
Symbolic Veri�cation
of Petri Net Based Models

PhD dissertation by

András Vörös

Advisor

Tamás Bartha, Ph.D. (BME)

András Vörös

http://mit.bme.hu/~vori/

2018

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar

Méréstechnika és Információs Rendszerek Tanszék

Budapest University of Technology and Economics

Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2.

http://mit.bme.hu/~vori/

iii

Declaration of own work and references

I, András Vörös, hereby declare, that this dissertation, and all results claimed therein are my

own work, and rely solely on the references given. All segments taken word-by-word, or

in the same meaning from others have been clearly marked as citations and included in the

references.

Nyilatkozat önálló munkáról, hivatkozások átvételéről

Alulírott Vörös András kijelentem, hogy ezt a doktori értekezést magam készítettem és

abban csak a megadott forrásokat használtam fel. Minden olyan részt, amelyet szó szerint,

vagy azonos tartalomban, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás

megadásával megjelöltem.

Budapest, 2018. 06. 13.

Vörös András

iv

Acknowledgements

I was really lucky to work together with amazing colleagues, students and friends, on various research

and industrial projects.

First and foremost I would like to express my gratitude to my advisor, Tamás Bartha, you have

been a tremendous mentor to me. I would like to thank you for encouraging my research and for

allowing me to grow as a research scientist. Your advice on both research as well as on my career

have been priceless. I would especially like to thank András Pataricza, István Majzik, Dániel Varró

and Zoltán Micskei for their advice, suggestions and all their help in the last decade. Your help goes

beyond this dissertation.

Special thanks all my colleagues and former colleagues at the research group, especially Dániel

Darvas, Gábor Szárnyas, Vince Molnár, Tamás Tóth, Ákos Hajdu, Imre Kocsis, László Gönczy, Kristóf

Marussy, Attila Klenik, János Oláh, Dávid Hon�, Oszkár Semeráth, Márton Búr, Ákos Horváth, István

Ráth and Gábor Bergmann.

I would like also thank to my collaborators, with whom it was a great pleasure to work together.

Some important results could not be born without their help: Attila Jámbor, Tamás Szabó and Zoltán

Mártonka.

I would like to thank the �nancial support of the R3-COP, R5-COP research projects and also the

support of the MTA-BME Lendület Cyber-Physical Systems Research Group.

Words cannot express how grateful I am to my whole family for all their love, support and help.

Köszönetnyilvánítás

Nagyon szerencsés voltam, hogy az elmúlt években fantasztikus kollégákkal, diákokkal és barátokkal

dolgozhattam együtt.

Először és mindenekelőtt szeretném kifejezni hálámat konzulensemnek, Bartha Tamásnak. Sz-

eretnék köszönetet mondani a támogatásért, amit az elmúlt években kaptam, és hogy bármilyen nehéz

pillanatban mellettem álltál, számíthattam a segítségedre.

A kutatócsoportban csodálatos vezetőim voltak, szeretnék köszönetet mondani Pataricza An-

drásnak, Majzik Istvánnak, Varró Dánielnek és Micskei Zoltánnak tanácsaikért, vezetésükért, tanítá-

saikért, amelyek jóval túlmutatnak ezen a disszertáción.

Köszönöm szépen minden munkatársamnak (és volt munkatársamnak) a kutatócsoportban a

segítséget! Különösen köszönöm a disszertáció írásban és az évek során nyújtott rengeteg támo-

gatást Darvas Dánielnek, Szárnyas Gábornak, Molnár Vincének, Tóth Tamásnak, Hajdu Ákosnak.

Emellett köszönöm Kocsis Imrének, Gönczy Lászlónak, Marussy Kristófnak, Klenik Attilának, Oláh

Jánosnak, Hon� Dávidnak, Semeráth Oszkárnak, Búr Mártonnak, Horváth Ákosnak, Ráth Istvánnak

és Bergmann Gábornak az elmúlt időben nyújtott szakmai és emberi segítséget. Nagyszerű volt együtt

dolgozni Veletek! Köszönettel tartozom továbbá volt hallgatóimnak, akik nélkül több eredmény sem

születhetett volna meg, köszönöm Nektek is a segítséget, élmény volt együtt dolgozni: Jámbor Attila,

Szabó Tamás és Mártonka Zoltán.

Munkámat az R3-COP és az R5-COP kutatási projektek, valamint az MTA-BME Lendület Kiber-

�zikai rendszerek kutatócsoport támogatta.

Köszönöm szépen a családom támogatását. Édesapámnak, aki a példaképemként mindig motiválta

a munkámat, édesanyámnak, aki még a legnehezebb pillanatokban is a szeretetével elhalmozott és

támogatott, öcsémnek, nagymamámnak, hogy hittek bennem. Kedvesemnek, hogy mellettem állt,

biztatott és támogatott. Nagyon sokat köszönhetek Nektek.

v

Summary

Ensuring the correctness of critical systems is a challenging task: various veri�cation techniques are

used to �nd errors or to prove correctness. Such veri�cation methods are testing, monitoring (i. e.,

runtime-veri�cation), model checking, static analysis and other design time veri�cation techniques.

Formal veri�cation can be used even at design time to precisely analyse the models of the systems and

evaluate their correctness. However, the complexity of real systems and the resulting computational

demand often hinders successful veri�cation. The problem arises especially often for asynchronous,

concurrent and distributed systems, whose models face the state space explosion problem.

In my work, I aim to support the e�cient modelling and veri�cation of asynchronous systems

with data dependent behaviour. I propose a framework that provides Petri net based modelling lan-

guages to support the development of the formal representation of the arising engineering problems.

In the framework, ordinary Petri nets are used to capture the asynchronous behaviour of safety-

critical systems and coloured Petri nets (CPN) provide a convenient means to express data-dependent

behaviour. Furthermore, Petri nets can be used to e�ciently represent and handle systems even with

in�nite state spaces. The proposed approach contains powerful veri�cation algorithms: next-state

computation and representation help e�ciently handle variants of Petri net models. Saturation and

abstraction based state space exploration techniques can handle complex models with huge state

spaces. Various temporal logic speci�cations are supported: e�cient CTL and LTL model checking

algorithms are devised in the framework to support the speci�cation and analysis of complex prop-

erties. Exploring the (partial) state space of in�nite-state systems and counterexample generation is

supported by bounded saturation based algorithms and Counterexample-Guided Abstraction Re�ne-

ment. The unique combination of the above mentioned algorithms in a model checking approach

yields the novelty of the framework.

The devised approach manifested in the PetriDotNet framework, which was used in various in-

dustrial and academic research projects.

The introduced approach needed many algorithmic contributions. In my thesis, I introduce the

following new algorithms:

• I created an e�cient algorithm for the veri�cation of coloured Petri net models based on

disjunctive-conjunctive decomposition. I also introduce a new temporal decomposition algo-

rithm, which could further improve the performance of the saturation algorithm for complex

Petri net based models.

• I developed a parallel saturation based state space exploration algorithm that extends the for-

mer approach with a new locking and synchronisation mechanism, yielding better resource

utilisation compared to the former algorithm from the literature.

• I introduce a new model checking algorithm supporting the regular safety subset of the LTL

language. The new algorithm is based on a novel synchronous product computation method

which is signi�cantly more e�cient for asynchronous models than other approaches.

The algorithmic results became the building blocks of the new model checking approach envi-

sioned in the PetriDotNet framework.

With the help of various case studies I illustrate the e�ciency of my algorithmic developments.

The CPN veri�cation algorithm was the �rst which could fully verify a new safety logic of the Paks

Nuclear Power Plant. Various benchmark models are used to evaluate the new algorithms and I

compare their performance to those of existing model checking frameworks. The result of my work

helped the PetriDotNet framework – which consists of modelling support and various veri�cation

algorithms – to become capable of solving industrial and research problems.

vi

Összefoglalás

Kritikus rendszerek helyességének biztosítása nehéz feladat, e célból különböző megközelítések

léteznek a hibák megtalálása, vagy a helyesség bizonyítása érdekében. Ilyen úgynevezett veri�kációs

megközelítések többek között a tesztelés, monitorozás (azaz futásidejű ellenőrzés), továbbá a mod-

ellellenőrzés, statikus analízis, stb. A formális veri�káció lehetőséget ad akár már a tervezés során,

hogy precíz analízist hajtsunk végre és a tervek helyességét vizsgáljuk.

Azonban a valós rendszerek összetettsége, és az ebből fakadó számítási igény gyakran megakadá-

lyozza a sikeres veri�kációt. Elosztott, aszinkron és konkurens rendszerek esetén ez a probléma

különösen gyakran felmerül az úgynevezett állapottér robbanás jelensége miatt.

Munkám során adatfüggő viselkedésű aszinkron rendszerek hatékony modellezését és el-

lenőrzését céloztam meg. Ezen ellenőrzések támogatására egy megközelítést dolgoztam ki és egy

keretrendszert javasolok, amely Petri net alapú modellezési nyelveket biztosít a felmerülő mérnöki

problémák formális reprezentációjára. A keretrendszer az egyszerű Petri háló formalizmust biztosítja

az aszinkron biztonság-kritikus rendszerek tervei, és a színezett Petri háló formalizmust (CPN) az

adatfüggő viselkedés hatékony modellezésére. Emellett Petri hálók segítségével akár végtelen ál-

lapotterű rendszerek hatékony reprezentálása és kezelése is lehetséges.

Az általam javasolt megközelítés modellezési és veri�kációs megoldásokat kombinál oly mó-

don, hogy a keretrendszer alkalmas legyen komplex problémák megoldására. A különböző Petri

háló variánsok támogatására az állapotátmenet reláció hatékony dekompozícióját lehetővé tevő

megközelítéseket mutatok be, kihasználva az egyes modellezési formalizmusok jellemzőit. Dolgo-

zatomban új algoritmusokat mutatok be a Petri háló alapú modellek szélesebb körének támogatására,

azaz ellenőrzésére. Bonyolult modellek komplex viselkedéseit és ezen rendszerek állapotterét úg-

ynevezett szaturációs algoritmusokkal kezeli a keretrendszer, amely emellett lehetőséget biztosít a

követelmények hatékony megfogalmazására a CTL és az LTL speci�kációs nyelvek segítségével is. A

CTL és LTL nyelven megfogalmazott követelmények ellenőrzésére pedig hatékony ellenőrző algorit-

musok kerültek kifejlesztésre. A (részleges) állapottér feltérképezésére, továbbá a végtelen állapot-

terű rendszerek kezelésére és a hatékony ellenpélda generálásra korlátos modellellenőrző algoritmu-

sok állnak rendelkezésre, továbbá az ellenpélda-alapú absztrakció �nomítás (Counterexample-Guided

Abstraction Re�nement, CEGAR) módszerét alkalmazom. Ezen algoritmusok innovatív kombinációja

jelenti a keretrendszer egyik újdonságát.

A kutatásaim során kidolgozott megközelítés a PetriDotNet keretrendszerben került meg-

valósításra, és különböző ipari és tudományos kutatási esettanulmányok során pedig kiértékelésre.

A bemutatott megközelítés hatékonyságához több algoritmikus fejlesztéssel járultam hozzá. Ezek az

alábbiak:

• Hatékony algoritmust dolgoztam ki a színezett Petri háló modellek veri�kálásához diszjunktív-

konjunktív dekompozíció alkalmazásával. Bemutatok dolgozatomban egy új, lusta algoritmust

a színezett Petri háló modellek komplex állapotátmeneti függvényeinek kezelésére. Az új al-

goritmusok szigni�kánsan javították a színezett Petri háló alapú modellek veri�kációs teljesít-

ményét.

• Kidolgoztam egy párhuzamos szaturáció alapú állapottér felderítő algoritmust, amely a korábbi

megközelítéseket egy új zárolási és szinkronizációs mechanizmussal bővíti. Az új algoritmus

jobb erőforrás-kihasználtságot, és ezáltal gyorsabb futási időket eredményez, mint az irodalom-

ból ismert korábbi algoritmus.

• Bemutatok egy új modellellenőrzési algoritmust, amely az LTL speci�kációs nyelv reguláris

részhalmazát támogatja. Az új algoritmus egy új szinkronszorzat számítási megközelítésen ala-

vii

pul, amely az aszinkron modellekre jelentősen hatékonyabb, mint más megközelítések.

Az általam kidolgozott új algoritmusok a PetriDotNet keretrendszer modellellenőrzési

megközelítésének építőelemei lettek.

Dolgozatomban különféle esettanulmányok segítségével bemutatom az új algoritmusok

hatékonyságát. Az általam kidolgozott színezett Petri háló veri�kációs algoritmus volt az első,

amely a Paksi Atomerőmű egy bizonyos biztonsági logikájának a helyességét egyben bizonyítani

tudta. Az új algoritmusok értékelését különböző benchmark-modellek segítségével is elvégeztem és

összehasonlítottam már meglévő megközelítésekkel.

Dolgozatom eredményei hozzájárultak, hogy a PetriDotNet modellező és formális veri�kációs

keretrendszer mind ipari, mind kutatási problémák megoldására alkalmassá váljon.

