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Kivonat

Életünk egyre nagyobb részét automatizáljuk, egyre több problémát szoftverrendszerek
segítségével oldunk meg. Akár olyan feladatokat is szofverrendszerekre bízunk, amelyek
során ezek nem megfelelő működése végzetes következményekkel járhat. Míg a pénzügyi
rendszereket vagy kritikus infrastruktúrát irányító szoftverek hibái jelentős gazdasági kárt
okozhatnak, a repülőgépekben vagy orvosi eszközökben működő szoftverek hibája esetén
életveszély állhat fenn. Az ilyen rendszerekben futó szoftverek hibáinak kiszűrése ezért
kitüntetett figyelmet érdemel.

A fejlesztési folyamatba integrált verifikációs módszerek segítik a szoftverhibák fel-
ismerését és emelik a szoftver minőségét. Hagyományos verifikációs módszerekkel (mint
amilyen a tesztelés) általában csak csökkenteni lehet a hibák jelenlétének valószínűségét,
az ember nem lehet teljesen biztos benne, hogy a ki nem próbált esetekben is jól működik-e
a tesztelt szoftver. A formális módszerek ezzel szemben lehetőséget adnak rá, hogy bizo-
nyos formálisan megfogalmazott tulajdonságok teljesülését matematikailag bizonyítsuk.

A formális módszerek egyik ága a modellellenőrzés. A modellellenőrző algoritmusok
jellemzője, hogy az ellenőrzendő rendszer egy formális modelljét, illetve a modell állapot-
terét vizsgálják.

A dolgozatban vizsgált algortmuscsalád szoftver modellek ellenőrzésére képes, az el-
lenőrzött program ciklusaihoz próbál invariánsokat szintetizálni. Ezek olyan logikai for-
mulák, amelyek indukcióval bizonyítható lemmákat alkotnak, és együtt képesek a modell
helyességét bizonyítani.

Az invariánsok szintézisének feladatát tekinthetjük egy speciális Horn-klóz halmaz
megoldásának. A Horn-ICE verifikációs eszköz egy tanár és egy tanuló modul együttmű-
ködésének eredményeként képes Horn-klózokat megoldani. A tanuló invariáns-jelölteket
szintetizál, a tanár pedig ellenőrzi őket. Ha a jelöltek nem bizonyulnak valódi invarián-
soknak, a tanár mintákat ad a tanulónak, amik alapján a tanuló (akár a gépi tanulásból
ismert algoritmusok használatával) javít a jelöltjein.

A dolgozatban néhány, az irodalomból megismert Horn-klóz megoldó algoritmust
adaptálunk a feladatra, ötvözzük őket és mérésekkel vizsgáljuk az elkészült prototítpus
hatékonyságát. Különlegessége a bemutatott megoldásnak, hogy míg a Horn-ICE eszköz
esetében a tanár mintái legfeljebb a program egy állapotára vonatkoznak, a mi eszközünk
olyan mintákat is képes adni, amely a program végtelen sok állapotát lefedi.
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Abstract

An increasing part of our lives is being automated. We solve more and more problems
with software systems. We even trust software systems with tasks where their potential
improper operation can have catastrophic consequences. While bugs in software that
control financial systems or critical infrastructure can lead to economic damage, bugs in
the software of an aeroplane or a medical device may endanger life. Ensuring that there
are no bugs in the software that runs on such systems deserves special attention.
Verification methods integrated into the development process support the detection of bugs
and improve the quality of the software. Using traditional verification methods (such as
testing), one can usually only reduce the probability of bugs being present, but they can
never be completely sure that the software under test works correctly in the cases they did
not try. Using Formal methods, on the other hand, one can prove some formally stated
properties mathematically.
One of the branches of formal methods is model checking. Model checking systems work
with a formal model of the system. They traverse the state space of the model and check
if the property they are trying to prove is satisfied.
The family of algorithms we examine in the thesis can check software models by trying
to synthesize loop invariants. These are logical formulae that form lemmas about the
program. The lemmas are proven by induction, and together they prove that the model
is correct.
We can view the task of synthesizing invariants as a special case of solving Horn clauses.
The Horn-ICE verification toolkit solves Horn clauses through the collaboration of a
teacher and a learner module. The learner synthesizes invariant candidates, and the
teacher checks them. If the candidates are not invariants, the teacher gives samples to the
learner, which the learner can use to improve the candidates—for example with algorithms
known from machine learning.
In this thesis, we adapt some previously published Horn clause solver algorithms to invari-
ant synthesis, combine them and measure the efficiency of the completed prototype. A
special feature of the presented solution is that the samples that the teacher gives to the
learner can represent infinitely many states of the program, as opposed to the Horn-ICE
toolkit, where the samples only represent a single program state.
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Chapter 1

Introduction

The more important a task we entrust to a software system, the more important it is to
ensure that the system works correctly. We have to take more precaution developing the
control software for a nuclear power plant than developing a game.
Errors in some systems, for example aeroplanes, railway control systems or medical sys-
tems, can have significant consequences, they may lead to death or significant damage to
their environment. We call such systems safety critical systems.
Since many safety critical systems rely on software, the utmost care must be taken to make
sure that the software they rely on is correct to prevent the consequences of a malfunction.
A major part of that is verification. Verification is the process of ensuring the quality of
software. We can differentiate dynamic verification methods, which work by executing the
software to be verified, and static verification methods, which analyse the code without
executing it.
Formal verification is a static verification method. It requires the software and the require-
ments both to be stated formally, and it either proves by formal methods that the software
satisfies the requirements or offers an example of when it does not. While e.g. testing can
only offer information on whether the program behaves correctly in the chosen test cases,
and one must extrapolate from that to other cases, formal verification can reason about
all scenarios that can occur when executing the software.
Our approach to formal verification is model checking. As seen in Figure 1.1, model
checking algorithms work with the formal model of the system to be checked, and they
check whether it adheres to some formally stated requirements. They either prove that
all possible states in the state space of the model satisfy the requirements or provide an
example of when the system fails.
In this thesis, we present a family of algorithms with the goal of synthesizing loop invariants
for a software model. Loop invariants are logical formulae that evaluate true for every
reachable configuration of the software model, and that fact can be proven by induction.
Additionally, we aim to synthesize loop invariants that are strong enough to prove that
the software system is safe.

Related work Invariant synthesis is a special case of solving Horn clauses. An overview
of Horn clauses and existing techniques to solving them can be found in [2]. Our solution
is based on the Horn-ICE toolkit [3, 6]. Other approaches to Horn-clause solving include
[7] and [4]. We implemented the prototypes using the Theta [11] framework.

1



Formal model Formal 
requirements

Model checking

Counterexample Proof of 
correctness

Figure 1.1: Overview of model checking

Structure of the thesis We introduce the mathematical background to the algorithms,
define the used formalisms and formally state the task of invariant synthesis in Chapter 2.
In Chapter 3, we present the algorithms and describe how they interact. Chapter 4 has
details about our implementation of a prototype. In Chapter 5 we evaluate the proposed
solutions and draw conclusions. Finally, Chapter 6 concludes the thesis.
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Chapter 2

Background

2.1 Formal logic

In this thesis, we use first-order logic under the satisfiability modulo theory of linear integer
arithmetic (LA(Z)). Thus, the domain of terms is Z. Formulae are quantifier-free, and
the only uninterpreted symbols in them are variables unless explicitly noted otherwise.
By atoms, we mean a relation applied to terms. By literals, we mean an atom or the
negation of an atom.
For a set of formulae F, ∧

(F) $

 ∧
ϕ∈F

ϕ

.
Moreover, ∧(∅) $ >.
Definition 1 (Clause). A clause is a disjunction of literals. �

Example 1. ϕ1 ∨ ϕ2 ∨ · · · ∨ ϕn, where ϕi are literals, is a clause.

By F(X), we mean the set of formulae over X.
Definition 2 (Valuation). A valuation over the set of variables X is a partial function
α : X 7→ Z, which assigns an integer value to some of the variables in X.
The value α assigns to x ∈ X is noted α(x). The set of variables α assigns value to is
noted Xα.
For valuations α and β over the set of variables X and one of its subsets Y ⊆ X,

• α[Y ] is a valuation such that Xα[Y ] = Y ∩Xα and for all x ∈ Y ∩Xα, α[Y ](x) = α(x),
i.e., α[Y ] assigns the same value as α to variables in Y and omits other assignments;

• α ⊆ β, if Xβ ⊆ Xα and for all x ∈ Xβ, α(x) = β(x), i.e., if α assigns the same value
to all of the variables β assigns value to, and α possibly assigns value to others;

• α and β are disjoint if there is an x ∈ (Xα ∩ Xβ) for which α(x) 6= β(x), i.e., if there
is a variable they assign different values to;

• if α and β are not disjoint, then α⊕ β is a valuation such that Xα⊕β = Xα ∪Xβ and
for all x ∈ Xα ∪ Xβ

(α⊕ β)(x) =
{
α(x) if x ∈ Xα
β(x) if x /∈ Xα.

3



We note the valuation that assigns a1 to x1, a2 to x2, etc. as {x1 → a1, x2 → a2, . . .}. �

Definition 3 (Full valuation). A valuation α over a set of variables X is full if Xα = X,
i.e., if it assigns a value to every x ∈ X. �

Example 2. Over the set of variables X = {x, y, z}, α = {x→ 1, y → 4} and
β = {x→ 2, z → 32} are valuations. Neither is full, since Xα = {x, y} 6= X and
Xβ = {x, z} 6= X. In other words, α does not assign a value to z and β does not as-
sign value to y. Moreover, α and β are disjoint, because they assign different values to x.
Therefore, α⊕ β does not exist.

For Y = {a, b, y, z}, α[Y ] = {y → 4} and β[Y ] = {z → 32}. Now α and β[Y ] are not
disjoint, therefore γ = α⊕(β[Y ]) = {x→ 1, y → 4, z → 32} exists, and it is a full valuation
over X. Additionally, γ ⊆ α.

Definition 4. For a valuation α and a formula ϕ, α |= ϕ means that for every LA(Z)-
interpretationM that assigns α(x) to every x ∈ Xα,M |= ϕ. �

Example 3. Let α = {x→ 2, y → (−2)}. Then α |= (x > y) ∨ (z = 0), because the
formula evaluates to true regardless of the value of z, but α 6|= (x > y) ∧ (z = 0), since
there are LA(Z)-interpretations (where, e.g., z = 1) that assign 2 to x, and −2 to y but
for which the formula does not hold.

Let β = α⊕ {z → 0}. β |= (x > y) ∧ (z = 0).

Proposition 1. If, for a valuation α and a formula ϕ, α |= ϕ, then for every valuation
β ⊆ α, β |= ϕ. �

Proof . Every LA(Z)-interpretation M that is considered for β |= ϕ (because it assigns
β(x) to every x ∈ Xβ) is also considered for α |= ϕ, thereforeM |= ϕ. �

Proposition 2. For a full valuation α : X → Z and a formula ϕ over X, if every unin-
terpreted symbol in ϕ is a variable, then either α |= ϕ or α |= ¬ϕ. �

Proof . The only uninterpreted symbols in ϕ are elements of X, and α sets their value.
For a LA(Z)-interpretation M that assigns α(x) to every x ∈ Xα, either M |= ϕ, or
M |= ¬ϕ. Other such LA(Z) interpretations can only differ in the value assigned to
symbols not present in ϕ, therefore, their evaluation of ϕ cannot differ. �

Proposition 3. If, for a valuation α and a formula ϕ over the set of variables X, α 6|= ϕ
and α 6|= ¬ϕ, then there are full valuations α1 ⊆ α and α2 ⊆ α over X such that α1 |= ϕ
and α2 |= ¬ϕ. �

Proof . For every LA(Z)-interpretationM, eitherM |= ϕ, orM |= ¬ϕ. From α 6|= ϕ and
α 6|= ¬ϕ, we know that ϕ does not evaluate the same for all of the LA(Z)-interpretations
that assign α(x) to every x ∈ Xα. Therefore, there must be interpretationsM1 andM2
that assign α(x) to every x ∈ Xα for which M1 |= ϕ and M2 |= ¬ϕ. We can build full
valuations α1 from M1 and α2 from M2 such that they assign the same value to every
variable in X as their respective interpretations. This process ensures that α1 ⊆ α and
α2 ⊆ α. By Proposition 2, α1 |= ϕ and α2 |= ¬ϕ. �

For a variable x and i ∈ N, x(i) denotes x with i primes applied. For i 6= j, x(i) and
x(j) are considered different variables. x ≡ x(0), x′ ≡ x(1), x′′ ≡ x(2), etc. For a set of
variables X, X(i) =

{
x(i) : x ∈ X

}
. For a formula ϕ, ϕ(i) is ϕ with i primes applied to

every occurrence of its every variable. For a valuation α, α(i) is a valuation, for which
Xα(i) = (Xα)(i), and for all x(i) ∈ (Xα)(i), α(i)

(
x(i)

)
= α(x).

4



2.2 Control flow automata

For our purposes, the formal model of the software to verify is a control flow automaton,
and the formal requirements are also stated within that.

2.2.1 Basics

The following definitions are based on similar definitions in [10].

Definition 5 (Control flow automata). A control flow automaton (CFA) is a tuple
A = (L,E,X, `s, `e) where

• L is a finite set of locations, the nodes of the control flow graph,

• E ⊆ L× Stmt × L is a finite set of edges, where for an edge (`a, s, `b) ∈ E,

– `a ∈ L is the source location,
– s ∈ Stmt is the statement to be executed upon traversing the edge,
– `b ∈ L is the target location;

• X is a set of first order logic variables,

• `s ∈ L is the initial location,

• `e ∈ L is the error location.

A statement s ∈ Stmt is

• an assignment x := t where x ∈ X is a variable and t is a term over X,

• an assumption [ϕ] where ϕ is a formula over X

• or a statement of the form havoc x where x ∈ X is a variable. �

Algorithm 1: Example algorithm
Input: Integers x and y

1 u← x;
2 z ← y;
3 while u 6= y do
4 if x < y then
5 z ← z + 1;
6 u← u+ 1;
7 else
8 z ← z − 1;
9 u← u− 1;

10 end
11 end
12 assert(x+ z = 2 · y); /* Requirement */

5



`sstart

`2

`3

`4

`5

`6

`8

`9

`12

`e

u := x

z := y

[u 6= y]

[u = y]

[x < y] [x ≥ y]

z := z + 1

u := u+ 1

z := z − 1

u := u− 1

[x+ z 6= 2 · y]

Figure 2.1: A graphical representation of the CFA created from
Algorithm 1
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Example 4. The tuple A = (L,E,X, `s, `e), where

L =
{
`s, `2, `3, `4, `5, `6, `8, `9, `12, `e

}
,

E =
{
(`s, u := x, `2), (`2, z := y, `3), (`3, [u 6= y], `4), (`3, [u = y], `12),
(`4, [x < y], `5), (`4, [x ≥ y], `8), (`5, z := z + 1, `6), (`6, u := u+ 1, `3),
(`8, z := z − 1, `9), (`9, u := u− 1, `3), (`12, [x+ z 6= 2 · y], `e)

}
, and

X = {x, y, u, z}

is a CFA based on Algorithm 1. A graphical representation of A is depicted in Figure 2.1.

The configuration of the CFA A = (L,E,X, `s, `e) is a pair (`, α), where ` ∈ L is the
current location and α, a full valuation over X, is the current value of the variables. The
configuration evolves in steps. Initially, it is (`s, αs) with αs chosen nondeterministically.
Then in every step, the CFA chooses one of the traversable edges (`a, s, `b) ∈ E leading
out of its current location, executes the statement s—which possibly changes the value of
the variables—and changes its location to the target of the edge, `b.
An assumption statement [ϕ] can only be executed—and edges that it appears on can only
be traversed—if α |= ϕ. Upon its execution, [ϕ] does not change the valuation α.
Assignments x := t and statements of the form havoc x can always be executed, and
edges they appear on can always be traversed. Upon their execution, they change the
value of x in α. In the case of havoc x, the new value of x can be any integer chosen
nondeterministically. In the case of x := t, the new value of x is the value of t by α.
To describe this more formally, we define the transition formula of a statement.

Definition 6 (Transition formula of a statement). For a statement s ∈ Stmt in a
CFA A = (L,E,X, `s, `e), we define δs as its transition formula.
Let same(X) $ (∧x∈X x′ = x).

δs $


ϕ ∧ same(X) if s = [ϕ]
(x′ = t) ∧ same(X \ {x}) if s = (x := t)
same(X \ {x}) if s = havoc x. �

In a step, the configuration of a CFA A = (L,E,X, `s, `e) can change from (`a, αa) to
(`b, αb) if there is an edge (`a, s, `b) ∈ E such that (αa ⊕ αb′) |= δs.

Definition 7 (Set of possibly changed variables in a statement). For a statement
s ∈ Stmt in a CFA A = (L,E,X, `s, `e), we define ∆s ⊆ X as the set of variables possibly
changed by s.

∆s =


∅ if s = [ϕ]
{x} if s = (x := t)
{x} if s = havoc x,

∆s = X \∆s. �

2.2.2 Paths and loops

We now move from discussing single edges to sequences of edges: paths and loops.

7



Definition 8 (Path in a control flow automaton). A path (of length k) in a control
flow automaton is a sequence of k edges

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k)

such that after the first edge, the source location of every subsequent edge is the same as
the target location of the previous edge.
We say that Φ starts at `0, and that it leads from `0 to `k. We introduce the notation
src(Φ) for the location Φ starts at, the notation tgt(Φ) for the location it leads to and the
notation len(Φ) for its length. By the internal locations of Φ, we mean `1, `2, . . . , `k−1. �

Definition 9 (Error path). An error path in a CFA A = (L,E,X, `s, `e) is a path that
leads from `s to `e. �

We can generalize the definitions we made for a single statement to a path, i.e., a sequence
of statements.

Definition 10 (Transition formula of a path). For a path

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k)

in a CFA, we define δΦ to be its transition formula.

δΦ $
k∧
i=1

δ(i−1)
si . �

Definition 11 (Set of variables possibly changed by a path). For a path

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k)

in a CFA A = (L,E,X, `s, `e), we define ∆Φ as the set of variables possibly changed by
its statements.

