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Kivonat

Egyre nagyobb szerepet kapnak az életünkben a különböző szoftvereszközök. Ma már
olyan, biztonságkritikus alkalmazási területeken is elterjedten alkalmaznak szoftvereket,
ahol egy esetleges meghibásodás végzetes következményekkel is járhat: szoftverhibák ha-
tására vagyonok úszhatnak el, repülőgépek zuhanhatnak le, atomerőművek állhatnak le.
Az ilyen, kritikus szoftverek helyességének biztosítása tehát kiemelten fontos feladat.

A szoftverek megfelelő működésének ellenőrzése a verifikációjuk során történik. Kri-
tikus szoftverek ellenőrzésére gyakran alkalmaznak formális módszereket, melyekkel – el-
lentétben a hagyományos ellnőrzési módszerekkel (pl. tesztelés) – nemcsak hibák jelenléte
mutatható ki, hanem akár a rendszer helyessége is bizonyítható. Az egyik legelterjedtebben
alkalmazott formális módszer a modellellenőrzés, ahol a szoftver állapotterének bejárásával
próbáljuk a vele szemben megfogalmazott formális követelmények teljesülését bizonyítani,
vagy éppen cáfolni.

Az IC3 egy korszerű, eredetileg hardvermodellek ellenőrzésére alkalmas modellellen-
őrző algoritmus. Az IC3 algoritmus egyedi jellemzője, hogy a rendszer helyességének ellen-
őrzését inkrementálisan, számos egyszerű lemma indukciós bizonyításán keresztül végzi.
Amennyiben a rendszer helyes, a felfedezett lemmák összessége a rendszer helyességének
bizonyítékát (az állapottér egy biztonságos felülbecslését) adják; ellenkező esetben pedig a
keresést egy ellenpélda irányába irányítják, ezáltal hatékonyan vezérelve az állapottérfel-
derítést. Az eredeti algoritmus hátránya, hogy elsősorban véges állapotterű rendszerek (pl.
sorrendi hálózatok) hatékony kezelését teszi lehetővé. Az algoritmus így jelenleg is aktív
kutatás tárgyát képezi, és számos kiterjesztéssel bír.

Dolgozatomban az IC3 algoritmusnak egy olyan kiterjesztését vizsgálom, amely a vég-
telen állapottér hatékony kezeléséhez (implicit) predikátumabsztrakciót használ. Ez a mód-
szer a végtelen állapotteret véges sok partícióra osztja fel a változókon értelmezett logikai
állítások (predikátumok) mentén. A partíciók egy véges absztrakt állapotteret hoznak lét-
re, melynek állapotait az határozza meg, hogy mely predikátumok teljesülnek. A futás
során az algoritmus új predikátumokat tanul, ezzel szükség szerint pontosítja a képét a
rendszerről, mégis megtartja az absztrakció általánosságát.

Annak érdekében, hogy az algoritmus alkalmas legyen programokat leíró
vezérlésifolyam-automaták ellenőrzésére, egy olyan transzformációt is megadok, amely az
automata alapján egy vele ekvivalens viselkedésű szimbolikus tranzíciós rendszert állít
elő. Az algoritmust ezen a szimbolikus tranzíciós rendszeren futtatva lehetőség nyílik az
automata helyességének ellenőrzésére.

Az algoritmus, illetve a transzformáció implementációját a Theta nyílt forráskódú
modellellenőrző keretrendszer moduljaként készítem el, ami további kiterjesztési lehető-
ségeket biztosít. Az implementált algoritmus különböző konfigurációinak hatékonyságát
mérésekkel vizsgálom.
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Abstract

Software plays an ever increasing role in our lives. Nowadays, software is used even in
safety critical fields where a potential failure can lead to significant consequences: software
failures can cause fortunes to go to waste, airplanes to crash, or nuclear power plants to
stop. Thus ensuring the correctness of such critical software is a crucial task.

Verification is the process of checking that the software operates as expected. Formal
methods are often used to verify critical systems, which – as opposed to traditional verifi-
cation methods (such as testing) – is not only able to show the presence of errors, but also
to prove their absence. One of the most widely applied formal method is model checking,
which constitutes traversing the state space of the software to prove or disprove formal
requirements against the system.

IC3 is a state-of-the-art model checking algorithm, originally developed for checking hard-
ware models. The unique property of IC3 is that it proves the correctness of the system
in incremental steps by proving several simple lemmas about the system. If the system
is correct, the proven lemmas collectively form a proof of that fact (they specify a safe
overapproximation of the state space). If the system is not correct, the lemmas direct
the search towards a counterexample, thereby making the traversal more efficient. The
original algorithm is designed to check finite state systems, and is not effective for infinite
state systems. Therefore the algorithm is still the subject of active research and has several
extensions.

In my thesis I examine an extension to IC3 that uses (implicit) predicate abstraction to
handle infinite state spaces efficiently. This method divides the state space into a finite
number of partitions with respect to a set of predicates over the system variables. The
partitions form a finite abstract state space, where each state is defined by which of the
predicates hold and which do not. During its run, the algorithm learns new predicates
to refine its abstract image of the system, while still maintaining the coarseness of the
abstraction.

In order to check control flow automata which describe programs, I present a transforma-
tion that creates a symbolic transition system for a control flow automaton that behaves
equivalently to the automaton. The correctness of the automaton can be checked by
running the algorithm on this symbolic transition system.

I implement the algorithm and the transformation as part of the open source model check-
ing framework Theta, which allows for additional ways of extending it. Finally, I evaluate
the efficiency of the various configurations of the implemented algorithm.
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Chapter 1

Introduction

As we rely more and more on machines and software systems, it is increasingly important
to ensure that they operate as we expect them to. Safety critical systems are systems
whose failure can cause severe damage, possibly even death. Examples of such safety
critical systems include cars, aircraft, medical devices, fire alarms, etc.

As development of complex software is error-prone, it is crucial to ensure correctness
during development of safety critical systems by applying rigorous verification methods,
otherwise remaining design flaws may cause them to fail and be unsafe. While meticulous
testing can reveal many such flaws, it can not prove the system to be correct. Even if all
the tests are passed, it is not sure if the system is truly safe or if there was a missed test
case that would cause it to fail.

Formal verification techniques on the other hand are able to prove the correctness of safe
systems, or discover bugs of unsafe ones. Model checking is a formal verification technique
that is suitable to determine the correctness of a system by exhaustive traversal of its state
space. The main concept of model checking can be seen on Figure 1.1. As their input,
model checkers receive a formalized model of a system and the formalized property to be
checked. They search the state space of the model and either find that the property does
not hold, and give an example where it does not hold, or they prove that the model never
violates the property.

In this thesis, we present an approach to apply incremental, inductive model checking to
software. We begin by introducing the theoretical background of the problem. We have
implemented the IC3 algorithm and extended it to handle models whose state space is
infinite using (implicit) predicate abstraction. Moreover, we have implemented a transfor-
mation that allows the verification of control flow automata with our implementation. It
creates a symbolic transition system that behave equivalently to a control flow automaton,
and by checking the correctness of the transition system, we can learn if the automaton is
correct. We present the details of how the algorithm works and how we implemented it,
and we evaluate the implementation by measuring its performance on a set of benchmark
instances. Finally we examine possible areas of future improvements.

Related work IC3 (“Incremental Construction of Inductive Clauses for Indubitable Cor-
rectness”), introduced in [1], is a model checking algorithm. An optimization of IC3, called
PDR, has been proposed in [5]. PDR is created to check finite state transition systems
defined by variables, whose values are either true or false. Implicit predicate abstraction
as a method of checking infinite state systems using PDR is suggested in [4]. Checking
control flow automata with PDR has been described in [3, 6]. Our approach uses implicit

1



Figure 1.1: The input and output of a model checker

predicate abstraction as well, but handles control flow automata by transforming them to
symbolic transition systems.

Organization of the thesis We introduce the theoretical background to PDR in Chap-
ter 2. In Chapter 3 we explain how PDR works, describe an extension to it, which allows
efficient handling of infinite state spaces by implicit predicate abstraction, and introduce
a way to transform control flow automaton to an equivalently behaving symbolic transi-
tion systems, such that the correctness of the automaton can be checked by checking the
correctness of the symbolic transition system. The details and evaluation of our imple-
mentation are presented in Chapter 4. Finally, in Chapter 5 we summarize the thesis and
suggest areas to explore in the future.

2



Chapter 2

Background

In this chapter, we present the theoretical background to PDR. We introduce propositional
logic and first order logic. Building upon them we define the types of models which our
algorithm operates on, symbolic transition systems and control flow automata.

2.1 Formal Logic

In order to formally prove programs correct, we first have to define a formal system in
which we can reason about programs. This section briefly introduces propositional logic
and first order logic as they are defined in [2]. They both define a set of symbols (syntax),
and a set of rules to assign meaning to those symbols (semantics).