Contents

Contents viii

1 Introduction 1
1.1 Preliminaries and Objectives . 1

1.1.1 Target of the Dissertation . 1

1.1.2 Veri�cation Techniques in Systems Engineering 2

1.2 Formal Veri�cation . 4

1.2.1 Applying Formal Veri�cation in System Design 4

1.2.2 Formal Modelling . 5

1.2.3 Formal Requirements . 6

1.2.4 Formal Veri�cation Techniques . 6

1.2.5 Target Problem of the Dissertation . 9

1.3 Overview . 9

1.3.1 Model Checking of Asynchronous Systems 9

1.3.2 Formal Modelling . 10

1.3.3 Formal Requirements . 10

1.3.4 Objectives . 11

2 Background 13
2.1 Petri Nets . 13

2.2 Decision Diagrams . 14

2.3 Saturation . 15

2.3.1 Overview of Saturation . 15

2.3.2 Disjunctive and Conjunctive Partitioning . 16

2.3.3 State-space Exploration Based on Saturation 17

2.4 Model Checking . 18

2.5 CEGAR for Petri Nets . 19

2.5.1 Petri Net State Equation . 19

2.5.2 The CEGAR Approach . 20

3 Model Checking of High Level Models 25
3.1 Motivation . 25

3.2 High-level Models: Coloured Petri Nets . 26

3.3 Saturation for CPN Models . 27

3.3.1 Iteration Strategy for CPN . 28

3.3.2 Encoding Next-state Relations . 28

viii

CONTENTS ix

3.4 Disjunctive-Conjunctive Decomposition for CPN Models 29

3.4.1 Overview of the Approach . 29

3.4.2 Decomposition Algorithm for CPN . 29

3.4.3 Event Handling Algorithm . 31

3.4.4 O�-Line Evaluation of Guards . 32

3.4.5 Correctness of the Algorithm . 33

3.5 Lazy Saturation Algorithm . 34

3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN . . . 34

3.5.2 Overview of the Approach . 35

3.5.3 Iteration of Lazy Saturation . 36

3.5.4 Computing and Using ER . 36

3.5.5 Updating the Next-State Relation . 39

3.5.6 Operation of Lazy Saturation . 39

3.5.7 Correctness of Lazy Saturation . 41

3.6 Industrial Case Study . 42

3.6.1 The Modelled Industrial System . 42

3.6.2 The PRISE Safety Function . 43

3.6.3 Coloured Petri Net Model of the PRISE Safety Function 44

3.6.4 Veri�cation of the PRISE Safety Function . 46

3.7 Thesis 1: Model Checking of High-Level Models . 48

4 Parallel Saturation-based State Space Exploration 49
4.1 Challenges . 49

4.2 Cache Data Structures in Saturation . 50

4.3 Parallel Saturation . 50

4.3.1 Extending the Decision Diagram Node Data Structure 51

4.3.2 Working of the Algorithm . 52

4.3.3 Problems . 55

4.4 Algorithmic Improvements . 58

4.4.1 New Locking and Synchronization Strategy 59

4.5 Correctness of the Algorithm . 60

4.5.1 General Issues . 60

4.5.2 Correctness of the Iteration . 61

4.5.3 Consistency . 61

4.6 Implementation . 63

4.7 Evaluation of the Algorithm . 64

4.7.1 Environment . 64

4.7.2 Objectives of the Measurements . 64

4.7.3 Runtime and speed-up results . 65

4.7.4 Scalability . 66

4.7.5 Summary . 67

4.8 Thesis 2: Parallel State Space Exploration Techniques 68

5 Synchronous Product Generation for LTL Model Checking 69
5.1 Introduction . 69

5.2 Preliminaries . 71

5.2.1 Property Speci�cation . 71

x CONTENTS

5.2.2 Automata Theoretic Model Checking of Regular Properties 71

5.2.3 Synchronous Product . 72

5.3 Special Encoding Based On Constrained Saturation 73

5.3.1 Tableau Automata . 73

5.3.2 Encoding the Product Automaton . 74

5.3.3 Investigation of Correctness and E�ciency 76

5.4 Saturation-based On-the-�y LTL Model Checking . 77

5.4.1 Abstracting the Constraint . 77

5.4.2 Units of Processing – A Framework for On-the-�y Model Checking 78

5.5 Evaluation . 79

5.6 Thesis 3: On-the-�y Synchronous Product Generation for Model Checking Regular

Safety Properties . 81

6 PetriDotNet Model Checking Framework 83
6.1 Model Checking Work�ow . 83

6.1.1 Modelling and Veri�cation Approach . 84

6.1.2 State Space Exploration Techniques . 86

6.1.3 Temporal Logic Model Checking . 87

6.1.4 Bounded Model Checking . 87

6.1.5 CEGAR Approach . 87

6.2 Advancing the State-Of-The-Art . 89

6.2.1 Con�gurable Approach for Model Checking Petri Net Models 89

6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm 90

6.3 Tool Support for Usable Formal Methods . 91

6.3.1 Functionality . 91

6.3.2 Architecture . 93

6.3.3 Use Cases . 94

6.4 Thesis 4: PetriDotNet Model Checking Framework 95

7 Conclusion and future work 97
7.1 Summary of the research results . 97

7.2 Future work . 98

Bibliography 101
Publication list . 101

References . 103

Chapter 1

Introduction

1.1 Preliminaries and Objectives

Ensuring the correctness of systems is a long-standing requirement in the engineering disciplines.

Engineers have been using various techniques to analyse their projects and �nd design problems

before the implementation. Various means from the �eld of mathematics and physics helped to build

more stable buildings, more robust and stronger machines and so on. The design work�ow depicted

on Figure 1.1, which has worked for many centuries in the engineering disciplines is also applied in

the design of computer-based ICT (Information and Communication Technology) systems. However,

the analysis of complex ICT systems requires new techniques and algorithms [BKL08] compared to

the traditional engineering domains like the mechanical engineering domain or architecture.

Requirements Design Implementation

Analysis

Figure 1.1: Development process

In my dissertation, I focus on the correctness analysis of critical ICT systems, and speci�cally the

logical correctness checking, i.e. the veri�cation of such systems. In my work I have investigated how

the development can be supported by modelling languages, veri�cation algorithms, and a framework,

making all these techniques available to the computer engineers. The outcome of the veri�cation

process will help the engineers producing systems with better quality and fewer errors.

1.1.1 Target of the Dissertation

A system is safety-critical if its failure could result in loss of life or signi�cant damage. There are many

well-known safety-critical areas such as medical devices, aircraft �ight control and nuclear systems.

Ensuring the correctness of these systems is especially important, in which advanced veri�cation

techniques play a signi�cant role.

Safety-critical systems are inherently distributed, components responsible for various functions

in these systems cooperate to keep up the proper operation. The distributed characteristics of the

components and their interaction results in intricate system level behaviour. This fact raises the main

challenge: the resulting behaviour is not only di�cult to understand and to modify, but also to analyse.

1

2 CHAPTER 1. INTRODUCTION

Due to the technological development, recent safety-critical systems are becoming more and more

complex, raising challenges in the modelling, development and also in the veri�cation. In my thesis,

I aim to provide solutions to support the modelling and veri�cation of safety-critical systems. As

no single approach can cover all aspects of ICT systems, in my work I focus on the veri�cation of

asynchronous systems, such as communication and distributed systems.

Veri�cation analyses if the model of the system ful�ls the given correctness criteria. Various kinds

of requirements [BKL08] are expected to be ful�lled by the system:

• Safety requirements express that the system does not reach an error/dangerous state.

• Boundedness properties express restrictions to the resource usages and other aspects of the

system.

• Liveness properties expect the system to respond to a request after �nite delay and also avoid

deadlock, for example, a client will �nally send an answer to a request.

• Reversible systems can reach certain states again and again.

• Persistence requirements express that some property will �nally hold in the system after a

transient phase. For example, in a distributed system, the connection will be established, and it

remains in that state stably.

In my dissertation, I aim to support a rich set of properties to specify the correctness requirements.

1.1.2 Veri�cation Techniques in Systems Engineering

In this section, a typical engineering work�ow based on the widely known V-model is used to show

the role of veri�cation techniques at the various phases of development (the V-model received its

name as it forms a V shape). This work�ow is used as a general guideline in the development of

safety-critical systems. Many variants of this work�ow were developed by the industry tailored to

the special needs of the di�erent sectors. The V-model de�nes the elementary steps and draws a

general work�ow for the design and implementation of the system as depicted on Figure 1.2. In

addition, the work�ow de�nes veri�cation and validation steps in the development to ensure that the

correct design is developed and it ful�ls the requirements. In the following, the various veri�cation

and validation techniques are summarised that ensure the correctness at the di�erent phases of the

development. The V-model de�nes the veri�cation goals to ensure correctness of:

• the design with regard to the requirements and

• the implementation with regard to the design.

The systems engineering process depicted on Figure 1.2 starts by designing the requirements,

which are then re�ned in the next, so-called system design phase. This phase de�nes the main func-

tionalities of the system. In the next phase, designing the architecture provides the necessary de-

composition to be able to construct the component level design. At each step, the designer re�nes

the outcome of the former steps by providing more details. At the �nal step of the left wing of the

V-model, one can produce the implementation for each component from the design models. Imple-

mentation has to be tested and veri�ed against coding and other implementation errors. After the

component level validation, system integration builds the smaller pieces together where extensive

integration testing is executed to validate that the components work properly together. Finally, sys-

tem validation ensures if the outcome is the system, which is desired by the customer.

Various analysis techniques serve the veri�cation and validation of the system design and im-

plementation. In the following these analysis techniques, such as (computer) simulation, testing and

formal veri�cation are shortly summarised:

1.1. PRELIMINARIES AND OBJECTIVES 3

Implementation

Component

design
Component

Integration testing
Architecture

design
Integration

System

design
Subsystems

System validation
Requirement

design
System

Figure 1.2: Veri�cation during system engineering

Simulation is the process of executing the model of a system. Simulation is a design-time activity to

assess the dynamic aspects of systems.

Testing is an activity in which a system or component is executed under speci�ed conditions, the

results are observed or recorded, and evaluated according to the speci�cation [Ins10; Mic13].

Systems are tested at various phases of the development [Ana+13] from component level im-

plementation [GA14] up to system level integration.

Formal veri�cation is the procedure of proving or disproving the correctness of a system with re-

spect to a certain formal speci�cation or property [CES86]. Formal veri�cation is based on

the mathematics of computation. Both design models and also implementation [Bey17] can be

veri�ed. However, as the models are becoming more detailed and the design approaches the

implementation level, the computational complexity increases.

Simulation is the elementary task of inspecting and analysing the system behaviour. The pre-

requisite is the model of a real or imagined system, which shall be designed and then experiments

are conducted on the model during simulation to reproduce the possible behaviour. The purpose of

simulation experiments is to understand the behaviour of the system or evaluate strategies for the

operation of the system. Simulation uses an abstract model (a computational model) for execution.

Simulation provides analysis capabilities at an early stage of the development when only models are

available.

The testing procedure can be carried out at various levels of abstraction. In one hand, testing the

model by simulating it and evaluating the behaviour can provide feedback for the developers at an

early stage of the design. Simulation is used as the elementary procedure to test models. On the other

hand, testing the implementation provides inputs and observes the reactions of the concrete system.

Testing is one of the most widely used veri�cation approaches [MSB11].

In general, testing analyses the runs of the system by providing inputs, simulating the behaviour

and examining the reaction (output), by comparing it to an explicitly stated (provided as assertions) or

implicitly assumed (such as no crash should occur) expected behaviour. Testing is e�cient in �nding

problems, and it has many advantages. Testing the model of the system relies on simulation, which can

be computed e�ciently. Besides, testing is easy-to-use for the developers: no additional knowledge

is required, it works on the model of the system. Testing can also be applied at the implementation

level so the revealed problems do not come from the inaccurate modelling but they are real problems

in the implementation. In addition, when exhaustive veri�cation is not possible, testing can still help

locating problems.

4 CHAPTER 1. INTRODUCTION

On the other side, neither simulation nor testing can be complete in the sense that they usually

can not explore all the behaviour of a system so neither simulation nor testing can prove correctness

alone.

Formal veri�cation extends their strengths with mathematically established proofs based on the

exhaustive traversal of all the possible behaviour.

Finding errors is one side of the problem: the need to be able to prove correctness naturally raised.

This need led to the development of formal veri�cation techniques to support the engineers with tools

providing certainty about the correctness of their design.

The combination of the various veri�cation methods can ensure the high quality of computer-

based systems. These techniques can be used in di�erent phases of the systems engineering process,

and they together constitute a powerful tool to �nd errors at an early stage of the development.

1.2 Formal Veri�cation

Formal veri�cation is the analysis of hardware, software and systems that provides mathematically

established proofs for correctness or existing errors. Formal veri�cation is performed on the abstract

representation (model) of the system or directly on the source code.

Nowadays, the application of formal methods is gaining high importance in the development of

modern ICT and especially safety-critical systems. Standards, like IEC 61508 also recommend the

application of formal techniques in the development process.

1.2.1 Applying Formal Veri�cation in System Design

The traditional application of veri�cation is depicted on Figure 1.3 [13]. The goal is to verify the

correctness of the system by checking if the engineering model ful�ls the requirements [LMM99;

Cse+02]. Applying formal veri�cation in the system development process consists of the following

steps.

1. Engineering models and requirements are developed.

2. Formal models and formal requirements are created.

3. The veri�cation procedure is executed.

4. Results are interpreted and back-propagated to the engineering levels. Corrections are made,

and veri�cation is run again if needed.

5. Implementation is derived from the engineering models.

The input of the procedure is the engineering model, which is usually described by a domain ex-

pert in the language of design tools, for example, SysML or UML. The requirements also come from

the engineers. Both the engineering models and the requirements have to be formalized and trans-

formed into the input language of some veri�cation tools. Formal models provide a mathematically

precise way to describe the system: this enables the application of formal veri�cation techniques on

the systems’ design. The result of the veri�cation is interpreted on the level of the formal model and

formal speci�cation: this result has to be back-propagated to the engineering domain to be under-

stood by the engineers. This back-propagation procedure is depicted on the �gure with dashed lines

pointing towards the engineering level.

Supporting the whole veri�cation process involves all the aforementioned steps. In this thesis, I

focus on how to support the formal modelling, and I will introduce novel veri�cation algorithms to

enhance the veri�cation process.

1.2. FORMAL VERIFICATION 5

Requirements
Engineering

model

Formal

requirements

Formal

model

Result

Verification
Back-

propagation

Figure 1.3: High-level view of the veri�cation process

1.2.2 Formal Modelling

Formal modelling is the process of developing a formal representation of the system under analysis

in a formal modelling language. The resulting model can be analysed by various techniques to prove

its correctness or �nd design errors.

1.2.2.1 Development of the Formal Representation

There are two main directions to develop the formal models: they can be developed manually, or

formal models are automatically generated from the engineering models by using model transfor-

mations. Veri�cation engineers develop formal models from the system description. Increasing the

expressiveness of the formal modelling language supports the e�cient development of the formal

models. It means a smaller abstraction gap between the engineering and formal modelling level and

also provides more information for the underlying veri�cation engines.

Many approaches try to support the automatic generation of formal models from engineering

models, but they rarely provide a proper solution for the problem in their own as the generated

formal models might contain too many details preventing successful veri�cation [Dar17],[13],[12].

1.2.2.2 Formal Modelling Languages

There are many formalisms to represent the system under analysis. As systems possess various char-

acteristics, formal representations have to be able to express these properties and exploit them for

veri�cation.

Finite state automaton and their extensions are popular as they are easy to use and an automa-

ton can naturally represent certain problem domains. Additionally, networks of automata provide a

compact representation for distributed systems. Programming language-like formalisms are popular

for their expressiveness and as they are similar to those languages that software engineers are used

to. Petri nets and related models constitute an expressive class of formal modelling languages: they

are popular for their simplicity, but Petri nets still possess high expressive power. There are two main

types of Petri nets:

6 CHAPTER 1. INTRODUCTION

Petri net based modelling languages solve the problem of graphical and formal representation of

concurrent and distributed systems. Petri nets naturally handle the inherent asynchronism of

such systems. Petri nets can represent both �nite and in�nite state systems. Moreover, various

subclasses and extensions exist to support the modelling and analysis of concurrent systems.

Coloured Petri nets (CPN) extend Petri nets with various data types and variables, and additional

guard expressions are used to re�ne the possible behaviour of the systems further. Coloured

Petri nets can raise the abstraction level to help the e�cient development of formal models.