∆Φ =
k⋃
i=1

∆si

∆Φ = X \∆Φ =
k⋂
i=1

∆si �

Proposition 4. If there is a path Φ of length k and a set of valuations α0, α1, . . . αk over
X such that

α0 ⊕ (α1)′ ⊕ · · · ⊕ (αk)(k) |= δΦ,

then
α0
[
∆Φ
]

= α1
[
∆Φ
]

= · · · = αk
[
∆Φ
]
. �

Proof . Let Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k).
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Assume indirectly that there is an i ∈ [0..k − 1]1 such that αi
[
∆Φ
]
6= αi+1

[
∆Φ
]
. Since

δ
(i)
si+1 is included in δΦ, αi⊕αi+1 |= δsi . By Definition 6, same

(
∆si

)
is included in δsi , and

by Definition 11, ∆Φ ⊆ ∆si .

If there is a variable x ∈ ∆Φ such that αi(x) 6= αi+1(x), then αi⊕αi+1 6|= same
(
∆si

)
and

αi ⊕ αi+1 6|= δsi .
If there is a variable x ∈ ∆Φ for which either αi or αi+1 assigns value, but not both,
then the one that does not can be extended to assign a different value to x, therefore
αi ⊕ αi+1 6|= same

(
∆si

)
and αi ⊕ αi+1 6|= δsi .

Therefore, αi
[
∆Φ
]

= αi+1
[
∆Φ
]
, and we reached a contradiction. �

Similarly to how we defined when an edge can be traversed, we now define when a path is
feasible.

Definition 12 (Path feasability). We say that a path Φ is feasible if and only if δΦ is
satisfiable. �

Equivalently, a path Φ is feasible, if there is a starting configuration (src(Φ), α0) from
which the edges of the path are traversable in order.

Example 5. In the CFA A defined in Example 4 and depicted in Figure 2.1,

Φ = (`2, z := y, `3) (`3, [u 6= y], `4) (`4, [x < y], `5)
(`5, z := z + 1, `6) (`6, u := u+ 1, `3) (`3, [u = y], `12)

is a path that leads from `2 to `12. It is not an error path. Its set of possibly changed
variables is ∆Φ = {u, z}. Its transition formula is

δΦ ⇔ z′ = y ∧ same({x, y, u})
∧ u′ 6= y′ ∧ same

({
x′, y′, z′, u′

})
∧ x′′ < y′′ ∧ same

({
x′′, y′′, z′′, u′′

})
∧ z(4) = z(3) + 1 ∧ same

({
x(3), y(3), u(3)

})
∧ u(5) = u(4) + 1 ∧ same

({
x(4), y(4), z(4)

})
∧ u(5) = y(5) ∧ same

({
x(5), y(5), z(5), u(5)

})
.

It is feasible. A sample assignment of variables along the steps of its traversal can be seen
in Table 2.1.

Definition 13 (Reachability of a node). We say that a node ` is reachable in a CFA
A = (L,E,X, `s, `e) if and only if there is a feasible path leading from `s to `. �

Equivalently, a node ` is reachable if starting from one of the initial configurations, we
can choose a finite number of edges to traverse that get the CFA to a configuration whose
location is `.
The decision problem of control flow automata is whether the error location `e is reachable.
A counterexample is a feasible path leading from the initial location to the final location.

1For integers a and b, let [a..b] $ {a, a+ 1, a+ 2, . . . , b}

9



Location x y z u Next statement
`2 10 48 −9 47 z := y

`3 10 48 48 47 [u 6= y]
`4 10 48 48 47 [x < y]
`5 10 48 48 47 z := z + 1
`6 10 48 49 47 u := u+ 1
`3 10 48 49 48 [u = y]
`12 10 48 49 47

Table 2.1: Example assignments to the variables of A in Example 5, showing the feasi-
bility of Φ

Definition 14 (Loop in a CFA). A loop (of length k) is a path (of length k)

Λ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `0),

where the source location of the first edge is the same as the target location of the last
edge. �

Example 6. In the CFA A defined in Example 4 and depicted in Figure 2.1,

Λ1 = (`3, [u 6= y], `4) (`4, [x < y], `5) (`5, z := z + 1, `6) (`6, u := u+ 1, `3) and
Λ2 = (`3, [u 6= y], `4) (`4, [x ≥ y], `8) (`8, z := z − 1, `9) (`9, u := u− 1, `3)

are loops.

2.2.3 Structural nodes and edges

Loops are the primary obstacle to traversing the state space of a control flow automaton.
Any path that goes through one of the locations of a loop can be extended by traversing
the loop an arbitrary number of times, which leads to an infinite number of paths. Our
approach is to choose a subset of the locations as structural nodes, such that at least one
location is chosen from every loop. Then we only consider paths connecting structural
nodes.

Definition 15 (Structural nodes). In a CFA A = (L,E,X, `s, `e), a set N ⊆ L
of locations is a set of structural nodes if there is an i ∈ [0..k − 1] for every loop
(`0, s1, `1)(`1, s2, ell2) . . . (`k−1, sk, `0) in A such that `i ∈ N . �

Definition 16 (Structural edges). In a CFA A = (L,E,X, `s, `e), for a set of struc-
tural nodes N ⊆ L, a structural edge is a path

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k),

such that `0 ∈ N ∪ {`s}, `k ∈ N ∪ {`e} and for all i ∈ [1..k − 1], `i /∈ N .
We permit `0 = `k in a structural edge.
The set of structural edges in a CFA A for a set of structural nodes N is noted by
SE(A, N). �
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The number of structural edges is fortunately finite, which makes them easier to work
with.

Proposition 5. For a CFA A and a set of structural nodes N , the set of structural edges
SE(A, N) is finite. �

Proof . If in a CFA A = (L,E,X, `s, `e), for a structural edge

Φ = (`0, s1, `1) . . . (`a, sa+1, `a+1) . . . (`b−1, sb, `b) . . . (`k−1, sk, `k) ∈ SE(A, N),

`a = `b for some a, b ∈ [1..k − 1], a 6= b, then the section (`a, sa+1, `a+1) . . . (`b−1, sb, `b)
would form a loop, and hence one of its locations would have to be a structural node.
Structural edges cannot have structural nodes among their internal locations. Therefore,
every edge can only appear at most once in a structural edge, and that makes structural
edges permutations of subsets of E. Since E is a finite set, the set of its subsets is also
finite, and the set of permutations for each subset is finite as well. Therefore, SE(A, N) is
the subset of a finite set. �

Example 7. In the CFA A defined in Example 4 and depicted in Figure 2.1,
N1 = {`3} is a set of structural nodes, and the set of structural edges for it is
SE(A, N1) = {Φ1,Φ2,Φ3,Φ4}, where

Φ1 =(`s, u := x, `2) (`2, z := y, `3),
Φ2 =(`3, [u 6= y], `4) (`4, [x < y], `5) (`5, z := z + 1, `6) (`6, u := u+ 1, `3),
Φ3 =(`3, [u 6= y], `4) (`4, [x ≥ y], `8) (`8, z := z − 1, `9) (`9, u := u− 1, `3),
Φ4 =(`3, [u = y], `12) (`12, [x+ z 6= 2 · y], `e).

N2 = {`5, `8} is also a set of structural nodes, and the set of structural edges for it is

SE(A, N2) =
=
{
(`s, u := x, `2) (`2, z := y, `3) (`3, [u 6= y], `4) (`4, [x < y], `5),
(`s, u := x, `2) (`2, z := y, `3) (`3, [u 6= y], `4) (`4, [x ≥ y], `8),
(`5, z := z + 1, `6) (`6, u := u+ 1, `3) (`3, [u 6= y], `4) (`4, [x < y], `5),
(`5, z := z + 1, `6) (`6, u := u+ 1, `3) (`3, [u 6= y], `4) (`4, [x ≥ y], `8),
(`8, z := z − 1, `9) (`9, u := u− 1, `3) (`3, [u 6= y], `4) (`4, [x ≥ y], `8),
(`8, z := z − 1, `9) (`9, u := u− 1, `3) (`3, [u 6= y], `4) (`4, [x < y], `5),
(`5, z := z + 1, `6) (`6, u := u+ 1, `3) (`3, [u = y], `12) (`12, [x+ z 6= 2 · y], `e),
(`8, z := z − 1, `9) (`9, u := u− 1, `3) (`3, [u = y], `12) (`12, [x+ z 6= 2 · y], `e)

}
.

2.2.4 Invariant systems

Given a set of structural nodes, we aim to synthesize a formula for every structural node
that overapproximates2 the set of reachable configurations in that location, and we try to
make these formulae strong enough to prove that the error location is unreachable. In the
following section, we formalize that goal and prove that reaching it is sufficient to prove
that the error location is unreachable.

2Here, by overapproximation we mean that the set of reachable valuations is a subset of the set of
valuations that satisfy the formula.
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Definition 17 (Invariant system). In a CFA A = (L,E,X, `s, `e), for a set of struc-
tural nodes N ⊆ L, an invariant system is a function

λ : (N ∪ {`s, `e})→ F(X)

for which λ[`s] $ > and λ[`e] $ ⊥. It can map an arbitrary formula to members of N . �

Definition 18 (Satisfactory invariant system). In a CFA A, for a set of structural
nodes N , an invariant system λ is satisfactory if for all Φ ∈ SE(A, N), the formula

λ[src(Φ)] ∧ δΦ → (λ[tgt(Φ)])(len(Φ))

is a tautology, i.e., if the formula

λ[src(Φ)] ∧ δΦ ∧ ¬(λ[tgt(Φ)])(len(Φ)) (2.1)

is unsatisfiable. �

Example 8. In the CFA A defined in Example 4 and depicted in Figure 2.1, for the set
of structural nodes N1 = {`3}, λ is a satisfactory invariant system, where

λ[`0]⇔ >,
λ[`3]⇔ (u− x = z − y),
λ[`s]⇔ ⊥.

Initially, both sides of the λ[`3] equation are 0. Therefore,

> ∧
(
u′ = x

)
∧ same({x, y, z})

∧
(
z′′ = y′

)
∧ same

({
x′, y′, u′

})
∧
(
u′′ − x′′ 6= z′′ − y′′

)
is unsatisfiable.

During a pass through the loop, both sides of the equation either increase or decrease by
one, therefore they remain equal. The formulae

(u− x = z − y) ∧ (u 6= y) ∧ same({x, y, z, u})
∧
(
x′ < y′

)
∧ same

({
x′, y′, z′, u′

})
∧
(
z(3) = z′′ + 1

)
∧ same

({
x′′, y′′, u′′

})
∧
(
u(4) = u(3) + 1

)
∧ same

({
x(3), y(3), z(3)

})
∧ ¬

(
u(4) − x(4) = z(4) − y(4)

)
and

(u− x = z − y) ∧ (u 6= y) ∧ same({x, y, z, u})
∧
(
x′ ≥ y′

)
∧ same

({
x′, y′, z′, u′

})
∧
(
z(3) = z′′ − 1

)
∧ same

({
x′′, y′′, u′′

})
∧
(
u(4) = u(3) − 1

)
∧ same

({
x(3), y(3), z(3)

})
∧ ¬

(
u(4) − x(4) = z(4) − y(4)

)
are unsatisfiable.
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The formula

(u− x = z − y) ∧ (u = y) ∧ same({x, y, z, u})
∧
(
x′ + z′ 6= 2 · y′

)
∧ same

({
x′, y′, z′, u′

})
∧ >

is unsatisfiable because

(u− x = z − y) ∧ (u = y)⇒ (y − x = z − y)⇒ (2 · y = x+ z).

Proposition 6. If a CFA has a satisfactory invariant system for a set of structural nodes,
then it is safe, i.e., its error location is unreachable. �

Proof . Assume indirectly that in a CFA A = (L,E,X, `s, `e) there is a set of structural
nodes N for which λ is a satisfactory invariant system and there is a feasible path Φ
leading from `s to `e and making A unsafe.
If Φ ∈ SE(A, N), then the formula

λ[`s] ∧ δΦ ∧ ¬λ[`e] (2.2)

must be unsatisfiable, because λ is a satisfactory invariant system. But since Φ is fea-
sible, the formula δΦ is satisfiable, and since λ[`s] ⇔ > and λ[`e] ⇔ ⊥, the formula in
Equation 2.2 is also satisfiable, and we reached contradiction.
If Φ /∈ SE(A, N), then some of its internal locations are structural nodes. Let us
note the internal locations of Φ by `1, `2, . . . , `k−1 where k = len(Φ). Then for some
n1, n2, . . . , nm−1 ∈ [1..k − 1], `n1 , `n2 , . . . , `nm−1 ∈ N . Let `n0 = `s and `nm = `e. Divide
Φ along these nodes into m structural edges Φ1,Φ2, . . .Φm such that Φj (j ∈ [1..m]) leads
from `nj−1 to `nj . Let

Xj =

 nj⋃
i=nj−1

X(i)

.
For all Φj , the formula

λ
[
`nj−1

]
∧ δΦj ∧ ¬

(
λ
[
`nj

])(len(Φj)) (2.3)

must be unsatisfiable, because λ is a satisfactory invariant system.
Φ is feasible, i.e., there is a full valuation

α :
(

k⋃
i=0

X(i)
)
→ Z,

for which α |= δΦ, and more specifically,

α[Xj ] |=
(
δΦj

)(nj−1)
.
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Let αi = α
[
X(i)

]
. Since αn0 |= λ[`n0 ] and αnm |= ¬(λ[`nm ])(nm), and since every αi is a

full valuation, there must be a p ∈ [1..m], such that

αnp−1 |=
(
λ
[
`np−1

])(np−1)
, but

αnp |= ¬
(
λ
[
`np
])(np)

.

We reach a contradiction by showing that the formula in Equation 2.3 is satisfiable for
j = p.

α
[
Xnp

]
|= λ

[
`np−1

]
∧ δΦp ∧ ¬

(
λ
[
`np
])np−n(p−1) . �

Therefore, finding a satisfactory invariant system is sufficient to prove that a CFA is safe.

2.3 Horn clauses

The problem of reasoning about the safety of a CFA through invariant systems lends itself
to be stated using Horn-clauses.
The following definitions are based on similar definitions in [2, 3, 5].

Definition 19 (Horn clause). A Horn clause is a clause in which at most one of the
literals are positive, and the others are negated. It can have one of the following three
forms:

∀X.(¬β1 ∨ ¬β2 ∨ · · · ∨ ¬βn ∨ ϕ)⇔ ∀X.((β1 ∧ β2 ∧ · · · ∧ βn)→ ϕ)
∀X.(¬β1 ∨ ¬β2 ∨ · · · ∨ ¬βn)⇔ ∀X.((β1 ∧ β2 ∧ · · · ∧ βn)→ ⊥),

∀X. ϕ⇔ ∀X.(> → ϕ),

where X is a set of variables, βi and ϕ are atoms over X and for X = {x1, x2, . . . , xk},
∀X means ∀x1.∀x2. · · · ∀xk. �

From now on we will use the implication form of Horn clauses.

Definition 20 (Constrained Horn clause). A constrained Horn clause (CHC) is a
Horn clause of one of three forms:

∀X.(B(X) ∧ (β1 ∧ β2 ∧ · · · ∧ βn)→ H(X)), (2.4)
∀X.(B(X) ∧ (β1 ∧ β2 ∧ · · · ∧ βn)→ ⊥), (2.5)

∀X.(> → H(X)), (2.6)

where

• X is a set of variables,

• B(X)3 and H(X) are uninterpreted predicates applied to (a subset of) X, and

• βi are interpreted formulae over X.

Equation 2.4 is called an inductive clause, Equation 2.5 is called a query, and Equation 2.6
is called a fact. �

3Other definitions of constrained Horn clauses, e.g. in [2] allow multiple uninterpreted predicates on
their left side, but for the purposes of verifying control flow automata, one is enough.
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The decision problem for a set of constrained Horn clauses is whether there is an inter-
pretation of the uninterpreted predicate symbols that satisfies all of the clauses.
The task of searching for satisfactory invariant systems for a set of structural nodes N in
a CFA A can be stated as a task of searching for an interpretation for a set of CHCs.
To every structural node ` ∈ N , we assign a predicate symbol L`. Similarly to invariant
systems, L`s $ > and L`e $ ⊥.
From every structural edge Φ ∈ SE(A, N), we derive a CHC

∀X(0..len(Φ)).
((
Lsrc(Φ)(X) ∧ δΦ

)
→ Ltgt(Φ)

(
X(len(Φ))

))
,

where X(0..k) = ⋃k
i=0X

(i).
In this representation, the requirements of λ[`] for λ to be satisfactory are the same as the
requirements of the interpretation of L`.
This means that we can use CHC solving algorithms such as [3, 6] for CFA verification.

Example 9. In the CFA A defined in Example 4 and depicted in Figure 2.1, the task
of searching for a satisfactory invariant system for the set of structural nodes N1 = {`3}
defined in Example 7 corresponds to the task of searching for an interpretation for the
following CHCs:

∀X.
(
> ∧ δΦ1 → L`3

(
X ′′
))

∀X.
(
L`3(X) ∧ δΦ2 → L`3

(
X(4)

))
∀X.

(
L`3(X) ∧ δΦ3 → L`3

(
X(4)

))
∀X.(L`3(X) ∧ δΦ4 → ⊥)

2.4 Constraints

When searching for invariants, we consolidate the information learned about them in
constraints. Constraints are based on implication counterexamples in [3].

Definition 21 (Constraint). A constraint in a CFA A with structural nodes N is a
tuple (α0,Φ, αk, β) where

• Φ ∈ SE(A, N) is a structural edge of length k,

• α0 : ∆Φ 7→ Z and αk : ∆Φ 7→ Z are valuations over the set of variables that might
change upon execution of Φ,

• β :
(
∆Φ
)
7→ Z is a valuation over the set of variables that do not change upon

execution of Φ and

• for every α̂0 ⊆ α0, α̂k ⊆ αk and β̂ ⊆ β, where α̂0 and α̂k are full valuations over ∆Φ,
and β̂ is a full valuation over ∆Φ, there are full valuations α1, α2, . . . , αk−1 : X → Z
such that(

β̂ ⊕ α̂0 ⊕ (α1)(1) ⊕ (α2)(2) ⊕ · · · ⊕ (αk−1)(k−1) ⊕ (α̂k)(k) ⊕ β̂(k)
)
|= δΦ. (2.7)

�
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Example 10. Assume that in a CFA where the set of variables is {x, y, z}, there is struc-
tural edge Φ and that the statements along it are [x < y], (x := x+ 1), (havoc z). Then
∆Φ = {x, z}, ∆Φ = {y}, and

δΦ ⇔ (x < y) ∧
(
x′ = x

)
∧
(
y′ = y

)
∧
(
z′ = z

)
∧
(
x′′ = x′ + 1

)
∧
(
y′′ = y′

)
∧
(
z′′ = z′

)
∧
(
x′′′ = x′′

)
∧
(
y′′′ = y′′

)
.

