graph data management for a few years. However, starting from
the mid-1980s, researchers started to design and implement a number of object-oriented database man-
agements systems (OODBMSs). The 1990s saw a large number of theoretical works, research proto-
types and commercial products in this space [AG08], which also exerted influence on RDBMSs, result-
ing in the implementation of object-relational systems. In the late 1990s, the semantic web initiative
gave birth to the RDF (Resource Description Format) standard, with semantic databases following suit
in the early 2000s. Around this time, researchers independently discovered that networks of both the
World Wide Web [AJB99] and the underlying internet topology [FFF99] exhibit power-law distribu-
tions. These findings kickstarted the field of network science [BP16], which incorporates many of the
previous results (such as those of social network analysis), but almost exclusively focuses on simple
(directed or undirected) graphs.

Interestingly, none of the data models above achieved such a success in such a short amount
of time as the property graph [HG16; Ang+18; Fra+18; Ang18], which extends directed graphs by
only adding labels/types and properties (key-value pairs) to their nodes/edges. The first property graph
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database system appeared in 2007, just two years before the term “NoSQL database” [SF12] was coined.
While there are still significantly fewer property graph databases than other types of NoSQL systems
(document databases, key-value stores, and wide column stores) [DCL18], graphs are increasingly
used both for storing and processing highly interconnected data sets, and property graph databases
have a dynamically growing market share.1

We believe that the success of the property graph data model can be attributed to the fact that it
strikes a good balance between conceptual simplicity and expressiveness. As the human mind tends
to interpret the world in terms of things (nodes) and their respective relationships to one another
(edges) [Rod08b] along with attributes (properties) of these elements, property graphs provide a mod-
elling framework that is intuitive but lightweight at the same time. Property graph instances are also
better suited for visualization than other data models, such as RDF and hypergraphs [LP91]. Still,
other graph data models, such as the edge-typed graphs are still relevant. Therefore, this dissertation
discusses techniques and applications both for graph databases [Ang12; RWE15; Ang+17] storing
property graphs and for analytical frameworks [Bat+15; Sak+16; Yan+17] working on typed graphs.

1.1.2 Model-Driven Engineering

Model-driven engineering (MDE) is a widely used development technique in many application do-
mains such as automotive, avionics, and other cyber-physical systems [WHR14]. MDE facilitates the
use of models in different phases of design and on various levels of abstraction. These models enable
the automated synthesis of certain design artifacts (such as source code, configuration files, docu-
mentation) and help catch design flaws early by model validation techniques. MDE originates from
the fields of formal methods and software engineering (strong influenced by object-oriented program-
ming [Rum+91]), but established itself as a field of its own right in the last two decades. Many of the
systems designed using MDE techniques have a long lifespan compared to most software products,
e.g. a successful airliner is often produced and maintained for decades. Therefore, toolchains that
build on open-source software (at least to some extent) are preferred to avoid vendor lock-in and aid
the sustainability of the development tools.

In typical MDE tools, domain-specific models are defined as typed, attributed graphs. Therefore,
processing and storing them requires techniques suited to efficient graph persistence and querying. A
key component of MDE is model validation, i.e. checking whether a set of well-formedness constraints
are satisfied on a domain-specific instancemodel.While RDBMSs also offer data validation in the form
of integrity constraints or check constraints [RG98], these define simpler rules that enforce ranges or
check for the presence of foreign key–primary key pairs. Model validation queries, on the other hand,
often use complex graph queries and traversals for defining constraints, which are difficult to evaluate
efficiently. Other workloads such asmodel simulation [RVV08] and defining view points [Bru+18] also
rely on complex queries, often executed repeatedly.

As the front-end components of MDE software applications are mostly programmed in statically
typed object-oriented languages (such as Java), they require the underlying storage and query layers
to provide strong metamodelling features, including defining and enforcing a graph schema with a
number of constraints such as containment hierarchy, cardinalities, etc. This is in stark contrast with
graph and semantic databases, which offer a schema-free or schema-optional data model [BTL11], and
provide only basic metamodelling features. In short, MDE applications demand the following features:

• Metamodelling. They require strong metamodelling facilities beyond the capabilities of cur-
rently available graph and semantic database systems, which are schema-optional at best.

1According to the statistics of the DB-Engines ranking site, the interest for graph databases between 2013 and 2019 has
grown by 9.5 times (see https://db-engines.com/en/ranking_categories).
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• Complex queries. They use complex and global queries for workloads such as model validaton
or model simulation, consisting of numerous join operations and accessing a large fragment of
the graph model. Some queries also rely on features outside relational algebra such as transitive
reachability and determining strongly connected components.

• Frequent reexecution.Queries are repeatedly evaluated over an evolving graph, including the
addition of new graph elements, updating attributes, and deleting existing elements.

• Low response time.Many of the commonMDE workloads define operations where execution
time is constrained by usability requirements. Model validation, model simulation, and main-
taining multiple view points all necessitate efficient, low response time (preferably sub-second)
query evaluation.

In the last two decades, a number of dedicated graph andmodel transformation tools [Kah+18] were
created to tackle these challenges. A possible approach to mitigate the difficulty of complex graph
queries is using incremental view maintenance (IVM) techniques, which aim to keep query results
up-to-date efficiently upon changes in the graph (depicted in Fig. 1.1). These techniques have been
used originally in production systems [For79] and active databases [PD99] that use triggers [Ast+76]
to maintain views [Sto75] in a consistent state. In the context of model-driven engineering, IVM tech-
niques have been employed by the Viatra tool [Var+16] (originally developed at the Fault-Tolerant
Systems Research Group of the Budapest University of Technology and Economics), along with Reac-
tive ATL [JT10], eMoflon [Lau+12], and NMF [Hin18a], However, a number of other features such as
scalability [Kol+13], fine-grained access control [Deb+17], and inconsistency tolerance [GHM98] would
be desirable to provide a usable persistence and query backend for MDE applications. Due to the lack
of off-the-shelf solutions providing these features, MDE applications commonly use custom model
management layers that implement these features to some degree.

G G +∆G

Q(G) Q(G +∆G)

∆G

Q Q: full recomputation
+∆Q(G,∆G): incremental view maintenance

Figure 1.1: Incremental view maintenance at a glance, adapted from [CY12]. Query Q is
evaluated over graph G, returning Q(G). Once changes ∆G are applied to the graph, it
becomesG+∆G. The changes are subsequently reflected in the query resultsQ(G+∆G),
either through full recomputation or by applying∆Q(∆G) to the previous query result.

1.1.3 Model Queries over Databases

At first sight, database systems seem a good fit for storing and processing the graph models of MDE
applications. Due to their long history and sophisticated optimizations, databases are expected to be
more scalable for complex queries than MDE engines. Additionally, they offer better inconsistency
tolerance, i.e. they allow persisting incomplete and therefore malformed graph instances unlike many
MDE tools. They also support multiple transactions to run read/write operations concurrently. As
they are often used in enterprise environments for large collaborative projects involving multiple
stakeholders, they provide fine-grained access control, backup, and crash recovery features. The soft-
ware engineering and later the MDE communities therefore been long experimenting with adapting
database technologies to their applications [EN79; ESW93; EKS93; Kin94; KD96; DTG00; Var08].
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1. Introduction

Relational databasemanagement systems There have beenmultiple attempts to createmapping
layers between MDE tools and RDBMSs, the two most prominent being the Eclipse Teneo [Ecl15b] and
Connected Data Objects (CDO) projects [Ecl19]. Still, relational databases have been repeatedly falling
short in terms of performance and usability for supporting MDE workloads [BHH12; BK14; Góm+15;
Sey+16; Hae+19]. The key reasons behind this are as follows:

• Using RDBMSs for storing graph models necessitates object-relational mapping (ORM) [Bla+06;
ONe08] which suffers from the well-known impedance mismatch problem [CM84; Ire+09].

• Graph traversal queries are difficult to translate to SQL [VFV06b]. Even though support for
recursive queries was introduced as an extension to the SQL:1999 standard [ISO99], it was only
adopted by MySQL, the most popular open-source RDBMS, in 2017. Even with this language
construct, recursive queries are often cumbersome to express and inefficient to evaluate.

• Recursive queries are also difficult to use from existing ORM frameworks – although they were
proposed to the Hibernate framework’s Hibernate Query Language (HQL) in paper [Szu+12],
the actual implementation did not adopt them.

• Relational databases are notorious for having an excessive amount of configuration parameters
to fine-tune performance [Ake+17].While these can be used to improve performance for a given
workload, getting them right for a certain workload requires a great deal of experience.

• The popular open-source implementations (MySQL and PostgreSQL) do not support incremen-
tal query evaluation, and even the proprietary ones (Oracle Database or Microsoft SQL Server)
support it only to a limited extent, i.e. they cannot incrementally maintain views containing
outer join operations [BHH12].

Object-oriented database management systems Following the rise in popularity of the object-
oriented programming paradigm, object-oriented database management systems (OODBMSs or object
databases), specializing in efficient retrieval of elements from object graphs, started to emerge in the
1980s. These systemswere met with particular interest by the developers of computer-aided design and
manufacturing (CAD and CAM) tools, which share many challenges of MDEworkloads (such as using
statically typed programming languages for front-end development), but aim at concrete application
domains.

OODBMSs were initially successful, and by the mid-90s, more than 30 such systems were avail-
able [ZCC95], including commercial systems such as ObjectStore andO2 [BDK92] alongwith research
prototypes such as H-PCTE [Kel92] and GRAS [KSW95]. A new standardized query language, the Ob-
ject Query Language (OQL) [CB00] was designed for OODBMSs, providing a syntax similar to SQL
but expressing navigation operations in a functional nature. Despite the number of available systems,
OODBMSs had limited success outside the narrow domains of CAD/CAM tools with only moderate
adaptation to MDE and other tools. The reasons behind this are manifold, but we believe the key
contributing factors were the following:

• Complexity of data model. The manifesto of OODBMSs [Atk+89] defined a large number
of “mandatory” features, including complex objects, object identity, encapsulation, and type hi-
erarchies, along with the inclusion of operations supporting overriding, overloading, and late
binding. These requirements made the data model not only complex, but also resulted in rigid
schemas, and rendered schema migration difficult.

• Performance. Despite attempts to standardize and formalize the data model and query lan-
guages of OODBMSs [FM95], the intricacies of the OO data model were less widely understood
than those of the relatively simple relational data model. This led to a lack of efficient optimiza-
tion methods.
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• Lack of open-source implementations. For the last two decades [Ray99], developers and
companies exhibited a shift in preference towards open-source solutions. Most OODBMSs did
not follow this trend: even as of March 2019, only two of the top 10 object-oriented databases
are available as open-source software2, namely db4o and Perst, neither of which supports a
declarative query language (only offering simple retrieval operations).

A hybrid approach was taken by object-relational database management systems (OR-
DBMS) [SM96], which used a relational backend but provided object-oriented query features. While
this approach is supported in the SQL:1999 andwas adopted bymany RDBMSs (including PostgreSQL,
IBM DB2, Microsoft SQL Server, and the Oracle Database), these solutions suffer from the same
impedance mismatch problem [CM84; Ire+09] and performance issues that surfaced in the context
of applying RDBMSs to MDE workloads. In short, neither RDBMSs nor OODBMSs turned out to be
suitable backends for storing graph models. Therefore, following the appearance of the non-relational
NoSQL and semantic databases, MDE researchers soon started to investigate them for storing andma-
nipulating graphs.

NoSQL and semantic databases Since the realization that the requirements of MDE tools might
be better met by NoSQL and semantic databases, the software engineering and MDE community has
been experimenting to adapt database technologies to store object models [Rah+01; AK02; VFV06b].
In recent years, they investigated the applicability of NoSQL systems for tackling scalability chal-
lenges [Kol+13], including persistence layers (EMFStore [KH10],Morsa [ECM11], NeoEMF [Dan+17]),
query evaluation (Mogwaï [DSC18]), and model indexing (Hawk [BK13]). The Open Services for Life-
cycle Collaboration (OSLC) [BGL12], an open community started in 2008, aimed to harness semantic
technologies to assist software engineering efforts. To this end, it provides a common approach for
tool integration that build on top of the RDF standard [RS14], the Linked Data method [BHB09], and
the REST (Representational State Transfer) software architecture style [BB08]. While many of these
efforts were successful to some extent, the overall results and their adoption suggests that NoSQL
systems are not yet fully capable of supporting complex MDE workloads, particularly struggling to
provide sufficient performance for the graph queries required by such workloads.

The complexity of MDE workloads In short, to sufficiently handle complex MDE workloads,
users require continuously updatable graph database that supports strong metamodelling, can be queried
with an expressive declarative query language, and can evaluate complex global queries with close to
real-time response. At the beginning of my research in 2014, such systems did not yet exists–even the
concept of a “graph data warehouse” has only been explored in research works [Zha+11; LV13], and
as of 2019, such systems are still not available yet.

1.2 Benchmarks for Application Scenarios

To study the challenges of handling complex graph query workloads and conduct research with im-
pact on industry tools, we need to consider real-life use cases. This itself is a challenge as it is im-
possible to obtain (let alone publish) real workloads in model-driven engineering and graph data
processing. The reason behind this is that both real data sets and even queries specifications consti-
tute considerable intellectual property. Data sets might hold sensitive personal information (such as
financial and medical data) or identify subcontractors (e.g. merely from the structure of an automo-
tive model). In many cases, the queries are also difficult to obtain, especially in cases when exposing

2https://db-engines.com/en/ranking/object+oriented+dbms
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1. Introduction

them might be considered a risk (e.g. the queries used for financial fraud detection can give hints on
how to circumvent such anti-fraud measures). The best practice to gather the challenges in a field
is to use commonly accepted benchmark specifications. Such benchmarks have a number of additional
advantages: they make competing products and approaches comparable, thus stimulate research and
accelerate technical progress in their field [Pat12], as the Transaction Processing Performance Coun-
cil’s TPC benchmarks [TPC10; TPC17; TPC18] have done for the RDBMS industry during the past
30+ years.

Micro- and macrobenchmarks Microbenchmarks focus on the performance of small operators
such as querying a single node type in a graph [LBV18]. This might reveal important information
on low-level implementation details such as caching and the effect of warmup on certain operations,
however, the requirements of application developers are often better served by macrobenchmarks,
which consist of complex operations and are more similar to a real application. While there are a
number of benchmarks available for graphworkloads [VSV05; Zün08; Sch+09; Arm+13], none of them
provides comparative measurements for complex graph queries on realistic data. At the beginning of
my research in 2014, macrobenchmarks targeting such workloads – the Train Benchmark and the
LDBC SNB’s Business Intelligence workload – were in an early stage of research. This dissertation
makes major contributions to both benchmarks.

Designing representative workloads On the conceptual level, a benchmark specification defines
(1) data sets, e.g. graph instances of increasing sizes, (2) a set of queries, and (3) a scenario that pre-
scribes the operations to be performed. A key requirement for benchmarks is that they should be
representative [Gra93], i.e. their data sets, queries, and scenarios should resemble real use cases that
are relevant to the interest of benchmark users. In this dissertation, we aim to assist benchmark de-
signers in this goal by proposing a set of abstract characteristics for characterizing a given workload.

As discussed previously, users often cannot share the queries used in their workloads. However,
they might be able to answer questions such as “What is the maximum number of joins used in a
query?”, “What percentage of the database is accessed by a query?” and “Which types of aggregation
operations are the bottleneck in the queries?”. These inputs can be used to construct similar queries.

It would be logical to apply the same approach for creating representative data sets. Existing
graph benchmarks often use random graph models [Tae+07] that exhibit a highly regular structure or
graphs that correspond to a relational data set [BS09]. Even the most recent and advanced approaches
such as gMark [Bag+17] only consider a narrow set of characteristics (e.g. degree distributions can
be controlled for a given edge type, but the interplay between types cannot be tuned). While there
would definitely be interest for realistic graph generators [SLO18], both characterizing real graphs
and synthesizing realistic graphs are highly non-trivial problems. In this dissertation, we adapt recent
results of the multidisciplinary field of network science to obtain metrics that describe the structure of
graphs. Synthesizing realistic graphs is an open research challenge and state-of-the-art approaches
offer limited scalability, only supporting graphs up to a few hundred elements [You+18].

1.3 Challenges and Contributions

As we concluded in Sec. 1.1.3, MDE tools could greatly benefit from using high-performance graph
database systems, especially ones supporting incremental view maintenance over property graphs
or semantic graphs. Other users also expressed their interest for running continuous queries over
an evolving graph data set. While such systems were already proposed in research works in the
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1990s [KSW95], no graph database system offered incremental query evaluation at the beginning
of my research in 2014. This still holds true as shown by recent survey [Sah+17], which interviewed
users from industry and academia about their graph data managements interest and practices. In
fact, this survey confirmed both the demand for incremental graph processing techniques (more than
a third of respondents indicated that they perform incremental computations on their graphs) and
the lack of such systems (the 22 software products included in the survey have limited or no support
for incremental computations), suggesting that users who indicated that they rely on IVM use either
computations with limited incrementality and/or implemented problem-specific ad-hoc solutions.

1.3.1 Challenges

To create the building blocks of an incremental graph query engine that work both in the MDE and
property graph domains, we investigated the challenges of scalable incremental view maintenance for
graph queries. To derive representative performance results for such systems, we looked for repre-
sentative macrobenchmarks to measure the performance of global graph queries. Finally, we aimed to
characterize realistic graph models.
Ch1. Queries over evolving property graphs. A common approach to speed up the evaluation

of queries on continuously changing data sets is incremental view maintenance (IVM), which
defines a view for each query and maintains its results upon changes. While IVM techniques
have been developed for more than three decades, the feasibility of incremental operations on
graph data structures is still actively studied from the theoretical perspective [FHT17]. Addi-
tionally, the sophisticated property graph data model introduces even more challenges for IVM
techniques.

Ch2. Representative macrobenchmarks for graph querying. To capture challenging aspects
of real workloads, we need some abstract aggregative descriptions to provide a summary of
why they are difficult. This characterization is important for two key reasons: (1) it allows
benchmark designers to define synthetic but representative workloads without requiring access
to confidential information such as queries and data sets (both protected by intellectual property
rights and non-disclosure agreements) and (2) it makes possible to combine different workloads
into a single one. These abstract descriptions include ones that target the data set, such as typed
graph metrics, and also ones that define query language features or stress performance aspects.

Ch3. Domain-specific characterization of realistic graph models. Creating realistic graph in-
stances for benchmarks and distinguishing synthetic graphs from real ones requires an ap-
proach to characterize graphmodels in a certain domain. The field of network science has studied
a number of graph metrics (such as degree distribution) to characterize real networks, however,
devoted less attention to metrics that characterize graphs with type information, which is nec-
essary to describe domain-specific graph models.

1.3.2 Contributions

My research contributions presented in this dissertation are as follows:
Co1. Structural analysis of typed graphs: I proposed various graph metrics and statistical anal-

ysis techniques to characterize domain-specific engineering models. I used selected metrics to
distinguish between real models and synthetic ones produced by automated generators.

Co2. Benchmarks for global queries over evolving property graphs: I contributed to the design
of two benchmark frameworks for global property graph queries: the Train Benchmark that
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Figure 1.2: A graph of the key challenges and their relations to the contribution groups.
Note that the challenges on the left are numbered as Ch1 to Ch3 from top to bottom, while
the contributions on the right are numbered as Co1 to Co3 from bottom to top.

defines a continuous model validation workload and the LDBC SNB’s Business Intelligence
workload that consists of complex aggregation-heavy global graph queries.

Co3. Incremental view maintenance on schema-optional property graphs: I developed scal-
able incremental viewmaintenance techniques for evolving schema-optional graphs. I designed
and implemented two prototypes, IncQuery-D for distributed incremental view maintenance
over RDF (semantic) graphs and ingraph for incremental evaluation of property graph queries.

Fig. 1.2 lays out the challenges and connects them to the proposed contributions. It shows that the
central themes of this dissertation are global graph queries,macrobenchmarks, and realistic workloads,
with benchmarks closely related to each of the three contribution groups. Fig. 1.3 shows an overview
of the groups of contributions, including their key results and prototype tools, positioning them w.r.t.
data processing system types (such as model query engines and relational databases), industry tools,
and workload categories.

1.4 Structure of the Dissertation

The dissertation is structured as follows.

Introduction and Preliminaries Chapter 2 defines the basic concepts and graph data models used
in this dissertation through the example of the Train Benchmark. It also presents the basic operators
of relational algebra and gives an overview of different types of graph processing.

Part I: Structural analysis of typed graphs In the first group of contributions, we apply recent
findings in network science on graph models to characterize their internal structure in Chapter 3. We
place a particular emphasis on investigating the interplay between edge types of the graph model,
an aspect which is often overlooked by traditional tools of network science. Then, we use a subset of
these metrics to distinguish between real vs. synthetic graphs in Chapter 4. The main chapters of this
contribution group are complemented by an overview of metrics for untyped graph in Appendix A
and a summary of graph computation techniques in Appendix B.

Part II: Benchmarks for global queries over evolving property graphs In the second group of
contributions, we present two benchmark frameworks that allow their users to run experiments for
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Figure 1.3: A graph of the key contributions and prototype systems presented in this disser-
tation, along with their relations to other systems and concepts. Contribution groups 1–3
are described in Parts I–III. The LDBC Social Network Benchmark Interactive workload and
the LDBC Graphalytics benchmark are described in [Erl+15] and [Ios+16], respectively.

assessing the performance of global graph queries. Chapter 5 presents the Train Benchmark, then
Chapter 6 discusses the LDBC Social Network Benchmark’s new Business Intelligence workload
(LDBC SNB BI). We review related benchmarks in Chapter 7. The appendices contain the detailed
specifications of the benchmark workloads: Appendix C defines the queries and transformations of
Train Benchmark, while Appendix D presents the choke points and queries for the LDBC SNB BI.

Part III: Incremental viewmaintenance on schema-optional property graphs The third and
final group of contributions tackles the challenges of incremental viewmaintenance on schema-optional
graph data models such as property graphs and semantic (RDF) graphs. In Chapter 8, we present an
approach to reduce property graph queries to relational algebra and evaluate the results using the
LDBC Social Network Benchmark’s BI workload. Then, in Chapter 9, we show how to perform incre-
mental view maintenance in a distributed setup and use the Train Benchmark to assess the scalability
of the proposed approach. We discuss related view maintenance techniques in Chapter 10. As sup-
plementary material, Appendix E presents the foundations of incremental query evaluation in Rete
networks, including detailed derivations of delta expressions.
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Conclusion and Future Work To conclude the dissertation, Chapter 11 summarizes the results
and highlights potential future research directions.
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Chapter2

Preliminaries

In this chapter, we define the concepts used throughout this dissertation. The majority of examples,
definitions, and terms presented here are involved in more than one contribution group (Parts I–III).

2.1 Running Example: a Railway Model

We use an example from the domain of the railway network design, defined by the Train Benchmark
framework [j2] (Chapter 5). Fig. 2.1 shows an example: Fig. 2.1a illustrates the domain with a (partial)
network, and Fig. 2.1b shows its metamodel.

A train Route is a logical path of the railway, which requires a set of Sensors for safe operation.
The occupancy of Track Elements (Segments and Switches) ismonitored by sensors. A route follows
certain Switch positions (straight or diverging) which define the prescribed position of a switch be-
longing to the route. Different routes can specify different positions for the same switch. A route is
active if all its switches are in the position prescribed by the switch positions followed by the route.
Each route has a Semaphore on its entry and exit points.

2.2 Conceptual Graph Data Models

In this section, we give a brief overview of related concepts in graph theory. In this dissertation, we
only consider directed graphs in the data model (G = (V,E, ...)) and capture the undirected semantics
of certain edges in the graph queries (see Sec. 2.5.3). This approach makes the data model conceptually
simpler and is used commonly in practice, e.g. in graph databases [Web12].

2.2.1 Untyped Graphs

We define graph data models of increasing expressive power. We start with the simplest one, untyped
graphs, which hold no type information. Formally:

Definition 1 (untyped graph or homogeneous graph) An untyped graph is defined as

G = (V,E, src, trg),

where V is a set of nodes and E is a set of edges. Functions src, trg ∶ E → V are total functions,
respectively assigning the source and target node to each edge.
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(a) Illustration of the domain concepts. (b) Metamodel of the railway graph.

Figure 2.1: Example railway network and its metamodel.

(a) Railway instance as an untyped graph.

(b) Railway instance as an edge-typed graph.

(c) Railway instance as a labelled graph.

(d) Railway instance as a property graph.

Figure 2.2: Example railway network represented with data models of decreasing expres-
sivity: as an untyped graph (Def. 1) as an edge-typed graph (Def. 4), as a labelled graph
(Def. 6), and as a property graph (Def. 7).

Fig. 2.2a shows the example graph as an untyped graph.

Definition 2 (graph elements) We refer to the union of nodes and edges as graph elements.

Many practical applications, e.g. logistics and routing, operate on graphs where cost of traversing
a particular edge is of interest. To represent these, we can assign weights to graph edges.

Definition 3 (weighted graph) A weighted graph is a graph where each edge is assigned a
weight w ∈ R.

Note on terminology. Due to their applications in many scientific fields, the terminology of graphs
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uses different name for the same (or closely related similar) concepts. For example, nodes are often
called vertices, and edges are often called relationships or arcs. Also the terms graph and network are
used interchangeably in many works, including this dissertation. Additionally, we use the termmodel
as a shorthand for graph model and note explicitly when we refer to other kinds of models (e.g. textual
models).
Compared to the untyped graph, there are numerous graph data models offering greater expressive
power, to be introduced later in this section. To distinguish these from the untyped graph model, the
latter is informally called the textbook graphmodel, referring to the fact that most university textbooks
on graph and algorithm theory only consider untyped graphs.

2.2.2 Graphs with Types and Labels

Untyped graphs allow users to capture homogeneous real-life networks. However, such networks usu-
ally do not exist in isolation, instead they are tightly connected with other networks, and emerge
through the interplay between edges of different types. To capture some of the heterogeneity in real
networks, we first assign a type to each edge. Formally:

Definition 4 (edge-typed graph or multiplex graph) An edge-typed graph is defined as

G = (V,E, src, trg, T, type),

where T is a set of edge types, and function type ∶ E → T assigns a single type to each edge.

Fig. 2.2b shows the example graph as an edge-typed graph. This data model allows us to use
the tools of network science for multiplex graphs, which often reveal more insights compared to
traditional graph analysis on untyped graphs, while still “abstracting away” some information (the
labels of nodes and properties of graph elements).

In the node-labelled graph data model, we assign a set of labels to each node. Formally:

Definition 5 (node-labelled graph) A node-labelled graph is defined as

G = (V,E, src, trg, L, labels),

where L is a set of node labels, and function labels ∶ V → 2L assigns a set of labels to each node.

The labelled graph data model uses both edge types and node labels:

Definition 6 (labelled graph) A labelled graph is defined as

G = (V,E, src, trg, L, T, labels, type)

Fig. 2.2c shows the example graph as a labelled graph. This example highlights that the labelled
graph model offers quite rich modelling capabilities.

2.2.3 Property Graphs

To capture the properties in the graph, let S be a set of scalar literals, FBAG(S) denote the set of all
finite bags of elements from S, and let D = S ∪ FBAG(S) be the value domain for the PG.
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Definition 7 (property graph) A property graph is defined as

G = (V,E, src, trg, L, T, labels, type, Pv, Pe)

Additionally to the concepts already presented, Pv and Pe are defined as:
• Pv is the set of node properties. p ∈ Pv is a function p ∶ V → D, which assigns a property
value d ∈D to node v ∈ V , if v has property p, otherwise returns NULL.

• Pe is the set of edge properties. p ∈ Pe is a function p ∶ E → D, which assigns a property
value d ∈D to an edge e ∈ E, if e has property p, otherwise returns NULL.

Fig. 2.2d shows the example graph as a property graph. It is easy to see that this instance holds the
most information and is the most faithful representation of the example railway network of Fig. 2.1a.

2.2.4 Path Property Graphs

The path property graph data model is an extension of property graphs (Def. 7) introduced by the
G-CORE language (Sec. 2.6.3). The goal of the language is to treat paths (Sec. 2.5.2) as first-class citizens
by introducing an explicit set of paths in the datamodel, with each path having its own set of labels and
properties. As the path property graph data model is not used in this work, we refrain from providing
a formal definition and refer the reader to paper [Ang+18]. However, we expect this data model to
gain more significance in the near future through the influence of the G-CORE language.

Note on terminology. Works in network science commonly refer to concepts identical to edge-typed graphs
as multidimensional networks [Ber+13], multilayer(ed) networks [BSK11; Bró+12; Kiv+14], and multiplex net-
works [BNL14; NL15]. Additionally, database researchers use the term edge-labelled graph [Ang+17] as well.
Conversely, labelled graphs are also called typed graphs [Lin+16], heterogeneous networks [HB15], and het-
erogeneous information networks [Shi+17]. For property graphs, the closest related concept is that of attributed
graphs [SWZ99], which predate property graphs by more than a decade [KG89].

2.3 Practical Graph Data Models

In this work, we consider four substantially different data models, each with different metamodelling
and model representation support. To discuss these models, we use the model of the Train Benchmark
(Chapter 5) to illustrate how these technologies define the metamodel (e.g. the supertype hierarchy)
and how they store the instance models as graphs.

Figure 2.3: The kernel of the Ecore metamodel.
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2.3.1 Eclipse Modeling Framework (EMF)

The Eclipse Modeling Framework provides Ecore, one of the de facto standard industrial metamod-
elling environments, used for defining several domain-specific languages and editors. Ecore enables
developers to define metamodels and automates the generation of a wide range of tools. Ecore is
discussed in detail in [Ste+09], here we only present its core kernel in Fig. 2.3.

• EClass intances represent classes. EClasses are identified by their name and may have several
attributes and references. To support inheritance, a class can refer to a number of supertype
classes (eSuperTypes).

• EAttribute instances represent attributes which contain data elements of a class. They are iden-
tified by their name and have a data type (eAttributeType).

• EDataType represents simple data types that are treated as atomic (their internal structure is
not modelled) and identified by their name.

• EReference represents a unidirectional edge between EClasses and it is identified by its name.
Lower and upper multiplicities (lowerBound and upperBound) can be specified. It is also pos-
sible to mark a reference as a containment that represents composition of model elements.
Bidirectional associations can be modelled as two EReference instances that are mutually con-
nected via their opposite references (eOpposite).

The EMF metamodel of the example railway graph is shown in Fig. 2.4. Compared to the simple
metamodel of Fig. 2.1b, it enriches the schema with numerous additional features, such as cardinality
constraints, containment relations, class hierarchies, and opposite edges.

2.3.2 Property Graphs

Variants of the property graph data model (Def. 7) are common in graph databases such as Neo4j1,
OrientDB2, and JanusGraph3 (originally introduced as Titan4). Currently, most graph database sys-
tems support no or optional metamodelling features. However, schema description languages were
proposed (such as gTop, see Sec. 10.5.1) and they are under active development.

2.3.3 Semantic Graphs (RDF)

The Resource Description Framework (RDF) [RS14; Wyl+18] is a family of W3C (World Wide Web
Consortium) specifications originally designed as a metadata data model for semantic web applica-
tions. In the following, we use the terms RDF and semantic graph interchangeably.

The RDF data model makes statements about resources (nodes/objects) in the form of triples.
A triple is composed of a subject, a predicate and an object, e.g. “John is-type-of Person”, “John
has-an-age-of 34”.5 Both the ontology (metamodel) and the facts (instance model) are represented
as triples and stored together in the knowledge base.

The knowledge base is typically persisted in specialized databases tailored to store and process
triples efficiently, called triplestores. Some triplestores are capable of reasoning, i.e. inferring logical

1https://neo4j.com/
2https://orientdb.com/
3http://janusgraph.org/
4http://titan.thinkaurelius.com/
5Predicates are sometimes called properties [Cho+05; Özs16], which should not be confused with the concept of the

same name in property graphs (Sec. 2.3.2). Predicates/properties in RDF are more generic than those in property graphs as
they also represent edges between nodes (and not only attributes).
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Figure 2.4: The metamodel of the Train Benchmark.

consequences from a set of facts or axioms. RDF supports knowledge representation languages with
different expressive power, ranging from RDFS [GB14b] to OWL 2 [Gro12].

It is non-trivial to capture semantic graphs with the theoretical models presented in Sec. 2.2.
Hence, semantic graphs can be modelled as labelled graphs (Def. 4), where nodes are the resources
and literals in the semantic graphs and each edge type is a URI.

2.3.4 Relational Model

Relational database management systems (commonly abbreviated as RDBMSs) have been dominating
the database landscape for more than 40 years. Building on the formal foundations of the relational
data model and the accessibility of the SQL language, RDBMSs are still the most widely used database
systems, with many free and commercial products. Due to their long history, these systems are stable
and mature with sophisticated tools for operational tasks such as access control and data import.

Database schema For a given database, the sum of the table schemas – each defining attribute
names and types along with primary and foreign key relations (PK/FK), and integrity constraints –
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makes up the database schema. While the termmetamodel is not commonly associated with relational
databases, the database schema fulfils the same role as the metamodel.

Mapping object-oriented concepts Many object-oriented concepts such as class hierarchies are
difficult to map to the relational data model. In fact, the object-to-relational mapping (ORM) is a well-
known challenge in software engineering [Bla+06; ONe08]. We discuss ORM approaches in more
detail in Sec. 10.5.

2.3.5 Comparison of Data Models

OO (UML) OO (EMF) Property graph Semantic graph (RDF) Relational (SQL)

class definition EClass instance node label rdfs:Class table definition
reference definition EReference instance edge label owl:ObjectProperty FK constraint
attribute definition EAttribute instance property name owl:DataTypeProperty column definition
type EDataType instance (only primitives) rdfs:Datatype (only primitives)
class attributes eAttributes ref. − rdfs:domain table columns
class reference eReferences ref. − rdfs:domain FKs
attribute type eAttributeType ref. property type rdfs:range column type
reference type eReferenceType ref. − rdfs:range −
superclasses eSuperTypes ref. − rdfs:subClassOf (various mappings)
composition containment flag − − −
object EObject instance node resource table row
concrete reference object ref. edge triple to a resource FK instances
attribute value attribute value property value triple to a literal attribute value
MOF model Ecore model graph schema⍟ ontology⍟ relational schema

Table 2.1: Mapping concepts between data models. Notation – OO: object-oriented, ref.:
reference, FK: foreign key, ⍟: the data model is schema-optional.

Tab. 2.1 defines the mapping from object-oriented concepts to the various metamodelling frame-
works used in the Train Benchmark. The table shows that the object-oriented and SQL data models
require an explicit schema, while other formats make this optional. As one of the common defining
features of the semantic and property graph data models, we use the term schema-optional graph to
denote these models [BTL11].

2.3.6 Instance Models

For each data model, we present a small example instance model, consisting of a Segment (id: 1, length:
120), a Switch (id: 2, currentPosition: “DIVERGING”), and a connectsTo edge from the segment to the
switch. The instance models are shown in Fig. 2.5.

EMF An EMF instance model is shown in Fig. 2.5a. By default, EMF does not use numeric unique
identifiers, instead (1) it uses references for the in-memory representation, and (2) it relies on XPath
expressions for serialized models. However, developers may mark an attribute as an identifier. In the
EMFmetamodel of the Train Benchmark, we defined every class as a subtype of class RailwayElement
which has an explicit id attribute, serving as a unique numeric identifier.
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(a) An EMF instance model. (b) A property graph instance model.

(c) An RDF instance model with meta-level resources
inserted in the model. The nodes for the (relevant part
of the) metamodel are depicted in grey.

(d) An RDF instance model with inferred triples. Note
that the direct rdf:type edges to TrackElement node
are explicitly inserted in the model.

Figure 2.5: Instance models in EMF, property graph and RDF data models.

Property Graph The property graph instance model is shown in Fig. 2.5b. The nodes are typed
with labels, e.g. node 1 is labelled as both Segment and TrackElement, while node 2 is labelled as both
Switch and TrackElement.

Semantic Graphs (RDF) As discussed in Sec. 2.3.3, semantic graphs are typically stored in triple-
stores, which might provide reasoning features that allow them to feature type information at the cost
of reduced query performance. Based on the reasoning capabilities of the semantic engine and consid-
ering performance requirements, database designers need to decide whether to store the metamodel
or inferred (redundant) edges in the database. The two approaches work as follows:

• Storing the metamodel. The metamodel (described in OWL2 [Gro12] and designed in Pro-
tégé [Gen+03]) is added to each instance model. Such an instance model is shown in Fig. 2.5c.
During query evaluation, the engine runs the inferencer to determine inferred triples.

• Storing the inferred triples. For a resource of a given type, all supertypes are explicity asserted
in the model. For example, a resource with the type Segment also has the type TrackElement.
Such an instance model is shown in Fig. 2.5d. Note that the _1 and _2 resources not only have
types Segment and Switch, but also type TrackElement.

RDF uses Universal Resource Identifiers (URIs) [URI01] to identify nodes (resources) in the graph.
To assign a numeric identifier to each resource, the URIs follow pattern http://www.semanticweb.
org/ontologies/2015/trainbenchmark#_x, where x represents a unique identifier. The resulting
SQL instance model follows trivially from the schemas and is omitted for the sake of conciseness.

SQL The metamodel of the Train Benchmark is mapped to SQL tables with a standard object-
relational mapping (ORM) solution that assigns a separate table to each class [Bla+06; ONe08]. A class
and its superclass(es) are connected by foreign keys. Many-to-many references are mapped to junction
tables (also known as association tables or join tables). SQL data instances use primary keys for storing
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data model
data model feature

nodes edges paths
types props types props types props

simple, directed, and weighted graph ◯ ◯ ◯ ◯ ◯ ◯
node-labelled graph ⊗ ◯ ◯ ◯ ◯ ◯
edge-typed graph or multiplex network [BNL14] ◯ ◯ ⊗ ◯ ◯ ◯
labelled graph or heterogeneous network [Shi+17] ⊗ ◯ ⊗ ◯ ◯ ◯
property graph [HG16] ⊗ ⊗ ⊗ ⊗ ◯ ◯
path property graph [Ang+18] ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
semantic graph (RDF) [PAG09] ⊗ ⊗ ⊗ ◯ ◯ ◯
object-oriented graph [Rum+91] and EMF [Ste+09] ⊗ ⊗ ⊗ ◯ ◯ ◯

Table 2.2: Features available to describe graph elements (nodes, edges, and paths) in vari-
ous graph data models. For each graph element, column “types” shows whether it can be
described with types (or labels), while column “props” shows whether it can be described
with properties. Notation:⊗ feature available,◯ feature not available.

unique identifiers. For the small example, the mapping in the Train Benchmark results in three tables
with the following schemas: TrackElement(id), Segment(id, length), and Switch(id, currentPosition).

2.3.7 Graph Schema

Both relational databases and object-oriented systems [Rum+91] require their users to define the
schema of the data a priori. SQL supports this by its Data Definition Language (DDL) with keywords
such as CREATE TABLE and PRIMARY KEY. Object-oriented systems define their graph schemas bymeta-
modelling [VP03], which specifies a model (the abstract syntax) that defines the structure of a mod-
elling language. On the other side of the spectrum, most property graph and semantic web systems
are schema-free [BTL11], i.e. they do not require an explicit schema and rely on the implicit schema
of the data set. This makes many user operations simpler, as populating the database, migrating be-
tween different versions can be achieved with less implementation effort – at least initially. However,
many use cases, such as storing business critical data, need to enforce that the data complies with a
predefined schema. Therefore, many practical systems are schema-optional [BTL11], i.e. they do not
mandate a schema, but allow users to define it.

The schema inferencing algorithm The lack of a predefined schema is so prevalent in practice
that we designed the schema inferencing algorithm to work around this problem by extracting the
relevant part of the schema from the query specification (see Sec. 8.4.3).

Summary of Data Models

Tab. 2.2 shows the summary of theoretical and practical graph data models with their features. Com-
parison of database and MDE concepts are shown in Tab. 2.3.

2.4 Basics of Relational Algebra
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Comparison category Model-driven engineering Graph data processing Sim.

data modelling

object-oriented model property graph ⊘
metamodel graph schema ⊘
instance model graph instance ⊘
well-formedness contraints integrity constraints ⊘
model validation data validation ⊘
objects (classes) nodes (labels) ⊗
references (typed) edges (typed) ⊗
attributes properties ⊗
opposite references undirected edges ⊗

data processing

model traversal code stored procedures ◯
model queries graph queries ⊗
incremental queries incremental view maintenance ⊗
model transformation graph updates ⊘
model obfuscation data anonymization ⊘
code generation − −

− graph analytics −

serialization / querying XMI GraphML, GraphSON, CSV −
VQL, OCL Cypher, PGQL, G-CORE −

non-incremental engines Eclipse OCL, Epsilon, ATL Neo4j, PGX, JanusGraph −
incremental engines⍟ Viatra, NMF, Reactive ATL Graphflow −
bidirectional engines eMoflon, MoTe, UML-RSDS − −

Table 2.3: Comparison of concepts inmodel-driven engineering and graph processing fields.
Incremental engines also offer non-incremental query evaluation. Concepts in the same
row are similar, but often do not have an exact one-to-one correspondence. Column “Sim.”
describes the strength of similarity between concepts in the same row:⊗ strongly similar
⊘ somewhat similar◯ weakly similar. Remark “⍟”: incremental engines typically include
support for non-incremental query evaluation as well.

2.4.1 Relations and Relational Schemas

In relational database theory [GUW09], a relation is a subset of the Cartesian product of domains, i.e.
it contains a set of tuples. Each tuple has the same number of attribute values which correspond to the
relational schema, the set of attribute names of the relation. We denote relations in italic, attributes in
sans serif , and represent tuples as ⟨x1, ... , xn⟩.

Bag relations Instead of building the algebra on set semantics, relations can be generalized for bags,
also known as multisets [Syr00]. In this case, a tuple can occur more than once in a bag relation. For
a detailed discussion on their properties, see [GUW09, Section 5.1: Relational Operations on Bags].

Note on order of attributes In the database literature, some authors define a relational schema as
a list of attributes [EN00], while others define it as a set of attributes [GUW09; Mai83]. In this work,
we define it as a set of attributes, which allows us to formalize queries in a more succinct way.
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2.4.2 Representing Labelled Graphs as Relations

Figure 2.6: Railway instance as a labelled graph.

We map nodes and edges in the graph to tuples. For each node label and edge type, we define a
separate relation. For the sake of simplicity, we presume that both nodes and edges in the graph have
a unique identifier. Below, we use the labelled graph of Fig. 2.2c as an example, repeated in Fig. 2.6.

Mapping nodes to tuples Nodes can be trivially mapped to relations of 1-tuples by introducing a
relation for each label. The nodes of the labelled graph in Fig. 2.6 constitute the following relations:

• Route(route) = {⟨1⟩, ⟨2⟩}
• Segment(segment) = {⟨8⟩, ⟨10⟩, ⟨11⟩, ⟨12⟩}
• Semaphore(semaphore) = {⟨3⟩, ⟨4⟩}
• Sensor(sensor) = {⟨5⟩, ⟨6⟩, ⟨7⟩}
• Switch(switch) = {⟨9⟩}
• SwitchPosition(switchPosition) = {⟨13⟩, ⟨14⟩}
• TrackElement(te) = {⟨8⟩, ⟨9⟩, ⟨10⟩, ⟨11⟩, ⟨12⟩}

Mapping edges to tuples Each edge is represented by a triple ⟨source node, edge, target node⟩.
The edges of the labelled graph in Fig. 2.6 constitute the following relations:

• connectsTo(te1, connectsTo, te2) = {⟨8, n,9⟩, ⟨9, o,10⟩, ⟨9, p,11⟩, ⟨11, q,12⟩}
• entry(route, entry, semaphore) = {⟨1, a,3⟩, ⟨2, b,3⟩}
• exit(route, exit, semaphore) = {⟨2, c,4⟩}
• follows(route, follows, switchPosition) = {⟨1, t,13⟩, ⟨2, u,14⟩}
• requires(route, requires, sensor) = {⟨1, d,5⟩, ⟨1, e,6⟩, ⟨2, f,5⟩, ⟨2, g,7⟩}
• monitoredBy(te,mB, sensor) = {⟨8, h,5⟩, ⟨9, i,5⟩, ⟨10, j,6⟩⟨9, k,7⟩, ⟨11, l,7⟩, ⟨12,m,7⟩}
• target(switchPosition, target, switch) = {⟨13, r,9⟩, ⟨14, s,9⟩}

Notation In the representation above, attribute names of tuples are only denoted in the relational
schemas and not in the tuples of the relation. Without the schema, we cannot determine the semantics
of tuples, e.g. we cannot decide if the elements in ⟨8, n,9⟩ and ⟨1, t,13⟩ have the same labels. Hence,
we often specify the attribute names for each tuple:

• ⟨te1 ∶ 8, connectsTo ∶ n, te2 ∶ 9⟩,
• ⟨route ∶ 1, follows ∶ t, switchPosition ∶ 13⟩.
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Using this notation, the follows relation can be represented as:

follows = {⟨route ∶ 1, follows ∶ t, switchPosition ∶ 13⟩, ⟨route ∶ 2, follows ∶ u, switchPosition ∶ 14⟩} .

Next, we revisit the definitions of basic operators along with an example for each operator using
the example graph of Fig. 2.6. For a detailed discussion of basic relational algebra operators, we refer
the reader to database textbooks [EN00; SKS05]. Certain extension were based on the definitions
of [GUW09, Section 5.2: Extended Operators of Relational Algebra].

#ops. Notation Name Props. Schema

1
σθ(r) selection i sch (r)
πx1/y1,...,xn/yn(r) projection i ⟨y1 , ... , yn⟩
δ(r) duplicate-elimination i sch (r)

2

r ∪ s union c, a sch (r)
r ⊎ s bag union c, a sch (r)
r − s set minus − sch (r)
r s natural join c, a sch (r) ∥ (sch (s) − sch (r))
r s semijoin − sch (r)
r s antijoin − sch (r)
r s left outer join − sch (r) ∥ (sch (s) − sch (r))

Table 2.4: Number of operands, properties and result schemas of basic relational algebra op-
erators. A unary operatorα is idempotent (i), iffα(x) = α(α(x)) for all inputs. A binary op-
erator β is commutative (c), iff x β y = y β x and associative (a), iff (x β y) β z = x β (y β z).
For schema transformations, append is denoted with ∥ , while removal is marked with −.

2.4.3 Unary Operators

Definition 8 (projection) The projection operator π filters the attributes (columns) of a relation
by only keeping a certain set of them: t = πx1,...,xn (r). In addition, the extended projection can
perform computations and produce new attributes, e.g. t = πx1→a,2→b returns a relation of schema
(a, b) with attribute b having a constant value 2.

Example 1 Return route nodes that have an outgoing requires edge.

πroute/r(requires) = {⟨r ∶ 1⟩, ⟨r ∶ 2⟩}

Definition 9 (selection) The selection operator σ filters the relation according to some criteria:
t = σθ (r) , where predicate θ is a propositional formula. The operator selects all tuples in r for
which θ holds.
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Example 2 Return requires edges starting from route 1.

σroute=1(requires) = {⟨route ∶ 1, requires ∶ d, sensor ∶ 5⟩}, ⟨route ∶ 1, requires ∶ e, sensor ∶ 6⟩}

For bag relations, it is often required to remove duplications, i.e. to enforce set semantics.

Definition 10 (duplicate elimination) The duplicate-elimination operator δ eliminates dupli-
cate tuples in a bag.

Example 3 Return all TrackElements with an outgoing connectsTo edge.

δ (πte1connectsTo) = {⟨te1 ∶ 8⟩, ⟨te1 ∶ 9⟩, ⟨te1 ∶ 11⟩}

2.4.4 Binary Operators

Additive and Subtractive Operators

Definition 11 (union) The union of two relations produces the set union of the tuples in the
relations.

Definitions across the literature vary regarding the requirements posed against the schema of the
input relations of the union operator. While some definitions only require the input relations to have
schemas with the same number of elements, we require the two input relations of the operation to
have the same schema.6

Example 4 (Get Segments and Switches)

(πsegment/te Segment) ∪ (πswitch/te Switch) = {⟨te ∶ 8⟩, ⟨te ∶ 9⟩, ⟨te ∶ 10⟩, ⟨te ∶ 11⟩, ⟨te ∶ 12⟩}

A variant of the union operator targets bag relations.

Definition 12 (bag union) The bag union of two relations produces the bag (multiset) union
of the tuples in the relations.

Example 5 (Get TrackElements and Switches, uniqueness not required)

TrackElement ⊎ (πswitch/te Switch) = {⟨te ∶ 8⟩, ⟨te ∶ 9⟩, ⟨te ∶ 9⟩, ⟨te ∶ 10⟩, ⟨te ∶ 11⟩, ⟨te ∶ 12⟩}

Definition 13 (set minus) The set minus operation on two relations removes the tuples
present in the second relation from the first relation.

Example 6 (Get TrackElements that are not Switches)

TrackElement − (πswitch/te Switch) = {⟨te ∶ 8⟩, ⟨te ∶ 10⟩, ⟨te ∶ 11⟩, ⟨te ∶ 12⟩}

6Practical implementations, such as some SQL engines, require the two schemas to have the same types (but some
allow different names).
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Join-Like Operators

Join-like operators are the primary means for databases to connect data elements and rebuild the
heavily normalized pieces of information during query execution. Here, we define the most common
join-like operators from the Cartesian product to left outer join.

The × operator produces the Cartesian product t = r × s, where t holds all tuples that are the
concatenation of exactly one tuple from r and exactly one tuple from s. Formally, using relational
calculus [GUW09]:

Definition 14 (Cartesian product)

r × s = {⟨r1, ... , rm, s1, ... , sn⟩ ∣ ⟨r1, ... , rm⟩ ∈ r ∧ ⟨s1, ... , sn⟩ ∈ s}

Example 7 Generate any combinations of the follows and exit edges:

follows × exit = {
⟨route1 ∶ 1, follows ∶ t, switchPosition ∶ 13, route2 ∶ 2, exit ∶ c, semaphore ∶ 4⟩,
⟨route1 ∶ 2, follows ∶ u, switchPosition ∶ 14, route2 ∶ 2, exit ∶ c, semaphore ∶ 4⟩
}

The result of the join or natural join operator is determined by creating the Cartesian product of
the relations, then filtering those tuples which are equal on the attributes that share a common name.
The combined tuples are projected to remove duplicate attributes, i.e. from the attributes present in
both of the two input relations, we only keep a single one. Thus, the join operator is defined as:

Definition 15 (join or natural join)

r s ≡ πsch(r)∪sch(s) (σr.A1=s.A1 ∧ ...∧ r.An=s.An) (r × s)) ,

where {A1, ... ,An} are the attributes in sch (r) ∩ sch (s), i.e. the set of attributes that occur in
both schemas.

Note that if the set of common attributes is empty, the join operator is equivalent to the Carte-
sian product of the relations. The join operator is both commutative and associative: r s = s r
and (r s) t = r (s t). In graph queries, the join operator can connect nodes, edges, and
subgraphs to each other:

Example 8 Subgraphs of three nodes and two edges along the follows and exit edges:

follows exit = {⟨route ∶ 2, follows ∶ u, switchPosition ∶ 14, exit ∶ c, semaphore ∶ 4⟩}

Semijoin The semijoin operator takes its left input and only keeps tuples which have amatching
pair on its right input in a join. Formally:

Definition 16 (semijoin) r s ≡ πsch(r) (r s).

The semijoin operator can express positive structural conditions.
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Example 9 The triples for follows edges that have an exit edge on their route:

follows exit = {⟨route ∶ 2, follows ∶ u, switchPosition ∶ 14⟩}

Antijoin The antijoin operator (also known as left anti semijoin) collects the tuples from the
left relation r which have no matching pair in the right relation s [GK98]. Formally:

Definition 17 (antijoin)

t ≡ r s = r − (r s)

The antijoin operator can express negative structural conditions.

Example 10 The triples for follows edges that do not have an exit edge on their route:

follows exit = {⟨route ∶ 1, follows ∶ t, switchPosition ∶ 13⟩}

Left outer join The left outer join operator produces the join of its input relations, then adds
tuples from the left relation that did not have a pair in the right relation and pads them with NULL
values [SKS05]. Formally:

Definition 18 (left outer join)

r s ≡ (r s) ∪ ((r s) × ⟨NULL⟩∣sch(s)−sch(r)∣) ,

where ⟨NULL⟩k denotes a tuple of k NULL values.

Example 11 The triples for follows edges that either have or do not have an exit edge on their
route:

follows exit = {
⟨route ∶ 2, follows ∶ u, switchPosition ∶ 14, exit ∶ c, semaphore ∶ 4⟩,
⟨route ∶ 1, follows ∶ t, switchPosition ∶ 13, exit ∶ NULL, semaphore ∶ NULL⟩
}

Theta-joins All join operators presented so far ( , , , ) follow the semantics of natural
join, i.e. they perform the matching according to the set of common attributes of the input relations.
In practice, many cases require a join operation performed against a different set of attributes. These
can be conveniently handled with the theta-join operator, which performs the matching according to
a predicate θ, a propositional formula (similarly to the selection predicate in Def. 9).