2.1.1 Propositional Logic

Propositional logic (PL) operates over propositions. Propositions can be either true or
false, they cannot take any other value.

2.1.1.1 Syntax

Let V = {P,Q,R, P1, P2, . . .} be a countable set of propositional variables. A proposi-
tional variable P ∈ V is a formula. More complex formulas can be built by using logical
connectives. Formally, if ϕ and ψ are formulas, then the following are also formulas:

• ⊥ (bottom),

• > (top),

• ¬ϕ (negation),

• ϕ ∧ ψ (conjunction),

• ϕ ∨ ψ (disjunction),

• ϕ→ ψ (implication),

• ϕ↔ ψ (if and only if, iff).

3



Nullary connectives ⊥ and > are also called truth symbols. An atom is either a truth
symbol or a propositional variable. A literal is either an atom α or its negation ¬α.

The order of precedence of the connectives is ¬, ∧, ∨, →, ↔. Since ⊥ and > take no
arguments, precedence is not applicable.

∧ and ∨ are left-associative: by ϕ∧ψ ∧ γ we mean (ϕ∧ψ)∧ γ and by ϕ∨ψ ∨ γ we mean
(ϕ∨ψ)∨ γ. → and ↔ are right-associative, as by ϕ→ ψ → γ we mean ϕ→ (ψ → γ) and
by ϕ↔ ψ ↔ γ we mean ϕ↔ (ψ ↔ γ)
Example 1. >, P,¬P are literals; (Q ∧ (P1 ∨ ¬P2))→ (R↔ >) is a formula.

2.1.1.2 Semantics

In propositional logic all of the elements evaluate to either true or false.

To evaluate variables, we need an interpretation. An interpretation is a function
M : V → {true, false} that maps each variable symbol to a truth value. We will say
that a variable P evaluates to true under interpretationM ifM[P ] = true. Similarly, a
variable P evaluates to false under interpretationM ifM[P ] = false.
Example 2. Under interpretation M = {P → true, Q→ false}, variable P evaluates
to true and variable Q evaluates to false, asM[P ] = true andM[Q] = false.

To evaluate more complex formulas, we have to define the semantics of the connectives.
We will writeM |= ϕ if ϕ evaluates to true underM, andM 6|= ϕ if ϕ evaluates to false
underM.
M 6|= ⊥;
M |= >;
M |= ¬ϕ iff M 6|= ϕ;
M |= ϕ ∧ ψ iff M |= ϕ andM |= ψ;
M |= ϕ ∨ ψ iff M |= ϕ orM |= ψ;
M |= ϕ→ ψ iff M 6|= ϕ orM |= ψ;
M |= ϕ↔ ψ iff M |= ϕ iffM |= ψ.

We say that a formula ϕ is satisfiable if there exists such an interpretationM thatM |= F ,
otherwise, we say that it is unsatisfiable.
Example 3. The formula Q ∧ R is satisfiable since for interpretation
M = {Q→ true, R→ true, . . .}, we haveM |= Q ∧R.

The formula P ∧¬P is unsatisfiable, because every interpretation assigns to P either true
or false, and the formula evaluates to false in both of those cases.

2.1.2 First Order Logic

From our perspective, the principal advantage of first order logic (FOL) compared to
propositional logic is that FOL can handle non-logical values (values that are not true nor
false).

2.1.2.1 Syntax

In FOL, non-logical values are represented with terms. Let V = {x, y, z, x1, x2, . . .} be a
countable set of variable symbols. Let F = {f, g, h, f1, f2, . . .} be a countable set of function
symbols. The arity of function symbols is fixed. A term is

4



• a variable symbol x ∈ V,

• or an n-ary function symbol f ∈ F applied to n terms f(t1, t2, . . . , tn).

Let moreover P = {p, q, r, p1, p2, . . .} be a countable set of predicate symbols. The arity
of predicate symbols is fixed. An n-ary predicate symbol p ∈ P applied to n terms
p(t1, t2, . . . , tn) is a formula. More complex formulas can be built by using the same
logical connectives as in PL, and by using quantifiers. If ϕ and ψ are formulas and x ∈ V
is a variable symbol then the following are also formulas:

• ⊥ (bottom),

• > (top),

• ¬ϕ (negation),

• ϕ ∧ ψ (conjunction),

• ϕ ∨ ψ (disjunction),

• ϕ→ ψ (implication),

• ϕ↔ ψ (if and only if, iff),

• ∃x.ϕ (existential quantification),

• ∀x.ϕ (universal quantification).

An atom is a truth symbol or an n-ary predicate symbol p ∈ P applied to n terms
p(t1, t2, . . . , tn). A literal is an atom α or its negation ¬α.

Symbols ∃ and ∀ are called quantifiers. In a formula ∃x.ϕ, x is the quantified variable
and ϕ is the scope of the quantifier. Variable x is called a bound variable, while all other
variables occurring in ϕ are free.

Example 4. p(f(x, y)) ∨ ∃z.q(g(z), h) is a formula. The structure of the formula is the
following:

• p is a unary predicate symbol applied to a term f(x, y),

• f is a binary function symbol applied to two terms x and y,

• g(z) is a unary function symbol applied to a term z,

• h is a nullary function symbol, and

• x, y and z are variable symbols.

2.1.2.2 Semantics

Formulas in FOL are evaluated based on an interpretation. An interpretation is a pair
M = (D, α). Here, D is an (either finite or infinite) nonempty set called the domain. It
is the set of values that a term can take according to the interpretation. Moreover, α is a
function called the assignment that assigns meaning to terms and formulas. It maps

• each variable symbol x ∈ V to an element α[x] ∈ D of the domain,

5



• each n-ary function symbol f ∈ F to an n-ary function α[f ] : Dn → D over the
domain,

• each n-ary predicate symbol p ∈ P to an n-ary relation α[p] ⊆ Dn over the domain.

Values then can be assigned to more complex terms recursively. For the applica-
tion of an n-ary function symbol f to terms t1, t2, . . . , tn, let α[f(t1, t2, . . . , tn)] =
α[f ](α[t1], α[t2], . . . , α[tn]). We will say that the value of a term t under interpretation
M is v iff α[t] = v.

Given an interpretationM = (D, α), a variable x ∈ V, and element v ∈ D of the domain,
letM/{x→ v} stand for the interpretation (D, α′) where α′[e] = v if e = x and α′[e] = α[e]
otherwise. Formulas then can be evaluated recursively according to the following rules.
M |= p(t1, t2, . . . , tn) iff (α[t1], α[t2], . . . , α[tn]) ∈ α[p];
M 6|= ⊥;
M |= >;
M |= ¬ϕ iff M 6|= ϕ;
M |= ϕ ∧ ψ iff M |= ϕ andM |= ψ;
M |= ϕ ∨ ψ iff M |= ϕ orM |= ψ;
M |= ϕ→ ψ iff M 6|= ϕ orM |= ψ;
M |= ϕ↔ ψ iff M |= ϕ iffM |= ψ.
M |= ∃x.ϕ iff M / {x→ v} |= ϕ for some v ∈ D;
M |= ∀x.ϕ iff M / {x→ v} |= ϕ for all v ∈ D.

As in the case of PL, we will say that a formula ϕ is satisfiable if there exists an interpre-
tationM such that M |= ϕ, otherwise, we say that it is unsatisfiable.

For simplicity, we will often write α |= ϕ for (D, α) |= ϕ.

Example 5. Consider the interpretationM = (Z, α) where

• α[x] = 3,

• α[y] = 9,

• α[z] = 0,

• α[f ] = +Z,

• α[g] = x 7→ x+Z (−100),

• α[h] = 42

• α[p] = {x | x <Z 0},

• α[q] = <Z.

M 6|= p(f(x, y)), as α[f ](α[x], α[y]) = 3 +Z 9 = 12, and 12 /∈ α[p].

M |= ∃z.q(g(z), h), as M′ |= q(g(z), h) for M′ = (Z, α′) = M / {z → 100}, since
α′[g](α′[z])] = 100 +Z (−100) = 0 and (0, α′[h]) = (0, 42) ∈ α′[q].

M |= p(f(x, y)) ∨ ∃z.q(g(z), h) asM |= ∃z.q(g(z), h).

Unless we say otherwise, the formulas we use are quantifier-free, meaning that they contain
no quantifiers.

6



2.1.3 Satisfiability Modulo Theories

As general first order logic is undecidable [2], applications often restrict satisfiability
checking to some background theory T . A theory can be defined by the class of T -
interpretations. Solving satisfiability modulo theories (SMT) amounts to checking whether,
given a theory T , a formula ϕ is satisfied under some T -interpretation M, denoted by
M |=T ϕ. Theories commonly used in practice have efficient decision procedures for
satisfiability of their quantifier-free fragments.

A theory typically fixes the interpretation of certain symbols. Such symbols are called in-
terpreted symbols, while symbols whose interpretation may vary between T -interpretations
are called uninterpreted symbols.