Consider the tuple (α0,Φ, α3, β), where α0 = {x→ 2}, α3 = {x→ 3} and β = {y → 4},
is a constraint. Full valuations over {x, z} that are subsets of α0 or α3 are of the form
α̂0 = {x→ 2, z → a} or α̂3 = {x→ 3, z → b} respectively, where a and b are chosen
arbitrarily. The valuation β is already full over {y}, its single full subset is itself.

For every choice of a and b, the valuations

α1 = {x→ 2, y → 4, z → a} and
α2 = {x→ 3, y → 4, z → a}

satisfy the requirement that(
β ⊕ α̂0 ⊕ (α1)′ ⊕ (α2)′′ ⊕ (α̂3)′′′ ⊕ β′′′

)
|= δΦ.

Therefore, (α0,Φ, α3, β) is a constraint in this CFA.

Example 11. In the CFA A defined in Example 4 and depicted in Figure 2.1, for the set
of structural nodes N1 = {`3} defined in Example 7 the following are all constraints:

({} ,Φ1, {u→ 32, z → 56} , {x→ 32, y → 56}),
({u→ 43, z → −52} ,Φ2, {u→ 44, z → −51} , {x→ 1, y → 100}),
({u→ 43, z → −52} ,Φ3, {u→ 42, z → −52} , {x→ 21, y → 18}),

({} ,Φ4, {} , {x→ 21, y → 18, z → −1000, u→ 18}).

Since the valuations in a constraint are not necessarily full, a constraint can be viewed as
a template which can be filled in by choosing values for some variables the valuations do
not assign a value to.

Corollary 1. If (α0,Φ, αk, β) is a constraint in a CFA, then for every α̃0 ⊆ α0, α̃k ⊆ αk

and β̃ ⊆ β, where Xα̃0 ⊆ ∆Φ, Xα̃k ⊆ ∆Φ and Xβ̃ ⊆ ∆Φ,
(
α̃0,Φ, α̃k, β̃

)
is also a constraint.�

By Corollary 1, some constraints imply the existence of many. A set of constraints can
therefore imply the existence of a larger set.

Definition 22 (Constraint system). The constraint system generated by a set of con-
straints C is the set of constraints CS(C), where C ′ ∈ CS(C) if and only if there is a
C ∈ C such that by Corollary 1, the existence of C implies the existence of C ′.
We say that a set of constraints C is a constraint system if CS(C) = C. �

Constraints convey information about the CFA under examination. This information can
be used when searching for invariants. Let Φ be a structural edge leading from `0 to `k
A constraint (α0,Φ, αk, β) poses a requirement that every invariant system must adhere
to in order to be satisfactory. The following sentence summarizes the requirement for an
invariant system λ.
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If (α0 ⊕ β) |= λ[`0], then λ[`k] must be chosen such that (αk ⊕ β) |= λ[`k].

Proposition 7. If (α0,Φ, αk, β) is a constraint and λ is a satisfactory invariant system
in a CFA, then if (α0 ⊕ β) |= λ[src(Φ)], then (αk ⊕ β) |= λ[tgt(Φ)]. �

Proof . Assume indirectly that there is a constraint (α0,Φ, αk, β) and a satisfactory in-
variant system λ in a CFA, where (α0 ⊕ β) |= λ[src(Φ)], but (αk ⊕ β) 6|= λ[tgt(Φ)].
Let k = len(Φ), `0 = src(Φ) and `k = tgt(Φ).
Since λ is satisfactory and Φ is a structural edge, the formula

λ[`0] ∧ δΦ ∧ ¬(λ[`k])(k) (2.8)

is unsatisfiable.
Since (αk ⊕ β) 6|= λ[`k], there is a full valuation γ ⊆ (αk ⊕ β) over X, for which γ |= ¬λ[`k].
Let α̂k = γ[∆Φ], let β̂ = γ

[
∆Φ
]
, and let α̂0 ⊆ α0 be a full valuation over ∆Φ.

By Definition 21, there are full valuations α1, α2, . . . , αk−1 : X → Z such that(
β̂ ⊕ α̂0 ⊕ (α1)(1) ⊕ (α2)(2) ⊕ · · · ⊕ (αk−1)(k−1) ⊕ (αk)(k) ⊕ β̂(k)

)
|= δΦ.

We constructed α̂0 and β̂ such that
(
α̂0 ⊕ β̂

)
⊆ (α0 ⊕ β). Since (α0 ⊕ β) |= λ[`0], we

conclude that
(
α̂0 ⊕ β̂

)
|= λ[`0]. Therefore,

(
β̂ ⊕ α̂0 ⊕ (α1)(1) ⊕ (α2)(2) ⊕ · · · ⊕ (αk−1)(k−1) ⊕ (α̂k)(k) ⊕ β̂(k)

)
|= λ[`0]∧δΦ∧¬(λ[`k])(k).

Which means that Equation 2.8 is satisfiable, and we reached a contradiction. �

Definition 23 (Contradictory constraint system). We call a constraint system C in
a CFA A = (L,E,X, `s, `e) contradictory if there is a chain

(α0,Φ1, α1, β1), (α̃1,Φ2, α2, β2), (α̃2,Φ3, α3, β3), . . . , (α̃n−1,Φn, αn, βn) ∈ C

such that

• Φ1 starts at `s,

• for all i ∈ [1..n− 1], tgt(Φi) = src(Φi+1),

• Φn leads to `e and

• for all i ∈ [1..n− 1], (α̃i ⊕ βi+1) ⊆ (αi ⊕ βi). �

Proposition 8. If there is a contradictory constraint system in a CFA, then there is a
feasible error path. �

Proof . Let there be a CFA A = (L,E,X, `s, `e) with a contradictory constraint system.
Let the chain making the set contradictory be

(α0,Φ1, α1, β1), (α̃1,Φ2, α2, β2), (α̃2,Φ3, α3, β3), . . . , (α̃n−1,Φn, αn, βn).

Let Φ be the concatenation of Φ1,Φ2, . . . ,Φn. Then Φ is an error path, since Φ1 starts at
`s and Φn leads to `e. We will show that it is feasible.
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Let ki = len(Φi) for all i ∈ [1..n].
We will create full valuations from the valuations in the constraints such that they still
form a chain. Let ζn be a full valuation over X such that ζn ⊆ (αn ⊕ βn). Then, for all
i ∈ [1..n− 1], let ζi be a full valuation over X such that

ζi ⊆
(
α̃i ⊕ ζi+1

[
∆Φi+1

])
⊆ (αi ⊕ βi).

We can create them in reverse order: ζn first, then ζn−1, ζn−2 and so on. Finally, let ζ0
be a full valuation over X such that ζ0 ⊆

(
α0 ⊕ ζ1

[
∆Φ1

])
.

Then for all i ∈ [1..n],

• ζi−1[∆Φi ] = ζi[∆Φi ],

• by Corollary 1,
(
ζi−1[∆Φi ],Φi, ζi[∆Φi ], ζi

[
∆Φi

])
is a constraint, and

• by Definition 21, there are full valuations4 αi1 , αi2 , . . . , αiki−1 : X → Z, such that(
ζi−1 ⊕ γi ⊕ (ζi)ki

)
|= δΦi ,

where γi = (αi1)′ ⊕ (αi2)′′ ⊕ · · · ⊕
(
αiki−1

)(ki−1)
.

For i ∈ [1..n− 1], let li be the number of edges in Φ before Φi starts, i.e., li = ∑i−1
j=1 kj .

Let ln = ∑n
i=1 ki, the length of Φ.

Φ is feasible because (
n⊕
i=1

(ζi−1 ⊕ γi)(li)
)
⊕ (ζn)(ln) |= δΦ.

�

4Since ζi−1 and ζi are full valuations, we can substitute ζi−1[∆Φi ] in place of α̂0, ζi[∆Φi ] in place of α̂k
and ζi

[
∆Φi

]
in place of β̂ into Equation 2.7.
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Chapter 3

The Algorithm

3.1 Overview

The goal of the algorithm is to prove that in a control flow automaton A = (L,E,X, `s, `e)
the error state `e is unreachable. It first finds a set of structural nodes N (Section 3.2),
then searches for a satisfactory invariant system λ for it.
The search for invariants is an iterative collaboration between teacher (Section 3.3) and
learner (Section 3.4) modules. Learners suggest candidate invariant systems, and teachers
then check if they are satisfactory. If one of the learners finds a satisfactory invariant
system, then by Proposition 6, the error state is proven unreachable. Otherwise, the
teacher gives constraints to the learners which highlight the reason for the failure of the
candidate system and provide information about the checked CFA. The learners then
suggest candidates which adhere to the constraints, if possible. If the constraints generate a
contradictory constraint system, then by Proposition 8, the error state is proven reachable.
Figure 3.1 shows an overview of the algorithm architecture.

3.2 Finding structural nodes

In order to find a set of structural nodes, we have to find loops and choose locations until
at least one location is chosen from every loop. Instead of searching for loops, we will
search for strongly connected components.

Definition 24 (Strongly connected component). In a directed graph a strongly con-
nected component (SCC) is a maximal subgraph in which there is a path from every vertex
to every other vertex. �

Corollary 2. Every loop in the graph is either a strongly connected component or can
be extended to be a strongly connected component. Every strongly connected component
has a loop in it. �

A CFA is structured as a directed graph where the vertices are the CFA locations and the
edges are the CFA edges without the statements. We call this graph the control flow graph
(CFG). Using Tarjan’s algorithm [9] we can find the strongly connected components in
it. There may be many loops in every strongly connected component, therefore we choose
a vertex from each of them, remove it along with its edges, and see if there are strongly
connected components in the remaining vertices. We describe the process in Algorithm 2.
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Figure 3.1: Overview of the algorithm architecture

Algorithm 2: Find a set of structural nodes
Input: A = (L,E,X, `s, `e), a control flow automaton
Output: N , a set of structural nodes

1 N ← ∅;
2 sccs← the SCCs Tarjan’s algorithm finds in the CFG as sets of vertices;
3 repeat
4 scc← an element of sccs;
5 sccs← sccs \ scc;
6 `← a vertex (location) in scc;
7 if there is an edge leading from ` to itself or another vertex in scc then
8 N ← N ∪ {`};
9 newSCCs← the SCCs Tarjan’s algorithm finds in the subgraph induced by

scc \ {`};
10 sccs← sccs ∪ newSCCs;
11 else

// scc = {`} and ` does not have a loop edge
12 end
13 until sccs = ∅;
14 return N ;
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Proposition 9. The set of locations that Algorithm 2 returns is a set of structural nodes
by Definition 15. �

Proof . Assume indirectly that there is a loop in L \ N . By Corollary 2, the vertices of
the loop are in a strongly connected component. At line 2, Tarjan’s algorithm adds that
to sccs. When it gets chosen at line 4, two cases are possible. If the ` chosen at line 6
is one of the locations in the loop, the algorithm adds ` to N at line 8, and we reach a
contradiction. Otherwise, every location in the loop is in scc \ {`}, therefore at line 9,
Tarjan’s algorithm adds a set with all of them in it to sccs. When that set is chosen
at line 4, the same reasoning can be repeated until one of the locations in the loop gets
chosen. �

3.3 Teacher

The teacher module receives a candidate invariant system from one of the learners and
checks if it is satisfactory. If it is not, then it produces a set of constraints that highlight
the problems with the candidate system.

3.3.1 Solver

By Definition 18, the teacher has to check the satisfiability of formulae like Equation 2.1
to decide if an invariant system is satisfactory. Our algorithm relies on an SMT solver to
achieve that. The solver can check the satisfiability of a formula and give a valuation that
satisfies it.
We defined the transition formula of a statement (δs) such that it describes the relation
between variables in X and in X ′. We introduce x′ for each x ∈ X, even those whose
value does not change. To make sure that the new value is the same as the old for the
variables that s does not change, we add same

(
∆s

)
. We chose this notation because we

find it more intuitive because every variable at every point has the same number of primes
applied.
The solver, however, does not work like this. Using our notation, for all x ∈ ∆s, it treats
x and x′ as the same variable. By doing so, it can give more useful valuations as the
following example illustrates.

Example 12. If the set of variables is X = {x, y, z}, the transition formula of the state-
ment s = (x := x+ y) is

δs ⇔
(
x′ = x+ y

)
∧
(
y′ = y

)
∧
(
z′ = z

)
.

In a valuation α : (X ∪X ′) 7→ Z, such that α |= δs, the value of z and z′ can be anything,
but their value must be the same. If α assigns value to only one of z and z′, or if it assigns
value to neither, then there is a valuation α̂ ⊆ α that assigns different values to them.
Since α̂ |= ¬δs, α 6|= δs. Therefore, α must assign a value to both z and z′, even though
the number it chooses for that value is irrelevant.

At the same time, α must also assign the same value to y and y′, but this value cannot
be chosen arbitrarily, because it is related to the value of x and x′ through x′ = x+ y. It
is useful to know when we can choose arbitrary values, and when we cannot. Thankfully,
the solver can tell us that.
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The solver, in this case, would treat y and y′ as the same variable, and it would also treat
z and z′ as the same variable (but different from y and y′). It would assign a value to y
and y′ (to make sure that their relation with x and x′ is satisfied), but it would not assign
a value to z and expect us to choose the same value for both z and z′. It works similarly
for longer statement sequences in paths.

We will describe our expectation of the solver more formally by stating our requirements
for its two functions, SAT(Φ, λ) and VAL(Φ, λ). For an invariant system λ and a structural
edge

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k),

(R1) SAT(Φ, λ) is true if and only if the formula λ[src(Φ)] ∧ δΦ ∧ (λ[tgt(Φ)])(len(Φ)) is
satisfiable, and

(R2) VAL(Φ, λ) :
(
X ∪X ′ ∪ · · · ∪X(len(Φ))

)
7→ Z is a valuation such that

(R2.1) for all i ∈ [1..len(Φ)], for all x ∈ ∆si , if VAL(Φ, λ) assigns value to either
x(i−1) or x(i), then it assigns the same value to the other, and

(R2.2) VAL(Φ, λ) |=
(
sames(Φ)→

(
λ[src(Φ)] ∧ δΦ ∧ (λ[tgt(Φ)])(len(Φ))

))
,

where

sames(Φ)⇔
k∧
i=1

(
same

(
∆si

))(i−1)
.

Corollary 3. By R2.1, VAL(Φ, λ) 6|= ¬sames(Φ), which means that there is a valuation
θ ⊆ VAL(Φ, λ) such that θ |= sames(Φ), and therefore by R2.2,

θ |= λ[src(Φ)] ∧ δΦ ∧ (λ[tgt(Φ)])(len(Φ)). �

We also expect VAL(Φ, λ) to be minimal in the sense that we cannot omit any of the
variable assignments in it without violating either R2.1 or R2.2. This, however, is not a
requirement, the algorithm is sound even if the solver does not adhere to this.

3.3.2 Teacher algorithm

Using a solver whose implementation satisfies our requirements, the teacher works as
described in Algorithm 3.

Proposition 10. If Algorithm 3 returns an empty set, the checked invariant system λ is
satisfactory. �

Proof . If C is empty at line 13, then the algorithm never executed line 10, meaning
SAT(Φ, λ) was always false at line 4. Therefore, by R1, for all Φ ∈ SE(A, N), the formula

λ[src(Φ)] ∧ δΦ ∧ ¬(λ[tgt(Φ)])(len(Φ))

is unsatisfiable, and by Definition 18, λ is satisfactory. �

Proposition 11. Every element of the set Algorithm 3 returns is a constraint in the CFA
A for the structural nodes N . �
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Algorithm 3: Check if an invariant system is satisfactory
Input: The set of structural edges SE(A, N) for a set of structural nodes N in a

CFA A
Input: An invariant system λ for N
Output: A set of constraints C or an empty set if λ is satisfactory

1 C← ∅;
2 forall Φ ∈ SE(A, N) do
3 k ← len(Φ);
4 if SAT(Φ, λ) then
5 γ ← VAL(Φ, λ); // γ :

(
X ∪X ′ ∪ · · · ∪X(k)

)
7→ Z

/* For a constraint we only need the values γ assigns to
variables in X and in X(k). */

6 α0 ← γ[∆Φ]; // α0 : ∆Φ 7→ Z

7 α̇k ← γ
[
(∆Φ)(k)

]
; // α̇k : (∆Φ)(k) 7→ Z

8 Let αk be such that (Xαk)(k) = Xα̇k and ∀x ∈ Xαk αk(x) = α̇k
(
x(k)

)
;

// αk : (∆Φ) 7→ Z

9 β ← γ
[
∆Φ
]
; // β : ∆Φ 7→ Z

// By R2.1, ∀x ∈ Xβ β(x) = γ(x) = γ(x′) = · · · = γ
(
x(k)

)
10 C← C ∪ (α0,Φ, β, αk);
11 end
12 end
13 return C; // Empty if λ is satisfactory.
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Proof . The algorithm returns C, and it only adds elements to it at line 10. Therefore,
we have to show that the tuple we add in that line is a constraint.
At line 3, let

Φ = (`0, s1, `1)(`1, s2, `2) . . . (`k−1, sk, `k).

At line 5, γ satisfies R2.1 and R2.2.
Let γ0, γ1, . . . , γk : ∆Φ 7→ Z and ζ : ∆Φ 7→ Z be valuations such that

γ =
(
γ0 ⊕ ζ ⊕ (γ1)′ ⊕ ζ ′ ⊕ · · · ⊕ (γk)(k) ⊕ ζ(k)

)
.