Ordinary Petri nets are well-suited to model control �ow and data dependent behaviour. Petri net

based models can have �nite state space which means that a �nite number of states are reachable from

the initial state. Various subclasses exist for representing the various problems. Finite state machines

and networks of �nite state machines are expressed with �nite Petri nets. The marked graph is a

special subclass of Petri nets being able to represent decision-free parallel activities. For these Petri

net subclasses, e�cient veri�cation methods exist [Mur89; BKP17].

On the other hand, Petri net based models can also represent in�nite state systems, with an in�-

nite number of reachable states. Such ordinary Petri nets are used to model concurrent multi-threaded

programs with �nite data structures. In general, the expressive power of Petri nets equals the expres-

sive power of Vector Addition Systems [EN94].

In coloured Petri nets, various data types can be used as colour types, and guard expressions can

be evaluated on them. Coloured Petri nets combine the inherent concurrency of Petri nets with data

dependent behaviours expressed with colour types and other language elements. Coloured Petri nets

are also a proper means to describe parametric systems. Compared to ordinary Petri nets where the

structure of the net encodes the modelled behaviour, in coloured Petri nets, a wider range of language

elements support the modelling.

1.2.3 Formal Requirements

Formal requirements capture the requirements of the design phase in a formally interpreted precise

language. In this thesis, our goal is to verify the behaviour of systems, so we restrict the introduction

to the formal requirement languages being able to express behavioural properties.

Formal requirements are usually expressed with the help of temporal logic. Various temporal

logics exist, the two most common are Computation Tree Logic (CTL) and Linear Temporal Logic

(LTL). They have di�erent semantics and expressive power. For example, deadlock freedom can be

only expressed with CTL while fairness properties are only expressible with LTL. It is desirable for a

model checker to support both formalisms. However, only a few model checkers provide support for

both of them.

1.2.4 Formal Veri�cation Techniques

There are various formal veri�cation techniques to ensure the correctness of systems [DKW08]. For-

mal veri�cation does not rely on the concrete execution of the software/system, so these techniques

are often referred to as static analysis techniques. Widely used static analysis techniques are – among

others – abstract interpretation, model checking and theorem proving.

Abstract interpretation techniques derive properties from the structure of the models or the source

code. Abstract interpretation iterates through the program and approximates the possible be-

haviours without executing the calculations of the program. Over-approximation and various

abstractions tailored to the domain provide e�ciency. However, accurate results can not be

provided due to the coarse approximations.

1.2. FORMAL VERIFICATION 7

Model checking analyses a model representation of the system. Model checking algorithms exhaus-

tively explore the possible states of the system and verify the requirements given as temporal

logic formulae. Model checking algorithms produce a counterexample if a property violation is

found.

Theorem proving based veri�cation reduces the veri�cation problem to solving �rst-order or higher-

order logic problems. First-order theorem provers might work fully automatically, higher-order

logic provers are mainly interactive. Both the property and the system representation have to

be expressed as a logic problem in the input language of the chosen theorem prover.

From the various approaches, there are semi-automatic procedures like interactive theorem prov-

ing, and on the other side, there are fully automatic techniques such as model checking and abstract

interpretation. There is a huge gap also in precision: abstract interpretation examines safety proper-

ties being reduced to the reachability checking of some erroneous states. Model checking extends the

set of analysis questions, and it is able to answer liveness or even complex fairness and timed prop-

erties. Theorem proving can prove even properties expressed in higher-order logic, however only for

certain (very restricted subset of) systems. In general, static analysis techniques (like abstract inter-

pretation) are known to be computationally cheaper but less precise, on the other side model checking

is more precise for the more computational cost.

The approaches use di�erent formalisms to design the system representation: the veri�cation

engineers can choose between directly verifying the implementation or execute the analysis on a

higher level of abstraction. The �rst approach provides information directly from the implemen-

tation: this advantage is however very expensive as the veri�cation of programs is algorithmically

rarely tractable. Abstract models are usually easier – however in practice still di�cult – to verify, but

implementation and coding problems are not detected at this higher level.

Formal veri�cation is getting more and more widely used for industrial problems [Cal+15; Adi+15;

DMB16; LS09; Kle+09; SD10; BP12; Kai+09]. From the various techniques, model checking provides a

good trade-o� between precision, expressiveness and computational costs [DKW08].

1.2.4.1 Model Checking

Model checking is an automated formal veri�cation technique: given a formal model representing

the system, and a formal speci�cation, a model checking algorithm traverses the possible behaviours

of the formal model and decides if the formal speci�cation is ful�lled. The state space is represented

in the internal data structures of the model checker and used for the analysis of the formal proper-

ties. When the formal speci�cation is ful�lled, the correctness of the design is proven. Otherwise,

the model checker produces a counterexample, which shows how the system can reach an incor-

rect/undesired situation.

There are two main families of model checking algorithms: explicit techniques use traditional

graph algorithms to explore the states one-by-one. On the other side, symbolic model checking al-

gorithms apply special encoding of the state space and the transition relation. Explicit state model

checking can be fast but often faces the so-called state space explosion problem: even small models

can have huge state spaces, which can not �t into the memory of modern computers. Symbolic algo-

rithms try to solve the state space explosion problem by avoiding the explicit representation of the

state graph and using a compact representation instead. One of the symbolic approaches is saturation,

which was devised for the veri�cation of asynchronous, concurrent systems.

Model checking is a di�cult problem in general: even small systems can have huge state space

due to the large number of interactions of asynchronous, concurrent or distributed systems, or caused

8 CHAPTER 1. INTRODUCTION

by the data content of the state variables. In many cases, formal models have in�nite state spaces,

which have to be traversed and represented by the model checking algorithms. Explicit model check-

ing algorithms store the states and transitions one-by-one and traditional graph traversal algorithms

are used: the memory requirements of storing huge state space graphs often prevent their applica-

tion. On the contrary, symbolic model checking algorithms handle sets of states together instead of

manipulating them individually and clever encodings help to �t the state space representation into

the memory.

Symbolic state space representation. In symbolic model checking, characteristic functions are

used to encode sets of states and decision diagrams can be used for e�cient storage. A decision dia-

gram is a directed acyclic graph, representing a Boolean or multi-valued function. Various reduction

rules ensure that decision diagrams are a canonical and compact representation of a given function or

set, which makes it a proper means to store set of states. Traditional symbolic algorithms encode the

reachable states and also the next state functions in decision diagrams. State variables are mapped to

the variables of the decision diagram and state vectors are stored in the decision diagram.

The other option is the application of SAT-based techniques to manipulate the characteristic func-

tion of the symbolic representation and e�cient solvers help the state space traversal. Induction can

help to �nd proofs for correctness or bounded state space exploration searches counterexamples.

Symbolic model checking algorithms can manipulate a huge set of states together, but their e�-

ciency highly relies on the used encoding. Finding a good encoding can be a complex task.

E�cient state space traversal. In model checking, the state space has to be traversed. During

the exploration, states have to be stored or memorised, to avoid redundant exploration, redundant

computations. Decision diagrams o�er a compact representation and storage for the state space, but

the construction of the state space representation i. e., the exploration strategy of the state space has

to be chosen. The states of synchronous hardware systems are traditionally explored by breadth-�rst

(BFS) traversal in symbolic model checking. However, BFS is used to be ine�cient for asynchronous

systems [CMS05]. On the other hand, depth-�rst (DFS) traversal does not �t the traditional decision

diagram based symbolic algorithms as symbolic algorithms are not able to handle states individually.

Ciardo and his colleagues developed a special iteration strategy to solve this problem, the so-called

saturation iteration algorithm, which combines BFS and DFS strategies tailored to the structure of the

decision diagram representation of the state space. Saturation is e�cient[CMS05] for asynchronous

and GALS (Globally Asynchronous Locally Synchronous) systems. Saturation was developed for Petri

nets, and some extensions also support model checking of various properties.

Checking temporal logic speci�cations. CTL and LTL are widely used temporal logics with dif-

ferent expressiveness and di�erent veri�cation algorithms. CTL model checking is reduced to com-

pute greatest and least �xed points of the next-state functions in the state space iteratively. This

approach is called structural model checking and decision diagram based symbolic approaches e�-

ciently solve the problem of traversing and storing the possible states. On the other side, LTL model

checking requires di�erent algorithms as it is reduced to the checking of language inclusion of the

property automaton and the state space of the model. Model checking LTL properties is usually

composed of two challenges: one must compute the synchronous product of the state space and the

automaton model of the desired property, then look for counterexamples that is reduced to �nding

strongly connected components (SCCs) in the state space of the product. Checking LTL properties is

computationally a harder problem than checking CTL properties in general.

1.3. OVERVIEW 9

1.2.5 Target Problem of the Dissertation

In this dissertation, I focus on the modelling and veri�cation of concurrent, asynchronous systems,

which constitute a signi�cant part of the set of safety-critical systems. These are typically discrete-

event systems (DES), so I show how such systems can be e�ciently modelled and veri�ed.

Summarising the veri�cation challenges in general: there is a need to precisely (formally) repre-

sent the system and the requirements, e�cient model checking algorithms are required to solve the

veri�cation problem, and we need tool support with the aforementioned capabilities.

1.3 Overview

In this section, I overview the challenges in the model checking process. In [BKL08], authors de�ned

the following phases in the application of model checking in systems engineering:

• Modelling phase:

– Model the system using the description language of the model checker.

– Perform sanity checks by simulation

– Formalize the requirements using a property speci�cation language.

• Running phase: run the model checker and check the validity of the property in the model.

• Analysis phase:

– If the property is satis�ed, check the next property.

– If the property is violated, then:

1. Analyse the generated counterexample;

2. Re�ne the model, design or the property;

3. Repeat the entire procedure.

– Out of memory or time-out necessitates the reduction of the model or the application of

a di�erent model checking algorithm.

Formal veri�cation is often desirable though complex task and each phase of the model checking

process has their own challenges. Developing formal models is time-consuming, and the veri�cation

of real industrial problems is computationally hard. The huge gap between engineering and formal

models are di�cult to bridge by automated techniques. On the other hand, veri�cation engineers

might develop the proper formal models from engineering models. However, this process is time-

consuming. Even if the models are available in a formal representation, the requirements have to be

also expressed formally, which needs a rich set of formal requirement languages. After all, the high

computational cost of formal veri�cation often prevents its successful application.

1.3.1 Model Checking of Asynchronous Systems

Formal veri�cation is a computationally di�cult problem: small systems still have huge state spaces,

which has to be traversed by the veri�cation algorithms. This is especially true for the asynchronous

models of distributed systems: the various overlapping of the components’ behaviour yields a huge

number of possible behaviour. Advanced techniques are required to handle this explosion. The num-

ber of possible states grows exponentially with the growing number of components in a distributed

system, even up to the Cartesian product of the states of the individual components. As formal ver-

i�cation has to be exhaustive, the large number of states poses huge challenges for the veri�cation

algorithms.

10 CHAPTER 1. INTRODUCTION

As it can be seen, formal veri�cation of distributed systems is computationally expensive so choos-

ing the proper approach is crucial. Saturation provides an e�cient solution for the model checking

of Petri net models: my work is based on saturation-based techniques.

Due to the computationally extensive nature of model checking, the question naturally arises

that how modern multi-core processor could be exploited for further enhancing the performance of

model checking. E�cient model checking approaches such as symbolic algorithms use complex data

structures and iteration strategies making the parallelisation task di�cult. The reason for symbolic

model checking being inherently sequential is that �xed-point computation and detection needs the

results of the previous steps. This problem is especially true for saturation, which was also discussed

in the literature [CZJ09]. With the newer and newer advances of model checking, the challenge of

exploiting multi-core computers in saturation-based model checking is raised.

1.3.2 Formal Modelling

Petri nets are a popular modelling language to describe the behaviour of concurrent and asynchronous

systems, but many application domains require a more expressive formalism: in such cases, coloured

Petri nets provide e�cient means to describe asynchronous systems with data dependent behaviours.

Coloured Petri nets (CPN) extend ordinary Petri nets with various data types that can be used as

colour types, and guard expressions can be evaluated on them. However, this also yields challenges

for the veri�cation algorithms. These intricate language elements of coloured Petri nets are di�cult to

be handled by the model checking algorithms. This issue should be addressed in a formal veri�cation

tool analysing coloured Petri net models.

Many e�cient techniques and tools exist for the veri�cation of Petri net models. The drawback

of the application of CPNs is the lack of e�cient veri�cation techniques, what we also faced in our

research. The reason for that is twofold: by choosing decision diagram based techniques, one can

e�ciently represent the state space of Petri net models, but complex guard expressions are not ef-

�cient to be encoded in decision diagrams. On the other side, techniques based on advanced solver

technologies such as SAT and SMT being able to handle intricate guard expressions e�ciently are not

good at verifying concurrent systems. These facts lead to the situation that coloured Petri net based

symbolic veri�cation tools are not available. The most commonly used tool for verifying CPN models

is CPNTools [JKW07], which provides techniques based on explicit state traversal and representation.

Such explicit techniques rarely scale to real-life problems.

1.3.3 Formal Requirements

From the wide range of requirement languages, formal veri�cation relies on formal languages such

as CTL or LTL: these are the most widely used formal speci�cation languages being able to express

many kinds of properties of interest. CTL model checking is reduced to compute greatest and least

�xed points of the next state functions in the state space iteratively. This approach is called struc-

tural model checking and decision diagram based symbolic approaches e�ciently solve the problem

of traversing and storing the possible states. On the other side, LTL model checking is reduced to

solving language containment problem. Model checking LTL properties is usually composed of two

challenges: one must compute the synchronous product of the state space and the automaton model

of the desired property, then look for counterexamples that is reduced to �nding strongly connected

components (SCCs) in the state space of the product. Symbolic model checking approaches exist for

the SCC computation. However, the e�cient construction of the synchronous product is still an open

question, especially when using saturation-based algorithms. Related work in this �eld uses tradi-

1.3. OVERVIEW 11

tional binary decision diagram encoding of the composite state space and encodes the synchronous

next state relation in a big, monolithic decision diagram. Saturation-based approaches avoid the ex-

plicit computation of the synchronous product [Thi15] by dividing the iteration order into smaller

parts. This approach might break the iteration strategy of saturation, which may decrease the e�-

ciency. Synchronous product computation is not yet integrated into saturation-based traversal for

LTL model checking in a way that it would fully exploit the e�ciency of the iteration strategy.

1.3.4 Objectives

My goal is to introduce a model checking approach for the veri�cation of Petri net based models

of complex systems. The proposed approach supports the formal modelling by providing coloured

Petri nets as a high-level formalism to represent the system. Temporal logics such as CTL and LTL

supports the development of formal speci�cations. Saturation is used to explore the state space and

the next-state function and stores them symbolically. Temporal logic model checking processes this

representation of the possible behaviours and evaluates the CTL or LTL speci�cation. The result of the

procedure is an error trace to show the problem in the system. Otherwise, the model of the system is

assumed to be correct. In the following section, I summarise the challenges concerning the individual

steps of the veri�cation process.