The theory we are going to use is linear integer arithmetic, or LA(Z) for short. In LA(Z)-
interpretations, the domain is fixed as Z, and constant symbols 0, 1, . . . , function symbols
+ and −, and predicate symbols <, >, ≤, ≥, = and 6= are interpreted as usual for integers.

Example 6. Consider the formula ϕ = x+y ≤ x−y. LetM be the LA(Z)-interpretation
with α[x] = 2 and α[y] = −3. ThenM |=LA(Z) ϕ, because 2 + (−3) ≤ 2− (−3).

In the future we will use |= instead of |=T , unless the context makes it ambiguous.

2.2 Modeling Formalisms

The purpose of formal verification is to prove the safety of systems in a formal manner.
To achieve this, we formalize both the behavior and the requirements of the system under
consideration. The two kinds of models we use are transition systems and control flow
automata.

2.2.1 Transition Systems

Transition systems are models of discrete systems. They are mostly used to describe
hardware such as sequential logic circuits.

2.2.1.1 Transition Systems in General

A transition system is a quadruple: W = (S, I, T, P ), where

• S is the set of states,

• I ⊆ S is the set of initial states,

• T ⊆ S × S is the set of allowed transitions and

• P ⊆ S is the set of safe states.

Example 7. W = ({a, b, c, d} , {a} , {(a, b), (c, a), (c, d), (d, b)} , {a, b, c}) is the transition
system visualized on Figure 2.1. It has four states: a, b, c and d. The single initial state
is a. The transitions of the system are (a, b) , (c, a) , (c, d) and (d, b). The safe states are
a, b and c, thus d is unsafe.
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a b

c d

Figure 2.1: The transition system described in Example 7.

a b

c d

Figure 2.2: The transition system described in Example 9, with
the counterexample highlighted with dashes.

A path is a sequence of states π = s0s1s2 . . . sn such that (si, si+1) ∈ T for 0 ≤ i < n. An
initial path is a path where s0 ∈ I. An error path is a path where sn ∈ P . We call a state
s reachable iff there exists an initial path such that sn = s.

Example 8. In the transition system W of Example 7, (cdb) is a path, as (c, d) ∈ T and
(d, b) ∈ T . (acd) is not a path, as (a, c) /∈ T .

P is the set of states that are considered safe or “good”. States outside P are called
unsafe or “bad” states. We call the transition system safe if all reachable states are safe.
Similarly, the system is unsafe if it has an initial error path. Such a path is called a
counterexample.

Example 9. The system W ′ = ({a, b, c, d} , {a} , {(a, b) , (a, c) , (c, d) , (d, b)} , {a, b, c}),
which we obtained by flipping the transition (c, a) in W , is unsafe. A counterexample,
as shown in Figure 2.2, is the path (acd).

A set of states R ⊆ S is an invariant iff

1. I ⊆ R, and

2. R is closed under T : for all (s, s′) ∈ T , if s ∈ R, then s′ ∈ R.

If also R ⊆ P , then we call it a safety invariant.

Example 10. In the transition system W of Example 7, the set of reachable states is
{a, b}. The set R1 = {a, b, d} is an invariant, as I ⊆ R and there are no transitions
pointing out of it. Although it is an invariant, it is not a safety invariant, since d ∈ R∩P .
R2 = {a, b}, however is a safety invariant, since I ⊆ {a, b} and {a, b} ∩ P = ∅.
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Proposition 1. A transition system W has a safety invariant R if and only if W is safe.�

Proof. First we prove that if the system is safe, then it has a safety invariant. Since it is
safe, all of the reachable states are safe and the set of reachable states are obviously an
invariant, thus it is a safety invariant.

For the other direction, assume that the statement is false. That isW has a safety invariant
R, and W is unsafe: it has a reachable bad state sB /∈ P . Because sB is reachable, it has
an initial path leading to it: s0s1 . . . sB. Since s0 ∈ I and I ⊆ R (because R is a safety
invariant), s0 ∈ R. R ⊆ P , therefore sB /∈ R. The first element of the path is in R, and
the last element is not, hence there must be two consecutive elements si, si+1 such that
si ∈ R and si+1 /∈ R. (si, si+1) ∈ T as they are subsequent elements of a path, but that
contradicts with R being an invariant, since there is an edge between an element of R and
a state outside R.

2.2.1.2 Symbolic Transition Systems

A symbolic transition systems (STS) over a T is a transition systems where sets of states
and transitions are represented by T -formulas. Let V = {v1, v2, . . . , vn} be the set of
variable of the system, and V ′ = {v′1, v′2, . . . , v′n} be the set of primed variables.

A state of the system is an assignment of values to all of these variables.

Formally a symbolic transition system over a set of variables V is a triple (ϕI , ϕT , ϕP )
where ϕI and ϕP are formulas over V and ϕT is a formula over V ∪ V ′.

Semantically, the symbolic transition system (ϕI , ϕT , ϕP ) represents the transition system
W ′ = (S, I, T, P ) where

• S is the set of assignments over V ,

• I = {s | s |= ϕI},

• T = {(s, s′) | s ∪ s′ |= ϕT },

• P = {s | s |= ϕP }.

With this definition we can represent a set of states as a formula and vice versa. We say
that a formula ϕ holds in a state s, or that s is a ϕ-state, iff s |= ϕ. The set of ϕ-states is
then {s | s |= ϕ}.

In the future we will denote the formulas of an STS with I, T and P , instead of ϕI , ϕT
and ϕP , respectively.

Example 11. Let the theory T fix the domain as D = {◦, •}, and fix the unary predicate
symbol p as the set {◦}. Take a symbolic transition system (I, T, P ) over T with variables
V = {x, y} where

• I(x, y) = ¬p(x) ∧ ¬p(y),

• T (x, y, x′, y′) = (¬p(x) ∧ ¬p(y) ∧ p(x′) ∧ ¬p(y′)) ∨ (p(y) ∧ ¬p(y′)), and

• P (x, y) = ¬p(x) ∨ ¬p(y).
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x → •
y → •

x → ◦

y → •

x → •

y → ◦

x → ◦

y → ◦

Figure 2.3: The symbolic transition system described in Exam-
ple 11

The system is visualized on Figure 2.3.

In this case the initial formula is I(x, y) = ¬p(x)∧¬p(y), which is only true for the state
in which variables are assigned •.

The transition formula is T (x, y, x′, y′) = (¬p(x)∧¬p(y)∧p(x′)∧¬p(y′))∨ (p(y)∧¬p(y′)).
The first part is true for the edge leading from the state where both variables are • to the
state where x is ◦ and y is •. The second part is true for all the edges leading from states
where y is ◦ to states where y is •. The two parts are connected by a disjunction, therefore
the whole formula is true for the union of the two sets.

The property is P (x, y) = ¬p(x) ∨ ¬p(y). This is only false for the state where both
variables are ◦, therefore that state is unsafe, and all the other states are safe.

2.2.2 Control Flow Automata

Control flow automata (CFA) are structurally more complex than transition systems. They
model software systems, and therefore their basis is a control flow graph. The automaton
operates in discrete time, and at each point in time it is in one of the nodes of its control
flow graph. Transitions can change the node the automaton is at, and they execute a
statement. CFA also have a set of variables which the statements manipulate.

2.2.3 Syntax

Formally a control flow automaton over a theory T and set of variables V is tuple A =
(L,E, `0, `e) where

• L is a finite set of locations of the control flow graph,

• E ⊆ L× Stmt × L is a finite set of edges, where for an edge (`, s, `′) ∈ E,

– ` ∈ L is the source location,
– s ∈ Stmt is a statement to be executed upon traversing the edge,
– `′ ∈ L is the target location;
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• `0 ∈ L is the initial location,

• `e ∈ L is the error location.

A statement s ∈ Stmt is

• an assignment x := t where x ∈ V is a variable and t is a term, or

• an assumption assume ϕ where ϕ is a formula, or

• A statement of the form havoc x where x ∈ V is a variable.

A path (of length k) in a control flow automaton is a sequence of edges µ =
(`0, s1, `1) (`1, s2, `2) . . . (`k−1, sk, `

′). `0 is the initial node of the automaton, as all CFA
paths start in the initial node. An error path is a path where `′ = `e.

2.2.4 Semantics

At any point in time, the state of the automaton is characterized by a pair (`, α) where
` ∈ L is its current location and α is an assignment over V that encodes the current value
of the variables of the automaton.

For a statement s ∈ Stmt, we define δs to be its transition formula. Let same(X) $∧
x∈X x

′ = x. Then

δs =


x′ = t ∧ same(V \ {x}) if s = (x := t)
ϕ ∧ same(V ) if s = assume ϕ
same(V \ {x}) if s = havoc x

We say that a path µ = (`0, s0, `1) (`1, s1, `2) . . . (`n−1, sn−1, `n) is feasible iff the formula∧n−1
i=0 δ

(i)
si (where δ(i)

si is δsi with i primes applied to its variables) is satisfiable under T .
That is there exist assignments α(i)

i : X(i) → D such that
⋃n
i=1 α

(i−1)
i |=

∧n−1
i=0 δ

(i)
si

We say that a node ` is reachable in a control flow automaton iff there is a feasible path
e1e2 . . . en for which the target node of en is `.