Definition 19 (theta-join or θ-join)

r
θ
s ≡ σθ (r × s)
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Example 12 Pairs of different connectsTo edges starting from the same node, based on relations
ct1 = ct2 = connectsTo = {⟨8, n,9⟩, ⟨9, o,10⟩, ⟨9, p,11⟩, ⟨11, q,12⟩}.

ct1
(ct1.te1=ct2.te1)∧
(ct1.te2≠ct2.te2)

ct2 = {⟨9, o,10,9, p,11⟩, ⟨9, p,11,9, o,10⟩}

Variants of the , , and operators can be defined analogously. For example:

Definition 20 (theta-antijoin)

r
θ
s ≡ r − (r

θ
s), where r

θ
s ≡ πsch(r)(r

θ
s).

Example 13 Get connectsTo edges that have no pair starting from the same node, based on
relations ct1 = ct2 = connectsTo.

ct1
(ct1.te1=ct2.te1)∧
(ct1.te2< ct2.te2)

ct2 ≡ ct1 − (ct1
(ct1.te1=ct2.te1)∧
(ct1.te2< ct2.te2)

ct2) = ct1 − {⟨9, o,10⟩, ⟨9, p,11⟩} =

{⟨8, n,9⟩, ⟨11, q,12⟩}

As a shorthand, we can pass a set of attributes X = {x1, ... , xn} instead of a predicate θ. The set
of attributes should be a subset of the schemas of both relations (i.e. given relations r and s, X ⊆
sch (r)∩ sch (s)). Using this notation, the join-like operator checks the equivalence for all attributes:

r
X
s ≡ r

(r.x1=s.x1)∧...∧(r.xn=s.xn)
s

2.5 Graph Pattern Matching and Traversal

Next, we define the concepts of graph pattern matching and graph traversal based on [Ang+17].

2.5.1 Pattern Matching

A basic graph pattern is a graph-structured query that is evaluated against the content of a graph
database. Complex graph patterns extend this concept with operations such as projection, union, op-
tional matching, and difference.

Matching a graph pattern against a graph instance is widely known as the graph isomorphism
problem [Ull76; Cor+04; Lee+12], which requires a bijective mapping between elements of the pattern
and the matched subgraph. In practice, this often places too many restrictions on the results and more
relaxed matching semantics are used instead:

• isomorphism-based semantics constrain some kinds of repetitions:
– no-repeated-node semantics is known as fully isomorphic matching and is identical to the

restrictions used in the graph isomorphism problem,
– no-repeated-edge semantics is known as edge-isomorphic matching.7

• homomorphism-based semantics is the most relaxed one, defining no constraints on repetitions.
7Note that no-repeated-node implies no-repeated-edge semantics as repeated edges would necessitate their endpoints to

be repeated.
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The trade-offs for different matching semantics vary: homomorphism-based matching semantics
are more straightforward to implement as they require no additional filtering operations. Meanwhile,
isomorphism-based semantics are often deemed more intuitive by users. For example, when running
a “friends-of-friends” query on a social network for person p, engines using isomorphic semantics
will not return person p, but homomorphic engines will. Moreover, no-repeated-edge semantics (see
the comparison graph query languages in Tab. 2.5)

2.5.2 Graph Traversals

One of the distinguishing features of graph queries is that they allow users to define transitive navi-
gations across the graph. According to survey [Ang+17], these type of queries fall into the category
of navigational expressions, but alternative terms such as graph exploration [Ma+16] and graph traver-
sal [Rod15] are also common. In this section, we discuss the definitions used to refer to the travelled
sequences of nodes and edges. We start with the graph theoretical concept of a walk, then limit the
repetition of specific graph elements. Finally, we discuss variants of paths.

Definition 21 (walk) A walk in a graph is a sequence of nodes and edges, with both endpoints
of an edge appearing adjacent to it in the sequence.

Definition 22 (trail) A trail in a graph is a walk with no repetition of edges.

Note that walks correspond to no constraints on repetitions semantics, while the trail concept em-
braces the same idea as the no-repeated-edge semantics in pattern matching. Trails can be restricted
further:

Definition 23 (path (strict) or simple path) A path in a graph is a trail with no repetition of
nodes.

This is again an application of a previously discussed semantics in pattern matching, namely,
no-repeated-nodes. However, practical implementations often use a relaxed definition of paths:

Definition 24 (path (relaxed)) Same as walk, see Def. 21.

In this work, we use the relaxed definition of paths (Def. 24), in accordance to the convention of
modern graph database systems, see e.g. [Ang+17]. Next, we present further refinements for paths:

Definition 25 (shortest path or geodesic) A shortest path between two nodes is a path that
consists of the least possible edges.

Of course, there may be more than one different shortest path (of the same length) between two
given nodes, and the term shortest path can refer to any of them. Enumerating all such paths is the all
shortest paths problem.

Weighted shortest paths Shortest path on weighted graphs (Def. 3) are often defined as the path
with the lowest total sum of edge weights. To avoid ambiguity, this is often referred to as theweighted
shortest path. It is easy to see that this is a generalization of the previous problem, as aweighted shortest
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path algorithm can determine shortest pathswith all edge weights set to a constant non-negative value
(e.g. a value of 1).8

Definition 26 (distance) The distance between two nodes is the length of a shortest path be-
tween the two nodes.

Remark Applying the restriction of shortest path annuls the difference between the strict (Def. 23)
and relaxed (Def. 24) path variants: shortest paths do not contain any repetitions by definition else
they could be shortened by the repeated sequence.

Definition 27 (cycle or circle) A cycle in a graph is a walk which starts and ends in the same
node.

Similarly to paths, some cycles can be restricted to disallow repetitions of nodes or edges. These do
not pose much importance in the context of this dissertation, hence we omit the distinction. However,
it is important to further refine the definition of cycles in directed graphs. A directed cycle is one
which corresponds to a directed walk. Directed graphs that do note have a directed cycle are commonly
referred to as DAGs (directed acyclic graphs). Evaluating graph queries that define a cyclic graph
pattern is often more challenging then acyclic ones. We discuss the detailed reasons behind this in
Sec. 10.2.

2.5.3 Graph Queries

The term graph query are queries that contain graph patterns and/or path expressions. Often these
queries also contain other data processing operators such as projection, filtering, negation, etc.

Recursive queries Recursive queries are queries that reference themselves (see e.g. in [RG03]), and
are evaluated up to reaching a fixpoint. In general, the evaluation of recursive queries is highly non-
trivial, not only from a computational, but also from a conceptual perspective, as some recursive
queries might have multiple fixpoints. Therefore, practical implementations often limit the use of
certain features (e.g. negation, aggregation, etc.). However, even with typical limitation applied, re-
cursive queries are sufficiently expressive to define paths in a graph.

Regular path queries Regular path queries (RPQs) [MW95; Tet+18] are a restricted category of
recursive queries that define paths using regular expressions, allowing concatenation, disjunction, and
repetition of paths. These allow a concise formulation of graph queries (that would be otherwise
difficult or impossible to express), but are currently only supported by a few systems.

Path unwinding The path unwinding [Ang+17] operation allows users to define additional opera-
tions over a path in the graph. Such operations can include aggregating value over the path (such as
calculating its total weight) or even performing additional pattern matching operations (see Sec. D.2).

8While most modern graph data processing systems support the simpler shortest path problem, they often provide little
support for expressing weighted shortest path queries. In many cases, the lack of language support makes the calculation of
such queries inefficient or even infeasible.
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Relational languages for graph queries In academic works, graph queries are often expressed
in Datalog [CGT89]. Extensions for RA that define fixpoint computations have also been pro-
posed [Ros+86; Agr88], but gained little traction. Support for recursive queries was introduced as
an extension to the SQL:1999 standard in the form of the WITH RECURSIVE keywords [ISO99], which
is expressive enough to formulate most graph queries. However, it was introduced rather slowly in
popular open-source implementations, it was first adopted by PostgreSQL in 2009, followed by SQLite
in 2014, and by MySQL in 2017.

Usages In the context of this work, well-formedness constraints (WFCs) on graph models – which
are similar to integrity constraints on graph databases – are captured and checked by graph queries.

2.6 Graph Query Languages

In this section, we briefly introduce graph query languages relevant to this dissertation. It is interest-
ing to note that while most languages are significantly different from SQL, all of them reuse some of
its keywords (such as WHERE, AS, and GROUP BY).

feature Cypher PGQL G-CORE SPARQL VQL

query result table table graph / table table / graph table
data model PG PG PPG RDF EMF
pattern matching sem. no-repeated-edge⍟ homom. homom. homom. homom.
default path sem. no-repeated-edgeF arbitraryF shortest path arbitrary arbitrary
path unwinding ⊗ ⊗ ⊗ ◯ ◯

Table 2.5: Comparison of graph query language features. Notation – sem.: semantics,
homom.: homomorphism-based semantics (allowing arbitary repetitions). Remark “⍟”:
homomorphism-basedmatching semantics can be achieved by usingmultiple MATCH clauses.
Remark “F”: the language allows the use of different path semantics (e.g. shortest paths).
PG: property graph, PPG: path property graph.

2.6.1 Cypher

Cypher [Fra+18] is a high-level declarative graph query language introduced and supported by the
Neo4j graph database [Web12]. It allows users to specify graph patterns with an ASCII art-style syntax
visually resembling a graph, which makes queries easy to comprehend. The goal of the openCypher
project9 is to provide a standardized specification of the Cypher language.

Path support Cypher supports paths: users can define queries that look for transitive reachabil-
ity (both with a fixed and an unlimited upper bound) or shortest paths, and paths can be returned
as a result of the query. Cypher supports path unwinding with the UNWIND keyword and list compre-
hensions. Regular path queries (RPQs) are not yet fully supported, however, they are proposed in the
openCypher language as path patterns.10

9http://www.opencypher.org/
10https://github.com/thobe/openCypher/blob/b95eec108ce4ec07eedfe13b3e5fff0e94f789a4/cip/1.accepted/

CIP2017-02-06-Path-Patterns.adoc
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2.6.2 PGQL

PGQL (Property Graph Query Language) [Res+16] is a declarative query language designed by Oracle
Labs. It combines SQLwith graph patternmatching using a Cypher-like syntax. PGQL is implemented
in Oracle Labs’ PGX.D analytical graph processing engine [Hon+15]. PGX.D is capable of evaluating
both graph analytical computations and graph queries, however, it operates on a read-only snapshot
of the graph and hence does not allow updates.

Path support PGQL supports RPQs, allowing users to define expressions over vertices and edges
along paths. Both reachability and – in PGQL’s terminology – path finding queries are supported.

2.6.3 G-CORE

G-CORE [Ang+18] is a design language created by the Linked Data Benchmark Council’s (LDBC)
Graph Query Language task force. The G-CORE language does not strive to be a standard, and instead
aims to “guide the evolution of both existing and future graph query languages”. The language was
designed to meet two key goals, lacking from popular graph query languages available at the time:
(1) allow composition of queries and (2) treat paths as first class citizens. To these ends, (1) G-CORE
queries return graphs as their results (which allows composability), and (2) they are defined over the
path property graph data model (Sec. 2.2.4). Syntax-wise, G-CORE borrows numerous constructs from
openCypher and PGQL.

Path support G-CORE supports RPQs, using the regular path expression syntax of PGQL [Res+16].

2.6.4 SPARQL

SPARQL [SP08] (a recursive acronym for SPARQL Protocol and RDF Query Language) is the standard
query language of the Linked Data community and is implemented by several semantic database
management systems. A formal definition of the language is given in [PAG09].

Path support Since version 1.1, SPARQL supports a variant of RPQs with property paths [HS13]11,
which allow sequences, alternatives, inversions, and transitive edges. However, only the endpoints
of a path can be accessed as variables, and SPARQL does not support operations on the path such as
determining the length of a given path or path unwinding.

2.6.5 VIATRA Query Language

The Viatra Query Language (VQL) [Ujh+15a] (formerly known as IncQuery Pattern Language)
is a declarative language for defining graph patterns based on Datalog [Ber+11]. It is used in the
Viatra Query framework (formerly known as EMF-IncQuery [Ujh+15a]), which will be presented
later in Sec. 10.4.4. While VQL and Viatra Query were originally designed for querying EMF mod-
els (Sec. 2.3.1), they can be adapted to support other data models such as the MPS language work-
bench [Sza+18].

11It might be more intuitive to think of the term property path as “predicate path”. The precise differences between pred-
icates and properties are outside of the scope of this work, and even the standard only discusses them superficially [HS13].
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Path support VQL supports recursive queries in the form of recursive pattern calls. Using these,
VQL can express transitive reachability and constraints on the path [Ber+12], but does not support
determining the length of a given path or path unwinding.

2.7 Categorization of Graph Processing Workloads
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[j2] and Chapter 5
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[l18] and Chapter 6
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[Ios+16]

Figure 2.7: Characteristics of the workloads in the LDBC Social Network Benchmark (SNB),
the LDBC Graphalytics benchmark, and the Train Benchmark.

This dissertation focuses on several different aspects of graph data processing, a field that gained
a lot of momentum in the last decade. However, as of 2019, the landscape of graph processing is rather
fragmented with most works only tackling a narrow scope of the domain. To get a basic overview of
the field, we first present the categorization of the Linked Data Benchmark Council (LDBC) bench-
marks, shown in Fig. 2.7. According to LDBC, there are two main categories of graph processing:

• Graph query workloads typically run graph pattern matching and navigation operations on
semantic or property graphs. The LDBC Social Network Benchmark defines such workloads.

• Graph analysis workloads define analytical computations on graphs with little to no infor-
mation stored as attributes (i.e. untyped, edge-typed, labelled, or weighted graphs). The LDBC
Graphalytics benchmark defines such a workload.

Next, we briefly introduce these categories.

2.7.1 Graph Query Workloads

Graph query workloads aim to extract information from the graph queries that perform graph pattern
matching and graph navigation operations. While most pattern matching operators can be expressed
in relational algebra (using operators such as aggregation, selection and joins), navigations often re-
quire higher expressive power and recursive queries (Sec. 2.5.3) for transitive reachability. The cost
of evaluating a certain graph query greatly depends on its scope, i.e. the number of nodes and edges
it touches. Based on their scope, most graph queries – and on a bigger scale, graph query workloads
– fall into one of the following categories:

• Local graph queries define relatively simple computations on a limited set of data (e.g. the neigh-
bourhood of a single node), analogously to OLTP-style database systems (online transaction
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processing). In systems with many simple reads, queries are they often posed concurrently by
multiple users and under continuous updates. Due to the ever changing set of queries and data
sets, using one-time (batch) query evaluation over the latest state of the database is preferable.
The LDBC SNB Interactive workload [Erl+15] defines a graph OLTP workload.

• Global graph queries define OLAP (online analytical processing) [Bac13; CL14] workloads,
where queries touch on a significant portion of the graph and often perform complex aggrega-
tions on the data. Some systems perform OLAP computations on a read-only view of the graph
(updated periodically), while others evaluate them on the latest state of the database (which
reflect the latest changes in the graph).

For databases evaluating (1) complex global queries that are known a-priori over (2) a continu-
ously changing data set, it is easy to make an argument for incremental view maintenance (IVM) tech-
niques [Sah+17], which is a central theme of Part III. Both benchmarks presented in Part II, namely, the
Train Benchmark [j2] (Chapter 5) and the LDBC SNB Business Intelligence workload [l18] (Chapter 6)
define graph OLAP workloads.

Languages and databases As discussed in Sec. 2.5.3, the SQL:1999 standard introduced the WITH
RECURSIVE constructs to handle recursive expressions [ISO99]. Using these, most graph queries can
be formulated in modern SQL dialects (see Sec. 10.5). However, the resulting queries are often cum-
bersome, difficult to maintain and optimize.12 In contrast, specialized graph query languages (Sec. 2.6)
were designed to allow users to express their queries in a concise format that can also be compiled
to an efficiently evaluable representation. Internally, many graph database systems rely primarily on
relational algebra extended with graph-specific constructs that support (a subset of) recursive queries.

Graph query workloads are typically evaluated in database systems. While RDBMs are widely
used for this role, graph databases [RWE15] are gaining more and more momentum.13 As of 2019,
most graph database systems are single-node, but even many distributed implementations restrict
query evaluation to a single node (the IncQuery-D system, presented in Chapter 9 is one of the
exceptions). While local and global graph queries pose significantly different requirements to the
underlying database system, there are currently no dedicated graph OLAP systems available.14

Benchmarks Related benchmarks for graph and semantic databases are presented in Sec. 7.2. Re-
lated database systems are compared as part of the discussion on query languages in Sec. 10.4.

2.7.2 Graph Analysis Workloads

Graph analysis workloads perform computations on the graph to derive graph metrics that charac-
terize certain aspects of the graph structure, such as centrality (Sec. A.2), clustering (Sec. 3.4.2), and
connectivity (Sec. A.1). These workloads often consider the connections in the entire graph or even
transitive paths (e.g. to calculate shortest paths from a single node to all other nodes). Therefore, they
are typically more expensive to run than query workloads and are often evaluated in batches on read-
only graphs.

12Readers familiar with SQL might have experienced the difficulty of comprehending new SQL queries. For example,
when looking at a query for the first time (without being familiar with the schema), it is often not obvious whether an
attribute represents a connection (i.e. it is a foreign key) or a property. For many-to-many edges, junction tables make this
distinction explicit, but add more noise.

13https://db-engines.com/en/ranking_categories
14Recently, database vendors started to use the term HTAP (hybrid transactional and analytical processing) [GS18],

referring to capability of their systems to run both write-heavy transactional workloads and complex analytical queries.
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2.7. Categorization of Graph Processing Workloads

Languages and computation framework There is a strong continuity between global queries
and graph analytics as both evaluate complex computations that span over the entire graph. In fact,
many graph analytical computations can be expressed with existing query languages, especially if the
language supports recursive queries (Sec. 2.5.3). Consequently, claims against using specialized graph
analytical systems have beenmade repeatedly [FRP15; Jin+15; ZY17] often in favour of RDBMSs using
procedural SQL dialects such as T-SQL [Itz+09].

On the one hand, while numerous graph metrics can indeed be expressed as queries (see e.g.
Cypher query that calculates the local clustering coefficient, listed in Sec. B.2), their execution is usu-
ally inefficient. This renders their application infeasible for graphs of moderate sizes (i.e. a fewmillion
nodes/edges). On the other hand specialized graph analytical languages were designed to accommo-
date graph analytical workloads and usually result in more efficient evaluation. However, these lan-
guages are rare and only supported by a few systems, as listed in Sec. B.3.

To achieve high performance, graph analytical computations are often translated to the language
of linear algebra (Sec. 3.8) and are evaluated with linear algebra libraries that produce heavily opti-
mized CPU or GPU code, ranging from BLAS [Law+79] to modern systems [Shi+18]. Due to their
complexity, graph analytical workloads are almost exclusively executed as batch computations on a
read-only snapshot of the graph. While graph databases need to store data for a prolonged period of
time, many graph analytical engines are purely in-memory (and often distributed) tools, which do not
keep a persistent copy of the graph. For more details, see [Zha+15] for a survey on in-memory data
processing.

Benchmarks The LDBC Graphalytics benchmark [Ios+16] defines a graph analytical workload of
6metrics, to be calculated on untyped andweighted graphs.We discuss this and other graph analytical
benchmarks in Sec. 3.9.

Terminology Data analysis tasks are often called analytics or analytical tasks. The differences be-
tween these expression are subtle (e.g. some sources claim that analysis is a subset of analytics), and
pose little importance w.r.t. this work. Hence, we use the terms analysis and analytics interchangeably.

2.7.3 Summary of Graph Processing Workloads

Tab. 2.6 shows a summary of typical graph processing workloads w.r.t. the support/applicability of
given features and systems. 15 For more extensive analyses, we refer the readers to surveys [Lu+14;
Bat+15; Sah+17; Hei+18] which give in-depth discussions on graph processing challenges, systems,
and their applications.

15The applicability of various systems (databases and data processing frameworks) for certain workloads was inspired by
the FOSDEM 2014 presentation on LDBC SNB: see https://www.slideshare.net/ldbcproject/ldbc-fosdem and https://archive.
fosdem.org/2014/schedule/event/graphdevroom_ldbc/.
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Local queries Global queries Graph analytics

features

transaction profile OLTP OLAP OLAP
graph data model P/S P/S U/W/E/L
data updates ⊗ ⊘ ⊘
IVM applicable ◯ ⊗ ◯
distributed evaluation ◯ ⊘ ⊗

systems

graph databases ⊗ ⊗ ⊘
graph analysis frameworks ◯ ⊘ ⊗
relational databases ⊗ ⊗ ⊘
semantic databases ⊗ ⊗ ◯

most representative LDBC benchmark SNB Interactive SNB BI Graphalytics

Table 2.6: Overview of features and systems that are applicable or support certain graph
processing workloads, along with the most representative LDBC benchmark. Notation –
⊗ fully supported/applicable⊘ supported/applicable to some degree◯ not supported/not
applicable. Graph data models: Property, Semantic, Untyped, Weighted, Edge-typed, and
Labelled graph. OLTP: online transaction processing, OLAP: online analytical processing,
IVM: incremental view maintenance.
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Structural Analysis of Typed Graphs
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Chapter3

Characterization of Typed Graphs

3.1 Introduction

Context In this chapter, we present our results on applying typed graph metrics to graph models
used in model-driven engineering (MDE). We study the properties of graph models with the goal of
characterizing their structure at a fine-granularity level. This allows us to gain greater insight into the
interplay between various types in the graph structure, which in turn would provide valuable input
towards creating a realistic graph generator. The content of this chapter is primarily based on [c5].

Motivation While empirical software engineering highly relies on the source code repositories
of large open-source projects, scalability assessment of MDE tools – i.e. model-driven engineering
workbenches that operate on large engineeringmodels – has beenmuchmore problematic. On the one
hand, real complex industrial models are rarely available to public as intellectual property rights of all
parties need to be protected. On the other hand, faithfulness of scalability evaluations using synthetic,
auto-generated models are frequently considered questionable as these often generate models with
a highly regular structure. Meanwhile, there is an increasing interest in model generators to be used
for validating, testing, or benchmarking tools [BEC12; HHL14; Ara+15a].

Problem But what makes a graph realistic? Any engineer can distinguish an auto-generated model
from a manually designed model by inspecting attributes (e.g. names). But what if we abstract from
all attributes of the model and inspect only the (typed) graph structure? How can we characterize and
distinguish systems engineering models (e.g. Capella [BBE15], AutoFOCUS [Ara+15b]) from models
reverse engineered from source code, for instance?

Method In this chapter, we identify and evaluate graph-based metrics from other disciplines to
decide which can best describe the characteristics of real graph models taken from software and sys-
tems engineering. We calculate these metrics on 83 graph models, and carry out an initial evaluation
using statistical and visual exploratory data analysis. The output of our evaluation includes recom-
mendations on characteristic metrics and hints for constructing future graph generators of realistic
domain-specific graphs.1

1We use the term metric in an engineering sense, i.e. a metric is some descriptive value for a given scope (such as a
node, an edge type, a node-type pair, etc.). Most of our metrics are neither traditional metric functions in the mathematical
sense (which are non-negative, non-degenerate, symmetric, and satisfy the triangle inequality), nor measures (which are
non-negative, return 0 for an empty set, and are Sigma-additive).
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We reuse several graph metrics of network science [New03; WS98; DM02] already used in other
disciplines (e.g. biology, social network analysis, neuroscience [Bat+18]) to reveal hidden structural
properties of complex systems, and observe structural differences between them. However, in tradi-
tional network science, most of the analysed networks are untyped, i.e. they only contain edges of a
single type, their direct adaptation to MDE models may not be sufficient due to the strongly typed
nature of the latter. Therefore, we also collected and evaluated several graph metrics for typed net-
works [NL15]. Such typed graph metrics [Ber+13; BNL14; NL15] express structural properties w.r.t. a
type, and how different types emerge together.

Contributions This chapter presents the following novel contributions:
• We collected 17 graph metrics from different disciplines (network science, physics, and social
network analysis).

• We presented optimization techniques to speed up the calculation of different clustering coeffi-
cient metrics.

• We evaluated these metrics over 6 different modelling tools (domains) on 83 graph models.
• We carried out statistical and visual exploratory data analysis to identify characteristic metrics.
• Based on our findings, we give some hints for using these metrics in future graph generators.

3.2 Running Example and Mapping to Edge-Typed Graphs

Our running example in this chapter is a statechart (Fig. 3.1b) describing the behaviour of a light
switch. The statechart is defined over a simplified metamodel of the Yakindu statechart modelling
tool [Yak18] (Fig. 3.1a).

Region Vertex

TransitionState Entry

[0..*] vertices

[0..*] regions

[1..1] target

[0..*] incoming
[1..1] source

[0..*] outgoing

(a) Simplified statechart metamodel.
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(b) Light switch statechart.

(c) Typed graph of the statechart. Note that containment edges are marked with thicker
lines and inverse edges are marked with dashed lines.

Figure 3.1: The statechart example, the statechart metamodel and the typed graph repre-
senting the statechart.
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Mapping to Edge-Typed Graphs Each model is an instance of a metamodel defined in Ecore, the
metamodelling language of EMF (Eclipse Modeling Framework) [Ste+09]. The models are mapped to
edge-typed graphs (Def. 4) using the following rules:

• Each object is mapped to a node (v ∈ V ).
• Each reference type is mapped to a type (t ∈ T ).
• Each reference instance is mapped to a directed edge between nodes, (v,w, t) ∈ E. Nodes v
and w are the corresponding nodes of the reference’s source and target objects. The type t is
determined by the reference type.

• Object types are omitted. As a consequence, the graph does not contain information on the
classes in the graph model.

• Redundant edges are removed: derived references are omitted along with opposite edges of
containment references (see Sec. 3.6.2 for the rationale behind this).

• All attributes are removed (including derived ones).
We illustrate the mapping using the example statechart: Fig. 3.1c shows the statechart model

as an edge-typed graph. The types include the reference types vertices, outgoing, incoming, target,
and regions. Note that we excluded the source type as it is the inverse of the outgoing containment
reference and is therefore redundant.

3.3 Concepts for Characterizing Graphs

Next, we introduce concepts for characterizing the connections in both untyped and typed graphs.

Definition 28 (connectedness in untyped graphs) In an untyped graph (Def. 1), nodes
v,w ∈ V are connected if there is an edge from v to w or vice versa in the graph. Formally,

Conn(v,w) ⇐⇒ (v,w) ∈ E ∨ (w, v) ∈ E.

Definition 29 (connectedness in an edge-typed graph) In an edge-typed graph, nodes
v,w ∈ V are connected in a type t ∈ T if they have an edge in that type. Formally,

Conn(v,w, t) ⇐⇒ ∃e ∈ E ∶ (type(e) = t)∧((src(e) = v∧trg(e) = w)∨(src(e) = w∧trg(e) = v))

Definition 30 (activity in an edge-typed graph) In an edge-typed graph, node v ∈ V is ac-
tive in a type t ∈ T if the node has at least one connection in that type:

Act(v, t) ⇐⇒ ∃w ∈W ∶ Conn(v,w, t)

In the statechart graph (Fig. 3.1c), node E1 is connected to node R1 along type vertices, and to T1
along type outgoing. Hence, node R1 is active in types vertices, and outgoing.

3.4 Metrics for Untyped Graphs

3.4.1 Basic Graph Metrics

The most simple metrics for untyped graphs are the number of nodes ∣V ∣ and the number of edges
∣E∣. For a node v ∈ V , the in-degree Degreein(v) is the number of incoming edges and the out-degree
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Name Notation Nd.

Number of nodes ∣V ∣ ◯
Number of edges ∣E∣ ◯
Average degree ⟨Degree⟩ ◯
Density D ⊗
Triangle count − ◯
Radius r ◯
Diameter d ◯
Global clustering coefficient GCC ⊗
Global triangle count − ◯

(a) Graph-level metrics.

Name Notation Nd.

Degree Degree(v) ◯
In-degree Degreein(v) ◯
Out-degree Degreeout(v) ◯
Local triangle count − ◯
Local clustering coefficient LCC(v) ⊗
Eccentricity ϵ(v) ◯
Betweenness centrality g(v) ⊘
PageRank PR(v) ⊘
Component size − ◯

(b) Node-level metrics.

Table 3.1: Examples of metrics for untyped graphs. We only specified the notation for cases
where there is a commonly used convention for denoting the given metric. Nd.: the metric
normalized in the range of [0,1].

Degreeout(v) is the number of outgoing edges. The degree metric, Degree(v), is equal to the total
number of the incoming and outgoing edges of node v, i.e. Degree(v) = Degreein(v) + Degreeout(v).
The average degree of a graph is ⟨Degree⟩ = 2∣E∣

∣V ∣ , where ⟨⟩ denotes the average.

Example 14 In the statechart graph model in Fig. 3.1c, the metrics take the following values:
∣V ∣ = 14, ∣E∣ = 25, Degreein(R2) = 1, Degreeout(R2) = 3, and Degree(R2) = 4. The average
degree across the graph is ⟨Degree⟩ ≈ 3.57 and the density is D ≈ 0.14.

3.4.2 Clustering Metrics

Clustering metrics are used to describe how likely triangles are to form in a given graph. It is well-
known that real graphs tend to exhibit clusteredness, e.g. in a social network two friends of a person
are significantly more likely to be friends with each other than two randomly picked individuals.

To handle potential triangles in the graph, we first introduce the concept of triads:

Definition 31 (triad) A triad is a subgraph formed by 3 nodes.

(a) empty (b) one-edge (c) two-path (d) triangle

Figure 3.2: Undirected triads. Note thatmissing edges, such as the one in (c), are not optional,
but explicitly do not exist in the subgraph induced by the nodes of the triad.

For undirected graphs, there are four possible triads, shown in Fig. 3.2. Triads containing at least a
two-path are categorized based onwhether the two ends of the path connect (Fig. 3.3). This is captured
by the concept of transitivity. We differentiate between three categories of triads:
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3.4. Metrics for Untyped Graphs

Definition 32 (intransitive triad or open wedge) An intransitive triad is a triad with end
nodes that are not connected (Fig. 3.3a).

Definition 33 (potentially transitive triad or wedge) A potentially transitive triad is a triad
with end nodes that might or might not be connected (Fig. 3.3b).

Definition 34 (transitive triad or closed wedge or triangle) A transitive triad is a triad
with end nodes that are connected (Fig. 3.3c).

(a) intransitive triad
or open wedge

?

(b) potentially transitive triad
or wedge

(c) transitive triad or
closed wedge or triangle

Figure 3.3: Transitivity for undirected triads and their relationship to open/indefinite/closed
wedges. A transitive triad (closed wedge) is often simply referred to as a triangle.

Note on terminology. Different sources use different definitions for the triad concept. Lecture [Sni12] defines
triads as “subgraphs formed by 3 nodes”, and introduces the potentially transitive, intransitive, and transitive
variants defined above. These definitions also used in Wasserman and Faust’s seminal book “Social Network
Analysis” [WF94]. On the contrary, paper [BNL14] defines triads as “connected triples of nodes, which close
into triangles”, which is equivalent to the concept of potentially transitive triad (Def. 33) presented in this work.
A third definition is used in [ABG15], which introduces the term wedge as “a path of length two”. Its authors
differentiate between the (mutually exclusive) concepts of an open wedge and a closed wedge, which correspond
to our definitions of an intransitive triad and a transitive triad, respectively. The paper then uses the term triad
as a synonym for an open wedge “that is known not to form a triangle”, i.e. an intransitive triad.

A coarse-granularity metric to characterize is the number of its triangles:

Definition 35 (global triangle count) The global triangle count is the total number of trian-
gles in the graph.

At a finer granularity, the number of triangles can be determined for each node:

Definition 36 (local triangle count) The local triangle count for a node v is the number of
triangles that contain v.

While these metrics provide some insight into the structure of the graph, neither of them is able
to capture the clusteredness of a given graph, i.e. how likely its nodes tend to form triangles. To
determine this, we calculate the global clustering coefficient, which is defined as the ratio of triangles
(Def. 34) and wedges (Def. 33):
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Definition 37 (global clustering coefficient)

GCC(G) = number of triangles in G
number of wedges in G

On a vertex level, the local clustering coefficient LCC(v) measures the probability that the neigh-
bours of a node v ∈ V are connected to each other [WS98]. Formally, it can be defined as

Definition 38 (local clustering coefficient)

LCC(v) =
∣a, b ∣ Conn(v, a) ∧ Conn(v, b) ∧ Conn(a, b)∣

∣a, b ∣ Conn(v, a) ∧ Conn(v, b)∣

Let us observe that this is equivalent to applying the GCC definition for wedges centered in a
given node v:

LCC(v) = number of triangles centered in v
number of wedges centered in v

LCC(v) is normalized to the interval [0,1], equalling 1 if every neighbour of v is connected to
each other and 0 if there are no connections between the neighbours of v.

Example 15 Due to the absence of triangles n the example graph of Fig. 3.1c, the local trian-
gle count of each node is 0 and the global triangle count of the graph is also 0. Consequently,
the global clustering coefficient of is GCC = 0, and the local clustering coefficient is 0 for every
v ∈ V , i.e. LCC(v) = 0. This demonstrates that despite being a widely used metric in network
science, clustering coefficients often fail to capture the structure of the graph – or provide any
information at all.

Related algorithms Determining the triangle count metrics efficiently remains a hot topic in the
high-performance computing community. Recent works include a GraphBLAS-based implementa-
tion [Dav18] and an algorithm that does not require matrix multiplication [Low+17].

Figure 3.4: Possible triads for directed graphs, as presented in [WF94].

Clustering for directed graphs Clustering coefficients can be generalized for directed graphs.
However, this makes their computation and interpretation significantly more complex. While the
4 possible triads for undirected graphs are simple to grasp (Fig. 3.2), there are 16 possible triads for
directed graphs (Fig. 3.4).

3.4.3 Summary of Metrics for Untyped Graphs

Tab. 3.1 summarizes the global and local untyped graph metrics discussed here. At this point, it is
worth noting that some metrics generalize well for typed graphs, e.g. the number of nodes and the
triangle count of the graph are still meaningful, even though they discard some information about
the distribution of the types in the graph. However, some metrics cannot be adapted well: calculating
betweenness centrality or PageRank for an edge-typed graph – while omitting the type information –
provides little insight, as the semantics of the resulting values are often unclear.
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3.5 Typed Metrics

In the following, we introduce a set of typed graph metrics that characterize the structure of the graph
with taking type information into account. This allows us to gain greater insight into the microscopic
structure of the graph and study the interplay between the types in the graph. Tab. 3.2 shows the
typed metrics used in this chapter. The Scope column lists whether the metric is defined on types
(Sec. 3.5.1), nodes (Sec. 3.5.2), type-node pairs (Sec. 3.5.3), or type pairs (Sec. 3.5.4).

Name Introduced as Reference Notation Scope Nd.

Node type activity Layer activity [NL15] NTA(t) T ◯
Node type connectivity − [Ber+13] NTC(t) T ⊗
Node exclusive type connectivity − [Ber+13] NETC(t) T ⊗
Edge type activity − − ETA(t) T ◯
Edge type connectivity − [Ber+13] ETC(t) T ⊗
Node activity − [NL15] NA(v) N ◯
Typed participation coefficient Multiplex partic. coeff. [BNL14] TPC(v) N ⊗
Typed local clustering coefficient Clustering coeff. C1, C2 [BNL14] TCC(v) N ⊗
Interdependence − [BNL14] λ(v) N ⊗
Typed degree Degree [Ber+13] Degree(v, t) T ×N ◯
Pairwise type connectivity Pairwise multiplexity [NL15] PTC(t1, t2) T2 ⊗

Table 3.2: Summary of metrics for typed graphs. Introduced as: the metric was originally
introduced in the referred paper (Reference) under a different name. Notation: v ∈ V ;
t, t1, t2 ∈ T . Scope: N = Nodes, T = Types, T × N = Type-node pairs, T2 = Type pairs; Nd.:
shows whether the metric values are normalized.

Example 16 Fig. 3.1 has 5 types: T = {vertices, regions, target, incoming,outgoing}.

3.5.1 Metrics for Types

First, we present metrics that characterize each type in the graph. The number of types tends to
be low for most domains, hence these metrics have the advantage of being quite “compact”, i.e. the
description for a graph in a given domain does not grow with the size of the graph.

Definition 39 (node type activity) Node type activity (NTA), a.k.a. layer activity [NL15], char-
acterizes a type t ∈ T , and equals the number of nodes that are active in type t:

NTA(t) = ∣{v ∈ V ∣ Act(v, t)}∣.

Definition 40 (node type connectivity) Node type connectivity (NTC) [Ber+13] shows the ra-
tio of nodes that belong to type t:

NTC(t) = NTA(t)
∣V ∣

.
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Definition 41 (node exclusive type connectivity) The node exclusive type connectivity
(NETC) [Ber+13] is similar to node type connectivity, but it calculates the ratio of nodes that
belong exclusively to type t. In other words, it shows the ratio of nodes that only have types t:

NETC(t) =
∣{v ∈ V ∣ Act(v, t) ∧ ¬Act(v, T /{t})}∣

∣V ∣
.

Definition 42 (edge type activity) Edge type activity (ETA) determines the number of edges
that belong to type t ∈ T :

ETA(t) = ∣{(v,w, t) ∈ E ∣ v,w ∈ V }∣.

Definition 43 (edge type connectivity) Edge type connectivity (ETC) [Ber+13] determines the
ratio of edges of type t ∈ T :

ETC(t) = ETA(t)
∣E∣

.

Example 17 In the graph of Fig. 3.1c:
• NTA(outgoing) = 12 and NTC(outgoing) = 0.85, implying that the majority of nodes are
active in type outgoing.

• NETC(outgoing) = 0 as there are no nodes exclusively active in this type.
• ETA(outgoing) = 6 and ETC(outgoing) = 0.24, meaning that 24% of edges are in type
outgoing.

3.5.2 Metrics for Nodes

Next, we present metrics that are calculated for each node of the graph. As these metrics encode
more information for large graphs than the ones that only consider types, they are more expensive
to calculate and analyse. However, they provide greater insight into the structure of the network.

Definition 44 (node activity) Node activity (NA) [NL15] identifies the number of types in
which node v ∈ V is active. Formally, it is defined as:

NA(v) = ∣{t ∈ T ∣ Act(v, t)}∣.

Example 18 In the example graph (Fig. 3.1c), NA(L) = 4, as node L is active in 4 types.

Definition 45 (typed participation coefficient) The typed participation coefficient (TPC), in-
troduced as multiplex participation coefficient [BNL14], measures whether the connections of
node v ∈ V are uniformly distributed among types T :

TPC(v) = ∣T ∣
∣T ∣ − 1

⎡⎢⎢⎢⎢⎣
1 −∑

t∈T
( Degree(v, t)
Degree(v, T )

)
2⎤⎥⎥⎥⎥⎦
.
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TPC(v) takes values in [0,1], equalling 0 if all the edges of v belong to a single type, and 1 if v
has exactly the same number of edges on each of types T .

Example 19 TPC(R1) = 0 means that all edges belonging to R1 are of a single type, but

TPC(R2) = 5

4
⋅ [1 − ( (1

4
)
2

²
regions

+ (3
4
)
2

²
vertices

)] ≈ 0.47,

thus types belonging to node R2 (regions and vertices) are not uniformly distributed.

Typed Clustering Metrics

Similarly to the local clustering coefficientmetric LCC(v) (Sec. 3.4), the typed local clustering coefficients
TCC1(v) and TCC2(v) [BNL14] measure the ratio of triangles to wedges centered in node v ∈ V , but
also take the type information into account. To generalize the notion of the clustering coefficient, we
first introduce typed variants of the wedge and triangle concepts [BNL14], illustrated in Fig. 3.5.

t1

t1

(a) one-wedge

t1

t2

(b) two-wedge

t1

t1 t2

(c) two-triangle

t1

t2 t3

(d) three-triangle

Figure 3.5: Typed wedges and triangles. The types t1, t2, t3 denote different types.

Definition 46 (one-wedge) A one-wedge u−v−w centered in node v is a wedge in which both
edges u − v and v −w have the same types (Fig. 3.5a).

Definition 47 (two-wedge) A two-wedge u − v − w centered in node v is a wedge in which
edges u − v and v −w have different types (Fig. 3.5b).

Definition 48 (two-triangle) A two-triangle is a triangle which is formed by an edge of a cer-
tain type and two edges of another type (Fig. 3.5c).

Definition 49 (three-triangle) A three-triangle is a triangle which is formed by edges of dif-
ferent types (Fig. 3.5d).

v1 v2 v3 v4

LCC(v) 0.67 1.00 0.67 1.00
TCC1(v) 1.00 0.50 0.00 0.00
TCC2(v) 0.25 1.00 0.50 0.00

Figure 3.6: Example graph and values of clustering coefficient metrics.
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Definition 50 (typed local clustering coefficient 1) TCC1(v) is the ratio of two-triangles
and one-wedges centered in node v. Formally,

TCC1(v) =
∣u,w ∣ Conn(v, u, t1) ∧ Conn(v,w, t1) ∧ Conn(u,w, t2) ∧ t1 ≠ t2∣

∣u,w ∣ Conn(v, u, t1) ∧ Conn(v,w, t1)∣

The example graph in Fig. 3.1c does not have any triangles, hence we use a different example to
demonstrate the clustering coefficients (Fig. 3.6). In this example, TCC1(v1) = 1 as only v3 and v4 are
connected to v1 on the same type (a), while v3 and v4 are connected on a different type (b).

Definition 51 (typed local clustering coefficient 2) TCC2(v) is the ratio of three-triangles
and two-wedges centered in node v. Formally,

TCC2(v) =
∣u,w ∣ Conn(v, u, t1) ∧ Conn(v,w, t2) ∧ Conn(u,w, t3) ∧ t1 ≠ t2 ∧ t2 ≠ t3 ∧ t1 ≠ t3∣

∣u,w ∣ Conn(v, u, t1) ∧ Conn(v,w, t2) ∧ t1 ≠ t2∣

Example 20 In the example graph, the two-wedges centered in v1 could be completed to a
three-triangle in 4 possible ways:

1. (v1, v2, b), (v1, v3, a) with (v2, v3, c)
2. (v1, v2, c), (v1, v3, a) with (v2, v3, b) (this one exists)
3. (v1, v2, b), (v1, v4, a) with (v2, v4, c)
4. (v1, v2, c), (v1, v4, a) with (v2, v4, b)
Only a single one of these three-triangles exists in the graph (Item 2), hence TCC2(v1) = 1

4 =
0.25.

Typed Shortest Path Metrics

Paths in typed graphs may lead through different types and may exhibit very different properties
when investigated in the context of a single type, a type pair or any types. The interdependencemetric
aims to capture how shortest paths run in the graph:

Definition 52 (interdependence) Interdependence [Nic+13; BNL14] investigates the number
of shortest paths (Def. 25) w.r.t. types. For a given node, it calculates the ratio of the (1) shortest
paths from node v that are active in at least two types and (2) all shortest paths from node v.
Formally, interdependence λ(v) is defined as:

λ(v) = ∑
w≠v

ψvw

σvw
,

where ψvw is the number of paths between nodes v and w that are active in at least two
types, while σvw is the total number of shortest paths between nodes v and w.

Note that this metric is somewhat similar to the (untyped) betweenness centrality (Def. 64) as both
investigate the ratio of shortest paths for a given node. However, there are is an important difference:
interdependence considers the ratio of multi-typed and single-typed shortest paths that start from
node v, while betweenness centrality investigates the ratio of (untyped) shortest paths passing through
v and shortest paths between any pair of nodes s, t.
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3.5.3 Metrics for Type-Node Pairs

In this category, we calculate metrics for each type-node pair. Compared to other calculation scopes
(nodes, types, or type pairs), this category encodes the most information. However, it fails to take into
account the interplay between the types, and is consequently not a generally useful metric as we will
show in Sec. 3.7.

Presented as a redefinition of Degree in [Ber+13], the typed degree metric is determined by the
number of neighbours of a node v with respect to type t:

Definition 53 (typed degree)

Degree (v, t) = ∣{w ∈ V ∣ Conn(v,w, t)}∣

The metric can be generalized for a set of a types T ′ ⊆ T :

Definition 54 (typed degree for type sets)

Degree (v, T ′) = ∑
d∈T ′

Degree (v, t) .

Note that for T ′ = T , the typed degree of a node v equals its untyped degree Degree(v).

Example 21 In the example graph of Fig. 3.1c, typed degree values include
Degree (R2, vertices) = 3 and Degree (T3,{outgoing, incoming}) = 1.

3.5.4 Metrics for Type Pairs

In the category, we define metrics for type pairs. This results in ∣T ∣2 metric values, which is relatively
compact for graphs that do not have an excessive amount of types. Still, it often provides good insight
into the interplay between different types.

The pairwise type connectivity metric (PTC), introduced as pairwise multiplexity in [NL15], is de-
fined for a pair of types, ti, tj ∈ T , where 1 ≤ i, j ≤ ∣T ∣. Its value determines the ratio of nodes in the
network, which are active in both types ti and tj . Intuitively, the more mutual nodes the two types
have, the higher their pairwise type connectivity is.

Definition 55 (node activity) The node activity binary vector av (v ∈ V ) is defined as:

av = {a[t1]v , a[t2]v , ... , a
[t∣T ∣]
v } ,where a[t]v =

⎧⎪⎪⎨⎪⎪⎩

1, if Act(v, t),
0, otherwise.

Using this vector, we define a metric for each type pair:

Definition 56 (pairwise type connectivity)

PTC(ti, tj) =
1

∣V ∣ ∑v∈V
a[ti]v a

[tj]
v ,

PTC(ti, tj) takes values from the [0,1] interval, and equals 1 if the activity vectors a[ti]v and a[tj]v

are identical, i.e. when ti and tj belong to the same nodes.
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Example 22 In the example graph (Fig. 3.1c), PTC(incoming,outgoing) = 0.71, as these two
types often appear together. This can be explained by the fact that every State node belongs to
both types. However, the value is less than 1 as Entry nodes are never active in type incoming.

3.6 Experimental Setup

To study the selected set of metrics and their applicability on engineering models, we analysed the
characteristics of 83 graph models by evaluating single and typed metrics on them.

3.6.1 Domains and Instance Models

Models were taken from six different domains:
• AutoFOCUS [Ara+15b]2 is an MDE systems engineering tool for designing distributed, embed-
ded software systems.

• Building Information Model (BIM) [Eas+08] is a representation format for architecture de-
signs. BIM models were provided by Uninova, an industrial partner in the MONDO EU FP7
project [MON16].

• Capella [BBE15]3 is a graphical modelling workbench for model-based systems engineering
developed at Thales to support the Arcadia engineering method.

• JaMoPP [Hei+11]4 parses Java source code into EMF-based models and vice versa by construct-
ing abstract syntax trees (ASTs) from the source code with the extension of cross-references
(e.g. method calls, variable access).

• Yakindu Statecharts Tools [Yak18]5 is an integrated modelling environment developed by Itemis
AG. It can be used for the specification and development of reactive systems using statecharts.

• The Train Benchmark [j2] is a cross-technology benchmark, presented in Chapter 5, which
measures the performance of continuous model validation on graph-based models in a railway
system domain. We used 4 synthetic models from the Train Benchmark in experiments, while
all models from other domains were real models created by engineers.

Tab. 3.3 shows the basic graph characteristics of themodels. Each domain contains several instance
models (3–34) with different sizes, where BIM and JaMoPP models are the largest (up to 10M nodes).
The average degree ⟨Degree⟩ ranges from 2.2 to 7.8 which shows a significant difference between
our models and social networks [Bró+12; Cos+11] where the average degree is often ten times as
much. The number of types ∣T ∣ varies across domains: while Yakindu or Train Benchmark models are
built from 4–12 types, Capella models of similar size may contain 10 times more types. The ratio of
containment edges, ETC (containment), is higher for AutoFOCUS and JaMoPP models which means
fewer cross-references between the objects. This also explains the smaller average degrees for these
models. Note that the BIM models are flat graphs without a containment hierarchy.

3.6.2 Data Preparation

Whenwe first evaluated the typedmetrics on thesemodels, we observed outlying values along several
distribution functions, which were caused by some extremities of models. Therefore, we carried out
some data preparation and cleaning prior to the actual data analysis:

2https://af3.fortiss.org/
3https://www.polarsys.org/capella/
4https://github.com/DevBoost/JaMoPP
5https://www.itemis.com/en/yakindu/
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Domain # ∣T ∣ ∣V ∣ ⟨Degree⟩ ETC (containment)

AutoFOCUS 24 16 – 74 10 – 1k 2.2 – 3.2 0.7 – 0.92
BIM 34 51 – 117 10k – 10M 2.2 – 5.2 0 – 0
Capella 3 103 – 182 1k – 10k 4.2 – 5.0 0.41 – 0.48
JaMoPP 9 67 – 98 100k – 1M 2.6 – 2.6 0.8 – 0.8
Yakindu 9 4 – 4 10 – 1k 3.2 – 4.6 0.41 – 0.52
Train Benchmark 4 12 – 12 1k – 10k 7.2 – 7.8 0.16 – 0.16

Table 3.3: Characteristics of the instance models. #: number of instance models; ∣T ∣: number
of types; ∣V ∣: number of nodes; ⟨Degree⟩: average degree; ETC(containment): edge type
connectivity of containment edges.

• Omitting layout information. Some modelling tools (AutoFOCUS and Yakindu) persisted graph-
ical information of diagram elements to the model itself. As several metrics were dominated by
the large number of such elements, we decided to remove the layout information from these
models (except for BIM where graphics is the key information in the models).

• Omitting models of extreme sizes. We omitted models that were very small (e.g. overly simple
example models) compared to all other models of the domain and therefore distorted metric
values and thus the results of the analysis.

• No redundant edges. All derived edges were removed, along with inverse edges of containment.
The resulting graph – extracted from Fig. 3.1c – is shown in Fig. 3.7.

Figure 3.7: Edge-typed graph with inverse edges and edge directions omitted (extracted
from the example statechart graph of Fig. 3.1c).

Performance considerations for typed metrics This approach can be adapted to capture typed
local clustering coefficient metrics. For space considerations, we omit the details of how to adapt the
metrics here, but highlight some related findings:

• Due to the presence of types, each matrix only represents a subset of the graph. Consequently,
matrices are more sparse then for untyped graphs and matrix multiplication operations are
often cheaper to execute.

• For typed metrics, the number of required matrix multiplications is significantly larger. For
example, TCC1 uses two-triangles, which have to be determined for each different type pair and
therefore necessitate ∣T ∣⋅(∣T ∣−1), i.e.O (∣T ∣2), matrix multiplications. TCC2 uses three-triangles
and therefore requires O (∣T ∣3) multiplications.
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• As of 2019, there are very fewwell-optimized programming libraries for sparsematrices.6 While
matrix libraries are typically able to process dense matrices in parallel, they often lack support
for multi-threaded operations on sparse matrices. However, this can be worked around by run-
ningmultiple, single-threadedmatrixmultiplication operations at the same time. As the number
of operations is (at least) a quadratic function of the number of types, 10+ types are enough to
fully stress even a 64-core server CPU.

3.7 Evaluation

We calculated the values of typed metric of Sec. 3.3 for every instance model which yielded over
160 million data records as input for our analysis.7 In this dissertation, we present selected plots that
demonstrate interesting findings. The complete data sets and detailed plots are available online.8

In the following, we investigate three research questions, which are highly important for (1) un-
derstanding the structural differences between real vs. synthetic models and (2) parameterizing future
model generators to create realistic models.

3.7.1 Which Metrics Are Characteristic?

For describing the structure of model graphs, we consider a metric characteristic if it has both of the
following properties.

• Homogeneity: models within a specific domain have similar distribution of this metric.
• Distinctiveness: models from different domains can be distinguished based on their distribution
of this metric.

Metrics ranking high in one aspect do not necessarily perform well in the other one: values be-
longing to even very narrow ranges can overlap entirely with each other (indicating indistinguishable
domains) and diverse domains can be separated efficiently, if they are different enough.

Tab. 3.4 contains the homogeneity values for each metric–domain pairs. Cells with a black back-
ground indicate that the metric is highly homogeneous within a certain domain, while white cells
mark that it is heterogeneous. Grey cells usually indicate domains containing outlier models which
do not fall into previous categories (with homogeneity values between 0.3 and 0.7). For example,
AutoFOCUS and Yakindu models are heterogeneous along each type-related metric, while Train
Benchmark models are highly homogeneous here (as expected) due to their synthetic nature.

Fig. 3.8 summarizes the distinctiveness of metrics for each pair of domains. Red cells indicate that
a certain domain pair can be separated with a high confidence using the metric (e.g. by visually in-
specting the shape of their distribution or applying unsupervised learning algorithms), while black
cells indicate indistinguishable domain pairs. For example, Capella and JaMoPP models have similar
characteristics in edge-related metrics such as NTC and PTC but can be distinguished based on their
TPC distribution.