1.3.4.1 Summarizing the Challenges

Challenge 1: Veri�cation of complex systems High-level modelling languages are needed to

model complex systems. High-level models of complex systems require rigorous veri�cation tech-

niques, so the existing veri�cation approaches and algorithms have to be extended to overcome the

challenges.

Saturation was introduced for the analysis of Petri-nets and their variants/simple extensions.

However, in practice, higher level languages provide a better means to describe complex, real-life

systems. Coloured Petri nets are a popular formalism, but saturation-based algorithms have not yet

been extended for their analysis. Complex data structures of Coloured Petri nets have prevented the

application of e�cient saturation-based symbolic model checking algorithms in this �eld.

Challenge 2: Increase the e�ciency of model checking algorithms New techniques are

needed to increase the e�ciency of model checking algorithms and decrease runtime requirements.

Parallelization is a common approach to improve the performance of algorithms. However, sat-

uration is inherently sequential, so it is di�cult to parallelise [CZJ09]. The reason behind is the fact

that saturation heavily relies on the results of former computations. Indeed, the parallel manipulation

of a decision diagram is a di�cult problem on its own, which is the prerequisite to develop parallel

saturation-based algorithms. Exploit the computational power of modern multi-core computers in

saturation-based algorithms is a huge challenge.

Challenge 3. Veri�cation support for various requirements Research and industrial case-

studies revealed the need for a wide range of speci�cation languages to support the various types

of requirements of the use-cases.

CTL and LTL temporal logics have di�erent strength and weaknesses, so it is important for a

model checker to support both formalisms from the usability point of view. Saturation was tradition-

ally used for CTL model checking as the traditional approaches for LTL model checking are di�cult to

implement in symbolic settings. LTL model checking is reduced to automata based model checking,

12 CHAPTER 1. INTRODUCTION

and saturation-based model checking approaches have to be extended to support automata based for-

mal speci�cations. Automaton based speci�cation provide the semantics for high-level speci�cation

languages such as LTL. LTL model checking requires solving an additional problem during the state

space generation: namely the synchronous product computation with an automata representation of

the property under analysis. This problem is easy to solve by explicit state space traversal algorithms,

but intricate synchronisation constraints often prevent the e�cient application of symbolic meth-

ods. This lead to that former saturation-based synchronous product generation approaches do not

compute synchronisation constraints symbolically instead they try to divide the problem into locally

solvable parts. However, this breaks the iteration might degrade it to a breadth-�rst like iteration.

Challenge 4: Tool support for formal modelling and veri�cation. The wide range of indus-

trial problems necessitates a formal modelling and veri�cation framework with various modelling

languages and veri�cation algorithms. As no single formalism or algorithm can support the many

aspects of the use-cases, a con�gurable framework is needed, which can be �ne-tuned to handle the

veri�cation problems.

Therefore the goal of the dissertation was to de�ne a framework addressing these challenges and

develop the necessary algorithms for supporting the veri�cation procedure.

Beside the algorithmic developments, there is a need for tool support for the envisioned veri�-

cation framework. This involves modelling, veri�cation and counterexample generation of complex

systems. There has not been any tool yet for combining the aforementioned algorithms together in

one tool to the e�cient support of veri�cation of various Petri net based models.

Chapter 2

Background

In this chapter, I introduce the theoretical background of my work. The basic de�nitions related to

Petri nets are from [4][16]. The introduction of decision diagrams is from [6]. The overview for model

checking and saturation is based on [5] and [20].

2.1 Petri Nets

Petri nets are graphical models for concurrent and asynchronous systems, enabling both structural

and dynamical analysis. Formally, a Petri net [Mur89] is a tuple PN = (P, T,E,W,m0) where:

• P is the set of places,

• T is the set of transitions, with P 6= ∅ 6= T and P ∩ T = ∅,

• E ⊆ (P × T) ∪ (T × P) is the set of arcs and

• W : E → Z+
is the weight function assigning weights w−(pj , ti) to the edge (pj , ti) ∈ E and

w+(pj , ti) to the edge (ti, pj) ∈ E.

A marking of a Petri net is a mapping m : P → Z+
0 . The initial marking is denoted by m0. A place p

contains k tokens under a marking m if m(p) = k.

A transition ti ∈ T is enabled in a marking m, if m(pj) ≥ w−(pj , ti) holds for each pj ∈ P with

(pj , ti) ∈ E. An enabled transition ti can �re, consuming w−(pj , ti) tokens from places pj ∈ P with

(pj , ti) ∈ E and producing w+(pj , ti) tokens in places pj ∈ P with (ti, pj) ∈ E. The �ring of a

transition ti in a marking m is called an event and denoted by m[ti〉m′ where m′ is the marking after

�ring ti.

A word σ ∈ T ∗ is a �ring sequence. A �ring sequence is realizable in a marking m and leads to

m′, (denoted by m[σ〉m′), if either m = m′ and σ is an empty word, or there exists a realizable �ring

sequence w ∈ T ∗, a transition ti ∈ T , and a marking m′′ such that m[w〉m′′[ti〉m′ and σ = {w, ti}.
The Parikh image of a �ring sequence σ is a vector ℘(σ) : T → Z+

0 , where ℘(σ)(ti) is the number of

the occurrences of ti in σ.

Reachability problem. A marking m′ is reachable from m if there exists a realizable �ring se-

quence σ ∈ T ∗, for which m[σ〉m′ holds. The set of all reachable markings from the initial marking

m0 of a Petri net PN is denoted by R(PN,m0). The aim of the reachability problem is to check if

m′ ∈ R(PN,m0) holds for a given marking m′.

13

14 CHAPTER 2. BACKGROUND

De�ne a predicate as a linear inequality on markings of the form Am ≥ b, where A is a matrix,

and b is a vector of coe�cients [EM00]. The aim of the submarking coverability problem is to �nd a

reachable marking m′ ∈ R(PN,m0), for which the given predicate Am′ ≥ b holds.

The reachability problem is decidable [May81], but it is at least EXPSPACE-hard [Lip76].

Reachability graph. The state space of a Petri net is the set of states reachable from the initial state

through �rings of transitions. The state space can be either �nite or in�nite. The reachability graph is

constructed by traversing the states and connecting them by edges representing the transition �rings,

i. e., the steps in the state space. Figure 2.1a depicts a simple example Petri net model of a producer-

consumer system. The producer creates items and places them in the bu�er, from where the consumer

consumes them. For synchronising purposes the capacity of the bu�er is one, so the producer has to

wait till the consumer takes the item from the bu�er. This Petri net model has a �nite state space of

8 states.

producer buffer consumer

(a) The Petri net of the producer-

consumer model

terminal
level

consumer
level

producer &
buffer level

11

(b) State space representation

with MDD

Figure 2.1: Producer-consumer example

2.2 Decision Diagrams

Decision diagrams are widely used for veri�cation. In this section, a basic de�nition is given.

A Multiple-valued Decision Diagram (MDD) is a directed acyclic graph, representing a function f
consisting of K variables: f : {0, 1, . . .}K → {0, 1}. An MDD has a node-set containing two types

of nodes: non-terminal nodes and two terminal nodes (0 and 1). The nodes are ordered into K + 1
levels. A non-terminal node is labelled by a variable index 0 < k ≤ K that indicates to which level

the node belongs (which variable it represents), and has nk (domain size of the variable, in binary

case nk = 2) arcs pointing to nodes in level k − 1. A terminal node is labelled by the variable index

0. Duplicate nodes are not allowed, so if two nodes have identical successors in level k, they are also

identical. In a quasi-reduced MDD redundant nodes are allowed: it is possible that every arc of a node

points to the same successor.

These rules ensure that MDDs are canonical and compact representations of a given function or

set. The evaluation of the function is based on a top-down traversal of the MDD through the variable

assignments represented by the arcs between nodes. Figure 2.1b depicts an MDD used for storing

the encoded state space of the example Petri net. Each edge encodes a possible local state, and the

possible state con�gurations are the paths from the root node to the terminal node labelled one.

2.3. SATURATION 15

2.3 Saturation

Saturation [CZJ12] is a state space generation and model checking algorithm that proved its e�ciency

in the veri�cation of asynchronous systems [CMS03]. This section overviews the basic concepts of

the saturation algorithm.

2.3.1 Overview of Saturation

Saturation [CMS06] is a symbolic algorithm for state space generation and model checking that is

particularly e�cient for concurrent, asynchronous systems. Saturation explores the possible states of

the model and stores the encoded state space in an MDD. Decomposition serves as the prerequisite for

the symbolic encoding in saturation: the algorithm maps the state variables of the high-level model

into symbolic variables of the decision diagram. Formally, saturation explores the reachable state

space Srch of a model M = 〈S,Sinit, E ,N〉 composed of K components (or subsystems), where:

• S is the possible set of global states. A state variable is de�ned for each component denoted

by s1, . . . , sK with possible local state spaces S1, . . . ,SK , so that the global state space can

be de�ned as their Cartesian product: S = S1 × · · · × SK . Each global state s is a K-tuple

〈s1, . . . , sK〉, where each sk ∈ Sk = {0, 1, . . . } is the state of the k-th component (1 ≤ k ≤ K).

The variables are mapped into symbolic variables of the encoding decision diagrams;

• Sinit ⊆ S is the set of initial states, Srch ⊆ S represents the set of states reachable from the

initial states;

• E is the set of (asynchronous) events, usually transitions of a high-level model i. e., �ring of a

transition in a Petri net;

• N ⊆ S ×S is the next state relation de�ned as the union of the separate next state relations of

the events as follows: N =
⋃
ε∈E Nε, where Nε is the next state relation of event ε. We often

treat N as a function, de�ning N (s) = {s′|〈s, s′〉 ∈ N } as the states that are reachable from s
in one step (and also N (S) as an extension to sets of states).

The global state space S is represented as an MDD with K variables (levels), where variable xi
corresponds to the state of the ith component. A global state s is encoded by a trace (path) of the

MDD, where x1 = s1, . . . , xK = sK . Decomposition helps the algorithm to exploit the inherent

locality e�ciently of asynchronous systems.

Saturation uses a peculiar iteration strategy: it iterates through the MDD nodes and generates

the whole state space representation using a node-to-node transitive closure. Building the MDD

representation of the state space starts by building the MDD representing the initial state. Then

the algorithm saturates every node in a bottom-up manner, by applying saturation recursively when

new states are discovered. The result is the state space representation encoded in MDD. This way,

saturation avoids that the peak size of the MDD during the iteration exceeds its �nal size, which is a

critical problem in traditional approaches. The reader is referred for details and a running example

to [CMS03].

Saturation exploits the locality inherent in concurrent systems, where a single event usually af-

fects only a small number of components (state variables). This approach partitions the global next-

state function according to the high-level model events in the system. An event ε is independent from

the component k, if 1) its �ring does not change the state of the component, and 2) its enabling does

not depend on the state of the component. If ε depends on component k, then we call it a supporting

variable: k ∈ supp(ε). We de�ne Top(ε) as a function that returns the largest index in supp(ε). Then

Ek is the set of events: {ε ∈ E|Top(ε) = k}. For the sake of convenience we use Nk to represent the

16 CHAPTER 2. BACKGROUND

next state function of all the events ε ∈ Ek, formally Nk =
⋃
ε∈Ek Nε. Thus, the algorithm does not

create a large, monolithic next state function representation. Instead, it divides the global next state

function N into smaller parts according to the set of events E in the high-level model.

Symbolic encoding of the next state functions of events ε ∈ Ek relies on the following observation:

Nε(〈s1, . . . , sK〉) and Nε(〈s1, . . . , sk〉) × {〈sk+1, . . . , sK〉} are equivalent. From this fact we can

derive two important properties of saturation: 1) in the encoding of Nε it is only required to encode

the state changes of state variables s1, . . . , sk, where k = Top(ε), as well as 2) it is possible to apply

the individual Nε functions in a �ner granularity: Nε is applicable not only on the full state space

representation, but also on the local state space representation composed of state variables s1, . . . , sk.

The saturation iteration strategy divides the global �xed-point computation into smaller parts,

as it computes a local �xed-point with regard to a decision diagram node nk. A node nk is called

saturated, if it represents a local state space computed as the �xed-point of the transitive closure

of local next state relations: S(nk) =
⋃
i:1≤i≤k

⋃
ε∈Ei N

∗
ε (S(nk)), where S(nk) is the set of states

represented by node nk [CMS03]. Building the MDD representation of the state space starts at the

MDD of the initial state. Then the algorithm saturates every node in a bottom-up manner, by applying

saturation recursively, if new states are discovered. In this way saturation avoids the peak size of the

MDD to be much larger than the �nal size, which is a critical problem in traditional approaches.

2.3.2 Disjunctive and Conjunctive Partitioning

The next-state functionNε of an event ε describes the states reachable from a given state in one step

(i. e., with a single �ring of a transition).

The global next-state of event ε can be de�ned as a product Nε = N(ε,1) × . . . × N(ε,K). This

encoding enables building the next-state functions locally, but it requires a Kronecker-consistent de-
composition [CMS03]. Ordinary Petri nets are Kronecker-consistent for any partitioning of the places

[CMS03], but this is not guaranteed for more general models, like well-formed CPN models.

In [CMS03] the authors used a Kronecker matrix-based representation ofNε. In their solution the

next-state function N(ε,i) of the event ε (�ring of the corresponding transition) in the ith submodel

is encoded by a Kronecker matrix K(ε,i) [Buc+00]. K(ε,i) is a binary matrix and it belongs to event

ε at level i. K(ε,i) is constructed as follows: K(ε,i)[j, k] = 1 ↔ k = N(ε,i)(j). These Kronecker

matrices contain only the local next-state relations. Kronecker-consistent decomposition of the next-

state representation turned out to be very e�cient in practice.

In [CY05] the authors introduced a new next-state representation for saturation-based algorithms

to be able to analyse a more general class of models. This solution uses MDDs with 2K levels to

symbolically encode a next-state functionN into the relationR of from and to variables: R ⊆ S×S .

The variables x = (x1, x2, . . . , xK) in R refer to the current (“from”) state, and the variables x′ =
(x′1, x

′
2, . . . , x

′
K) to the next (“to”) states. R encodes the next-state function so that from state x we

can go to states x′ in one step.

The algorithm avoids creating a large, monolithic next-state relation, it divides the global next-

state function into smaller parts instead. The �rst step is the disjunctive decomposition according to

the set E of e events in the high-level model: R =
∨
ε∈E Rε. The relation Rε is called disjunct in

the following. In many cases the computation of these local relation Rε is still expensive. So, in

the next step the algorithm partitions the Rε disjuncts conjunctively according to the enabling and

updating relations [CY05]: Rε =
∧

en Renable
ε,en ∧

∧
up R

update
ε,up , where ε ∈ E and en refers to those indices

(of the variables) which contribute to the enabling of the transition while up refers to those indices

(of the variables) which are updated by the transition, en, up ∈ supp(ε). The enabling relation is

responsible for deciding if the given event is enabled in a certain state while the update relation decides

2.3. SATURATION 17

to which next states the exploration can go. EachRupdate
ε,up andRenable

ε,en relation is called a conjunct in the

following. Note that in the construction and representation of the individual conjuncts and transition

relations of the individual events only those variables are considered, which contribute to the �ring

of the event. In the decision diagram representation, the so-called identity reduction [CY05] is used

to provide a compact storage.