The decision problem of control flow automata is whether the error location `f is reachable.
A counterexample is a feasible path to the final node.

Example 12. Let the theory T fix the domain as Z, fix the value of the func-
tion + as +Z, · as ·Z and fix the value of predicate < as <Z. The CFA A =
({a, b, c, d, f} , {e1, e2, e3, e4, e5} , a, f) where

• e1 = (a, x := 0, b),

• e2 = (b, havoc y, c),

• e3 = (c, y := x · y, d),

• e4 = (d, x := x+ 1, b),

• e5 = (d, assume y > 20, f).
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Table 2.1: Example assignments to the variables of A in Example 12, as it runs through
the path µ1

Location x y Next statement

a 36 42 x := 0

b 0 42 havoc y

c 0 10 y := x · y

d 0 0 x := x+ 1

b 1 0 havoc y

c 1 21 y := x · y

d 1 42 assume y > 20

f 1 42

a

b

x := 0

c

d

havoc y

y := x·y

x := x+1

f

assume y > 20

Figure 2.4: The control flow automaton described in Example 12

is visualized on Figure 2.4.

µ1 = e1e2e3e4e2e3e5 is a feasible path, a sample assignment to the variables along its
execution can be seen in Table 2.1.

µ1 starts from the initial node and leads to the finial node, therefore this is an initial error
path, thus the final node is reachable and the system is unsafe.

µ2 = e1e2e3e5 is not a feasible path, because when statement y := x · y is executed we have
x = 0, and y cannot have a value such that 0 · y > 20. Thus the statement on e5 cannot
be executed.
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Chapter 3

The Algorithm

In this chapter we present PDR, first in a high level, then in a lower level. We introduce
implicit predicate abstraction, and describe how we extend PDR with it. Finally we
present our transformation of control flow automata to symbolic transition systems, and
prove that it is correct.

3.1 Property Directed Reachability

Property directed reachability (PDR) [5] is a model checking algorithm. It checks reacha-
bility properties in transition systems. It analyzes the system incrementally, through the
proof of several lemmas, which eventually either form an inductive property that proves
the system correct, or which direct the search towards a counterexample.

3.1.1 High Level Description

This chapter introduces PDR in a high level, discussing how it operates over a general
transition system.

3.1.1.1 Trace

The algorithm has very few information of the system initially, then as it runs, it deduces
more and more. It stores its current view of the state space in a list [F0, F1, · · · , FN ] called
the trace. An element Fi of the trace is called a frame, and is a set of states.

Let Ri denote the set of states reachable from the initial states in at most i transitions.
At the beginning this information is known only for i = 0, because R0 is the set of initial
states, and that is part of the given STS model. During the run of PDR, the i-th frame is
maintained so that it is an overestimation of Ri. More specifically F0 = R0 and ∀i.Ri ⊆ Fi.
In other words all the states reachable in i steps or less are in Fi, but there may be other
states in it as well. PDR initializes all frames (except F0) to include the whole state space.
It learns later to exclude states by disproving their reachability.

PDR also maintains the relation that ∀i < j.Fi ⊆ Fj . The idea comes naturally: if a
state is reachable in at most i steps, it is also reachable in at most j steps. However the
overestimations do not intrinsically satisfy that.
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3.1.1.2 Proof Obligations

When PDR finds that one of the frames intersect with bad states, it looks for a specific state
in the intersection, and creates a proof obligation. Upon processing the proof obligation it
tries to prove the states unreachable: it tries to block them. A proof obligation includes
the state (or set of states) to be blocked and the frame number to block them from.

A proof obligation shows a lack of knowledge, and a target to learn: according to the
information PDR has, a bad state may or may not be reachable. It is obligated to learn
which case it is and it does so by proving the state reachable or unreachable.

3.1.1.3 Main Loop

PDR initially only knows about the initial states (F0) and assumes that all further frames
include the whole state space, because that is an obvious overestimation of the reachable
states. It refines this knowledge in a directed way, by learning about the reachability of
bad states and their predecessors through proof obligations.

PDR iterates over the frames and tries to disprove the reachability of bad states in each
frame.

First of all it checks if there are any bad states in F0, i.e. whether F0 ∩ P = ∅. If there
is a bad state among the initial states, then that is an obvious proof of the system being
unsafe, and the algorithm can terminate.

If the initial states are all good states, it continues looking at further frames. When PDR
looks at Fi, it looks for a state s in the intersection of Fi and P . If it finds such a bad
state, it needs to learn whether it is actually reachable, so it creates a proof obligation
and processes it. The algorithm continues looking for bad states until Fi ∩ P = ∅.

When PDR reaches the point that Fi contains no more bad states, it has learned that

• no bad states are reachable in at most i steps

• no state in Fi−1 are bad states or direct predecessors of bad states i.e. such that a
bad state is reachable from them in at most one step

• no state in Fi−2 is such that a bad state would be reachable from it in at most two
steps

• etc.

3.1.1.4 Processing Proof Obligations

When a proof obligation arises, it means that according to the current knowledge the
algorithm has, a bad state s seems to be reachable in at most i steps. When the proof
obligation is processed, either a counterexample is produced, proving the system unsafe,
or s is proven to be unreachable in at most i steps and is taken out of Fi.

To find out which is the case, PDR checks if s has any predecessors r in Fi−1. If such a
state r is found, then it can be treated the same way as s: should r prove to be reachable, s
would also be reachable, and they would be two steps in a counterexample. Hence another
proof obligation is made from r and i − 1, and it is processed the same way recursively:
PDR tries to block r from Fi−1. To block it, it might have to raise even more proof
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obligations. If r is blocked, the algorithm has to look for other predecessors, and process
them the same way.

If there are no more predecessors of s in Fi−1, then s is proven to be unreachable in i
steps or less, because Fi−1 contains all the states reachable in at most i − 1 steps, and
none of them is a predecessor of s. If s intersected with the initial states, it could be
reachable without having any predecessors. It is shown in Section 3.1.1.5 that this does
not happen. Hence, s can be excluded from Fi, and it will remain an overestimation of
the states reachable in at most i steps. To ensure that the earlier frames are subsets of the
latter, s is also blocked from all earlier frames. This is sound, as the previous frames are
subsets of Fi−1, and Fi−1 does not contain any predecessors of s, therefore the previous
frames do not either.

If a proof obligation would be created to block the state q with the frame number being 0,
it means that q is the first state in a counterexample. We know that q is an initial state,
because we intend to block it from the initial frame. The initial states are known to be
reachable, q is too. All proof obligations are created because if an initial path lead to the
state to be blocked, then it would form a counterexample. Therefore a path exists from q
to a bad state, and that path is a counterexample proving the unsafety of the system.

Optimization: pushing proof obligations forward in the trace When we prove
a set of states unreachable in a certain frame, we see that it is a direction of learning
that is useful. Those frames might become reachable eventually, and since they have a
path leading from them to a bad state, we will have to prove them unreachable in every
frame eventually. Experiments show that we can make the algorithm quicker, especially
for unsafe systems, if we create a proof obligation to block the same set of states from the
next frame.

3.1.1.5 Initial States in Proof Obligations

Proposition 2. PDR never creates proof obligations that overlap initial states but have a
non-zero frame number. �

Proof. PDR creates proof obligations three ways.

The first way is when it finds a bad state s in a frame. State s cannot be initial, because if
the intersection of initial states and error states is not empty, then the algorithm terminates
before the main loop.

The second way proof obligations are created is to block a set B of predecessors from Fi
(assume i > 0) during the recursive blocking of a bad state s from Fk. When we get to
frame Fk with the main loop, we are already done with Fk−1, so we know, that no bad
state is reachable in at most k− 1 steps. The proof obligations created during the process
of recursively blocking the predecessors of s go back at most k − 1 steps, because each
step decreases the frame number by one, and if it reaches 0, a counterexample is found.
If B overlapped with the initial states, then s would be reachable in k − i steps, and the
algorithm would terminate when processing the frame Fk−i, before it would get to block
s from Fk.

The third way a proof obligation is created is when we push a blocked proof obligation
forward: we try to block from Fk+1 a set of states B, that was successfully blocked from
Fk. In that case the the main loop might be behind the Fk+1. However pushing the
obligations happens sequentially increasing the frame number one-by-one, so by the time
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it gets pushed to frame Fk+1, it is proven to be unreachable in at most k steps from the
initial states. Therefore if B overlapped with the initial states, then it would have been
reachable in k steps, and the algorithm would terminate before pushing it forward.