In Tab. 3.4 and Fig. 3.8, the metrics are ranked by homogeneity and distinctiveness. TCC2 ranks
high in both properties, which makes it the best candidate for domain characterization. Models of
real domains are entirely homogeneous in TCC1 due to the dominance of zero values (99-100%) in
their distributions. Therefore, it is not useful for distinguishing domains in general, even if some
models have shown completely different values (e.g. Train Benchmark models because of their tightly
connected structure). Some metrics, e.g. Degree, perform poorly in both properties.

6https://softwarerecs.stackexchange.com/questions/51330/sparse-matrix-library-for-java
7We omitted the interdependence metric due to its high computational complexity.
8http://docs.inf.mit.bme.hu/model-metrics/
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Typed local clustering coefficient 1 0.06 0.00 0.04 0.00 0.02 0.00
Typed local clustering coefficient 2 0.21 0.01 0.27 0.14 0.02 0.00
Clustering coefficient 0.21 0.28 0.19 0.14 0.02 0.00
Typed participation coefficient 0.55 0.78 0.30 0.42 0.01 0.29
Pairwise type activity 0.60 0.39 0.30 0.21 0.41 0.52
Node type connectivity 0.86 0.63 0.42 0.33 0.42 0.50
Node exclusive type connectivity 0.86 0.63 0.42 0.33 0.42 0.50
Node type activity 0.86 0.63 0.42 0.33 0.42 0.50
Edge type connectivity 0.82 0.59 0.40 0.33 0.42 0.76
Node activity 0.98 0.96 0.64 0.51 0.01 0.12
Degree list 0.99 0.99 0.92 0.99 0.99 0.99

Table 3.4: Summary of metric homogeneity (see Sec. 3.7.3).

Fig. 3.9 presents the empirical cumulative distribution functions of two extrema TCC2 (left) and
Degree (right). Except for AutoFOCUS models, the domains are mainly distinguishable using TCC2.
Inability of Degree for characterization is clearly noticeable in the figure: the distributions between
different domains overlap significantly, making separation impossible.

3.7.2 How Do Domains Differ?

Somemetrics turned out to be useful also for describing models by revealing structural characteristics
or hidden properties. During the analysis, we made the following domain-specific observations.

Clusteredness The metrics indicating the number of triangles have significant differences across
domains. Yakindu and Train Benchmark models represent the two extrema: while the former ones
have almost exclusively zero TCC values resulting in an average value of 0.008, the latter ones have
an average of 0.38. This is caused by the structural properties of the Train Benchmark (Chapter 5):
railway segments and their sensors are tightly connected leading to many triangles.

Dominant types All domains contain a small set of dominant types, with at most four of them
covering 80% of the graph. In particular, BIM and JaMoPP models contain a single type covering
40-50%. For BIM, these edges encode the layout of the buildings, while for JaMoPP, they form the
containment hierarchy following the AST.

Dominance of containment edges We categorized types by splitting them in two groups indi-
cating whether they represent a containment relation or not. Containment edges are the structural
building blocks of models in software and systems engineering, while non-containment edges repre-
sent other semantic information between model elements.

53



3. Characterization of Typed Graphs

Typed Particip.
Coefficient

   Pairwise 
Type Activity

 Edge Type
Connectivity

Node Activity Node Type
Connectivity

Node Exc. Type
Connectivity

Clustering
Coefficient

Pairwise Type
      Activity 

Degree           
 

AF
BIM

CAP
JMP

TB
YAK

AF
BIM

CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM

CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

AF
BIM

CAP
JMP

TB
YAK

AF
BIM
CAP
JMP

TB
YAK

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

A
F

B
IM

C
A

P
JM

P
TB YA

K

Typed Clust.
 Coefficient 2

Typed Clust.
 Coefficient 1

Figure 3.8: Summary of the distinctiveness of a given metric (Sec. 3.7.3). Notation –
AF: AutoFOCUS, CAP: Capella, JMP: JaMoPP, TB: Train Benchmark, YAK: Yakindu.
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Figure 3.9: Distributions of TCC2 and Degree values.

We found that the ratio of containment edges vary drastically across domains, e.g. it is approx. 45%
in case of Capella and 80% in case of JaMoPP models. Moreover, there is no obvious relationship
between the ratio of containment types in the metamodel and the containment edges in the instance
models, thus metamodels in themselves are insufficient sources for characterizing realistic models.

Fig. 3.10 shows the NTC values for the containment and non-containment types. For real models,
there are obvious differences in the non-containment subnetworks, only the synthetic Train Bench-
markmodels provide identical characteristics.We observed significant differences even in the contain-
ment types for AutoFOCUS and Yakindu models. Although BIM models have no explicit containment
edges, some of their types provide extreme similarity to containment subnetworks in other models,
e.g. JaMoPP.
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Figure 3.10: Distribution of NTC values in containment and non-containment subgraphs.

3.7.3 Statistical Methodology

In order to characterize homogeneity and distinctiveness, we needed to compare the distribution
functions for eachmetric.We first used visual data analysis techniques, which falls under the umbrella
of exploratory data analysis, to discover potential candidates. Then, we used confirmatory data analysis
techniques to objectively characterize the similarity of distribution functions. Namely, we calculated
the Kolmogorov–Smirnov statistic (KS) as a distance measure of graph models to judge how realistic
a generated graph model is by comparing the whole distributions of values (and not only descriptive
summary metrics like mean or variance) in different cases to the characteristics of real graph models.

The KS statistics quantifies the maximal difference between the distribution function lines at a
given value. It is sensitive to both shape and location differences: it takes a 0 value only if the distri-
butions are identical, while it is 1 if the values of models are in disjoint ranges (even if their shapes are
identical). For comparing two set of models,M1 andM2, we took the average value of the KS statistics
between each (m1,m2) pair of models that were generated by techniqueM1 andM2, respectively.

Figure 3.11: Comparing model pairs using the Kolmogorov–Smirnov distance in TCC2.

Fig. 3.11 illustrates theKS distance of TCC2 distributions of models originating from three different
domains (density functions on the left, empirical cumulative distribution functions on the right). KS
distance between JaMoPP and Train Benchmark is 0.8, reflecting that their lines are far from each
other: while 74% of JaMoPP values are smaller than 0.05 (this is the value where the difference is the
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largest, marked with the red dashed line), 90% of Train Benchmark values lay above this threshold.
On the contrary, the maximal distance between Capella and JaMoPP models is only 0.1 (orange dotted
line). Based on this distance function, we defined homogeneity and distinctiveness as follows.

• Homogeneity of a domain is calculated as the ratio of themaximalKS distance within the domain
and the maximal distance across each model pair; it is 0 if every model of the domain has an
identical distribution and 1 if this domain spans across the entire metric space.

• Distinctiveness of domain pairs is calculated as the averagemembership confidence of their mod-
els, which is the ratio of domain-identical instances (i.e. models from the same domain) in its
Degreeth neighbourhood, using the idea of kNN classification methods [Wu+08]. Distinctive-
ness is 1 if the minimal inter-cluster distance is larger than each Degreeth intra-cluster distance
and decreases with every pair of models, which, while belonging to different domains, produce
a smaller distance to each other than to their domain-identical neighbours.

Tab. 3.4 contains the homogeneity values of the domains. Distinctiveness is computed with a
Degree of 2, cells of Fig. 3.8 are coloured red if their distinctiveness is 1.

3.7.4 Threats to Validity

Metrics cannot capture semantics The metrics used in this work describe the structure of the
models, thus they cannot explicitly express semantic content. However, the semantics of different
domains may be captured in a significantly different way, which further hinders the characterization
from different domains.

How real are ourmodels? We used a variety of sources to gather models for analysis. BIMmodels
are real models obtained from an industrial partner. JaMoPP models are generated from open-source
code repositories, this way they are real large models. For Capella, AutoFOCUS and Yakindu, we used
openly available tutorial models provided by the tool developers themselves who are experts in their
domain. As an intentional exception, the Train Benchmark models are fully synthetic as they were
created by the model generator of the benchmark.

3.7.5 Summary of Findings

Our analysis provides some insights that need to be considered in future generators to synthesize
realistic models.

1. Relying only upon metamodel-level information is clearly insufficient, real instance models of
human engineers are required to characterize the domain.

2. Containment edges frequently dominate distributions, which necessitates data preparation
(Sec. 3.6). However, such edges can be exploited for generating realistic graph models.

3. Many edges follow the locality principle, i.e. they often lead to neighbouring nodes (and not to
distant ones).

4. Characteristic metrics can be used as an objective function for a search-based graph model
generator.

3.8 Optimization of Graph Metrics with Linear Algebra

The evaluation presented in this chapter targeted graph models with at most 10M nodes and less than
200 types (see Tab. 3.3). While this size range covers the majority of systems and software models,
larger ones are increasingly common [Sch+12]. Additionally, property graphs in graph databases and
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semantic graphs in triplestore often have 100M+ nodes and 1B+ edges, along with thousands of types.
Our future analyses aims to incorporate such models, hence it is important to investigate potential
optimizations. In this section, we will focus on the untyped local clustering coefficient (Def. 38), where
we found that even for graphs with 10-100M nodes, naïve approaches fail to complete in days.

First, we discuss the global triangle count metric, which is typically used in similar application
areas as the clustering coefficients: in social network analysis, recommendation systems, etc. This
metric is already very challenging to calculate [Lat08]: numerous papers tackle the challenge of exact
triangle count using linear algebraic techniques [ABG15; WBS15], while other works consider ap-
proximation techniques for improved performance [HD18]. An even more challenging variant is the
triangle enumeration [ABG15] problem, also known as triangle listing [Zin+16], which requires the
algorithm to explicitly enumerate each triangle.

To allow efficient computation of the clustering coefficient, we rewrote this metric in the language
of linear algebra [KG11] and represented the adjacency matrices in the computation as sparse matrices
to reducememory requirements.We review related definitions in Sec. B.1. In the following, we present
two algorithms: the naïve and an optimized versions. In both caseswewill store the resulting (untyped)
local clustering coefficient values in the #     »

LCC vector, which consists of n elements, and its ith element
denotes the LCC value of node vi.

Naïve algorithm The naïve algorithm to determine #     »
LCC is as follows. First, it calculates A3 to

get all three-length paths in the graph, then it keeps the ones that start and end in the same node.
These are the ones with the same row and column index in the A3 matrix, i.e. the diagonal elements
(Def. 78). Next, calculate A2 to get all two-length paths (wedges) and subtract the diagonal elements
as they represent back and forth hops in the graph and not actual wedges. To determine the sum of
each row, we multiply the matrix by a vector of ones [WBS15]:

(A2 − diag (A2)) ⋅ #»
1

Finally, to get the #     »
LCC vector, we perform an element-wise division (Def. 76) on the vectors con-

taining the number of triangles and wedges.
#     »
LCC = diag−1 (A3)⊘ ((A2 − diag (A2)) ⋅ #»

1 ) .

It is easy to see that this approach introduces a large amount of redundancy: #1 only the elements
in the diagonal of A3 are used, and #2 the algorithm enumerates all wedges by calculating A2, when
only the number of wedges centered in a given node is of interest. Based on these observations, we
present an optimized version of the algorithm.

Optimized algorithm To improve performance, we address redundancy #1 by only producing two-
length paths (wedges) withA2 and close themwith an element-wise multiplication (Def. 75) similarly to
Cohen’s algorithm [Coh09; ABG15]. We also make use of the fact that it is not necessary to enumerate
all triangles, but only to determine node-wise triangle count. Therefore, we can simply summarize each
row in the resulting matrix by multiplying it with #»

1 .

diag−1 (A3) = A2 ⊙A ⋅ #»
1
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For redundancy #2, it is sufficient to calculate the degree of each node with A ⋅ #»
1 and determine

the number of wedges as the number of 2-combinations of its degree (#»

d = A ⋅ #»
1 ).

(A2 − diag (A)) ⋅ #»
1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d⃗1
2
)

(d⃗2
2
)
⋮
(d⃗n
2
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Using the equality

(k
2
) = k ⋅ (k − 1)

2
,

we can reformulate the expression as follows:
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(d⃗1
2
)

(d⃗2
2
)
⋮
(d⃗n
2
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d⃗1⋅(d⃗1−1)
2

d⃗2⋅(d⃗2−1)
2
⋮

d⃗n⋅(d⃗n−1)
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= d⃗⊙ (d⃗ + (−1)) ⋅ 1
2
= (A ⋅ #»

1 )⊙ (A ⋅ #»
1 + (−1)) ⋅ 1

2

Putting these together, we derive the following expression:
#     »
LCC = (A2 ⊙A ⋅ #»

1 )⊘ ((A ⋅ #»
1 )⊙ (A ⋅ #»

1 + (−1)) ⋅ 1
2
)

Note that the element-wise division operator should be interpretedwith care: for operationswhere
the divisor is 0, the results should be 0. While this approach performs significantly less work than the
naïve algorithm, it is still suboptimal as it requires the enumeration of all wedges (most of which
typically cannot be completed to a triangle). The class of worst-case optimal algorithms eliminate
this redundancy and might offer better performance. In fact, the authors of paper [Zin+16] used the
worst-case optimal Leapfrog Triejoin algorithm for triangle enumeration, and created implementa-
tions on both CPUs and GPUs.9 A deeper relationship between matrix multiplication, triangle queries
and worst-case optimal joins is discussed in Sec. 10.6.

3.9 Related Work

3.9.1 Graph Analytical Engines

Graph analytical engines can be divided to two main categories, based on their programming model.
The first one is the vertex-centric programming model which defines the computation as an iterative
process between communicating vertices in the graph, defined in the Pregel model [Mal+10]. The sec-
ond one is the linear algebra-based approach which defines the computation with matrix operations.

Vertex-centric approaches The vertex-centric model is used in the Apache Spark
GraphX [Gon+14], Apache Flink Gelly [Car+15], and the Apache Giraph [Sak+16] frameworks.
GPS (Graph Processing System) [SW13] is a graph analytical engine for scalable, fault-tolerant, and
simple-to-program implementation of algorithms on large graphs. OpenG consists of hand-coded
implementations for numerous graph algorithms. It is used by the GraphBIG [Nai+15] benchmark, an
effort initiated by Georgia Tech and inspired by IBM’s System G. A detailed survey of vertex-centric
approaches is given in [MWM15], while an analysis of their scalability is discussed in [AÖ18].

9This algorithm is also relevant for incremental view maintenance on graphs, see Sec. 10.3.
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Linear algebra-based approaches A notable recent initiative is the GraphBLAS10 [Kep+15;
Kep+16] specification, which defines standard building blocks that allow users to create graph al-
gorithms with linear algebra. GraphBLAS is currently available as a C library, and as part of the Gra-
phulo data processing system [Hut+16; Hut17]. Additionally, wrappers in high-level programming
languages such as PyGB for Python [Cha+18] are under development. A distributed graph analytical
engine was presented in [Ahm+18] under the name “LA3”, which refers to the fact that the system is
link-aware, locality-aware, and linear algebra-based.

Hybrid approaches Some advanced engines mix vertex-centric and linear algebra-based ap-
proaches. Gunrock [Wan+17] is a GPU-based graph analytical framework, which allows its users
to define algorithms using high-level primitives (e.g. neighbourhood expansion, filtering, and fron-
tier intersection), then translates these to low-level, linear algebra-based GPU operations. Graph-
Mat [Sun+15b] is a graph analytical system developed by Intel. It uses a vertex-centric programming
model, and translates analytical workloads to linear algebraic operations, primarily to SpMV (sparse
matrix to vector multiplication).

Unified analytical and query engines Oracle PGX.D [Hon+15] is a distributed hybrid graph an-
alytical and graph query engine. Users can specify graph analytical tasks in the Green-Marl domain-
specific language [Hon+12] (Sec. B.3) and graph queries in PGQL (Sec. 2.6.2). Currently, the system
is capable of supporting complex queries such as a large portion of the LDBC SNB’s Business Intel-
ligence workload (see Sec. 6.4). An interesting approach is taken by paper [Lin+16] which envisions
a scenario where the data resides in a relational database, and a layer is built on top that utilizes a
graph engine to process SQL queries efficiently.

Surveys Monograph [Yan+17] reviews various algorithms and techniques for graph analytics. A
recent survey of distributed graph processing frameworks was presented in [KVH18], concluding
that most current graph analytical systems use the vertex-centric programming model (as opposed to
the linear algebra-based model).

3.9.2 Benchmarks for Graph Analytics

In the following, we provide a brief overview of the benchmarks that target graph analytical workloads
(Sec. 2.7.2). It is interesting to observe that the number of benchmarks for this workload is noticeably
lower than those for graph query workloads (presented in Chapter 7).

HPC SGAB Traditionally, many benchmarks for graph analytical workloads were conceived in the
high-performance computing (HPC) community. A DARPA program titled High Productivity Comput-
ing Systems (HPCS) aimed to define a way to measure various metrics in the high-performance com-
puting domain. Their target metrics include programmability, portability, robustness, productivity,
and performance. As part of this programme, an initiative designed the Synthetic Compact Applica-
tions (SSCA) benchmark suite, whose SSCA#2 is a graph theoretical problem [KK05]. The authors of
paper [BM05] presented a multi-processor implementation for this problem, and subsequently joined
forces with the SSCA#2 team, resulting in updated versions of the specification [Bad+07], and the full
HPC Scalable Graph Analysis Benchmark specification [Bad+09]. The benchmark requires its users to
develop an application that has multiple analysis techniques, operating on a weighted, directed graph.

10http://graphblas.org/
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HPC SGAB [BM05] ⊗ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯
“Big Data technologies” [EM13] ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ◯ ◯ ◯
GraphBIG [Nai+15] ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ⊗ ⊗ ◯ ◯ ⊗ ⊗ ⊗
Graph500 − ◯ ⊗ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯
GraphBench [Suk+16] ⊗ ⊗ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ⊗ ⊗ ◯
LDBC Graphalytics [Ios+16] ◯ ⊗ ⊗ ◯ ◯ ◯ ◯ ◯ ⊗ ⊗ ⊗ ◯ ⊗

Table 3.5: Benchmarks for graph analytics.

The benchmark contains a graph generator based on the Recursive MATrix (R-MAT) scale-free graph
generation algorithm [CZF04]. The benchmark tasks include classification, graph extraction, and cal-
culating the betweenness centrality metric. Due to the high complexity of calculating this metric, the
benchmark specification allows users to create both exact and approximate implementations.

Big Data technologies for graph analytics Paper [EM13] studied big data frameworks and their
ability to implement graph algorithms. Namely, the authors selected the k-core decomposition prob-
lem [MPM11], which computes the centrality of each node by identifying the maximal induced sub-
graphs including that node. The problem takes untyped, undirected graphs as its input, and assigns a
k value to each node in the graph. The paper presented implementations on multiple frameworks (Gi-
raph [Sak+16], Hadoop [Whi15], Hama [Sid+16], etc.), and concluded that graph-specific frameworks
clearly outperforms the ones designed for generic data processing tasks.

GraphBIG GraphBIG [Nai+15] is an extensive graph analytical benchmark suite inspired by the
IBM System G project [Tan+14]. The benchmark was designed based on data structures, workloads,
and data sets from 21 use cases in multiple real-world application domains. Its workload consists of
4 categories and 13 operation types in total:

• Graph traversal: breadth-first search, depth-first search;
• Graph update: graph construction, graph update, topology morphing;
• Graph analytics: shortest path (Def. 25), k-core decomposition, connected components (Def. 60),
graph colouring, triangle count (Def. 35), Gibbs inference;

• Social analysis: degree centrality, betweenness centrality (Def. 64).
12 operations were implemented on CPUs and 8 were implemented on GPUs. Following an exten-

sive evaluation on multiple systems, authors concluded that neither hardware architecture performs
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well due to the highly irregular access patterns exhibited by graph data sets, as both CPU and GPU
systems showcased significant inefficiencies in memory access and bandwidth utilization. The au-
thors also observed that distributions of the input data has a profound impact on performance, but
the impact is difficult to assess due to the diversity of the workload operations.

Graph500 Graph50011 is a collaboration of HPC experts from industry and academia with the goal
to establish a set of large-scale benchmarks for these applications. It provides a highly scalable Kro-
necker generator similar to the Recursive MATrix (R-MAT) graph generation algorithm [CZF04],
which produces weighted, undirected graphs up to 1.1 PB in size (approx. 1014 edges). It covers two
operations, breadth-first search (BFS) and single source shortest paths (SSSP), and continuously main-
tains a list of top performers.

GraphBench GraphBench12 [Suk+16] is a community-driven graph benchmark suite. It contains a
generator based on the Graph500 Kronecker generator and measures the performance of the breadth-
first search (BFS) and single source shortest paths (SSSP), PageRank, triangle counting, and betweenness
centrality operations.

LDBC Graphalytics Paper [Guo+14] presented a vision towards designing a comprehensive
benchmarking suite for graph processing platforms. This vision was realized with the introduction
of the Graphalytics benchmark suite [Cap+15; Ios+16], which defines a workload targeting scalable
analysis of large graphs with weighted edges. It requires tools to calculate six popular graph metrics:

1. BFS (breadth-first search),
2. CDLP (community detection by label propagation),
3. LCC (local clustering coefficient, see Def. 38),
4. PR (PageRank),
5. SSSP (single-source shortest path),
6. WCC (weakly connected components, see Def. 61).
Graphalytics is an influential and popular benchmark with implementations ranging from

graph databases to distributed graph processing frameworks, including GraphMat [Sun+15b],
GraphX [Xin+13; Gon+14], OpenG [Nai+15], and PGX [Hon+15].

Lack of benchmarks for typed graphs None of the benchmarks surveyed here consider any
type information in the graph (nodes and/or edges). Up to our best knowledge, currently there is no
benchmark available for measuring the performance of calculating typed graph metrics. This indi-
rectly confirms that typed graph analysis is still a new field and there is no common understanding
on (1) which metrics are of significant importance and (2) how to perform such analyses efficiently.

3.9.3 Metrics for Typed Graphs in Other Fields

A collection of typed metrics is defined in [Ber+13; NL15; BNL14] where the authors study the expres-
siveness of their metrics on real-life networks from heterogeneous domains e.g. from a social network
(Flickr), co-authorship data (DBLP), query log analysis, social, engineering and biological networks.
A detailed discussion of paper [BNL14] is presented in dissertation [Bat17].

11https://graph500.org/
12https://github.com/uwsampa/graphbench
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Network science Revealing essential structural similarities and differentiations among networks
from different domains is a fundamental objective in network theory. Such studies [AB02; Cos+11]
characterize a diverse set of models from a number of domains. However, these studies are carried
out on untyped networks. So far, existing typed studies only focused on a single application domain,
such as neighbourhood and centrality analysis of a Polish social network [Bró+12], relevance and
correlation analysis of different types in Flickr [KMK11], community detection in the network of
YouTube [TWL12], analysis of co-authorship in the DBLP network [BSK11] and characteristics of dif-
ferent transportation networks (European Air Network [Car+13], cargo ship movements [Kal+10]).
Metrics for social network analysis are used in the Corese semantic search engine [Eré+09], including
variants of well-known metrics that inspect a subgraph induced by edges of a given type. Such met-
rics include degree, geodesic (Def. 25), betweenness centrality (Def. 64), diameter (Def. 67), and density
(Def. 68–69).

Network analysis in software engineering The authors of [Bha+12] use graphmetrics to capture
the structure and evolution of software products and processes in order to detect significant structural
changes, help estimate bug severity, prioritize debugging efforts, and predict defect-prone releases
in software engineering. Additionally, the principles of complex networks are used to measure the
structural complexity of software systems [MHD05; Ma+06b] and to predict defects on dependency
graphs [ZN08]. Our motivation is to find metrics that are able to characterize and distinguish models
used in tools of software and systems engineering.

Metrics in model-driven engineering The analysis of domain-specific graph models has been
studied in MDE. Fellow researchers of the Fault-Tolerant Systems Research Group [Izs+13b] investi-
gated the correlation between model query performance and metrics describing the queries and the
models. They introduced composite metrics such as the absolute difficulty (logarithm of the search
space size), and the relative difficulty, which expresses how much worse a query engine does than the
theoretical lower bound required by a certain query. The authors generated 12 graphs with different
degree distributions along with 25+ queries of different shapes and measured their execution times.
Then, they calculated the Kendall’s τ rank correlation coefficient for p < 0.001 between each met-
ric and the query execution times. The strongest correlation (+0.38) was exhibited by the absolute
difficulty metric.

The authors of [Roc+14] use metrics to understand the main characteristics of domain-specific
metamodels and to study model transformations with respect to the corresponding metamodels, and
search correlations between them via analytical measures [Roc+15]. A generic σ-metric is proposed
in [Mon+08] to assist in empirically validating various quality attributes. Finally, several approaches
exist to definemetrics using high-level constraint languages [Chi11; GDL08]. Themain novel aspect of
our work is to identify characteristic graph metrics for describing real instance models on a statistical
basis to help develop future model generators.

3.10 Conclusion and Future Work

Conclusion In this chapter, we identified several graph metrics known from other disciplines and
evaluated them on 83 instance models of 6 different tools dominantly from software and systems
engineering domains in order to identify characteristicmetrics using statistical and visual data analysis
techniques. We consider a metric characteristic if it separates models of different domains from each
other, while provides similar values for models within the same domain. We also discussed whether
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some of these metrics can distinguish real models from auto-generated synthetic ones, which is the first
investigation of graph models for such a purpose up to our best knowledge. Our initial finding is
that different versions of clustering coefficients were particularly useful for such classifications. But,
unsurprisingly, no single metric was able to sufficiently handle all the domains.

Future work The lack of triangles in our example statechart graph (Fig. 3.1c) clearly exemplifies
why it is insufficient to only look for clusters of three nodes: many graphs only have circles of more
than 3 elements. Hence, we plan to study the k-local clustering coefficient [JC04; Fro+02] and in-
troduced the k-TCC metric, a common generalization of k-LCC and the TCC metric. Labelled graphs
(Def. 6) have been studied as heterogeneous information networks over the last decade in database lit-
erature [Shi+17]. A central concept of this research was the meta-path, a path travelling over a given
sequence of node and edge types. While this is slightly related to the TCC metric (as a three node
meta-path which has the same start and end nodes is a typed triangle), it is also able to uncover dif-
ferent sort of structural properties of the graph. This makes the meta-path a promising candidate for
our future analyses.
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Chapter4

Characterizing the Realistic Nature

of Graphs

In Chapter 3, we presented a set of metrics to characterize typed graphs. Thesemetrics allow us to gain
greater insight into the structure of a given set of graphs, which unlocks further research directions:

1. It allows us to argue for/against the realism of a given set of synthetic graphs.
2. It aids generating synthetic graphs that are structurally similar to real ones.
In this chapter, we present our results for #1. Investigating techniques to generate realistic syn-

thetic graphs (#2) is subject to future work. The work described here was presented in paper [c5] and
in book chapter [b1].

4.1 Characterizing Randomized Graph Models

As one of our long-term research objectives is to generate realistic instance models, we attempted to
identify a set of metrics which are able to capture the characteristics of real models.

4.1.1 Experimental Setup

We compared real and synthetic instance models from four domains presented in Sec. 3.6. We chose
domains where real instance graphs were available and had a well-defined containment hierarchy
(AutoFOCUS, Capella, JaMoPP, and Yakindu).1 We created synthetic models with a random graph
model generator, using the following approach:

1. We removed all edges from the graph model that are not part of the containment hierarchy,
leaving only the containment edges.

2. For each removed edge, we inserted a new edge of the same type. The start and end nodes of
the new edge were chosen using a pseudo-random generator with a uniform distribution from
the nodes which fulfil the type constraints prescribed by the edge type.

Note that compared to a fully random model generator, our setup presents a more adverse sit-
uation for a metrics-based distinction since a significant part of the graph models (the containment
hierarchy) remains real.

1The BIM models did not have a clear containment hierarchy.
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4.1.2 Evaluation

We calculated the metrics on both real and synthetic models. Fig. 4.1 illustrates the influence of ran-
domization on two metrics, TCC and PTC on Capella models. We found that while many metrics did
not exhibit any particular difference (see e.g. PTC in the right part of the figure), clustering metrics
such as LCC and TCC2 showed significant changes both in their ranges (the maximum decreased) and
distribution. This change may be explained by the fact that randomization decreased the clustered-
ness of the graph, as the randomly inserted edges are less likely to form a triangle (compared to a
model designed by a domain expert). This phenomenon, well-kwown in network science [BNL14],
could be observed in each domain with a strength depending on the number of removed edges. Thus,
it was less drastic in Yakindu instances than in large models.

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
Clustering Coefficient

Em
pi

ric
al

 D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

0.0

0.5

1.0

0.00 0.25 0.50 0.75 1.00
 Pairwise Type Conn.

Graph model type Real Randomized (synthetic)

Figure 4.1: The distribution of LCC values is noticeably different between the real and ran-
domized version of Capella instance models, while PTC values are similar for both versions.

4.2 Characterizing Graphs Synthesized by Solvers

In our next investigation, we studied graph models generated by the Alloy Analyzer [TJ07] and the
Viatra Solver, designed by Oszkár Semeráth et al. [b1]. This work focused on studying the prop-
erties of a graph generator that targets the synthesis of graph models that are consistent w.r.t. a set
of well-formedness (WF) constraints captured with graph patterns. To characterize the generators, we
synthesized graph models describing statecharts over the Yakindu metamodel, similar to the one de-
picted in Fig. 3.1a. We then carried out an evaluation to address the following research questions:
RQ1 Realism vs. diversity: How realistic are the graph models which are synthesized by generators

that promise diversity?
RQ2 Realism vs. consistency:How realistic are the graph models which are synthesized by generators

that guarantee consistency?
Addressing these questions may help advancing future model generators by identifying some

strength and weaknesses of different strategies.
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4.2.1 Experimental Setup

Target domain We conducted measurements in the context of Yakindu statecharts.2, with the stat-
echart metamodel extracted directly from the original Yakindu metamodel. We formalized 10 WF
constraints based on the validation rules of the Yakindu Statechart development environment.

Graph generator approaches We compared two different model generation approaches:
1. Kodkod, the popular relational model finder, which uses the Alloy Analyzer [TJ07], and
2. Viatra Solver, a graph-based generator, which uses the refinement calculus presented in [b1].
We operated both solvers in two modes: in well-formedd mode (WF) all synthesized graph models

need to be consistent, i.e. satisfy both the structural constraints of the metamodel along with the WF
constraints, while inmetamodel-onlymode (MM), generatedmodels only need to satisfy the structural
constraints of the metamodel. With these settings, we generated the following four sets of models:

• “Alloy (MM)”: 100 metamodel-compliant models with 50 objects using Alloy.
• “Alloy (WF)”: 100 metamodel- and WF-compliant models with 50 objects using Alloy (which
was unable to synthesize larger models within 1 minute).

• “Viatra Solver (MM)”: 100 metamodel-compliant instance models with 100 objects using
Viatra Solver.

• “Viatra Solver (WF)”: 100 metamodel- and WF-compliant instance models with 100 objects
using Viatra Solver.

To enforce diversity among themodels in the samemodel set, we explicitly checked that generated
graph models are non-isomorphic.

Real instancemodels To evaluate how realistic the synthetic graph model generators are, we took
1 253 statecharts as real models created by undergraduate students for a homework assignment. While
the students had to solve the same modelling problem, the size of their models varied from 50 to 200
objects. Real models were filtered by removing inverse edges that introduce significant noise to the
metrics (see Sec. 3.2 for details).

4.2.2 Analysis of Generated Graph Models

Graph metrics We selected two typed graph metrics from Chapter 3 to evaluate how realistic the
models produced by a graph generator are:

1. typed participation coefficient (TPC, Def. 45) measures how the edges of nodes are distributed
along the different edge types, and

2. pairwise type connectivity (PTC, Def. 56) captures how likely are two different types of edges to
meet in a node.

Evaluation of measurement results We plot the distribution functions of the typed participation
coefficient metric in Fig. 4.2, and the pairwise type connectivity metric in Fig. 4.3. Each line depicts a
distribution function describing the characteristics of a single graph model. Graph model sets, such
as “Alloy (MM)” and “Viatra Solver (WF)”, are grouped together in facets of the plot.

2https://github.com/ftsrg/publication-pages/wiki/Towards-the-Automated-Generation-of-Consistent,-Diverse,
-Scalable,-and-Realistic-Graph-Models/ contains the detailed results.
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Figure 4.2: Empirical cumulative distribution functions of the typed participation coefficient
(TPC) metric for real and synthetic graph models. The plot shows that approximately 2/3
of the nodes in “Real” statechart models have edges in only a few types, resulting in a
TPC value under 0.2. The remaining 1/3 of the nodes have edges more evenly distributed
among different types. The graph models produced by “Viatra Solver” (both in MM and
WF variants) closely mirror this property, while the ones produced by “Alloy” deviate from
it on multiple occasions.

Graph model set TPC PTC

Alloy (MM) 0.95 0.88
Alloy (WF) 0.74 0.60
Viatra Solver (MM) 0.27 0.37
Viatra Solver (WF) 0.24 0.30

Table 4.1: Average Kolmogorov–Smirnov statistics between the TPC and PTC distribution
functions of real and generated graph model sets. Smaller values indicate more similarity
between the distribution functions. The values show that compared to real graph models,
“Alloy (MM)” produces the least similar ones, while “Viatra Solver (WF)” produces the
most similar ones.

Comparison of distribution functions To characterize how realistic a generated graph model is,
we used the Kolmogorov–Smirnov statistic (KS) as a distance measure of graph models, similarly to
the approach presented in Sec. 3.7.3. The resulting average KS values are shown in Tab. 4.1, where
a lower value denotes a graph model that is more similar to real ones, i.e. it is more realistic.3 Our
analysis revealed the following insights.

3Due to the excessive amount of homework models, we took a uniform random sample of 100 models.
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Figure 4.3: Empirical cumulative distribution functions of the pairwise type connectivity
(PTC) metric for real and synthetic graph models.

Realism vs. diversity For the models that are only metamodel-compliant, the characteristics of
the metrics for “Viatra Solver (MM)” are much closer to the “Real” model set than those of the “Alloy
(MM)” model set for both metrics (KS values of 0.27 vs. 0.95 for TPC, and 0.38 vs. 0.88 for PTC). This
implies that the “Viatra Solver (MM)” setup produced more realistic graph models. However, visual
inspection also highlights that the set of generated metamodel-compliant models can be more easily
distinguished from the set of real models as the plots of the latter show higher variability. Since the
diversity of each model generation case is enforced (i.e. isomorphic models were dropped), we can
draw as a conclusion that a metamodel-compliant model generator does not provide any guarantees
in itself on the realistic nature of the output model set. In fact, graph generators that simultaneously
ensure diversity and consistency always outperformed the random model generators (which only
confirmed themetamodel) for both the Alloy andViatra Solver cases. As such, we found that random,
metamodel-compliant generators are diverse but less realistic if they do not enforce WF constraints.

Realism vs. consistency In case of models satisfying WF constraints, “Viatra Solver (WF)” gen-
erated more realistic graph models than “Alloy (WF)” according the KS statistics on both metrics.
However, the plots show mixed results for differentiating between generated and realistic models. On
the positive side, the shape of the plot for generated models is very close to that of real models in case
of the TPC metric (Fig. 4.2), and have an average KS distance of 0.24. However, for the PTC metric
(Fig. 4.3), real graph models are still substantially different from generated ones, as demonstrated vi-
sually on the distribution plots, and confirmed by the higher average KS distance of 0.3. Thus further
research is needed to investigate how to make consistent models more realistic.

Takeaways for graph generators While many existing performance benchmarks claim that they
generate realistic graph models, most of them ignore the WF constraints of the domain. According to
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our measurements, it is a major drawback since real graph models dominantly satisfy WF constraints
while randomly generated models inevitably violate some constraint. Thus, graphs synthesized by
generators omitting WF constraints can hardly be considered fully realistic.

Threats to validity We carried out experiments solely in the domain of statecharts which limits
the generalizability of our results. Additionally, statecharts are a behavioural modelling language, and
the characteristics of such graph models (and thus their graph metrics) would likely differ from struc-
tural modelling languages, such as e.g. the BIM architectural DSL or the Train Benchmark’s railway
modelling language (Sec. 3.6.1). However, since many of our experimental results are negative for
models as simple as Yakindu statecharts, it is unlikely that the Alloy generator would behave signifi-
cantly better for other domains with more complex domains. In fact, while Alloy has been used as a
back-end for mapping-based model generator approaches, we found that its use is not justified from a
scalability perspective due to the lack of efficient evaluation for complex structural graph constraints.
It is also unlikely that randomly generated metamodel-compliant models (the MM variants produced
by the solvers) would be more realistic, or more consistent in any other (often more complex) domain.

Concerning our real graph models, we included all the statecharts created by students, which
may be a bias since many of the students who are initially unfamiliar with a modelling tool might
not produce good quality models. Thus, the variability of real statechart models created by engineers
may actually be smaller. But this would actually increase the relative quality of models generated by
Viatra Solver which currently differs from real models by providing a lower level of diversity (i.e.
plots of pairwise type connectivity are thicker for real models).

4.3 Related Work

4.3.1 Generation of Graph Instances

Several recent works of the database research community targeted generation of graph instances.
gMark [Bag+17] is a schema-driven benchmark workload generator. Its approach relies on con-

trolling the diversity of the generated graphs and the complexity of the generated instances, using
a selectivity estimation algorithm. The graph generator of gMark was extended with the MonStaGen
algorithm [Lee+17], which is capable of generating graph sequences ensuring two key properties:
(1) “monotonic containment of graph instances as they grow in size and (2) consistency of structural
properties across the sequence”.

The Gscaler system [ZT16] aims to synthetically scale a given graph. As its authors state, they
work “investigates the Graph Scaling Problem (GSP): Given a directed graph G and positive integers
ñ and m̃, generate a similar directed graph G̃ with ñ nodes and m̃ edges. [. . . ] Analogous to DNA
shotgun sequencing, Gscaler, decomposes G into small pieces, scales them, then uses the scaled
pieces to construct G̃.”

Paper [Sat+17] investigates the problem of graph synthesis while taking into account the correla-
tion between edges and “labels” (defined as attributes with enumeration-like values). More precisely,
it aims to “preserve the node label and the edge connectivity distributions as well as their correla-
tion, while also replicating the degree distribution.” Its authors “model the edge connectivity by a
joint distribution over pairs of label categories”, which is somewhat similar to the pairwise type con-
nectivity metric used in Sec. 3.5.4, and use Jensen–Shannon divergence statistic [Lin91] to compare
distributions (as opposed to the Kolmogorov–Smirnov statistic used in our work Sec. 3.7.3).
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The goal of the DataSynth system [Pra+17] “is to assist benchmark designers in generating graphs
efficiently and at scale, saving from implementing their own generators. Additionally, DataSynth in-
troduces novel features barely explored so far, such as modelling the correlation between properties
and the structure of the graph. This is achieved by a novel property-to-node matching algorithm.”

DataSynthesizer (not to be confused with DataSynth) is “a privacy-preserving synthetic data gen-
erator designed to facilitate collaborations between domain-expert data owners and external data sci-
entists.” [PSH17]. From the same research group, paper [AS18] tackled graph generation challenges,
using an attribute-based preferential attachment model.

4.3.2 Domain-Agnostic Characterization of Realistic Graphs

Some works attempted to establish a domain-agnostic, generic graph metric to capture the realism of a
given graph. Most notably, in their 2011 SIGMOD paper, Duan, Kementsietsidis, Srinivas, and Udrea
compared real graphs to synthetic ones used in RDF benchmarks available at the time [Dua+11]. The
real graphs in the paper included DBpedia [Biz+09], the Uniprot protein knowledge base [Apw+04],
and the Barton library dataset [Aba+07], while the synthetic graphs were the data sets of the Berlin
SPARQL Benchmark [BS09], the Lehigh University Benchmark [GPH05], and SP2Bench [Sch+09].
To characterize graphs, the authors study the structuredness of datasets by calculating the coverage
and coherence metrics. Based on their analysis, they found that “while real datasets cover the whole
structuredness spectrum, benchmark datasets are very limited in their structuredness and are mostly
relational-like”.

Recently, the analysis presented in [c8] disputed the claim that benchmark datasets are limited
in their structuredness. Namely, results on a more comprehensive set of real and synthetic graphs,
our analysis shows that benchmark datasets are not necessarily limited in their structuredness, but
cover the whole structuredness spectrum. This renders structuredness less useful for characterizing
the realism of a given graph.4 Whether there is a generic metric to capture the realism of graphs is
still an open research problem.

4.4 Conclusion and Future Work

In this chapter, we demonstrated how typed graph metrics can be used to distinguish between real
and generated graph instances. Besides descriptive purposes, these metrics can also be used for pre-
scriptive goals. In particular, a major motivation for analyzing graphs with such metrics is to allow us
to generate synthetic graph instances that are structurally similar to real graphs. To this end, we are
currently experimenting with a design-space exploration (DSE) approach that grows graphs based on
a set of transformation rules, against a set ofwell-formedness constraints andmetric values as optimiza-
tion goals. Such multi-objective optimization problems can be supported with genetic algorithms, an
approach used by the Viatra-DSE system [Abd+14]. The performance of this system – in the context
of a software optimization case – was demonstrated at the 2016 Transformation Tool Contest, where
our submission achieved 1st place by simultaneously providing good performance and high-quality
solutions [a25].

4This finding is a contribution of the first author of paper [c8]. The author of this dissertation is a co-author of the paper
and made contributions towards the analysis of the Train Benchmark and LDBC Social Network Benchmark workloads (see
Chapter 5 and Chapter 6, respectively).
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Benchmarks for Global Queries

over Evolving Property Graphs
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Benchmarks

In the area of data management systems, benchmark designers typically design macrobench-
marks [BS97; Sel+99], which define complex workloads focusing on a certain application domain.5 For
example, the Transaction Processing Performance Council (TPC) [PF00] released multiple TPC bench-
marks since its establishment in 1988, including ones that have influenced relational data processing
systems for decades such as TPC-C, TPC-H, and TPC-DS [NP06; Pös17].

As discussed in Sec. 1.2, defining a representative workload is a key requirement for benchmark
specifications. To resolve this challenge despite the lack of access to real workloads, benchmarks
designers rely on implementing synthetic data generators and characterizing queries without sharing
their exact specifications. Another challenge is the correct execution of benchmarks as users need to
avoid numerous pitfalls to obtain meaningful results [Raa+18]. Potential issues involve setting up the
execution environment (installing and tuning database systems), executing the benchmark carefully
to mitigate factors in the execution environmental (e.g. allowing systems sufficient time to warm
up, but minimizing the effects of OS- and system-level caching), validating the correctness of the
results, ensuring reproducibility [Man+09; Jim+17], and so on. Therefore, it is a considerable amount
of work for authors to conduct meaningful performance experiments. Jennifer Widom, the author of
multiple seminal textbooks in database systems [WC96; GUW00; GUW09], stated in a presentation
that “It’s easy to do «hokey» or meaningless experiments, and many papers do” [Wid06]. It is therefore
highly beneficial for members of the community to have access to standard benchmarks that provide
frameworks and guidelines for running experiments.

In this part, we present two carefully designed and engineered benchmarks that define represen-
tative workloads. We believe both will be highly beneficial for researchers and practitioners of the
MDE and graph processing communities.

5In contrast,microbenchmarks measure the performance of primitive operations supported by an underlying platform,
often focusing on the performance of a single operation, such as the performance of a join operator (Def. 15).
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Chapter5

The Train Benchmark

5.1 Introduction

Context Model-driven engineering of critical systems, like automotive, avionics or train control
systems, necessitates the use of different kinds of models on multiple levels of abstraction and in var-
ious phases of development. Advanced design and verification tools aim to simultaneously improve
quality and decrease costs by early validation to highlight conceptual design flaws well before tra-
ditional testing phases in accordance with the correct-by-construction principle. Furthermore, they
improve productivity of engineers by automatically synthesizing different design artifacts (source
code, configuration tables, test cases, fault trees, etc.) required by certification standards.

Motivation A prime subproblem in many design tools is the validation of well-formedness con-
straints of the domain, similarly to the integrity constraints used in relational database sys-
tems. Industrial standard languages (e.g. UML, SysML) and platforms (e.g. AUTOSAR [AUT18],
ARINC653 [Aer16]) frequently define a large number of such constraints as part of the standard.
For instance, the AADL standard [SAE09] contains 75 constraints captured in the declarative Object
Constraint Language (OCL) [Obj12] while AUTOSAR defines more than 500 design rules. These rules
are often captured as graph queries over the instance model graph.

As it is muchmore expensive to fix design flaws in the later stages of development, it is essential to
detect violations of well-formedness constraints as soon as possible, i.e. immediately after the viola-
tion is introduced by an engineer or some automated model manipulation steps. Therefore industrial
design tools performmodel validation by repeatedly checking constraints after certainmodel changes.
In many ways, this is analogous to continuous integration used in source code repositories [DP07], and
can be referred to as continuous model validation.

In practice, model validation is often addressed by usingmodel query [Ujh+15a] or transformation
engines [JT10]: error cases are defined by graph queries onmodels, the results of which can be automat-
ically repaired by transformation steps. However, this is challenging due to two factors: (1) instance
model sizes can grow very large as the complexity of systems-under-design is increasing [Sch+12], and
(2) validation constraints get more and more sophisticated. As a consequence, validation of industrial
models is challenging or may become infeasible.

To tackle increasingly large models, they are frequently split into multiple model fragments (as in
open-source tools like ARTOP [Art18] or Papyrus [Gér+07]). This can be beneficial for local constraints
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which can be checked in the close context of a single model element. However, there are global well-
formedness constraints in practice, which necessitate to traverse and investigate many model elements
situated in multiple model fragments, thus fragment-wise validation of models is insufficient.

As different underlying technologies are used in modelling tools for checking well-formedness
constraints, assessing these technologies systematically on well-defined challenges and comparing
their performance would be of high academic and industrial interest. In fact, similar scenarios occur
when query techniques serve as a basis for calculating values of derived features [Heg+16], populating
graphical views [Deb+14], ormaintaining traceability links [Heg+16] frequently used in existing tools.
Furthermore, runtime verification [LS09] of cyber-physical systems may also rely on incremental
query systems or rule engines [Hav15].

While there are a number of existing benchmarks for query performance over relational
databases [DeW91; TPC10] and triplestores [GPH05; BS09; Sch+09; Mor+11; Erl+15], workloads
of modelling tools for validating well-formedness constraints are significantly different [Izs+13b].
Specifically, modelling tools usemore complex queries than typical transactional systems [Kol+13] and
the perceived performance ismore affected by response time (i.e. execution time for a specific operation
such as validation or transformation) rather than throughput (i.e. the number of parallel transactions).
Moreover, it is the worst case performance of a query set which dominates practical usefulness rather
than the average performance. Cases of model transformation tool contests (TTCs) [SNZ08; LRG09;
RG10; MRV10; VMR11; VRK13; RKH14; RHK15; GKR16; GHK17] are also used as benchmarks. How-
ever, most case studies prior to 2015 – the publication of the Train Benchmark case [l12] – do not
consider the performance of incremental model revalidation after model changes.

Contributions In this chapter, we define the Train Benchmark, a cross-technology macrobench-
mark [BS97; Sel+99] that aims to measure the performance of continuous model validation with
graph-based models and constraints captured as queries. The Train Benchmark defines a scenario
that is specifically modelled after model validation in modelling tools: at first, an automatically gen-
erated model (of increasing sizes) is loaded and validated, then the model is changed by some trans-
formations, which is immediately followed by the revalidation of constraints. The primary goal of
the benchmark is to measure the execution time of each phase, while a secondary goal is a cross-
technology assessment of existing modelling and query technologies that (could) drive the underlying
implementation.

Railway applications often use MDE techniques [PFH12] and rule-based validation [LJS16]. This
benchmark uses a domain-specific model of a railway system that originates from the MOGENTES
EU FP7 [MOG11] project, where both the metamodel and the well-formedness rules were defined by
railway domain experts. However, we introduced additional well-formedness constraints which are
structurally similar to constraints from the AUTOSAR domain [Ber+10].

The Train Benchmark intends to answer the following research questions:
RQ1 How do existing query technologies scale for a continuous model validation scenario?
RQ2 What technologies or approaches are efficient for continuous model validation?
RQ3 What types of queries are the performance bottlenecks for different tools?

This chapter systematically documents the Train Benchmark [ISR14], which was used in multiple
papers both in the Fault-Tolerant Systems Research Group [Izs+13b; Ujh+15a] [l9; c4; l10] and by
other researchers [Mey+18]. A simplified version of the Train Benchmark (featuring only a single
modelling language and scenario) was published in the 2015 Transformation Tool Contest [l12].
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Design considerations We designed the Train Benchmark to comply with the four criteria defined
in [Gra93] for domain-specific benchmarks.

1. Relevance: It must measure the peak performance and price/performance of systems when per-
forming typical operations within that problem domain.

2. Portability: It should be easy to implement the benchmark on many different systems and ar-
chitectures.

3. Scalability: The benchmark should apply to small and large computer systems.
4. Simplicity: The benchmark must be understandable, otherwise it lacks credibility.

Structure of the specification In Sec. 2.3, we presented the metamodel and instance models used
in the benchmark. This chapter discusses the rest of the Train Benchmark and is structured as follows.
Sec. 5.3 describes theworkflow of the benchmark, and specifies the scenarios, queries, transformations
and the instance model generator. Sec. 5.4 shows the benchmark setup and discusses the results.
Sec. 5.5 concludes the paper and outlines future research directions. Appendix C contains a detailed
specification of the queries and transformations used in the benchmark.1 This chapter presents the
first complete specification of the Train Benchmark as published in [j2].

5.2 Query Technologies

We implemented the benchmark for a wide range of open-source tools operating on graph models
along with the traditional SQL data model (see Sec. 2.3 for the modelling technologies).

Format Tool Query lang. Impl. lang. Incr. Mem.

EMF

Drools DRL Java ⊗ ⊗
Eclipse OCL OCL Java ◯ ⊗
EMF API − Java ◯ ⊗
Viatra Query VQL Java ⊗ ⊗

graph Neo4j Cypher Java ◯ ◯
TinkerGraph − Java ◯ ⊗

RDF Jena SPARQL Java ◯ ⊗
RDF4J SPARQL Java ◯ ⊗

SQL SQLite SQL C ◯ ⊗
MySQL SQL C++ ◯ ◯

Table 5.1: Tools used in the benchmark. Columns – Query lang.: query language, Incr.: sup-
ports incremental evaluation,Mem.: supports in-memory evaluation, Impl. lang.: implemen-
tation language of the tool, Notation –⊗ feature supported,◯ feature not supported.

Tab. 5.1 shows the list of the implementations. We classify a tool incremental if it employs
caching techniques and provides a dedicated incremental query evaluation algorithm that processes
changes in the model and propagates these changes to query evaluation results in an incremen-
tal way (i.e. to avoid complete recalculations). Both Viatra Query and Drools are based on the

1The implementation and the detailed results are available online at http://docs.inf.mit.bme.hu/trainbenchmark.
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Rete algorithm [Pro11]. Eclipse OCL also has an incremental extension called the OCL Impact Ana-
lyzer [UGH11], however, it is not actively developed, therefore it was excluded from the benchmark. In
contrast, non-incremental tools use search-based algorithms. These algorithms evaluate queries with
model traversal operations, which may be optimized using heuristics and/or caching mechanisms.
The table also shows if a tool uses an in-memory engine and lists their implementation languages.

5.2.1 EMF Tools

We implemented the benchmark for multiple EMF-based tools.
• As a baseline, we have written a local search-based algorithm for each query in Java, using the
EMF API. The implementations traverse the model without specific search plan optimizations,
but they cut unnecessary search branches at the earliest possibility.

• The OCL [Obj12] language is commonly used for querying EMF model instances in validation
frameworks. It is a standardized navigation-based query language, applicable over a range of
modelling formalisms. Taking advantage of the expressive features and wide-spread adoption
of this query language, the project Eclipse OCL [Ecl15a] provides a powerful query interface
that evaluates such expressions over EMF models.

• Viatra Query [Var+16] is an Eclipse Modeling project where several designers of the Train
Benchmark are involved. Viatra Query provides incremental query evaluation using the Rete
algorithm [For82]. Queries are defined in a graph pattern-based query language [Ber+11], and
evaluated over EMF models. Viatra Query is developed with a focus on incremental query
evaluation, however, it is also capable of evaluating queries with a local search-based algo-
rithm [Búr+15]. Its language, VQL is discussed in Sec. 2.6.5, while its incremental features are
presented in Sec. 10.4.4.

• Incremental query evaluation is also supported by Drools [Pro11], a rule engine developed by
Red Hat. Similarly to Viatra Query, Drools is based on ReteOO, an object-oriented version
of the Rete algorithm [For82]. In particular, Drools 6 uses PHREAK, an improved version of
ReteOO with support for lazy evaluation. Queries can be formalized using DRL, the Drools
Rule Language. While Drools is not a dedicated EMF tool, the Drools implementation of the
Train Benchmark works on EMF models. While using EMF objects instead of plain java ob-
jects (POJOs) induces some memory overhead, the effect is small [Ujh+15b], and EMF’s built-in
features, such as deserialization and notifications, make it well-suited for using with Drools.