This division is possible because of R2.1.
At line 10, α0 = γ0, αk = γk and β = ζ. We will show that for each triple of full valuations
α̂0 : ∆Φ → Z, α̂k : ∆Φ → Z and β̂ : ∆Φ → Z such that α̂0 ⊆ α0, α̂k ⊆ αk and β̂ ⊆ β, there
are full valuations α1, α2, . . . , αk−1 : X → Z for which(

β̂ ⊕ α̂0 ⊕ (α1)(1) ⊕ (α2)(2) ⊕ · · · ⊕ (αk−1)(k−1) ⊕ (α̂k)(k) ⊕ β̂(k)
)
|= δΦ.

Let γ̂0 = α̂0 and γ̂k = α̂k. For all i ∈ [1..k − i], let γ̂i : ∆Φ → Z be a full valuation such
that

• γ̂i ⊆ γi,

• γ̂i assigns the same value to every x ∈ ∆si as γ̂i−1,

• γ̂i assigns the same value to every x ∈ ∆si+1 as γ̂i+1.

This is possible because γ adheres to R2.1. Then to get α̂0 and α̂k, we assign value to new
variables. We can propagate the new variable assignments as required. These propagations
will not overlap and cause potential contradictions (assigning different values to the same
variable), since they are valuations over ∆Φ. If any of the valuations we get are not full
yet, we can keep choosing a value for a non-assigned variable and propagating it until they
are all full.
Let

γ̂ = α̂0 ⊕ β̂ ⊕ (γ̂1)′ ⊕ β̂′ ⊕ (γ̂2)′′ ⊕ β̂′′ ⊕ · · · ⊕ (α̂k)(k) ⊕ β̂(k).

Then γ̂ ⊆ γ, and γ̂ |= sames(Φ). Therefore, since γ satisfies R2.2, γ̂ |= δΦ. �

3.4 Learners

Learners synthesize invariant systems that adhere to a set of constraints they receive from
the teacher. They also have to generalize the constraints in order to eventually synthesize
a satisfactory invariant system.
We can view invariant systems as classifications. An invariant system λ classifies the po-
tential configurations (`, α) of the CFA (where ` is a structural node) based on whether
α |= λ[`]. We solve the problem of synthesizing invariant systems by searching for classifi-
cations. The properties required for an invariant system to adhere to a set of constraints—
or even to be satisfactory—can be stated in terms of configurations and their classification.
However, in order to prevent having to consider the infinite set of configurations, we only
aim to find a classification of a set of datapoints adheres to the constraints. We then
generalize that classification to an invariant system.
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3.4.1 Datapoints

The definition of datapoints is based on [3].

Definition 25 (Datapoint). In a CFA A = (L,E,X, `s, `e) for a set of structural nodes
N ⊆ L, a datapoint is a pair (`, α), where ` ∈ N ∪{`s, `e}, and α : X 7→ Z is a (potentially
partial) valuation.
For datapoints D1 = (`1, α1) and D2 = (`2, α2), we say that

• D1 ⊆ D2 if `1 = `2 and α1 ⊆ α2;

• D1 and D2 are disjoint if `1 6= `2 or α1 and α2 are disjoint;

• if D1 and D2 are not disjoint, D1 ∩D2 = (`1, α1 ⊕ α2). �

Our definition differs from that in [3] in that we allow the valuation in the datapoint
to not be full. This allows a datapoint to potentially represent a set of multiple CFA
configurations instead of a single one.
Invariant candidates can be viewed as a classification of datapoints, and constraints can be
viewed as restrictions on how they can be classified. However, since we allow datapoints
to represent multiple configurations, the classification is not always unequivocal.

Definition 26 (Datapoint classification). An invariant system λ classifies (or labels)
the datapoint (`, α) as

• true if α |= λ[`],

• false if α |= ¬λ[`],

• indeterminate otherwise. �

Since every invariant system by definition assigns > to the initial location of the CFA,
datapoints with the initial location are always classified as true. Similarly, datapoints
with the error location are always classified as false.

Example 13. Let D1 = (`, {x→ 2, y → 3}), D2 = (`, {y → 4}) and D3 = (`, {x→ 2})
be datapoints.

They assign different values to y, therefore D1 and D2 are disjoint. However, D2 and D3
are not disjoint and D2 ∩D3 = {x→ 4, y → 5}. Moreover, D1 ⊆ D3.

Let λ be an invariant system for which λ[`] ⇔ (y ≤ 3). The invariant system λ classifies
D1 as true, D2 as false and D3 as indeterminate.

Proposition 12. If an invariant system λ classifies the datapoint D as true or false,
then λ classifies every D̂ ⊆ D the same.
If λ classifies the datapoint D as indeterminate, then there is a D̂1 ⊆ D that it classifies
true and a D̂2 ⊆ D that it classifies false. �

Proof . If λ classifies the datapoint D = (`, α) as true, then α |= λ[`]. Let D̂ = (`, α̂) be
a datapoint such that D̂ ⊆ D. By Proposition 1, since α̂ ⊆ α, α̂ |= λ[`], and λ classifies D̂
as true.
The same argument can be made for ¬λ[`] when D is classified as false.
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If λ classifies the datapoint D = (`, α) as indeterminate, then α 6|= λ[`] and α 6|= ¬λ[`].
By Proposition 3, we know that there are α1 ⊆ α and α2 ⊆ α such that α1 |= λ[`] and
α2 |= ¬λ[`]. Therefore, the datapoint D̂1 = (`, α1) is classified as true and the datapoint
D̂2 = (`, α2) is classified false. Also, D̂1 ⊆ D and D̂2 ⊆ D. �

We originally defined constraints in terms of structural edges and valuations, but for
the algorithm, we will consider a constraint a relation between datapoint pairs: if one
datapoint is classified true, another must also be.

Definition 27 (Datapoints in a constraint). For a constraint C = (α0,Φ, αk, β),
we say its source datapoint is src(C) = (src(Φ), α0 ⊕ β), and its target datapoint is
tgt(C) = (tgt(Φ), αk ⊕ β). �

When the valuations in a constraint are not full, the constraint is a template that allows
us to fill in arbitrary values for the other variables and the relationship remains as stated
in Corollary 1. For datapoints, the process is slightly different. When we acquire new
datapoints by filling in values in the source or the target datapoint, its pair might change
as well. The reason for this is that we have to ensure that we give the same value in both
datapoints to the variables that cannot change upon executing the structural edge.
The following definitions show how to find the pair of a datapoint with respect to a
constraint.

Definition 28 (Positive deduction based on a constraint). For a constraint C =
(α0,Φ, αk, β) and a datapoint D = (src(Φ), γ) such that D ⊆ src(C), we define the dat-
apoint positiveDeduction(C,D) =

(
tgt(Φ), αk ⊕ γ

[
∆Φ
])

as the datapoint that C pairs
with D. �

Definition 29 (Negative deduction based on a constraint). For a constraint C =
(α0,Φ, αk, β) and a datapoint D = (tgt(Φ), γ) such that D ⊆ tgt(C), we define the
datapoint negativeDeduction(C,D) =

(
tgt(Φ), α0 ⊕ γ

[
∆Φ
])

as the datapoint that C
pairs with D. �

Proposition 13. Let there be a constraint C and an invariant system λ that is
satisfactory. If λ classifies some Ds ⊆ src(C) as true, then it also classifies
positiveDeduction(C,Ds) as true. �

Proof . Assume that C = (α0,Φ, αk, β), Ds = (src(Φ), γs) ⊆ src(C), and λ is a satisfac-
tory invariant system that classifies Ds as true.

By Corollary 1, C1 =
(
γs[∆Φ],Φ, αk, γs

[
∆Φ
])

is also a constraint. Since λ classifies Ds

as true, γs |= λ[src(Φ)], therefore by Proposition 7,
(
αk ⊕ γs

[
∆Φ
])
|= λ[tgt(Φ)]. In other

words, λ classifies positiveDeduction(C,D1) as true. �

Proposition 14. Let there be a constraint C and an invariant system λ that is
satisfactory. If λ classifies some Dt ⊆ tgt(C) as false, then it also classifies
negativeDeduction(C,Dt) as false. �

Proof . Assume that C = (α0,Φ, αk, β),Dt = (tgt(Φ), γt) ⊆ tgt(C), and λ is a satisfactory
invariant system that classifies Dt as false. Assume indirectly that λ does not classify
negativeDeduction(C,Dt) as false. Then(

α0 ⊕ γt
[
∆Φ
])
6|= ¬λ[src(Φ)].
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Which means that there is some valuation ζ ⊆
(
α0 ⊕ γt

[
∆Φ
])

for which ζ |= λ[src(Φ)].
By Corollary 1, C2 =

(
ζ[∆Φ],Φ, γt[∆Φ], ζ

[
∆Φ
])

is also a constraint. Therefore, by Propo-
sition 7, (

γt[∆Φ]⊕ ζ
[
∆Φ
])
|= λ[tgt(Φ)]. (3.1)

Since λ classifies Dt as false, γt |= ¬λ[tgt(Φ)]. That contradicts Equation 3.1 because(
γt[∆Φ]⊕ ζ

[
∆Φ
])
⊆ γt. �

3.4.1.1 Checking constraint consistency

Every time, a teacher module produces new constraints, they might reveal enough infor-
mation to prove that the system is unsafe. In order to notice when that happens, we
need to check if the constraint system generated by the constraints is consistent. The
defining feature of a contradictory constraint system is a chain of constraints as defined in
Definition 23. We will search for this chain with a method similar to a breadth-first search
with datapoints being nodes and constraints being directed edges between them. We will
call the datapoints reachable from a datapoint with the initial location forced true, and
we will call those that are reachable from one with the error location forced false.
These concepts and the related algorithms are based on [3].

Definition 30 (Forced-true datapoints). A datapoint D = (`, α) is forced true in a
CFA A = (L,E,X, `s, `e) under the constraint system C if at least one of the following
conditions holds:
(Condition 1) ` = `s,
(Condition 2) there is a forced-true datapoint D̂ for which D ⊆ D̂,
(Condition 3) there is a constraint C ∈ C and a forced-true datapoint D0 ⊆ src(C) for

which positiveDeduction(C,D0) = D. �

Only datapoints forced true because of Condition 1 are inherently forced true, others refer
to another forced-true datapoint. That datapoint may be inherently forced true or may
refer to a third one which in turn may refer to fourth etc. We can trace these references from
any forced-true datapoint through a number of datapoints that are forced true because of
Condition 2 or Condition 3, but we would always eventually reach a datapoint forced true
because of Condition 1.

Corollary 4. Every forced-true datapoint is either forced true by Condition 1 or can be
traced back through transitive references via Condition 2 or Condition 3 to a datapoint
that is forced true by Condition 1. �

Based on a constraint system, forced-true datapoints provide a simple restriction on the
datapoint classification.

Proposition 15. A satisfactory invariant system classifies all forced-true datapoints
true. �

Proof . Let there be a satisfactory invariant system λ and a datapoint D = (`, α) that is
forced true.
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By Corollary 4, we can trace D back to a datapoint with the initial location. Let the
datapoints in the trace be D1, D2, . . . , D, such that D1 is forced true because of Condition
1.
We will prove by induction that λ classifies every datapoint in the trace as true. For the
base case, it classifies D1 as true by definition, since it has the initial location.
For the inductive step, assume that λ classifies Di as true. If the next datapoint refers to
Di via Condition 2, then by Proposition 12, λ classifies it as true. Otherwise, the next
datapoint refers to Di via Condition 3, and by Proposition 13, λ classifies it as true.
Therefore, λ classifies every datapoint in the trace true, including D. �

When a datapoint with the error location is forced true, it is impossible to produce sat-
isfactory invariant systems, because all invariant systems would classify it as false. We
will prove that in this case, the CFA is unsafe.
Proposition 16. In a CFA A = (L,E,X, `s, `e), the constraint system C is contradictory
if and only if there is a datapoint (`e, ζ) that is forced true under C. �

Proof . First we prove that if the constraint system is contradictory, then there is a
datapoint (`e, ζ) that is forced true. Let the chain making C contradictory be

(α̂0,Φ1, α1, β1), (α̂1,Φ2, α2, β2), . . . , (α̂n−1,Φn, αn, βn) = C1, C2, . . . , Cn

We will prove by induction that for all i ∈ [1..n], tgt(Ci) is forced true. For the base case
we will prove that tgt(C1) is forced true. Since src(Φ1) = `s, the datapoint src(C1) =
(`s, α0 ⊕ β1) is forced true by Condition 1. Therefore, tgt(C1) = (tgt(Φ1), α1 ⊕ β1) is
forced true by Condition 3.
For the inductive step, we will assume that tgt(Ci) is forced true and prove that
then tgt(Ci+1) is forced true as well. By Definition 23, tgt(Φi) = src(Φi+1) and
(α̂i ⊕ βi+1) ⊆ (αi ⊕ βi). Therefore, src(Φi+1) ⊆ tgt(Φi), and src(Φi+1) is forced true by
Condition 2, and tgt(Ci+1) is forced true by Condition 3.
Thus, tgt(Cn), a datapoint whose location is `e, is forced true.
Now we will prove that if there is a datapoint (`e, ζ) forced true, then there is a contra-
dictory chain of constraints in C. Since `e 6= `s, (`e, ζ) cannot be forced true because of
Condition 1. Therefore, by Corollary 4, it can be traced back to a datapoint (`s, γ). We
will show that this sequence of references implies the existence of a contradictory chain of
constraints.
We arrange the datapoints in the trace in order of references starting from (`s, γ) to (`e, ζ).
Then we put the constraints from references that use Condition 3 into the chain: when a
datapoint D1 in the trace is forced true because there is a constraint C and a forced-true
datapoint D2 such that D1 = positiveDeduction(C,D2), we include C in the chain.
These constraints form a contradictory chain. When there are references using Condition
2 (subsets) between two references using constraints, it does not contradict with the list
being a contradictory chain, since Definition 23 allows two consecutive constraints C1 and
C2 as long as tgt(C1) ⊆ src(C2), which the intermediate Condition 2 references ensure.
Thus, we have a contradictory chain of constraints and C is contradictory. �

In the breadth-first search, we calculate a set of forced-true datapoints under a constraint
system. If there is a datapoint in the set with the error location, then by Proposition 16,
the constraint system is inconsistent. The process is described in Algorithm 4.
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Algorithm 4: Check constraint consistency
Input: C, a set of constraints
Input: `s, the initial location of the CFA
Input: `e, the error location of the CFA
Output: Whether the constraint system CS(C) is consistent

1 Dfound ← ∅;
2 forall (α0,Φ, αk, β) ∈ C do
3 C ← (α0,Φ, αk, β);
4 if src(Φ) = `s then
5 Dfound ← Dfound ∪ {src(C), tgt(C)}; // Condition 1 and Condition 3.
6 end
7 end
8 Dtrue ← Dfound;
9 while Dfound 6= ∅ do

10 Dfound ← ∅;
11 forall C ∈ C do
12 D0 ← src(C);
13 Dk ← tgt(C);
14 if Dk /∈ Dtrue then
15 if D0 ∈ Dtrue then
16 Dfound ← Dfound ∪ {Dk};
17 else
18 forall D ∈ Dtrue such that D and D0 are not disjoint do
19 D̂0 ← D ∩D0; // Condition 2

20 D̂k ← positiveDeduction
(
C, D̂0

)
; // Condition 3

21 if D̂k /∈ Dtrue then
22 Dfound ← Dfound ∪

{
D̂k

}
;

23 end
24 end
25 end
26 end
27 end
28 Dtrue ← Dtrue ∪Dfound;
29 end
30 if for a valuation γ, (`e, γ) ∈ Dtrue then
31 return false; // Contradictory by Proposition 16.
32 else
33 return true; // Consistent.
34 end
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Proposition 17. At line 30 of Algorithm 4, every datapoint in Dtrue is forced true under
CS(C). �

Proof . At line 5, src(C) is forced true because of Condition 1, and tgt(C) is forced true
because of Condition 3. Therefore, at line 8 we only add forced-true datapoints to Dtrue.
We will prove by induction that every time, the execution gets to line 10, Dtrue contains
only forced-true datapoints. For the base case, we already showed that for the initial run,
that is true. For the inductive step, we will show that if the datapoints in Dtrue are forced
true, then we add forced-true datapoints to Dfound and then at line 28 to Dtrue. At line 16
we simply apply Condition 3: D0 is forced true, therefore positiveDeduction(C,D0) =
Dk is also forced true. At line 22, D̂0 is forced true by Condition 2, because D is forced
true, and D̂0 = D ∩ D0 ⊆ D. Thus, D̂k = positiveDeduction

(
C, D̂0

)
is also forced

true by Condition 3. Since we do not add datapoints to Dfound in any other places, all
datapoints we add to Dtrue at line 28 are forced true.
Therefore, we get to line 30 with only forced-true datapoints in Dtrue. �

Proposition 18. Algorithm 4 returns false if and only if CS(C) is contradictory. �

Proof . If Algorithm 4 returns false, then there is a datapoint (`e, γ) ∈ Dtrue at line 30,
which by Proposition 17 is forced true under CS(C), therefore by Proposition 16, CS(C)
is contradictory.
If CS(C) is contradictory, then by Definition 23, there is a contradictory chain of con-
straints C1, C2, . . . , Cn ∈ CS(C). Let C ′i ∈ C be the constraint that Ci ∈ CS(C) is derived
from using Corollary 1.
We will prove by induction that for all i ∈ [1..n], a datapoint Di for which tgt(Ci) ⊆ Di

is added to Dtrue. The first constraint in the chain, C1, starts at `s, therefore when the
loop at line 2 gets to C ′1, tgt(C ′1) is added to Dfound at line 5 and then to Dtrue at line 8.
Trivially, tgt(Ci) ⊆ tgt(C ′i).
For the inductive step, we assume that Di is added and show that a valid Di+1 is also
added to Dtrue. Let us consider the first iteration of the main loop at line 9 after Di

is added to Dtrue. When the nested loop at line 11 gets to C ′i+1, there are two possible
courses.
If src

(
C ′i+1

)
= Di, then the algorithm adds Di+1 = tgt

(
C ′i+1

)
to Dfound at line 16. Again,

tgt(Ci+1) ⊆ tgt
(
C ′i+1

)
.