3.1.1.6 Termination

PDR terminates either when it finds a counterexample or when two consecutive frames
become equal: Fi = Fi+1, and the main loop is past them, so Fi ∩¬P = ∅. That happens
when all the states that are not in Fi are blocked from Fi+1. A state is blocked from Fi+1
if it has no predecessors in Fi. This is true for all the states outside of Fi since they were
blocked. Thus the successors of all the states in Fi are also in Fi. That means that no
transitions lead out of Fi and that the system can not get out of Fi. Because F1 ⊆ Fi, all
of the initial states are in Fi. This means that Fi is an invariant. In other words all the
reachable states are in Fi. Since Fi ∩ P = ∅, all the states in Fi are safe, therefore Fi is a
safety invariant. According to Proposition 1 this means that the system is safe.

3.1.2 Lower Level Description

Sets of states discussed in the previous section are represented as predicates in this section.
As its input PDR receives an STS model W = (I(x), T (x,x′), P (x)) interpreted over
LA(Z). STS models are described in Section 2.2.1.2.

3.1.2.1 Trace

The trace is a list of frames. Each frame Fi(x) is a formula, that represents an overesti-
mation of the states reachable in at most i steps. The other property of the frames is that
for all i < j, Fi(x) implies Fj(x).

3.1.2.2 Proof Obligations

Proof obligations are a pair of a number and a formula: (i, B(x)). The states that satisfy
B are states that need to be blocked from Fi.

3.1.2.3 Main Loop

Initially F0(x) = I(x) and for all i > 0, Fi(x) = >. It is checked first if F0(x) ∧ ¬P (x) is
satisfiable using an SMT solver. If the formula is satisfiable, the solver can give a model
of the formula, which is a counterexample itself, and the algorithm terminates. If the
formula is unsatisfiable, that means that there is no bad initial state, and the algorithm
can continue checking further frames.

When looking at the i-th frame, PDR checks if Fi(x) ∧ ¬P (x) is satisfiable. If it is, then
its interpretationM is turned into a formula B(x), and a proof obligation (i− 1, B(x)) is
created and processed. Then either a counterexample is found, or Fi is refined. The algo-
rithm continues checking Fi(x)∧¬P (x) and blocking states until it is no longer satisfiable,
than proceeds to the next frame.
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Algorithm 1: Main loop
Input: A symbolic transition system W = (I(x), T (x,x′), P (x))
Output: Whether the transition system is safe

1 if I(x) ∧ ¬P (x) is satisfiable then
2 return false
3 end
4 F0 ← I(x)
5 F1 ← >
6 n← 1
7 while true do
8 if Fn ∧ ¬P (x) is satisfiable then
9 LetM = (D, α) be a satisfying interpretation.

10 B ←
∧
x∈x x = α[x]

11 Block the proof obligation (n,B)
12 if it cannot be blocked then
13 return false
14 end
15 end
16 else
17 Propagate blocked states
18 if equal frames found then
19 return true
20 end
21 else
22 n← n+ 1
23 Fn ← >
24 end
25 end
26 end
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3.1.2.4 Processing Proof Obligations

When a proof obligation (i, B(x)) arises, it means that the states satisfying B(x) appear to
be reachable in i steps, but if they are indeed reachable, then the system is unsafe. To find
out if the states are reachable, PDR tries to see if the states have reachable predecessors.
It checks whether Fi−1(x) ∧ T (x,x′) ∧B(x′) is satisfiable.

If it is, then it needs to learn if the found predecessor, the assignment of values to x is
reachable. Therefore it creates and processes a proof obligation from that and i− 1.

If it is not satisfiable, then it is proven that Fi−1(x) ∧ T (x,x′) =⇒ ¬B(x′). In other
words, the states satisfying B(x′) have no direct predecessors in any of the first i − 1
frames and as shown in Section 3.1.1.5, the set B(x) represents does not overlap with
initial states. Thus B states are not initial and not a successor of any state reachable in
at most i− 1 steps, so they are not reachable in at most i steps.

Optimization: Strengthen query When processing proof obligations, the original
query

Fi−1(x) ∧ T (x,x′) ∧B(x′)

can be optimized by adding ¬B(x) to it:

Fi−1(x) ∧ ¬B(x) ∧ T (x,x′) ∧B(x′).

This formula is more likely to be unsatisfiable, yet it remains correct.

Proof. Four cases are possible:

1. both queries are satisfiable;

2. both queries are unsatisfiable;

3. the strengthened query is satisfiable, but the original one is not;

4. the original query is satisfiable, but the strengthened one is not.

In Case 1, we find a predecessor with the strengthened query, and we proceed by blocking
it.

In Case 2, we block B from Fi, and since the original query is unsatisfiable, that is correct.

Case 3 is impossible, since if there is an interpretationM, for which

M |=LA(Z) Fi−1(x) ∧ ¬B(x) ∧ T (x,x′) ∧B(x′)

then

• M |= Fi−1(x) and

• M |= ¬B(x) and

• M |= T (x,x′) and

• M |= B(x′),

therefore
M |= Fi−1(x) ∧ T (x,x′) ∧B(x′)).
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Case 4 is where the strengthened query works better. We prove by induction, that in this
case B is unreachable in i steps or less. Since the original query is satisfiable, B states
do have predecessors in Fi−1, but since the strengthened query is unsatisfiable, all of the
predecessors are also B states. For 1 ≤ j ≤ i, Fj−1 is a subset of Fi−1, therefore B states
in Fi have only B state predecessors in Fi−1. Since B (x) is part of a proof obligation,
according to Proposition 2, it does not intersect with the initial states. Thus there are
no B states in F0, i.e. B states are unreachable in 0 steps. Assume that B states are
unreachable in j < i steps. Fj+1 is an overapproximation of the states reachable in j + 1
steps, and as shown before, B states in Fj+1 have only B state predecessors in Fj , none
of which is reachable in j steps, thus none of the B states is reachable in j + 1 steps.
Therefore B states are unreachable in i steps and can be blocked from Fi.

In conclusion if the strengthened query is unsatisfiable, B (x) can be blocked, and if it is
satisfiable, then the found predecessors are truly predecessors of B states.

Optimization: Generalize blocked states Blocking the states one by one can take
a really long time. When a state is blocked, it is blocked because a query

Fi−1(x) ∧ ¬B(x) ∧ T (x,x′) ∧B(x′).

is UNSAT. As a consequence we can block all states satisfying B from Fi. However,
sometimes we can block a larger set of states. Many SMT and SAT solvers can give a core
contradiction to show why the query is unsatisfiable, Z3, the solver we use is one of those.
This core contradiction is called an UNSAT core and it is an unsatisfiable subformula of
the query. The subformula BU of B that is in the UNSAT core, is satisfied by more states
than B. While the states satisfying BU do not have predecessors in Fi−1, they might be
initial states, and initial states must not be blocked, even if they have no predecessors,
since they are reachable. Therefore we leave out parts of B that are not in BU until we
get to a formula that intersects with the initial states or until we get to BU .

We can also use the UNSAT core to learn which frame to block B from. Normally we
would block it from Fi, however if the subformula of Fi−1 used by the UNSAT core is also
in an Fj−1 where j > i, then we can block B from Fj .

Optimization: Generalize predecessors When the query is satisfiable, the solver
gives an interpretationM that satisfies the query. M assigns value to all of the symbols
in the query, however, there can be variables to which any value from the domain can
be assigned, and the modified interpretation still satisfies the query. An example is x <
0 ∨ y > 0: if we only assign x to be less than 0, then whatever value is assigned to y, the
query is satisfied. By finding such variables, the algorithm can create a more general proof
obligation, and learn quicker or find a counterexample quicker. The idea is to try to remove
the assignments one by one, and if the result of the query is still unequivocally true, we
don’t use that assignment in the interpretation. After we try to remove all assignments,
we end up with a local minimum of the number of assignments used, not a global one, but
heuristics can be applied to the order in which we choose the variables.

Optimization: Propagate blocked states When states are blocked, they are blocked
using the information available at the time. As the algorithm progresses, it learns more
and more about the system and blocks more and more states. It is possible, that a formula
B(x) that was blocked from Fi, but was not blocked from Fi+1 can be blocked at the later
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Algorithm 2: Proof obligation handling
Input: A proof obligation (n,B), a symbolic transition system

W = (I(x), T (x,x′), P (x)), and the trace F0 . . . Fn
Output: Whether the proof obligation was blocked and possible modifications to

the trace
1 if n = 0 then
2 return false
3 end
4 else
5 while Fn−1 ∧ ¬B(x) ∧ T (x,x′) ∧B(x′) is satisfiable do
6 LetM = (D, α ∪ α′) be a satisfying interpretation where α assigns values

to x and α′ assigns values to x′
7 V ← {}
8 for x ∈ x do
9 if x can be assigned such a value that the formula would not hold then

10 V ← V ∪ {x}
11 end
12 end
13 D ←

∧
x∈V x = α[x]

14 Block the proof obligation (n− 1, D)
15 if it cannot be blocked then
16 return false
17 end
18 end
19 Let U be the UNSAT core
20 C ← a subformula of B such that U is a subformula of C and C ∧ I(x) is

unsatisfiable.
21 k ← the smallest frame number that blocks the part of Fn−1 that is in U
22 Fk ← Fk ∧ ¬C
23 if k is not too large then
24 Block the proof obligation pairk + 1B
25 if it cannot be blocked then
26 return false
27 end
28 end
29 return true
30 end

20



frame after new information becomes available. If the query1

Fi−1(x) ∧ T (x,x′) ∧ ¬B(x′)

is unsatisfiable then it can be blocked. Using the UNSAT core we can possibly block a
more general formula at a later frame. It can be beneficial to check occasionally during
the run of the algorithm if there are such formulas and block them from the later frames.
It can also lead to faster termination, as frames can become equal.