5.2.2 RDF Tools

Triplestores are usually queried via SPARQL (recursive acronym for SPARQL Protocol and RDFQuery
Language) [SP08] which is capable of defining graph patterns.

• Jena2 [McB02] is a Java framework for building Semantic Web and Linked Data applications. It
provides an in-memory store and supports relational database backends.

• RDF4J3 [BKH02] (formerly called Sesame) gives an API specification for many tools, and also
provides its own implementation.

5.2.3 Property Graph Tools

We included two tools supporting the property graph data model:
2https://jena.apache.org/
3http://rdf4j.org/
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• As of 2019, the most popular graph database is Neo4j [Web12] which provides multiple ways to
query graphs: (1) a low-level core API for elementary graph operations, (2) the Cypher language,
a declarative language focusing on graph pattern matching.
While Cypher is very expressive and its optimization engine is being actively developed, it
may be beneficial for some queries to manually implement the graph traversals using the core
API [RWE15, Chapter 6: Graph Database Internals].

• TinkerGraph is an in-memory reference implementation of the property graph interfaces pro-
vided by the Apache TinkerPop framework.4

5.2.4 Relational Databases

We included two popular relational database management systems (RDBMSs) in the benchmark.
• MySQL5 is a well-known and widely used open-source RDBMS, implemented in C and C++.
• SQLite6 is a popular embedded RDBMS, implemented in C.

5.3 Benchmark Specification

This section presents the specification of the Train Benchmark including inputs and outputs
(Sec. 5.3.1), benchmark phases (Sec. 5.3.2), use case scenarios (Sec. 5.3.3), queries (Sec. 5.3.4), trans-
formations (Sec. 5.3.5), a selected query with its transformations (Sec. 5.3.6), and instance models
(Sec. 5.3.7).

5.3.1 Inputs and Outputs

Inputs A benchmark case configuration in the Train Benchmark takes a scenario, an instance model
size and a set of queries as input. The specific characteristics of the model (e.g. error percentages) are
determined by the scenario, while the transformation is defined based on the scenario and a query.
The instance models used in the Train Benchmark can be automatically generated using the generator
module of the framework. The model generator uses a pseudorandom number generator with a fixed
random seed to ensure the reproducibility of results.

Outputs Upon the successful run of a benchmark case, the execution times of each phase and the
number of invalid elements are recorded. Moreover, the collection of the element identifiers in the
result set must be returned to allow the framework to check the correctness of the solution (Sec. 5.3.8).
Furthermore, this result set also serves as a basis for executing transformations in the Repair scenario.

5.3.2 Benchmark Phases

The authors of [Ber+10] analysed the performance of incremental graph query evaluation techniques,
and defined four phases for model validation. We adapted and refined these for the Train Benchmark
(depicted in Fig. 5.1):

1. During the read phase, the instance model is loaded from the disk to the memory and the val-
idation queries are initialized (but not executed explicitly). The model has to be defined in one
or more textual files (e.g. XMI, CSV, SQL dump, etc.), binary formats are disallowed. The read

4https://tinkerpop.apache.org/
5https://www.mysql.com/
6https://www.sqlite.org/
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Read Transformation RecheckCheck

Iteration: × nRun:× kModel

Query

Scenario

{batch, inject, repair}

Benchmark results

{# of invalid elements,

execution times}execution timeexecution time

LHSCollection Preparation Activation

# of invalid elements,

execution time
# of invalid elements,

execution time

Figure 5.1: Phases of the benchmark and sub-phases of the Transformation phase.

phase includes the parsing of the input as well as the initialization of internal data structures
of the tool.

2. In the check phase, the instance model is queried to identify invalid elements.
3. In the transformation phase, the model is changed to simulate the effects of model manipula-

tions. This phase has three sub-phases: (1) collection, (2) preparation, and (3) activation. Based
on the collection sub-phase, the transformations are either performed on a subgraph specified
by a simple pattern (Inject scenario) or on a subset of the model elements returned by the check
phase (Repair scenario); see Sec. 5.3.3 for details.

4. The revalidation of the model is carried out in the recheck phase similarly to the check phase.
The transformations modify the model to induce a change in the match set, which implies that
the recheck phase will return a different match set than the previous check/recheck phases did.

5.3.3 Use Case Scenarios

To increase the representativeness of the benchmark, we defined use case scenarios similar to typical
workloads of real modelling tools, such as one-time validation (Batch scenario, used in [Izs+13b;
Ujh+15b]), minor model changes introduced by an engineer (Inject scenario, used in [Ujh+15a]) or
complex automated refactoring steps (Repair scenario, used in [c4; l12]). For space considerations,
the results for the Batch scenario were omitted from this dissertation and are available in the Train
Benchmark journal paper [j2].

Batch validation scenario (Batch) In this scenario, the instancemodel is loaded (read phase) from
storage and a model validation is carried out by executing the queries in the check phase. This use
case imitates a designer opening a model in an editor for the first time (e.g. after a checkout from a
version control system) which includes an immediate validation of the model. In this scenario, the
benchmark uses a model free of errors (i.e. no well-formedness constraints are violated), which is a
common assumption for a model committed into a repository.

Fault injection scenario (Inject) After an initial validation, this scenario repeatedly performs
transformation and recheck phases. After the first validation (check), the transformation first col-
lects a set of model elements such as Routes (collection), then selects a subset of these elements
(preparation), and executes the transformation on this subset (activation). The transformation is im-
mediately followed by revalidation (recheck) to receive instantaneous feedback. The manipulation
injects faults to the model, so the size of the match set always (monotonically) increases. Such sce-
nario occurs in practicewhen engineers change themodel in small increments using a domain-specific
editor. These editors should detect design errors quickly and early in the development process to cut
down verification costs according to the correct-by-construction principle.
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Automated model repair scenario (Repair) In this scenario, an initial validation is also fol-
lowed by transformation and recheck phases. However, the model is repaired in the transforma-
tion phase based on the violations identified during the previous validation step. On the execution
level, this means that the collection sub-phase of the transformation takes the results of the previous
check/recheck phase, and uses those for the subsequent preparation sub-phase, where it a subset of
the results is selected. On this subset, the activation sub-phases executes transformation rules cap-
turing quick fix-style operations [Heg+11]. In the recheck phase, the whole model is revalidated, and
the remaining errors are reported. As the model manipulations fix errors in the model, the size of
the match set (monotonically) decreases. Efficient execution of this workload profile is necessary in
practice for refactoring, incremental code generation, and model transformations.

5.3.4 Specification of Queries

As discussed in Sec. 2.5.3, well-formedness constraints are often captured and checked by queries.
Each query identifies violations of a specific constraint in the model [Ber+10]. These constraints can
be formulated in constraint languages (such as OCL), graph patterns (e.g. VQL, Cypher) and in SQL.

In the check and recheck phases of the benchmark, we perform a query to retrieve the elements
violating the well-formedness constraint defined by the benchmark case. The complexity of queries
ranges from simple property checks to complex path constraints consisting of several navigation
operations. The graph patterns are defined with the following syntax and semantics.

• Positive conditions define the structure and type of the nodes and edges that must be satisfied.
• Negative conditions (also known as negative application conditions) define subpatterns which
must not be satisfied. Negative conditions are displayed in a red rectangle with theNEG caption.

• Filter conditions are defined to check the value of node properties and are typeset in italic.
We define the following six constraints by graph patterns (see Fig. 5.2). Each corresponding query

checks a specific constraint and covers some typical query language features.
• PosLength (Fig. 5.2a) requires that a segment must have a positive length. The corresponding
query defines a simple property check, a common use case in validation.

• SwitchMonitored (Fig. 5.2b) requires every switch to have at least one sensor connected to it.
The corresponding query checks whether a node is connected to another node. This pattern is
also common in more complex queries, e.g. it is used in RouteSensor and SemaphoreNeighbor.

• RouteSensor (Fig. 5.2d) requires that all sensors associated with a switch that belongs to a route
must also be associated directly with the same route. The corresponding query checks for the
absence of circles, so the efficiency of evaluating negative conditions is tested.

• SwitchSet (Fig. 5.2e) requires that an entry semaphore of an active route may show GO only
if all switches along the route are in the position prescribed by the route. The corresponding
query tests the efficiency of navigation and filtering operations.

• ConnectedSegments (Fig. 5.2c) requires each sensor to have at most 5 segments. The corre-
sponding query checks for “chains” similar to a reachability with an upper bound. This is a
common use case in model validation.

• SemaphoreNeighbor (Fig. 5.2f) requires routes which are connected through a pair of sensors
and a pair of track elements to belong to the same semaphore. The corresponding query checks
for the absence of circles, so the efficiency of join (Def. 15) and antijoin (Def. 17) operations
is tested. One-way navigable references are also present in the constraint, so the efficiency of
their evaluation is also measured. Subsumption inference (see Sec. 2.3.6) is required, as the two
track elements (te1, te2) can be switches or segments.
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Structural similarity to AUTOSAR Several of the benchmark queries are adapted from con-
straints of the AUTOSAR standard [AUT18] and represent common validation tasks such as attribute
and reference checks or cycle detection. In accordance with paper [Ber+10], the following graph pat-
terns are inspired by AUTOSAR constraints, i.e. the matching subgraphs of corresponding graph
queries are either isomorphic or structurally similar.

segment: Segment

segment.length ≤ 0

(a) The PosLength pattern.

monitoredBy

sw: Switch

sensor: Sensor

NEG

(b) The SwitchMonitored pattern.
monitoredBy

connectsTo

connectsTo

connectsTo

connectsTo

connectsTo

monitoredBy

segment1: Segment

sensor: Sensor

segment2: Segment

segment3: Segment

segment4: Segment

segment5: Segment

segment6: Segment

monitoredBy

monitoredBy

monitoredBy

monitoredBy

(c) The ConnectedSegments pattern.

monitoredBy

requires target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG

(d) The RouteSensor pattern.

target
follows

entry

swP: SwitchPosition

route: Routesemaphore: Semaphore

sw: Switch

sw.currentPosition ≠ swP.position

currentPosition

signal = GO

position

active = true

(e) The SwitchSet pattern.

connectsTo

requires

exit

monitoredBy monitoredBy

requires

entry

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

semaphore: Semaphore

te2: TrackElement

sensor2: Sensor

route2: Route

NEG

(f) The SemaphoreNeighbor pattern.

Figure 5.2: The patterns of benchmark queries.
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ConnectedSegments 0 7 7 2 0 0 11
RouteSensor 1 4 4 4 0 0 3
PosLength 0 2 2 1 1 1 0
SemaphoreNeighbor 1 7 7 4 0 1 6
SwitchMonitored 1 1 2 2 0 0 0
SwitchSet 0 6 6 4 4 3 3

Table 5.2: Characterization of graph queries in the benchmark.

84



5.3. Benchmark Specification

The query metrics adapted from [Izs+13b; Ujh+15b] are listed in Tab. 5.2. The metrics indicate
that all relevant features of query languages are covered by our queries except for transitive closure
and recursion. We decided to omit these features from the benchmark as they are supported by only
a few query technologies.

5.3.5 Specification of Transformations

To capture complex operations in the scenarios, we use graph transformation rules [Roz97] which
consist of (1) a precondition pattern captured as a graph query and (2) an action with a sequence of
elementary graph manipulation operations. The transformations are defined with a syntax similar
to tools such as GROOVE, FUJABA [NNZ00] and Viatra2 [VB07]. For defining the patterns and
transformations, we used a graphical syntax similar to GROOVE [Ren03]:

• Inserting new nodes and new edges between existing nodes (marked with «new»).
• Deleting existing nodes and edges (marked with «del»). The deletion of a node implies the
deletion of all of its edges to eliminate dangling edges.

• Updating the properties of a node (noted as property ← new value).
Our transformations cover all elementary model manipulation operations, including the insertion

and deletion of nodes and edges, as well as the update of attributes. A detailed specification of the
queries and transformation is given in Appendix C. In this section, we only discuss the RouteSensor
query and its transformations in detail.

5.3.6 Query and Transformations for Constraint RouteSensor

We present the specification of query RouteSensor and its related transformations.

Description To check if constraint RouteSensor (see Sec. 5.3.4) is violated, the corresponding query
(Fig. 5.2d) looks for routes (route) that follow a switch position (swP) connected to a sensor (sensor)
via a switch (sw), but without a requires edge from the route to the sensor.

Query specification The Cypher (Sec. 2.6.1) representation of the query is shown in Listing 5.1.

1 MATCH (route:Route)-[:follows]->(swP:SwitchPosition)

2 -[:target]->(sw:Switch)-[:monitoredBy]->(sensor:Sensor)

3 WHERE NOT (route)-[:requires]->(sensor)

4 RETURN route, sensor, swP, sw

Listing 5.1: The RouteSensor query.

requires

«del»

route: Route

sensor: Sensor

(a) Inject transformation.

requires
«new» target

follows

sw: Switch

swP: SwitchPositionroute: Route

sensor: Sensor

NEG
monitoredBy

(b) Repair transformation.

Figure 5.3: The transformations for query RouteSensor.

Inject transformation Random requires edges are removed.
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Constraint Batch Inject Repair

PosLength 0% 2% 10%
SwitchMonitored 0% 2% 18%
RouteSensor 0% 4% 10%
SwitchSet 0% 8% 15%
ConnectedSegments 0% 5% 5%
SemaphoreNeighbor 0% 7% 25%

Table 5.3: Error probabilities in the generated instance model.

Repair transformation The missing requires edge is inserted from the route to the sensor in the
match, which fixes the violation of the constraint.

5.3.7 Instance Model Generation and Fault Injection

To assess scalability, the benchmark uses instance models of growing sizes where eachmodel contains
twice as many model elements as the previous one. The sizes of instance models follow powers of
two (1, 2, 4, . . . , 2 048): the smallest model contains about 5 000 triples, the largest one (in this work)
contains about 19 million triples.

The instance models are systematically generated based on the metamodel: first, small instance
model fragments are generated, then they are connected to each other. To avoid highly symmetric
models, the exact number of elements and cardinalities are randomized to make it difficult for query
tools to efficiently cache models.

The instance model generator is implemented in an imperative manner. The model is generated
with nested loops, where each loops generates a specific element in an order driven by the contain-
ment hierarchy. The fault injection algorithm works as follows. For each well-formedness constraint,
we select amodel element which could introduce a violation of that constraint. For example, compared
to a well-formed model, the violations are injected as follows.

• Constraint PosLength is violated by assigning an invalid value to the length attribute.
• Constraint SwitchMonitored is violated by deleting all monitoredBy edges of a Switch.
• Constraint RouteSensor is violated by deleting the requires edge from a Route to a Sensor.
• Constraint SwitchSet is violated by setting an invalid currentPosition attribute to a Switch (i.e.
not the position of the corresponding SwitchPosition followed by the Route).

• Constraint SemaphoreNeighbor is violated by deleting an entry edge between a Route and a
Semaphore.

• ConstraintConnectedSegments is violated by adding an additional (sixth) Segment to the same
Sensor and connecting it to the last Segment.

The generator injects these faults with a certain probability (Tab. 5.3) using a random genera-
tor with a predefined random seed. These errors are found and reported in the check phase of the
benchmark.

5.3.8 Ensuring Deterministic Results

During transformation phase of the Repair scenario, some invalid submodels (i.e. pattern matches)
are selected and repaired. In order to ensure deterministic, repeatable results:

• The elements are always selected from a deterministically sorted list.
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• The candidates for transformation are chosen using a pseudorandom generator with a fixed
random seed.

The matches may be returned in any collection in any order, given that the collection is unique.
The matches are interpreted as tuples, e.g. the RouteSensor query returns ⟨route, sensor, swP, sw⟩
tuples. The tuples are sorted using a lexicographical ordering.7

The ordered list is used to ensure that the transformations are performed on the same model
elements, regardless of the return order of the match set. Neither sorting nor selecting candidates are
included in the execution time measurements.

5.4 Evaluation

In this section, we discuss the benchmark methodology, present the environment for our experiments
and analyse the results. The source code of the benchmark framework and tool-specific implementa-
tions are available online.8

5.4.1 Benchmark Setup

Benchmark Parameters A measurement is defined by a certain tool (with its optional parame-
ters), scenario, model size, queries, and transformations. Tab. 5.4 shows the tools, parameters, scenar-
ios, queries and sizes used in the benchmark. If a tool has no parameters, it is only executed once,
otherwise it is executed with each optional parameter.

Parameter Values Sec.

Scenario
Batch 5.3.3
Inject 5.3.3
Repair 5.3.3

Queries

ConnectedSegments C.1
PosLength C.2
RouteSensor 5.3.6
SemaphoreNeighbor C.4
SwitchMonitored C.5
SwitchSet C.6

Size 1, 2, 4, . . . , 2 048 5.3.7

(a) Benchmark-specific parameters.

Tool Version Parameters

Drools 6.5.0 –

Eclipse OCL 3.3.0 –

EMF API 2.10.0 –

Jena 3.0.0 no inferencing
inferencing

MySQL 5.7.16 –

Neo4j 3.0.4 core API
Cypher

RDF4J 2.1 (no inferencing)

SQLite 3.8.11.2 –

TinkerGraph 3.2.3 –

Viatra Query 1.4.0 local search
incremental

(b) Tool-specific parameters.

Table 5.4: Configuration parameters.

7To compare matches M1 = ⟨a1, a2, ... , an⟩ and M2 = ⟨b1, b2, ... bn⟩, we take the first elements in each match (a1 and
b1) and compare their identifiers. If the first elements are equal, we compare the second elements (a2 and b2) and so on
until we find two different model elements. This is guaranteed by the fact that matches are returned as a set, i.e. their each
returned match is unique.

8http://docs.inf.mit.bme.hu/trainbenchmark
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Benchmark environment The benchmark was performed on a virtual machine with an eight-
core, 2.4 GHz Intel Xeon E5-2630L CPU with 16 GB of RAM, and an SSD hard drive. The machine was
running a 64-bit Ubuntu 14.04 server operating system and the Oracle JDK 1.8.0 u111 runtime. The
independence of performance measurements was guaranteed by running each sequentially and in a
separate Java Virtual Machine (JVM). The heap memory limit for the JVM was set to 12 GB.

Benchmark scenarios We investigated three benchmark scenarios: Inject, Repair, and Batch. The
latter is only covered in paper [j2], while the first two is detailed in this chapter.

The Inject scenario is structured as follows:
1. The benchmarks loads the model and evaluates the queries as initial validation, and we measure

execution times for read, check, and their sum. The results are shown left in Fig. 5.4.
2. The benchmark iteratively performs the Inject transformations for each query 10 times (Fig. 5.1,
n = 10) followed by an immediate recheck step in each iteration. The transformation modifies
a fixed number of elements (10) in each iteration. We measure the mean execution time for
continuous validation for each phase (transformation, recheck, and their sum). The results are
shown in the right column of Fig. 5.4.

Meanwhile, the sequence of the Repair scenario is the following:
1. The benchmark performs the initial validation similarly to the Inject phase. The execution times

for read, check, and their sum are listed in the left column of Fig. 5.5.
2. The benchmark iteratively performs the Repair transformation for each query 8 times (Fig. 5.1,
n = 8) followed by an immediate recheck step in each iteration. The transformation modifies
a proportional amount of the invalid elements (5%). We measure the mean execution time for
continuous validation for each phase (transformation, recheck, and their sum). The results are
shown in the right column of Fig. 5.5.

For each setup, a scenario was executed 5 times.

5.4.2 Measurement of Execution Times

If all runs are completed within a timeout of 15 minutes, the measurement is considered successful
and the measurement results are saved. If the measurement does not finish within the time limit, its
process is terminated and its results are discarded. The results were processed as follows.

1. Themean execution time was calculated for each phase. For example, in the Repair scenario, the
execution times of the transformation and the recheck phases are determined by their average
execution time. This is determined independently for all runs.

2. For each phase, the median value of the 5 runs was taken.
Using the mean value to the describe the execution time of repeated transformation and recheck

phases is aligned with the recommendations of [FW86]. Moreover, from a statistical perspective, tak-
ing the median value of the sequential runs can better compensate for transients potentially perceived
during a measurement.

5.4.3 How to Read the Charts?

Detailed plots The plots in Fig. 5.4 and 5.5 present the execution times of a certain workload with
respect to the model size. Each plot can be directly interpreted as an overall evaluation of execution
time against increasing model sizes dominated by the worst case behaviour of a tool.
On each plot, the horizontal axis (with base 2 logarithmic scale) shows the model size and the vertical
axis (with base 10 logarithmic scale) shows the execution time of a certain operation. Note that as
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Figure 5.4: Execution times in the Inject scenario.
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Figure 5.5: Execution times in the Repair scenario.
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Figure 5.7: Estimatedmemory consumption for loading themodel and evaluating all queries.
(Memory consumption in this figure at a certain model size does not correspond to the
execution times of Fig. 5.4–5.6.)

the execution time of phases vary greatly (e.g. the read phase takes longer than the check phase as
it contains disk operations), the vertical axes on the plots do not use the same scale, i.e. the minimum
and maximum values are adjusted to make the plots easier to read.
The logarithmic scales imply that a “linear” appearance of all measurement series correspond to a
(low-order) polynomial O characteristic where the slope of a plot determines the dominant order
(exponent). Moreover, a constant difference on a plot corresponds to a constant order-of-magnitude
difference. Note that different plots are not directly comparable to each other visually due to the
different scales.

Individual query plots The plots in Fig. 5.6 help us identify specific strengths and weaknesses of
different tools and highlightwhich query turned out to be the performance bottleneck. This can explain
why certain tools had a timeout even for medium-sized models in the detailed plots of Fig. 5.4–5.5.

5.4.4 Measurement of Memory Consumption

Determining the memory consumption of applications running in managed environments (such as
the JVM) is a challenging task due to (1) the non-deterministic nature of the garbage collector and
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(2) sophisticated optimizations in collection frameworks which often allocate memory in advance and
only free memory when it is necessary [Boy08].

For a reliable estimation on memory consumption, we used the following approach.
1. We set a hard limit L to the available heap memory for the JVM and perform a trial of the run.
2. Based on the result of the trial, we either decrease or increase the limit.

a) If the trial successfully executed within the specified timeout, we decrease the limit to L
2 .

b) If the execution failed (due to timeout/memory exhaustion), we increase the limit to 2L.
This results in a binary search-like algorithm, which ensures a resolution of Linitial

2t−1 , given an initial
limit Linitial and t trials. For example, with an initial limit of 6.4 GB of memory and 9 trials, this
approach provides a resolution of 6400 MB

28
= 25 MB (as used in our measurements later).

The results are shown in Fig. 5.7.9 Note that the measurements for execution time and memory
consumptions were performed separately. The measurements in Fig. 5.4, 5.5, and 5.6 used a larger,
fixed amount of memory. For instance, the low memory consumption of Neo4j in Fig. 5.7 corresponds
to significantly larger execution time than reported in Fig. 5.6.

The results show that incremental tools (in particular, Viatra Query in incremental mode) use
more memory than non-incremental ones. This is expected as incremental tools utilize space-time
tradeoff, i.e. they trade memory for execution speed by building caches of the interim query results
and use it for efficient recalculations.

5.4.5 Analysis of Results

Following Tab. 5.5, we highlight some strengths and weaknesses identified during designing, imple-
menting, executing, and evaluating the benchmark.

Findings Area Observations

Technology

EMF ⊕ EMF tools are suitable for model validation
⊖ No built-in indexing support in EMF

graph databases ⊕ Good storage performance for graph databases

RDF databases ⊖ Underperforming RDF systems
⊖ Slow inferencing in RDF4J

relational databases ⊕ Fast model load and good scalability from SQLite
⊖MySQL slowdown for complex queries

Approach

incremental ⊕ Incremental tools prevail for continuous validation
⊖ Scalability of incremental tools is limited by memory

search-based ⊕ Search-based tools scale for large models on simple queries
⊖ Search-based tools face problems for complex queries

indexing ⊕ Substantial effect of indexing on performance
language features ⊖ Long path expressions are hard to evaluate

performance ⊖ Queries with many joins and negations are selective
⊕ Huge differences in runtime across technologies

size of updates ⊕ Noticeable differences between scenarios

Table 5.5: Summary of findings: strengths ⊕ and weaknesses ⊖.

9We excluded MySQL from this measurement as limiting its available memory only causes it to use the disk more
extensively, so this method cannot give a good approximation on its memory consumption. We also excluded SQLite as it
uses the native heap instead of the Java heap.
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Technology-specific findings

EMF tools are suitable for model validation As expected, EMF tools perform well in model
validation and transformation. EMF was designed to serve as a common basis for various MDE tools
with in-memory model representation to improve performance. In principle, their in-memory nature
may hinder scalability due to the memory limit of a single workstation, but despite this, some EMF
solutions were among the most scalable ones.

No built-in indexing support in EMF EMF does not offer built-in indexing support which allows
the system to quickly load the model, but may hinder efficient query evaluation. Indexing would
significantly help local search approacheswith adaptivemodel-specific search plans [Var+15; Gei+06].

Good storage performance for graph databases We benchmark Neo4j with both its core API
and its Cypher query language. Both show similar performance characteristics, with the core API
approach at least half an order of magnitude faster. For importing large datasets, the CSV import
provides good performance and scalability (unlike the GraphML import), but it requires the user to
manually map the graph to set of CSV files. However, query performance of the Cypher engine used
in the benchmark has not yet reached the efficiency of other local search-based query engines (e.g.
Viatra). As a workaround, complex queries can be optimized by hand-coded traversals implemented
with the core API as recommended in [RWE15, Chapter 6: Graph Database Internals].

Underperforming RDF systems The in-memory SPARQL query engines (Jena, RDF4J) are in the
slowest third of the tools, which is unexpected, considering their performance on benchmarks with
different workloads (see Sec. 7.2). In our experiments between 2012 and 2015, openly available disk-
based SPARQL engines were even slower, hence they were excluded from the benchmark.

Fast model load and good scalability from SQLite The SQLite implementation serves as a base-
line for a comparison with more sophisticated tools. However, SQLite is surprisingly fast in several
configurations. This may indicate that other technologies still have a lot of potential for performance
enhancements.

MySQL slowdown for complex queries MySQL is not able to evaluate the more complex queries
efficiently which prevents it from scaling for large models.

Approach-specific findings

Incremental tools prevail for continuous validation Incremental tools are very well-suited for
performing continuous model validation due to their low runtime and robustness w.r.t. query com-
plexity. The approach introduces an overhead during the read phase but enables the systems to per-
form quick transformation–recheck cycles.

Scalability of incremental tools is limited by memory Due to the memory overhead of incre-
mental tools, they are unable to evaluate queries on the largest models used in the benchmark.

Search-based tools scale for large models on simple queries Non-incremental tools are able
to scale well by evaluating simple and moderately difficult queries even for the largest models of the
benchmark. However, revalidation takes well over 1 second for large models of 1M+ elements.
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Search-based tools face problems for complex queries For the more complex queries,
ConnectedSegments and SemaphoreNeighbor, most non-incremental tools are unable to scale for
large models (Fig. 5.4) as they time out before completing evaluation.

Substantial effect of indexing on performance As observed for some tools, such as Neo4j and
Viatra Query (local search), indexing has a substantial positive effect on performance. Using indexers
allows Viatra Query to outperform the native EMF API solution, which lacks built-in indexing.

Long path expressions are hard to evaluate The ConnectedSegments query defines a long path
expression: it looks for a sensor that has 6 segments (segment1, . . . , segment6), connected by con-
nectsTo edges. The results show that this query is quite difficult to evaluate Fig. 5.4. For RDF tools,
queries using either property paths (Sec. 2.6.4) or metamodel-level property chains could lead to better
performance. However, even though they are part of the SPARQL 1.1 [SP08] and the OWL 2 [Gro12]
standard, respectively, these features are not supported by most of the tools.

Huge differences in runtime across technologies While the overall characteristics of all tools
are similar (low-order polynomial with a constant component), there is a rather large variation in
execution times (with differences up to 4 orders of magnitude in revalidation time). This confirms
our expectation that the persistence format, model load performance, query evaluation strategy and
transformation techniques can have a significant impact on overall performance and deficiencies in
any of these areas likely have a negative effect.

Noticeable differences between scenarios As noted in Sec. 5.3.5, themain difference between the
Inject andRepair scenarios is the number ofmodel changes, which is significantly larger for theRepair
scenario. The query result sets are also larger for the Repair scenario. By comparing corresponding
plots, we observe that the overall evaluation time is affected linearly by this difference, meaning that
all tools are capable of handling this efficiently.

5.4.6 Threats to Validity

Internal threats

Mitigating measurement risks To mitigate internal validity threats, we reduced the number of
uncontrolled variables during the benchmark. Each measurement consisted of multiple runs to warm
up the JVM and to mitigate the effect of transient faults such as noise caused by running our mea-
surements in a public cloud environment.

Ensuring functional equivalence and correctness Queries are defined to be semantically equiv-
alent across all query languages, i.e. for a given query on a given graph (defined by its scenario and
size), the result set must be identical for all representations. To ensure the correctness of a solution,
we designed and implemented tests for each query and transformation.

Code reviews To ensure comparable results, the query implementations were reviewed by experts
of each technology.
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Search plans The EMF API, the Neo4j Core API and the TinkerGraph implementations required
a custom search plan. For each query, we used the same search plan in both implementations. As
mentioned in Sec. 5.2.1, the search plans are not fully optimized, i.e. they are similar to what a devel-
oper would implement without fine-tuning performance. Ourmeasurements exclude approaches with
adaptive model-specific search plans [VFV06a; Var+15; Gei+06], which were reported to visit fewer
nodes (thus achieve lower execution time) compared to local search approaches with fixed plans.

In-memory vs. disk-resident tools As shown in Tab. 5.1, some of the tools use in-memory engines
while others persist data on the disk. Evenwith SSD drives, memory operations aremore than an order
of magnitude faster than disk operations, which favours the execution time of in-memory engines.

Memory overhead introduced by the framework To ensure deterministic results (see Sec. 5.3.8),
the framework creates a copy of thematch sets returned by the query engine. This introduces memory
overhead by the framework itself. However, as the match sets are generally small compared to the
size of the model (see Tab. 5.3), this overhead is negligible.

External threats

Considering external validity, the most important factor is the relevance to real use cases. Based on
our past experience in developing tools for critical systems [Heg+16], we believe that the metamodel
(Fig. 2.4), the queries (Sec. 5.3.4), and the transformations (Sec. 5.3.5) are representative to models and
languages used for designing critical embedded systems. Furthermore, we believe the findings could
also prove useful for other use cases with similar workload profiles that benefit from incremental query
evaluation.

5.4.7 Summary

Finally, we revisit our research questions:
RQ1 How do existing query technologies scale for a continuous model validation scenario?

Most scalable techniques, have low memory consumption in order to load large models. How-
ever, few query technologies are able to evaluate the queries and transformations required for
model validation on graphs with more than 5 million elements.

RQ2 What technologies or approaches are efficient for continuous model validation?
Incremental query engines (like Viatra Query) are well-suited to continuous validation work-
load by providing very low execution time, but their scalability for large models is limited by
increased memory consumption.

RQ3 What types of queries are the performance bottlenecks for different tools?
Queries with many navigations and negative constraints are a serious challenge for most exist-
ing tools.

5.4.8 Comparison to Related Benchmarks

The Train Benchmark is a cross-technology macrobenchmark that aims to measure the performance
of continuous model validation with graph-based models and constraints captured as queries. Earlier
versions of the benchmark have been continuously used for performance measurements since 2012
(mostly related to the Viatra Query framework) in various papers [l9; c4; l10] [Izs+13b; Ujh+15a;
Mey+18]. Compared to previous publications on the benchmark, this work has the following novel
contributions:

96



5.5. Conclusion

• The benchmark features three distinct scenarios: Batch, Inject and Repair, each capturing a
different aspect of real-world model validation scenarios. Previous publications only considered
one or two scenarios.

• In this work, we investigated the performance of query sets. Previously, we only executed the
individual queries separately.

• Previous publications only used tools from one or two technologies. In this chapter, we assessed
10 tools, taken from four substantially different technological spaces. This demonstrates that
our benchmark is technology-independent, thus the results provide potentially useful feedback
for different communities.

Compared to other benchmarks, the Train Benchmark has the following distinguishing features:
• The workload profile follows a real-world model validation scenario by updating the model with
changes derived by simulated user edits or transformations.

• The benchmark measures the performance of both initial validation and (more importantly)
incremental revalidation.

• This cross-technology benchmark can be adapted to different model representation formats and
query technologies. This is demonstrated by 10 reference implementations over four different
technological spaces (EMF, graph databases, RDF, and SQL) presented here.

The benchmark is also part of the benchmark suite used by the MONDO EU FP7 project, along
with other query/transformation benchmarks, such as the ITM Factory Benchmark10, the ATL Zoo
Benchmark11 and the OpenBIM Benchmark12.

5.5 Conclusion

In this chapter, we presented the Train Benchmark, a framework for the definition and execution of
benchmark scenarios for modelling tools. The framework supports the construction of benchmark
test sets that specify the metamodel, instance model generation, queries and transformations, result
collection and processing, and metric evaluation logic that are intended to provide an end-to-end
solution. As a main added value, this chapter contains a comprehensive set of measurement results
comparing 10 different tools from four technological domains (EMF, graph databases, RDF, and SQL).
These results allow for both intra-domain and cross-technology tool comparison and detailed execu-
tion time characteristics analysis.

Criteria for domain-specific benchmarks We revisit how our benchmark addresses the criteria
given in the Benchmark Handbook [Gra93].

1. Relevance: The Train Benchmark measures the runtime for the continuous revalidation of well-
formedness constraints used in many industrial and academic design tools. It considers two
separate practical scenarios: small model changes for manual user edits, and larger changes for
automated refactorings.

2. Portability: We presented the results for 10 implementations from four different technological
domains in this chapter. There are multiple other implementations available in the repository
of the project.

3. Scalability: The size of underlying models ranges from 5000 to 19 million model elements
(triples), while there are 6 queries of different complexity.

10https://github.com/atlanmod/mondo-itmfactory-benchmark
11https://github.com/atlanmod/mondo-atlzoo-benchmark
12https://github.com/atlanmod/mondo-openbim-benchmark
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4. Simplicity: A simplified, EMF version of the Train Benchmark was used as part of the 2015
Transformation Tool Contest [l12] where experts of four other tools managed to come up with
an implementation, which indirectly shows the relative simplicity of our benchmark. An earlier
version of the Train Benchmark was also used in [Var+15] to assess the efficiency of various
search plans.

Software engineering aspects From a software engineering perspective, the Train Benchmark
has been continuously developed and maintained since 2012. The benchmark is available as an open-
source project, implemented in Java 8. The benchmark workloads (scenario, models, queries, trans-
formation, number of runs, etc.) are specified and executed in a Groovy script [Kni+15]. The project
has end-to-end automation [l10] to perform the following tasks: (1) Set up configurations of bench-
mark runs. (2) Generate large model instances. (3) Execute benchmark measurements. (4) Analyse the
results and synthesize diagrams using R scripts [R C18].

The project provides continuous integration using the Gradle build system [Mus14], and con-
tains automated unit tests to check the correctness of the implementations. Parts of the visualization
framework were used to analyse solution results in the Transformation Tool Contest, both for regu-
lar [Hin17] and live cases [Hin18b].

5.6 Future Work

Possible future extensions to the Train Benchmark include adding more implementations to the
benchmark from all technological spaces, including Epsilon [Pai+09] (EMF), OrientDB13 (property
graphs), PostgreSQL [Mom00] (SQL), Instans [RNT12] and Virtuoso [EM09a; EM09b] (RDF). Based
on our work on graph metrics Chapter 3, it would be interesting to further investigate the correlation
between query performance and metrics (query metrics, graph metrics, and query on graph metrics),
similarly to the approach presented in [Izs+13b] and recently in [c8].

13https://orientdb.com/
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Chapter6

The Business Intelligence Workload of

the LDBC Social Network Benchmark

This chapter is based on the first peer reviewed publication of the LDBC Social Network Benchmark’s
Business Intelligence workload [l18] and its detailed technical report authored by the Social Network
Benchmark Task Force [r22].

6.1 Introduction

Benchmarks with aggregation-heavy OLAP-like Business Intelligence (BI) workloads on graphs are
still a rather unexplored area. While there are many existing graph benchmarks (see Chapter 7), ex-
isting proposals do not fully capture the complex nature of graph BI workloads. Currently, the only
benchmark with global queries and aggregations on graph-like data is the Berlin SPARQL Bench-
mark’s BI use case [BS09] (discussed in Tab. 7.2). However, while proposed on RDF, it is exactly
equivalent to and exists in a SQL variation on flat tables in a star schema, i.e. its dataset lacks a
true graph structure and its queries thus do not require graph functionality.

Graph BI workloads differ from other types of graph query workloads in that large portions of the
graph are explored in search of occurrences of graph patterns. Compared to graph analytics work-
loads, the patterns under search combine both structural and attribute predicates of varying com-
plexity [SEH12], from basic graph patterns [Ang+18] to more complex unbound patterns that rely on
different reachability semantics, e.g. paths, trails (see Sec. 2.5.2). The identified patterns are typically
grouped, aggregated, and sorted to provide succinct results, which are used to assist the user in critical
decision making.

BI workloads on graphs are particularly challenging because they usually lead to large search
spaces and consequently, to large intermediate results. Thus, systems that are not prepared to effi-
ciently prune the search space – by finding good graph traversal orderings, leveraging reachability
indexes, or taking advantage of top-k semantics to progressively reduce the size of candidate results
– are heavily penalized. Moreover, the peculiar structure of real graphs induces difficult-to-predict,
scattered memory access patterns, which can limit the memory bandwidth saturation by orders of
magnitude if computations are not arranged correctly [Sha+17]. Finally, some complex graph pat-
terns become difficult to express even with the most advanced query languages, leading to large and
verbose queries, which are difficult to write and maintain.
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In this chapter, we present the LDBC SNB Business Intelligence benchmark (LDBC SNB BI), an
industry-graded graph BI benchmark for graph processing systems as a result of many interactions
between industry, academia, and graph practitioners. LDBC SNB BI was designed along established
guidelines for creating application-specific benchmarks [BDT83; Gra93; Hup09]. It is a macrobench-
mark consisting of 25 queries on top of a synthetically generated social network graph with a rich
data schema and correlated attributes. By following a choke point-based approach, LDBC SNB BI
queries are carefully designed to reproduce the challenging aspects of real workloads while keeping
the workload realistic so it can be expressed by existing graph systems.

The LDBC SNB Task Force has already created reference implementations using the Sparksee
engine [Mar+07; MGE11], as well as declarative query languages such as openCypher [Fra+18],
PGQL [Res+16], SPARQL [PAG09], and SQL.1 Research and development on the BI workload is on-
going, with current work focusing on extending the queries and adding updates to the workload.

6.2 Benchmark Design

The LDBC SNB BI workload consists of 25 read queries that have been carefully designed around a
set of choke points (CPs) [BNE13]. A choke point is a well-chosen difficulty in the workload. In other
words, a CP is a particularly challenging aspect of evaluating certain types of queries on a given data
set. CPs are determined so that (1) they are not commonly solved by systems at benchmark design
time, i.e. a considerable amount of systems to not handle them well, (2) they may be tackled with
different technical solution and/or algorithmic optimizations, and (3) they are likely to occur in actual
or near-future database workloads. Choke points present specific optimization opportunities, which
systems must identify to allow efficient processing of larger data volumes. Many of the choke points
were adopted from the ones identified in [Erl+15] and extended the list with new graph and language-
specific ones, detailed in Sec. 6.2.1. Similarly to the Interactive workload of the LDBC Social Network
Benchmark, the BI workload uses query templates that contain parameters to be substituted with
bindings from the corresponding domain of the data set (e.g. Persons) [Erl+15].

6.2.1 Choke Point-Based Query Design

To design the queries, the SNB task force has followed an iterative process where the connection be-
tween CPs and queries has been progressively updated. At each step, either a new query was proposed
or an existing one was updated, so that each query fulfils at least three CPs, and each CP appears in
at least one query. Additionally, the exercise of implementing the queries has helped us to reconsider
some choke point assignments, either by adding some previously unforeseen ones or unassigning
choke points from queries (as they turned out to be irrelevant in practice). This also revealed how de-
pendent the impact of one choke point is on the scale factor and/or the input parameters, thus putting
more pressure on the query optimizer and making the benchmark more challenging.

The task force carefully designed the queries to be expressible using state of the art query lan-
guages and represent realistic BI operations onewould perform on a social network (e.g. Popular topics
in a Country, Tag evolution, or Trending Posts). At the same time, we have tried to push the expressiv-
ity of existing query languages to their limits by formulating queries that are difficult to express. The
detailed description of the choke points and final relations between queries and CPs can be found in
Sec. D.1. In the following lines, we detail the new graph-specific and language choke points.

1https://github.com/ldbc/ldbc_snb_implementations
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6.2. Benchmark Design

6.2.2 Graph-Specific Choke Points

CP-7.1 Incremental path computation This choke point tests the ability of the execution engine
to reusework across graph traversals. For example, when computing pathswithin a range of distances,
it is often possible to incrementally compute longer paths by reusing paths of shorter distances that
were already computed.

CP-7.2 Cardinality estimation of transitive paths This choke point tests the ability of the query
optimizer to properly estimate the cardinality of intermediate results when executing transitive paths.
A transitive path may cover a tree or a graph, e.g. descendants in a geographical hierarchy vs. graph
neighbourhood or transitive closure in a many-to-many connected social network. In order to decide
proper join order and type, the cardinality of the expansion of the transitive path needs to be correctly
estimated. This could for example take the form of executing on a sample of the data in the cost
model or of gathering special statistics, e.g. the depth and fan-out of a tree. In the case of hierarchical
dimensions, e.g. geographic locations or other hierarchical classifications, detecting the cardinality of
the transitive path will allow one to go to a star schema plan with scan of a fact table with a selective
hash join. Such a plan will be on the other hand very bad for example if the hash table is much larger
than the “fact table” being scanned.

CP-7.3 Efficient execution of a transitive step This choke point tests the ability of the query
execution engine to efficiently execute transitive steps. Graph workloads may have transitive opera-
tions, for example finding a shortest path between nodes. This involves repeated execution of a short
lookup, often on many values at the same time, while usually having an end condition, e.g. the target
node being reached or having reached the border of a search going in the opposite direction. For the
best efficiency, these operations can be merged or tightly coupled to the index operations themselves.
Also parallelization may be possible but may need to deal with a global state, e.g. set of visited nodes.
There are many possible tradeoffs between generality and performance.

CP-7.4 Efficient evaluation of termination criteria for transitive queries This choke pont
tests the ability of a system to express termination criteria for transitive queries so that not the whole
transitive relation has to be evaluated as well as efficient testing for termination.

6.2.3 Language Choke Points

CP-8.1 Complex patterns A natural requirement for graph query systems is to be able to express
complex graph patterns. Here, we focus on two particularly challenging aspects:

• Transitive navigation. Transitive closure-style computations are common in graph query sys-
tems, both with fixed bounds (e.g. get nodes that can be reached through at least 3 and at most
5 knows edges), and without fixed bounds (e.g. get all messages that a comment replies to).

• Negative edge conditions. Some queries define negative pattern conditions. For example, the con-
dition that a certain message does not have a certain tag is represented in the graph as the
absence of a hasTag edge between the two nodes. Thus, queries looking for cases where this
condition is satisfied check for negative patterns, also known as negative application conditions
(NACs) in graph transformation literature [HHT96].
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6. The Business Intelligence Workload of the LDBC Social Network Benchmark

CP-8.2 Complex aggregations BI workloads are heavy on aggregation, including queries with
subsequent aggregations, where the results of an aggregation serves as the input of another aggre-
gation. Expressing such operations requires some sort of query composition or chaining (see also
CP-8.4). It is also common to filter on aggregation results (similarly to the HAVING keyword of SQL).

CP-8.3 Windowing queries Additionally to aggregations, BI workloads often use window func-
tions, which perform aggregations without grouping input tuples to a single output tuple. A common
use case for windowing is ranking, i.e. selecting the top element with additional values in the tuple
(nodes, edges or attributes).2

CP-8.4 Query composition Numerous use cases require composition of queries, including the
reuse of query results (e.g. nodes, edges) or using scalar subqueries (e.g. selecting a threshold value
with a subquery and using it for subsequent filtering operations).

CP-8.5 Dates and times Handling dates and times is a fundamental requirement for production-
ready database systems. It is particularly important in the context of BI queries as these often calculate
aggregations on certain periods of time (e.g. on a month).

CP-8.6 Handling paths To take full advantage of the graph data model, systems should be able
to perform complex operations on paths in the graph [Ang+18]. Hence, additionally to reachability-
style checks, a language should be able to express queries that operate on elements of a path, e.g.
calculate a score on each edge of the path. Also, some use cases specify uniqueness constraints on
paths [Ang+17]: arbitrary path, shortest path, no-repeated-node semantics (also known as simple paths,
see Def. 23, and no-repeated-edge semantics (also known as trails, see Def. 22). Other variants are also
used in rare cases, such as maximal (non-expandable) or minimal (non-contractable) paths, longest
trails, and longest simple paths.

6.2.4 Benchmark Data Set

The Business Intelligence workload adopts the LDBC SNB data generator to generate synthetic social
networks with realistic characteristics. We adopt the scale factor (SF) notion proposed for LDBC SNB,
which is based on the accumulated file size of the CSV files on disk (e.g. SF1 is approx. 1 GB, SF3 is
approx. 3 GB, etc.). We also adapted the parameter curation concept [GB14a] to generate parameter
bindings for queries and extended the data generator with the new parameter generator component.3

The schema of the social network graph is shown in Fig. 6.1. For a detailed description of the
graph schema and the generator, we refer the reader to [Erl+15] and the Social Network Benchmark
technical report [r22]. In this work, we summarize the characteristics of the produced social network
graph that make it an ideal data set for benchmarking a graph BI workload.

Complex schema Graphs contain a rich schema consisting of different entities. This allows the
design of queries with rich and complex patterns requiring both small and large projections. These
stress a number of choke points including:

2PostgreSQL defines the OVER keyword to use aggregation functions as window functions, and the rank() function
to produce numerical ranks, see https://www.postgresql.org/docs/9.1/static/tutorial-window.html for details.

3https://github.com/ldbc/ldbc_snb_datagen
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6.2. Benchmark Design

Figure 6.1: Graph schema of the LDBC Social Network Benchmark.

• CP-1.2 High cardinality group-by performance, which enables the engine to efficiently perform
grouping operations when there are many different groups;

• CP-1.4 Low cardinality group-by performance, which enables specific optimizations when there
are only few different groups;

• CP-2.2 Late projectionwhich tests the ability of the optimizer to defer the projection of attributes
not required until later phases of the evaluation.

The schema also has various datetime types (e.g. for storing a Person’s birthday or the creation time
of aMessage), which stresses CP-8.5 Dates and times.

Correlated attributes Second, graphs are correlated, i.e. Persons with similar characteristics are
more likely to be connected or where the values of the attributes of a given entity are correlated.
Systems can exploit such correlations to leverage more compressed means of storing the graph or to
improve data access locality via clustered indexes. Such optimization opportunities are specifically
captured by choke points CP-3.1 Detecting correlation or CP-3.2 Dimensional clustering.

Realistic structure Finally, structural characteristics are also realistic, with the degree distributions
of the knows edge type being Facebook-like [PD14] and the largest connected component containing
a significant portion of the overall network. Such features in the graph allow us to stress choke points
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CP-3.3 Scattered index access patterns, which tests the ability of the execution engine to efficiently
access indexes using keys that are scattered, which is usually the case when performing traversals
of more than one hop; and the new newly added CP-7.2 Cardinality estimation of transitive paths and
CP-7.3 Efficient execution of a transitive step (Sec. 6.2.1).

6.3 Detailed Query Discussion

All queries present in the BI workload share common data access characteristics as they touch large
portions of the social network graph and rely heavily on aggregation operations [Gra+97]. In contrast
to graph analytics (Sec. 3.9.2), queries not only access the graph topology but use node/edge attributes.
In the following, we discuss three example queries in detail, and show how properly dealing with
different choke points can highly impact query evaluation time, revealing the relevance of choke
point-based benchmark design and the proposed queries. The list of CPs is presented in Sec. D.1,
while queries are listed in Sec. D.2.

To assess the complexity of each query and potential impact of optimization techniques, we ran
multiple performance experiments. These were implemented in C++ on top of the Sparksee native
graph database [Mar+07; MGE11], and evaluated on SF1 and SF10 data sets. Benchmarks were ex-
ecuted on a cloud VM with 8 Xeon E5-2673 CPU cores and 256 GB RAM, running Ubuntu 16.04.
Detailed results for all 25 queries and multiple systems are available in Sec. 6.4.

6.3.1 Top Posters in a Country (Query 5)

Figure 6.2: Graph pattern for BI Query 5.

Scale Factor Forum to Country Country to Forum

SF1 4 848 64
SF10 57 637 349

Table 6.1: Execution times of BI Q5 with different traversal directions.

Definition Find the most popular Forums for a given Country, where the popularity of a Forum is
measured by the number of members that Forum has from the given Country. Calculate the top 100
most popular Forums. In case of a tie, the forum(s) with the smaller id value(s) should be selected.
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For each member Person of the 100 most popular Forums, count the number of Posts (postCount)
they made in any of those (most popular) Forums. Also include those member Persons who have not
posted any messages (i.e. have a postCount of 0). The graph pattern of the query is shown in Fig. 6.2.

Performance CPs Q5 represents a simple graph pattern matching query with a top-k evaluation
and a set of aggregation operations. Besides its simplicity, this query is highly relevant for several
reasons: first, this is one of the queries that fulfils a number of choke points (10 in total), including
those related to CP-2.1 Rich join order optimization, CP-1.3 Top-k pushdown, and CP-2.2 Late projection.
Second, this query reveals that graph database systems must not only provide support for purely
graph-specific operations but also non-graph operations, such as aggregations and top-k evaluation,
to answer realistic graph BI queries efficiently.

To demonstrate the importance of the choke points fulfilled by this query, we focus on the first
and most time-consuming part of the query, which looks for patterns connecting Forums to Persons
living in a Country (the latter being provided as a query parameter). When looking for occurrences
of such a pattern, a system has several alternatives to navigate the graph. For instance, one option
is to navigate the graph from Forums to Persons, and then filter out those occurrences with Persons
that are not locatedIn the Country in question. As an alternative, the system could also first obtain
the Persons that belong to the Country, and then retrieve the Forum neighbors via the hasMember
relationship.

Properly selecting the right strategy can heavily impact the query time, sometimes by orders of
magnitude. Tab. 6.1 depicts the average query evaluation time for the two proposed traversal strate-
gies. The execution times reveal that by following the second traversal evaluation strategy, the average
execution time is two orders of magnitude lower on both scale factors. This particular example rep-
resents an instance of CP-2.1 Rich join order optimization, since traversing a graph can be interpreted
as a sequence of joins. Other queries fulfilling this CP are Q2, Q4, Q9, Q10, Q11, Q19, Q20, Q21, Q22,
Q24, and Q25. The large number of queries is caused by the fact that navigation along edges is a key
operation in graph BI workloads.

Language CPs This query first performs an aggregation to determine the popularity of Forums,
then sorts them, and selects the 100 most popular ones, and continues the computation with these.
This covers two key language CPs: CP-8.2 Complex aggregations (to perform ordering on aggregations
results) and CP-8.4 Query composition (to continue with results of the subquery). Due to the BI nature
of the benchmark, complex aggregation (CP-8.2) is required by approx. 50% of the queries, 12 in total.
Composition (CP-8.4) is also an important feature, required by Q10, Q15, Q18, Q21, Q22, and Q25.

6.3.2 Experts in Social Circle (Query 16)

Definition Given a Person, find all other Persons that live in a given Country and are connected
to given Person by a transitive path with no-repeated-edge semantics (Sec. 2.5.2) of length in range
[minPathDistance, maxPathDistance] through the knows relation. In the path, an edge can be
only traversed once while nodes can be traversed multiple times. For each of these Persons, retrieve
all of their Messages that contain at least one Tag belonging to a given TagClass (a direct relation is
required, a transitive one is not sufficient). For eachMessage, retrieve all of its Tags. Group the results
by Persons and Tags, then count the Messages by a certain Person having a certain Tag. The graph
pattern of the query is shown in Fig. 6.3.
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6. The Business Intelligence Workload of the LDBC Social Network Benchmark

Figure 6.3: Graph pattern for BI Q16.

Scale Factor Baseline Top-k pushdown Top-k pushdown
with path pattern reuse

SF1 1 552 1 463 702
SF10 29 312 27 398 15 037

Table 6.2: Execution times of BI Q16 with different optimization strategies.

Performance CPs One way to evaluate this query is to first find all Persons reachable from the
given Person and belonging to the input Country. Then, for each of these Persons, look for theMes-
sages they created and their Tags to obtain the final result set and return the top-k elements.