Otherwise, since src(Ci+1) ⊆ tgt(Ci) ⊆ Di, the loop at line 18 does get to Di and then

Di+1 = positiveDeduction
(
C ′i+1, src

(
C ′i+1

)
∩Di

)
is added to Dfound at line 22. Since src(Ci+1) ⊆

(
src
(
C ′i+1

)
∩Di

)
, tgt(Ci+1) ⊆ Di+1. At

the end of both courses, Di+1 is added to Dtrue at line 28.
Therefore, by line 30, some Dn = (`e, γ) is added to Dtrue and the algorithm therefore
returns false. �

3.4.1.2 Keeping track of datapoints

While Algorithm 4 does check if a constraint system is consistent, for learner algorithms,
it is useful to extend it to find more datapoints with forced classification. Similarly to
forced-true datapoints defined in Definition 30, we define forced-false datapoints.
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Definition 31 (Forced-false datapoints). A datapoint D = (`, α) is forced false in a
CFA A = (L,E,X, `s, `e) under the constraint system C if at least one of the following
conditions holds:
(Condition 1) ` = `e,
(Condition 2) there is a forced-false datapoint D̂ for which D ⊆ D̂,
(Condition 3) there is a constraint C ∈ C and a forced-false datapoint Dk ⊆ tgt(C) for

which negativeDeduction(C,Dk) = D. �

Similarly to Corollary 4 for forced-true datapoints, forced-false datapoints can also be
traced back to one with the error location.
Corollary 5. Every forced-false datapoint is either forced true by Condition 1 or can be
traced back through transitive references via Condition 2 or Condition 3 to a datapoint
that is forced true by Condition 1. �

Similarly to Proposition 15 for forced-true datapoints, satisfactory invariant systems clas-
sify forced-false datapoints as false.
Proposition 19. A satisfactory invariant system classifies all forced-false datapoints
false. �

Proof . Let there be a satisfactory invariant system λ and a datapoint D = (`, α) that is
forced false.
By Corollary 5, we can trace D back to a datapoint with the error location. Let the
datapoints in the trace be D1, D2, . . . , D, such that D1 is forced true because of Condition
1.
We will prove by induction that λ classifies every datapoint in the trace as false. For the
base case, it classifies D1 as false by definition, since it has the error location.
For the inductive step, assume that λ classifies Di as false. If the next datapoint refers
to Di via Condition 2, then by Proposition 12, λ classifies it as false. Otherwise, the next
datapoint refers to Di via Condition 3, and by Proposition 14, λ classifies it as false.
There is no other way for the trace to go to the next datapoint. �

Our algorithms calculate a set of forced-true and forced-false datapoints for the current
constraint system. The learner algorithms then use these sets to create an invariant system
consistent with the constraints.
Some of our learner algorithms do not consider the classification of every configuration
of the CFA, they only consider the classification of a set of datapoints, and they only
reject an invariant system if its classification of those datapoints contradicts the constraint
system. If an invariant system classifies a datapoint in the sat as indeterminate, however,
depending on which subsets of the datapoint the invariant system classifies true and which
false, it may not be consistent with the constraint system.
Example 14. If we have a single constraint

C = ({x→ 2} ,Φ, {x→ 3} , {y → 4}),

then the invariant system λ, for which

λ[src(Φ)]⇔ (z < 4) and
λ[tgt(Φ)]⇔ (x+ z = y),
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classifies both src(C) and tgt(C) as indeterminate. When we only consider the classifi-
cation of these datapoints, we do not see a contradiction. However, if we also consider the
classification of

Da = (src(Φ), {x→ 2, y → 4, z → −1}) and
Db = positiveDeduction(C,Da) = (tgt(Φ), {x→ 3, y → 4, z → −1})

(assuming that z ∈ ∆Φ), we can see that λ classifies Da as true and Db as false, therefore
λ does not adhere to the constraints.

In case of complex formulae, however, it is relatively expensive to check if a datapoint
classified as indeterminate has such subsets. We did not find an efficient way to eliminate
the problem completely, we would have to make calls to the underlying SMT solver to check
if such subsets exist. It is not catastrophic, however, if a learner suggests an invariant
system that contradicts the constraints in a non-obvious way. The teacher checks if the
invariant system is satisfactory, and it gives more specific valuations which turn into
more specific constraints and more specific datapoints for our algorithm to notice the
inconsistent classification of. We therefore deemed using the SMT solver to check if an
invariant system is consistent with the constraint system unnecessary.
To reduce the occurrence of such an occasion, we check the classification of a larger set of
datapoints which includes the datapoints we extract from the constraints, and if D1 and
D2 are in the set, and they are not disjoint, then we also put D1 ∪D2 in the set.
Moreover, to prevent iterating over every forced true datapoint at line 18, we keep a list
of its subsets in the set of datapoints.
In Algorithm 5, we present the way we construct this data structure or update it with
new datapoints. This procedure is called whenever a new datapoint emerges either from
new constraints or from a deduction.

Proposition 20. If for every non-disjoint pair of datapoints Da, Db ∈ D, Da ∩Db ∈ D
when Algorithm 5 starts, then when the algorithm terminates, D still has that property.
Moreover, every datapoint initially in Dnew is added to D. �

Proof . When the algorithm terminates, Dnew is empty. We only take a datapoint out of
it at line 3, and we always add that datapoint to D at line 17. Therefore, every datapoint
either initially in Dnew or subsequently added to Dnew is eventually added to D.
Let Da and Db two non-disjoint elements of D when the algorithm terminates. We will
show that Da ∩Db ∈ D.
If both Da ∈ D and Db ∈ D when the algorithm starts then the precondition ensures that
(Da ∩Db) ∈ D.
If one of them is in D when the algorithm starts, but the other is not, we assume without
loss of generality that Da /∈ D and Db ∈ D. When D = Da at line 2, three cases are
possible.

• If Da ⊆ Db, then Da ∩Db = Da, and Da is added to D at line 17.
• If Db ⊆ Da, then Da ∩Db = Db, and Db is already in D.
• Otherwise, when the loop at line 6 gets to D′ = Db, Da ∩ Db is added to Dnew at

line 14 and eventually to D.
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Algorithm 5: Add datapoints
Data: D, the set of datapoints. If Da ∈ D and Db ∈ D are non-disjoint, then

Da ∩Db ∈ D
Data: subsets[D] = {D′ ∈ D | D′ ⊆ D} for all D ∈ D
Data: Dtrue the set of forced-true datapoints
Data: Dfalse the set of forced-false datapoints
Input: Dnew, the set of datapoints to add to D and subsets

1 while Dnew 6= ∅ do
2 D ← some element of Dnew;
3 Dnew ← Dnew \ {D};
4 if D /∈ D then
5 subsets[D]← {D};
6 forall D′ ∈ D do
7 if D′ ⊆ D then
8 subsets[D]← subsets[D] ∪ {D′};
9 else if D ⊆ D′ then

10 subsets[D′]← subsets[D′] ∪ {D};
11 if D′ ∈ Dtrue then Dtrue ← Dtrue ∪ {D}; // Condition 2
12 if D′ ∈ Dfalse then Dfalse ← Dfalse ∪ {D}; // Condition 2
13 else if D and D′ are not disjoint then
14 Dnew ← Dnew ∪ {D ∩D′};
15 end
16 end
17 D← D ∪ {D};
18 end
19 end
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If both Da /∈ D and Db /∈ D when the algorithm starts, then whichever gets selected first
at line 2 gets added to D first and when the other gets selected, one of the previous cases
happens. �

Proposition 21. If for all D ∈ D, subsets[D] = {D′ ∈ D | D′ ⊆ D} when Algorithm 5
starts, then the same is true when the algorithm terminates. �

Proof . Assume indirectly that for a datapoint D ∈ D, subsets[D] 6= {D′ ∈ D | D′ ⊆ D}
when the algorithm terminates.

1. If there is a D′ ∈ subsets[D] for which D′ * D, then it was added at line 8
or line 10, since subsets is consistent before the algorithm started. However, the
algorithm checks the relationship before executing either of these lines, therefore we
have a contradiction.

2. If there is a D′ ∈ D for which D′ ⊆ D, but D′ /∈ subsets[D], then one of the
following cases applies.

(a) If D = D′, then at line 5, subsets[D] is initialized to include D′.
(b) If initially D ∈ D and D′ ∈ D, then initially D′ ∈ subsets[D], and since the

algorithm does not remove elements from subsets, we have a contradiction.
(c) If initially D /∈ D and D′ ∈ D, then D′ is added at line 8.
(d) If initially D ∈ D and D′ /∈ D, then D′ is added at line 10.
(e) If initially D /∈ D and D′ /∈ D, then when the second one of them gets selected

at line 2, the other is already in D and the loop at line 6 selects it eventually,
and then D′ is added. �

Corollary 6. If Dtrue only contains forced-true and Dfalse only contains forced-false
datapoints when Algorithm 5 is started, then it only adds forced-true and forced-false
datapoints to them respectively. �

Using Algorithm 5, we present two modified versions of Algorithm 4: Algorithm 6 and
Algorithm 7. They are both based on [3]. They calculate the set of forced-true and the
set of forced-false datapoints.
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Algorithm 6: Finding forced-true datapoints
Data: D, the set of datapoints. For every C ∈ C, src(C) ∈ D and tgt(C) ∈ D.

For every non-disjoint Da ∈ D and Db ∈ D, Da ∩Db ∈ D.
Data: subsets[D] = {D′ ∈ D | D′ ⊆ D} for all D ∈ D
Input: C, a set of constraints
Input: `s, the initial location of the CFA
Input: `e, the error location of the CFA
Input: DprevTrue, a set of previously calculated forced-true datapoints.

If D ∈ DprevTrue then subsets[D] ⊆ DprevTrue.
Output: Dtrue, the set of forced-true datapoints

1 Dfound ← DprevTrue;
2 forall (α0,Φ, αk, β) ∈ C do
3 C ← (α0,Φ, αk, β);
4 if src(Φ) = `s then
5 Dfound ← Dfound ∪ subsets[src(C)] ∪ subsets[tgt(C)];
6 end
7 end
8 Dtrue ← Dfound;
9 while Dfound 6= ∅ do

10 Dfound ← ∅;
11 forall C ∈ C do
12 D0 ← src(C);
13 Dk ← tgt(C);
14 if Dk /∈ Dtrue then
15 if D0 ∈ Dtrue then
16 Dfound ← Dfound ∪ subsets[Dk];
17 else
18 forall D̂0 ∈ subsets[D0] ∩Dtrue do
19 D̂k ← positiveDeduction

(
C, D̂0

)
;

20 if D̂k /∈ D then
21 Call Algorithm 5 with Dnew =

{
D̂k

}
;

22 end
23 if D̂k /∈ Dtrue then
24 Dfound ← Dfound ∪ subsets

[
D̂k

]
;

25 end
26 end
27 end
28 end
29 end
30 Dtrue ← Dtrue ∪Dfound;
31 end
32 return Dtrue;
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Example 15. Take the set of constraints C = {C1, C2, C3}, where the set of variables is
X = {x, y, z},

C1 = ({} ,Φ1, {x→ 1} , {z → 3}),
C2 = ({x→ 1} ,Φ2, {} , {y → 2}),
C3 = ({x→ 3} ,Φ3, {y → 4, z → 2} , {}),

src(Φ1) = `s, tgt(Φ1) = src(Φ2), tgt(Φ2) = src(Φ1) and tgt(Φ3) = `e. Elements of the set
of datapoints (D, as Algorithm 5 returns it) are

D1 =(`s, {z → 3}) = src(C1),
D2 =(tgt(Φ1), {x→ 1, z → 3}) = tgt(C1),
D3 =(src(Φ2), {x→ 1, y → 2}) = src(C2),

D2 ∩D3 =(src(Φ2), {x→ 1, y → 2, z → 3}),
D4 =(tgt(Φ2), {y → 2}) = tgt(C2),
D5 =(src(Φ3), {x→ 3}) = src(C3),

D4 ∩D5 =(src(Φ3), {x→ 3, y → 2}),
D6 =(`e, {y → 4, z → 2}) = tgt(C3).

When we run Algorithm 6, and the loop at line 2 gets to C1, it adds D1, D2 and D1 ∩D2
to Dfound at line 5.

Then, when the loop at line 11 gets to C2, it will go to line 18, and that loop will find
D2 ∩D3 as a forced-true subset of D3. It will find

D7 = positiveDeduction(C2, D2 ∩D3) = (tgt(Φ2), {y → 2, z → 3}),

and run Algorithm 5 at line 21. That will lead to D7 and

D7 ∩D5 = D7 ∩ (D4 ∩D5) = (src(Φ3), {x→ 3, y → 2, z → 3})

being added to D. Then at line 24, the algorithm adds D7 and D7 ∩ D5 to Dfound and
eventually to Dtrue.

In the next iteration of the main loop, the algorithm finds D7∩D5 as a forced-true subset
of D5, deduces

D6 = positiveDeduction(C3, D7 ∩D5) = (`e, {y → 4, z → 2}),

and adds it to Dfound and eventually to Dtrue.

The final iteration of the main loop does not add any more datapoints in Dfound.

Proposition 22. If DprevTrue contains only forced-true datapoints, then every datapoint
in the set that Algorithm 6 returns is forced true under CS(C) �

Proof . We apply a similar logic as for Proposition 17.
At line 5, src(C) is forced true because of Condition 1, and tgt(C) is forced true because
of Condition 3. Therefore, at line 8, we initialize Dtrue with only forced-true datapoints.
We use induction to prove that we only add forced-true datapoints to Dtrue in the loop
at line 9.
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For the base case, we have already shown that the at the first execution of the loop, Dtrue
only contains forced-true datapoints.
Assuming that every datapoint in Dtrue is forced true, we will show that the algorithm
only adds forced-true datapoints to Dfound.
At line 16, and at line 24, we apply Condition 3 to determine that Dk or D̂k is forced
true, and their subsets are forced true because of Condition 2. Therefore, at line 30, we
add only forced-true datapoints to Dtrue.
Since we do not extend Dtrue anywhere else, it only contains forced-true datapoints. �

Proposition 23. The set of datapoints that Algorithm 6 returns contains all forced-true
datapoints in D. �

Proof . Assume that there is a forced-true datapoint not in Dtrue. By Corollary 4, it can
be traced back to a datapoint with the initial location. Let the datapoints in the trace be
D1, D2, . . . , Dn. Since D1 has the initial location, the algorithm adds it at line 5.
Assuming Di is added to Dtrue, we show that Di+1 is added.
If Di+1 is forced true because Di+1 ⊆ Di (Condition 2), then Di+1 ∈ subsets[Di], and
the algorithm also adds Di+1 to Dtrue when it adds Di.
If Di+1 is forced true because there is a constraint C such that Di+1 =
positiveDeduction(C,Di) (Condition 3), then in the first iteration of the loop at line 9
after the algorithm adds Di to Dtrue, when the loop at line 11 gets to C, it will add Di+1.
Therefore, we have a contradiction. �

Proposition 24. When Algorithm 6 terminates, if there is a constraint C ∈ CS(C) and
a datapoint D ∈ Dtrue such that D ⊆ src(C), then there is a datapoint D̃ ∈ Dtrue such
that positiveDeduction(C,D) ⊆ D̃. �

Proof . Let Ĉ ∈ C be the constraint that caused C to be in CS(C). Let us consider the
iteration of the loop at line 9 after D is added to Dtrue and the iteration of the loop at
line 11 when it gets to Ĉ.

If src
(
Ĉ
)
∈ Dtrue, then tgt

(
Ĉ
)
is added to Dfound at line 16. The datapoint tgt

(
Ĉ
)

suffices as D̃, because positiveDeduction(C,D) ⊆ tgt
(
Ĉ
)
.

Since D ∈ Dtrue, D ∈ D and since D ⊆ src
(
Ĉ
)
, D ∈ subsets

[
src
(
Ĉ
)]
. Therefore, if

src
(
Ĉ
)
/∈ Dtrue, then when the loop at line 11 gets to Ĉ, D is eventually selected at

line 18, and positiveDeduction
(
Ĉ,D

)
is added at line line 24.

Since positiveDeduction(C,D) ⊆ positiveDeduction
(
Ĉ,D

)
, the datapoint

positiveDeduction
(
Ĉ,D

)
suffices as D̃. �
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Algorithm 7: Finding forced-false datapoints
Data: D, the set of datapoints. For every C ∈ C, src(C) ∈ D and tgt(C) ∈ D.

For every non-disjoint Da ∈ D and Db ∈ D, Da ∩Db ∈ D.
Data: subsets[D] = {D′ ∈ D | D′ ⊆ D} for all D ∈ D
Input: C, a set of constraints
Input: `s, the initial location of the CFA
Input: `e, the error location of the CFA
Input: DprevFalse, a set of previously calculated forced-false datapoints.