3.1.2.5 Termination

The algorithm can terminate in two ways: finding a counterexample or finding an inductive
invariant proving safety. The first way is obvious to notice. The second way happens when
two frames are equivalent: Fi(x) ⇐⇒ Fi+1(x), as discussed before. Since it is always
true that Fi(x) =⇒ Fi+1(x), it only remains to be checked that Fi(x) ⇐= Fi+1(x).
This can be done by checking if ¬Fi(x) ∧ Fi+1(x) is satisfiable.

Algorithm 3: Propagate blocked states
Input: A symbolic transition system W = (I(x), T (x,x′), P (x)) and the trace

F0 . . . Fn
Output: Modifications to the trace and whether there are equal frames

1 for Fi ∈ (F1 . . . Fn) do
2 for parts G of Fi do
3 if Fi(x) ∧ T (x,x′) ∧G(x′) is unsatisfiable then
4 Let U be the UNSAT core;
5 C ← a subformula of G such that U is a subformula of C and C ∧ I(x)

is unsatisfiable.;
6 k ← the smallest frame number that blocks the part of Fi that is in U ;
7 Fk ← Fk ∧ ¬C;
8 end
9 end

10 if Fi−1 = Fi then
11 return true
12 end
13 end
14 return false

3.2 Implicit Predicate Abstraction

Handling infinite state spaces is not efficient using simple PDR. When using the model
given by the solver, we assign a single value to all of the variables. However if the domain
is not finite, as e.g. in the case of LA(Z), then there is an infinite number of values that
can be assigned to a variable. Therefore enumerating models one by one is in general not
an option.

1Using the strengthened query would yield benefit here, since B(X) is already blocked from Fi−1.
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3.2.1 Predicate Abstraction

The idea of predicate abstraction [4] is to divide the infinite state space into a finite number
of partitions. Partitions are defined by which predicates hold in them and which predicates
do not.

Example 13. If the set of predicates is {(x < 10), (y < x)} then the state space is divided
into 4 partitions:

• states for which (x < 10) ∧ (y < x) holds,

• states for which ¬(x < 10) ∧ (y < x) holds,

• states for which (x < 10) ∧ ¬(y < x) holds,

• states for which ¬(x < 10) ∧ ¬(y < x) holds.

The partitions are obviously mutually exclusive, since every predicate in every state either
holds or does not hold.

From the concrete STS W = (I(x), T (x,x′), P (x)), using the predicate set Π =
{Π1(x),Π2(x), . . . ,Πn(x)} we create an abstract STS Ŵ = (Î(x̂), T̂ (x̂, x̂′), P̂ (x̂)). The
abstract STS operates in the abstract state space defined by n propositional variables in
x̂ corresponding to the n predicates. We note (

∧n
i=1 x̂i ↔ Πi(x)) by Λ(x̂, x).

• Î(x̂) = ∃x.I(x) ∧ Λ(x̂, x).

• T̂ (x̂, x̂′) = ∃x,x′ ∧ (x,x′)Λ(x̂, x) ∧ (
∧n
i=1 x̂′i ↔ Πi(x′)).

• P̂ (x̂) = ∀x.Λ(x̂, x)→ P (x).

We can deduce that ¬P̂ (x̂) = ¬ (Λ(x̂, x)→ P (x)) = Λ(x̂, x) ∧ P (x)

In the algorithm we are only interested in the satisfiability of these formulas, thus we use
them without the quantifier. Since ∃x.ϕ is satisfiable iff ϕ is satisfiable, it is sound to do
so.

When it starts, the algorithm extracts the predicates from I(x) and P (x), and proceeds
to run on the abstract automaton characterized by those predicates.

When an abstract counterexample ŝ0, ŝ1, . . . , ŝn is found, and the set of predicates is
Pi = {Π1,Π2, . . .Πm} it is checked in the concrete state space. The “refute all paths”
strategy is to disregard the counterexample and check if an error state is reachable in n
steps, by checking the satisfiability of the formula

I(x) ∧
(
n−1∧
i=0

T
(
x(i),x(i+1)

))
∧ ¬P

(
x(n)

)
.

The “refute specific path” strategy is to check if the specific n step long path, the coun-
terexample is a path in the concrete state space by checking the satisfiability of the formula

I(x) ∧
(
n−1∧
i=0

Λ(ŝi[x̂], x) ∧ T
(
x(i),x(i+1)

))
∧ Λ(ŝn[x̂], x) ∧ ¬P

(
x(n)

)
where ŝi[x̂]j is > if ŝi assigns true to x̂j , and it is ⊥ otherwise.
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If the query is satisfiable, that means that the concrete system is unsafe, and the algorithm
terminates.

If the query is unsatisfiable, then the abstraction must be refined, because the abstract
system is unsafe, but the concrete one may not be. The algorithm needs to add predicates
to Pi so that it could block the states of the counterexample.

3.2.2 Abstraction Refinement

There are several methods for learning new predicates to exclude spurious counterexamples
from the abstract state space. One of the most prominent ways for abstraction refinement
is based on interpolation [8].

An interpolant for a sequence of n formulas Γ = ψ1, ψ2, . . . , ψn is a sequence of n + 1
formulas Θ = I0, I1, . . . , In such that

• I0 = >,

• for all 1 ≤ i ≤ n, Ii−1 ∧ ψi implies Ii,

• In = ⊥,

• for all 0 ≤ i < n, all of the uninterpreted symbols of Ii are both in Ii−1 and in Ii.

Abstraction refinement is not addressed in detail in [4], as the algorithm is orthogonal
to the specific refinement strategy used. In our work, we use two interpolation-based
abstraction refinement strategies. For that, we use an interpolating SMT solver that has
the ability to compute an interpolant for unsatisfiable formulas of certain theories, e.g.
LA(Z).

In the case of the “refute all paths” strategy the Γ sequence we create an interpolant for
is

I(x), T
(
x,x′

)
, T
(
x′′,x(3)

)
, . . . , T

(
x(n−1),x(n)

)
,¬P (x(n)).

In the case of the “refute specific path” strategy it is

• I(x) ∧ Λ(ŝ0[x̂], x)),

• T (x,x′) ∧ Λ(ŝ1[x̂], x),

• T (x′,x′′) ∧ Λ(ŝ2[x̂], x),

• T
(
x′′,x(3)

)
∧ Λ(ŝ3[x̂], x),

• . . .

• T
(
x(n−1),x(n)

)
∧ Λ(ŝn[x̂], x),

• ¬P
(
x(n)

)
In both cases the common elements of the consecutive formulas of Γ have the same number
of primes. Therefore in the interpolant Θ, Ii will refer only to x(i−1).

Then adding the predicates in Θ to Π refines the abstraction enough that the bad state
at the end of the counterexample becomes unreachable in n steps and in the “refute all
paths” case all of the bad states become unreachable in n steps.
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3.3 Application to Software

Imperative programs can be conveniently modeled using control flow automata. The
original version of PDR however works on symbolic transition systems. To use PDR for
proving the safety of CFA, we convert them to STS first.

Given the CFA A = (L,E, `0, `e) we say that the STS W = (I(x), T (x,x′), P (x)) con-
structed such that

• I(x) = (l = `0),

• T (x,x′) =
(∨

(`,t,`′)∈E l = ` ∧ δt ∧ l′ = `′
)
where δt is the transition formula of the

statement t as defined in Section 2.2.4,

• P (x) = (l 6= `e),

where l is the element of x used to represent control flow location, is the equivalent STS
of A.

Given a path µ = e1e2 . . . en where ei = (`i, ti, `i+1) in the CFA A = (L,E, `0, `e), we say
that a path πµ = s1s2 . . . sn+1 in the equivalent STS of A is a corresponding path to µ iff

1. for all 1 ≤ i ≤ n+ 1, si |= l = `i, and

2. for all 1 ≤ i ≤ n, si ∪ s′i+1 |= δti .

Proposition 3. A path µ = e1e2 . . . en in the CFA A = (L,E, `0, `e) is feasible iff it has
a corresponding path πµ = s1s2 . . . sn+1 in the equivalent STS. �

Proof. Let all ei = (`i, ti, `i+1).