However, a sophisticated query optimizer might be able to infer that the maximum number of
Messages with a given Tag for a given Person can be at most the Person’s total number of Messages.
Thus, the system might first sort the reachable Persons by their Message count in descending order
and start counting their Messages’ Tags while maintaining a priority queue with the top-k results.
Once the “total number of Messages of the next Person to evaluate” value is smaller than the last entry
in the top-k (assuming this already contains k elements), the query evaluation can abort exploring
more Persons, hence exploiting CP-1.3 Top-k pushdown [DR99]. In the first and second column of
Tab. 6.2, we show the results of applying the optimization (for a top-100 case). We see that applying
it decreases execution time by around 6%. Although this number might not seem significant, top-k
pushdown is one of the most important choke points of the workload. The benefit of applying such
optimization will depend on the SF and the size of the top. For some SFs, queries such as Q22 would
become untractable if top-k pushdownwas not exploited, since it would require comparing all Persons
in one country to all Persons in another country. Also, other queries that rely on this choke point to
be executed efficiently are Q2, Q4, Q5, Q9, and Q19.

Complementing the top-k pushdown optimization, a system could also try to compute the reach-
able Persons incrementally, instead of computing them at the beginning of the execution. As the
Persons belonging to the input Country are explored (sorted in descending order by their Message
count), a reachability set can be updated while checking whether the currently evaluated Person is
reachable or not. Thus, before performing the expensive reachability test, we can check whether a cer-
tain Person has been already observed in an earlier Person reachability test. This optimization is an
example of an exploitation of CP-7.1 Incremental path computation, which for this query would result
in an improvement of approx. 1.8−2× over simple top-k pushdown, as shown in Tab. 6.2. Reachability
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indexes are a form of reusing patterns and are an active research area [YCZ12]. This CP was partially
designed to stimulate such research efforts. Other queries that fulfil this CP are Q19 and Q25.

Language CPs This query uses transitive paths with variable bounds, which is a key challenge in
CP-8.1 Complex patterns. Other queries that stress this CP are Q8, Q11, and Q19 (negative edge condi-
tions), and Q14, Q18, Q19, Q20, and Q25 (transitive paths). Due to the edge-uniqueness constraint, this
query also relies on the language supporting no-repeated-edge semantics (Sec. 2.5.2), which is captured
by CP-8.6 Handling paths.

6.3.3 Weighted Interaction Paths (Query 25)

Figure 6.4: Graph pattern for BI Q25.

Scale Factor Baseline Result reuse

SF1 622 419
SF10 2 885 1 939

Table 6.3: Execution times of BI Q25: baseline and with result reuse.

Definition Given two Persons, find all (unweighted) shortest paths between these two Persons, in
the subgraph induced by the knows relationship. Then, for each path calculate a weight. The nodes in
the path are Persons, and the weight of a path is the sum of weights between every pair of consecutive
Person nodes in the path. The weight for a pair of Persons is calculated based on their interactions:

• Every direct reply (by one of the Persons) to a Post (by the other Person) contributes 1.0.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) contributes 0.5.

Only consider Messages that were created in a Forum that was created within the timeframe
[startDate, endDate]. Note that for Comments, the containing Forum is that of the Post that
the comment (transitively) replies to. Return all paths with the Person ids ordered by their weights
descending. The graph pattern of the query is shown in Fig. 6.4.
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Performance CPs This query looks first for all the shortest paths (Def. 25) between a given pair
of Persons, and for each of them computes a score based on the interactions between each pair of
consecutive Persons in the path. In a realistic graph – such as the one in the benchmark – it is likely
that there exists a large overlap between such shortest paths, especially if the length of the shortest
paths is relatively large. Such an overlap implies that many of the subqueries used to compute the
path’s score are essentially the same, and thus their results can be reused. This is an application of
CP-5.3 Intra-query result reuse. Tab. 6.3 shows the average execution time on SF1 and SF10, with or
without reusing the subquery results. We see that thanks to the optimization, we obtain a reduction in
the execution time of approx. 30%. Moreover, as mentioned above the evaluation time of this query
is highly sensitive to the length of the shortest path, since the longer these are, the more likely is
to find more and more overlapping paths. Thus, we also compared the execution times between of
the slowest instance of Q25, and found that for such instance the obtained speedup thanks to this
optimization was approx.2×. Other queries where this CP can be exploited are Q3, Q5, Q15, Q21, and
Q22.

Language CPs This query stresses language features, covering all related CPs, including an im-
portant aspect of CP-8.6 Handling paths. In particular, it calculates the weight of a path based on in-
teractions of consecutive nodes on the path, which is often difficult to express in existing languages.
This has been recognized by recent language design efforts: the G-CORE language (Sec. 2.6.3) defines
paths as part of its property graph data model, which defining queries on paths.

6.4 Benchmark Results

Systems We performed benchmarks on multiple database systems and analytical engines:
• the Oracle Labs PGX graph analytical system [Hon+15] (with queries formulated in the declar-
ative PGQL language (Sec. 2.6.2),

• the PostgreSQL relational database management system (with queries formulated in Post-
greSQL’s SQL dialect [Mom00]), and

• the Sparksee native graph database [MGE11] (with queries formulated in imperative C++ code).

Environment Benchmarks for PostgreSQL and Sparksee were executed on a cloud VMwith 8 Xeon
E5-2673 CPU cores and 256 GB RAM, running Ubuntu 16.04. Benchmarks for Oracle Labs PGX were
executed on 16 Xeon E5-2660 CPU cores and 256 GB RAM, running Oracle Linux Server 6.8.

Methodology We executed 100 queries for warmup, then executed 250 queries and measured their
response time. Queries were selected randomly, following a uniform distribution and were executed
one-by-one, i.e. with no interleave between them. For each scale factor/tool/query, we calculated the
geometric mean of execution times (as recommended in [FW86]).

Results Fig. 6.5 shows preliminary benchmark results: namely, the execution times for all 25 queries
specified in the Business Intelligence workload on 3 systems (Oracle Labs PGX, PostgreSQL, and
Sparksee). Fig. 6.6 shows benchmark results for the Interactive workload [Erl+15]. While both result
sets are preliminary (i.e. they are validated, but not audited), it is clear from that the Business Intelli-
gence workload is significantly more complex than the Interactive workload. On PostgreSQL, many
of the BI queries (e.g. Q7, Q11, Q12, Q14, Q18, Q19, Q22, Q24) take more than 30 seconds to complete
for the SF10 data set, while all of the Interactive queries except Q14 take less than 10 seconds.
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Figure 6.5: Execution time of the 25 BI queries in an in-memory hybrid graph query and
analytical engine (Oracle PGX), a disk-based relational database (PostgreSQL), and an in-
memory graph database (Sparksee).

Comparison to the Train Benchmark Compared to the Train Benchmark, the LDBC SNB strives
less for simplicity but more towards systematically benchmarking relevant aspects of a given query
engine. This is shown in their expected development times: for a given tool, a new initial implemen-
tation for the Train Benchmark can usually be created by an experienced developer in a few days.
Implementing the LDBC SNB BI workload typically takes weeks to complete.

6.5 Conclusion and Future Work

In this chapter, we have presented our early work on LDBC SNB BI, a graph processing systems’
benchmark for graph BI workloads. LDBC SNB BI combines a set of 25 carefully designed queries
with a synthetic social network dataset to achieve a realistic yet challenging workload. We share our
experiences on implementing the benchmark and showcase the benefits of the choke point-based de-
sign by means of a detailed discussion on three example queries. Moreover, we presented results for
three different systems (Oracle Labs PGX, PostgreSQL, and Sparksee) and comparison to the Interac-
tive workload on two systems.

Our experiences reveal how the designed queries capture the complexity of graph BI workloads
by offering optimization opportunities that, if not taken into account, would make the evaluation of
queries infeasible for large scale factors. We also studied the language aspects of the queries, making
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Figure 6.6: Execution time of the Interactive workload’s 14 complex read queries. (Short reads
and updates were omitted.) Results show that when executed on PostgreSQL with data sets
up to SF10, only queries 5, 9, 13, and 14 require more than 2 seconds to execute.

them expressible using existing declarative query languages (openCypher, PGQL, SPARQL, and SQL),
which also revealed some deficiencies of the languages.

As of 2019, the contours of LDBC SNBBI are clear, but the current specification is not yet complete.
The next steps are adding more queries and introducing updates (including deletions) into the work-
load. We consider the scenario of systems that query a static snapshot of the graph, and from time to
time receive batch updates that must be incorporated into the database. However, we also want the
benchmark to match the capabilities of those systems that offer queryable snapshots while accepting
update streams in parallel. Updates will tie into the overall performance metric function, which we
will define in the complete benchmark. Such a function will need to consider two key aspects:

1. All queries are equally important regardless their data complexity, which favours geometric
mean instead of arithmetic mean [FW86].

2. The function should accommodate different ways of accepting updates (stream vs. batch).
Finally, we plan to provide additional reference implementations in languages such as the Grem-

lin [Rod15], and G-CORE [Ang+18], a composable property graph query language, designed by the
Graph Query Language Task Force of the Linked Data Benchmark Council.
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Chapter7

Related Graph Benchmarks

Numerous benchmarks have been proposed to measure and compare the performance of query and
transformation engines in a specific technological space for a given use case. However, no openly
available cross-technology benchmarks have been proposed for the continuous model validation and
graph BI scenarios. Below, we overview the main existing benchmarks for model query and transfor-
mation (Sec. 7.1) as well as RDF technologies (Sec. 7.2).

7.1 Model Transformation and Graph Transformation Benchmarks

7.1.1 Benchmarks for Graph and Model Transformation

Up to our best knowledge, the first transformation benchmark was proposed in [VSV05], which gave
an overview on typical application scenarios of graph transformations together with their character-
istic features. The paper presents two cases: the Petri net firing simulation case and the object-relational
mapping by model synchronization case. While both are capable of evaluating certain aspects of incre-
mental query performance, they provide a different workload profile (e.g. model and query charac-
teristics) than typical well-formedness validation scenarios. [GK07] suggested some improvements to
the benchmarks of [VSV05] and reported measurement results for many graph transformation tools.

7.1.2 Tool Contests

Many transformation challenges have been proposed as cases for graph and model transformation
contests. Most of them do not focus on query performance, instead, they measure the usability of
the tools, the conciseness and readability of the query languages and tests various advanced features,
including reflection, traceability, etc. The 2007 contest was organized as part of the AGTIVE confer-
ence [SNZ08], while the 2008 and 2009 contests were held during the GRaBaTS workshop [RG10;
LRG09]. The contests in 2010, 2011, 2013, and onwards were organized as a separate event, the Trans-
formation Tool Contest (TTC) [MRV10; VMR11; VRK13; RKH14; RHK15; GKR16; GHK17].
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2018 Quality-based SS&HM Optimize software variant selection and hardware mapping. optimization ◯ ⊗ ◯ ◯ ⊗
Social Media (L) Global queries and aggregations on a social network graph under updates. queries under updates ◯ ⊗ ◯ ⊗ ⊗

2017
Smart Grid Maintain incremental model views for a large cyber-physical system. queries under updates ◯ ⊗ ◯ ⊗ ⊗
Families to Persons Run bidirectional transformation between families (mother, father, sons, and daughters) and persons. bidirectional trf. ◯ ⊗ ◯ ⊗ ⊗
State Elimination Transform finite state automata to regular expression using state elimination. model transformation ◯ ⊗ ◯ ◯ ⊗
Reuse with Redefinitions (L) Transformation reuse in the presence of multiple inheritance and redefinitions. scope ◯ ⊗ ◯ ◯ ⊗

2016 Class Resp. Assignment Given methods, attributes and their dependencies, find the optimal class diagrams scope ◯ ⊗ ◯ ◯ ⊗
Dataflow Transformations (L) Execute dataflow-based model transformation engine and run 4 transformations in batch/incremental mode: Families to Persons,

Tree to Graph, Class to RDB, Flowchart to HTML.
incremental
transformation

◯ ⊗ ◯ ⊗ ⊗

2015
The Train Benchmark Perform well-formedness validations and quick fix-like repair transformations. queries under updates ◯ ⊗ ◯ ⊗ ⊗
The Model Execution Case Define a transformation specifying the operational semantics of the UML activity diagram language. model execution ◯ ⊗ ◯ ◯ ⊘
The Java Refactoring Case Parse the source code, perform refactorings on the program graph and generate the source code. refactoring ⊗ ⊗ ⊗ ◯ ◯
Java Annotations (L) Use annotations to extend existing Java code. refactoring ⊗ ⊗ ⊗ ◯ ◯

2014
FIXML to Java, C#, and C++ Transform financial transaction data expressed in FIXML format into class definitions in Java/C#/C++. deserialization ⊗ ⊗ ⊗ ◯ ◯
Movie Database Determine all actor couples who performed together in a set of at least three movies. queries and update ◯ ⊗ ◯ ◯ ⊗
Soccer Worldcup (L) Implement a soccer client, using model transformations. AI ◯ ⊗ ◯ ⊗ ◯

2013
Petri-Nets to Statecharts Mapping from Petri-Nets to statecharts. synthesis ◯ ⊗ ◯ ◯ ⊗
Class diagram restructuring Perform refactoring operations: pull up, create superclass, create subclass. program refactoring ◯ ⊗ ◯ ◯ ◯
Flowgraphs Analysis and transformations in compiler construction: data structures, control/data flow graphs. synthesis, validation ◯ ⊗ ⊗ ◯ ◯

2011
GMF Model Migration Migrate models in response to metamodel adaptation. model migration ◯ ⊗ ◯ ◯ ◯
Compiler Optimization Perform local optimizations on the intermediate code representation, and apply instruction selections. compiler optimization ◯ ⊗ ◯ ◯ ⊗
Program Understanding Create a state machine model out of a Java syntax graph. synthesis ◯ ⊗ ◯ ◯ ⊘
Hello World Several primitive tasks that can be solved straight away with most transformation tools. various ◯ ⊗ ⊗ ⊗ ◯

2010
Model Migration Define a transformation to migrate the activity diagrams from UML 1.4 to UML 2.2. model migration ◯ ⊗ ◯ ◯ ◯
Dynamic Comm. Systems Compute topologies that may occur for the merge protocol, a communication protocol used in car platooning. synthesis ◯ ⊗ ◯ ◯ ⊗
Ecore to GenModel Use m2m transformation to synthesize the GenModel from the Ecore metamodel. synthesis ◯ ⊗ ◯ ◯ ◯

2009
BPMN to BPEL Define model transformations between BPMN and BPEL. synthesis ◯ ⊗ ◯ ◯ ◯
Program Comprehension A simple filtering query on large models; a complex query on small models to produce code graphs. synthesis ◯ ⊗ ◯ ◯ ⊗
Leader Election Model and validate a simple leader election protocol using graph transformation rules and verification. model verification ◯ ⊗ ◯ ◯ ◯
Live Challenge Problem Model a luggage system, define a transformation to a statechart and perform a simulation on it. synthesis, simulation ◯ ⊗ ◯ ◯ ◯

2008 Program Refactoring Import the models to GXL, allow for interactive transformations, export to GXL. program refactoring ◯ ⊗ ◯ ◯ ◯
AntWorld Perform a simulation of ants searching for food based on a few simple rules. model simulation ◯ ⊗ ◯ ⊗ ⊗

2007
Don’t Get Angry; Ludo Game Model and play a board game using graph transformation rules. various ◯ ⊗ ◯ ◯ ⊗
UML to CSP Transformation Perform a transformation from UML activity diagrams to Communicating Sequential Processes. synthesis ◯ ⊗ ◯ ◯ ◯
Sierpinski Triangle Construct a Sierpinski triangle. construction ◯ ⊗ ◯ ⊗ ⊗

Table 7.1: Cases presented at the transformation tool contest events between 2007 and 2018. Abbreviations – Upd.: updates, Perf.:
performance-oriented. Notation for the Case column: (L) case for the live contest (which requires participants to solve to submit their
solutions during the week-long conference). Notation for the Perf. column: ⊗ the case focuses on the performance of tools, ⊘ the case takes
performance into consideration but it is not the main focus, ◯ the performance of the tools is mostly irrelevant for solving the case.
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7.1. Model Transformation and Graph Transformation Benchmarks

Tab. 7.1 presents an overview of tool contest cases from 2007 to 2018. We shortly summarize their
goal, scope and show whether solving them requires text-to-model (t2m), model-to-model (m2m) or
model-to-text (m2t) transformations. We also denote whether the solution needs to perform updates
on the model and whether the case explicitly measures the performance of the tools.

For the sake of conciseness, we only discuss cases that are potentially useful for measuring the
performance of incremental model validation, meaning that (1) they are performance-oriented, i.e.
include large models, complex patterns or both, (2) they measure the incremental performance, i.e.
perform updates on the model and reevaluate the patterns.

AntWorld The AntWorld case study [RG10; GZ10] requires the solution to perform a simulation
of ants searching for food based on a few simple rules. The environment, the ants, and the food are
modelled as a graph, while the rules of the simulation are implemented with model transformation
rules. Although this case study provides a complex queries and performs update operations on a large
model, its workload profile is similar to a model simulation instead of a model validation scenario.

Sierpinski Triangle Generation The Sierpinski Triangle Generation [Tae+07] is another well-
known transformation case, used in [KTG15]. The Sierpinski triangles are stored as a model and
are generated using model transformations. The triangles can be modelled with a very simple meta-
model and the characteristics of the instance models are very different from typical models used in
MDE. While the required transformations are complex, the semantics of the transformation does not
resemble any real-world applications.

Performance-oriented cases Other performance-oriented graph transformation cases include the
Movie Database [HKT14], the Petri-Nets to Statecharts [VR13], and theGRaBaTS 2009 ProgramCompre-
hension [SJ09] cases. The latter case was used in papers [BK14; Sha+14] to benchmark the scalability
of model persistence and query evaluation of graph and other NoSQL data stores. However, none of
these perform update-and-reevaluation sequences.

The “Social Media” case A notable cross-over between the fields of graph database benchmarking
and the model transformations was the live challenge of the 2018 Transformation Tool Contest (TTC
2018).1 The challenge, titled the “Social Media” case requires participants to execute two queries with
frequent updates in the data. The case uses a simplified schema of the LDBC SNB graph (the original
is shown in Fig. 6.1), consisting of only Person,Message, Comment, and Post node types, as opposed
to the 14 types used in the full SNB benchmark (presented in Chapter 6).2 The case defines two global
queries, which calculate scores for controversial posts and influential comments. The queries are to be
evaluated continuously while the social network graph is updated with new nodes and edges (Posts,
Comments, likes, etc.). While this case has very similar goals to the Train Benchmark and the Busi-
ness Intelligence workload, it is less comprehensive then queries in other benchmarks.3 However, it
is worth pointing out that this benchmark poses a unique challenge not covered by the Train Bench-
mark or any current LDBC SNB query: it requires the enumeration of strongly connected components

1https://www.transformation-tool-contest.eu/2018/solutions_liveContest.html
2The social network graph used in the “Social Media” case is based on the data used in the DEBS 2016 Grand Chal-

lenge (http://debs.org/debs-2016-grand-challenge-social-networks/). This in turn is based on the SIGMOD 2014 Program-
ming Contest (http://www.cs.albany.edu/~sigmod14contest/), where participants had to implement complex social network
analysis queries, executed on a graph produced by an earlier version of the LDBC data generator.

3We recognize that this is partly due to the fact that the “Social Media” case was a live challenge, which participants
have only a few days to solve.
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7. Related Graph Benchmarks

(Def. 62) in the graph, which is difficult (and in some cases, impossible) to express in many popular
query languages.

Participation in TTC events We participated in multiple TTC events: the 2014 Movie Database
case [a23], the 2015 Train Benchmark case [l12], the 2015 Java Refactoring case [a24] (3rd prize), and
the 2016 Class Responsibility Assignment [a25] (1st prize).

7.1.3 Assessment of Incremental Model Queries

In [Ber+08] and [Ber+10], authors aimed to design and evaluate model transformation benchmark
cases corresponding to various usage patterns for the purpose of measuring the performance of in-
cremental approaches on increasing model sizes. We assessed a hybrid model query approach (which
combines local search and incremental evaluation) in [Hor+10] on the AntWorld case study [GZ10].

Queries are common means to implement source code analysis, which is traditionally a batch (and
not continuous) validation scenario. Nevertheless, the performance of both local search-based and
incremental model queries is assessed in [Ujh+15b] for detecting anti-patterns in source code trans-
formed to EMF models. As model validation is an important use case for incremental model queries,
several model query and/or validation tools have been assessed in incremental constraint validation
measurements [RE12; Fal+14].

The Viatra CPS Benchmark4 measures the performance of model transformations with a partic-
ular emphasis on repeated executions of the same transformation. It specifies a common workflow in
model-driven engineering in the context of allocating components of a cyber physical systems. The
workflow consists of three steps: First, (1) a system is described in a source domain model, then (2) it is
transformed with model-to-model transformations to a target domain model. Finally, (3)model-to-text
transformation is used to generate code from the domain model.

7.2 RDF Benchmarks

There are several well-defined performance benchmarks for assessing the performance of RDF tech-
nologies (listed in Tab. 7.2).

The WatDiv [Alu+14] benchmark defines a workload generator that allows users to fine-tune
the structuredness of the synthesized graphs and the complexity of generated queries. Stream
WatDiv [Gao+18] adds streaming updates to the workload, and equips SPARQL queries with time
windows (using languages such as CQELS [Phu+11] and C-SPARQL [Bar+10]). The Linked Data
Benchmark Council recently published the Semantic Publishing Benchmark (SPB) [Kot+16] based on
a scenario of the BBC media organization. SPB combines a heavy query workload with a stream of
update operations.

One of the first ontology benchmarks are the Lehigh University Benchmark (LUBM) [GPH05], and
its improved version, theUOBMOntology Benchmark [Ma+06a]. These are tailored to measure reason-
ing capabilities of ontology reasoners. Another early benchmark used the Barton dataset [Aba+07] for
benchmarking RDF stores. The benchmark simulates a user browsing through the RDF Barton online
catalog. Originally, the queries were formulated in SQL, but they can be adapted to SPARQL as well.
However, the size of the graph is limited (50M elements) and there are no updates in the model.

SP2Bench [Sch+09] is a SPARQL benchmark that measures the execution time of various queries.
The goal of this benchmark is to measure the query evaluation performance of different tools for a

4https://github.com/viatra/viatra-cps-benchmark
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LUBM [GPH05] synthetic 6.9M 43 32 14 ◯
analyzing university
data

inferencing
performance ◯

Barton [Aba+07] real 50M 11 28 7 ◯ library search response time ◯
SP

2

Bench [Sch+09] synthetic 1B+ 8 22 12 ◯ publication research response time ◯
BSBM [BS09] synthetic 150B 8 51 12 ⊗ e-commerce throughput ⊘
DBpedia [Mor+11] real 300M 8 1200 25 ◯ queries on DBpedia throughput ◯
LinkBench [Arm+13] synthetic 1B+ 25+ 100+ 10+ ◯ social network latency/thr. ⊗
WatDiv [Alu+14] synthetic 10B+ 17 85 ⍟ ◯ e-commerce response time ◯

SNB Interactive [Erl+15] synthetic 1B+ 19 27 14+ ◯
local queries on a
social network response time ⊗

Semantic Pub. [Kot+16] synthetic 1B+ 74 117 12 ◯ creative works response time ⊗

StreamWatDiv [Gao+18] synthetic 10B+ 17 85 ⍟ ◯
user activity stream
in e-commerce response time ⊗

Train Benchmark [j2] synthetic 23M+ 9 13 6 ◯
validation of
engineering models

query/update
response time ⊗

SNB BI [l18] synthetic 1B+ 19 27 25 ◯
business intelligence
on a social network response time ◯

Table 7.2: Benchmarks for semantic and graph databases. Notations – Largest graph column:
“M” stands formillion, “B” stands for billion; #queries column:⍟ the benchmark allows users
to generate an arbitrary number of queries; Focus metric column: thr. = throughput; Updates
column:⊗measuring the performance of updates is an important aspect of the benchmark,
⊘ the benchmark uses updates, but the performance of reevaluation after updates is not an
important aspect, ◯ the benchmark does not consider updates.

single set of SPARQL queries that contain most language elements. The artificially generated data is
based on the real-world DBLP bibliography; this way instance models of different sizes reflect the
structure and complexity of the original real-world dataset. However, other model element distribu-
tions or queries were not considered, and the complexity of queries were not analysed.

The Berlin SPARQL Benchmark (BSBM) [BS09] measures SPARQL query evaluation throughput
for an e-commerce case study modelled in RDF. The benchmark uses a single dataset, but recognizes
several use caseswith their own set of queries. The dataset scales inmodel size (10million–150 billion),
but does not vary in structure. BSBM defines multiple workloads, named use cases. The Explore use
case follows the navigation of a consumer looking for a product, Business Intelligence runs complex
analytical queries, while Update performs data addition and deletion operations.

In the SPLODGE [GTS12] benchmark, SPARQL queries are generated systematically, based on
metrics for a predefined dataset. The method supports distributed SPARQL queries (via the SERVICE
keyword), however the implementation scales only up to three steps of navigation, due to the resource
consumption of the generator. The paper does not discuss the complexity of the instance model, and
only demonstrates the adequacy of the approach demonstrated with the RDF3X engine.

The DBpedia SPARQL benchmark [Mor+11] presents a general SPARQL benchmark procedure,
applied to the DBpedia knowledge base. The benchmark is based on query-log mining, clustering and
SPARQL feature analysis. In contrast to other benchmarks, it performs measurements on real queries
against existing RDF data.
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7. Related Graph Benchmarks

The Linked Data Benchmark Council has recently developed the Social Network Benchmark de-
fines two workloads: the Interactive and Business Intelligence. The Interactive workload [Erl+15] fo-
cuses on a transactional graph query system. The gist of the workload is defined by 14 complex
queries, focusing on mostly local traversal operations which start from a specific node. The workload
also contains 7 short queries, which define simple read operations, and 8 updates that add additional
nodes and edges to the social network graph. The benchmark was reproduced in paper [Pac+17],
extended with an Apache Kafka-based5 mechanism to stream updates. It was also extended with ad-
ditional implementations (PostgreSQL,6 Neo4j,7 Virtuoso SPARQL,8 Titan,9 and Sqlg10). The Business
Intelligence workload is presented in this dissertation in Chapter 6 and was published in [l18].

LinkBench [Arm+13] was developed in collaboration with Facebook and is based on its social
graph. It tests 10 operations, including reads and updates, such as object_get, assoc_multiget, and
assoc_update. It measures both the latency and the throughput of the system under benchmark.

Benchmarks for other graph-like datamodels The OO7 (pronounced “double-o-seven”) bench-
mark [CDN93; Car+94] targeted object-oriented database management systems in the early 1990s.
Other notable OODBMS benchmarks include BUCKY (Benchmark of Universal or Complex Kwery
Ynterfaces) [Car+97] and OCB (Object Clustering Benchmark) [DS00a]. XMark [Sch+02] is an influ-
ential a benchmark for XML databases. UniBench [Zha+18a] is a multi-model benchmark that builds
on a modified version of the LDBC data generator to produce a mix of relational, graph, key-value,
JSON, and XML data sets. The recent Join Order Benchmark targets join-heavy queries – which share
many challenges with graph query workloads (Sec. 2.7.1) – in relational database systems [Lei+18].

5https://kafka.apache.org/
6https://www.postgresql.org/
7https://neo4j.com/
8https://virtuoso.openlinksw.com/
9http://titan.thinkaurelius.com/
10https://github.com/pietermartin/sqlg
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Chapter8

Reducing Property GraphQueries

to Relational Algebra for Incremental

View Maintenance

Note on terminology In this chapter, we use the term vertices to refer to graph nodes, in order to
differentiate graph vertices from nodes representing relational operators and Rete nodes.

8.1 Introduction

Graph processing problems are common in modern database systems, where the property graph (PG)
data model [HG16; MSV17; Ang+18; Fra+18; Ang18] is gaining widespread adoption. Property graphs
extend labelled graphs with properties for both vertices and edges. Compared to previous graph mod-
elling approaches, such as the RDF datamodel (which represents properties as triples), PGs allow users
to store their graphs in a more compact and comprehensible representation. Due to the novelty of the
PG data model, no standard query language has emerged yet. The industry-driven openCypher initia-
tive aims to standardize the Cypher language [Fra+18] of the Neo4j graph database. The openCypher
language uses a SQL-like syntax and combines graph pattern matching with relational operators (ag-
gregations, filtering, projection, etc.). In this chapter, we target queries specified in the openCypher
language. This chapter is based on technical report [r21].

Motivation Numerous use cases of graph databases rely on complex queries and require low re-
sponse time for repeated executions, including financial fraud detection, and recommendation en-
gines. In addition, graph databases are increasingly used in software engineering context as a seman-
tic knowledge base for model validation [Ber+10; Dan+17] [j2], source code analysis [HBC15], etc.
Users of these scenarios could greatly benefit from an incremental query engine that allows them to
register views on property graphs and maintain their state continuously upon changes.

The recent survey [Sah+17] also concluded that there is industrial need for incremental (and
streaming) graph query engines. This investigation also revealed that currently no such systems exist,
with the exception of DBToaster (a higher-order incremental query engine [Koc+14]) and Graphflow
(an active graph database prototype [Kan+17]) which shares many authors with the survey. Our
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8. Reducing Property GraphQueries to Relational Algebra for IVM

own observation, which is based upon using these tools in an open property graph and RDF bench-
mark [l18], is that incremental evaluation is only supported for very basic language features (practi-
cally, only 5-6 queries out of a total 25 queries). This clearly indicates that incremental query evaluation
and view maintenance is still a major research challenge in the context of property graphs.

Problem statement In relational database systems, incremental view maintenance (IVM) tech-
niques have been used for decades for repeated evaluation of a predefined query set on continuously
changing data [For82; BLT86; ML91; GMS93; GM95; Han96; GM99; HBC02; Koc+14; Ujh+15a]. How-
ever, these techniques typically build on assumptions that do not hold for PG queries. Incremental PG
queries present numerous challenges:

1. Schema-optional data model. Existing IVM techniques assume that the database schema is a pri-
ori known. While this is a realistic assumption for relational databases, the data model of most
property graph systems is schema-free or schema-optional at best [BTL11; Fra+18]. Hence, to
use IVM, users are required to manually define the schema of the graph, which is a tedious and
error-prone process.

2. Nested data structures. Most IVM techniques assume relational data model with 1NF relations.
However, the property graph data model defines rich structures, including the properties on
graph elements and paths. Collection types, such as sets, bags, lists, and maps are also al-
lowed [Ang+18; Fra+18]. These can be represented as NF2 (non-first normal form) data struc-
tures, but their mapping to 1NF relations is a complex challenge.

3. Mix of instance- and meta-level data.Queries access not only data fields from the instance graph
(e.g. properties), but also metadata such as vertex labels/edge types [Res+16; Fra+18].

4. Handling antijoins and outer joins.Most PG languages allow negative and optional pattern con-
ditions, similarly to antijoins and outer joins in relational databases. Most IVM works do not
consider these operators, except [GK98], [GM06], and [LZ07a].

5. Bag semantics and aggregations. PG queries often include aggregation operations, which ne-
cessitate bag (multiset) semantics. Furthermore, languages usually do not restrict aggregations,
e.g. they allow aggregations on aggregations [MQM97] and using non-distributive aggrega-
tion functions (e.g. min, max, standard deviation) which are difficult to calculate incremen-
tally [Pal+02].

6. Mix of queries and transformations. Some PG query languages (e.g. openCypher) allow com-
bining update operations with queries. Most traditional IVM techniques do not consider this
challenge, and omit related issues such as conflict set resolution. Discrimination networks from
rule-based expert systems are better suited to handle this issue [For82; ML91; HBC02].

7. List handling. Property graph data sets and queries make use of lists both as a way to store
collection of primitive values and to represent paths in the graphs. Order-preserving techniques
have only been studied in the context of IVM on XQuery expressions [DER03a], for trees but
not for graphs.

8. Reachability queries. Unbounded reachability queries on graphs with few connected com-
ponents need to calculate large transitive closures, which makes them inherently expen-
sive [Ber+12]. Hence, the impact of the IVM on reachability is more limited compared to non-
recursive queries and using space-time tradeoff techniques is more expensive.

9. Skewed data distribution and cyclic queries. Subgraph matching is often implemented as a series
of binary joins. Recent work [Ngo+18] revealed that representing cyclic queries with binary
(two-way) joins are inefficient on data sets with skewed distributions of certain edge types
(displayed by graph instances in many fields, e.g. in social networks). Hence, new research
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works propose n-ary (multiway) joins to achieve theoretically optimal complexity. Self-joins –
join expressions that use the same relation more than once – are also common.

10. Higher-order queries. PG queries often employ higher-order expressions [Bun+95], e.g. process-
ing the vertices/edges on a path (also known as path unwinding [Ang+17]). Incrementalization
of higher-order expressions is not yet studied in depth [Cai+14], and currently there are no
implementations using such techniques for query evaluation.

These problems are not only challenging in isolation, but require IVM techniques that are compos-
able. According to our experience, tackling one problem often interferes with another. For example:
(a) The IVM algorithm proposed in [LZ07a] for outer join operators does not allow any self-join op-
erators. (b) Most results are presented on set semantics, but are not generalized for bag (e.g. [GK98]).
While some are easy to adapt, determining whether certain IVM techniques can be adapted from sets
to bag usually necessitates a detailed investigation. (c) Some approaches such as [GL95] support one
level of aggregation but no group-by.

In this work, we address challenges 1–5 while leaving 6–10 for future work for the database com-
munity. Note that existing research tools with IVM support typically cover only 1 and 2 while in-
dustrial PG query tools do not support incremental evaluation. Thus, our partial coverage is a major
advance in the state-of-the-art of IVM techniques for property graphs.

Contributions As the core contribution, we show how to reduce the challenge of incremental
graph evaluation of openCypher queries over property graphs to traditional relational algebra to en-
able the use of existing IVM techniques. Instead of proposing a novel incremental algorithm directly
for openCypher, our results aim to demonstrate how to reuse known IVM techniques in the context
of a new challenge with high practical relevance. In particular,

• We introduce extensions for relational algebra (RA) in order to handle graph-specific opera-
tors. We use the resulting graph RA (GRA) to capture the semantics of a large subset of the
openCypher language.

• We define a mapping for PG data to nested relations, and transform the queries to nested RA
(NRA). The data model can represent both the property graph and the resulting tables, while the
NRA operators have sufficient expressive power to capture operations on the PG. This allows
the algebra to be composable and closed [l17].

• We define a transformation chain to translate the nested algebraic query plans to flat RA (FRA)
expressions.

• We present a schema inferencing algorithm that eliminates the need to define the graph schema
in advance.

• We propose an architecture for IVM for PG queries based on the Rete algorithm [For82].
As a proof of concept prototype, we present the ingraph tool which is capable of evaluating
openCypher graph queries incrementally.1

• We categorize and overview applicable IVM approaches from the literature in rule-based expert
systems, integrity constraint checking, and materialized views.
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vertex

id

labels properties

label key value

a
Student
Person

name Alice
age 24
speaks [en]

b Person
name Bob
age 53
speaks [en, de]

c Tag topic Neofolk

d Class subject Folk

e Class subject Music

f Class subject Art

(a) Nested vertex relation: V.
edge

id src trg type

properties

key value

1 a b KNOWS since 2014

2 a c INTEREST level 4

3 c d CLASS −
4 d e SUBCLASS_OF −
5 e f SUBCLASS_OF −

(b) Nested edge relation: E.

(c) Example graph visualized.

L = {Person,Student,Class,Tag}
T = {KNOWS, INTEREST,SUBCLASS_OF,CLASS}
Pv = {name, speaks, topic, subject, age}
Pe = {since, level}

V = {a, b, c, d, e, f};E = {1,2,3,4,5}
src ∶ 1→ a,2→ a, ... ; trg ∶ 1→ b,2→ a, ...

labels ∶ a→ {Person,Student}, b→ {Person}, ...
type ∶ 1→ KNOWS,2→ INTEREST, ...

name ∶ a→ “Alice”, b→ “Bob”, ... ; age ∶ a→ 24, ...

speaks ∶ a→ H“en”I, b→ H“en”,“de”I, c→ NULL, ...

topic ∶ a→ NULL, b→ NULL, c→ “Neofolk”, ...

since ∶ 1→ 2014,2→ NULL, ... level ∶ 2→ 4, ...

(d) Example graph defined formally. H...I denotes
a bag of elements.

s

id

labels properties

label key value

a
Student
Person

name Alice
age 24
speaks [en]

(e) Result of the (◯Student
s ) get-vertices operator.

s i t

id

labels properties

id src trg type

properties

id

labels properties

label key value key value label key value

a
Student
Person

name Alice
age 24
speaks [en]

2 a c INTEREST level 4 c Tag topic Neofolk

(f) The result relation of the [ ◯ INTERESTÐÐÐÐÐ→
i

◯Student Tag
s t ] get-edges operator.

Figure 8.1: Social graph represented graphically, formally, and as nested relations.
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8.2. Data Models

8.2 Data Models

8.2.1 The Property Graph Data Model

The concept of the property graph has been studied by only a few academic works, but it already has
multiple flavours and definitions [HG16; MSV17; Ang+18; Fra+18; Ang18]. We previously introduced
property graphs in Sec. 2.2. Here, we revisit this definition:

Definition 57 (property graph) A property graph is defined as

G = (V,E, src, trg, L, T, labels, type, Pv, Pe)

where V is a set of vertex identifiers, andE is a set of edge identifiers. Functions src, trg ∶ E → V
are the source and target functions, which are total functions assigning the source and target
vertex to each edge, respectively.

To capture type information, the data model uses labels and types:
• The vertices of the graph are labelled: L is a set of vertex labels, and function labels ∶ V →
2L assigns a set of labels to each vertex.

• The edges of the graph are typed: T is a set of edge types, and function type ∶ E → T
assigns a single type to each edge.

To capture the properties in the graph, let S be a set of scalar literals, FBAG(S) denote the
set of all finite bags of elements from S, and letD = S ∪FBAG(S) be the value domain for the
PG. The properties of vertices and edges are defined as:

• Pv is the set of vertex properties. p ∈ Pv is a function p ∶ V →D, which assigns a property
value d ∈D to a vertex v ∈ V , if v has property p, otherwise returns NULL.

• Pe is the set of edge properties. p ∈ Pe is a function p ∶ E → D, which assigns a property
value d ∈D to an edge e ∈ E, if e has property p, otherwise returns NULL.

Example graph An example graph inspired by the LDBC Social Network Benchmark [l18] is shown
formally in Fig. 8.1d and graphically in Fig. 8.1c. The graph contains a Tag, two Persons, and three
Classes. Note that edges in the PG data model are always directed, hence the KNOWS relation is
represented with a directed edge and its symmetric nature is captured by the queries.

8.2.2 Nested Relations

An openCypher query takes a property graph as its inputs and returns a graph relation [HG16;MSV17]
as its output. To represent graphs and query results using the same algebraic constructs, we use nested
relations [Col90], which allow data items of a relation to contain additional relations with an arbitrary
level of nesting. The domain for the internal relations isD∪{NULL}. Relations on all levels of nesting
follow bag semantics, i.e. duplicate tuples are allowed. We define the schema of a relation as a list of
(nested) attributes and denote it with sch (r) for relation r. For the schemas of relations r and s, we
use sch (r)− sch (s) to denote subtracting the attributes of sch (s) from sch (r). Additionally, we use
sch (r) ∥ sch (s) to denote unique concatenation, which concatenates sch (r) with the attributes of
sch (s) − sch (r).

1ingraph is available as an open-source tool at http://github.com/ftsrg/ingraph.
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8. Reducing Property GraphQueries to Relational Algebra for IVM

To represent the vertices (V ) and edges (E) of the property graph, we define two nested relations,
V and E. Both relations have a single nested attribute with the following schemas:

sch (V) = ⟨vertex(id, labels(label),properties(key, value))⟩

sch (E) = ⟨edge(id, src, trg, type,properties(key, value))⟩

For V.vertex, its “id” attribute corresponds to the elements in V . For a tuple representing a vertex,
“labels” is the result of the labels function. Similarly, for E.edge, “id” corresponds to the elements in
E. For a tuple representing an edge e, “type” corresponds type(e), “src” to src(e), and “trg” to trg(e).
The “properties” attribute contains nested relations of “key”-“value” pairs representing the properties
of the vertex/edge in the tuple.

The nested relations representing the example graph are shown in Figure 8.1b and 8.1a. These
show that the set of vertex labels are stored as a nested relation “labels” with a single attribute “label”,
while edge types are simply stored as a string value. The properties of vertices/edges are stored as
a nested relation properties with two attributes, “key” and “value”. This representation is well-suited
to the flexible schema of PG databases, as new labels, types, and property keys can be added without
any changes to the schemas of the relations.

8.3 Graph Relational Algebra

Papers [HG16] and [c6] presented relational algebraic formalizations of the openCypher language. A
more rigorous formalization was given in [Fra+18]. In this work, we follow the approach of our previ-
ous work [c6] as it is better suited to established IVM techniques. This approach uses graph relational
algebra (GRA), which extends standard relational algebra operators with graph-specific navigation.

In the following, we define the graph-specific operators of GRA and show example queries specified
in natural language and as an openCypher query, along with the equivalent GRA expression and the
resulting output relation.

Shorthands For the sake of brevity, we allow two shorthands to access nested attributes and prop-
erties of graph elements.

S1.We use dot notation to directly access nested attributes of graph elements (such as id and type).
For example, the expression σV.vertex.id=42 (V) checks the nested attribute “id” of V.vertex.

S2. The properties of graph elements, stored as key-value pairs in the nested “properties” relation,
can be accessed directly as if they were top-level attributes. For example, expression πV.vertex.age (V)
projects the “age” property of vertices. Unlike S1, this shorthand does not require each vertex to have
an “age” property, it simply returns NULL in the absence of such a key.

Notations For mapping a property graph to relations, we use the nullary operators get-vertices and
get-edges. We define these operators using the nested relations V and E introduced in Sec. 8.2.2. These
operators are rather involved, hence we define some notational conventions:

N1. A vertex variable v is free w.r.t. the input relations ri of a given operator iff v /∈ sch (ri) for all
ri and bound iff v ∈ sch (ri) for any ri. It follows from the definition that the variables of a nullary
operator are always free. Notation: ◯ free vertex variable, ⊙ bound vertex variable, ⊚ any (free or
bound) vertex variable.

N2.Arrow symbols represent the direction of an edge variable. Notation:→ outgoing,← incoming,
↔ undirected edge.

124
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N3. In the definitions, we use three example sets of labels for vertices (L, L1, and L2), along with
an example set of types (T).

8.3.1 The Get-Vertices Operator

The get-vertices nullary operator (◯L
v) returns a nested relation of a single attribute v with vertices

which have all labels of L:

(◯L
v) ≡ πV.vertex/v (σL⊆V.vertex.labels (V))

The schema of the resulting relation is sch (◯L
v) ≡ ⟨v⟩ (see Fig. 8.1e). The operator is illustrated

with the following example:

Example 23 (Get the name of all Persons aged over 25)

MATCH (p:Person)

WHERE p.age > 25 RETURN p.name
p.name
Bob

πp.nameσp.age>25 (◯Person
p )

Here, the get-vertices operator captures the MATCH clause, then the selection and projection op-
erators capture the WHERE and RETURN clauses, respectively. Note that we used shorthand S1 in the
definition and S2 in the example to access nested attributes.

8.3.2 The Get-Edges Operator

Next, we introduce the get-edges operator [◯→◯], which returns edges along with their source and
target vertices. Using theta-joins (Def. 19) on get-vertices operators and relation E, the directed get-

edges operator [ ◯TÐ→
e
◯L1 L2

v w ] has the schema ⟨v, e,w⟩ and is defined as:

πv,e,w((◯L1
v )

v.id=edge.src
(σedge.type ∈T (E))

edge.trg=w.id
(◯L2

w ))

We also define the undirected get-edges operator [◯↔◯], enumerating edges of both directions:

[ ◯ T←→
e
◯L1 L2

v w ] ≡ [ ◯TÐ→
e
◯L1 L2

v w ] ⋃ πv,e,w [ ◯TÐ→
e
◯L2 L1

w v ]

8.3.3 The Expand Operators

To capture navigations, we define the unary expand-out operator ⊙→⊚. The expression v⊙
TÐ→
e
⊚L1
w (r)

takes tuples from relation r and returns a tuple for each possible navigation from a bound vertex
v ∈ sch (r) to vertexw through an edge e, while enforcing the label and type constraints (w is labelled
with labels of L1 and e is typed with T). It can be defined using the get-edges operator:

v⊙
TÐ→
e
⊚L1
w (r) = r [ ◯TÐ→

e
◯L1

v w ]

The schema of the resulting relation is sch(v⊙
TÐ→
e
⊚L1
w (r)) ≡ sch (r) ∥ ⟨e,w⟩. The operator is

demonstrated as follows:
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Example 24 (Get Persons and their interests)

MATCH

(p:Person)-[i:INTEREST]->(t:Tag)

RETURN p.name, i.level, t.topic

p.name i .level t .topic
Alice 4 Neofolk

πp.name,i .level,t .topic (p⊙
INTERESTÐÐÐÐÐÐ→

i
◯Tag
t (◯Person

p ))

Edge directions We define two additional expand operators: the expand-in operator ⊙←⊚ accepts
incoming edges, while the expand-both operator ⊙↔⊚ accepts edges from both directions. Formally,
they can be defined as follows:

v⊙
T←Ð
e
⊚L1
w (r) ≡ r [ ◯TÐ→

e
◯L1

w v]

v⊙
T←→
e
⊚L1
w (r) ≡ r [ ◯ T←→

e
◯L1

v w ]

Merging with get-vertices An expand operator following a get-vertices operator can be combined
into a get-edges operator:

v⊙
TÐ→
e
◯L2
w (◯L1

v ) ≡ [ ◯TÐ→
e
◯L1 L2

v w ]

v⊙
T←→
e
◯L2
w (◯L1

v ) ≡ [ ◯ T←→
e
◯L1 L2

v w ]

v⊙
T←Ð
e
◯L2
w (◯L1

v ) ≡ πv,e,w [ ◯TÐ→
e
◯L2 L1

w v ]

This allows us to rewrite the example in a more succinct form.

Example 25 (Get Persons and their interests – revisited)

πp.name,i .level,t .topic [ ◯ INTERESTÐÐÐÐÐÐ→
i

◯Person Tag
p t ]

8.3.4 Combining Pattern Matches

A single graph pattern is compiled to a GRA expression starting from get-vertices and expand opera-
tors. The semijoin operator can be used to express required pattern parts (that are not part of the
result), and antijoin for negative pattern parts.

Example 26 (Get every Class that has a subclass, but is not a subclass of any Class)

MATCH (c:Class)

WHERE (subC:Class)-[:SUBCLASS_OF]->(c)

AND NOT (c)-[:SUBCLASS_OF]->(supC:Class)

RETURN c.name

c.name
Art
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πc.name ((◯Class
c ) [ ◯SUB...ÐÐÐ→◯Class

subC c] [ ◯SUB...ÐÐÐ→◯Class
c supC ])

Multiple graph patterns can be combined together based on their common attributes using the
join operator , and optional pattern parts can be added with left outer join .

Example 27 (Get Persons and their interests if they have any)

MATCH (p:Person)

OPTIONAL MATCH

(p)-[i:INTEREST]->(t:Tag)

RETURN p.name, t

p.name
t

id

labels properties

label key value

Alice c Tag topic Neofolk

Bob NULL

πp.name,t ((◯Person
p ) [ ◯ INTERESTÐÐÐÐÐÐ→

i
◯Tag

p t ])

8.3.5 Unwinding and Aggregation

Unwinding It is often required to handle elements in nested collections one-by-one. To allow this,
we introduce the unwind operatorω, a specialized version of the unnest operatorµ of nested relational
algebra [Bot+18]. In particular,ωxs⇒x (r) takes the bag in attribute xs and creates a new tuple for each
element of the bag by appending that element as an attribute x to ri ∈ r.

Grouping and aggregation The grouping operator γ groups tuples according to their value in one
or more attributes and aggregates the remaining attributes. We use the notation γc1,...,cn

e1/a1,...,ek/ak , where
c1, ... , cn form the grouping criteria, i.e. the list of expressions whose values partition the incoming
tuples into groups. For every group this aggregation operator emits a single tuple of expressions
⟨e1, ... , ek⟩ with aliases ⟨a1, ... , ak⟩.

Example 28 (Get the number of speakers for each language)

MATCH (p:Person) WITH p

UNWIND p.speaks AS lang

RETURN lang, count(p) AS speakers

lang speakers
en 2
de 1

γlang
lang,count(p)/speakers (ωp.speaks⇒lang (◯Person

p ))

In this section, we defined the operators of GRA and gave an informal specification for compiling
from openCypher queries. Tab. 8.1 shows a compact mapping of openCypher queries to GRA expres-
sions. Note that the get-edges operator is not essential to capture the mapping – instead, only the
get-vertices nullary operators are used and edges are retrieved by the expand operators.
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8. Reducing Property GraphQueries to Relational Algebra for IVM

openCypher language construct GRA expression

(≪v≫) ◯v

(≪v≫:≪l1≫:⋅⋅⋅:≪lk≫) ◯l1,...,lk
v

(∣p∣)-[≪e≫:≪t1≫|⋅⋅⋅|≪to≫]->(≪w≫) v⊙
t1,...,toÐÐÐÐ→

e
◯w(p)

(∣p∣)<-[≪e≫:≪t1≫|⋅⋅⋅|≪to≫]-(≪w≫) v⊙
t1,...,to←ÐÐÐÐ

e
◯w(p)

(∣p∣)<-[≪e≫:≪t1≫|⋅⋅⋅|≪to≫]->(≪w≫) v⊙
t1,...,to←ÐÐÐ→

e
◯w(p)

MATCH (∣p1∣), (∣p2∣), ⋅⋅⋅ p1 p2 ...

OPTIONAL MATCH (∣p∣) {⟨⟩} p

{∣r∣} OPTIONAL MATCH (∣p∣) WHERE ≪θ≫ r (σθ(r p))
{∣r∣} OPTIONAL MATCH (∣p∣) r p

{∣r∣} WHERE ≪θ≫ σθ(r)
{∣r∣} WHERE (≪v≫:≪l1≫:⋅⋅⋅:≪lk≫) σ{l1,...,lk}⊆labels(v)(r)
{∣r∣} WHERE (∣p∣) r p

{∣r∣} WHERE NOT (∣p∣) r p

{∣r∣} RETURN ≪x1≫ AS ≪y1≫, ⋅⋅⋅ πx1/y1,... (r)
{∣r∣} RETURN DISTINCT ≪x1≫ AS ≪y1≫, ⋅⋅⋅ δ (πx1/y1,... (r))
{∣r∣} RETURN ≪x1≫, ≪x2≫, aggr(≪x3≫) γx1,x2

x1,x2,aggr(x3)(r)

{∣r∣} UNWIND ≪xs≫ AS ≪x≫ ωxs⇒x(r)

Table 8.1: openCypher patterns and clauses in GRA. Variables, labels, and types are typeset
as ≪v≫. The notation (∣p∣) represents a pattern resulting in a relation p. In the example, we
presume that relation p has an attribute v that represents a vertex. {∣r∣} stands for a relation
r that is the result of the previous query parts. To avoid confusion with the “..” language
construct (used for ranges), we use “⋅⋅⋅” to denote omitted query parts.

Tool IVM 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Neo4j ◯ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
DBToaster ⊗ ◯ ⊗ ◯ ⊗ ◯ ◯ ◯ ◯ ⊗ ◯ ◯ ⊗ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗ ◯ ◯
ingraph ⊗ ⊗ ⊗ ⊗ ⊗ ◯ ⊗ ⊗ ⊗ ⊗ ⊘ ◯ ⊗ ◯ ◯ ⊗ ◯ ⊘ ◯ ◯ ◯ ⊗ ⊗ ⊗ ⊗ ◯

Table 8.2: Support for IVM and the LDBC BI queries (Sec. D.2). Notation:⊗ fully supported,
⊘ a slight variant is supported,◯ not supported.

8.4 Transforming Graph RA to Flat RA

In Sec. 8.3, we presented the concepts of GRA and outlined how to compile openCypher queries to
GRA, based on our previous work [c6], which provides a precise foundation for non-incremental
openCypher queries by covering all queries in the public LDBC Social Network Benchmark (see
Sec. 8.6) . However, despite the significant body of existing IVM literature for relational data models,
existing incremental techniques for property graphs and openCypher queries only support very ba-
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1 MATCH (p:Person)-[i:INTEREST]->(t:Tag)-[tc:CLASS]->(c:Class)

2 WHERE c.subject = 'Music'
3 OPTIONAL MATCH (p)-[k:KNOWS]-(f:Person)

4 WHERE p.street = f.street

5 WITH p, count(DISTINCT f) AS nf WHERE nf < 3

6 RETURN p.name

(a) Query specification in openCypher.

p.name

Alice
Cecil
Daisy
Edgar

(b) Output.