The enabling relation consists of variables necessary for deciding the enabling of the transition

related to a certain event. It contains only “from” variables (in x), and does not change the value

of any “to” variables (in x′). The updating relation represents the local state changes, i. e., the local

next-state functions, therefore it contains variables both from x and x′.

The transition relationRε explicitly de�nes the relation of variables a�ected by the event ε. The

set of variables a�ected by Rε is denoted by xε (and their corresponding next-state variables x′ε).
For all other variables, their relation can be described as the identity relation[CY05], therefore the

following holds for the representation Rε: for all xi, where xi /∈ xε, xi = x′i. So in the representa-

tion, we have to consider only variables of xε, therefore Rε(x) can be represented as Rε(xε), while

assuming that the omitted variables yield the identity relation. This will decrease the storage require-

ments of the representation as identity reduction is applied [CY05]. When the transition relation is

further decomposed into conjuncts, their representation is further simpli�ed. Beside the identity re-

duction, each conjunct will refer to a subset of xε, other variables are considered don’t care in the

representation.

This �ne-grained decomposition approach makes it possible to handle arbitrary �nite next-state

functions, which is the key to handle complex events e�ciently. The smaller the partitions we create,

the less computation they need and also it makes their representation smaller. The limit for the size

of the partitioning comes from the used high-level modelling formalism.

2.3.3 State-space Exploration Based on Saturation

The most important properties and mathematical de�nitions have been introduced in the former

sections from which an e�cient state space traversal algorithm is constructed in this section. The

pseudocode of the saturation algorithm is depicted on Algorithm 1 and Algorithm 2 [CMS05; CY05].

Saturation starts the exploration from the decision diagram representation of the initial states and

traverses each node of the decision diagram and saturates it by calling function Saturate of Algo-

rithm 1. During saturation, all the possible states are discovered locally by computing the next-

states of each locally �reable transition. Each local step is computed by the function RelProd
of Algorithm 2. RelProd computes the reachable set of states from a given initial state through

an event/transition represented by Nε, so function RelProd computes the next-state set, formally:

S(x′) = {{x′} | ∃xε : RelProd(xε,x
′
ε) ∧ S(x)} (according to [Bur+92; CMS05; CGP99]), where

S(x) represents the set of states over variables in x. The algorithm uses a caching mechanism which

is not detailed here, the interested reader is referred to [CMS05]. Function Union computes the set

union operation of two decision diagrams. Operation Confirm depicted on Algorithm 3 updates the

enable and next-state relation if a new local state (localstate input argument of the function) is dis-

covered. Function ModelEnableε,l (i) evaluates if the local state i makes event ε enabled locally and

ModelUpdε,l (i) computes the set of locally reachable states from local state i through the �ring of

event ε. The function Build constructs the enable and update relations from the conjuncts. For the

sake of simplicity, the function Build is called after each RelProd function call to update the relations.

Practically, the function Build needs to be called only if new states are discovered at lower levels of

the MDD.

18 CHAPTER 2. BACKGROUND

Algorithm 1. Saturate

input : sk : node
1 // sk: node to be saturated,

output : node

2 if sk = 1 then
3 return 1;

4 Return result from cache if possible;
5 k ← Level(sk); // retrieve the actual

level of the MDD

6 tk ← new Nodek;

7 foreach i ∈ Sk : sk[i] 6= 0 do
8 tk[i]← Saturate(sk[i]);

9 repeat
10 foreach ε ∈ E : k ∈ Top(ε) do
11 Rε ← Nε as decision diagram;

12 foreach sk[i] 6= 0 ∧Rε[i][i′] 6= 0 do
13 tk[i

′]← tk[i
′] ∪ RelProd(tk[i],Rε[i][i′]);

14 if i′ /∈ Sk then
15 Confirm(k, i′)

16 Build(k);

17 until tk unchanged;

18 tk ← PutInUniqueTable(tk);
19 Put inputs and results in cache;
20 return tk;

Algorithm 2. RelProd

input : sk,R : node
1 // sk: node to be saturated,

2 // R: next-state representation node

output : node

3 if R = 1 then
4 return sk;

5 Return result from cache if possible;
6 k ← Level(sk); // retrieve the actual

level of the MDD

7 tk ← new Nodek;

8 foreach sk[i] 6= 0 ∧R[i][i′] 6= 0 do
9 tk[i

′]← tk[i
′] ∪ RelProd(sk[i],R[i][i′]);

10 if i′ /∈ Sk then
11 Confirm(k, i′)

12 tk ← PutInUniqueTable(Saturate(tk));
13 Put inputs and results in cache;
14 return tk;

Algorithm 3. Con�rm

input : l : MDD level;
i : localstate

1 // l: level of the new state

2 // i: new local state to be confirmed

3 foreach ε ∈ E : l ∈ supp(ε) do
4 if ModelEnableε,l(i) then
5 Renable

ε,l ←Renable
ε,l ∪ i;

6 I ′ ← ModelUpdε,l(i);

7 Rupdate
ε,l ←Rupdate

ε,l ∪ {i} × I ′;

8 Sl ← Sl ∪ i;

Algorithm 4. Build

input : l : MDD level
1 // l: actual level of MDD

2 foreach ε ∈ E : l = Top(ε) do
3 Renable

ε ←
∧

en∈supp(ε)R
enable
ε,en ;

4 Rupdate
ε ←

∧
up∈supp(ε)R

update
ε,up ;

5 Rε ←Renable
ε ∧Rupdate

ε ;

Function PutInUniqueTable places the newly computed nodes in the so-called unique table which

serves as a storage and it also ensures that no redundant nodes can appear in the decision diagram.

2.4 Model Checking

Model checking is an automatic technique for verifying �nite-state systems. Given a model, model

checking decides whether the model ful�ls the speci�cation. Formally: let M be a Kripke structure

(i. e., state transition graph). Let f be a formula of a given temporal logic (i. e., the speci�cation).

The goal of model checking according to [CGP99] is to �nd all states s of M such that M, s � f .

Structural model checking [CGP99] computes the results by exploring �rst the reachable states and

2.5. CEGAR FOR PETRI NETS 19

the state changes i. e., transition and traverses the possible behaviours to �nd those that satisfy the

property. The properties are computed as �xed-points and according to the de�nitions below.

CTL (Computation Tree Logic) [CGP99] is a frequently used language for specifying requirements.

CTL expresses atomic propositions and their temporal relations. It has an expressive syntax, and there

are e�cient algorithms for its analysis. Operators occur in pairs in CTL: the path quanti�er, either

A (on all paths) or E (there exists a path), is followed by the tense operator, one of X (next), F (future

or �nally), G (globally), and U (until). However, we only need to implement EX, EU, EG of the eight

possible pairings due to duality [CGP99].

The semantics of the three required CTL operators are as follows (where p and q are predicates):

• EX: M, s0 � EX p i� for model M , ∃s1 ∈ N (s0) state such that s1 � p. This means that

EX corresponds to the inverse N function, applying one step backward through the next-state

relation.

• EG:M, s0 � EG p i� for modelM , ∃I = (s0, s1, s2, . . .) in�nite path such that ∀j ≥ 0 : sj+1 ∈
N (sj) and sj � p, so there is a strongly connected component containing states satisfying p.

• EU: M, s0 � E(p U q) i� for model M , ∃n ≥ 0, ∃I = (s0, s1, s2, . . . , sn) path such that

∀1 ≤ j < n : sj+1 ∈ N (sj), ∀0 ≤ k < n : sk � p and sn � q.

Various techniques are developed to handle the complexity yielded by recent systems. One of

them is symbolic model checking, which uses special encoding to be able to store the huge number of

reachable states of the systems. Decision diagrams provide a compact representation for the encoded

state space, and advanced algorithms are used for model-checking.

2.5 CEGAR for Petri Nets

Petri nets have a simple structure, which makes it possible to use strong structural analysis tech-

niques based on the so-called state equation. As the structural analysis is independent of the initial

state, it can handle even in�nite state problems. Unfortunately, its pertinence to practical problems,

such as reachability analysis, has been limited. An algorithm [WW11] using CounterExample-Guided

Abstraction Re�nement (CEGAR) extended the applicability of state equation based reachability anal-

ysis. This section is based on [4],[10] and [15] and it introduces the CEGAR method and its application

for the Petri net reachability problem.

2.5.1 Petri Net State Equation

The incidence matrix of a Petri net is a matrix C|P |×|T |, where C(i, j) = w+(pi, tj) − w−(pi, tj).

Let m and m′ be markings of the Petri net, then the state equation takes the form m + Cx = m′.
Any vector x ∈ (Z+

0)|T | ful�lling the state equation is called a solution. Note that for any realizable

�ring sequence σ leading from m to m′, the Parikh image of the �ring sequence ful�lls the equation

m + C℘(σ) = m′. On the other hand, not all solutions of the state equation are Parikh images of a

realizable �ring sequence. Therefore, the existence of a solution for the state equation is a necessary

but not su�cient criterion for the reachability. A solution x is called realizable if a realisable �ring

sequence σ exists with ℘(σ) = x.

T-invariants. A vector x ∈ (Z+
0)|T | is called a T-invariant ifCx = 0 holds. A realisable T-invariant

represents the possibility of a cyclic behaviour in the modelled system since its complete occurrence

does not change the marking. However, while �ring the transitions of the invariant, some interme-

diate markings can be interesting for us.

20 CHAPTER 2. BACKGROUND

Solution space. Each solution x of the state equation m+ Cx = m′, can be written as the sum of

a base vector and the linear combination of T-invariants [WW11], which can formally be written as

x = b+
∑

i niyi, where b is a base vector and ni is the coe�cient of the T-invariant yi.

2.5.2 The CEGAR Approach

Counterexample-guided abstraction re�nement (CEGAR) is a general approach for analysing systems

with large or in�nite state spaces. The CEGAR method works on an abstraction of the original model,

which has a less detailed state space representation. During the iteration steps, the CEGAR method

re�nes the abstraction using the information from the explored part of the state space. When applying

CEGAR on the Petri net reachability problem [WW11], the initial abstraction is the state equation.

Solving the state equation is an integer linear programming problem [DT97], for which the ILP solver

tool can yield one solution, minimising a target function of the variables. Since the algorithm seeks the

shortest �ring sequences leading to the target marking, it minimizes the function f(x) =
∑

t∈T x(t).

The feasibility of the state equation is a necessary, but not su�cient criterion for reachability, so the

following situations are possible:

• If the state equation is infeasible, the necessary criterion does not hold, thus the target marking

is not reachable.

• If the state equation has a solution which is realisable by some �ring sequence, the target mark-

ing is reachable.

• If the state equation has an unrealizable solution, it is a counterexample, and the abstraction

has to be re�ned.

The purpose of the abstraction re�nement is to exclude counterexamples from the solution space

without losing any realisable solutions. For this purpose, the CEGAR approach uses linear inequalities

over transitions, called constraints.

Constraints. Two types of constraints were de�ned by Wimmel and Wolf [WW11]:

• Jump constraints have the form |ti| < n, where n ∈ Z+
0 , ti ∈ T and |ti| represents the �r-

ing count of the transition ti. Jump constraints can be used to switch between base vectors,

exploiting their pairwise incomparability.

• Increment constraints have the form

∑
ni|ti| ≥ n, where ni ∈ Z, n ∈ Z+

0 , and ti ∈ T . Incre-

ment constraints can be used to reach non-base solutions.

As an example, consider the Petri net in Figure 2.2a with the reachability problem (1, 0, 1, 0) ∈
R(PN, (0, 0, 1, 0)). There are two base vectors for this problem: (1, 0, 0) (�ring t0) and (0, 1, 1) (�ring

t1 and t2). The ILP solver yields the solution (1, 0, 0) �rst, which is unrealizable, but using the jump

constraint |t0| < 1, the ILP solver can be forced to produce the realizable solution (0, 1, 1). Consider

now the Petri net in Figure 2.2b with the reachability problem (1, 0, 1) ∈ R(PN, (0, 0, 1)). The only

base vector for this problem is the vector (1, 0, 0) (�ring t0), which is unrealizable. Using an increment

constraint |t1| ≥ 1, the ILP solver can be forced to add the T-invariant {t1, t2} to the new solution

(1, 1, 1), which is realizable by the �ring sequence σ = (t1, t0, t2).

2.5.2.1 Partial solutions

Given a Petri net PN = (P, T,E,W) and a reachability problemm′ ∈ R(PN,m0), a partial solution
is a tuple ps = (C, x, σ, r), where:

2.5. CEGAR FOR PETRI NETS 21

p0

p1p2

p3 t0

t1t2

(a) Jump constraint example

p0p1p2 t0

t1

t2

(b) Increment constraint example

Figure 2.2: Example nets for jump and increment constraints

• C is the set of (jump and increment) constraints, together with the state equation they de�ne

the ILP problem,

• x is the minimal solution satisfying the state equation and the constraints of C,

• σ ∈ T ∗ is a maximal realisable �ring sequence, with ℘(σ) ≤ x, i.e., each transition can �re as

many times as it is included in the solution vector x and if it is enabled it must �re,

• r = x− ℘(σ) is the remainder vector.

Generating partial solutions. Partial solutions can be produced from a solution vector x (and a

constraint set C) by �ring as many transitions as possible. For this purpose, the algorithm uses a “brute

force” method. The algorithm builds a tree with markings as nodes and occurrences of transitions as

edges. The root of the tree is the initial marking m0, and there is an edge labeled by t between nodes

m1 and m2 if m1[t〉m2 holds. On each path leading from the root of the tree to a leaf, each transition

ti can occur at most x(ti) times. Each path to a leaf represents a maximal �ring sequence, thus a new

partial solution. Even though the tree can be traversed only storing one path in the memory at a time

using depth-�rst search, the size of the tree can grow exponentially. Some optimisations to reduce

the size of the tree are presented later in this section.

A partial solution is called a full solution if r = 0 holds, thus ℘(σ) = x, which means that σ
realizes the solution vector x. For each realizable solution x of the state equation there exists a full

solution [WW11]. This full solution can be reached by continuously expanding the minimal solution

of the state equation with constraints.

Consider now a partial solution ps = (C, x, σ, r), which is not a full solution, i.e., r 6= 0. This

means that some transitions could not �re enough times. There are three possible situations in this

case:

1. x may be realizable by another �ring sequence σ′, thus a full solution ps′ = (C, x, σ′, 0) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions can be obtained.