First we prove that if it has a corresponding path πµ, then µ is feasible. According to the
definition of feasibility in Section 2.2.4, µ is feasible iff the formula

n∧
i=1

δ
(i−1)
ti

is satisfiable. Since πµ is a path corresponding to µ,

n+1⋃
i=1

si |=
n∧
i=1

δ
(i−1)
ti ,

as for all 1 ≤ i ≤ n+ 1, si ∪ s′i+1 |= δti .

Now we prove that if µ is feasible, then there is a corresponding path πµ. Since µ is
feasible, there is an assignment α under which

α |=
n∧
i=1

δ
(i−1)
ti .

α assigns value to x,x′,x′′, . . . ,x(n). Divide α into n separate assignments
α1, α

′
2, α
′′
3, . . . , α

(n−1)
n , α

(n)
n+1 such that α(i−1)

i assigns value to x(i−1). For all 1 ≤ i ≤ (n+1)
let si = αi ∪ {l→ `i}. Now condition 1 of the corresponding path definition holds, as for
all 1 ≤ i ≤ n + 1, si |= l = `i, since si[l] = `i. Moreover, condition 2 holds, as for all
1 ≤ i ≤ n, si ∪ s′i+1 |= δti , since they were created from a satisfying assignment.
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What remains to be proven is that πµ = s1s2 . . . sn+1 does form a path in the STS
equivalent to A. si are states, in the STS, as they are assignments, and they assign
value to the variables of A and the location variable l. For a sequence of states to be a
path in a transition system, (si, si+1) ∈ T has to be true for 1 ≤ i ≤ n, where T is the
set fof allowed transitions in the transition system. The transition set of the transition
system underlying the equivalent STS is defined as

T =

(s, s′)|s ∪ s′ |=

 ∨
(`,t,`′)∈E

l = ` ∧ δt ∧ l′ = `′

 .
Since, as a consequence of condition 1 and 2, for each 1 ≤ i ≤ n,

si ∪ s′i+1 |=
(
l = `i ∧ δti ∧ l′ = `i+1

)
,

where (`i, δti , `i+1) ∈ E, the subsequent elements of πµ are in the transition set.

Proposition 4. Given the CFA A = (L,E, `0, `e) and its equivalent STS, W =
(I(x), T (x,x′), P (x)), every initial path π = s1s2 . . . sn+1 is the corresponding path of
a feasible path µ in A. �

Proof. Since π is a path, for 1 ≤ i ≤ n,

(si, si+1) ∈

(s, s′) | s ∪ s′ |=

 ∨
(`,t,`′)∈E

l = ` ∧ δt ∧ l′ = `′

 .
Which means that

si ∪ s′i+1 |=

 ∨
(`,t,`′)∈E

l = ` ∧ δt ∧ l′ = `′

 .
From the semantics of ∨, this means that there is an edge (`i, ti, `i+1) ∈ E for all subsequent
states (si, si+1) such that si ∪ s′i+1 |= (l = `i ∧ δti ∧ l′ = `i+1).

The path is an initial path, therefore s1 |= l = `0 and the source location of e1 is `0. In
all of the states, l can only be assigned a single value, and since = is transitive, the target
location of ith edge is the same as the source location of the (i + 1)-th edge. These are
the two conditions for µ = e1e2 . . . en to be a CFA path, therefore it is a CFA path.

Since for all 1 ≤ i ≤ n, si ∪ s′i+1 |= (l = `i ∧ δti ∧ l′ = `i+1),

1. for all 1 ≤ i ≤ n+ 1, si |= l = `i and

2. for all 1 ≤ i ≤ n, si ∪ s′i+1 |= δti ,

which means that π is the corresponding path to µ.

Proposition 5. The CFA A = (L,E, `0, `e) is safe iff its equivalent STS, W =
(I(x), T (x,x′), P (x)) is safe. �

Proof. If A is safe, then there are no feasible error paths in it, therefore there are no initial
error paths in W , which means that it is safe. Assume that there is an initial error path
π in W . π is an error path, therefore its last state sn is an error state, which means that
sn |= (l = `e). There is a path µ in A to which π corresponds. Thus, the target location
of the last edge of µ is `e, which means that µ is an error path, and since it has an STS
path corresponding to it, it is feasible. Therefore A is not safe.
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If W is safe, then there are no initial error paths in it, therefore there are no feasible error
paths in A, which means that it is safe. Assume that there is a feasible error path µ in A.
Since µ is feasible, it has a corresponding path π in W . µ is an error path, which means
that the target node of its last edge is `e. π is the path corresponding to µ, therefore its
last state sn must be such, that sn |= (l = `e), which means that sn is an error location,
π is an initial error path, and W is not safe.

Therefore we can check the safety of a CFA, by creating its equivalent STS, and running
PDR on that.
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Chapter 4

Implementation

We have chosen to implement the algorithm in the Theta framework in Kotlin.

4.1 The Theta Framework

Theta is a framework for model checking. It offers frontends to various languages and
translates those languages to inner representations. It has a versatile library of tools for
the inner representations. It also provides an interface to the SMT solver, implemented
as a facade over the Z3 solver.

An overview of Theta can be seen in Figure 4.1.

4.2 Kotlin

Kotlin is a programming language that offers modern syntax and features, and can be
compiled to run on multiple platforms: JVM, JavaScript, and they are working on a native
compiler. The JVM version is fully compatible with Java with minor nuisances, mostly
when it comes to dealing with static methods or objects. We exploit this compatibility,
because Theta is implemented in Java.

Figure 4.1: An overview of the architecture of Theta
Based on similar figure in [9]
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//Note the absence of semicolons, they are usually not necessary in Kotlin
var a : String //Non-nullable type
a = null //Compile error
var b : String? //Nullable type
println(b.length()) //Compile error

if(b != null){
println(b.length()) //No error

}

fun process(command : String){ //Function with non-nullable parameter
execute(command)

}

fun printMessage(message : String?){ //function with nullable parameter
println(message?:"Message has not arrived.") //Replaces message with the given string if null

}

Listing 4.1: Nullable and non-nullable types in Kotlin

fun <T>countSmaller(bound: T, list: List<out Comparable<T>>): Int {
var count = 0;
for (e in list) {

if (e < bound) { //The compiler knows to call the Comparable interface
++count;
}

}
return count;

}

Listing 4.2: Operator overloading in Kotlin

4.2.1 Null pointer safety

Kotlin tackles null pointer exceptions on the type level. It has separate separate types
for references that can and can not be null. To call a method on a variable of a nullable
type, one has to check if the variable is null before calling the method. The compiler can
smart-cast the variable to a non-nullable type (if the variable cannot be accessed from
another thread) after a non-null check, and its methods can be invoked.

Another benefit is the ability to write methods that take non-null parameters. That way
the programmer gets a compile-time error if they pass a nullable variable as parameter.

An example can be seen in Listing 4.1.

4.2.2 Operator overloading

Kotlin allows operator overloading. It can improve the readability of the code, and make
it less of a hassle to write. One such case can be seen in Listing 4.2.

Kotlin overloads more operators than Java out of the box, and programmers can overload,
or define new infix operators themselves.
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//Creating and initializing a mutable list of mutable lists of immutable lists of expressions.
//Kotlin infers the type of trace, and in most cases the template parameter of the functions.
val trace = mutableListOf(

mutableListOf(listOf(sts.init)),
mutableListOf(listOf<Expr<BoolType>>())

)

Listing 4.3: Type inference in Kotlin

4.2.3 Type inference

Kotlin can infer the type of the variable being created from the right-hand side of the
assignment. This reduces the amount of code to manage, without substantial loss of
readability (IDEs also support it well). It can also infer the template parameter of a
function from the type of the parameter passed. An example can be seen in Listing 4.3.

4.3 Our Implementation

We represent sets of states by cubes and clauses. A cube is a conjunction of literals
l1 ∧ l2 ∧ · · · ∧ ln, and a clause is a disjunction of literals l1 ∨ l2 ∨ · · · ∨ ln. As a conse-
quence of De Morgan’s law, the negation of a cube is a clause: ¬ (l1 ∧ l2 ∧ · · · ∧ ln) =
(¬l1 ∨ ¬l2 ∨ · · · ∨ ¬ln), and vice versa: ¬ (l1 ∨ l2 ∨ · · · ∨ ln) = (¬l1 ∧ ¬l2 ∧ · · · ∧ ¬ln).

To ease predicate abstraction, we create a representing propositional variable for every
atom used in the abstraction. When the abstraction is refined with a predicate p , a
propositional variable Rp is created to represent it, and add the formula p ↔ Rp to the
solver. This formula remains in the solver until the program terminates. Thus in queries
we can use Rp in place of the predicate.

From the model of a satisfiable query, which is an assignment to the variables in the
query, we create a cube. The variables in the query include only the propositional variables
created to represent formulas, therefore all the variables are assigned either true or false.
For each predicate p, if its representative variable Rp is assigned true, then we add p to
the cube, if Rp is assigned false, then we add ¬p to the cube.