(c) Example graph.
Query specification Fig. 8.2a

GRA query plan Fig. 8.2e

NRA query plan Fig. 8.2f

FRA query plan Fig. 8.2f

Query view Sec. 8.5

(d) Proposed workflow.

πp.name

σnf <3

γp

p,count distinct(f )→nf

{p}

σc.subject=”Music”

t⊙
CLASS
ÐÐÐ→

tc
◯

Class
c

p⊙
INTEREST
ÐÐÐÐÐ→

i
◯

Tag
t

(◯
Person
p )

σp.street=f .street

p⊙
KNOWS
←ÐÐÐ→

k
◯

Person
f

(◯
Person
p )

(e) Query plan in graph RA.

πp.name

⟨p.name⟩
⟨p.name⟩

σnf <3

⟨p,nf ⟩
⟨p,nf ,p.name⟩

γp,p.name
p,count distinct(f )→nf ,p.name

⟨p,nf ⟩
⟨p,nf ,p.name⟩

{p}
⟨p, i, t, tc, c, k , f ⟩
⟨p, i, t,p.name, tc, c, c.subject, k , f ⟩

σc.subject=”Music”

⟨p, i, t, tc, c⟩
⟨p, i, t,p.name, tc, c, c.subject⟩

{t}
⟨p, i, t, tc, c⟩
⟨p, i, t,p.name, tc, c, c.subject⟩

[ ◯
INTEREST
ÐÐÐÐÐ→

i
◯

Person Tag
p t ]

⟨p, i, t⟩
⟨p, i, t,p.name⟩

[ ◯
CLASS
ÐÐÐ→

tc
◯

Tag Class
t c ]

⟨t, tc, c⟩
⟨t, tc, c, c.subject⟩

σp.street=f .street

[ ◯
KNOWS
←ÐÐÐ→

k
◯

Person Person
p f ]

⟨p, k , f ⟩
⟨p, k , f ⟩

(f) Query plan in nested RA ∎ and flat RA ∎.

Figure 8.2: Example property graph, textual query specification, query plans, and output of
the query on the given graph. The query finds persons p who are interested in Music and
know less than 3 persons living in the same street.

sic operations in GRA. In fact, only 6 out of the 25 queries in the LDBC benchmark are supported by
DBToaster (see Tab. 8.2 for coverage). Such a low feature coverage in existing tools clearly demon-
strates the complexity of supporting IVM for GRA which uses (1) graph-specific operators such as
expand and (2) nested data structures.

A main contribution of our work is to significantly increase the coverage of GRA operators for
incremental evaluation. But instead of proposing a novel algorithm for incremental evaluation, we
showhow to reduce the problem to traditional relational algebrawhere robust IVM techniques already
exist. As such, the essence of our contribution is how to address the major challenge of incremental
evaluation of GRA by using known IVM techniques as the baseline (without reinventing the wheel). For
that purpose, we propose a transformation chain [Yie+12] which is common in compilers and software
engineering applications to reduce the complexity and abstraction gap of the end-to-endmapping.We
introduce two additional algebras: nested relational algebra (NRA), which uses joins instead of expand
operators, and flat relational algebra (FRA), which uses flat relations instead of nested ones. We define
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8. Reducing Property GraphQueries to Relational Algebra for IVM

a chain of steps which transform queries from GRA to NRA and from NRA to FRA (see Fig. 8.2d).

8.4.1 Workflow Example

To demonstrate the workflow of our approach, we use the example graph in Fig. 8.2c, an extended
and slightly altered version of the previous example graph in Fig. 8.1c. The example query in Fig. 8.2a
finds Persons p interested inMusic, who have less than 3 friends living in their street. Fig. 8.2e shows
the GRA query plan for the example query. The first MATCH clause of the graph query and a filtering
condition is compiled to a sequence of a get-vertices, two expand-out, and a selection operator as shown
in the bottom left branch of the tree. The pattern in the OPTIONAL MATCH clause is compiled similarly,
and combined with the other pattern using a left outer join on p. Finally, the result is produced by a
sequence of grouping, selection, and projection operators.

8.4.2 From Graph RA to Nested RA

As a first transformation step, our workflow replaces expand operators with joins, resulting in an NRA
query plan. Following the definitions in Sec. 8.3.3, we merge each pair of subsequent get-vertices and
expand operators into a get-edges operator. Then, we replace each expand with a join on a get-edges
operator.

Example 29 The NRA query plan of the example query is shown in Fig. 8.2f, with the cor-
responding schema definitions in red ∎. The expand operators for the KNOWS / INTEREST
edges and their child operators are combined to a get-edges operator, while the expand operator
for CLASS is replaced with a join on a get-edges operator. Other nodes of the GRA plan are left
unchanged in the NRA plan.

8.4.3 From Nested RA to Flat RA

Challenges Both GRA and NRA are nested algebras and represent vertex/edge properties as nested
relations. As discussed in Sec. 8.3, we use shorthand S2 to access properties with a convenient syntax,
e.g. the projection operator in expression πp.name is allowed to use the value of the name property of
vertex p. However, due to the schema-free nature of property graphs, property keys of vertices/edges
are not known in advance during compilation. The GRA and NRA formalizations work around this
issue by treating the base relations of vertices and edges as nested (NF2) relations. While this solves
the problem in theory, it poses further challenges: nested relations are difficult to store efficiently and
are not handled by most IVM algorithms. Hence, as the final step of the compilation, we transform
the query plan to flat relational algebra (FRA), which is incrementally maintainable.

Schema inferencing We refer to the schema of NRA operators as the nested schema, as it describes
nested relations. In contrast, an FRA operator has a flat schema, which contains all property keys
required by the current operator and subsequent operators in the query plan. The flat schema is
determined by a two-step schema inferencing algorithm, which unfolds the required properties from
the nested schema:

1. Starting from the root, the required properties are calculated, accumulated and pushed down
towards the leafs. The corresponding pre-order traversal in the InferRequiredProperties
method in Alg. 1, which relies on two other methods: ExtractProperties to extract the prop-
erties from a given operator and ListPropertiesInExpression to list the properties in a
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Data: op: NRA operator
Data: props : properties required by later ops, initally ∅
Function InferRequiredProperties(op, props)

props ← props ∪ ExtractProperties(op)
switch op do

case is a nullary operator do
op.requiredProperties ← props

case is a unary operator do
if op.type ∈ {π, γ} then

op.requiredProperties ← props

op.child ← InferRequiredProperties(op.child ,props)
case is a binary operator do

leftProps ← ∅; rightProps ← ∅
foreach p ∈ props do

if element of p ∈ op.left .nestedSchema then

leftProps ← leftProps ∪ {p}
else

rightProps ← rightProps ∪ {p}

op.leftChild ← InferRequiredProperties(op.leftChild , leftProps)
op.rightChild ← InferRequiredProperties(op.rightChild , rightProps)

return op

Function ExtractProperties(op)
switch op do

case is a πA or a γCA operator do
ps ← ListPropertiesInExpression(A)

case is a σθ operator do
ps ← ListPropertiesInExpression(θ)

case is an ωxs⇒x operator do
ps ← ListPropertiesInExpression(xs)

return ps

Function ListPropertiesInExpression(exp)
switch exp do

case is a property, a labels(v) or a type(e) function do

ps ← {exp}
case is an arithmetic or logical operator alo do

ps ← ListPropertiesInExpression(alo.operands)
case is a function f do

ps ← ListPropertiesInExpression(f.arguments)
case is a collection do

foreach item ∈ exp do

ps ← ps ∪ ListPropertiesInExpression(item)

return ps

Algorithm 1: Infer required properties for NRA operators.
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Figure 8.3: The structure of the Rete propagation network.

given expression. In essence, this step determines the required properties for each operator, i.e.
the list of properties required by subsequent operators.

2. Next, flat schemas of the FRA operators are calculated with a post-order traversal. For nullary
operators, they are defined as a concatenation of the nested schema and the required properties;
then, the schema of each subsequent operator is determined according to the conventions of
relational algebra, except for the π and γ, operators, where flat schemas are again defined as a
concatenation of the nested schema and the required properties.

In essence, the schema inferencing algorithm ensures that each relational algebraic operator re-
ceives and propagates the attributes required for their calculation (e.g. the attributes used in the se-
lection condition) and those of subsequent operators.2

Example 30 The FRA plan of the example query is shown in Fig. 8.2f, with the corresponding
schema definitions in blue ∎. Note that the required properties were added to the schema of each
operator. For example, the get-edges operator for INTEREST edges – the leaf in the left-most
branch of the tree – produces ⟨p, i, t, p.name⟩ quadruples, which include the property p.name
used by operator πp.name in the root of the tree.

8.5 View Maintenance on Flat RA

In Sec. 8.4.3, we defined steps to translate queries to an FRA query plan to allow evaluation with
existing relational IVM algorithms, e.g. [c4; j3] and [For82; ML91; Han96; HBC02; Ujh+15a]. However,
the rich set of operators required by PG queries necessitates the combination of multiple techniques.
In this section, we describe our flexible incremental query approach, used in our ingraph tool.

8.5.1 Query Evaluation by Rete Network

The Rete algorithm constructs a network of three types of operators. Following Fig. 8.3:
1. Input operators are responsible for indexing the graph, i.e. they store the appropriate tuples for

vertices and edges in the graph. They are also responsible for sending change sets as update
messages to worker operators that are subscribed to them.

2. Worker operators perform a relational algebraic operation on their input and propagate the
results to other worker operators or production operators. Some worker operators are stateful:
they store partial query results in their memory to allow incremental reevaluation. Worker

2minimum schema
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8.5. View Maintenance on Flat RA

operators have two types: unary nodes have a single input slot, binary operators have two input
slots.

3. Production operators are terminators that provide an interface for fetching the results.

Operation U. Update on p Update on s

t = p s
∆ ∆t =∆p s ∆t = p ∆s
∇ ∇t = ∇p s ∇t = p ∇s

t = p s
∆ ∆t =∆p s ∇t = p (∆s s)
∇ ∇t = ∇p s ∆t = (p ∇s) (s −∇s)

t = p s
∆ ∆t =∆p s ∆t = p ∆s,∇t = [(p (∆s s)) × ⟨NULL⟩]
∇ ∇t = ∇p s ∇t = p ∇s,∆t = [((p ∇s) (s −∇s)) × ⟨NULL⟩]

Table 8.3: Rules for incremental view maintenance. U.: update type

The Rete network works as follows. First, the network computes the set of pattern matches in the
graph. Then upon a change in the graph, the network is incrementally maintained by propagating
update messages (also known as deltas). Positive tuple sets are denoted with the ∆ character, while
negative ones are denoted with∇. Adding new graph matches to the result set is expressed as positive
update messages, while removing matches results in negative update messages. Rules of incremental
view maintenance in the Rete network are presented in Tab. 8.3. For join-like operators, we show an
example change set for each type of update operation (positive/negative updates on the primary/sec-
ondary slot) in Fig. 8.4. A more detailed discussion is available in Appendix E.

Our query engine is built on the Rete algorithm [For82; Ber+10; Ber13; Ujh+15a], which was orig-
inally developed to incrementally handle production rules in rule-based expert systems (Sec. 10.3).
Unlike algebraic IVM techniques (e.g. [QW91; GL95]), which derive delta queries to maintain the
results of the target query, the Rete algorithm follows a procedural approach that maintains each re-
lational algebraic operator separately. This makes the algorithm simpler to implement for our many
operators and allows a finer granularity when composing operators (e.g. multi-level aggregations).

The algorithm works as follows. First, it builds a discrimination network (referred to as the Rete
network), which follows the topology of the FRA query plan. Each operator is subscribed to the out-
put of its child operators and propagates the result to its parent operator. Calculations start from
the leaf nodes which correspond to nullary operators get-vertices and get-edges. IVM in the Rete net-
work is achieved by extensive caching: nodes in the Rete network store interim results which allows
efficient computation for small updates. In other words, the Rete algorithm employs a space-time
tradeoff [RSS96] to speed-up query processing evaluation.

Example 31 In the example query of Fig. 8.2, the [◯→◯] operator for INTEREST subscribes
to the indexer and receives {⟨a,1, n,”Alice”⟩, ... , ⟨e,5, v,”Edgar”⟩} tuples. Other get-edges op-
erators are populated similarly, and the results are propagated through the unary and binary
relational algebraic operators, producing the initial query result (Fig. 8.2b).

8.5.2 Cache Maintenance in the Rete Network

Changes in the data, including the initial load phase, are represented logically as changes in nullary
operators (◯), [◯→◯], and [◯↔◯]. Changes are propagated through the network as update messages
containing positive and negative change sets (representing insertions and deletions, respectively).
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Figure 8.4: Example relations for primary and secondary slots (p and s) with positive and
negative change sets (∆p,∇p,∆s,∇s) for demonstrating incremental maintenance opera-
tions for the join, antijoin, and left outer join operators.
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8.6. Evaluation

For each unary and binary FRA operator, incremental maintenance operations are defined for both
insertions and deletions in Appendix E.

Example 32 In Fig. 8.2, Person “Edgar” gains interest in “Rock” music. This change is repre-
sented as adding a tuple ⟨e,6, r,“Edgar”⟩ to the [◯→◯] operator for type INTEREST, which is
propagated through the network, adding a new tuple ⟨“Edgar”⟩ to the result set (Fig. 8.2b).

8.5.3 Data Representation and Indexing

The ingraph prototype is a memory-only engine with no permanent storage. To allow efficient lookup
of vertices, edges, and their properties, it uses an indexer layer. The indexer is capable of perform-
ing lookups based on ids/labels, and sending notifications on updates of the data, similarly to active
databases [WC96; PD99]. In general, lookups are cheaper when more constraints are provided, e.g. it
is cheaper to get the set of edges when the edge type and the source/target labels are specified compared
to when only the edge type is known. This is the key reason why our approach uses compound op-
erators (such as get-edges which takes one type and two label constraints), instead of using primitive
operators as building blocks.

8.5.4 Programming Model

As the Rete network follows the topology of the FRA query plan, the tuples in each network operator
correspond to its flat schema. This ensures that the internal data representation of operators is com-
pact and allows each operator to perform its computation based on local data without turning to the
indexer. This allows us to implement each operator following the actor programming model [Agh90],
i.e. as a local computation with an isolated mutable state, passing asynchronous immutable messages
to its subscribers.

In practice, our engine builds an actor network based on the Rete network, i.e. it instantiates
one actor for each operator. Nullary operators in the query plan are captured as subscriptions to the
indexer (Sec. 8.5.3), which is responsible for performing efficient lookups (based on labels, types and
identifiers), and provide change notifications upon updates. As actors have no shared state, they can
be easily parallelized and deployed distributedly. We demonstrated this with the IncQuery-D engine
that implements distributed IVM on top of RDF graphs, see Chapter 9 and paper [c4].

8.6 Evaluation

In order to evaluate the scalability of our approach, we used the Social Network Benchmark (SNB)
published by the Linked Data Benchmark Council (LDBC) for property graphs and RDF graphs (Chap-
ter 6). After assessing feature coverage for the benchmark queries, we compared the performance of
initial query evaluation and query reevaluation with a non-incremental industrial PG query engine
and an IVM research tool.

8.6.1 Benchmark Setup

Benchmark selection To evaluate the performance of our approach, we used the LDBC Social Net-
work Benchmark (SNB), which defines two workloads: Interactive [Erl+15] (14 complex read queries,
7 short read queries, 8 updates) and Business Intelligence (BI) [l18] (25 complex read queries, updates
not yet defined). The Interactive workload defines reads that access a given vertex and its neighbour-
hood (e.g. friends of friends), and the BI workload specifies queries that access a large portion of the
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8. Reducing Property GraphQueries to Relational Algebra for IVM

graph. Therefore, the BI queries are significantly more complex to evaluate [l18] and are good candi-
dates for defining views over a changing data set. Considering this, we selected the queries of the BI
workload for our benchmark. However, due to the lack of updates, we complemented them with a set
of updates from the Interactive workload, and introduced additional updates inspired by other public
benchmarks [j2].

Queries We selected 11 queries from the SNB’s BI workload: Q2, Q3, Q4, Q6, Q8, Q9, Q12, Q15, Q22,
Q23, and Q24. Our selection aimed to maximize the number of queries supported by the IVM tools we
compared. These cover a large set of language features such as negative/optional patterns, unwinding,
ordering, and aggregations. The detailed specification of the queries can be found in Sec. D.2. For an
example, we briefly review Q15:

Given a Country country, determine the “social normal”, i.e. the floor of average number
of friends that Persons of country have in country. Then, find all Persons in country,
whose number of friends in country equals the social normal value.

This query stresses many language features: it performs multiple levels of aggregations (count,
average), transforms the aggregation result (floor), then uses it to filter on the results of another
aggregation. It also uses optional pattern parts, employs ordering and limiting the number of results
(see the full specification in [r22]).

1 MATCH (c:Country)<-[:PART]-(:City)<-[:IN]-(p1:Person)

2 WHERE c.name = $country
3 OPTIONAL MATCH

4 (c)<-[:PART]-(:City)<-[:IN]-(f1:Person)-[:KNOWS]-(p1)

5 WITH c, p1, count(f1) AS f1Count

6 WITH c, avg(f1Count) AS socialNormalFloat

7 WITH c, floor(socialNormalFloat) AS socialNormal

8 MATCH (c)<-[:PART]-(:City)<-[:IN]-(p2:Person)

9 MATCH (c)<-[:PART]-(:City)<-[:IN]-(f2:Person)-[:KNOWS]-(p2)

10 WITH c, p2, count(f2) AS f2Count, socialNormal

11 WHERE f2Count = socialNormal

12 RETURN p2.id, f2Count AS count

13 ORDER BY p2.id ASC LIMIT 100

Listing 8.1: openCypher specification of BI query 15.

Updates Since the BI workload currently lacks update operations, we used two sets of updates for
our experiments.

• Append: we reused updates 2, 3, 5, and 8 from the Interactive workload. These queries are append-
only, i.e. they only insert new vertices/edges to the graph.

• Delete: we defined three delete operations based on the Inject scenario of the Train Benchmark
framework [j2]. While such delete workload is not frequently found in existing graph database
benchmarks, we believe that it represents a crucial challenge of high practical relevance, e.g.
the “right to be forgotten” regulation of GDPR. Each operation removes an element from the
graph, namely a Post (D1), a Person (D2), and an INTEREST edge (D3).
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1 MATCH (n:Post)

2 WHERE n.id = $postId
3 DETACH DELETE n

Listing 8.2: Specification of delete operation D1.

1 MATCH (n:Person)

2 WHERE n.id = $personId
3 DETACH DELETE n

Listing 8.3: Specification of delete operation D2.
1 MATCH (p:Person)-[i:HAS_INTEREST]->(t:Tag)

2 WHERE p.id = $personId AND t.id = $tagId
3 DELETE i

Listing 8.4: Specification of delete operation D3.

Benchmark goals In each benchmark run, our goal is to measure the aggregated performance of
a single read query (e.g. BI Q15), alternated by updates that affect a small fragment of the data set. In
particular, we measure and analyse the execution times of three benchmark phases:

1. Initial evaluation: load the graph and evaluate the query.
2. Append and reevaluation: execute the Append updates and reevaluate the query.
3. Delete and reevaluation: execute the Delete updates and reevaluate the query.
The execution times of these phases will provide insight into the incremental query evaluation

performance of the tested tools.

Tools We executed the queries on our ingraph prototype tool, the DBToaster [Koc+14] engine, and
the Neo4j graph database [Web12].

• The ingraph engine is a proof-of-concept implementation of the techniques presented in this
work, written in Scala using the Akka actor programming library3.

• DBToaster is an academic prototype providing state-of-the-art IVM for SQL queries. It uses
higher-order IVM techniques, which recursively calculate algebraic deltas on queries and gen-
erates highly optimized Scala/C++ code.4 For our experiments, we used the Scala code generator.

• Neo4j is a popular disk-resident graph database, implemented in Java and Scala. Internally, its
query engine uses mostly standard relational operators extended with the graph-specific Ex-
pand and VarExpand operators [Fra+18].

Data sets We used 5 data sets of increasing scale factors generated by the SNB’s DATAGEN com-
ponent, ranging from SF0.1 (0.3M vertices, 1.5M edges) to SF10 (30M vertices, 177M edges). For all
systems, the graphs were loaded from CSV files.

Initial query evaluation For incremental tools, ingraph andDBToaster, we created an incremental
view for the complex read query, loaded the data set to memory and measured the total time required
to perform the view maintenance. As Neo4j is a disk-based, non-incremental database, we first loaded
the data set in advance using its offline import tool5 and measured its execution time. We then started

3https://akka.io
4Similarly to our approach, the generated Scala code also uses the Akka actor library, to evaluate queries concurrently.
5https://neo4j.com/docs/operations-manual/3.3/tools/import/
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8. Reducing Property GraphQueries to Relational Algebra for IVM

the database, measured the execution time of the complex read query and used the sum of the two
execution times to derive the initial query evaluation time.

Update and query reevaluation We performed the two sets of update operations as follows. For
each Append update, we executed 20-20 instances of the operation, based on the update stream pro-
duced by the SNB DATAGEN. For each Delete operation, we randomly selected a single vertex/edge.
For vertices, ingraph and Neo4j required only the ids of the elements to be deleted and removed all
their incoming/outgoing edges. For DBToaster, we explicitly generated the set of records that need
to be removed from the database. We used the same sequence of graph elements for each tool.

Environment The benchmark was executed on a cloud VM with Ubuntu 18.04, 240 GB RAM, 32
Xeon Platinum 8167M CPU threads, and Oracle JDK 8 with 224 GB heap memory. Execution times
were taken as the median value of 3 runs. We used Neo4j Community Edition v3.3.5 with the inter-
preted runtime6 and DBToaster v2.2.
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Figure 8.5: Execution time of the LDBC SNB BI benchmark queries – initial evaluation time
and reevaluation times with updates. The results of Neo4j are obtained using the interpreted
runtime of Community Edition 3.3.5. The correctness of the implementations has only been
tested for small scale factor models and results are not audited by the LDBC.

8.6.2 Results and Analysis

The measured execution times for each benchmark phase, query, tool, and scale factor is shown
in Fig. 8.5. The results clearly show both the benefits and tradeoffs of IVM techniques.

Initial evaluation The results show that ingraph is the slowest for initial evaluation, taking almost
an hour for queries on SF10. This can be attributed to its extensive cache building mechanisms (which

6More efficient approaches such as the compiled runtime are supported in Neo4j’s Enterprise Edition.
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later allow efficient IVM) and, to some extent, its unoptimized CSV loader. On the contrary, DBToaster
can only evaluate a few queries (Q2, Q4, Q9, Q12, and Q23), but provides the best performance on all
scale factors even for initial evaluation. This confirms that DBToaster uses state-of-the-art techniques
for IVM, which do not penalize the initial evaluation as much. Meanwhile, the results for Neo4j show
that it has the best feature coverage and provides balanced performance.

Update and reevaluation For this phase, ingraph shows close to constant characteristics for all
queries. The Append updates and subsequent reevaluations take noticeably longer, which can be ex-
plained with the larger number of updates needing more time just to compile. All Delete updates
(each executed with a single Cypher query) and subsequent reevaluations are completed in less than
750 ms.

For its supported queries, DBToaster guarantees almost instant reevaluation with execution times
in the range of 1. . . 20 ms, regardless of the dataset size. These results confirm the justification for using
relational IVM algorithms to evaluate PG queries, but they also highlight the requirement to provide
sufficient feature coverage, which DBToaster lacks.

Neo4j does full recalculation after most updates and is therefore consistently outperformed by
incremental engines for reevaluation. However, we can also observe that Neo4j provides some degree
of incrementality: when performing Delete updates and reevaluating Q4, Q6, Q8, Q15, and Q22, it
detects that the update do not influence the respective queries.

Analysis We compared our ingraph engine to two other tools: a popular industrial property graph
database, Neo4j, and a state-of-the-art academic IVM tool prototype, DBToaster. The results show
that a standard relational IVM approach can achieve significant speed-up for complex graph queries
defined in a challenging graph benchmark w.r.t. non-incremental industry tools. However, the prac-
tical applicability of IVM techniques for property graphs not only depends on the performance of a
technique, but also on its expressiveness and feature coverage. In that respect, ingraph clearly outper-
forms state-of-the-art research prototypes such as DBToaster, covering 11+ out of 25 queries in the BI
workload. The results also highlight that the IVM algorithm of ingraph involves a costly initialization
for the first execution, due to building caches for interim results. Hence, compared to non-incremental
approaches, ingraph typically consumes more memory (which hinders its scalability) and performs
the initial query evaluation slower.

8.6.3 Threats to Validity

Correctness and fairness To check the correctness of implementations, we tested the equivalence
of the queries for all systems on small data sets. To ensure fairness, we used the same openCypher
query specifications for Neo4j and ingraph.

A common threat to validity is the lack of representativeness of the benchmark workload. To
ensure that the dataset is representative, LDBC SNB uses a data generator that generates graphs with
realistic structure and attributes. To ensure this, it enforces degree distributions based on data released
by Facebook and uses a dictionary-based property generator [Erl+15]. LDBC designs its queries using
a set of choke points (Sec. 6.2.1), which represent challenging aspects of query processing. Queries
for a certain benchmark workload are designed to cover given choke points and are then refined in
multiple iterations based on feedback from industry experts. While we did not benchmark all queries
in the BI workload, the selected ones already cover all language-specific choke points defined in [l18],
except CP-8.6 Handling paths, which would require us to tackle challenge 10 presented in Sec. 8.1.
This way, we also avoided cherry-picking queries that would favour our approach.
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8.7 Conclusion

We presented an approach for the incremental evaluation of property graph queries captured in
the openCypher language. Our approach proposes a transformation chain that first compiles graph
queries to graph relational algebra, then translates them to nested relational algebra and finally con-
verts them to flat relational algebra. The expression obtained as a result can then be evaluated and
maintained by using relational IVM techniques.

Our experimental evaluation carried out on an open benchmark (the LDBC SNB’s Business In-
telligence workload [l18]) clearly demonstrated that (1) the query reevaluation performance of our
approach significantly outperforms the industrial (but non-incremental) Neo4j engine, and (2) the
feature coverage of our ingraph tool significantly exceeds other modern IVM tools used for property
graphs on the same benchmark.

Up to our best knowledge, this is the first work dedicated to systematic study of incremental view
maintenance on property graphs. Our paper also present numerous unsolved challenges which can
open up interesting research directions:

• It allows using recent advancements in incremental join algorithms such as [IUV17; Idr+18]
and [Amm+18] for PG queries.

• It facilitates the development of cost-based optimization techniques for property graph
queries [Gub15; VD13].

• The presented incremental evaluation techniques can be used to define graph views on top of
RDBMSs [XSD17].

• It can be extended by adapting algorithms designed to perform graph-specific operations, e.g.
impact analysis techniques [Egy06; RE12] and incremental transitive closure [KS02; Rod08a].
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Chapter9

Distributed Incremental View

Maintenance for Scalability

In Chapter 8, we presented an approach to reduce property graph queries to the language of relational
algebra. We performed the evaluation of the results on a single-node system with a many CPU cores
and a lot of memory. It is easy to see that a single node system poses an inherent scalability bottleneck,
although large machines with terabytes of memory are already available at big cloud providers. Still,
arguments are being made both for [Lin18] and against [SÖ18] scaling up on a resourceful single
machine for complex graph processing workloads.

In this chapter, we present an approach that allows horizontal scaling of graph queries, based on
the well-known Rete algorithm and the actor programming model. We propose a novel architecture for
a distributed and incremental model query framework by adapting incremental graph pattern matching
techniques to a distributed cloud based infrastructure. Amain contribution of our novel architecture is
that the distributed storage of data is completely separated from the distributed handling of indexing
and query evaluation. Therefore, caching the result sets of queries in a distributed fashion provides
a way to scale out the memory intensive components of incremental query evaluation, while still
providing instantaneous execution time for complex queries. To demonstrate the feasibility of the
approach, we present IncQuery-D, a prototype tool based on a distributed Rete network that can
scale up from a single workstation to a cluster to handle very large models and complex queries
efficiently. We first briefly revisit the Train Benchmark (Sec. 9.1), then use its model and queries to
demonstrate our approach (Sec. 9.2). For the performance experiments, we extend the benchmark it to
a distributed setup and analyse the derived results (Sec. 9.3), which demonstrates that our distributed
incremental query layer can be significantly more efficient than the native SPARQL query technology
of an RDF triplestore.

This chapter mainly follows paper [c4].

9.1 Running Example

In this chapter, we use the Train Benchmark to present our core ideas and evaluate the feasibility
of the proposed approach. The detailed specification of the benchmark is presented in Chapter 5.
We use four queries of the benchmark: two simple ones involving at most 2 objects (PosLength and
SwitchMonitored), and two more complex ones involving 4–8 objects and multiple join operations
(RouteSensor and SemaphoreNeighbor). We use the Repair scenario, which defines a quick fix-like
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model transformation for each query (Sec. 5.3.3). The transformation specification is given in Sec. 5.3.6
for query RouteSensor and in Appendix C for the rest of the queries.

9.2 A Distributed Incremental Graph Query Framework

The queries and transformations of the Train Benchmark represent a typical workload profile for
state-of-the-art modelling tools [Izs+13b]. With current MDE technologies, such workloads can be
acceptably executed for models up to several hundred thousand model elements [Ujh+15a], however
when using larger models consisting of multiple million elements (a commonplace in complex do-
mains such as AUTOSAR [Ber+10]), the performance of current tools is often not acceptable [Kol+13].
Incremental techniques can provide a solution, however they require additional (memory) resources.

The primary goal of our approach is to provide an architecture that can make use of the dis-
tributed cloud infrastructure to scale out memory-intensive incremental query evaluation techniques.
As a core contribution, we propose a three-tiered architecture. To maximize the flexibility and perfor-
mance of the system, model persistence, indexing and incremental query evaluation are delegated to
three independently distributable asychronous components. Consistency is ensured by synchronized
construction, change propagation and termination protocols.

9.2.1 Architecture

In the following, we introduce the architecture of IncQuery-D (see Fig. 9.1), a scalable distributed
incremental graph patternmatcher. The storage layer is a distributed database which is responsible for
persisting the model. The client application communicates with themiddleware 1⃝, which consists of
two components: the distributed indexer and themodel access adapter. Together, these provide a unified
API for accessing the database 2⃝, send change notifications 3⃝ to the production network. The latter
is implemented as a distributed query evaluation network, with the theoretical underpinning of the
Rete algorithm, which provides incremental query evaluation. At the other end of the production
network, the user transaction continuously receives the changes in the query results 4⃝.

Storage For the storage layer, the most important issue from an incremental query evaluation per-
spective is that the indexers of the system should be filled as quickly as possible. This favours database
technologies wheremodel sharding can be performed appropriately (i.e. with balanced shards in terms
of type-instance relationships), and elementary queries can be executed efficiently. Our framework
can be adapted to fundamentally different storage back-ends, including triplestores, graph databases
and relational database managements systems.

Model access adapter In contrast to a traditional setup where the distributed model repository
is accessed on a per-node basis by a model manipulation transaction, IncQuery-D provides a model
access adapter that offers three core services:

1. The primary task is to provide a surrogate key mechanism so that each model element in the
entire distributed repository can be uniquely identified and located within storage shards.

2. Themodel access adapter provides a graph-like datamanipulation API ( 1⃝ in Fig. 9.1) to the user.
The model access adapter translates the operations issued by the user to the query language of
the backend and forwards it to the underlying data storage.

3. Change notifications are required by incremental query evaluation, thus model changes are cap-
tured and their effects are propagated in the form of notification objects ( 3⃝ in Fig. 9.1). The
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Figure 9.1: The architecture of the proposed incremental query framework, deployed in a
sample 4-node cluster configuration.

notifications generate update messages that keep the state of the query evaluation network
consistent with the model. While relational databases usually provide triggers for generating
notifications, most triplestores and graph databases lack this feature. Due to the lack of general
support, notifications are controlled by the model access adapter by providing a façade for all
model manipulation operations.

Distributed indexer Indexing is a common technique for decreasing the execution time of database
queries. Inmodel-driven engineering (MDE),model indexing has a key role in high performancemodel
queries. As MDE primarily uses a metamodelling infrastructure, all queries utilize some sort of type
attribute. Typical elementary queries include retrieving all nodes of a certain type (e.g. get all nodes
of the type Route), or retrieving all edges of a certain type/label (e.g. get all edges of label sensor).

To support efficient query processing, IncQuery-D maintains type-instance indexes so that all
instances of a given type (both nodes and edges) can be enumerated quickly. These indexers form the
bottom layer of the distributed query evaluation network. During initialization, these indexers are
filled from the database backend ( 2⃝ in Fig. 9.1). The architecture of IncQuery-D facilitates the use
of a distributed indexer which stores the index on multiple servers. A distributed indexer inherently
provides some measures to mitigate the memory limits of a single node.

Distributed query evaluation network IncQuery-D constructs a distributed and asynchronous
network of communicating nodes that are capable of producing the results set of the defined queries
( 4⃝ in Fig. 9.1). Our prime candidate for this layer is the Rete algorithm, however, the architecture is
capable of incorporating other incremental (e.g. TREAT [ML91]) and search-based query evaluation
algorithms as well. In the upcoming section, we provide further details on this critical component of
the architecture.

143



9. Distributed Incremental View Maintenance for Scalability

1 2 3 4

Serialized 

model

Metamodel 

specification

Query 

specification

9

Construct Rete

Database 

shards

Load model, 

initialize Rete

Maintain 

query results
Evaluate queryDeploy Rete

Model access 

adapter
Client

6

7

5

8

Figure 9.2: The operational workflow of the distributed Rete algorithm.

9.2.2 The Rete Algorithm in a Distributed Environment

Numerous algorithms were proposed for the purpose of incremental query evaluation. The Rete algo-
rithm was originally defined for rule-based expert systems [For82], then later improved and adapted
for EMF models in [Ber13]. This chapter discusses how to facilitate the Rete algorithm in a distributed
environment.

Data representation and structure The Rete algorithm uses tuples to represent the nodes (along
with their properties), edges and subgraphs in the graph. The algorithm defines an asynchronous
network of communicating nodes (see Fig. 9.3).

The network consists of three types of nodes. Input nodes are responsible for indexing the model
by type, i.e. they store the appropriate tuples for the nodes and edges. They are also responsible for
producing the update messages and propagating them to the worker nodes. Worker nodes perform a
transformation on the output of their parent node(s) and propagate the results. Partial query results
are represented in tuples and stored in the memory of the worker node thus enabling incremental
query reevaluation. Production nodes are terminators that provide an interface for fetching the results
of the query and the changes introduced by the latest transformation.

Construction The system constructs the Rete network from the layout derived from the query
specification. The construction algorithm may apply various optimization techniques, e.g. reusing
existing Rete nodes, known as node sharing [Ber13]. An efficient Rete construction algorithm is dis-
cussed in detail in [VD13], but is out of scope for this work.

In a distributed environment, the construction of the Rete network introduces additional chal-
lenges. First, the system must keep track of the resources available in the server cluster and maintain
the mapping between the Rete nodes and the servers accordingly. Second, the Rete nodes need to
be aware of the current infrastructure mapping so they can send their messages to the appropriate
servers. In our system, the Rete nodes are remotely instantiated by the coordinator node. The coor-
dinator node then sends the infrastructure mapping of the Rete network to all nodes. This way, each
node is capable of subscribing to the update messages of its parent node(s). The coordinator also starts
the operations in the network, such as loading the model, initiating transformations and retrieving
query results.

Operation The operational workflow of IncQuery-D is shown in Fig. 9.2. Based on themetamodel
and the query specification, IncQuery-D first constructs a Rete network 1⃝ and deploys it 2⃝. In the
next step, it loads the model 3⃝ and traverses it to initialize the indexers of the Rete network. The Rete
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network evaluates the query by processing the incoming tuples 4⃝. Because both the Rete indexers
and the database shards are distributed across the cluster, loading the model and initializing the Rete
network needs network communication. The client is able to retrieve the results 5⃝– 6⃝, modify the
model and reevaluate the query again 7⃝– 9⃝.

The modifications are propagated in the form of update messages (also known as deltas). Creating
new graph elements (vertices or edges) results in positive update messages, while removing graph ele-
ments results in negative update messages. The operation of the network is illustrated on the instance
graph depicted in the lower left corner of Fig. 9.3. This graph violates the well-formedness constaint
defined by the RouteSensor query, hence tuple ⟨3,4,2,1⟩ appears in the result set of the query. The
figure also shows the Rete network containing partial matches of the original graph.
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Figure 9.3: A transformation sequence on a distributed Rete network.

To resolve the violation, we apply the quick fix transformation defined in the Train Benchmark
(Sec. 5.3.6) and delete the monitoredBy edge between nodes 4 and 1. When the edge is deleted, the
monitoredBy type indexer (an input operator) receives a notification from themodel access adapter 1⃝
and sends a negative update 2⃝ with the tuple ⟨4,1⟩. The subsequent join node processes the update
messages and propagates a negative update 3⃝with the tuple ⟨3,4,2,1⟩. The antijoin operator (Def. 17)
also propagates a negative update message with the same tuple 4⃝. This is received by the production
operator, which initiates the termination protocol 5⃝– 7⃝. After the termination protocol finishes, the
indexer signals the client about the successful update. The client is now able to retrieve the results
from the production operator. The client may choose to retrieve only the change set, i.e. only the tuples
that have been added or deleted since the last modification.
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Termination protocol Due to the asynchronous propagation of changes in Rete, the system im-
plements a termination protocol to ensure that the query results can be retrieved consistently with
the model state after a given transaction (i.e. by signaling when the update propagation has been
terminated). The protocol works by adding a stack data structure to the update message propagated
through the network. The stack registers each Rete node the message passes through. After the mes-
sage reaches a production operator, the termination protocol starts. Based on the content of the stack,
acknowledgement messages (Ready) are propagated back along the network. When all relevant input
operator (where the original update message(s) started from) receive the acknowledge messages, the
termination protocol finishes. The operation of the termination protocol can be observed in Fig. 9.3
(messages 5⃝– 7⃝).

Data representation Conceptually, the architecture of IncQuery-D allows the usage of a wide
scale of model representation formats. Our prototype has been evaluated in the context of the property
graph and the RDF data model, but other mainstream metamodelling and knowledge representation
languages such as relational databases’ SQL dumps and Ecore instance models [Ste+09] could be
supported, as long as they can be mapped to an efficient and distributed storage backend.

The Rete network (Sec. 8.5.1) in IncQuery-D uses tuples for data representation. A tuple is
an ordered list of elements, e.g. ⟨15,23,81,2⟩, ⟨7, “red”, true⟩ are tuples. The Rete algorithm de-
fined in [Ber13] uses tuples to represent the nodes, edges and matches of the (sub)patterns in the
graph. The items in a tuple are referenced by their index. A pattern mask is an array of indexes,
µ = (µ0, µ1, ... , µn−1), which can be used to select certain elements in a tuple e.g. extracting the
items defined by the pattern mask µ = (1,3) from tuple ⟨15,23,81,2⟩ results in the tuple ⟨23,2⟩.

9.3 Evaluation

To evaluate the feasibility of the IncQuery-D approach, we created a distributed benchmark environ-
ment.We implemented a prototype of IncQuery-D and compared its performance to a state-of-the-art
non-incremental SPARQL query engine of a (distributed) RDF store.

9.3.1 Benchmark Scenario

In order to measure the efficiency of model queries and manipulation operations over the distributed
architecture, we adapted the Train Benchmark to a distributed environment. As discussed in Chap-
ter 5, the main goal of the Train Benchmark is to measure the query reevaluation times in systems
operating on a graph-like data set. The benchmark targets a “real-world” MDE workload by running
a specific set of queries and transformations on the model. In this workload profile, the system runs
either a single query or a single transformation at a time, as quickly as possible.

Instance models To assess scalability, the benchmark uses instance models of growing sizes, each
model containing twice as many model elements as the previous one (Sec. 5.3.7). Scalability is also
evaluated against queries of different complexity. For a successful run, the tested tool is expected to
evaluate the query and return the identifiers of the model elements in the result set.

Transformations In the transformation phase, the benchmark runs quick fix transformations
(Sec. 9.1) on 10% of the invalid elements (the result set of the check phase), except for the Semaphore-
Neighbor query, where 1/3 of the invalid elements are modified. The transformations run in a single
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SF Triples Nodes Edges PosLength (2) RouteSensor (4) SemN. (8) SwitchM. (2)

RSS MS RSS MS RSS MS RSS MS

1 23k 6k 17k 470 47 94 9 3 1 19 1
4 86k 23k 63k 1 769 176 348 31 6 2 91 9
16 334k 88k 245k 6 893 689 1 301 126 19 6 326 29
64 1M 361k 1M 28 239 2 823 5 324 511 69 19 1 287 119
256 5M 1M 3M 110 739 11 073 21 097 1 996 254 74 5 109 485

1 024 21M 5M 15M 443 458 44 345 84 107 8 024 983 287 20 716 1 977
4 096 85M 22M 63M 1 769 402 176 940 336 507 32 051 − − 81 410 7 730

Table 9.1: Metrics of the instance models (of scale factors 4n) and their metrics on selected
Train Benchmark queries. SF: scale factor, RSS: result set size, MS: modification size.

logical transaction, implemented withmultiple physical transactions, each affecting at most 500 graph
elements.

Metrics To quantify the complexity of the benchmark test cases, we use a set of metrics that have
been shown to correspond well to performance [Izs+13b]. The values for the test cases are shown
in Tab. 9.1. The problem size numbers take the values of 2n in the range from 1 to 4096. For space
considerations, only every other problem size is listed. The complexity of an instance model is best de-
scribed by the number of its triples, equal to the sum of its nodes and edges. The queries are quantified
by the number of their variables (shown in parentheses) and their result set size (RSS). The transfor-
mations are characterized by the number of model elements modified (modification size, MS).

9.3.2 Benchmark Architecture

Benchmark executor The benchmark is controlled by a distinguished node of the system, called
the executor. The executor delegates the operations (e.g. loading the model) to the distributed sys-
tem. The queries and the model manipulation operations are handled by the underlying database
management system which runs them distributedly and waits for the distributed operation to finish,
effectively creating a synchronization point after each transaction.

Benchmark setups We defined two benchmark setups:
1. As a non-incremental baseline, we used an open-source distributed triplestore and SPARQL

query system, 4store [HLS09].
2. We deployed IncQuery-D with 4store as a backend database.

Methodology It is important to mention that the benchmark is strongly centralized: the coordinator
node of IncQuery-D runs on the same server as the benchmark executor. The benchmark executor
software used the framework of the Train Benchmark to collect data about the results of the bench-
mark. These were not only used for performance benchmarking but also to ensure the functional
equivalence of the systems under benchmark.

Phases The precise execution semantics for each phase are defined as follows:
1. The check phase includes loading the model from the disk (serialized as RDF/XML [GS14]), per-

sisting it in the database backend, and, in the case of IncQuery-D, initializing the Rete network.
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2. The execution time of the check phase is the time required for the first complete evaluation of
the query.

3. The transformation phase starts with the selection of the invalid model elements and is finished
after the modifications are persisted in the database backend. In the case of IncQuery-D, the
transformation is only finished after the Rete network has processed the changes and is in a
consistent state.

4. The recheck phase re-runs the query of the check phase, and retrieves the updated results.
The execution time includes the time required for the defined operation, the computation and

I/O operations of the servers in the cluster and the network communication (to both directions).
Both during the development and in runtime we ensured the functional equivalence of the measured
tools by comparing their results to a reference result. During the development, we followed the Train
Benchmark’s specification as presented in [r19]. This precisely defines the steps for each phase, e.g.
the number of elements to modify in each transformation. For testing, we checked the result set for
correctness against the reference implementation.

Environment We used 4store [HLS09] (version 1.1.5) as our storage backend. The benchmark ran
on the Ubuntu 12.10 64-bit operating system with Oracle JDK 7. For the implementation of the dis-
tributed Rete network, we used Akka [Lig18] (version 2.1.4), a distributed, asynchronous messaging
system. The system was deployed on the private cloud that runs on the Apache VCL (Virtual Com-
puting Lab) platform. We reserved four virtual machines on separate host machines, with each using
a quad-core Intel Xeon L5420 CPU running at 2.5 GHz and having 16 GB of RAM. The host machines
were connected to a dedicated gigabit Ethernet network.

9.3.3 Results

The benchmark results of our experiments are shown in Fig. 9.4. On each plot, the x axis shows the
problem size, i.e. the size of the instance model, while the y axis shows the execution time of a certain
phase, measured in seconds. Both axes use logarithmic scale.

First, we discuss the results for RouteSensor, a query of medium complexity. Fig. 9.4a presents the
combined execution time for the load and initial validation phases. The execution time is a low order
polynomial of the model size for both the standalone 4store and the IncQuery-D system. The results
show that despite the initial overhead of the Rete network initialization, IncQuery-D has a significant
advantage starting from medium-sized models (with approximately 1 million triples). Fig. 9.4b shows
the execution time for the sum of the transformation and recheck phases. The results show that the
Rete maintenance overhead imposed by IncQuery-D on model manipulation operations is low, and
overall the model transformation phase when using IncQuery-D is considerably faster for models
larger than a few hundred thousand triples. Fig. 9.4c focuses on the recheck phase. The performance of
IncQuery-D is characteristically different from that of the SPARQL engine of 4store. Even for models
with tens of millions of tuples, IncQuery-D provides close to instantaneous query re-evaluation.

Fig. 9.4d, 9.4e, and 9.4f show detailed results for the PosLength, the SemaphoreNeighbor and
the SwitchMonitored queries, respectively. The PosLength query uses only a few variables but has a
large result set, which is a challenge for incremental query evaluation systems. Still, IncQuery-D still
provides reasonably fast load, transformation and query evaluation times, while outperforming 4store
on the recheck time. The SemaphoreNeighbor query includes many variables but has a small match
set. Its results show that IncQuery-D has a characteristic advantage on both the transformation and
the recheck phases. The SwitchMonitored query uses a few variables and has a medium-sized result
set, also showing a clear advantage of IncQuery-D for transformation and recheck.
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(d) Query PosLength.
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(e) Query SemaphoreNeighbor.
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(f) Query SwitchMonitored.

Figure 9.4: Execution times of queries and transformations in different benchmark phases.

Summary of observations Based on the results, we can conclude the following observations. As
expected, due to the overhead of constructing the Rete network, the non-incremental approach is often
faster for small models. However, even for medium-sized models (with a couple of million triples), the
Rete construction overhead already pays off for the initial query evaluation (check phase). After the
Rete network is initialized, IncQuery-D provides significantly improved transformation and recheck
times, with the recheck times being consistently orders of magnitude faster due to the different char-
acteristics of their execution time. In summary, these observations show that IncQuery-D is not just
capable of processing models with over 10 million elements, but also that it provides close to instan-
taneous query evaluation times even for very complex queries.

Threats to validity To minimize internal threats to validity, we turned off the caching mechanisms
of the operating system to force rereading the serialized model from the disk. Additionally, to avoid
the propagation of the warmup effect of the Java Virtual Machine between the runs, each test case
was started independently in separate JVM.

As our cloud infrastructure was subject to minimal concurrent load during the measurements,
we aimed to minize the distortion due to load transients by running the benchmark three times and
taking theminimum value for each phase into consideration. We did experience a certain deviation of
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execution times for smaller models (Fig. 9.4f). However, for larger models (our most important target),
the transient effects have no significant influence on the validity of the benchmark results.

Regarding external validity, we used a benchmark that is a faithful representation of a work-
load profile of a modelling tool for large-scale models (Chapter 5). For both systems (4store and
IncQuery-D), the query implementations were validated by domain experts. We aimed to minimize
the potential bias introduced by the additional degrees of freedom inherent in distributed systems,
e.g. by a randomized manual allocation of the processing nodes of Rete network in the cloud.

9.4 Conclusion

In this chapter, we presented IncQuery-D, an approach to extend incremental systems for distributed
processing, which allows processing large graphswith complex queryworkloads. Similarly to ingraph
(presented in Chapter 8, our proposal is based on a distributed Rete network. In this setup, the network
is decoupled from a sharded graph database by a distributed model indexer and model access adapter.
We presented a detailed performance evaluation in the context of quick-fix software design model
transformations combined with on-the-fly well-formedness validation, using the Train Benchmark’s
Repair scenario. The results show nearly instantaneous complex query re-evaluation well beyond 107
model elements.
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Chapter10

Comparison to Related GraphQuery

and IVM Techniques

In this chapter, we discuss why grap queries are inherently difficult (Sec. 10.1), review the literature
on worst-case optimal join algorithms (Sec. 10.2), incremental view maintenance (IVM) techniques
(Sec. 10.3), graph query languages (Sec. 10.4), and mapping between graph and relational queries
(Sec. 10.5). We finish the chapter with remarks on the relationship between joins, matrix multiplica-
tions, and graph queries (Sec. 10.6).

10.1 The Complex Structure of Graphs and Its Implications

There are numerous works on query optimization and evaluation for relational databases. However,
the challenges running graph queries efficiently often receives significantly less attention, despite the
fact that it is often consideredmore difficult than relational query optimization and evaluation [Che+08;
Fan+10; Erl+15]. The key reasons behind this are the following.

1. The curse of connectedness: graph queries exhibit scattered, random access patterns on data.
Common latency hiding and program optimization techniques employed in contemporary com-
puter architectures – such as CPU-level caching and branch prediction [HP12] – are designed
to operate on linear and simple hierarchical data structures (lists, stacks, or trees). However,
they are considerable less efficient for graph processing: graph workloads can expect orders of
magnitude more cache misses and failed predictions [Sha+17].

2. Due to the difficulty of sharding the graph into separate chunks, it is very difficult to process a
graph in parallel [Sha+17]. This is true both for single machine (multi-core) system and presents
even more challenges in multi-server distributed setups.

3. Access of properties (or attributes) on graph elements makes query evaluation more expensive
as it requires extra memory for building indices over the graph attributes in addition to the
structural indices. Additionally, it makes optimization significantly more complex [SEH12].

All of these reasons affect tools both in MDE tools and database engines equivalently.

10.2 Worst-Case Optimal Join Algorithms for Subgraph Queries

Relational and graph database managements systems rely heavily on join operations, and often spend
the majority of query execution time evaluating joins (see the choke points considering join perfor-
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mance in Sec. D.1.2). Acknowledging the importance of their role, improving the efficiency of join
operators is a well-researched aspect of database systems. That said, industrial implementations carry
a lot of inertia and often stick with proven solutions instead of adapting new algorithms. In particular,
current industry-grade DBMSs use almost exclusively a sequence of binary joins (also known as pair-
wise or two-way joins) to express the joins on multiple relations and apply optimization techniques
that have their roots in IBM’s System R experimental DBMS [Sel+79].

While the challenge of evaluating cyclic queries (Def. 27) has been known om the context of object-
oriented databases [KKD89], it has only been shown recently that binary joins are asymptotically
suboptimal for such queries [NRR13; Ngu+15a] (including ones common in subgraph matching). The
most basic example is the so-called triangle query:

Q△ ≡ c⊙←→⊙a (b⊙←→◯c (a⊙←→◯b (◯a))) ,

This query can be rewritten into NRA/FRA as two binary joins:

Q△ ≡ [ ◯←→◯a b] [ ◯←→◯b c] [ ◯←→◯c a]

Paper [NRR13] proved that for this query, all evaluation plans that only use binary joins yield subop-
timal results as they need to enumerate all wedges (Def. 33), requiring at leastΩ (n2) steps for a graph
with n edges. In many realistic graphs, only a small fraction of these wedges will close into a triangle
(Def. 34). The family of worst-case optimal join algorithms (WCOJs) tackles this issue by using a set of
intersection operations to reduce the size of interim datasets, reducing the complexity to O (n3/2), an
considerable asymptotic speedup of

√
n.

WCOJ algorithms Non-incremental WCOJ algorithms include the Leapfrog Triejoin algorithm
(LFTJ) of the Datalog-based LogicBlox system [Are+15], which was implemented before the limi-
tations of binary joins were identified and the termWCOJ was coined. Hence, it can be considered as
an “accidentally worst-case optimal” algorithm.

Paper [Ngu+15a] and its accompanying technical report [Ngu+15b] found that “mathematically,
(hyper)graph pattern matching is equivalent to join processing”, and stated that RDBMSs provide
subpar performance for graph queries partly due to the inherent suboptimality of using query plans
with exclusively binary joins. To investigate whether WCOJ algorithms are able to speedup subgraph
matching queries, they test two algorithms: LFTJ and the Minesweeper algorithm [Ngo+14].

Experiments for applying WCOJ algorithms were carried out in the context of RDF data manage-
ment [Abe+16].1 WCOJ algorithms are implemented in two research prototypes: the graph-specific
EmptyHeaded [Abe+17] system and its generalization for linear algebra, BI, and graph queries, Lev-
elHeaded [Abe+18]. LevelHeaded is discussed later in Sec. 10.6. Groundwork for applying WCOJs on
relational and XML data was laid down in [Che18].