3. For transitions t ∈ T with r(t) > 0 increment constraints can be added to increase the token

count in the input places of t, while the �nal marking m′ must be unchanged. This can be

achieved by adding new T-invariants to the solution. These T-invariants can “borrow” tokens

for transitions in the remainder vector.

2.5.2.2 Generating constraints

Jump constraints. Each base vector of the solution space can be reached by continuously adding

jump constraints to the minimal solution [WW11]. In order to reach non-base solutions, increment

constraints are needed, but they might con�ict with previous jump constraints. Jump constraints are

only needed to obtain a di�erent base solution vector. However, after the computation of the base

solution, jump constraints can be transformed into equivalent increment constraints [WW11].

22 CHAPTER 2. BACKGROUND

Increment constraints. Let ps = (C, x, σ, r) be a partial solution with r > 0. This means that

some transitions (in r) could not �re enough times. The algorithm uses a heuristic to �nd the places

and number of tokens needed to enable these transitions. If a set of places actually needs n (n > 0)

tokens, the heuristic estimates a number from 1 to n. If the estimate is too low, this method can

be applied again, converging to the actual number of required tokens. The heuristic consists of the

following three steps:

1. First, the algorithm builds a dependency graph [VH10] to collect the transitions and places that

are of interest. These are transitions that could not �re, and places that disable these transitions.

Each source SCC
1

of the dependency graph has to be investigated because it cannot get tokens

from other components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for each source SCC.

There are two sets of transitions, Ti ⊆ T and Xi ⊆ T . If one transition in Ti becomes �reable,

it may enable all the other transitions of the SCC, while transitions in Xi cannot activate each

other. Therefore their token shortage must be ful�lled at once.

3. The third step is to construct an increment constraint c for each source SCC from the infor-

mation about the places and their token requirements. These constraints will force transitions

(with r(t) = 0) to produce tokens in the given places. Since the �nal marking is left unchanged,

a T-invariant is added to the solution vector.

When applying the new constraint c, three situations are possible depending on the T-invariants

in the Petri net:

• If the state equation and the set of constraints become infeasible, this partial solution cannot

be extended to a full solution, therefore it can be skipped.

• If the ILP solver can produce a solution x+y (with y being a T-invariant), new partial solutions

can be found. If none of them helps to get closer to a full solution, the algorithm can get into an

in�nite loop, but no full solution is lost. A method to avoid this non-termination phenomenon

will be discussed later in this section.

• If there is a new partial solution ps′ where some transitions in the remainder vector could �re,

this method can be repeated.

Reachability of solutions [WW11]. If the reachability problem has a solution, a realisable so-

lution of the state equation can be reached by continuously adding constraints, transforming jumps

before increments.

2.5.2.3 Optimisations

Wimmel and Wolf [WW11] also presented some methods for optimization. The following are impor-

tant for this work:

• Stubborn set: The stubborn set method [VH10] investigates con�icts, concurrency and de-

pendencies between transitions, and reduces the search space by �ltering the transitions. The

stubborn set method usually leads to a search tree with a lower degree.

• Subtree omission: When a transition has to �re more than once (x(t) > 1), the stubborn set

method may not provide an e�cient reduction. The same marking is often reached by �ring

sequences that are only di�erent in the order of transitions. During the abstraction re�nement,

only the �nal marking of the �ring sequence is important. If a marking m′ is reached by �ring

1

Source strongly connected component, i.e., one without incoming edges from other components.

2.5. CEGAR FOR PETRI NETS 23

the same transitions as in a previous path, but in a di�erent order, the subtree after m′ was

already processed. Therefore, it is no longer of interest.

• Filtering T-invariants: After adding a T-invariant y to the partial solution ps = (C, x, σ, r),

all the transitions of y may �re without enabling any transition in r, yielding a partial solution

ps′ = (C′, x + y, σ′, r). The �nal marking and remainder vector of ps′ is the same as in ps,
therefore the same T-invariant y is added to the solution vector again, which can prevent the

algorithm from terminating. However, while �ring the transitions of y, the algorithm could get

closer to enabling a transition in r. These intermediate markings should be detected, and be

used as new partial solutions.

Chapter 3

Model Checking of High Level Models

This section introduces the new algorithms developed for the veri�cation of high-level models. The

need for the introduced techniques originated in a project where we aimed to verify a critical function

(so-called PRISE function) of a control system of a nuclear power plant. Coloured Petri nets (CPN)

was proposed to be used in [Ném+09] as a convenient modelling formalism to describe the PRISE

logic.

In this chapter, I propose a saturation-based algorithm to verify complex CPN models, and I further

extend the algorithm to reduce runtime and memory requirements. The proposed solution is the �rst

algorithm being able to solve the veri�cation problem of the system of the PRISE industrial case study.

In the �rst part of the section, I draw the motivation and the used high-level modelling formalism.

In the next part, I introduce the new saturation-based veri�cation algorithm using �ne-grained de-

composition and its improvement. Finally, the PRISE use-case is outlined, and the veri�cation results

are presented.

Publications related to this chapter. The results of this thesis were published in [5], [16] and

[22] and this chapter is based on that papers.

Implementation and contributors. All the algorithms presented in this chapter were imple-

mented and made available in the PetriDotNet framework. The implementation of the presented

algorithms is the result of the whole PetriDotNet team. The algorithms of Section 3.4 were imple-

mented by my students, Dániel Darvas and Attila Jámbor. The algorithm presented in Section 3.5 was

implemented by Attila Jámbor under my supervision.

3.1 Motivation

The motivation of this section is a case study, the PRISE safety function which has a huge state space

(> 1012
states) and many di�erent behaviours and functionalities, therefore e�cient automatic meth-

ods are indispensable to prove its correctness. The �rst successful veri�cation attempt was reported in

[NB09], where the authors used coloured Petri nets and the Design/CPN modelling tool. Design/CPN

has a simple explicit state model checker without built-in reduction methods. Thus it was not able

to explore the complete state space of the model, only a small part (approx. 4 · 105
states) could �t

into the memory. The authors used state space reduction techniques then partitioned the state space

and separately analysed di�erent subspaces. Finally, they have managed to obtain reduced subspaces

with a manageable size and could complete the formal veri�cation.

25

26 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Later, a student of our research group created a formal model of the PRISE safety function in the

Uppaal tool [Tót09]. The modelling formalism of Uppaal uses networks of timed automata extended

with data structures and a data manipulation language. It has symbolic state space representation,

built-in state space reduction methods, and a (partial) Computation Tree Logic (CTL) model checker.

Unfortunately, Uppaal has also failed to explore the complete state space due to memory over�ow.

Nevertheless, by reducing the model, we have at least succeeded proving some of the requirements

with Uppaal.

In [Tót09], she also tried other symbolic approaches. The �rst choice was the Symbolic Analysis

Laboratory (SAL) model checker. Sadly, this attempt to verify the PRISE safety function has failed

as well, even though SAL uses a Binary Decision Diagram based e�cient state space representation.

Without being able to trace the low-level operation of SAL, the assumption is that the next-state

relation grew too large: the state space explosion turned into decision diagram explosion in this case.

Our research group tried using other existing advanced Petri net veri�cation methods [18]. These

approaches, however, operate on simple, uncoloured Petri nets. Therefore we have developed an

automated systematic conversion procedure to convert the coloured Petri net model of PRISE to a

simple Petri net �rst. In order to verify the Petri net model of the PRISE system, we have tried various

algorithms:

• We have built an unfolding [ERV02] based veri�cation tool. As unfolding is e�cient for asyn-

chronous models, we expected that it could overcome the state space explosion problem. Un-

fortunately, this approach still ran out of memory due to the long distinctive trajectories.

• In [CMS03] the authors showed the saturation-based e�cient symbolic state space generation

and model checking method for asynchronous systems, especially for Petri nets. We have im-

plemented and ran the algorithm with di�erent settings on the converted simple net, but the

algorithm ran out of memory. Unfortunately, the size of the converted model was too large,

which caused both the state space representation and the next-state relation to exceed our re-

sources.

The common weakness of the listed past approaches is that they could only reach partial success,

as none of them was able to explore the full state space of the PRISE safety function.

Former investigations of the problem stated that Coloured Petri nets provide a suitable formalism

to e�ciently design the formal model of the PRISE systems. This motivated our work to provide

an e�cient model checking algorithm which is able to handle the complexity of real-life industrial

systems.

In this section, the saturation algorithm is extended to support the veri�cation of high-level mod-

els. At �rst, the used coloured Petri net formalism is introduced according to [16]. A new decompo-

sition algorithm [16] is introduced to handle the complex transitions of high level coloured Petri net

models, and a lazy transition relation construction algorithm [5] is developed to improve the e�ciency

of the veri�cation further. An industrial case study [16][22] is used to illustrate the applicability of

the approach.

3.2 High-level Models: Coloured Petri Nets

Coloured Petri nets (CPN) provide a high level language to develop formal models, and they yield a

compact representation for complex systems. The coloured Petri net formalism enriches ordinary

Petri nets with complex data structures [JK09]. There are many types of coloured Petri nets, in this

paper, a variant of well-formed coloured Petri nets from [1] and [16] is used that is also supported by

the PetriDotNet tool. Well-formed coloured Petri nets have the same expressive power as ordinary

3.3. SATURATION FOR CPN MODELS 27

Petri nets, but they yield a more compact representation of systems. In the following, I will introduce

and use the de�nition from [JK09], which was slightly modi�ed in [1].

Formally, a coloured Petri net is a tuple CPN = (P, T,A,Σ, V, C,G,E,M0), where

• P is the �nite set of places,

• T is the �nite set of transitions, with P ∩ T = ∅,
• A ⊆ (P × T) ∪ (T × P) is the �nite set of arcs,

• Σ is the �nite set of non-empty colour sets, i. e., types,

• V is the �nite set of typed variables such that ∀v ∈ V : Type[v] ∈ Σ,

• C : P 7→ Σ is the colour set function assigning a colour set to each place,

• G : T 7→ EXPR is the guard function assigning a guard expression to each transition t ∈ T ,

with Type[G(t)] = Bool ,

• E : A 7→ EXPR is the arc expression function assigning an expression to each arc a, with

Type[E (a)] = C(p)MS if a is connected to place p and C(p)MS is the multiset over C(p),

• M0 is the initial marking.

A marking M is a function mapping each place p into a multiset of values M(p) over the colour

set C(p). Individual elements of M(p) are called tokens. A multiset m over a set S is a function

m : S 7→ Z+
, where m(s) is the number of occurrences of the element s ∈ S in m.

Firing rules of transitions in Petri nets only depend on the marking. However, in coloured Petri

nets the arc and guard expressions have to be considered as well. Let Var [t] denote the variables of

a transition t ∈ T , which includes the free variables appearing in the guard of t and in expressions

on arcs connected to t. A binding b of a transition t assigns each variable v ∈ Var [t] a value b(v) ∈
Type[v]. The set of all bindings for a transition t is denoted by B(t). A binding element is a pair (t, b)
of a transition t and a binding b ∈ B(t). Given a binding element (t, b), let G(t)〈b〉 denote the result

of evaluating a guard in the binding b. Similarly, let E(p, t)〈b〉 and E(t, p)〈b〉 denote the result of

evaluating arc expressions. If no such arcs exist, E(p, t)〈b〉 = ∅ and E(t, p)〈b〉 = ∅.
A binding element (t, b) is enabled in a marking M if (1) G(t)〈b〉 evaluates to true and (2)

E(p, t)〈b〉 ≤ M(p) for each p ∈ P . An enabled binding element (t, b) may occur leading to the

marking M ′ de�ned by M ′(p) = M(p)− E(p, t)〈b〉+ E(t, p)〈b〉 for each p ∈ P , i. e., input arcs re-

move tokens, while output arcs produce tokens as speci�ed by the arc expressions. Firing sequences

and reachability is de�ned the same way as for P/T nets.

3.3 Saturation for CPN Models

As it was discussed before, existing low-level models and ine�cient model checking algorithms pre-

vented us from reaching our goal: to verify the PRISE safety function fully. Therefore, according to

the �ndings of [NB09], I selected coloured Petri nets as the modelling formalism, and saturation as

the basis of state space exploration and model checking. However, saturation did not support CPNs

at that time, thus I had to adopt the saturation algorithm to handle CPN models. In this section, I

overview how the state space of coloured Petri nets can be explored with the help of saturation.

Well-formed coloured Petri nets can model complex systems in a compact form by utilising the

data content of tokens instead of pure structural constructs. However, this compactness takes its

price during traversal: local state spaces and transition relations of the submodels in a decomposed

CPN are typically much larger and more complex than in simple Petri nets. Previous research [CY05]

28 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

proved that the smaller the partitions are, the more e�cient saturation becomes, since the creation

and maintenance of the smaller parts require signi�cantly less resources. In the following, I extend

the saturation-based state space traversal to handle CPN models. Then I extend this approach in

Section 3.4 to be able to handle the complex transition relation of CPN models.

3.3.1 Iteration Strategy for CPN

The basic prerequisites for saturation are decomposition and encoding. Decomposing CPN models can

be done similarly to the decomposition of ordinary Petri nets. The approach of conjunctive-disjunctive

next-state function decomposition lets us choose arbitrary decomposition of the CPN model. Encod-

ing consists of two subtasks: encoding the states and encoding the next-state relations. The used data

structures i. e., the colour types of the places increase the size of the local state spaces. However, as

long as the local state spaces do not grow prohibitively large, the iteration strategy will provide an

e�cient solution for the state space exploration.

The iteration strategy of saturation exploits locality. CPN models can concisely represent sys-

tems by using the high-level constructs: this way the introduced dependencies will ruin locality for

some cases. Applying saturation for CPNs extends the set of models veri�ed by saturation, but the

new algorithm cannot replace former saturation algorithms for all the problems. In general, when

saturation-based analysis of the CPN model is not feasible, one can still unfold the CPN to an ordi-

nary PN and try to use traditional saturation.

3.3.2 Encoding Next-state Relations

The biggest challenge in adapting saturation to CPNs is the construction of the next-state relations.

As it was discussed in Section 2.3.2, the transition relation can be decomposed. According to [CY05],

the relationRε = Renable
ε ∧Rupdate

ε has to be created for each transition (event ε). Further conjunctive

decomposition Renable
ε =

∧
kRenable

ε,k and Rupdate
ε =

∧
kR

update
ε,k can signi�cantly reduce the computa-

tional cost. The smaller the conjuncts are, the easier and cheaper it is to construct them.

Kronecker consistent models can yield �ne granularity by decomposing the conjuncts to refer to

only single state variables: this turned out to be very e�cient in practice. However, this granularity

cannot be achieved for arbitrary models. CPN models can represent complex logic in a compact form,

and the dependencies in the transition relation might become intricate, so the decomposition rules

applied to Petri nets do not lead to a Kronecker consistent decomposition of CPN models. This implies

that eachRenable
ε,k andRupdate

ε,k will refer to a group of variables. When each group is smaller than the set

of all variables a�ected by the event, the decomposition still increases the e�ciency. Unfortunately,

the transition relation of CPNs usually cannot be decomposed using the conjunctive decomposition

rules because of the arc and guard expressions: they often express intricate dependencies among the

state variables. It is very seldom the case that the transition relation is conjunctively decomposable.