When a cube is blocked, its negation is added to the element of the trace it is blocked
from. An element of the trace is therefore a conjunction of clauses, it is in conjunctive
normal form (CNF).

When the algorithm proves the system correct, one of the elements of the trace become
a safety invariant. Since that is in CNF, the algorithm produces the safety invariant in
CNF.

We represent the trace in a way that exploits the property that earlier frames imply the
latter. When we block a cube, we only add it to the latest frame from which it is blocked.
Therefore the formula of the ith frame is the conjunction of all the clauses in the ith and
later frames. The initial frame is an exception, as its formula is known exactly and cubes
are not blocked from it. We also have an “invariant” frame, where we add blocked clauses
when they are proven unreachable without restriction to the number of steps. New frames
are always added before the invariant frame, so that it stays the last element of the trace.
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4.3.1 Data classes

Instances of the Literal class represent literals. They contain the represented atom, its
representative variable, and a boolean of whether it is negated or not. They are immutable,
but have a property that returns their negated version.

Instances of the Clause and Cube classes represent clauses and cubes. They contain a set of
literals. They are immutable, they implement the (immutable) Set interface 1 by delegating
it to the contained set of literals. They can return their negation, an instance of the
other class with each of the literals negated. Clauses have a method subsumes that checks
syntactically if a clause implies another. If c1 contains all the literals in c2, or in other
words c1 subsumes c2, then c2 implies c1, as for every interpretation I, if I |= c2, then
there is a literal l in c2, for which I |= l, and since l is also a literal of c1, I |= c1.

All three of these classes are immutable, therefore their properties can be lazy. “Lazy”
properties are calculated only when they are first accessed, then their value is stored.

Instances of the class ProofObligation represent proof obligations. They contain a cube,
the number of steps the cube must be proven unreachable in, and a reference to the
ProofObligation instance that caused it. The reference is used to create counterexamples:
when a proof obligation reaches the initial frame, the path leading from it to a bad state
can be traced. When a proof obligation is created from a bad state, the reference is set to
null.

Instances of the Frame class represent elements of the trace. They contain a mutable list of
clauses, which are the negations of blocked cubes. They implement the MutableList interface
by delegating it to the contained list of clauses. There are three noteworthy methods in
the class. add is overridden from the MutableList interface and not delegated. It iterates
over the already learned clauses and if any of them subsumes the element to be added,
then they are dropped. Dropping them simplifies the formula, but does not change the
set of interpretations satisfying it, as c1 implies c2, therefore c1 ∧ c2 is equivalent to c1.
dropIfSubsumes simplifies the frame when a more general clause is to be added to a later
frame. It drops all the clauses that are subsumed by the clause to be added. ensures is
used to check syntactically if a cube is blocked, so that the more expensive semantic check
using the solver can be possibly spared. It takes the negation of the cube to be blocked,
a clause. If that clause subsumes any of the clauses already learned, then the cube is
blocked in that frame, because the frame’s formula implies the negation of the cube.

An instance of the Trace class represents the trace. It stores a list of Frame instances,
separately from it, the initial formula and a special Frame instance, the invariant frame. Its
method blockObl takes a proof obligation that is proven unreachable and adds the cube’s
negation to the appropriate frame. It also removes unnecessary clauses from earlier frames
using dropIfSubsumes. The safetyInvariant method calculates the list of clauses in the safety
invariant, when the system is proven safe. Since we add the learned clauses to only the
last frame at which they hold, the method looks for the last empty frame, as that has the
same clauses as the next. The safety invariant is the conjunction of all the clauses in that
frame and all frames after it, including the invariant frame.

1Kotlin has both immutable and mutable versions of every collection. The name of the mutable versions
start with Mutable, such as MutableSet.

30



4.3.2 Handling the Solver

The solver we use (Z3) has a stack-like behaviour. We can add multiple formulas to it, and
it will check if their conjunction is satisfiable. We can remove formulas in a last-in-first-out
way as layers of the stack.

In our implementation we use two layers. On the bottom layer are the formulas that are
kept there long-term, such as Rp ↔ p for predicates and their representative variables.
On the top layer are the formulas of the specific query.

For elements of the trace, we create propositional variables, we call activation variables.
The ith frame’s activation variable is Fi. When a clause c is added to the ith frame, we
add the formula Fi → c to the bottom level of the solver’s stack. And when we want
to use the ith frame in a query, we refer to it by Fi. Because of the way we represent
frames, we have to also add every Fj where i < j. The invariant frame does not have
an activation literal, clauses added to the invariant frame are added to the bottom level,
since they always hold. The getBadCube method returns either a bad cube at the given
frame, or null if there is none. It adds to the top level of the solver all activation literals
after the requested one, and adds the negation of the property formula. If the formula
is satisfiable, then it creates a cube from the assignment of the representative variables.
The cube has a literal for every predicate in the current abstraction, if its representative
variable is assigned false, then the literal is negated, otherwise it is not. If the formula
is unsatisfiable, it returns null.

The solveRelative method checks if a proof obligation can be blocked, and returns either
a general version that can be blocked, or a general predecessor. It adds the formula
corresponding to the chosen query to the solver, and checks it.

If the formula is satisfiable, then it creates a cube from the assignment to the predecessor
variables, and then generalizes it by attempting to leave out the literals one-by-one. It can
leave a literal from the cube, iff every state satisfying the remaining cube has a successor
satisfying the cube of the proof obligation. This is checked syntactically, using a method
similar to ternary simulation. If the formula can be simplified to > even after leaving
a variable out from the assignment, then the variable is removed from the cube. The
simplification of the formula is done with general rules such as x∧⊥ ↔ ⊥ and x∨> ↔ >
regardless of the value of x.

If the formula is unsatisfiable, then it generalizes the cube of the proof obligation. It
tries to leave out literals from the cube one-by-one, that are not in the UNSAT core. If
leaving a variable causes the remaining cube to intersect with the initial states, then the
variable is kept, since blocking a cube that intersects with the initial states would break
the invariant that the earlier states are subsets of the latter. It also checks which frame’s
activation variable is in the UNSAT core. The generalized cube is blocked from the frame
after the earliest used.

The refine method is used to refine the abstraction. It takes an abstract counterexample
as parameter. Depending on the strategy used, it either checks the counterexample, or all
paths of the given length in the concrete state space using a different solver instance. If
the path is feasible, then it returns false. If the path is not feasible, then it extracts the
predicates from the interpolant of the path, refines the abstraction with them and returns
true.
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Table 4.1: Results of running the algorithm with “Refute all paths” strategy.

All Safe Unsafe

Average 2.56 s 2.61 s 0.77 s

Median 2.07 s 2.13 s 0.76 s

Min 0.74 s 1.3 s 0.74 s

Max 14.06 s 14.06 s 0.77 s

Table 4.2: Results of running the algorithm with “Refute specific path” strategy.

All Safe Unsafe

Average 5.9 s 6.04 s 0.74 s

Median 3.62 s 3.67 s 0.74 s

Min 0.72 s 1.35 s 0.72 s

Max 32.4 s 32.4 s 0.77 s

4.4 Evaluation

We ran our implementation on a set of benchmarks developed for the International Compe-
tition on Software Verification (SV-COMP) [7]. We measured the time it took to complete
each instance using the “refute all paths” and using the “refute specific path” refinement
strategy. The results are presented in Table 4.1, Table 4.2, Figure A.1.1 and Figure A.1.2.
The “refute all paths” strategy seems to perform better in our benchmarks, but we do not
draw further conclusions from that.
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Chapter 5

Conclusions

In this thesis, we have examined IC3, a hardware model checking algorithm, that checks
reachability properties in symbolic transition systems. We have implemented PDR, an
optimized version of IC3. We have also implemented an extension of IC3 that enables the
efficient handling of infinite state-space models using implicit predicate abstraction. More-
over, to enable the algorithm to check reachability properties in control flow automata, we
have implemented a transformation that constructs a symbolic transition system equiva-
lent to the input automaton. Finally, we evaluated our implementation by measuring the
time it takes to solve a set of benchmarks developed for SV-COMP [7].

Future work Our implementation is single-threaded, and thus cannot exploit the ad-
vantages of a multi-processor system. PDR can be parallelized, either by blocking multiple
bad states from a frame simultaneously, or blocking multiple predecessors simultaneously.
This could potentially improve the performance of the algorithm on multi-processor sys-
tems.

Our approach of running the algorithm on control flow automata creates a less structured
model and checks the properties on that. Comparing the performance of our algorithm to
other IC3-like algorithms that exploit the structural information in CFA, such as in [3, 6]
would also be interesting.
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Appendix

A.1 Evaluation results

Figure A.1.1: Histogram of the time taken to run the algorithm
with both configurations

Figure A.1.2: Scatterplot of the time taken to run the algorithm
with the “refute all paths” strategy vs. the “refute
specific path strategy” on certain instances
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