If D ∈ DprevFalse then subsets[D] ⊆ DprevFalse.
Output: Dfalse, the set of forced-false datapoints

1 Dfound ← DprevFalse;
2 forall (α0,Φ, αk, β) ∈ C do
3 C ← (α0,Φ, αk, β);
4 if tgt(Φ) = `e then
5 Dfound ← Dfound ∪ subsets[src(C)] ∪ subsets[tgt(C)];
6 end
7 end
8 Dfalse ← Dfound;
9 while Dfound 6= ∅ do

10 Dfound ← ∅;
11 forall C ∈ C do
12 D0 ← src(C);
13 Dk ← tgt(C);
14 if D0 /∈ Dfalse then
15 if Dk ∈ Dfalse then
16 Dfound ← Dfound ∪ subsets[D0];
17 else
18 forall D̂k ∈ subsets[Dk] ∩Dfalse do
19 D̂0 ← negativeDeduction

(
C, D̂k

)
;

20 if D̂0 /∈ D then
21 Call Algorithm 5 with Dnew =

{
D̂0
}
;

22 end
23 if D̂0 /∈ Dfalse then
24 Dfound ← Dfound ∪ subsets

[
D̂0
]
;

25 end
26 end
27 end
28 end
29 end
30 Dfalse ← Dfalse ∪Dfound;
31 end
32 return Dfalse
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Proposition 25. If DprevFalse contains only forced-false datapoints, then every datapoint
in the set that Algorithm 7 returns is forced false under CS(C) �

Proof . We apply a similar logic as for Proposition 22.
At line 5, src(C) is forced true because of Condition 1, and tgt(C) is forced true because
of Condition 3. Therefore, at line 8, we initialize Dfalse with only forced-false datapoints.
We use induction to prove that we only add forced-false datapoints to Dfalse in the loop
at line 9.
For the base case, we have already shown that the at the first execution of the loop, Dfalse
only contains forced-true datapoints.
Assuming that every datapoint in Dfalse is forced false, we will show that the algorithm
only adds forced-false datapoints to Dfound.
At line 16, and at line 24, we apply Condition 3 to determine that D0 or D̂0 is forced
false, and their subsets are forced false because of Condition 2. Therefore, at line 30, we
add only forced-false datapoints to Dfalse.
Since we do not extend Dfalse anywhere else, it only contains forced-false datapoints. �

Proposition 26. The set of datapoints that Algorithm 7 returns contains all forced-false
datapoints in D. �

Proof . Assume that there is a forced-false datapoint not in Dfalse. By Corollary 5, it
can be traced back to a datapoint with the error location. Let the datapoints in the trace
be D1, D2, . . . , Dn. Since D1 has the error location, the algorithm adds it at line 5.
Assuming Di is added to Dfalse, we show that Di+1 is added.
If Di+1 is forced false because Di+1 ⊆ Di (Condition 2), then Di+1 ∈ subsets[Di], and
the algorithm also adds Di+1 to Dfalse when it adds Di.
If Di+1 is forced false because there is a constraint C such that Di+1 =
negativeDeduction(C,Di) (Condition 3), then in the first iteration of the loop at line 9
after the algorithm adds Di to Dfalse, when the loop at line 11 gets to C, it will add D.
Therefore, we have a contradiction. �

These algorithms can be used incrementally, calling them whenever the teacher gives new
constraints.
The set of forced-true datapoints that Algorithm 4 finds is a subset of what Algorithm 6
finds. Whenever Algorithm 4 adds a datapoint, Algorithm 6 adds that and all of its
subsets. Therefore, we can also use Algorithm 6 to check if the constraint system is
contradictory.

3.4.2 Learner algorithms

In this section, we will discuss the algorithms we use for synthesizing candidate invari-
ant systems. Every algorithm relies on the datapoint data structure discussed in Sec-
tion 3.4.1.2. When the teacher gives new constraints, we construct that data structure
before running any of the following algorithms.
First, we run Algorithm 5 with Dnew = {src(C) | C ∈ C}∪{tgt(C) | C ∈ C}. Then we run
Algorithm 6 and check if the set of constraints is consistent. If they are, then we proceed
with Algorithm 7 and one of the following algorithms.
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3.4.2.1 Simple learner

Every satisfactory invariant system must classify forced-true datapoints as true. However,
since the constraints are similar to implications—if the invariant system classifies one
configuration as true, then it must also classify another one true—if it classifies every
other configuration as false, then it adheres to them.
When given a set of constraints C and the set of forced-true datapoints Dtrue (the result
of Algorithm 6), the simple learner returns the invariant system λ, where

λ[`]⇔
∨

(`,α)∈Dtrue

 ∧
x∈Xα

x = α(x)

 (3.2)

This invariant system classifies every datapoint in Dtrue as true, and every other datapoint
as either indeterminate or false depending on whether they are disjoint from every
datapoint in Dtrue.1

We describe the process in Algorithm 8.

Algorithm 8: Simple learner
Data: Dtrue, the set of forced-true datapoints as calculated by Algorithm 6
Input: `s, the start location
Input: `e, the error location
Input: N , the set of structural nodes
Output: λ, an invariant system that adheres to the constraint system

1 λ[`s]← >;
2 λ[`e]← ⊥;
3 forall ` ∈ N do
4 λ[`]← ⊥;
5 end
6 forall (`, α) ∈ Dtrue do
7 λ[`]← λ[`] ∨

(∧
x∈Xα x = α(x)

)
; // Equation 3.2

8 end
9 return λ;

Corollary 7. The invariant system λ that Algorithm 8 returns classifies every configu-
ration (`, α) for which there is a datapoint (`, α̃) ∈ Dtrue such that α ⊆ α̃ as true. It
classifies every other configuration as false. �

Proposition 27. The invariant system λ that Algorithm 8 returns adheres to the con-
straint system CS(C). �

Proof . Assume that it does not. Then there is a constraint C ∈ CS(C), such that
λ classifies src(C) as true and tgt(C) as false. By Corollary 7, there is a datapoint
D ∈ Dtrue for which src(C) ⊆ D. Therefore, by Proposition 24, there is a D̃ ∈ Dtrue such
that tgt(C) ⊆ D̃. Then λ classifies D̃ as well as its subsets as true. �

1Configurations, on the other hand, are never classified as indeterminate.
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Example 16. For the set of forced-true datapoints Dtrue = {D1, D2, D3, D4}, where

D1 =(`1, {x→ 2}),
D2 =(`2, {y → 3, z → 4}),
D3 =(`3, {x→ 2, z → 4}),
D4 =(`3, {y → 3, z → 16}),

Algorithm 8 returns the invariant system λ, where

λ[`s]⇔ >,
λ[`1]⇔ (x = 2),
λ[`2]⇔ (y = 3) ∧ (z = 4),
λ[`3]⇔ ((x = 2 ∧ z = 4) ∨ (y = 3 ∧ z = 16)) and
λ[`e]⇔ ⊥.

While Algorithm 8 finds an invariant system that adheres to the constraints, it does not
generalize the constraints at all. In order for the learner to be successful, it cannot wait
for enough constraints that the only solution to them is a satisfactory invariant system.
It should be able to deduce generic properties of the CFA from the constraints.

3.4.2.2 Sorcar learner

Based on the Houdini and Sorcar algorithms in [6], we implemented Algorithm 9 as a
learner. It tries to generate invariant systems by choosing a subset of a predetermined
set P of predicates and forming the conjunction of its elements for each structural node.
However, it does not always succeed. Sometimes it is not possible to express an invariant
system that satisfies the set of constraints only using conjunctions of subsets of P.
The algorithm starts from a large set of relevant predicates—the conjunction of which clas-
sifies a small set of datapoints as true—for each structural node. Then it removes predi-
cates from the set—thereby making the conjunction classify more datapoints as true—if
they contradict forced-true datapoints. Removing these predicates may cause not only
forced-true datapoints to be classified true, but also other datapoints. These datapoints
may appear as the source of some constraints and force the algorithm to label the target
of those constraints true as well (by removing the predicates that contradict them) in
order to adhere to those constraints.
We use Algorithm 6 to find these datapoints. As its input, we give the set of datapoints
that the current conjunction labels true. Since they are not necessarily all forced-true
datapoints, the output may contain datapoints that are not forced true by Definition 30.
However, Algorithm 9 must classify these datapoints as true because every P-subset
conjunction that is consistent with the constraints does so. If there is a datapoint with
the final location among them, it does not necessarily mean that the set of constraints is
contradictory. It only means that Algorithm 9 is unable to generate an invariant system
that adheres to the constraints.
The algorithm, therefore, is an iteration of having to remove predicates because they
contradict one of the datapoints we have to label as true, removing those predicates
causing other datapoints to be labelled true, and those datapoints in turn forcing us to
label yet more datapoints as true through constraints.
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Algorithm 9: Sorcar learner
Data: D, the set of datapoints. If Da ∈ D and Db ∈ D are non-disjoint, then

Da ∩Db ∈ D
Data: subsets[D] = {D′ ∈ D | D′ ⊆ D} for all D ∈ D
Input: Dtrue, the set of forced-true datapoints as found by Algorithm 6
Input: P, the set of predicates to build invariants from
Input: N, `s, `e, the set of structural nodes, the initial and the error location
Input: C, the set of constraints
Output: λ, an invariant system that adheres to CS(C)

1 forall ` ∈ N do
2 candidates[`]← {ξ ∈ P | ξ is relevant to `}; // Definition 32
3 end
4 Dlabelled ← ∅; // The set of datapoints labelled true
5 DtoLabel ← {(`, α) ∈ Dtrue | ` 6= `s}; // Datapoints yet to be labelled true
6 repeat
7 forall ` ∈ N do
8 toRemove← ∅;
9 forall ξ ∈ candidates[`] do

10 forall (`, α) ∈ DtoLabel do
11 if α 6|= ξ then we must remove ξ to classify (`, α) as true
12 toRemove← toRemove ∪ {ξ};
13 end
14 end
15 end
16 candidates[`]← candidates[`] \ toRemove;
17 forall (`, α) ∈ D \Dlabelled do
18 if α |= ∧(candidates[`]) then we will classify (`, α) as true
19 Dlabelled ← Dlabelled ∪ subsets[(`, α)];
20 end
21 end
22 end

// Which datapoints get forced true by datapoints in Dlabelled?
23 D′toLabel ← the result of Algorithm 6 with DprevTrue = Dlabelled;
24 if there is a datapoint (`e, α) ∈ D′toLabel then
25 terminate; // The learner cannot express an invariant
26 end
27 DtoLabel = {(`, α) ∈ D′toLabel \Dlabelled | ` 6= `s};
28 until DtoLabel = ∅;
29 λ[`s]← >;
30 λ[`e]← ⊥;
31 forall ` ∈ N do
32 λ[`]← ∧(candidates[`])
33 end
34 return λ;
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We consider a predicate ξ relevant to a structural node ` if there is a constraint C such that
src(C) = (`, α) and α 6|= ξ. This means that by adding ξ to the conjunction, we can rule
out at least one datapoint (D ⊆ src(C)) that would require positiveDeduction(C,D)
and possibly other datapoints to be forced true. On the other hand, predicates that are
not relevant restrict the set of configurations classified as true in a way that does not help
us adhere to the constraints.

Definition 32 (Relevant formula). In the context of a constraint system C and a set
of datapoints D, we say that a formula ξ is relevant to a structural node ` if there is a
datapoint (`, α) ∈ D, and a constraint C ∈ C such that (`, α) ⊆ src(C) and α 6|= ξ. �

Proposition 28. Datapoints in Dlabelled are labelled true by the invariant system that
Algorithm 9 returns. �

Proof . The algorithm only adds datapoints to Dlabelled at line 19. The check before that
line ensures that α |= (∧(candidates[`])). As the algorithm progresses, we only remove
predicates from candidates[`], and that maintains the previous relation. Finally, when
the algorithm constructs λ, at line 32 λ[`] ⇔ (∧(candidates[`])). Therefore, α |= λ[`],
and λ labels (`, α) as true along with every datapoint in subsets[(`, α)]. �

Proposition 29. After Algorithm 9 executes line 16, for each (`, α) ∈ DtoLabel,
α |= (∧(candidates[`])). �

Proof . There is no ξ ∈ candidates[`], such that α 6|= ξ, since it would be added to
toRemove at line 12. If candidates[`] = ∅, then ∧(candidates[`]) ⇔ >. Otherwise, for
every ξ ∈ candidates[`], α |= ξ. Therefore, α |= (∧(candidates[`])). �

Using these propositions, we can show that the invariant system that Algorithm 9 returns
at line 34 classifies the datapoints in D consistently with CS(C). It is possible that one
of the datapoints is classified indeterminate.

Proposition 30. Let λ be the invariant system that Algorithm 9 returns at line 34. If
there is a datapoint D ∈ D that λ classifies as true and a constraint C ∈ CS(C) for which
D ⊆ src(C), then λ also classifies positiveDeduction(C,D) as true. �

Proof . Assume that the algorithm returns an invariant system λ at line 34, and there is
a constraint C ∈ CS(C) for which D ⊆ src(C), and λ classifies D as true. We will show
that λ labels positiveDeduction(C,D) as true.
The loop at line 17 always gets executed with the final state of candidates before the
algorithm returns λ, therefore there is a point when D gets added to Dlabelled. After that,
when we get to line 23, Algorithm 6 assumes that D is forced true and by Proposition 24,
there is a D′ ∈ D′toLabel such that positiveDeduction(C,D) ⊆ D′.
If D′ ∈ Dlabelled, then by Proposition 28, λ classifies D′ as true.
If D′ /∈ Dlabelled, then D′ ∈ DtoLabel, and the algorithm does not exit the loop at line 28.
By Proposition 29, it gets added to Dlabelled in the next iteration, and by Proposition 28,
λ classifies D′ as true.
By Proposition 12, λ also classifies positiveDeduction(C,D) ⊆ D′ as true. �

Algorithm 9 does not always return an invariant system. We will show, however, that
it always does when there is an invariant system that adheres to CS(C) and only uses
conjunctions of subsets of P.
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Proposition 31. If Algorithm 9 terminates at line 25, there is no invariant system λ
such that λ adheres to the constraints and for every structural node ` ∈ N , λ[`]⇔ ∧(P`),
where P` ⊆ P. �

Proof . The algorithm terminates at line 25 if Algorithm 6 adds a datapoint with the
error location to D′toLabel. Similarly to Corollary 4, we can trace back every datapoint in
D′toLabel to a datapoint in Dlabelled or a datapoint whose location is `s.
If the datapoint (`e, α) at line 24 can be traced back to a datapoint whose location is `s,
then the constraint system is contradictory and there is no possible solution to it.
Otherwise, it can be traced back to a datapoint in Dlabelled. As shown in the proof of
Proposition 15, every classification that classifies the beginning of such a trace true must
also classify every datapoint in the trace true. Therefore, the only way to prevent (`e, α)
being added to D′toLabel would be to add fewer datapoints to Dlabelled which can only
be achieved by removing fewer predicates from candidates. The algorithm removes a
predicate either because it is irrelevant or because it prevents labelling a datapoint true.
First we show that we cannot prevent the addition of the datapoint (`e, α) to D′toLabel by
not removing irrelevant predicates. Since there are no datapoints with `e in Dlabelled, any
trace leading to (`e, α) has to begin at a datapoint with a different location ` and include
at least one reference using a constraint in CS(C). For a predicate ξ that is irrelevant to `,
there is no datapoint (`, β) ∈ D such that β 6|= ξ and (`, β) ⊆ src(C) for some C ∈ CS(C).
Assume that there is a trace leading from a datapoint with ` in Dlabelled to (`e, α). Let
C be the constraint that the first constraint-reference in the trace uses. The trace might
start at a superset of src(C) with a subset-reference, or at a datapoint D ⊆ src(C). In
both cases, D ∈ Dlabelled and it cannot be excluded by irrelevant predicates.
Now we will use induction to prove that we must remove ξ at line 12. In the first iteration of
the loop at line 6, DtoLabel = Dtrue, therefore by Proposition 15, every satisfactory invari-
ant system must label every datapoint in DtoLabel as true. As long as ξ ∈ candidates[`],
α 6|= ∧(candidates[`]), because α 6|= ξ. Therefore, ξ cannot be a part of λ[`] for any
invariant system using conjunctions of subsets of P.
These removals cause other datapoints to be added to Dlabelled. Since none of the similar
invariant systems can use the removed predicates, they all label these datapoints as true.
Then, at line 23, the every similar invariant system must also label the datapoints in
D′toLabel as true, since they would violate the constraints otherwise. Therefore, in the
next iteration, the datapoints in DtoLabel must be labelled as true, and our reasoning can
be repeated. �

Example 17. Let P = {(x = 3), (x < y), (y ≡ 3 (mod 10))}. Let there be constraints
C1, C2 and C3 such that

src(C1) = Ds = (`s, {}),
tgt(C1) = D1 = (`1, {x→ 5, y → 5}),
src(C2) = D2 = (`1, {x→ 7, y → 3}),
tgt(C2) = D3 = (`2, {x→ 3, y → 7}),
src(C3) = D4 = (`2, {x→ 3, y → 25}),
tgt(C3) = De = (`e, {}).

The set of forced-true datapoints then is {Ds, D1}.

Let us run Algorithm 9.
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For `1, the predicates (x = 3) and (x < y) are relevant, because they are not true for
D2 = src(C2), but (y ≡ 3 (mod 10)) is not relevant. For `2, on the other hand, only
(y ≡ 3 (mod 10)) is relevant, because it is not true for D4 = src(C3).
Initially, at line 5, DtoLabel = {D1}. When the loop at line 7 gets to `1, the loop at line 9
removes both (x = 3) and (x < y) from candidates[`1] because they are not true for D1.
This causes candidates[`1] to be empty, and the loop at line 17 to add D1 and D2 to
Dlabelled.

Then at line 23, D3 is added to D′toLabel because of C2. Since D′toLabel = {Ds, D1, D2, D3},
the algorithm proceeds to line 27 and DtoLabel = {D3}.

When the loop at line 7 gets to `2, the loop at line 9 removes (y ≡ 3 (mod 10)) from
candidates[`1] because it is not true for D3. This causes candidates[`2] to also be
empty, and the loop at line 17 to add D4 to Dlabelled.

Finally, since at line 23, De is added to D′toLabel because of C3, the algorithm terminates
at line 25.

If, however, we have an additional predicate (y 6= 25), then the algorithm would synthesize
the invariant system λ where

λ[`s]⇔ >,
λ[`1]⇔ >,
λ[`2]⇔ (y 6= 25),
λ[`e]⇔ ⊥.