In addition, separating the enable and update parts of the transition relation often does not yield

any advantage for CPNs, as there is no construct in the language to express enabledness (contrary

to [CY05]): a transition is enabled if the input arcs can take enough tokens from input places (so

the variables representing the input places have certain values). However, input arcs also consume

tokens, so they constitute also the update relations. The result is that the relation encoded in Renable
ε

is fully encoded also inRupdate
ε .

These reasons lead to the situation that when the algorithm builds the relations, it has to traverse

all possible local state changes for all the places connected to the transition. This turned out to be very

expensive in practice and prevented the algorithms to verify our industrial case study, as we could

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 29

only solve smaller models by using the traditional decomposition algorithm. In the next section I

show a di�erent decomposition method which proved to be e�cient for CPNs.

3.4 Disjunctive-Conjunctive Decomposition for CPN Models

This section is based on the following papers: [16] and [22].

Disjunctive-conjunctive decomposition proved its e�ciency for many classes of Petri nets. De-

spite the fact that these Petri net classes are enriched with various constructs to increase expressive-

ness, they do not support data types i. e., colour types. The introduced decomposition was tailored

to the characteristics of variants of the ordinary Petri net formalism ([CY05]). Coloured Petri nets

brought not only various data types, but also arc and guard variables into consideration. In addition,

complex data types can have a huge number of di�erent values depending on the size of the domain,

further increasing the complexity of the analysis by increasing the number of local states to be tra-

versed. In this section, I show how we can decompose the representation of the transition relations

according to the structure of a coloured Petri net. We will exploit the locality of Coloured Petri nets

and decompose the transition relations into manageable pieces. The basic building blocks of the de-

composition are the places of the Petri net so that the new algorithm will use the places as a guide for

the decomposition. However, in case of considering only places as state variables in the decision di-

agram representation, then complex guard functions will not enable the �ne-grained decomposition,

as the e�ect of the transition is global with regard to a transition.

3.4.1 Overview of the Approach

As it was discussed before, the iteration strategy of saturation provides e�ciency, but we have to

extend the algorithm to handle the complex transition relation of CPN models. In order to explore the

possible next-state relations and build the representation on-the-�y during the traversal, the algorithm

has to solve the following tasks:

1. Compute the representation according to the structure of the net.

2. Build the initial next-state relation.

3. Update the next-state relation when a new local state is discovered.

In the following sections, I will show a new e�cient representation of the next-state relations of

CPN models. I also introduce algorithms for the e�cient construction and on-the-�y update of the

next-state relation.

3.4.2 Decomposition Algorithm for CPN

I will introduce the new representation and a �ne-grained decomposition method for the next-state re-

lation of CPN models. The new algorithm exploits the formerly introduced disjunctive decomposition:

at �rst, the system-level next-state relation is decomposed according to the events asR =
∨
ε∈E Rε,

so the decomposition of the whole next-state relation into smaller relations is applied according to

the literature. However, the conjunctive decomposition and construction of the individual next-state

relations (Rε) are improved in this section. In the following, we assume that the encoding mapped

each place to a state variable, for the sake of simplicity. However, the algorithm is not restricted to

this encoding scheme.

30 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Next-state storage. The next-state representation of CPN models is constructed from the con-

straint of the guard expression, and the local e�ects of the variable bindings of the arc expressions.

In order to be able to represent the guard expression in the symbolic next-state representation, new

variables are needed: the symbolic representation of the next-state relation contains the “from” state

variables and the corresponding “to” state variables (x and x′) and the next-state representation also

contains new, auxiliary variables such as for each v ∈ V a corresponding state variable xv is included

into the symbolic next-state representation.

Next-state representation and decomposition. The new �ne-grained decomposition of the tran-

sition relation of complex CPN models exploits the following facts. The constraint yielded by the

guard and arc expressions does not change during the state space exploration, and these constraints

can be computed without knowing the exact markings of the system. The main idea is to decompose

the state dependent and independent parts of the transition relation and then use the following rule

for computing the transition relation: Rγε ∧
∧
kR

update
ε,k . In the decomposition, relationRγε represents

the constraint of the guard and arc expressions and eachRupdate
ε,k represents the changes caused by the

bindings of the variables to the corresponding state variables.

Next-state construction. To construct the relation Rγε , we have to introduce new variables into

the encoding. The new variables will represent variables of the set Var [ε] i. e., the variables of the

input and output arcs and the guard expression of event ε. For each v ∈ Var [ε] the transition relation

encoding is extended with a corresponding variable xv andRγε will only refer to these new variables.

Formally, Rγε will represent the set of valid bindings for all the variables v ∈ Var [ε] such that ∀b ∈
B(t), b ∈ Rγε if G(t)〈b〉 evaluates to true and the arc expressions E(p, t)〈b〉 and E(t, p)〈b〉 are also

satis�ed.

The relationRγε has similar role as the enable relation in the former approach. The main extensions

ofRγε compared to the formerly introduced enable relation are summarized in the following:

• The set of state variables has to be extended with auxiliary variables to be able to encode the

relationRγε .

• The relation Rγε represents not only the variable bindings which are enabled but also those

bindings which will change the state variables as the transition �res.

However, the introduced auxiliary variables are not present in the �nal Rupdate
ε relation as they

are only needed to build the relation e�ciently, but we do not need them when using the relation.

During the state traversal, the goal is to update the next-state relation locally. This locality is

provided by the introduced auxiliary variables as they support the handling of the state variables

independently from each other, so we can decompose the relation and build an individual update re-

lationRupdate
ε,x corresponding to each state variable x. For each state variable x, the local update rela-

tionRupdate
ε is constructed by using auxiliary variables from the setV = Var [E (p, t)]

⋃
Var [E (t , p)],

where state variable x corresponds to the place p. The representation of the local state changes in case

of transition �ring is constructed, the e�ects of the variable assignments to the marking of the place

are encoded by building a vector v of variables v ∈ V and constructing the relationRupdate
ε (v, x, x′).

These relations are continuously built and updated during the state space traversal and it will encode

the e�ects of E(p, t)〈b〉 and E(t, p)〈b〉 to place p in the corresponding markings when the �ring of

transition t happens (event ε).

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 31

Projection to the state variables. During state space traversal the algorithm does not need infor-

mation regarding the assignments of the variables in the arc and guard expressions. This fact reduces

the size of the next-state relations as the information contained in these auxiliary variables can be

omitted. Putting things together, the next-state relation for the event ε is constructed according to

the following rule: Rε = {(x,x′) | ∃v Rγε (v) ∧
∧
kR

update
ε,k (vk, xk, x

′
k)}. The guard relation is com-

puted from the guard and arc expressions, the next-state relations indexed by k are constructed during

state space traversal, and they correspond to the local state changes caused by the variable bindings

of the transition �ring. Existential quanti�cation is used to map the relation to the state variables i. e.,

to omit the auxiliary variables from the relation.

3.4.3 Event Handling Algorithm

Coloured Petri nets can model complex systems in a very compact form by utilising the data content

of tokens instead of pure structural constructs. However, this compactness takes its toll during state

traversal: the local state spaces of the sub-models in a decomposed CPN are typically much larger

and more complex than in simple Petri nets. Moreover, in CPNs fewer variables are used to encode

the same set of states into decision diagrams, thus there is less redundancy in the state space rep-

resentation, resulting in a less e�cient form of storage. Previous researches proved that the smaller

the partitions are, the more e�cient saturation becomes, since the creation and maintenance of the

smaller parts require signi�cantly less resources. The aim of the conjunctive re�nement of the parti-

tioning, as described in Section 3.4.2, is to further decompose the state transitions into smaller parts

and to treat these parts separately and e�ciently. The steps of this event handling process are shown

in Figure 3.1.

State
transition
relation

Partitioning
according to

events

Conjunctive
partitioning

Offline
evaluation of
the guards

Discovering
new states

Updating
the complete

relation

Decision
diagram of
the relation

Figure 3.1: Work�ow of the event handling

1. Partition the next-state relation according to events (i. e., transitions). The global state transition

relation is partitioned disjunctively driven by the events. The partitioning is done according

to the following observation: N =
⋃
∀εNε and the relation Rε for each event ε ∈ E is stored

in separate decision diagram. The original state transition relation can be calculated as R =∨
∀ε∈E Rε.

2. Conjunctive decomposition by introducing auxiliary variables. The above partitioning is further

re�ned by splitting theRε state transition relation of each ε event into smaller parts according

to the formerly introduced rule: Rε = Rγε (v) ∧
∧
kR

update
ε,k (vk, xk, x

′
k)}. The �reable bindings

of the variables are stored in the relationsRupdate
ε,k (vk, xk, x

′
k) encoded as MDDs. Furthermore,

another MDD is created to represent the constraints imposed by the guards associated with the

events. This MDD, denoted as Rγε (v), stores those bindings of the variables in the input and

output arc expressions of the transition for which the guard evaluates to true.

32 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

3. O�-line evaluation of guards. The symbolic representation for the guard constraint associated

to the event ε is created before the iteration of the saturation: a decision diagram is built for

Rγε . The decision diagram is built by traversing the possible bindings, which evaluate the guard

expression to true. The variable bindings stored in this MDD need not be updated later during

saturation.

4. Discovering new states. As soon as a new state is discovered during the iteration of the satura-

tion, the �reable state transitions from this new state must be instantiated immediately. When

a new state transition of event ε is found a�ecting variable xk, then the MDD representing

Rupdate
ε,k (vk, xk, x

′
k) is expanded with the new local state transitions. Additionally, the variable

bindings that make the state transitions �reable are also stored. This update operation is re-

alized in the function CPNCon�rm function in Algorithm 5: the saturation algorithm uses this

function instead of function Con�rm.

5. Updating the complete relation. Since the original iteration order of the saturation is preserved

in our algorithm, the complete state transition relation must be recreated by intersecting the

MDDs of the partial relations and projecting the relation to the state variables.This functionality

is implemented in the function CPNBuild of Algorithm 6: function CPNBuild will be called

instead of Build in the saturation algorithm.

Encode self-loops The decomposition algorithm has to pay special attention to self-loops. As it

was formerly mentioned, the conjuncts will encode the e�ects of E(p, t)〈b〉 and E(t, p)〈b〉 to place

p (variable x), in case of self-loops, the algorithm compiles the input and output arcs into a single

Rupdate
ε (v, x, x′) relation and ensures the correct construction of the transition relation.

3.4.4 O�-Line Evaluation of Guards

In order to exploit the �ne-grained decomposition and the in-built caching mechanisms of MDDs, as

much of the transition relation as possible should be built o�-line. The decomposition helps us to

compute o�-line the relation representing the guard and arc expressions Rγε (v). In addition, we can

compute the local next-state relations from the initial state: Rupdate
ε,k (vk, xk, x

′
k).

The relationRγε (v) for each event ε is constructed o�-line in four steps:

1. The variables included in the expressions corresponding to the transition are collected: V γ =
Var [E (p, t)]

⋃
Var [E (t , p)]

⋃
Var [G(t)].

2. For each variable v ∈ V γ
a corresponding variable (level) xv is created in the MDD. These

levels are inserted above the levels of the state variables.

3. The variables are bound for every combination of values permitted by their colour sets in an

exhaustive manner.

4. Each possible variable binding of the guard expression is evaluated and every binding that

evaluates to true is stored in the decision diagram, since with this binding the guard permits

the �ring of the transition. The colour sets are encoded: each colour in the colour set of a

variable in a newly created level is associated with an integer.

An MDD representingRγε (v) is initialised with the above steps, and it contains the possible bind-

ings that make the guard enable the �ring of the transition. Since the guard expression does not

change during the execution of the model, it is not necessary to update the conjunct represented by

the MDD during saturation.

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 33

Algorithm 5. CPNCon�rm

input : l : MDD level;
i : localstate

1 // l: level of the new state

2 // i: new local state to be confirmed

3 foreach ε ∈ E : l ∈ supp(ε) do
4 foreach b(v) ∈ B(ε) do
5 I ′ ← ModelUpdε,l(i , b(v));

6 Rupdate
ε,l ←Rupdate

ε,l ∪ {b(v)} × {i} × I ′;

7 Sl ← Sl ∪ i;

Algorithm 6. CPNBuild

input : l : MDD level
1 // l: actual level of MDD

2 foreach ε ∈ E : l = Top(ε) do
3 Rε ←Rγε (v) ∧

∧
kRε,k(vk, xk, x

′
k);

4 Rε ← projx,x′(Rε(v,x,x′));

3.4.5 Correctness of the Algorithm

An e�cient decomposition method and encoding were shown in the former section. However, beside

the e�ciency of the algorithms, we have to overview correctness issues too.

The iteration order of saturation is not modi�ed, so the construction of the next-state re-

lation has to be considered here. We have to investigate if the semantics of CPNs is mapped

correctly to the next-state representation. At �rst, the semantics of CPN is formally de�ned,

and then I show how the implementation re�ects the possible behaviour. The algorithm con-

structs the next-state relation for the event ε of transition t according to the following rule:

Rε = {(x,x′) | ∃v Rγε (v) ∧
∧
kR

update
ε,k (vk, xk, x

′
k)}. In the following, the correctness of the map-

ping is investigated.

Formally, a transition t is enabled with respect to the binding b if the following holds:

• The guard expression is satis�ed if G(t)〈b〉 evaluates to true, which is ful�lled if ∃v Rγε (v).

Satisfying variable assignment of variables v represents the bindings of the CPN variables by

binding b.

• G(t)〈b〉 for all possible b is represented byRγε . As the expression language of the CPN formalism

introduced in Section 3.2 is built on top of predicate logic it can be easily transformed to a

constraint satisfaction problem ([HVH10]) and solved with the decision diagram representation.

• E(p, t)〈b〉 ≤ M(p) has to be satis�ed for each p ∈ P : (p, t) ∈ A and this will be represented

byRupdate
ε,k (vk, xk, x

′
k) for each state variable x encoding the state p.

A transition t changes the state of the CPN with the binding b as follows. Firing from marking M
through binding b leading to the markingM ′ is computed asM ′(p) = M(p)−E(p, t)〈b〉+E(t, p)〈b〉
for each p ∈ P . The problem is divided into smaller pieces and represented as follows:

• For each arc from a connected place p to the transition t such as (p, t) ∈ A, the next-

state is computed M ′(p) = M(p) − E(p, t)〈b〉, which is encoded as an individual relation

Rupdate
ε,k (vk, xk, x

′
k) where x is the state variable corresponding to p and vk represents the set

of variables Vk such as Vk = Var [E (p, t)].