Applications in graph analytics It is interesting to note that counting and enumerating trian-
gles are well-known challenges in graph analytics. In fact, LFTJ has been used for graph analytics
in [Zin+16] which implemented an efficient triangle enumeration algorithm on both CPU and GPU
computing platforms. In Sec. 3.8, we discussed this related result along with our linear algebra-based
(but still suboptimal) approach to calculate the local clustering coefficient. These challenges and con-
cepts have a profound relationship as we will discuss in Sec. 10.6.

1Note the similarity between the title of the papers – “Join Processing for Graph Patterns: An Old Dog with New
Tricks” [Ngu+15a] and “Old Techniques for New Join Algorithms: A Case Study in RDF Processing” [Abe+16].
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Ref. Contributions A/P Bag NF2 Null Agg. Ord. Gra.

[BLT86] determining irrelevant updates, maintenance of select–project–join views A+P ◯ ◯ ◯ ◯ ◯ ◯
[QW91] change propagation equations for relational algebra A ◯ ◯ ◯ ◯ ◯ ◯
[GMS93] counting algorithm (non-recursive views), DRed algorithm (recursive views) P ⊗ ◯ ◯ ◯ ◯ ◯
[Col+96] change propagation equations for bag alg., incl. aggregation but no group-by A ⊗ ◯ ◯ ⊘ ◯ ◯
[Qua96] group-by aggregations P ⊗ ◯ ⊗ ⊗ ◯ ◯

[Kaw+97] extending IVM techniques to maintain views defined over a nested data model A ⊗ ⊗ ◯ ◯ ◯ ◯
[MQM97] group-by-aggregation, summary-deltas for representing changes P ⊗ ◯ ◯ ⊗ ◯ ◯
[GLT97] improved change propagation equations for relational algebra, fixes [QW91] A ◯ ◯ ◯ ◯ ◯ ◯
[GK98] change propagation equations for semijoins, antijoins and outer joins A ◯ ◯ ⊗ ◯ ◯ ◯

[Don+99] maintenance of transitive closure on directed graphs using a SQL-like language A ⊗ ⊗ ◯ ⊗ ◯ ◯
[Pal+02] maintenance of non-distributive aggregate functions P ⊗ ◯ ⊗ ⊗ ◯ ◯
[LVM03] incremental equations for the operators of the nested model A ◯ ⊗ ◯ ◯ ◯ ◯
[DER03a] order-preserving maintenance of XQuery views A ⊗ ⊗ ◯ ⊘ ⊗ ◯
[Yi+03] IVM on top-k views P ◯ ◯ ◯ ◯ ⊘ ◯
[GM06] generalized summary-deltas, group-by-aggregations, outer joins A ⊗ ◯ ⊗ ⊗ ◯ ◯
[LZ07a] outer joins and aggregation, fixes [GM06] P ⊗ ◯ ⊗ ⊗ ◯ ◯
[Vel13] IVM for Leapfrog Triejoin, a worst-case optimal join algorithm P ◯ ◯ ◯ ◯ ◯ ⊗

[Koc+14] higher-order IVM, viewlet transformations, the DBToaster system A ⊗ ◯ ⊘ ⊘ ⊘ ◯
[IUV17] Dynamic Yannakakis Algorithm for incremental evaluation of acyclic queries A ⊗ ◯ ◯ ⊗ ◯ ◯
[NO18] factorized IVM A ⊗ ◯ ◯ ◯ ◯ ◯
[Idr+18] generalized Dynamic Yannakakis Algorithm A ⊗ ◯ ◯ ◯ ◯ ⊘

[Amm+18] delta-generic join for subgraph matching, using WCOJs for cyclic queries A ◯ ◯ ◯ ◯ ◯ ⊗
[Sza+18] IVM for recursive aggregations A+P ◯ ◯ ◯ ⊗ ◯ ◯

Table 10.1: Overview of related literature on IVM techniques, presented in order of appear-
ance. Notation – A/P : algebraic/procedural; NF2: non-first normal form relations, Agg.: ag-
gregation, Ord.: ordering, Gra.: subgraph matching queries; ⊗ fully supported, ⊘ supported
to some extent, ◯ not supported.

10.3 Incremental View Maintenance Techniques

Due to the rich set of features required by property graph queries (as discussed in Sec. 8.1), an incre-
mental query system on these queries needs to combine multiple incremental algorithms. Here, we
give a brief overview of the literature on incremental viewmaintenance. Extensive surveys on IVM ap-
proaches were presented in paper [GM95], book [GM99], monograph [CY12], and tutorial [Elg+18].2
According to the taxonomy of [CY12], our requirements given in Chapter 8 can be categorized as:

1. The language and data model are openCypher and the property graph data model, respectively.
2. The information used by the maintenance procedure is not restricted, i.e. base tables are acces-

sible at any time.
3. The timing of the maintenance is immediate.
Viewmaintenance techniques are also categorized according to how they calculate the differences

between execution results. On the one hand, algebraic approaches take query Q and derive delta ex-
pressions (or delta tables) ∆Q and ∇Q that hold the positive and negative change sets, respectively.
They evaluate these with the same query engine that calculate Q and apply their results (e.g. the
maintained version of the query can be determined as Qm = Q −∇Q ∪∆Q. On the other hand, pro-
cedural approaches can rely on custom code (such as stored procedures or other imperative methods)
and auxiliary data structures to calculate the changes in the result set. Monograph [CY12] gives an
excellent overview of the trade-offs of these approaches (emphasis ours):

“The algebraic approach is attractive for several reasons. Besides being conceptually sim-
ple, it is modular and composable: change propagation equations are defined separately

2It is worth pointing out that even such comprehensive surveys do not cover challenges 1–3 and 8–10 raised in Sec. 8.1.
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for each operator in the view definition language, and together they can handle arbitrarily
complex query expressions. In its purest form, this approach expresses all maintenance
tasks using only the standard query operators, and hence can leverage existing query ex-
ecution and optimization engines. However, in reality [...], efficient implementation some-
times requires giving up the conceptual simplicity of the algebraic approach and specifying
aspects of the maintenance in a more procedural manner. Therefore, the division between
algebraic and procedural approaches toward specifying incremental view maintenance has
been increasingly blurred.”

The remark stating that the division between algebraic and procedural techniques is not always
clear is confirmed by the lack of consistency demonstrated by papers categorizing IVM approaches.
For example, the approach of [BLT86] is considered as algebraic in someworks [CY12] and procedural
in others [DER03a].

Procedural approaches Papers [Kel85; BLT86; GMS93] laid groundwork in the area of IVM and
introduced procedural approaches for select–project–join (SPJ) views on a set-based relational algebra
with some limitations. For example, the approach of paper [Kel85] only supports relations in Boyce-
Codd Normal Form (BCNF). Incremental maintenance for non-distributive aggregate functions were
discussed in [Pal+02]. Maintenance of top-k queries were discussed in [Yi+03].

Algebraic approaches A preliminary work on algebraic recomputation was presented in [QW91].
Its algorithm was fixed in [GLT97], co-authored by Griffin and Libkin, who also produced one of the
seminal papers in the field that described IVM for multisets [GL95]. Later works added extensions to
support additional operators:

• aggregations with group-by attributes [Qua96],
• semijoins/outer joins [GK98],
• ordering [LD00; DER03a; DER03b], and
• outer joins with aggregations [LZ07a] (using a procedural approach).

Semijoins, antijoins and outer joins The evaluation of semijoin, antijoin, and outer join expres-
sions is particularly important in the context of graph queries. For example, if we would like to is-
sue a query to “count all first- and second-degree friends of each Person”, given relations p(id) and
kA = kB = knows(p1,p2), we would get the following complex expression:

γp.id
p.id,count distinct(kA.p2)→firstDeg,count distinct(kB.p2)→secondDeg

σp.id≠kB.p2 (p
p.id=kA.p1

kA
kA.p2=kB.p1

kB)

(Note that the selection operation is required to filter out the start person from second degree friends.)
If person p returned by kA.p1 does not have any first degree friends, the query produces tuple ⟨p,0,0⟩.
If p has a friend, but the friend has no other friends, the query produces ⟨p,1,0⟩. Allowing NULL val-
ues is not strictly necessary (it is possible to formulate this query without the left outer join operator
and therefore avoiding interimNULL values during the computation) such expressions are more cum-
bersome as they consist of the union of multiple expressions using antijoins. Therefore, the challenge
of maintaining the results of antijoin-like operator is unavoidable and handling left outer join– or
providing a way to immediately return a nested (possibly empty) collection for later aggregation – is
a highly desirable feature in graph query processing.
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There are a number of works on IVM for outer join expressions, but none were conceived in the
context of graph queries. Looking at the history of the problem, the first delta expressions for outer
joins were presented in [GK98]. Paper [GM06] proposed a more efficient approach, but unfortunately
it turned out to be incorrect in some cases. Later, paper [LZ07a] defined a complicated algorithm that
(1) rewrites the query expressions into join-disjunctive normal form [Gal94; LZ05; LZ07b], (2) creates
a DAG of the relations involved in the expression, (3) computes the primary delta that should be
added to the previous results, and (4) secondary the secondary delta (a set of expressions based on
the primary delta) that should be removed from the results. This results in efficient and correct view
maintenance, but also places some limitations on its expressions, e.g. it does not allow self joins in the
expression (which is often required by graph queries) and also requires certain primary key–foreign
key constraints to be held between relations. Paper [Nic12] lifted some of these limitations based on
the implementation of the Sybase SQL Anywhere RDBMS. Combining outer joins with multiway,
WOCJ algorithms, especially in the context of IVM is an open research area.

Papers [LZ05] and [LZ07b] target the loosely related view matching problem, which requires to
select certain materialized views to speed up query processing. This introduces a complex problem
as the query optimizer needs to determine whether a query or part of a query can be computed from
existing materialized views.”

Relationship of IVM and integrity constraint checking Paper [RSS96] established that view
maintenance and integrity constraint checking are closely related issues, and that both can be per-
formed more efficiently by using space-time tradeoff.

IVM on non-first normal form data Papers [Kaw+97] and [LVM99] discuss IVM techniques for
nested relational algebra. An approach for incremental calculation of XQuery expressions is pre-
sented in [DER03a] and its accompanying technical report [DER03b]. These works present an order-
preserving technique to perform IVM over XML data structures, which can prove useful when repre-
senting ordered data sets (such as paths in graph queries).

Schema inferencing algorithm The most similar approach to our schema inferencing algorithm
(Alg. 1 in Sec. 8.4.3) is the schema cleanup algorithm [ZPR02], which is defined in the context of
evaluating XQuery expressions on XML documents. It assumes a-priori knowledge of the schema
and aims to remove as many attributes as possible from the inputs of the query. Another loosely
related work is the schema merging algorithm of [Li+11], defined for consolidating multiple schemas
into a mediated one. Neither of these algorithms aim to determine the schema of relational algebraic
operators based exclusively on the query specifications. Papers on schema-free XQuery [LYJ08] and
schema-free SQL [LPJ14] present approaches that allow users to define queries using a partial XML or
SQL database schema.

DBToaster The DBToaster project [Koc+14] introduced the viewlet transforms technique which al-
lows efficient incremental maintenance. Instead of using separate (multi)sets for positive and negative
changesets, DBToaster employs generalized multiset relations (GMRs), which allow negative multi-
plicities and even rational (i.e. non-integer) numbers. This allows compact representation of the delta
queries, which gives way to using higher-order derivation that repeatedly calculates deltas on queries.
DBToaster is available as an open-source project3 and supports a considerable subset of the SQL lan-
guage, including nested subqueries. Some of its authors also contributed towards IVM on analytical,

3https://dbtoaster.github.io/
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linear algebra-based queries [NEK14], optimization of incremental queries [TK15], and IVM on col-
lections [KLT16]. Another recent followup of the DBToaster project is F-IVM, “a unified incremental
maintenance approach for analytics over normalized databases” [NO18].

IVMonobject-oriented data The problem of defining views for OODBMSswas studied in [Ber92],
while the semantics of update operations were discussed in [And+92]. An active OODBMS, REACH ,
built on top of Texas Instruments’ Open OODB Toolkit was introduced in [Buc+95]. REACH used a
rule-based approach, but did not support a declarative query language and the paper does not discuss
transitive reachability or path queries. An approach for continuously checking integrity constraints
defined in the PROGRES environment [SWZ99] and supported by the underlying GRAS OODBMSs
was presented in [MSW98].

An important feature of OODBMSs is their focus on object identity [AK89], which requires each
object to have an existence which is independent of its value [Atk+89]. This feature has profound
consequences when defining views: approaches that define the view as an object graph – instead of
a relation – need to overcome the problem of providing identities to the created object nodes. This
challenge currently does not affect openCypher-based implementations, but will be relevant in the
context of later versions and other PG query languages such as G-CORE (see Sec. 2.6.3). The authors
of [KR98] presented IVM techniques on top of their MultiView OODBMS [KR96]. Papers [LVM00;
LVM03] demonstrated methods for IVM on object-oriented databases, based on the previous work of
the authors in IVM on nested data structures [LVM99].

IVM on non-relational data The dominance of relational databases in the last decades signifi-
cantly influenced the development of IVM techniques. Consequently, most research papers on IVM
considered the relational data model. Still, there are some important works that target IVM on
non-relational data. IVM techniques for semistructured data were studied as early as 1998 in pa-
per [Abi+98], which conluded that “view maintenance in a graph-based data model such as OEM
[Object Exchange Model] is fundamentally more difficult than in the relational model”. GraphIVM, a
system for IVM on graphs that uses non-relational caching techniques, was presented in a Master’s
thesis work [Sax15]. Paper [Zha+17] targeted IVM on array data for scientific computations.

Incrementalized WCOJ algorithms An incremental version of LFTJ, implemented in the
LogicBlox system [Are+15], was described in preprint [Vel13]. The delta generic join algorithm with
stronger theoretical guarantees was presented in paper [Amm+18], along with an implementation on
top of timely dataflow [Mur+13; Mur+16], a framework for defining iterative and incremental compu-
tations. Another recent result in the Dynamic Yannakakis Algorithm (Dyn) [IUV17], an incremental
version of the well-known Yannakakis algorithm [Yan81]. Dyn was generalized by extending the no-
tion of acyclicity and allowing θ-joins in [Idr+18].

Recursive aggregations Paper [Sza+18] introduced a novel algorithm that performs IVM for Dat-
alog queries defining recursive aggregation. The paper used a static code analysis use case as a moti-
vating example for evaluating the algorithm.

Rule-based expert systems IVM has been used extensively in the context of rule-based expert
systems (also known as production systems), which support similar features with their discrimination
networks [BG15]. Notable approaches include Rete [For82] and TREAT [ML91]. In expert systems,
users formulate rules (or productions), which have a left-hand side (LHS) and a right-hand side (RHS).
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As described in [ML91], a rule engine (or production system interpreter) repeatedly executes a cycle of
three operations:

1. Match: enumerate working memory element subsets (instantiations) that satisfy an LHS and
collect them to a conflict set.

2. Conflict set resolution: select an element from the instantiations.
3. Act: execute the actions in the RHS of the selected instantiation.
Note that the “match” step is very similar to performing IVM for the LHS on the working memory

elements. However, most IVM use cases define read-only queries for continuous evaluation and do
not require the system to execute actions based on the set of matches. Hence, production system
algorithm accomplish a more complex task than regular IVM. For this reason, we do not discuss
these algorithms in detail, but include a few reference for completeness. The lazy evaluation-based
LEAPS algorithmwas presented in [MB90; Bat94]. A performance comparison of the Rete and TREAT
algorithmswas given in [WH92]. The Rete, TREAT and LEAPS algorithmswere compared in [Bra+91],
concluding that TREAT is favourable in many cases, but noting that it is more difficult to implement.
Gator networks (generalized TREAT or Rete) were discussed in [HBC02]. Another bridge between
the world of expert and database systems was laid down in [BW94], which presented an algebraic
approach to rule analysis in expert database systems. A heavilymodified version of the Rete algorithm,
named PHREAK,4 is used in the Drools5 [Pro11] rule-based expert system. A GPU-based parallel rule-
based reasoner based on the Rete algorithmwas presented in [Pet+14], while paper [JO18] adapted the
Rete algorithm to the Apache Spark [Zah+10] distributed data processing framework for reasoning
on RDFS [GB14b] data structures.

Summary of approaches Tab. 10.1 shows an overview of IVM techniques and their applicability to
bags, NF2 data, null values, complex aggregations, ordering, and support for subgraph matching-style
queries, along with their categorization to algebraic/procedural.

Further reading For further reading, we collected PhD dissertations dedicated to the problem of
improving query performance. The Rete and TREAT algorithms were published in the dissertations
of Charles Forgy [For79] and Daniel Miranker [Mir90], respectively. Robert B. Doorenbos presented
optimization techniques for the Rete algorithm [Doo95]. Jose-Luis Ambite showed an approach to
optimize queries with graph rewriting techniques [Amb98]. Gergely Varró designed efficient search-
based query algorithms on graph models [Var08], while Gábor Bergmann adapted the Rete algorithm
to EMF models [Ber13]. Andrey Gubichev’s work investigates both graph query optimization and
efficient evaluation techniques [Gub15]. Recent results in higher-order incremental view maintenance
on SQL queries were presented by Milos Nikolic in [Nik16].

10.4 Graph Query Languages for IVM

A recent survey [Ang+17] presents an overview of modern graph query languages. It discusses pop-
ular data models, defines two categories of query functionalities (graph patterns and navigational
expressions) and presents important concepts such as matching semantics. According to this catego-
rization, our work focuses on graph patterns. In the following, we discuss languages for graph pattern
matching andmainly focus on implementations that provide (some degree of) incremental viewmain-
tenance for queries in the language. For more details on graph queries, see also Sec. 2.6.

4https://docs.jboss.org/drools/release/6.5.0.Final/drools-docs/html_single/#PHREAK
5http://drools.org/
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10.4.1 Cypher and openCypher

Early attemps to formalize the Cypher language were presented in [HG16] and [c6], which use an
extended relational graph algebra to capture the semantics of the language. In [Jun+17], graph queries
were defined in a Cypher-like language and evaluated over Apache Flink-based Gradoop framework
using relational operators. However, the formalization of the language was not discussed in detail. A
formal semantic definition of the core read-query features of Cypher was presented in [Fra+18], co-
authored by several members of Neo4j’s openCypher working group. A summary on openCypher’s
current state and future roadmap was published in a tutorial [Gre+18].

Non-incremental implementations The Cypher language is originated in the Neo4j graph
database, which introduced the language in 2013.6 Cypher is also supported by the AgensGraph7
and SAP HANA Graph [Rud+13] systems, although neither has full feature coverage. The Cypher
for Apache Spark project8 maps openCypher queries to the Spark DataFrame API and the Catalyst
optimizer (see also Sec. 10.5). The Cypher for Gremlin project9 translates openCypher queries to the
Gremlin language [Rod15].

Incremental implementations Graphflow10 [Kan+17] is an incremental (or active) openCypher
database. As such, it bears the closest similarity to our approach. Its Cypher++ language extends
Cypher with user-defined functions that trigger on new matches. It uses the delta generic join algo-
rithm [Amm+18] (Sec. 10.3), an incrementalized version of generic join, a worst-case optimal join
algorithm. However, Graphflow lacks support for some language features such as negative/optional
edges and transitive closures.

10.4.2 G-CORE

G-CORE [Ang+18] is a design language created by the Linked Data Benchmark Council’s (LDBC)
Graph Query Language task force. According to its author, G-CORE does not strive to be a standard,
and instead aims to “guide the evolution of both existing and future graph query languages”. The
language was designed to fulfil two key characteristics, lacking from popular graph query languages
available at the time: (1) allow composition of queries and (2) treat paths as first class citizens. To these
ends, (1) G-CORE queries return graphs as their results (which allows composability), and (2) they are
defined over the path property graph data model, which handles paths as part of the graph with their
own labels and properties.

Implementations G-CORE currently has a proof-of-concept reference implementation11 [Cio18].
This transpiles G-CORE queries to Apache Spark12 [Zah+10], using Spark SQL [Arm+15] and
GraphX [Xin+13] to evaluate the queries (see also Sec. 10.5). The goal of this implementation is not
to provide high-performance, instead it aims to discover ambiguities in the specification and dis-
cover possible points for improving the language. Additionally to the reference implementation, the

6https://neo4j.com/
7http://bitnine.net/agensgraph/
8https://github.com/opencypher/cypher-for-apache-spark
9https://github.com/opencypher/cypher-for-gremlin
10http://graphflow.io/
11https://github.com/ldbc/gcore-spark
12https://spark.apache.org/
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G-CORE grammar specification and a parser for the language are also available as open-source soft-
ware.13

10.4.3 SPARQL

Of the existing practical graph query languages, SPARQL is best understood in terms of semantics
and complexity [PAG09], hence it is worth studying its implementations for further research on IVM
support for existing graph query languages.

Implementations Trinity is a graph engine operating on top of a memory cloud. The latest publi-
cation on Trinity is [Sha+17], which provides a high-level overview and details some use cases. The
detailed architecture of the system and some performance experiments for graph algorithms are pre-
sented in [SWL13], while the Trinity.RDF system, graph exploration algorithms and their performance
for evaluating SPARQL queries are discussed in [Zen+13]. The core of Trinity is available open-source
as the Microsoft Graph Engine.14

Diamond [Mir+12] uses the Rete algorithm to evaluate SPARQL queries on distributed RDF data.
During the evaluation of a query, it identifies additional pieces of data by dereferencing URLs and
turning to remote servers. Newly introduced data elements are fed into the Rete network of the algo-
rithm as (positive) updates. The implementation of the approach was not published.

Instans15 [RNT12] uses the Rete algorithm to perform complex event processing on streaming RDF
data. Instans is a research prototype implemented in LISP. Strider16 [Ren+17] is a recently developed
research prototype, which supporting continuous SPARQL queries on top of Apache Spark.

G-SPARQL G-SPARQL [SEH12] adds attribute handling to the SPARQL language, resulting in a
language that is has an expressive power very similar to property graph query languages. While the
G-SPARQL paper contains some experimental results, suggesting that the language had a working
prototype, the implementation was not released and work on the language seems discontinued.

Streaming SPARQL Semantics of theContinuous Query Language (CQL) were studied in [ABW06].
Between 2010 and 2011, numerous languages were proposed to define streaming queries on SPARQL,
including C-SPARQL [Bar+10], SPARQLStream [CCG10], and CQUELS [Phu+11].

10.4.4 VIATRA Query Language

Graph pattern matching has been used extensively in the domain of model-driven engineering. We
introduced the Viatra Query Language (VQL) in Sec. 2.6.5.

Implementations The Viatra Query project fully implements VQL and supports both one-
time [Búr+15] and incremental query processing, primarily targeting EMF models (Sec. 2.3.1). The
IncQuery-D17 project [c4] (Chapter 9) is a distributed incremental graph query engine, which uses a

13https://github.com/ldbc/ldbc_gcore_parser
14https://github.com/Microsoft/GraphEngine
15https://github.com/aaltodsg/instans/
16https://github.com/renxiangnan/strider
17https://github.com/viatra/incqueryd
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query language based on the Viatra Query Language and operates on RDF graphs. Viatra also sup-
ports complex event processing (CEP), i.e. defining temporal conditions for queries on continuously
changing graphs [DRV18].

10.4.5 Other Approaches for Graph Querying

To conclude the discussion on related graph languages, we list some notable languages which take a
different approach for formulating graph queries. As neither of these languages are closely related to
the challenges proposed in this dissertation, we only give a brief summary for them.

GraphQL GraphQL is a language for querying property graphs, originally proposed by Facebook.18
The first in-depth study on its semantics and complexity was published in [HP18]. Despite its name,
GraphQL is not a fully-featured graph query language as it lacks many basic constructs such as tran-
sitive paths.

Gremlin Gremlin [Rod15] is a high-level imperative domain-specific language (DSL) based on the
dynamically typed Groovy language [Kni+15]. It allows users to formulate graph queries and algo-
rithms using traversal steps, relying on function composition and lazy evaluation for performing the
computations. Recent versions of Gremlin facilitate rewriting rules for optimization and support basic
pattern matching steps, which can evaluate graph patterns formulated in a declarative style. TheGrem-
lin language should not be confused with the Gremlin Structure API of the TinkerPop v3 framework,19
which is a low-level programming interface, formerly known as Blueprints in TinkerPop v2.20

Triple Graph Grammars Triple Graph Grammars (TGGs) [SK08] define transformations from
source model to a target model through a correspondence model. In a forward transformation scenario,
TGGs implement IVM as changes in the source model are incrementally reflected in the target model.
However, TGG implementations [JKS06; SK08; Anj+14] focus on bidirectional transformations and
therefore offer a limited set of rule, only supporting restricted negative application conditions (i.e.
antijoins) and no aggregations.

10.5 Mapping Between Graph and Relational Queries

A line of research closely related to our work considers query transpilers. These translate from a given
query language to another one, often simultaneously bridging the gap between different data models.
In most approaches, they transpile from a convenient and expressive language to a more mature
language with stable and efficient implementations. In this section, we investigate approaches that
translate between a graph query language (Cypher or SPARQL) and SQL.

Query transpilers consist of two key components:
1. the schema mapping that defines how to interpret the relational schema in terms of graph con-

cepts (e.g. how to interpret tables as nodes and edges) and
2. the query mapping, which defines the translation between the source language and the target

language.
18https://facebook.github.io/graphql/October2016/
19https://tinkerpop.apache.org/docs/3.3.4/reference/
20https://github.com/tinkerpop/blueprints/
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Tool Schema mapping Query mapping
Source language Target language

Entity Framework [Bla+06] Entity Data Model OO operations SQL
Hibernate [ONe08] Java annotations OO operations SQL
Viatra prototype [BHH12] manual VQL MySQL
SQLGraph [Sun+15a] generic schema Gremlin SQL
Cypher for Apache Spark SQL Graph DDL Cypher Spark DataFrames
Cytosm [Ste+17] gTop Cypher Vertica SQL
RDB-RDF views [Vid+17] manual manual PostgreSQL
GraphGen [XSD17] GraphGenDL GraphGenQL PostgreSQL or SQLite
G-CORE interpreter [Cio18] graph schema G-CORE Spark SQL and GraphX

R2D [Ram+09] RDF-to-Rel. mapping SQL SPARQL
R2G [VMT14] Data Mapper PostgreSQL Gremlin

Table 10.2: Tools for mapping between graph/relational schema and queries. The first group
of tools maps from a graph model to the relational model, while the seconds group does
maps in the opposite direction.

The tools with SQL as the target language aim to exploit thematurity and performance of relational
databases, along with the large amount of legacy data stored in such systems. Meanwhile, tools using
SQL as the source language rely on the existing tools that produce SQL queries (e.g. visualization
frameworks that generate SQL queries for importing data), and execute them on graph-based systems.
A summary of query transpilers is shown in Tab. 10.2.

10.5.1 Mapping from Graph Queries to Relational Queries

Object-relational mapping Entity Framework [Bla+06] and Hibernate [ONe08] are widely used
frameworks for object-relational mapping (ORM). Both provide a mapping from an object-oriented
data model (.NET or Java objects, respectively) to relational tables. Navigating between objects can
be interpreted as graph traversal and objects themselves are similar to the nodes of the property
graph data model. Hence, they share many common challenges with the graph-to-relational mapping
problem, but also lack some, e.g. calculating shortest paths.

Viatra SQLmapping prototype Paper [BHH12] presented an approach in the context of model-
driven engineering with the goal of continuously evaluating graph patterns in a relational database.
The patterns, formulated in the Viatra Query Language (Sec. 2.6.5), were transpiled to SQL queries.
These were then maintained using database triggers.

SQLGraph SQLGraph [Sun+15a]21 compiles Gremlin queries to SQL queries. In their approach, the
adjacency information (nodes and edges) is stored in a relational database, while properties are stored
in a JSON store.

Cypher for Apache Spark The Cypher for Apache Spark project is discussed in Sec. 10.4.1.
21SQLGraph should not be confused with GraphSQL, the predecessor of the TigerGraph database, see http://www.zdnet.

com/article/tigergraph-a-graph-database-born-to-roar/
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Cytosm Cytosm [Ste+17] is an approach forCypher to SQLmapping, targeting the Vertica system.
Cytosm defines gTop, a JSON-based language to define the mapping between the graph topology
and the relational schema. It preprocesses queries using the Pathfinder module, which uses the gTop
schema to narrow the search scope (e.g. if a node in the query references a property firstName, it
can infer that the node is of type Person if no other node labels are associated with this property) and
expands variable-length paths into the union of fixed length paths. For the actual transpilation, it uses
the OpenCypher to SQL converter module, which builds an abstract syntax tree (AST) from the Cypher
query. It then applies transformations on the tree to get the AST of the SQL query and generates the
textual query specification. Preliminary benchmark results – based on two queries from the LDBC
Social Network Benchmark’s Interactive workload [Erl+15] – have demonstrated good performance
compared to the graph available at the time of the experiments. However, the Cytosm project has
been abandoned since its publication.

RDB-RDF views The maintenance of RDF views on top of RDBMSs is presented in [Vid+17].

GraphGen GraphGen is a tool for compiling graph queries to relational ones. Their authors define
two Datalog-based languages: GraphGenDL for defining graph views and GraphGenQL for querying
those views. Their paper [XSD17] also presents an overview of possible approaches of combining
graph and relational systems. Another recent paper by the authors of GrapGen discusses how to
extract hidden graphs from relational databases [XD17], similarly to GraphMapper [KPT16] which
also targets JSON, XML, and CSV datasets.

G-CORE interpreter The G-CORE interpreter project is discussed in Sec. 2.6.3.

10.5.2 Mapping from Relational Queries to Graph Queries

Some works consider mapping from relational queries to graph queries, targeting either the RDF or
the property graph data model.

R2D R2D (RDF-to-Database) [Ram+09] converts RDF to relational structures by extracting relational
structures from RDF stores and presenting them as views. The schema mapping is defined by RDF-to-
Relational mapping files, while the queries are transpiled from SQL to SPARQL.

R2G R2G [VMT13; VMT14] is a tool for migrating relations to graphs, including the mapping of SQL
queries to graph queries. It has four key components and works as follows: (1) theMetadata Analyzer
inspects the relational schema and tries to find graph structures. Based on the extracted structures,
(2) the Data Mapper maps the relational schema to a graph schema (formulated using Tinkerpop
Blueprints), and (3) the Query Mapper maps graph queries from SQL to the Tinkerpop Gremlin v2
language. Finally, (4) the Graph Manager executes queries over the target graph using the mappings
generated by (2) and (3).

10.6 Connecting Joins, Matrix Multiplications, and Graph Queries

While linear algebra is often used for data analytics, query processing and linear algebra have been
traditionally treated as different aspects of data processing. However, it is easy to see that there are
important similarities between the two: joins are analogous to matrix multiplication operations, while
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Figure 10.1: Relationships between concepts in linear algebra, graph analytics, and query
processing.

global aggregations can be expressed as row- or column-wise summarizations. Awell-studied example
to highlight this similarity is thematrix multiplication query, which calculates the product of matrices
A andB represented in sparse format with their non-zero elements represented in tables A(i, j, v)

and B(j, k, v):

1 SELECT A.i, B.k, SUM(A.v*B.v)

2 FROM A, B

3 WHERE A.j = B.j

4 GROUP BY A.i, B.k

Theoretically, this query presents an important bridge between the fields of query processing and
linear algebraic (LA) computations. Its complexity and implications have been discussed in [KSS18].
Very recently, paper [Abe+18] presented the LevelHeaded system, which can be viewed as a gen-
eralization of the authors’ previous EmptyHeaded system [Abe+17]. Compared to its predecessor,
LevelHeaded does not focus solely on graph processing, but instead unifies the evaluation of complex
BI-style database queries and LA computations using a worst-case optimal join algorithm. The paper
uses the matrix multiplication query extensively in its examples.

While the matrix multiplication query might seem very academic, it has important practical appli-
cations, e.g. it is one of the recommended approaches in book “SQL Design Patterns” for expressing
reachability queries in graphs [TB07, Chapter 6: Graphs]. In this book, the authors use adjacency
matrices (stored in the sparse representation presented above) and adapt the incremental evaluation
techniques of papers [Don+99; DS00b] to determine the transitive closure on the input graph.

Relationships between concepts Fig. 10.1 shows the relationships between concepts in linear
algebra, graph analytics, and query processing. In Sec. 3.8, we showed that triangle queries can be
succinctly expressed with sparse matrix multiplication 1⃝ and cited an approach [Zin+16] that uses
the worst-case optimal Leapfrog Triejoin algorithm to enumerate triangles efficiently 2⃝. We gave a
short overview of worst-case optimal joins in Sec. 10.2 and presented ongoing work to apply them for
IVM in Sec. 10.3 3⃝. Finally, in this section, we presented recent findings that apply worst-case optimal
joins to express linear algebraic operations such as sparse matrix multiplication [Abe+18] 4⃝, along
with an algorithm that uses sparse matrix multiplication and IVM to calculate transitive closure in
relational databases [TB07, Chapter 6: Graphs] 5⃝.
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Chapter11

Conclusion and Future Work

In this chapter, I summarize the key contributions and highlight potential future research directions.

11.1 Summary of Contributions

11.1.1 Structural Analysis of Typed Graphs

How does a network emerge and what patterns does its graph exhibit? These are central questions of
network science that have been studied to great depth during the last few decades. However, these
works almost exclusively studied homogeneous networks, i.e. networks of a single node label and a
single edge type, which can be modelled with an untyped graph. While this approach yielded ground-
breaking results in many areas (such as the analysis of biological and social networks), it is difficult to
apply in fields which use heterogeneous graphs with edge types (also known as multiplex networks,
see Sec. 2.2). Types introduce even more variety in the structural interplay between the nodes and
edges of the graph. On a fine-grained level, this could mean investigating how likely it is that two
friends of a given person engage in common activities. At a higher granularity, it would be interesting
to observe how communities are formed based on such heterogeneous triangles. This example shows
how in-depth structural analyses that take the types into account could lead to a better understanding
of the emergence of both the microscopic and the macroscopic structure of typed graphs.

Creating synthetic graph instances is an important research challenge that has a variety of use
cases, ranging from producing customer data to self-driving autonomous vehicles. To implement such
graph generators, we need a basic understanding of how the target graphs are structured. This allows
us to guide the generator so that the synthesized graph satisfies the desired structural properties.

Group of contributions 1 I proposed various graph metrics and statistical analysis tech-
niques to characterize domain-specific engineering models and graph generators.
1.1 Multidisciplinary graph metrics. I adapted graph metrics originally proposed in net-

work science to describe typed graphs of systems engineering models. [c5]
1.2 Characterization of engineering models. I proposed characteristic graph metrics to

distinguish graph models from different domains using statistical analysis. [c5]
1.3 Characterization of synthetic graphs. I identified graph metrics to characterize syn-

thetic graphs derived by various graph generators in order to distinguish them from real
graphs. [b1]
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Added value In this work, I proposed a domain-agnostic extendable method to characterize graph
models, which can be applied on any graph model. These metrics allow users to estimate the work-
load of real application scenarios by providing a toolkit that characterizes the complex structure of
graphs without revealing detailed and sensitive information, thus respecting intellectual property
rights (IPR). Finally, I showed that these metrics can be used to differentiate between real and syn-
thetically generated graph instances, thereby highlighting the limitations of existing state-of-the-art
graph generation approaches.

Previous and related results in the research group Related graph and query metrics were used
in [Izs+13b] to characterize and predict performance of graph queries to assess how much worse a
query engine performs compared to a theoretical lower bound. A key difference of mywork is to char-
acterize domain-specific graph models and model generators (and not the queries themselves), which
is an orthogonal use of graph metrics. Related graph metrics have been evaluated for generic graph
models in order to study their effect on query performance by Zsolt Kővári in [Kőv15], which was
co-supervised by István Ráth and myself. Zsolt Kővári and Ágnes Salánki contributed the statistical
analysis of graph models in our joint paper [c5]. Oszkár Semeráth implemented the model generator
to produce synthetic statechart models used in our joint paper [b1].

Open-source software The framework for analyzing typed graphs is available as an open-source
project1. The project consists of approx. 5 000 lines of Java code for loading and calculating graph
metrics, along with 500 lines of R code for visualization and data analysis. Additionally, a less scalable
but more visual demo implementation, using the Neo4j graph database [Web12] and its Cypher query
language [Fra+18], is available online.2

11.1.2 Benchmarks for Global Queries over Evolving Property Graphs

Standard benchmarks specify a workload and inspect the behaviour of various implementations ex-
ecuting it, measuring a set of metrics (response time, energy consumption, correctness, etc.). It is
established that benchmarks have the power to shape a field [Pat12] and accelerate its progress, par-
ticularly for new and emerging areas, which are yet to establish a common understanding of what
the focal points of the field should be. In such cases, a de-facto benchmark accepted by members
of the community allows competing tools to be compared using a standard and precisely specified
workload. Benchmarks which sufficiently cover important features also free authors from the burden
of designing and implementing their own ad-hoc benchmarks (which might be biased towards their
tools), and aid the reproducibility of their performance experiments.

Group of contributions 2 I contributed to the design of two benchmark frameworks for
global property graph queries. My specific contributions include categorization of query lan-
guage features, numerous enhancements to the benchmarks as well as experimental evaluation.
2.1 Expressivity requirements for query languages. I identified abstract and qualitative

language features (choke points) to systematically assess the expressivity requirements
for graph queries used in performance benchmarks. [l18]

2.2 Adaptation of benchmarks for the property graph data model. I adapted two open
benchmarks, the Train Benchmark and the LDBC Social Network Benchmark, for property

1https://github.com/ftsrg/graph-analyzer
2https://neo4j.com/graphgist/multidimensional-graph-metrics-with-neo4j-and-cypher-2
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graphs, including the implementation of scalable data generators, novel global queries, and
deterministic update transformations. [j2; l18]

2.3 Extensive experimentswith benchmarks. I conducted an experimental evaluation and
exploratory analysis of different query technologies over static RDF and evolving property
graphs under various workloads. [j2; c8; l18]

Added value Up to our best knowledge, both benchmarks target a unique workload. The Train
Benchmark is first cross-technology benchmark that measures the performance of repeated model
validation operations, considering representation formats, query languages and query engines from
multiple technological spaces (EMF, RDF, property graph, and SQL). The LDBC SNB’s Business Intel-
ligence workload is the first benchmark for decision support-style, aggregation-dominated global graph
queries, which, through systematic choke point-driven design process, covers challenging features
both language- and performance-wise.

Previous and related results in the research group Benchmarking of graph-based query and
transformation tools has been in the focus of the research group and investigated in a series of papers
such as [VSV05; Hor+10; Ujh+15a; Ujh+15b].

The design of the first version of the Train Benchmark was led by István Ráth with major contri-
butions Benedek Izsó, Balázs Polgár, Zoltán Szatmári, Gábor Bergmann, and Ákos Horváth [Izs+13b;
Ujh+15a; Sza17]. Follow-up versions of the benchmark [l10; c4; l12; j2] were joint work with Benedek
Izsó, István Ráth, Oszkár Semeráth, Gábor Bergmann, and Dénes Harmath. Since 2012, I contributed
to all major components of the benchmark. My contribution statements presented above exclude in-
separable joint contributions and claim results in the context of property graphs where my own work
was predominant. In case of the LDBC Social Network Benchmark, I extended existing update oper-
ations to include removal of elements, which is a major challenge for incremental query evaluation
engines, and also resolved a number of ambiguities in the benchmark specification.

Open-source software The Train Benchmark is available as a single open-source project.3 It con-
tains approx. 18 000 lines of Java code, 800 lines of Groovy code and 600 lines of R code. The LDBC
Social Network Benchmark consists of multiple projects with contributions from dozens of authors.
Most of my work manifested in the specification,4 the workload driver,5 and the reference implemen-
tations project6, where I performed extensive refactoring and added a number of new query imple-
mentations. My contributions in the latter account for approx. 4 000 lines of Java code and 800 lines
of Cypher code. I also performed various maintenance tasks in the data generator.7

11.1.3 Incremental View Maintenance on Schema-Optional Property Graphs

Efficient query evaluation – incorporating many techniques from indexing through query optimiza-
tion to join processing algorithms – is one of the holy grails of database research. In many workloads,
especially in OLAP-style data processing, queries are known in advance and are evaluated against a
continuously changing data set. In these cases, query processing can be sped up by defining mate-
rialized views and using incremental view maintenance (IVM) to keep their content in sync with the

3https://github.com/ftsrg/trainbenchmark
4https://github.com/ldbc/ldbc_snb_docs
5https://github.com/ldbc/ldbc_snb_driver
6https://github.com/ldbc/ldbc_snb_implementations/
7https://github.com/ldbc/ldbc_snb_datagen
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changes in the data. Today, IVM is supported by many (mostly commercial) relational database sys-
tems, and would certainly be of interest in the graph processing space. However, while IVM has more
than three decades of literature, most works only considered the relational data model, and only a few
proposed IVM algorithms for the nested and graphs data models. Additionally, the schema-optional
approach of property graph databases and the bottleneck of single node systems make the application
of IVM even more challenging.

Group of contributions 3 I developed scalable incremental view maintenance techniques
for evolving schema-optional property graphs.
3.1 Schema inferencing from property graph queries. I designed a schema inferencing

algorithm from nested to flat relational algebra that deduces the relevant minimal schema
of the property graph from query specifications. [l17; r21]

3.2 Mapping fromproperty graph queries to nested relational algebra. I defined a chain
of consecutive mappings from high-level property graph query languages to nested and
flat relational algebra to enable the use of traditional relational query evaluation and op-
timization techniques. [c6; r21]

3.3 Parallel query processing for incremental view maintenance. I proposed an asyn-
chronous graph query technique for incremental view maintenance that uses Rete-based
query evaluation of flat relational algebra over schema-optional property graphs. [l17; r21]

3.4 Scalable distributed query evaluation. I proposed an asynchronous execution strategy
and a termination protocol by combining the actor model with Rete-based query evalua-
tion for scalable incremental view maintenance on RDF graphs. [l9; c4; l14]

3.5 Experimental evaluation of incremental graph query processing. I evaluated the
performance and scalability of a prototype implementation of for parallel execution (in-
graph) using the LDBC Social Network Benchmark. I adapted the Train Benchmark for
a cloud-based execution environment to carry out scalability evaluation of a prototype
implementation for the distributed approach (IncQuery-D). [c4; r21]

Added value The compilation and transformations steps presented in this thesis can be used to
reduce a large set of property graph queries to flat relational algebra and thus allows query engine
developers to apply existing IVM techniques for these queries. As IVM incurs a significant memory
overhead, I also studied the possibility of using a distributed setup to improve the scalability of the
approach for large graphs. I believe one of the most future-proof contributions of this thesis is the
identification of the required challenges to adapt IVM techniques for property graph queries. While
some of these challenges were already addressed in this dissertation, and some can be tackled by
adapting existing solutions, many of them are open research problems.

Previous and related results in the research group Gergely Varró designed efficient search-
based graph query algorithms on graph models [Var08] which was further extended by Ákos Horváth
for hybrid search plans [Hor+10] and to EMF models by the development team of the eMoflon and
Viatra tools in [Var+15; Búr+15]. Gábor Bergmann’s work discussed incremental view maintenance
on EMF models [Ber13] and proposed an initial version for a custom parallelization of Rete net-
work [BRV09], which is generalized in mywork to a distributed actor-based environment. István Ráth
presented event-driven and incremental model transformation techniques in his dissertation [Rát11].
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Furthermore, he was the main contributor of the IncQuery-D architecture [c4]. József Makai con-
tributed allocation and reconfiguration strategies for IncQuery-D [l14]. József Marton defined a for-
malization of the openCypher language [c6]. JánosMaginecz mademajor contributions to the ingraph
prototype, including various optimization techniques and significant implementation efforts [l15; j3;
r21]. Csaba Debreceni proposed novel incremental synchronization for secure view models to support
collaborative development [Deb19].

Open-source software IncQuery-D8 [l9; c4; l14; l15] was implemented in Java and Scala, using the
compiler of Viatra Query. Its distributed and sharded extension, IncQuery-DS (implemented purely
in Scala) is available as a separate project9 [l15]. ingraph [j3; c6; c7; l17; r21] is a mix of Scala and
Java code, where I contributed to all components, including the compiler, the data loader and the
incremental query engine.10

Related software projects The IncQuery Server for Teamwork Cloud [Heg+18] is a server-side
query middleware service for collaborative modelling. Like IncQuery-D, it supports distributed pro-
cessing, but on a different (microservice) level of granularity. Furthermore, it is also based on the
reactive programming paradigm, but uses the Eclipse Vert.x library11 instead of Akka actors used in
IncQuery-D.

11.2 Open Challenges and Future Work

We believe that the work presented so far opens up a number of interesting research directions. Here,
we highlight key directions for future research.

Meta-paths We plan to adapt state-of-the-art graph analysis approaches such as meta
paths [Shi+17], and to apply proven metrics such as the k-local clustering coefficient to typed
graphs [JC04; Fro+02]. To improve the scalability of analysis workloads, we already reformulated
multiple challenging metrics in the language of linear algebra [Vár18] and plan to experiment with
them on large data sets. We are also looking into other means to improve scalability, including recent
advancements in elastic graph processing [Uta+18].

Graph synthesis We plan to combine the characteristic graph metrics identified in Part I with the
work on diverse and consistent graph generation byOszkár Semeráth [Sem19] to synthesize consistent,
realistic, diverse, and scalable graph models.

Modification workload for LDBC We are currently working on extending the LDBC SNB’s Busi-
ness Intelligence workload with a set of modifications that contain insertion, deletion, and property
update operations. These will not only test the performance of the modification operations them-
selves but also stress incremental view maintenance approaches (which are more difficult to adapt for
modifications involving delete operations).

8https://github.com/viatra/incqueryd
9https://github.com/viatra/incquery-ds
10https://github.com/ftsrg/ingraph
11https://vertx.io/
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Support for new languages As new graph languages such as the Linked Data Benchmark Coun-
cil’s G-CORE [Ang+18], Cypher 10 [Fra+18], and the work-in-progress GQL (Graph Query Lan-
guage)12 emerge, we will continuously investigate how incremental view maintenance techniques can
support to them. We also plan to experiment with adapting techniques to design a more efficient
incremental transitive closure algorithm [Rod08a].

Graph-specific IVM techniques Whilewe addressed some challenges regarding incremental view
maintenance, there are a number of complex open research questions.We believe themajor challenges
in incremental view maintenance for property graphs as follows (in increasing order of difficulty):

1. Outer join queries (including antijoins) on graph data structures.
2. Cyclic queries on graphs with skewed data distribution.
3. Lists and ordering.
4. Traversals (also in increasing order of difficulty):

a) Transitive reachability queries.
b) Recursive queries.
c) Path unwinding and higher-order queries.

We expect many of these problems to receive significant interest from researchers in the next
decade and beyond.

12https://www.gqlstandards.org/
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AppendixA

Untyped Graph Metrics

In this chapter, we review common metrics used to characterize untyped graphs. These metrics com-
plement the ones listed in Sec. 3.4, and while they are not in the focus of this dissertation, we included
them for reference and completeness.

A.1 Connectivity Metrics

We first introduce the concept of reachability (sometimes called transitive reachability) that allows
the description of connectedness between nodes.

Definition 58 (reachability or connectedness of nodes) Node u is reachable from node v in
the graph if there is a path (Def. 23) between the two nodes. In other words, nodes u and v are
connected.

In directed graphs, reachability is interpreted by default with taking the direction of the edges into
account. In cases when edge directions are omitted (and directed edges can be traversed both ways),
it is important to note the distinction. Based on the reachability between their nodes, graphs can be
divided into components.

Definition 59 (connected component) A connected component is a maximal subgraph in
which any two nodes are connected to each other. The component of a given node is the com-
ponent that contains that node.

Definition 60 (connected components (CC)) The connected components metric returns ev-
ery connected component in the graph.

The definition has two variants based on whether edge directions are enforced:

Definition 61 (weakly connected components (WCC)) The weakly connected components
metric returns every connected component determined without taking edge directions into ac-
count (i.e. edges can be traversed both ways).
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Definition 62 (strongly connected components (SCC)) The strongly connected components
metric returns every connected component with edge directions enforced.

In typical graph analytical workloads, the expected result of a CC algorithm is to assign the index
of its component to each node. In some cases (e.g. in the LDBC Graphalytics benchmark [Ios+16],
discussed in Sec. 3.9.2) it is expected to assign the component size to each node.

Definition 63 (connectedness of graphs) A graph is connected if it consist of a single con-
nected component.

A.2 Shortest Path-Based Metrics

Numerous metrics are defined for connected graphs (Def. 63) to characterize the distribution of short-
est paths (Def. 25). Depending on the goal of the analysis, directed graphs are sometimes treated as
undirected, in which case paths can lead through edges in any directions.

The betweenness centrality metric [Fre78] measures the centrality of a given node in the graph
by determining the ratio of shortest paths passing through a single node to all shortest paths in the
graph. Formally:

Definition 64 (betweenness centrality)

g(v) = ∑
s≠v≠t

σst(v)
σst

,

where σst is the total number of shortest paths (Def. 25) from node s to node t and σst(v) is the
number of those paths that pass through node v.

Definition 65 (eccentricity) The eccentricity of a node ϵ(v) is the longest distance (Def. 26)
between v and any other node.

Intuitively, eccentricity shows the distance from node v the most distant node in the graph.

Definition 66 (radius) The radius r of a graph is its minimum eccentricity value:

r(G) =min
v∈V

ϵ(v).

Definition 67 (diameter) The diameter d of a graph is its maximum eccentricity value:

d(G) =max
v∈V

ϵ(v).

A possible approach to determine the diameter of a given graph is to determine the shortest
path between each pair of nodes. The longest of these paths gives the diameter of the graph. This
method is often prohibitively expensive for large graphs, therefore approximate algorithms are used
instead [NLP13]. Computations targeting the betweenness centrality metric also face scalability chal-
lenges and are often evaluated using approximation techniques [Qi+13].
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A.3 Density Metrics

The density describes how tightly connected the nodes in the graph are. For simple directed graphs
it is defined as follows.

Definition 68 (density for directed graphs)

D(G) = ∣E∣
∣V ∣ (∣V ∣ − 1)

.

For simple undirected graphs, it is defined as:

Definition 69 (density for undirected graphs)

D(G) = 2∣E∣
∣V ∣ (∣V ∣ − 1)

,

where the constant 2 in the numerator accounts for the fact that each potential edge is counted twice
in the denominator.

Further metrics Other popular untyped metrics include PageRank, which has been studied exten-
sively over the last two decades [Chu14]. However, it is difficult to apply for edge-typed and more
expressive graph data models, therefore we do not discuss it in more detail.
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AppendixB

Techniques for Graph Analytics

B.1 Foundations of Linear Algebra

Many algorithms use matrices to represent graphs for performance reasons, especially in the field of
graph analytics. To allow us to express graph operations in the language of linear algebra, we review
the definitions of basic matrix operations.

B.1.1 Data Structures

First, we briefly review the definitions of matrices and vectors.

Definition 70 (real matrix) A real matrix M that has n rows andm columns, and stores real
numbers is denoted as:

M ∈ Rn×m

Mi,j denotes the element in the ith row and jth column of the matrix.

In the following, we always to real matrices.

Definition 71 (square matrix) A square matrix is a matrixM ∈ Rn×n, i.e. one that the same
number of rows and columns.

Definition 72 (vector) A vector is a matrixM ∈ Rn×1, i.e. one with a single column.

Definition 73 (symmetric matrix) A matrixM is symmetric iffMi,j =Mj,i.

B.1.2 Matrix Operations

Next, we define basic matrix operations.

Definition 74 (matrix multiplication) For matrices Q of n × m elements and R of m × o
elements, the matrix product operation (also known as the matrix multiplication) is denoted
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with P = Q ⋅R and is defined as:

Pi,j =
m

∑
k=1

Qi,k ⋅Rk,j ,

for i = 1, ... , n and j = 1, ... , o.

As a special case, an n-by-m matrixM can be multiplied with a vector of m elements. Notably,
a matrixM multiplied by a vector of ones (#»

1 ) returns a vector containing the sum of the values for
each row inM :

#»v =M ⋅ #»
1

#»v i =
m

∑
k=1

Mi,k

Definition 75 (element-wise multiplication) For matrices Q and R, both containingm × n
elements, the element-wise multiplication operation (also known as the Hadamard-product) is
denoted with P = Q⊙R and is defined as:

Pi,j = Qi,j ⋅Ri,j ,

Definition 76 (element-wise division) For matrices Q and R, both containing m × n ele-
ments, the element-wise divison operation is denoted with Q⊘R and defined as:

Pi,j =
Qi,j

Ri,j

Complexity For sparse matrices (Sec. B.1.3), the complexity of matrix operations is difficult to esti-
mate as it depends mostly on the sparsity of the matrix (Def. 80). For dense matrices, the complexity
of multiplication operations is well-studied. For square matrices of n × n elements, the computa-
tion complexity of the naïve algorithms are O (n3) for the matrix multiplication, and O (n2) for the
element-wise multiplication.1 Similarly:

Definition 77 (matrix power) The power Mk of a matrix M is defined as a matrix product
of k copies ofM , e.g.M3 = M ⋅M ⋅M . Note that the power operation can only be applied to
square matrices, i.e. matrices of n × n elements.