3.4.2.3 Decision tree learner

We created the decision tree learner algorithm based on [3].
Decision trees are a well-known approach to classification problems in machine learning.
In our case, the task of finding an invariant system that adheres to the constraints is
slightly different from traditional classification problems since the classification of some
datapoints is not fixed (they are not forced true or forced false), but they are not free
either, labelling them as true may force the algorithm to label other datapoints as true.
Moreover, some decision trees may classify some datapoints as indeterminate.
Decision trees have two types of nodes: branches and leafs. A branch contains a decision—
in our case a predicate ξ ∈ P, or a subset of the set of structural nodes Z ⊆ N—and they
have two children nodes for the two possible outcomes of the decision. A leaf does not
have children, and it is labelled with a classification—in our case true or false. The tree
has a single root node, and all other nodes are its descendants (its children, or children of
its children, etc.).
Our decision trees classify configurations of the CFA. To get the classification of a con-
figuration (`, α), we start at the root node of the decision tree. If it is a branch, then we
check its label. If the label is a structural node set Z ⊆ N , then if ` ∈ Z, we proceed to
the left child, otherwise, we proceed to the right child. If the label is a predicate ξ, then if
α |= ξ, we proceed to the left child, otherwise α |= ¬ξ (by Proposition 2), and we proceed
to the right child. We are finished when we reach a leaf: the label of the leaf node is how
the decision tree classifies the configuration.
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Similarly to previous algorithms, we only consider the classification of a set of datapoints
during the building process and whether it violates the constraints. We hope that the
resulting invariant system generalizes this information and is satisfactory.
Building the decision tree can be understood as a recursive process. The algorithm gets
a set of datapoints, tries to classify them all the same, and checks if that labelling is
consistent with the constraint system. If it is consistent, then it puts a leaf in the tree
with the appropriate label. However, if it is not consistent, then the algorithm tries to split
the datapoints into two groups—preferably one that can be labelled true and another that
can be labelled false—with a decision: either a set of structural nodes or a predicate. It
then puts in a branch node with the chosen decision, calculates the set of datapoints that
get sent to the two children nodes and proceeds with the same process to create them.
In case of a predicate decision ξ, a datapoint (`, α) might have subsets (`, β) ⊆ (`, α) and
(`, γ) ⊆ (`, α) such that β |= ξ but γ |= ¬ξ. In such cases, the algorithm sends (`, α) to
both children, but notes that the datapoint itself was split: only a subset of it gets routed
to either child. During labelling, the algorithm does not know the exact subset of split
datapoints that are sent there. It assumes the best: if any subset of the split datapoint
can be labelled consistently with the constraints, it accepts the labelling. This may lead
to a classification that contradicts the constraints, but that is not catastrophic, since the
teacher can give us more specific constraints that highlight that contradiction.
The output of the algorithm is not the decision tree, it is an invariant system. Therefore,
it does not need to build the decision tree structure in memory. Instead, it can build
a formula in disjunctive normal form (a disjunction of conjunctions) for every structural
node. It keeps track of the decisions leading up to each set of datapoints waiting to be
processed, and when it successfully labels a set true, it adds the conjunction of the ξ-
decisions to the disjunction of every structural node that the Z-decisions direct that way.
However, when it comes to classifying individual datapoints in Algorithm 12 at line 20,
having a decision tree built can be beneficial, since checking if α 6|= ¬ϕ for every set waiting
to be processed can be less efficient than traversing the decision tree.
Algorithm 10 is the main algorithm of the decision tree learner. It processes the nodes of
the decision tree iteratively.
The set toProcess contains 4-tuples describing the decision tree nodes that are waiting to
be processed. Every element is of the form

(
Dwhole,Dsplit,M, ϕ

)
. The set of datapoints

that the decision tree sends to the node are Dwhole ∪ Dsplit ⊆ D. Every subset of
datapoints in Dwhole is sent to this node, while datapoints in Dsplit have subsets that
are sent to other nodes. The other two elements, M and ϕ track the decisions leading up
to this node from the root node. The set M ⊆ N is the set of structural nodes that the
configurations that get routed to this node may have. It is the intersection of the Z or Z
(depending on which direction) for Z-decisions leading up to this node. The formula ϕ is
true for exactly the CFA configurations that get routed to this node. It is the conjunction
of the ξ or ¬ξ literals on the path leading up to the node.
An iteration of the loop at line 6 takes out an element from toProcess and tries to classify
all the datapoints as either true or false using Algorithm 11. If it successfully classifies
them as true, it updates λ to reflect the new classification. If it classifies them as false,
λ does not need to be updated. But if the classification is unsuccessful, it creates a branch
node with Algorithm 13, and adds the two sets that get forwarded to the two children to
toProcess.
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Algorithm 10: Decision tree learner
Data: D, the set of datapoints
Data: Dtrue,Dfalse, the set of forced-true and forced-false datapoints
Input: N, `s, `e, the set of structural nodes and the start and error locations
Output: λ, an invariant system

1 λ[`s]← >;
2 forall ` ∈ N ∪ {`e} do
3 λ[`]← ⊥;
4 end

/* toProcess is the set of 4-tuples representing the nodes waiting
to be processed:

(
Dwhole,Dsplit,M, ϕ

)
where Dwhole and Dsplit are

the set of whole/split datapoints to classify at the node, M is
the set of structural nodes which the node applies to and ϕ is
the conjunction of the decisions leading up to the node. */

5 toProcess← {({(`, α) ∈ D | ` /∈ {`s, `e}} ,∅, N,>)};
6 while toProcess 6= ∅ do
7

(
Dwhole,Dsplit,M, ϕ

)
← one of the elements of toProcess;

8 toProcess← toProcess \
{(

Dwhole,Dsplit,M, ϕ
)}
;

9 label← the result of trying to label the datapoints with Algorithm 11;
10 if label = true then
11 forall ` ∈M do
12 λ[`]← λ[`] ∨ ϕ;
13 end
14 else if label = null then
15 decision← the best splitting decision found by Algorithm 13;
16 if decision is a set of structural nodes Z then
17 ϕleft ← ϕ;
18 ϕright ← ϕ;
19 Mleft ←M ∩ Z;
20 Mright ←M \ Z;
21 Dleft ←

{
(`, α) ∈ Dwhole ∪Dsplit | ` ∈ Z

}
;

22 Dright ←
{
(`, α) ∈ Dwhole ∪Dsplit | ` /∈ Z

}
;

23 else // decision is the predicate ξ
24 ϕleft ← ϕ ∧ ξ;
25 ϕright ← ϕ ∧ ¬ξ;
26 Mleft ←M ;
27 Mright ←M ;
28 Dleft ←

{
(`, α) ∈ Dwhole ∪Dsplit | α 6|= ¬ξ

}
;

29 Dright ←
{
(`, α) ∈ Dwhole ∪Dsplit | α 6|= ξ

}
;

30 end
31 DleftWhole ← (Dleft ∩Dwhole) \Dright;
32 DleftSplit ←

(
Dleft ∩Dsplit

)
∪
(
Dleft ∩Dright

)
;

33 DrightWhole ←
(
Dright ∩Dwhole

)
\Dleft;

34 DrightSplit ←
(
Dright ∩Dsplit

)
∪
(
Dright ∩Dleft

)
;

35 toProcess← toProcess ∪
{(

DleftWhole,DleftSplit,Mleft, ϕleft
)}
;

36 toProcess← toProcess ∪
{(

DrightWhole,DrightSplit,Mright, ϕright
)}
;

37 end
38 end
39 return λ;
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Algorithm 11: Trying to label a set of datapoints
Data: Dtrue, the set of forced-true datapoints
Data: Dfalse, the set of forced-false datapoints
Input: Dwhole, the set of datapoints to label that have not been split by a

previous decision
Input: Dsplit, the set of datapoints to label that have been split by a previous

decision
Output: The label, or null if the labelling is not successful

1 Dall ← Dwhole ∪Dsplit;
2 if Dall ⊆ Dtrue then
3 return true;
4 end
5 if Dall ⊆ Dfalse then
6 return false;
7 end
8 if Dall ∩Dfalse = ∅ then
9 Run Algorithm 12 with label = true to determine if the datapoints can be

labelled true;
10 if they can then
11 return true;
12 end
13 end
14 if Dall ∩Dtrue = ∅ then
15 Run Algorithm 12 with label = false to determine if the datapoints can be

labelled false;
16 if they can then
17 return false;
18 end
19 end
20 return null;
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Algorithm 12: Check if labelling is consistent with the constraints
Data: Dtrue,Dfalse, the set of forced-true and forced-false datapoints
Data: toProcess, the set of 4-tuples waiting to be processed
Data: λ, the invariant system being built
Input: label, the label to try to give the datapoints
Input: Dwhole,Dsplit, the set of whole/split datapoints
Output: Whether the labelling is consistent with the constraints

1 if label = true then
2 D′true ← Dtrue ∪Dwhole;
3 D′false ← Dfalse;
4 else
5 D′true ← Dtrue;
6 D′false ← Dfalse ∪Dwhole;
7 end
8 repeat
9 D′true ← the result of Algorithm 6 with DprevTrue = D′true;

10 D′false ← the result of Algorithm 7 with DprevFalse = D′false;
11 Dnew ← the new datapoints added to D by the previous two lines;
12 if there is a datapoint (`e, α) ∈ D′true or D′true ∩D′false 6= ∅ then
13 return false; // The labelling contradicts the constraints
14 else if label = true then
15 if Dsplit ∩D′false 6= ∅ then return false;
16 else
17 if Dsplit ∩D′true 6= ∅ then return false;
18 end
19 foreach (`, α) ∈ Dnew do
20 relTP←

{(
Dwhole,Dsplit,M, ϕ

)
∈ toProcess | ` ∈M and α 6|= ¬ϕ

}
;

21 if |relTP| = 1 then
22

(
Dwhole,Dsplit,M, ϕ

)
← the single element in relTP;

23 toProcess← toProcess \
{(

Dwhole,Dsplit,M, ϕ
)}
;

24 toProcess← toProcess ∪
{(

Dwhole ∪ {(`, α)} ,Dsplit,M, ϕ
)}
;

25 else if |relTP| > 1 then
26 forall

(
Dwhole,Dsplit,M, ϕ

)
∈ relTP do

27 toProcess← toProcess \
{(

Dwhole,Dsplit,M, ϕ
)}
;

28 toProcess← toProcess ∪
{(

Dwhole,Dsplit ∪ {(`, α)} ,M, ϕ
)}
;

29 end
30 else if α |= λ[`] then
31 D′true ← D′true ∪ {(`, α)};
32 else if α |= ¬λ[`] then
33 D′false ← D′false ∪ {(`, α)};
34 end
35 end
36 until Dnew = ∅;
37 Dfalse ← D′false;
38 Dtrue ← D′true;
39 return true;
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Algorithm 13: Find splitting decision
Data: Dtrue, the set of forced-true datapoints
Data: Dfalse, the set of forced-false datapoints
Input: P, the set of predicates to try
Input: Impurity : Z× Z× Z→ R a metric to compare datapoint splits by
Input: DtoSplit, the set of datapoints to split into two groups
Output: Either a set of structural nodes Z ⊆ N or a predicate ξ ∈ P

1 if datapoints in DtoSplit correspond to multiple structural nodes then
/* We decided to essentially build different decision trees for

the different structural nodes. Therefore, as long as there
are at least two structural nodes among the datapoints, we
split by them. */

2 Z ← a set of approximately half of the structural nodes among the datapoints
return Z;

3 end
4 ξbest ← null;
5 ebest ← null;
6 forall ξ ∈ P do
7 Dleft ←

{
(`, α) ∈ DtoSplit | α |= ξ

}
;

8 Dright ←
{
(`, α) ∈ DtoSplit | α |= ¬ξ

}
;

9 eleft ← Impurity(|Dleft ∩Dtrue|, |Dleft ∪Dfalse|, |Dleft|);
10 eright ← Impurity

(∣∣Dright ∩Dtrue
∣∣, ∣∣Dright ∪Dfalse

∣∣, ∣∣Dright
∣∣);

11 e← eleft + eright;
12 if (ebest = null) ∨ (e < ebest) then
13 ξbest ← ξ;
14 ebest ← e;
15 end
16 end
17 return ξbest;

50



Algorithm 11 tries to classify every datapoint the same. If every datapoint is either
forced true or forced false, their classification is straightforward and consistent with the
constraints. Otherwise, if none of the datapoints are forced false, it checks using Algo-
rithm 12 if classifying them as true is consistent with the constraints. Similarly, if none
of them are forced true, it checks if it can classify them as false.
Algorithm 12 determines if classifying a set of datapoints either false or true is consistent
with the constraints. It creates a temporary set of forced-true and forced-false datapoints:
D′true and D′false. It adds the datapoints in Dwhole to the one corresponding to the desired
label. We do not calculate the exact subset of datapoints in Dsplit that get routed to a
specific node in the decision tree. Adding the whole datapoint would imply that every one
of its subsets get routed to this datapoint and might yield false inconsistencies. As stated
before, a false consistency is preferable here, because the teacher can give more concrete
constraints in the next round.
Algorithm 12 then uses Algorithm 6 and Algorithm 7 to find a contradiction, similarly
to how Algorithm 9 does. As these algorithms make deductions, they sometimes discover
new datapoints. Since some of the decision tree might already be built, these datapoints
might already have classifications. Therefore, the algorithm checks their classification and
if it contradicts with their constraint-enforced classifications.
Finally, when the datapoints cannot be classified the same, Algorithm 13 chooses a de-
cision to split them into two groups. As its input, it receives Impurity, a function that
estimates the impurity of the datapoints at a node of the decision tree. Impurity has
three parameters: the number of forced-true datapoints, the number of forced-false data-
points and the total number of datapoints at the decision tree node. We say that a set of
datapoints is pure, if every member can be classified the same. We expect Impurity to
return a low number for such a set. Conversely, in an impure set of datapoints, about half
of the datapoints have to be classified as true and the other half as false. We expect
Impurity to return a high number for such a set.
The algorithm only compares Impurity values for different sets to each other. It ranks
the possible decisions by the sum of the Impurity values for the two children. It chooses
the decision with the lowest sum, which hopefully achieves two relatively pure sets of
datapoints.
While other functions may yield better results, we use the following:

Impurity(ntrue, nfalse, n) = min(ntrue, nfalse) + n− ntrue − nfalse

2 .

The function is intended to estimate the number of misclassified datapoints: the number
of datapoints that would be incorrectly classified if we classified every datapoint the same.
The first part of the sum is the minimum number of misclassified datapoints. The second
part estimates that about half of the datapoints that do not have forced classifications
are misclassified. The second part also penalizes decisions that split datapoints, since the
total number of datapoints is higher then.
Having the algorithm consider every possible Z-decision might make the decision tree
smaller by merging paths for structural nodes that have similar decisions, but it would
not make the invariant system simpler. Therefore, we decided to essentially build different
decision trees for the different structural nodes by putting in decisions that send half the
structural nodes one way and the other half the other way until there is only one.
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Example 18. Let P = {(x = 3), (x+ y = 10)}. Let there be constraints C1, C2 and C3
such that

src(C1) = Ds = (`s, {}),
tgt(C1) = D1 = (`1, {x→ 5, y → 13}),
src(C2) = D2 = (`1, {x→ 7, y → 3}),
tgt(C2) = D3 = (`2, {x→ 3, y → 7}),
src(C3) = D4 = (`2, {x→ 3, y → 25}),
tgt(C3) = De = (`e, {}).

The set of forced-true datapoints is Dtrue = {Ds, D1}, and the set of forced-false data-
points is Dfalse = {De, D4}

Let us run Algorithm 10.

Initially at line 6,

toProcess =
{
({D1, D2, D3, D4} ,∅, {`1, `2} ,>)

}
,

λ[`s]⇔ >,
λ[`1]⇔ λ[`2]⇔ λ[`e]⇔ ⊥.

The first iteration of the loop calls Algorithm 11 which tries to label all the datapoints,
but since D1 ∈ Dtrue and D4 ∈ Dfalse, it is unsuccessful and returns null.

Then the main algorithm calls Algorithm 13 to find a splitting decision. It returns a
structural node decision: {`1}. This results in

toProcess =
{
({D1, D2} ,∅, {`1} ,>),
({D3, D4} ,∅, {`2} ,>)

}
.

In the second iteration, the algorithm picks ({D1, D2} ,∅, {`1} ,>) from toProcess. It
tries to label it with Algorithm 11, which calls Algorithm 12 at line 9.

In Algorithm 12, the first iteration results in

D′true = {Ds, D1, D2, D3} ,D′false = {D4, De} ,Dnew = ∅.

Since Dnew = ∅, the labelling is successful and there are no more iterations.

Algorithm 10 accepts the labelling and sets λ[`1]⇔ >.
In the second iteration, the algorithm picks ({D3, D4} ,∅, {`2} ,>) from toProcess. Since
D3 ∈ Dtrue and D4 ∈ Dfalse, the labelling is not successful. Algorithm 13 can choose
from the predicates x = 3—which is true for both datapoints—and x+ y = 10—which is
true for D3 and false for D4. Naturally, it chooses x+ y = 10. This results in

toProcess =
{
({D3} ,∅, {`2} , x+ y = 10),
({D4} ,∅, {`2} , x+ y 6= 10)

}
.
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{`1}

true

x+ y = 10

true false

yes no

yes no

Figure 3.2: Decision tree for Example 18

In the fourth iteration, Algorithm 10 picks ({D3} ,∅, {`2} , x+ y = 10) from toProcess.
Algorithm 11 succeeds in labelling D3 as true since D3 ∈ Dtrue. Therefore, λ[`2] ⇔
(x+ y = 10).
In the fifth and final iteration, Algorithm 10 picks ({D4} ,∅, {`2} , x+ y 6= 10) from
toProcess. Algorithm 11 succeeds in labelling D4 as false since D4 ∈ Dfalse.

The resulting decision tree can be seen in Figure 3.2. For the resulting invariant system λ

λ[`s]⇔ >,
λ[`1]⇔ >,
λ[`2]⇔ (x+ y = 10),
λ[`e]⇔ ⊥.

Algorithm 10 can synthesize invariant systems as long as there are predicates in P that
can separate the datapoints. We recommend using it with a P set based on the set of
datapoints, that includes at least one predicate for every separable pair of datapoints that
separates them.
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Chapter 4

Implementation

We implemented the discussed algorithms in the Kotlin programming language as part of
the Theta[11] framework. The framework provides an internal representation for vari-
ables, logical formulae, expressions, statements, control flow automata etc., as well as
utilities for e.g. parsing CFA or making requests to an SMT solver.