Definition 78 (diagonal elements) Given a square matrix M of n × n elements, function
diag−1 (M) returns a vector of n elements, containing the values of the main diagonal of M ,
i.e. elementsMi,i.
1The complexity of the matrix multiplication problem has been studied for decades and there are many sophisticated

algorithms available. The most well-known ones are the Strassen algorithm and the Coppersmith–Winograd algorithm, pro-
viding an upper time bound of O (n2.807355) and O (n2.375477), respectively.
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B.1.3 Sparse Matrices

Manymatrices in practical applicationsmostly consist of zeroes and have very few non-zero elements.
Such matrices are called sparse, while matrices with many non-zero elements are called dense. While
there is no commonly accepted threshold for calling a matrix sparse, the notion of density can be used
to characterize a given matrix:

Definition 79 (matrix density) For a matrixM ∈ Rn×m, its density is defined as:

density of matrixM = number of non-zero elements inM
n ⋅m

In some cases, it is preferable to use the inverse of density:

Definition 80 (matrix sparsity) For a matrixM ∈ Rn×m, its sparsity is defined as

sparsity of matrixM = number of zero elements inM
n ⋅m

= 1 − density of matrixM

It is worth pointing out that for adjacency matrices describing graphs, the density of the adjacency
matrix is ∣E∣

∣N ∣2 , which is almost identical to the density of directed graphs in Def. 68 and the density
of undirected graphs in Def. 69 (note that the constant 2 in the numerator takes care of the fact that
adjacency matrices of undirected graphs are symmetric). It is also worth pointing out that for graphs
that have an out-degree close to 1 (which is a realistic assumption for many graphs including engi-
neering models), the density values can be estimated as n

n2 = 1
n . Consequently, for such a graph with

106 nodes, the density value is approx. 10−6, i.e. 1 in a million elements in the matrix take a non-zero
value.

Compressed representation High-performance sparse matrix libraries such as Eigen2 and SuiteS-
parse3 [Dav18] use a compressed matrix representation, e.g. the Compressed Row Storage (CRS) or
Compressed Column Storage (CCS) formats4 [Saa03]. CRS and CCS provide compact storage and effi-
cient multiplication operations at the expense of a higher initialization cost. Other libraries use more
basic representation formats, such as LIL (List of Lists) or DOK (Dictionary of Keys). These allow for
quick initialization, but provide limited scalability for multiplication operations on large matrices.

B.2 Graph Metrics as Graph Queries

As discussed in Sec. 2.7.2, many graph metrics can be expressed as graph queries. Here, we give such
an example by formulating the local clustering coefficient metric (Def. 38) in Cypher:

2http://eigen.tuxfamily.org
3http://faculty.cse.tamu.edu/davis/suitesparse.html
4CRS is also known as Compressed Sparse Row (CSR) or the Yale format, while CCS is known as Compressed Sparse

Column (CSC).
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1 MATCH (v)

2 OPTIONAL MATCH (u)-[e1]-(v)-[e2]-(w) // wedges

3 OPTIONAL MATCH (u)-[e3]-(w) // triangles

4 WITH

5 v,

6 count(e1) AS wedges,

7 count(e3) AS triangles

8 RETURN

9 v,

10 CASE triangles

11 WHEN 0 THEN 0

12 ELSE triangles/toFloat(wedges)

13 END AS lcc

B.3 Specialized Languages for Graph Analytics

Several systems [SW13; Car+15; Sun+15b; Hon+15; Sak+16; Wan+17], define frameworks for specify-
ing graph algorithms. These put a number of constraints on the programming model (e.g. they require
the algorithm to follow the Pregel model [Mal+10]), but at the same time, they allow developers to
define the analytical computations in a general-purpose programming language such as C++, Java, or
Scala. This approach comes at a cost: developers typically need to modify their algorithms to fit the
programmingmodel, and resulting algorithms are often difficult to optimize. To allowmore productive
development andmakemore efficient evaluation possible, increasinglymore systems provide domain-
specific languages (DSLs) that define high-level primitives for implementing graph algorithms. In the
following, we briefly present three graph analytical languages in order of their appearance.

Green-Marl Green-Marl [Hon+12] is an imperative DSL designed to for writing custom graph algo-
rithms. Users formulate graph queries as high-level iterations and traversals, which are then compiled
into optimized parallel C++ code. Green-Marl is supported by the Oracle PGX.D graph analytical
engine (Sec. 3.9.1).

GraphScript GraphScript [Par+17] is an imperative DSL for graph analytics, supported by the SAP
HANA database. It adopts many graph-specific language constructs from Green-Marl for graph iter-
ations and traversals. It also builds on the type system of HANA, facilitating both simple (e.g. integer)
and complex data types (e.g. spatial geometries), complementing themwith graph-specific types. These
include basic graph elements (nodes and edges) from Green-Marl, and compound extensions, such as
paths and subgraphs, which are not supported by the type system of Green-Marl.

GraphIt GraphIt [Zha+18b] is a DSL for graph analytics. Its distinguishing feature is that it allows
developers to optimize the execution of the analytical process. To this end, it provides two languages:
the algorithm language to specify the computation and the scheduling language to specify performance
optimizations.
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Train BenchmarkQueries

In this chapter, we present the textual and formal specifications of the graph queries of the Train
Benchmark, along with the textual and graphical representations of the transformations. For defining
the queries, we use the relations given in Sec. 2.4.1.

C.1 ConnectedSegments

Description The ConnectedSegments constraint requires that each sensor must have at most five
segments attached to it. Therefore, the query (Fig. 5.2c) checks for sensors (sensor) that have at least
six segments (segment1, . . . , segment6) attached to them.

Relational calculus formula

{sensor, segment1, segment2, segment3, segment4, segment5, segment6∣
Sensor(sensor)∧
Segment(segment1) ∧ Segment(segment2) ∧ Segment(segment3)∧
Segment(segment4) ∧ Segment(segment5) ∧ Segment(segment6)∧
connectsTo(segment1, segment2) ∧ connectsTo(segment2, segment3)∧
connectsTo(segment3, segment4) ∧ connectsTo(segment4, segment5)∧
connectsTo(segment5, segment6)∧
monitoredBy(segment1, sensor) ∧monitoredBy(segment2, sensor)∧
monitoredBy(segment3, sensor) ∧monitoredBy(segment4, sensor)∧
monitoredBy(segment5, sensor) ∧monitoredBy(segment6, sensor)}
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monitoredBy

«del»
connectsTo

«new»

connectsTo

«del»

connectsTo

«del»

«del»

segment2: Segment

monitoredBy

connectsTo

connectsTo

connectsTo

monitoredBy

segment1: Segment

sensor: Sensor

segment3: Segment

segment4: Segment

segment5: Segment

segment6: Segment

monitoredBy

monitoredBy

monitoredBy

(b) Repair transformation.

Figure C.1: The transformations for query ConnectedSegments.

Inject transformation A random segment segment1 is selected. The connectsTo edge running
from segment1 to segment3 is deleted. A new segment segment2 is created and connected from seg-
ment1 to segment3. Node segment2 is also connected to node sensor, connected to segment1 via a
sensor edge.

Repair transformation The segment2 node and its edges are deleted from the matches. The seg-
ment1 and segment3 nodes are connected with a connectsTo edge.

C.2 PosLength

Description The PosLength constraint requires that a segment must have a positive length. There-
fore, the query (Fig. 5.2a) checks for segments (segment) with a length less than or equal to zero.

Relational calculus formula

{segment, length∣Segment(segment, length) ∧ length ≤ 0}

length  0 

segment: Segment

(a) Inject transformation.

length  − length + 1

segment.length ≤ 0

segment: Segment

(b) Repair transformation.

Figure C.2: The transformations for query PosLength.

Inject transformation The length property of randomly selected segments is updated to 0.

Repair transformation The length property of the segment in the match is updated to −length+1.

C.3 RouteSensor

The Inject and Repair transformations for the RouteSensor query are discussed in Sec. 5.3.6.
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Relational calculus formula

{route, sensor, swP, sw∣
Route(route) ∧ Sensor(sensor)∧
(∃currentPosition ∶ SwitchPosition(swP, currentPosition)∧
(∃position ∶ Switch(sw,position) ∧ follows(route, swP) ∧ target(swP, sw)∧
monitoredBy(sw, sensor) ∧ ¬requires(route, sensor)))}

C.4 SemaphoreNeighbor

Description The SemaphoreNeighbor constraint requires that the routes that are connected
through sensors and track elements have to belong to the same semaphore. Therefore, the query
(Fig. 5.2f) checks for routes (route1) which have an exit semaphore (semaphore) and a sensor (sensor1)
connected to a track element (te1). This track element is connected to another track element (te2)
which is connected to another sensor (sensor2) which (partially) defines another, different route
(route2), while the semaphore is not on the entry of this route (route2).

Relational calculus formula

{semaphore, route1, route2, sensor1, sensor2, te1, te2∣
Semaphore(semaphore) ∧ Route(route1) ∧ Route(route2) ∧ Sensor(sensor1) ∧ Sensor(sensor2)∧
TrackElement(te1) ∧TrackElement(te2) ∧ exit(route1, semaphore) ∧ requires(route1, sensor1)∧
monitoredBy(te1, sensor1) ∧ connectsTo(te1, te2)∧
monitoredBy(te2, sensor2) ∧ requires(route2, sensor2) ∧ ¬entry(route2, semaphore)}

entry

«del»

semaphore: Semaphore

route: Route

(a) Inject transformation.

connectsTo

requires

exit

monitoredBy monitoredBy

requires

route1 ≠ route2

te1: TrackElement

sensor1: Sensor

route1: Route

te2: TrackElement

sensor2: Sensor

entry
«new» NEG

route2: Route

semaphore: Semaphore

(b) Repair transformation.

Figure C.3: The transformations for query SemaphoreNeighbor.

Inject transformation Errors are introduced by disconnecting the entry edge of the selected
routes. (According to the metamodel, a route may only have 0 or 1 entry edges.)

Repair transformation The route2 node is connected to the semaphore node with an entry edge.
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C.5 SwitchMonitored

Description The SwitchMonitored constraint requires that every switch must have at least one
sensor connected to it. Therefore, the query (Fig. 5.2b) checks for switches (switch) that have no
sensors (sensor) associated with them.

Relational calculus formula

{sw∣Switch(sw) ∧ (¬∃sensor ∶ Sensor(sensor) ∧monitoredBy(switch, sensor)) }

monitoredBy

«del»

switch: Switch

sensor: Sensor

monitoredBy

«del»

sensor: Sensor

∀

(a) Inject transformation.

sensor: Sensor
monitoredBy

«new» «new»
monitoredBy

sw: Switch

sensor: Sensor

NEG

(b) Repair transformation.

Figure C.4: The transformations for query SwitchMonitored.

Inject transformation Errors are injected by randomly selecting switches (switch) and deleting
all their edges to sensors. If the selected switch was invalid, it did not have such an edge, so no edges
are deleted and the switch stays invalid. If the chosen switch was valid, it will become invalid.

Repair transformation A sensor is created and connected to the switch.

C.6 SwitchSet

Description The SwitchSet constraint requires that an entry semaphore of a route may only show
GO if all switches along the route are in the position prescribed by the route. Therefore, the query
(Fig. 5.2e) checks for routes (route) which have an entry semaphore (semaphore) that shows the GO
signal. Additionally, the route follows a switch position (swP) that is connected to a switch (sw), but
the switch position (swP.position) defines a different position from the current position of the switch
(sw.currentPosition).

Relational calculus formula

{semaphore, route, swP, sw, currentPosition,position∣
Route(route) ∧ SwitchPosition(swP,position) ∧ Switch(sw, currentPosition)∧
currentPosition ≠ position ∧ Semaphore(semaphore,“GO′′) ∧ entry(route, semaphore)∧
follows(route, swP) ∧ target(swP, sw)}
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sw: Switch

currentPosition   

nextEnumValue(currentPosition)

(a) Inject transformation.

target
follows

entry

swP: SwitchPosition

semaphore: Semaphore

sw: Switch

currentPosition  swP.position

signal = GO

position

route: Route

sw.currentPosition ≠ swP.position

active = true

(b) Repair transformation.

Figure C.5: The transformations for query SwitchSet.

Inject transformation Errors are injected by randomly selecting switches (switch) and setting
their currentPosition property to the next enum value, e.g. from LEFT to RIGHT (see Fig. 2.4).

Repair transformation The currentPosition property of switch is set to the position of swP.
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AppendixD

Choke Points andQueries of the LDBC

SNB’s Business Intelligence Workload

This chapter contains the specification of the choke points (Sec. D.1) and queries (Sec. D.2) defined in
the LDBC Social Network Benchmark’s Business Intelligence workload. The specifications presented
here were edited for conciseness; the complete specification of the benchmark is available in [r22].

D.1 Choke Points

In this section, we describe the choke points of the LDBC SNB benchmarks. The first set of these choke
were first identified in [BNE13] with extensions added in [Erl+15] and [l18]. The connection between
choke points and queries in the LDBC SNB is displayed in Tab. D.1.

D.1.1 Aggregation Performance

CP-1.1 Interesting orders This choke point tests the ability of the query optimizer to exploit the
interesting orders induced by some operators. For example, a neighbourhood expansion operator
often preserves the implicit sortedness of the adjacency, which can be subsequently used to perform
cheaper duplicate elimination on the set of discovered nodes.

CP-1.2 High Cardinality group-by performance This choke point tests the ability of the execu-
tion engine to parallelize group-by operations with a large number of groups. Real property graphs
are usually rich in terms of different property values (e.g. person names, topics, cities, etc.) and thus
is very common that aggregate queries over these attributes result in a large number of groups (es-
pecially when grouping over multiple properties). In such a case, intra query parallelization can be
exploited by making each thread to partially aggregate a subset of the results. In order to avoid the
merging the partial aggregations and to avoid costly critical sections, the results to group can be
partitioned by hashing the grouping key and be sent to the appropriate thread/partition.

CP-1.3 Top-k push down This choke point tests the ability of the engine to optimize queries
requesting top-k results. The search space of Graph BI queries can easily explode given the complexity
of the patterns in search. Many times, the search space can be pruned by imposing extra restrictions
once k results have been obtained and the query advances. Applying this kind of optimizations can
significantly reduce the search space.
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1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1 3.2 3.3 4.1 4.2 4.3 5.1 5.2 5.3 6.1 7.1 7.2 7.3 7.4 8.1 8.2 8.3 8.4 8.5 8.6
BI 1 ⊗ ⊗ ⊗ ⊗
BI 2 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 3 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 4 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 5 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 6 ⊗ ⊗ ⊗
BI 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 8 ⊗ ⊗ ⊗ ⊗
BI 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 10 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 11 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 12 ⊗ ⊗ ⊗ ⊗ ⊗
BI 13 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 14 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 15 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 16 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 17 ⊗ ⊗
BI 18 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 19 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 20 ⊗ ⊗ ⊗ ⊗
BI 21 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 22 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 23 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 24 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
BI 25 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 1 ⊗ ⊗ ⊗
IC 2 ⊗ ⊗ ⊗ ⊗ ⊗
IC 3 ⊗ ⊗ ⊗ ⊗ ⊗
IC 4 ⊗ ⊗ ⊗
IC 5 ⊗ ⊗ ⊗ ⊗
IC 6 ⊗ ⊗
IC 7 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 8 ⊗ ⊗ ⊗ ⊗
IC 9 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 10 ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗ ⊗
IC 11 ⊗ ⊗ ⊗ ⊗
IC 12 ⊗ ⊗ ⊗ ⊗
IC 13 ⊗ ⊗ ⊗ ⊗ ⊗
IC 14 ⊗ ⊗ ⊗ ⊗ ⊗

Table D.1: Coverage of choke points by the LDBC SNB’s Business Intelligence (BI) “read”
queries [l18] (Sec. D.2) and the Interactive “complex read” (IC) queries [Erl+15]. The symbol
⊗ shows that the given choke point is covered by the given query.
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CP-1.4 Low cardinality group-by performance This choke point tests the ability to efficiently
group results when only a very limited set of groups is available. This can require special strategies
for parallelization, e.g. pre-aggregation when possible. This case also allows using special strategies
for grouping like using array lookup if the domain of keys is small. This is typically observed in graph
BI queries, especially when grouping results by country or month of the year.

D.1.2 Join Performance

CP-2.1 Rich join order optimization This choke point tests the ability of the query optimizer
to find optimal join orders. When looking for pattern occurrences, a graph can be traversed in very
different ways, which is equivalent to performing different join orders in the relational model. The
execution time of these orders may differ by orders of magnitude, thus finding an efficient traversal
strategy is of high importance.

CP-2.2 Late projection This choke point tests the ability of the query optimizer to delay the pro-
jection of unneeded attributes until late in the execution. This is common in graph BI queries where
we look for patterns with predicates on a reduced set of properties, but we are later interested in se-
lecting other properties not used in such predicates. In such a situation, it might be better to omit such
properties from initial scans and fetch them later by node/edge id, which can save temporal space, and
therefore I/O. Late projection does have a trade-off involving locality, since late in the plan accessing
the nodes by id lead to scattered I/O or memory access patterns. Thus, late projection specifically
makes sense in queries where the late use of these columns happens at a moment where the amount
of qualifying nodes have been considerably reduced, for example after an aggregation with only few
unique group-by keys, or a top-k operator.

CP-2.3 Join type selection This choke point tests the ability of the query optimizer to select the
proper join operator type (e.g. hash or index-based joins), which implies accurate estimates of cardi-
nalities. Typically, graph databases will have neighbourhoods materialized/indexed, and thus access-
ing the neighbours of a reduced set of nodes is typically performed using such indexes (index-based
join). However, there are situations where one is interested in obtaining the neighbourhood of a large
frontier (a set of nodes). Depending on the cardinalities (size of the frontier and expected size of the
neighbourhood), either a hash or an index-based join operator is more appropriate, thus a good esti-
mation of cardinalities is of high importance. The same rationale applies when accessing node/edge
properties.

CP-2.4 Sparse foreign key joins This choke point tests the performance of join operators when
the join is sparse. Sometimes joins involve relations where only a small percentage of rows in one of
the tables is required to satisfy a join. When tables are larger, typical join methods can be sub-optimal.
Partitioning the sparse table, using Hash Clustered indexes or implementing Bloom filter [Blo70] tests
inside the join are techniques to improve the performance in such situations.

D.1.3 Data Access Locality

CP-3.1 Detecting correlation This choke point tests the ability of the query optimizer to detect
data correlations and exploiting them by means of clustered indexes, MinMax indexes, etc. Many real
graphs contain correlations between property values (e.g. the country of residence is correlated with
the language a person speaks) which can be used to improve data access locality.
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CP-3.2 Dimensional clustering This choke point tests suitability of the identifiers assigned to
entities by the storage system to better exploit data locality. Many graph database systems use internal
identifiers for nodes and edges, thus they have some choice in assigning a value to this identifier.
Many real graphs have a modular structure with correlations between neighbours (e.g. friends are
likely to share friends) and property values and neighbours (e.g. Persons tend to connect to Persons
with similar interests). These characteristics can be exploited in order to assign ids to nodes/edges
smartly, which can be used to improve compression and data locality.

CP-3.3 Scattered index access patterns This choke point tests the performance of indexes when
scattered accesses are performed. The efficiency of index lookup is very different depending on the
locality of keys coming to the indexed access. The structure of real graphs might induce unpredictable
index accesses (e.g. a graph neighbourhood traversal is an example of an operationwith random access
without predictable locality), thus locality sensitive optimizations might need to be disabled if these
are costly when there is not locality.

D.1.4 Expression Calculation

CP-4.1 Common subexpression elimination This choke point tests the ability of the query opti-
mizer to detect common sub-expressions and reuse their results. A basic technique helpful in multiple
queries is common subexpression elimination (CSE). CSE should recognize also that average aggre-
gates can be derived afterwards by dividing the sum by the count when those have been computed.

CP-4.2 Complex boolean expression joins and selections This choke point tests the ability of
the query optimizer to reorder the execution of boolean expressions to improve the performance.
Some boolean expressions are complex, with possibilities for alternative optimal evaluation orders.
For instance, the optimizer may reorder conjunctions to test first those conditions with larger selec-
tivity.

CP-4.3 Low overhead expressions interpretation This choke point tests the ability of efficiently
evaluating simple expressions on a large number of values. A typical example could be simple arith-
metic expressions, mathematical functions like floor and absolute or date functions like extracting a
year.

CP-4.4 String matching performance This choke point tests the ability of efficiently evaluating
complex string matching expressions (e.g. via regular expressions).

D.1.5 Correlated Sub-Queries

CP-5.1 Flattening sub-queries This choke point tests the ability of the query optimizer to flatten
execution plans when there are correlated sub-queries. Many queries have correlated sub-queries and
their query plans can be flattened, such that the correlated sub-query is handled using an equi-join,
outer-join or anti-join. To execute queries well, systems need to flatten both sub-queries, the first into
an equi-join plan, the second into an anti-join plan. Therefore, the execution layer of the database
system will benefit from implementing these extended join variants. The ill effects of repetitive tuple-
at-a-time sub-query execution can also be mitigated if execution systems by using vectorized, or
block-wise query execution, allowing to run sub-queries with thousands of input parameters instead
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of one. The ability to look up many keys in an index in one API call creates the opportunity to benefit
from physical locality, if lookup keys exhibit some clustering.

CP-5.2 Overlap between outer and sub-query This choke point tests the ability of the execu-
tion engine to reuse results when there is an overlap between the outer query and the sub-query. In
some queries, the correlated sub-query and the outer query have the same joins and selections. In this
case, a non-tree, rather DAG-shaped [NM09] query plan would allow to execute the common parts
just once, providing the intermediate result stream to both the outer query and correlated sub-query,
which higher up in the query plan are joined together (using normal query decorrelation rewrites).
As such, the benchmark rewards systems where the optimizer can detect this and the execution en-
gine supports an operator that can buffer intermediate results and provide them to multiple parent
operators.

CP-5.3 Intra-query result reuse This choke point tests the ability of the execution engine to reuse
sub-query results when two sub-queries are mostly identical. Some queries have almost identical sub-
queries, where some of their internal results can be reused in both sides of the execution plan, thus
avoiding to repeat computations.

D.1.6 Parallelism and Concurrency

CP-6.1 Inter-query result reuse This choke point tests the ability of the query execution engine to
reuse results from different queries. Sometimes with a high number of streams a significant amount of
identical queries emerge in the resulting workload. The reason is that certain parameters, as generated
by the workload generator, have only a limited amount of parameters bindings. This weakness opens
up the possibility of using a query result cache, to eliminate the repetitive part of the workload. A
further opportunity that detects even more overlap is the work on recycling, which does not only
cache final query results, but also intermediate query results of a “high worth”. Here, worth is a
combination of partial-query result size, partial-query evaluation cost, and observed (or estimated)
frequency of the partial-query in the workload.

D.1.7 Graph-Specific Choke Points

Detailed in Sec. 6.2.2.

D.1.8 Language Choke Points

Detailed in Sec. 6.2.3.

D.2 Query Descriptions

We present a short textual specification for each query in the LDBC SNB BI workload.

Q1. Posting summary Given a date, find all Messages created before that date. Group them by a
3-level grouping:

1 by year of creation
2 for each year, group into Message types: is Comment or not
3 for each year-type group, split into four groups based on length of their content
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• 0: 0 <= length < 40 (short)
• 1: 40 <= length < 80 (one liner)
• 2: 80 <= length < 160 (tweet)
• 3: 160 <= length (long)

Q2. Top tags for country, age, gender, time Select all Messages created in the range of
[startDate, endDate] by Persons located in country1 or country2. Select the creator Persons
and the Tags of these Messages. Split these Persons, Tags and Messages into a 5-level grouping:

1 name of country of Person,
2 month the Message was created,
3 gender of Person,
4 age group of Person, defined as years between person’s birthday and end of simulation (2013-
01-01), divided by 5, rounded down (partial years do not count),

5 name of tag attached to Message.
Consider only those groups where number of Messages is greater than 100.

Q3. Tag evolution Find the Tags that were used in Messages during the given month of the given
year and the Tags that were used during the next month. For the Tags and for both months, compute
the count of Messages.

Q4. Popular topics in a country Given a TagClass and a Country, find all the Forums created in
the given Country, containing at least one Post with Tags belonging directly to the given TagClass.
The location of a Forum is identified by the location of the Forum’s moderator.

Q5. Top posters in a country Find the most popular Forums for a given Country, where the pop-
ularity of a Forum is measured by the number of members that Forum has from the given Country.
Calculate the top 100 most popular Forums. In case of a tie, the forum(s) with the smaller id value(s)
should be selected. For eachmember Person of the 100most popular Forums, count the number of Posts
(postCount) they made in any of those (most popular) Forums. Also include those member Persons
who have not posted any messages (have a postCount of 0).

Q6. Most active Posters of a given Topic Get each Person (person) who has created a Message
(message) with a given Tag (direct relation, not transitive). Considering only these messages, for each
Person node:

• Count its messages (messageCount).
• Count likes (likeCount) to its messages.
• Count Comments (replyCount) in reply to it messages.

The score is calculated according to the following formula: 1 * messageCount + 2 *

replyCount + 10 * likeCount.

Q7. Most authoritative users on a given topic Given a Tag, find all Persons (person) that ever
created a Message (message1) with the given Tag. For each of these Persons (person) compute their
“authority score” as follows:

• The “authority score” is the sum of “popularity scores” of the Persons (person2) that liked any
of that Person’s Messages (message2) with the given Tag.
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• A Person’s (person2) “popularity score” is defined as the total number of likes on all of their
Messages (message3).

Q8. Related topics Find allMessages that have a given Tag. Find the related Tags attached to (direct)
reply Comments of these Messages, but only of those reply Comments that do not have the given Tag.
Group the Tags by name, and get the count of replies in each group.

Q9. Forum with related Tags Given two TagClasses (tagClass1 and tagClass2), find Forums
that contain

• at least one Post (post1) with a Tag with a (direct) type of tagClass1 and
• at least one Post (post2) with a Tag with a (direct) type of tagClass2.

The post1 and post2 nodes may be the same Post. Consider the Forums with a number of members
greater than a given threshold. For every such Forum, count the number of post1 nodes (count1)
and the number of post2 nodes (count2).

Q10. Central Person for a Tag Given a Tag, find all Persons that are interested in the Tag and/or
have written a Message (Post or Comment) with a creationDate after a given date and that has a
given Tag. For each Person, compute the score as the sum of the following two aspects:

• 100, if the Person has this Tag as their interest, or 0 otherwise
• number of Messages by this Person with the given Tag

Also, for each Person, compute the sum of the score of the Person’s friends (friendsScore).

Q11. Unrelated replies Find those Persons of a given Country that replied to any Message, such
that the reply does not have any Tag in common with the Message (only direct replies are consid-
ered, transitive ones are not). Consider only those replies that do no contain any word from a given
blacklist. For each Person and valid reply, retrieve the Tags associated with the reply, and retrieve
the number of likes on the reply. The detailed conditions for checking blacklisted words are currently
as follows. Words do not have to stand separately, i.e. if the word “Green” is blacklisted, “South-
Greenland” cannot be included in the results. Also, comparison should be done in a case-sensitive
way. These conditions are preliminary and might be changed in later versions of the benchmark.

Q12. Trending Posts Find all Messages created after a given date (exclusive), that received more
than a given number of likes (likeThreshold).

Q13. Popular Tags per month in a country Find allMessages in a given Country, as well as their
Tags. Group Messages by creation year and month. For each group, find the 5 most popular Tags,
where popularity is the number of Messages (from within the same group) where the Tag appears.
Note: even if there are no Tags forMessages in a given year and month, the result should include the
year and month with an empty popularTags list.

Q14. Top thread initiators For each Person, count the number of Posts they created in the time in-
terval [startDate, endDate] (equivalent to the number of threads they initiated) and the number
of Messages in each of their (transitive) reply trees, including the root Post of each tree. When cal-
culating Message counts only consider messages created within the given time interval. Return each
Person, number of Posts they created, and the count of all Messages that appeared in the reply trees
(including the Post at the root of tree) they created.
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Q15. Social normals Given a Country country, determine the “social normal”, i.e. the floor of av-
erage number of friends that Persons of country have in country. Then, find all Persons in country,
whose number of friends in country equals the social normal value.

Q16. Experts in social circle Given a Person, find all other Persons that live in a given country

and are connected to given Person by a transitive path with length in range [minPathDistance,
maxPathDistance] through the knows relation. In the path, an edge can be only traversed once
while nodes can be traversed multiple times. For each of these Persons, retrieve all of their Messages
that contain at least one Tag belonging to a given TagClass (direct relation not transitive). For each
Message, retrieve all of its Tags. Group the results by Persons and Tags, then count the Messages by a
certain Person having a certain Tag.

Q17. Friend triangles For a given country, count all the distinct triples of Persons such that:
• a is friend of b,
• b is friend of c,
• c is friend of a.

Distinct means that given a triple t1 in the result set R of all qualified triples, there is no triple t2 in
R such that t1 and t2 have the same set of elements.

Q18. Howmany persons have a given number of messages For each Person, count the number
of Messages they made (messageCount). Only count Messages with the following attributes:

• Its content is not empty (and consequently, imageFile empty for Posts).
• Its length is below the lengthThreshold (exclusive).
• Its creationDate is after date (exclusive).
• It is written in any of the given languages. The language of a Post is defined by its language
attribute. The language of a Comment is that of the Post that initiates the thread where the
Comment replies to. The Post and Comments in the reply tree’s path (from the Message to the
Post) do not have to satisfy the constraints for content, length and creationDate.

For each messageCount value, count the number of Persons with exactly messageCount Messages
(with the required attributes).

Q19. Stranger’s interaction For all the Persons (person) born after a certain date, find all the
strangers they interacted with, where strangers are Persons that do not know person. There is no
restriction on the date that strangers were born. Consider only strangers that are

• members of Forums tagged with a Tag with a (direct) type of tagClass1 and
• members of Forums tagged with a Tag with a (direct) type of tagClass2.
The Tags may be attached to the same Forum or they may be attached to different Forums. In-

teraction is defined as follows: the person has replied to a Message by the stranger B (the reply
might be a transitive one). For each person, count the number of strangers they interacted with
(strangerCount) and total number of times they interacted with them (interactionCount).

Q20. High-level topics For all given TagClasses, count number of Messages that have a Tag that
belongs to that TagClass or any of its children (all descendants through a transitive relation).
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Q21. Zombies in a country Find zombies within the given country, and return their zombie
scores. A zombie is a Person created before the given endDate, which has created an average of
[0, 1) Messages per month, during the time range between profile’s creationDate and the given
endDate. The number of months spans the time range from the creationDate of the profile to the
endDatewith partial months on both end counting as one month (e.g. a creationDate of Jan 31 and
an endDate of Mar 1 result in 3 months). For each zombie, calculate the following:

• zombieLikeCount: the number of likes received from other zombies.
• totalLikeCount: the total number of likes received.
• zombieScore: zombieLikeCount / totalLikeCount. If the value of totalLikeCount is 0,
the zombieScore of the zombie should be 0.

For both zombieLikeCount and totalLikeCount, only consider likes received from profiles created
before the given endDate.

Q22. International dialog Consider all pairs of people (person1, person2) such that one is
located in a City of Country country1 and the other is located in a City of Country country2. For
each City of Country country1, return the highest scoring pair. The score of a pair is defined as the
sum of the subscores awarded for the following kinds of interaction. The initial value is score = 0.

1 person1 has created a reply Comment to at least one Message by person2: score += 4

2 person1 has created at least oneMessage that person2 has created a reply Comment to: score
+= 1

3 person1 and person2 know each other: score += 15

4 person1 liked at least one Message by person2: score += 10

5 person1 has created at least one Message that was liked by person2: score += 1

To break ties, order by (1) person1.id ascending and (2) person2.id ascending.

Q23. Holiday destinations Count theMessages of all residents of a given Country, where the mes-
sage was written abroad. Group the messages by month and destination. A Message was written
abroad if it is located in a Country different than home.

Q24. Messages by Topic and Continent Find allMessages tagged with a Tag that has the (direct)
type of the given tagClass. Count all Messages and their likes grouped by Continent, year, and
month.

Q25.Weighted interaction paths Given two Persons, find all (unweighted) shortest paths between
these two Persons, in the subgraph induced by the knows relationship. Then, for each path calculate
a weight. The nodes in the path are Persons, and the weight of a path is the sum of weights between
every pair of consecutive Person nodes in the path. The weight for a pair of Persons is calculated based
on their interactions:

• Every direct reply (by one of the Persons) to a Post (by the other Person) contributes 1.0.
• Every direct reply (by one of the Persons) to a Comment (by the other Person) contributes 0.5.

Only consider Messages that were created in a Forum that was created within the timeframe
[startDate, endDate]. Note that for Comments, the containing Forum is that of the Post that the
comment (transitively) replies to. Return all paths with the Person ids ordered by their weights de-
scending.
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AppendixE

Foundations of IncrementalQuery

Evaluation

In this chapter, we present the key maintenance rules for Rete networks. In this section, we discuss
Rete nodes in detail. For unary and binary nodes, we formulate themaintenance operations, which are
performed upon receiving an update message. For these operations, we denote the output relation
by t, the updated output relation by t′, and the propagated update message on the output by ∆t and
∇t for positive and negative change sets, respectively. Using these, the updated output relation can
be determined as t′ = t ∪∆t − ∇t. To provide a running example, we revisit the railway network of
Fig. 2.2b, repeated in Fig. E.1. This chapter is partially based on [j3].

E.1 Nullary Nodes

Input nodes provide the relations for each label of the graph. For example, the input node for the
requires edge label of the example graph in Fig. 2.2c (see Sec. 2.1) returns tuples that are currently
in the requires relation: {⟨1, d,5⟩, ⟨1, e,6⟩, ⟨2, f,5⟩, ⟨2, g,7⟩}. This input node is also responsible for
propagating changes to worker nodes in the network:

• If a requires edge ‘z’ is inserted from node 2 to 6, the input node sends a positive update message
to its subscriber nodes with the change set {⟨2, z,6⟩}.

• If the edge ‘d’ between nodes 1 and 5 is deleted, the input node sends a negative update to its
subscriber nodes with the change set {⟨1, d,5⟩}.

Figure E.1: Railway instance as an edge-typed graph (repeated from Fig. 2.2b).
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The relations contained by input nodes can be defined with nullary operators: input nodes in-
dexing vertices implement the get-vertices operator, while input nodes indexing edges implement the
get-edges operator.

E.2 Unary Nodes

Unary nodes have one input slot. They filter or transform the tuples of the parent node according
to certain criteria. In the following, the relation representing the input tuples is denoted with r, the
relation representing the output tuples is denoted with t, and the operator processing the input is
denoted with α:

t = α (r) .

Maintenance In the following, we assume that the α operator is distributive w.r.t. the union (∪)
and set minus (−) operators. If a unary node receives a positive update ∆r, it performs the operation
and computes the change set. The result (t′) and the change set (∆t) are:

t′ ≡ α (r ∪∆r)
= α (r) ∪ α (∆r)
= t ∪ α (∆r)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∆t

Similarly, for a negative update ∇r:

t′ ≡ α (r −∇r)
= α (r) − α (∇r)
= t − α (∇r)

´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
∇t

Unary nodes are often implemented as stateless nodes, i.e. they do not store the results of the
previous executions. Instead, these results are cached in their subscribers, e.g. indexers of binary
nodes (Sec. E.3).

As their name suggests, unary nodes implement unary relational algebraic operators (Sec. 2.4.3):
• The projection node performs a projection operation on the input relation.
• The selection node performs a selection operation on the input relation.
As both the projection and the selection operators are distributive w.r.t. the union and set minus

operators, their results can be maintained by performing the operation for change sets∆r and ∇r.

E.3 Binary Nodes

Binary nodes have two input slots: the primary (p) and the secondary (s). Their positive and negative
change sets are denoted with∆p/∇p and∆s/∇s. Binary node implementations typically cache both
their input relations in indexers and updates rely on the efficient lookups provided by these indexers.
Most of the maintenance rules defined in this section are illustrated with the example base tables and
changes in Fig. E.2. The complete examples were presented in Fig. 8.4.
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p

A B
x 1
y 2
z 3

s

B C
1 0.4
1 0.5
2 0.6

∆p

A B
m 2
n 4

∇p

A B
y 2
z 3

∆s

B C
2 0.7
3 0.8

∇s

B C
1 0.5
2 0.6

p ∪∆p

A B
x 1
y 2
z 3
m 2
n 4

p −∇p

A B
x 1
y 2
z 3

s ∪∆s

B C
1 0.4
1 0.5
2 0.6
2 0.7
3 0.8

s −∇s

B C
1 0.4
1 0.5
2 0.6

Figure E.2: Example base relations for primary and secondary slots (p and s) with positive
and negative change sets (∆p,∇p,∆s,∇s) for demonstrating IVM operations.

E.3.1 Join Node

In the following, we define the maintenance operations for join nodes.

Positive update on the primary slot (∆p)

If a join node receives a positive update∆p on its primary input slot, the result (t′) and the change set
(∆t) are determined as follows:

t′ ≡ (p ∪∆p) s

= (p s) ∪ (∆p s)
= t ∪ (∆p s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆t

Example 33 ∆t =∆p s = {⟨m,2⟩, ⟨n,4⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨m,2,0.6⟩}

Negative update on the primary slot (∇p)

For a negative update∇p, the derivation is the same, but the deltas are propagated as a negative update:

t′ = t − (∇p s)

237



E. Foundations of IncrementalQuery Evaluation

Example 34 ∇t = ∇p s = {⟨y,2,0.6⟩};

Positive update on the secondary slot (∆s)

If the node receives a positive update ∆s on its secondary input slot, the result (t′) and the change set
(∆t) are the following:

t′ ≡ p (s ∪∆s)
= (p s) ∪ (p ∆s)
= t ∪ (p ∆s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆t

Example 35

∆t = p ∆s = {⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨2,0.7⟩, ⟨3,0.8⟩} = {⟨y,2,0.7⟩, ⟨z,3,0.8⟩}

Negative update on the secondary slot (∇s)

For a negative update ∇p, the derivation is the same, but it is propagated as a negative update:

t′ = t − (p ∇s)

Example 36

∇t = p ∇s = {⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨x,1,0.5⟩, ⟨y,2,0.6⟩}

E.3.2 Semijoin Node

We omit the expressions of the semijoin node but note that they are similar to the expressions for
antijoin in terms of complexity.

E.3.3 Antijoin Node

We recall the definition of the antijoin operator (Def. 17) for relations p and s:

t ≡ p s = p − (p s) ,

As the antijoin operator is not commutative, handling update messages requires us to distinguish
between the cases of∆p, ∇p, ∆s, and ∇s.

Equalities for simplifying expressions To allow us simplifying the delta expressions, we present
the following equalities:
E1. For sets A,B ⊆ C : (C −A) − (C −B) = B −A.
E2. For sets X,Y : X ∪ Y −X = Y −X .
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E3. For relations q of schema sch (q) = Q and r1, r2 of schema sch (r1) = sch (r2) = R:

(q r1) − (q r2) = q (r1
Q∩R

r2)

It is important to note that the antijoin operator in r1
Q∩R

r2 is a theta-antijoin (Def. 20) as it
checks the equivalence of attributes in Q ∩ R. Applying the definition reveals that the theta-
antijoin operator in r1

Q∩R
r2 = r1 − (r1

Q∩R
r2) checks tuples in r1 against tuples in r2 based on

the equality of attributes Q ∩R.1 For a concrete case, see the example for p (s ∪∆s).

Positive update on the primary slot (∆p)

There is a positive update in the result for each incoming tuple which have no matching tuples on the
secondary slot.

t′ ≡ (p ∪∆p) s

= (p s) ∪ (∆p s)
= t ∪ (∆p s)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∆t

Example 37 ∆t =∆p s = {⟨m,2⟩, ⟨n,4⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨n,4⟩}

Negative update on the primary slot (∇p)

There is a negative update in the results for each incoming tuple which have no matching tuple on
the secondary slot. The expression can be derived similarly to∆p:

∇t = ∇p s

Example 38 ∇t = ∇p s = {⟨y,2⟩, ⟨z,3⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨z,3⟩}

Positive update on the secondary slot (∆s)

For positive updates on the secondary slot, the result set can be expressed as:

t′ ≡ p (s ∪∆s)
= p − (p (s ∪∆s))

1This expression is based on equality R1 presented in the SIGMOD Record 1998 Griffin–Kumar paper [GK98]. However,
it omits the details of the exact join predicates. As the ICDE 2007 Larson–Zhou paper [LZ07a] puts it: “Griffin’s and Kumar’s
algorithm [2] produces maintenance expressions of the correct form but they are incomplete because the predicates of the semi
and anti-semi joins used are not specified. Getting the predicates right is not trivial.” In this chapter, we provide the predicates
for cases when not the default (natural join) semantics are used.
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Note that positive updates on the secondary slot result in negative updates in the result set, so that
t′ = t −∇t, which in turn results in:

∇t = t − t′ =

t
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[ p
®
C

− (p s)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

A

]−

t′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[ p
®
C

− (p (s ∪∆s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

B

] (by E1)

= (p (s ∪∆s)) − (p s)
= (p s)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

X

∪ (p ∆s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Y

− (p s)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

X

(by E2)

= ( p
®
q

∆s
°
r1

) − ( p
®
q

s
®
r2

) (by E3)

= p (∆s
P∩S

s)

Note that the condition of the antijoin operator in ∆s s is based on the common attributes of
sch (p) = P and sch (s) = S as discussed when defining rule E3 at the beginning of this section.

Example 39 ∇t = p (∆s s) = p ({⟨2,0.7⟩, ⟨3,0.8⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩}) =
{⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨3,0.8⟩} = {⟨z,3⟩}.

Negative update on the secondary slot (∇s)

For negative updates on the secondary slot, the result set can be expressed as:

t′ ≡ p (s −∇s)
= p − (p (s −∇s))

Negative updates may result in positive updates in the result set. Since t′ = t ∪∆t, we define ∆t as:

∆t = t′ − t =

t′
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[ p
®
C

− (p (s −∇s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

]−

t
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
[ p
®
C

− (p s)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B

] (by E1)

= (p s)
´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶

B

− (p (s −∇s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

A

(break up p s by s = (s −∇s) ∪∇s)

= (p (s −∇s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

∪ (p ∇s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Y

− (p (s −∇s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

(by E2)

= (p ∇s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Y

− (p (s −∇s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

X

(the tuples in X to be removed from Y are in p ∇s)

= (p ∇s) − ((p ∇s) (s −∇s)) (following the definition of antijoin)
= (p ∇s) (s −∇s)

Although this change set may seem difficult to calculate, we point out that a few peculiarities can
be exploited for its implementation: (1) in general, ∇s is small, which renders p ∇s also small, and
(2) s−∇s is the maintained version of s. Based on these observations, the expression can be evaluated
efficiently without additional data structures.

240



E.3. Binary Nodes

Example 40 ∆t = (p ∇s) (s −∇s) = {⟨x,1⟩, ⟨y,2⟩} {⟨1,0.4⟩} = {⟨y,2⟩}

E.3.4 Left Outer Join Node

We recall the definition of the left outer join operator (Def. 18) for relations p and s:

p s = (p s) ∪ ((p s) × ⟨NULL⟩∣sch(s)−sch(p)∣),

where ⟨NULL⟩∣sch(s)−sch(p)∣ denotes a tuple ⟨NULL,NULL, ... ,NULL⟩ of width ∣sch (s)−sch (p) ∣.
For the sake of conciseness, we will simply write ⟨NULL⟩ instead of ⟨NULL⟩∣sch(s)−sch(p)∣.

Positive update on the primary slot (∆p)

(p ∪∆p) s = ((p ∪∆p) s) ∪ [((p ∪∆p) s) × ⟨NULL⟩]
= ((p s) ∪ (∆p s)) ∪ [((p s) ∪ (∆p s)) × ⟨NULL⟩]
= (p s) ∪ (∆p s) ∪ [(p s) × ⟨NULL⟩] ∪ [(∆p s)) × ⟨NULL⟩]
= (p s) ∪ [(p s) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p s

∪ (∆p s) ∪ [(∆p s)) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆p s

= (p s)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

t

∪ (∆p s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆t

Example 41

∆t =∆p s = {⟨m,2⟩, ⟨n,4⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨m,2,0.6⟩, ⟨n,4,NULL⟩}

Negative update on the primary slot (∇p)

Similarly to ∆p:

(p −∇p) s = (p s)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

t

− (∇p s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇t

Example 42

∇t = ∇p s = {⟨y,2⟩, ⟨z,3⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨y,2,0.6⟩, ⟨z,3,NULL⟩}
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Positive update on the secondary slot (∆s)

p (s ∪∆s) = (p (s ∪∆s)) ∪ [(p (s ∪∆s)) × ⟨NULL⟩]
= (p s) ∪ (p ∆s) ∪ [(p (s ∪∆s)) × ⟨NULL⟩] (use ∇(p (s ∪∆s)))
= (p s) ∪ (p ∆s) ∪ [(p s) − (p (∆s s)) × ⟨NULL⟩]
= (p s) ∪ (p ∆s) ∪ [(p s) × ⟨NULL⟩] − [(p (∆s s)) × ⟨NULL⟩]
= (p s) ∪ [(p s) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p s

∪(p ∆s) − [(p (∆s s)) × ⟨NULL⟩]

= (p s)
´¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶

t

∪ (p ∆s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆t

− [(p (∆s
P∩S

s)) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇t

Example 43 There are both positive and negative change sets:

∆t = p ∆s = {⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨2,0.7⟩, ⟨3,0.8⟩} = {⟨y,2,0.7⟩, ⟨z,3,0.8⟩}

∇t = (p (∆s s)) × ⟨NULL⟩
= (p ({⟨2,0.7⟩, ⟨3,0.8⟩} {⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩})) × ⟨NULL⟩
= ({⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨3,0.8⟩}) × ⟨NULL⟩
= {⟨z,3,NULL⟩}

Negative update on the secondary slot (∇s)

p (s −∇s) = (p (s −∇s)) ∪ [(p (s −∇s)) × ⟨NULL⟩]
= (p s) − (p ∇s) ∪ [(p (s −∇s)) × ⟨NULL⟩] (use ∆(p (s −∇s)))
= (p s) − (p ∇s) ∪ [((p s) − ((p ∇s) (s −∇s))) × ⟨NULL⟩]
= (p s) − (p ∇s) ∪ [(p s) × ⟨NULL⟩] ∪ [((p ∇s) (s −∇s)) × ⟨NULL⟩]
= (p s) ∪ [(p s) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p s

−(p ∇s) ∪ [((p ∇s) (s −∇s)) × ⟨NULL⟩]

= p s
²

t

− (p ∇s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∇t

∪ [((p ∇s) (s −∇s)) × ⟨NULL⟩]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∆t

Example 44 There are both positive and negative change sets:
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∆t = ((p ∇s) (s −∇s)) × ⟨NULL⟩
= ({⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨1,0.5⟩, ⟨2,0.6⟩})

({⟨1,0.4⟩, ⟨1,0.5⟩, ⟨2,0.6⟩} − {⟨1,0.5⟩, ⟨2,0.6⟩}) × ⟨NULL⟩
= ({⟨x,1⟩, ⟨y,2⟩} {⟨1,0.4⟩}) × ⟨NULL⟩
= {⟨y,2⟩} × ⟨NULL⟩ = {⟨y,2,NULL⟩}

∇t = p ∇s = {⟨x,1⟩, ⟨y,2⟩, ⟨z,3⟩} {⟨1,0.5⟩, ⟨2,0.6⟩} = {⟨x,1,0.5⟩, ⟨y,2,0.6⟩}

E.4 Incremental Performance for Query SemaphoreNeighbor

E.4.1 Query Plans

Fig. E.3–E.8 show possible Rete layouts for query SemaphoreNeighbor. Input nodes are marked with
dashed lines, whileworker nodes aremarkedwith solid lines. Due to the sake of conciseness, production
nodeswere omitted in the figures. All Rete networks have a single production node as a parent of their
depicted root node.

⊳
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

�route1≠route2
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

⋈
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

⋈
⟨te1, te2, sensor1, sensor2, route1, semaphore⟩

⋈
⟨te1, te2, sensor1, sensor2⟩

⋈
⟨te1, te2, sensor1⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

⋈
⟨route1, semaphore, sensor1⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
⟨route2, semaphore⟩

Figure E.3: Rete layout A for query SemaphoreNeighbor.

E.4.2 Execution Time and Memory Consumption

Fig. E.9 shows the execution times for different plans of query SemaphoreNeighbor. The x-axis shows
the graph model size, while the y-axis shows the time required for each phase. Both axes use loga-
rithmic scale. Plans A-D show similar performance, but plans E and F perform significantly worse
as both compute a Cartesian product as the first step of their evaluation.

Fig. E.10 shows the memory consumption for different plans of query SemaphoreNeighbor. Simi-
larly to the execution times, plansA-D require almost the same amount of memory. However, planE,
which requires the evaluation and maintenance of a Cartesian product, runs out of memory for small
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⊳
⟨te1, te2, sensor1, route1, sensor2, route2, semaphore⟩

⋈
⟨te1, te2, sensor1, route1, sensor2, route2, semaphore⟩

�route1≠route2
⟨te1, te2, sensor1, route1, sensor2, route2⟩

⋈
⟨te1, te2, sensor1, route1, sensor2, route2⟩

⋈
⟨te1, te2, sensor1, route1⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⋈
⟨te1, sensor1, route1⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⋈
⟨te2, sensor2, route2⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
⟨route2, semaphore⟩

Figure E.4: Rete layout B for query SemaphoreNeighbor.

⊳
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

�route1≠route2
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

⋈
⟨te1, te2, sensor1, sensor2, route1, semaphore, route2⟩

⋈
⟨te1, te2, sensor1, sensor2, route1, semaphore⟩

⋈
⟨te1, te2, sensor1, sensor2⟩

⋈
⟨te1, te2, sensor1⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

⋈
⟨route1, sensor1, semaphore⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
⟨route2, semaphore⟩

Figure E.5: Rete layout C for query SemaphoreNeighbor.

models (even for graph models with 136k elements). It is interesting to observe that while plan F –
which also requires a Cartesian product – consumes significantly less memory than E, is unable to
scale for model graphs with 67k elements due to timeout.
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⊳
⟨te1, te2, route1, semaphore, sensor1, sensor2, route2⟩

�route1≠route2
⟨te1, te2, route1, semaphore, sensor1, sensor2, route2⟩

⋈
⟨te1, te2, route1, semaphore, sensor1, sensor2, route2⟩

⋈
⟨te1, te2, route1, semaphore, sensor1, sensor2⟩

⋈
⟨te1, te2, route1, semaphore, sensor1⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⋈
⟨route1, semaphore, sensor1, te1⟩

⋈
⟨route1, semaphore, sensor1⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
⟨route2, semaphore⟩

Figure E.6: Rete layout D for query SemaphoreNeighbor.
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⋈
⟨route1, semaphore, route2, sensor2, sensor1, te1, te2⟩

⋈
⟨route1, semaphore, route2, sensor2, sensor1, te1⟩

⋈
⟨route1, semaphore, route2, sensor2, sensor1⟩

⊳
⟨route1, semaphore, route2, sensor2⟩

�route1≠route2
⟨route1, semaphore, route2, sensor2⟩

⋈
⟨route1, semaphore, route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
⟨route2, semaphore⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

Figure E.7: Rete layout E for query SemaphoreNeighbor.
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⊳
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⟨te1, sensor1, te2, sensor2, route1, route2, semaphore⟩

⋈
⟨te1, sensor1, te2, sensor2, route1, route2, semaphore⟩

�route1≠route2
⟨te1, sensor1, te2, sensor2, route1, route2⟩
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⟨te1, sensor1, te2, sensor2, route1, route2⟩

⋈
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⋈
⟨te1, sensor1, te2, sensor2⟩

⇑(sensor1∶ Sensor)
(te1∶ TrackElement)
[∶ monitoredBy]
⟨te1, sensor1⟩

⇑(sensor2∶ Sensor)
(te2∶ TrackElement)
[∶ monitoredBy]
⟨te2, sensor2⟩

⇑(sensor1∶ Sensor)
(route1∶ Route)
[∶ requires]

⟨route1, sensor1⟩

⇑(sensor2∶ Sensor)
(route2∶ Route)
[∶ requires]

⟨route2, sensor2⟩

⇑
(semaphore∶ Semaphore)
(route1∶ Route)

[∶ exit]
⟨route1, semaphore⟩

⇑(te2∶ TrackElement)
(te1∶ TrackElement)
[∶ connectsTo]

⟨te1, te2⟩

⇑
(semaphore∶ Semaphore)
(route2∶ Route)

[∶ entry]
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Figure E.8: Rete layout F for query SemaphoreNeighbor.
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