4.1 Main modules

We implemented a Teacher module based on Algorithm 3 and Learner modules based
on Algorithm 8 (SimpleLearner), Algorithm 9 (SorcarLearner) and Algorithm 10
(DecisionTreeLearner).
The data structure consisting of D, subsets, Dtrue and Dfalse is represented by the Con-
straintSystem module. We chose to make ConstraintSystem objects immutable,
and we implemented the ConstraintSystemBuilder module which uses Algorithm 5,
Algorithm 6 and Algorithm 7 to create ConstraintSystem instances. Additionally,
ConstraintSystemBuilder checks if there is a datapoint with the error location in
Dtrue.
To coordinate the interaction of Teacher and Learner modules, we implemented two
different Coordinator modules. A Coordinator has the responsibility of giving
the invariant system that the Learner suggests to a Teacher to check, using Con-
straintSystemBuilder to create a ConstraintSystem instance from the constraints
that the Teacher returns, and giving it to a Learner to get a new invariant system. It
also notices when an invariant system is satisfactory or a constraint system is contradictory
and returns the appropriate result.
The SimpleCoordinator implementation coordinates the interaction of one Teacher
and one Learner module in a single-threaded way.
The MultiThreadedCoordinator, however, utilizes multi-core processors by running
multiple Learner and multiple Teacher modules as separate threads. The teachers
have a common input buffer, and everything put in the input buffer is checked by exactly
one of the teachers. The teachers also put their output in a common buffer, which the
main thread reads and processes. The main thread accumulates every constraint ever
returned by any of the teachers. The learners have separate input buffers, each holding at
most one (the latest) ConstraintSystem, and they put their results into the common
input buffer of the teachers. If the constraints get so complicated that a learner is no
longer able to synthesize an invariant system that adheres to them, they stop their thread.
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When the main thread notices that one of the teachers either finds an invariant system
satisfactory or gives contradictory constraints, it interrupts every thread, and returns the
appropriate result.

4.2 Learner combinations

In addition to the standalone Learner modules, we implemented two combination mod-
ules. These modules are single-threaded, but try to combine the results of multiple learn-
ers.
FallbackLearner has a list of Learner modules. It forwards the ConstraintSystem
to the first learner in the list until the constraints become too complicated for that learner
to synthesize an invariant system that adheres to them. Then it removes the learner from
the list, and proceeds using the previous second, now first element of the list. When the
list becomes empty, the FallbackLearner signals that it is no longer able to synthesize
invariant systems that adhere to the constraints.
RoundRobinLearner also has a list of Learner modules. It rotates the list at every
request: it forwards the first ConstraintSystem to the first Learner in the list, the
second ConstraintSystem to the second Learner, etc., and when it gets to the end
of the list, it starts again at the beginning. If one of the Learner modules is unable to
synthesize an invariant system that adheres to the constraints, the RoundRobinLearner
removes it from the list. When the list becomes empty, the RoundRobinLearner signals
that it is no longer able to synthesize invariant systems that adhere to the constraints.

4.3 Predicate patterns

SorcarLearner and DecisionTreeLearner use a set of predicates P. We imple-
mented four PredicatePattern modules that can generate predicates.
IntLEQ creates predicates of the form x ≤ a where x ∈ X is a variable and a ∈ Z is an
integer. From the infinite set of such predicates, it only creates the ones that are relevant
to the current set of datapoints. It adds the predicate x ≤ a if and only if there is a
datapoint whose valuation assigns a to x. These types of predicates can also be ranked
more efficiently for the decision tree: sorting the datapoints by the value they assign
to a variable, then going through the values, we can simply count the forced-true and
forced-false datapoints that get from the right child to the left child when we increase the
value.
Atom extracts atoms from the CFA and uses them as predicates. For example, if there
are statements [x < y + 2 · z] and (z := x+ y), it adds (x < y + x · z) and (z = x+ y) to
P.
IntBuilder extracts the integer expressions from the CFA and uses them to build pred-
icates of the form a = b, a < b and a > b where a and b are integer expressions. For
example if there are statements [x < y + 2 · z] and y := x − 3 · y, it uses the expressions
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{x, y + 2 · z, y, x− 3 · y}, which results in the following predicates:

(x = y + 2 · z), (x < y + 2 · z), (x > y + 2 · z),
(x = y), (x < y), (x > y),

(x = x− 3 · y), (x < x− 3 · y), (x > x− 3 · y),
(y + 2 · z = y), (y + 2 · z < y), (y + 2 · z > y),

(y + 2 · z = x− 3 · y), (y + 2 · z < x− 3 · y), (y + 2 · z > x− 3 · y),
(y = x− 3 · y), (y < x− 3 · y), (y > x− 3 · y).

Modulus extracts the integer expressions from the CFA similarly to IntBuilder, but it
uses them to create predicates of the form a ≡ b (mod c) where a, b and c are all integer
expressions.

4.4 Configurability

Our implementation can run in several different configurations. The user can choose
which Learner implementation or implementations to use, how to combine them, they
can choose PredicatePattern implementations for each Learner, and they can choose
whether to use the SimpleCoordinator or MultiThreadedCoordinator.
We determined that the range of options is too complicated to be convenient to configure
with just command line arguments. Therefore, we decided to also allow configuration
using YAML [1].
With command line options, one can configure a system with a SimpleCoordinator,
one teacher and one combination of a number of learners. One can also choose the Pred-
icatePattern implementations, and the Impurity function, but every learner uses the
same set.
With the YAML file, one can configure any system. The file has a hierarchic structure of
YAML mappings and sequences. The root object is a mapping with the following keys:

• coordinator: either MultiThreaded or Simple (default: Simple),

• teachers: the number of Teacher objects (must be 1 for SimpleCoordinator,
default: 1),

• learners: sequence of learner objects (must have only one element for SimpleCo-
ordinator, required).

A learner object is a mapping with the following keys:

• type: Simple, Sorcar, DecisionTree, Fallback or RoundRobin (default: De-
cisionTree)

• name: the name of the learner, used for logging purposes (optional)

• predicatePatterns: sequence of Atoms, IntLEQ, IntBuilder or Modulus (de-
fault: [Atoms, IntLEQ])

• children: a sequence of learner objects that FallbackLearner or RoundRobin-
Learner combine (required for FallbackLearner and RoundRobinLearner).

56



Chapter 5

Evaluation

We ran measurements to evaluate the performance of the prototype we developed. In
every instance, the prototype either gave the correct solution, ran out of time or ran out
of memory.

5.1 Methodology

We used a benchmark suite of 569 models, most of them from the International Com-
petition on Software Verification (SV-COMP) [8]. Of the used models, 103 were unsafe
and 466 were safe. Every model was converted to the CFA format used by the Theta
framework prior to the measurement.
For the measurement, we used a virtual machine in the university cloud with 4 CPU cores
and 8 GiB of memory. Swapping was disabled. We stopped the benchmarks after either 60
seconds of wall time has elapsed or the prototype used more than 60 seconds of CPU time,
where CPU time is the sum of the time each individual CPU core spends executing the
process. For configurations using the MultiThreadedCoordinator, the elapsed CPU
time can be up to 4 times as large as the wall time. By also stopping the benchmarks based
on CPU time, we ensure that the multithreaded configurations do not get an advantage
of computational resources, only the benefit of being able to pursue multiple directions at
the same time. Single-threaded combinations of learners make other learners wait while
one learner is running, thereby allocating more time to learners that run for a long time.
Multithreaded combinations, on the other hand, are more fair in their allocation of CPU
time among the learners.

5.2 Tested configurations

We ran the prototype with the following 10 configurations.
C1: Simple-Simple

• SimpleCoordinator
• SimpleLearner

C2: Simple-DecTree-Few
• SimpleCoordinator
• DecisionTreeLearner with Atoms, IntLEQ
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C3: Simple-DecTree-All
• SimpleCoordinator
• DecisionTreeLearner with Atoms, IntLEQ, Modulus, IntBuilder

C4: Simple-Fallback-Few
• SimpleCoordinator
• FallbackLearner

– SorcarLearner with Atoms
– DecisionTreeLearner with Atoms, IntLEQ

C5: Simple-Fallback-All
• SimpleCoordinator
• FallbackLearner

– SorcarLearner with Atoms
– DecisionTreeLearner with Atoms, IntLEQ, Modulus, IntBuilder

C6: Simple-RoundRobin-Few
• SimpleCoordinator
• RoundRobinLearner

– SimpleLearner with every predicate pattern
– FallbackLearner

∗ SorcarLearner with Atoms
∗ DecisionTreeLearner with Atoms, IntLEQ

C7: Simple-RoundRobin-All
• SimpleCoordinator
• RoundRobinLearner

– SimpleLearner
– FallbackLearner

∗ SorcarLearner with Atoms
∗ DecisionTreeLearner with Atoms, IntLEQ, Modulus, Int-

Builder
C8: Multi-Fallback-Few

• MultiThreadedCoordinator
• 2 teachers
• SimpleLearner with Atoms
• FallbackLearner

– SorcarLearner with Atoms
– DecisionTreeLearner with Atoms, IntLEQ

C9: Multi-Fallback-All
• MultiThreadedCoordinator
• 2 teachers
• SimpleLearner with Atoms
• FallbackLearner

– SorcarLearner with Atoms
– DecisionTreeLearner with Atoms, IntLEQ, Modulus, IntBuilder
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Configuration Total Safe Unsafe

C1 (Simple-Simple) 65 25 40
C2 (Simple-DecTree-Few) 237 205 32
C3 (Simple-DecTree-All) 181 153 28
C4 (Simple-Fallback-Few) 237 207 30
C5 (Simple-Fallback-All) 203 175 28
C6 (Simple-RoundRobin-Few) 241 204 37
C7 (Simple-RoundRobin-All) 211 176 35
C8 (Multi-Fallback-Few) 213 175 38
C9 (Multi-Fallback-All) 182 148 34
C10 (Multi-DecTree-Sep) 163 142 21

Table 5.1: Number of models solved by each configuration

C10: Multi-DecTree-Sep
• MultiThreadedCoordinator
• 4 teachers
• DecisionTreeLearner with Atoms predicate pattern
• DecisionTreeLearner with IntLEQ predicate pattern
• DecisionTreeLearner with Modulus predicate pattern
• DecisionTreeLearner with IntBuilder predicate pattern

5.3 Results

264 models were solved by at least one of the configurations, i.e., approximately 46.4% of
all models. Among those, 44 were unsafe and 220 were safe. I.e., the prototype was able
to solve approximately 42.7% of the unsafe and 47.2% of the safe models.
Table 5.1 shows the number of solved models by configuration.
Unsurprisingly, Simple-Simple was the worst overall. However, only considering the
unsafe models, it was the best. It uses SimpleLearner, which is the simplest and com-
putationally least expensive of the learners. This allows it to quickly get new constraints,
and the larger number of constraints allows it to find longer error paths faster. On the
other hand, due to their lack of generality, the invariant systems it synthesizes are rarely
satisfactory. In a suite that has more unsafe models, we expect this configuration to rank
higher overall. Adding SimpleLearner to configurations combining multiple learners
seems to improve their performance on unsafe models. This is a trade-off in our test
setup, because adding it takes away CPU time from the other learners, lowering their
chance to generate a satisfactory invariant system for safe models.
Among the safe models, Simple-Fallback-Few performed the best. It solved 207 safe
models. The SorcarLearner synthesized the invariant system for 155 of those, and the
DecisionTreeLearner synthesized the invariant system for an additional 52 models
that were too complicated for SorcarLearner. Our theory is that SorcarLearner is
very efficient in synthesizing invariants for relatively simple models, and this configuration
allows the apparently less efficient but more capable DecisionTreeLearner to step in for
some of the more complicated cases. Another seeming advantage of the SorcarLearner
used in this configuration is that it only tries the predicates extracted from the checked
program, which are the most relevant to it, therefore the most likely to appear in a
satisfactory invariant system. Using other predicate patterns slows the process of invariant
generation.
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C2 C4 C6 Total Safe Unsafe

317 252 65
X X X 225 195 30

X 10 4 6
X X 7 7 0

X X 4 4 0
X 3 2 1
X X 2 1 1

X 1 1 0

Table 5.2: Comparison of Simple-DecTree-Few, Simple-Fallback-Few and
Simple-RoundRobin-Few

C6 C8 Total Safe Unsafe

324 261 63
X X 209 174 35
X 32 30 2

X 4 1 3

Table 5.3: Comparison of Simple-RoundRobin-Few and Multi-Fallback-Few

Simple-RoundRobin-Few ended up being the best configuration overall. It combines the
best configuration for unsafe models and the best configuration for safe models. It solved
241 models. 204 of those were safe, the SimpleLearner synthesized the invariant system
for 8 of them, the SorcarLearner for 149 of them and the DecisionTreeLearner for
an additional 47.
Table 5.2 compares the single-threaded configurations using only the Atoms and IntLEQ
predicate patterns. We can see that both combining DecisionTreeLearner with Sor-
carLearner and also combining them with SimpleLearner has some drawbacks. There
were some models that the combined learners could solve individually, but not together,
since they had to share computational resources. Overall, the advantages outweighed the
disadvantages, and the combinations performed better.
In our current setup, multithreaded configuration did not perform well. Using multi-
ple CPU cores simultaneously caused the allocated CPU time to run out faster, and the
overhead caused by organizing multiple threads seemingly outweighed the advantage of
the learners not having to wait for each other. The best configuration among both the
safe and unsafe models was Multi-Fallback-Few. It combines the same learners as
Simple-RoundRobin-Few, but instead of using RoundRobinLearner, it uses Mul-
tiThreadedCoordinator. Table 5.3 shows that there are only 4 configurations that
the multithreaded combination can solve, but the single threaded cannot.
Adding the predicate patterns that offer numerous predicates (IntBuilder and Modu-
lus) deteriorated performance in our test setup. The best configuration using these predi-
cate patterns was Simple-RoundRobin-All. It only differs from Simple-RoundRobin-
Few in giving IntBuilder and Modulus to the DecisionTreeLearner. Of the 176
safe models it solved, the SimpleLearner synthesized the invariant system for 8, the
SorcarLearner for 149 of them, and the DecisionTreeLearner with all of the pred-
icate patterns synthesized only 19 satisfactory invariant systems. Table 5.4 compares the
performance of the best configuration using all available predicate patterns and the best
configuration overall. There were only 3 models that only Simple-RoundRobin-All
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C6 C7 Total Safe Unsafe

325 259 66
X X 208 173 35
X 33 31 2

X 3 3 0

Table 5.4: Comparison of Simple-RoundRobin-Few and Simple-RoundRobin-All

Predicate Pattern Synthesized invariant systems

IntLEQ 60
Atoms 48

Modulus 18
IntBuilder 16

Table 5.5: Comparison of the different learners in Multi-DecTree-Sep

could solve. The time and memory we allocated for the prototype was not enough to
successfully utilize the large number of predicates these patterns can generate.
The configuration Multi-DecTree-Sep allows us to further compare the different pred-
icate patterns, because it ran four instances of DecisionTreeLearner, each using of
the patterns. Table 5.5 shows the number of models each learner generated an invariant
system for. Note that for each safe model that the configuration solved only one learner
was able to generate the invariant system. Our implementation of the IntLEQ pattern
(which ranks the available predicates more efficiently than other patterns) seems to suite
the DecisionTreeLearner well. As we saw earlier, the Modulus and IntBuilder
patterns were only useful a few times in this test suite. Allocating more time and memory
to the prototype might make these patterns useful for models that the prototype did not
solve in the current setup.
Table 5.6 provides a breakdown of the models by the set of configurations that solved them.
The first ten columns correspond to the configurations and the rows give the number of
models that were solved by exactly the configurations whose column has a X symbol in
the row.
Our earlier implementation of the predicate patterns IntBuilder and Modulus created
every predicate in memory, which caused the prototype to run out of memory for larger
models. We tweaked the implementation to only generate the predicates lazily. This is
a trade-off, because generating the predicates requires CPU time, but not storing them
decreases memory usage. Figure 5.1 and Figure 5.2 show that while running out of mem-
ory still occurs in our current implementation, CPU time tends to be the low resource
and the configurations using the IntBuilder and Modulus patterns do not tend to us
significantly more memory than their counterparts using only Atoms and IntBuilder.
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 Total Safe Unsafe

305 246 59
X X X X X X X X X 98 97 1

X X X X X X X X X X 33 14 19
X X X X 19 19 0
X X X X X X X 14 14 0
X X X X X X X X 12 12 0
X X X 9 9 0
X X X X X X X 8 8 0
X X 6 6 0
X X X X X X X X 6 6 0

X X X X X X X X 5 5 0
X 5 1 4
X X X X X X X X X 5 0 5
X X X X X 5 1 4

X X X X X X X X 3 3 0
X 2 2 0

X X X 2 2 0
X X 2 2 0

X X X X X X X 2 2 0
X 2 1 1

X X X X X X X X X 2 2 0
X X X X X X X 1 0 1
X X X X X X X X 1 0 1

X X X 1 0 1
X X X 1 1 0
X X X X X 1 1 0
X X X X X X 1 1 0

X X 1 1 0
X X X X X X X X 1 0 1

X X X X X 1 1 0
X X X X X X X 1 1 0

X X X X X X 1 1 0
X X X 1 0 1
X X X X X X X 1 1 0

X X X X X 1 0 1
X X X X X X 1 0 1

X X X X X X 1 1 0
X X X X X X 1 1 0

X X X X 1 0 1
X X X X X 1 1 0
X X X X X 1 1 0

X X X X 1 1 0
X X X 1 0 1
X X 1 1 0
X X X X X X X 1 0 1

Table 5.6: Number of models by which configurations solved them
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Figure 5.1: Box plot of CPU time in seconds used by the config-
urations
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Figure 5.2: Box plot of memory in gigabytes used by the configu-
rations
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Chapter 6

Conclusion

In this thesis, we have discussed the formal verification of software through invariant
synthesis. We have introduced the theoretical background to invariant synthesis for con-
trol flow automata. We have presented a family of algorithms utilizing machine learning
techniques to synthesize invariant systems. We have implemented the algorithms as a con-
figurable and extendable prototype that allows the user to combine them in multiple ways.
Finally, we have evaluated multiple configurations of the prototype with measurements.

Future work The framework we developed can be extended with other types of learner
algorithms. As we have shown, invariant synthesis can be treated as a classification prob-
lem, which the field of machine learning offers many solutions to. While other solutions
may not be as straightforward to translate to logical formulae as e.g. decision trees, it may
be possible to integrate them into the framework.
Adding predicate patterns can increase the applicability of the toolkit by allowing it to
synthesize more complicated invariants. In our implementation, however, it also has a
drawback, as the predicates that are not useful to the current task waste resources. A
process could be developed to choose predicate patterns based on the program code.
The approach also lends itself to interactive verification. A tool could be developed that
asks the user for invariants and gives feedback in the form of constraints. It may increase
the usability of verification techniques for complicated cases when the automatic tools fail,
but engineers have knowledge of the system.
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