• For each arc from the transition t to a connected place p such as (t, p) ∈ A, the next-

state is computed M ′(p) = M(p) + E(t, p)〈b〉, which is encoded as an individual relation

Rupdate
ε,k (vk, xk, x

′
k) where x is the state variable corresponding to p and vk represents the set

of variables Vk such as Vk = Var [E (t , p)].

• The construction of each conjunct Rupdate
ε,k (vk, xk, x

′
k) represents the e�ects of the set of all

possible bindings i. e., B(t) to the corresponding places i. e., state variables

34 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

The semantics of the CPN transition ε is therefore represented by Rε. We have to overview

also the implementation of the behaviour. The introduced algorithms use MDDs for representing the

relations. As it was discussed in Section 3.4.2, auxiliary variables are introduced in the encoding,

for the variables in the arc expressions and guards. During the traversal, Algorithm 5 updates the

relations according to the newly discovered local states. The algorithms exhaustively compute the

possible local state changes according to the set of all possible bindings. New local states are computed

by the function ModelUpdε,l (i , b(v)), which function computes the new markings being reachable

from the local state i by using binding b.

The procedure of Algorithm 6 updates the next-state relationRε. Computing the conjunction of

the individual conjuncts ensures that the �ring can only happen if all the places are marked prop-

erly for the �ring i. e., the binding which makes the guard enabled can be satis�ed by the marking

of the individual places. Finally, the algorithm projects the relation to the state variables (to elim-

inate the bindings from the representation): proj x,x′(Rε) computes the existential quanti�cation

∃v Rε(v,x,x′).

3.5 Lazy Saturation Algorithm

The algorithm which was introduced for the �ne-grained decomposition of the transition relation for

CPNs turned out to be e�cient (as it will be discussed in Section 3.6). However, the exploration of the

local state spaces and local next-state relations is still computationally expensive. In this section, a

new saturation algorithm is introduced [5], which uses a more resource-e�cient strategy to compose

the next-state relations during the state space traversal. The aim is to be able to �lter out the unnec-

essary state changes by delaying the construction of the next state relation. In the following, this new

algorithm is called lazy coloured saturation, or lazy saturation for short. This section is mainly based

on [5].

3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN

Despite the fact that the new disjunctive-conjunctive decomposition algorithm for CPNs proved to

be e�cient, there are some more challenges which came up when the algorithm was applied to our

industrial case study and also for synthetic benchmark models.

The coloured saturation algorithm is designed for a general class of CPNs, without restrictions. As

a consequence, the algorithm does not have a priori knowledge about the state space, neither about

local states, next-states and local next-states. This information will only be revealed during state

space exploration. Therefore, the introduced saturation algorithm builds the local state spaces and

transition relations on-the-�y, without having additional information that could be used to optimise

the traversal and the construction of the next-state relations.

Thus, when a new local state is discovered, both the local state space and the next-state relations

need to be updated with regard to the new information. Since these updates are frequent (as all local

states and next-state relations must be explored), they impose a big overhead on the algorithm. More-

over, incidental to the greedy transition relation building nature of symbolic methods, the algorithm

builds many transition relations that will never be �red, imposed by the restrictions of the state space.

The local state space of CPNs might become huge even in the case of decomposing the model into

small pieces. Complex data structures and colour types of big domains, various combinations of the

coloured tokens will all increase the complexity and overhead of computing the symbolic next-state

representation.

3.5. LAZY SATURATION ALGORITHM 35

Imagine the following example: there is a place p1 with the colour type of domain size 10. When

the algorithm places a token on it through transition t, it will immediately also discover 10 new state

transitions representing the situation, that one more additional token arrives. For the 10 di�erent

tokens, this will sum up to 100 new transitions. However, if the model will never take 2 tokens on

that place, these new transitions will never �re. Note that if transition t removes a token from another

place p0, which can also be marked by the 10 di�erent values of the colour type, the possible number

of state changes represented by transition t will be 100 × 100 = 10000 more than what saturation

will use during the traversal (guard expression on transition t can reduce this number).

In the following sections, a method is introduced to decrease the computation overhead of building

the next-state representation of Coloured Petri net models and reducing the size of the next-state

representation for the price of introducing a new, smaller relation and a modi�ed iteration order for

saturation.

3.5.2 Overview of the Approach

Symbolic algorithms encode the possible states and state changes in decision diagrams. The data

structures are continuously updated as new states are discovered and unexplored transitions appear.

The data manipulation based on decision diagrams can be expensive, so various techniques are utilised

to decrease the computational costs. The disjunctive-conjunctive partitioning algorithm decomposes

the next-state relation, and saturation bene�ts from the e�cient manipulation of the smaller parts.

During the iteration these subrelations are updated according to the recently discovered substates:

every time a new local state is discovered, all possible local state transitions are computed and added

to the corresponding next-state relation. This greedy strategy constructs the next-state relations in

one complex step, where each possible local and global state change is explored no matter if it is

reachable in the state space, or not. However, this can be wasteful as the growing number of local

states can easily lead to many unreachable combinations of them. This is especially true for CPNs,

as they provide a compact representation of even complex models. In such models, there can be

many state transitions that are reachable locally, but the algorithm will never reach a state where

they become enabled on the global, Petri net level. Since these infeasible local state transitions have

been added to the local next-state relations, the decomposed symbolic representation becomes bigger

than necessary.

In this section, I introduce a new approach to decrease the size of the transition relation repre-

sentation of complex CPN models. The main idea of the approach is to build the transition relation

lazily in two phases. The �rst phase is the discovery phase, where the algorithm only registers the

potentially reachable global states, but the algorithm constructs the next-state relation from a given

state only if the given state becomes globally reachable. This way the algorithm tries to avoid the

construction of the next-state relation for globally unreachable states. This temporal decomposition

of the construction of the next-state relation can be advantageous for CPN models.

The new algorithm aims to �lter out as many infeasible transition relations as possible. For this

purpose, a new relation ER is introduced that only stores the states from which state transitions are

enabled. In other words, this relation contains only “from” states (x) and the “to” states (x′) are not

stored – contrary to the next-state relation. This lets the building of the next-state relations be delayed

until the algorithm can exactly decide which relation should be updated with the new information.

First, only the ER relation is built, and the state transition is stored in the next-state relation only

when the relation becomes globally enabled. This way the next-state relation will contain less globally

infeasible state transitions: its size will be reduced and also the state space traversal will be more

e�cient. The motivation of our work is based on the observation that the size of the ER relation is

36 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

always smaller than the size of theR relations: using this smaller ER relation to postpone or to skip

the updating of theR relations is a good pay-o� regarding the performance of the algorithm.

3.5.3 Iteration of Lazy Saturation

Saturation builds the next-state relation in an eager manner which has to be modi�ed to work lazily.

The main functionalities of the saturation are not changed as it is depicted on Algorithm 7. The

cache manipulation and decision diagram speci�c operations are omitted for brevity, but the inter-

ested reader can �nd them in [CMS03]. The changes compared to former approaches are marked with

an asterisk (∗), the rest of the algorithms are based on the formerly introduced saturation of Algo-

rithm 3.4.2 and [CMS03]. The lazy saturation algorithm starts the state space exploration from the

initial states represented by a decision diagram and initialises ER and R representations. Function

Algorithm 7 saturates the nodes of the state space representation and Algorithm 8 computes the steps

of the traversal. These functions build the MDD of the state space by �ring all enabled events in a

recursive, exhaustive manner.

The main di�erence compared to the traditional saturation iteration strategy comes at this point.

As the next-state relations are built lazily, the algorithm has to check before the symbolic next-state

computation if a step has become enabled which is not in the next-state relation. So, before each

step in the state space, the new lazy saturation algorithm checks the next-state relations and the

ER relations: function UpdateRelation of Algorithm 13 extracts the necessary information from the

state space representation and from the relation ER to update the conjuncts of the next-state relation,

if needed. The function ERBuild updates the next-state function of event ε by reconstructing the

complete relation from the conjuncts.

If a new state is discovered, the function ERConfirm of Algorithm 9 updates the relation ER. This

function is explained in detail in Section 3.5.4. The next-state relation R is updated by the function

UpdateRelation at this point of saturation. Its operation is described in Section 3.5.5. In the later

sections, the details of the steps are discussed.

3.5.4 Computing and Using ER

The goal of using an additional relation is to decrease the size and the computational cost of the next-

state relation. For this purpose, the new saturation algorithm constructs a simple set to store those

state con�gurations which can contribute to event �rings. Constructing this representation delays

the construction of the next-state representation: the new saturation algorithm will only add a step

into the next-state representation if the state space traversal needs to �re it.

The construction of relation ER is similar to the construction of the next-state relations and

also similar to the construction of relation Renable of Section 2.3.2. The lazy saturation algorithm

exploits the locality also for the construction of ER: the disjunctive-conjunctive decomposition is also

applied to the ER relation. The algorithm creates a separate ERε relation for each event ε. In order

to e�ciently manipulate the relation, the algorithm partitions each ERε relation into smaller parts,

and stores them separately according to the following rule: ER =
∨
ε∈E ERε and ERε =

∧
k ERε,k.

This way the new lazy algorithm can exploit event-locality and the other advantages of disjunctive-

conjunctive decomposition.

Contrary to the eager construction of the next-state representation of the traditional algorithm,

the new algorithm builds the ER relation during the iteration primarily. The algorithm discovers the

new states from which an event can be �red. The target states of the event �ring are not traversed

in this phase of the iteration. So the role of the relation ER is simpli�ed compared to the next-

3.5. LAZY SATURATION ALGORITHM 37

Algorithm 7. LazySaturate

input : sk : node
1 // sk: node to be saturated,

output : node

2 if sk = 1 then
3 return 1;

4 Return result from cache if possible;
5 k ← Level(sk); // retrieve the actual

level of the MDD

6 tk ← new Nodek;

7 foreach i ∈ Sk : sk[i] 6= 0 do
8 tk[i]← Saturate(sk[i]);

9 repeat
10 foreach ε ∈ E : k ∈ Top(ε) do
11∗ UpdateRelation(ε, sk, ERε,Rε);
12∗ LazyCPNBuild(ε);
13 Rε ← Nε as decision diagram;

14 foreach sk[i] 6= 0 ∧Rε[i][i′] 6= 0 do
15 tk[i

′]← tk[i
′] ∪ LazyRelProd(tk[i],Rε[i][i′]);

16 if i′ /∈ Sk then
17 ERConfirm(k, i′)

18 ERBuild(k);

19 until tk unchanged;

20 tk ← PutInUniqueTable(tk);
21 Put inputs and results in cache;
22 return tk;

Algorithm 8. LazyRelProd

input : sk,R : node
1 // sk: node to be saturated,

2 // R: next-state representation node

output : node

3 if R = 1 then
4 return sk;

5 Return result from cache if possible;
6 k ← Level(sk); // retrieve the actual

level of the MDD

7 tk ← new Nodek;

8 foreach sk[i] 6= 0 ∧R[i][i′] 6= 0 do
9 tk[i

′]← tk[i
′] ∪ LazyRelProd(sk[i],R[i][i′]);

10 if i′ /∈ Sk then
11 ERConfirm(k, i′)

12 tk ← PutInUniqueTable(Saturate(tk));
13 Put inputs and results in cache;
14 return tk;

Algorithm 9. ERCon�rm

input : l : MDD level;
i : localstate

1 // l: level of the new state

2 // i: new local state to be confirmed

3 foreach ε ∈ E : l ∈ supp(ε) do
4 foreach b(v) ∈ B(ε) do
5 if ModelUpdε,l(i , b(v)) 6= ∅ then
6 ERε,l ← ERε,l ∪ {b(v)} × {i};

7 Sl ← Sl ∪ i;

Algorithm 10. ERBuild

input : l : MDD level
1 // l: actual level of MDD

2 Rl ← ∅;
3 foreach ε ∈ E : l = Top(ε) do
4 ERε ←Rγε (v) ∧

∧
k∈supp(ε) ERε,k(vk, xk);

5 ERε ← projx(ERε(vk, xk));

38 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Algorithm 11. LazyCPNCon�rm

input : ε : event; l : MDD level;
i : localstate

1 // l: level of the new state

2 // i: new local state to be confirmed

3 foreach ε ∈ E : l ∈ supp(ε) do
4 foreach b(v) ∈ B(ε) do
5 if ModelUpdε,l(i , b(v)) 6= ∅ then
6 ERε,l ← ERε,l ∪ {b(v)} × {i};

7 Sl ← Sl ∪ i;

Algorithm 12. LazyCPNBuild

input : ε : event
1 // ε: actual event to be updated

2 Rε ←Rγε (v) ∧
∧
kRε,k(vk, xk, x

′
k);

3 Rε ← projx,x′(Rε(v,x,x′));

Algorithm 13. UpdateRelation

input : ε : event; sk, ER,R : node
1 // ε: fired event,

2 // sk: traversed node,

3 // R: next-state representation node

4 // ER: ER representation node

5 k ← Level(sk); // retrieve the actual

level of the MDD

6 Return result from cache if possible;
7 if k = 0 then
8 return;

9 foreach i ∈ Sk : sk[i] 6= 0 ∧ ER[i] 6= 0 do
10 if R[i] is unknown then
11 LazyCPNConfirm(ε, k, i)

12 else
13 foreach j ∈ Sk : sk[i] 6= 0 ∧R[i][j] 6= 0 do
14 UpdateRelation(ε, sk[i], ER[i],R[i][j]);

15 Put inputs and results in cache;

state relations: this fact appears in the computational complexity and space requirements of the new

relation. Constructing and storing relation ER is much cheaper than the next-state relations.

Set of states represented by ER. The relation ER aims to represent and encode those states from

which the �ring of an event (in the context of CPN, a transition) is enabled, formally: x ∈ ER i�

∃ε ∈ E : Nε(x) 6= ∅. According to this rule, disjunctive partitioning of ER =
∨
ε∈E ERε can be

used to decomposed both the construction of the relation and also the usage during the state space

traversal.

Connection to R. The relation ER can be derived from the next-state representation as follows:

x ∈ ERε i� ∃x′ : Rε(x,x′). E�ectively, this can be computed by the formerly presented projection

function: ERε = proj x(Rε). However, it is not practical to compute relationRε �rst and derive ERε
from it. Instead, I show a method to compute ER directly during the state space traversal and use it

to reduce the size ofR.

The relation ERε is the “simpli�ed” version of the relation Rε used by the traditional saturation

algorithm.

E�cient computation of ER. The e�cient computation of relation ER is accomplished by func-

tions ERConfirm and ERBuild of Algorithm 9 and Algorithm 10.

The pseudocode of the function ERConfirm updates the individual conjuncts of the ER relation.

The input parameters of the function represent the new (recently discovered) local state (i) at the level

l of the decision diagram. ERConfirm function examines if there is a binding of the events which

can be satis�ed by state i and updates the conjuncts with this information.

After a conjunct of ERε was updated, the whole ERε relation has to be rebuilt by computing

symbolically: ERε = ERγε ∧
∧
k ERε,k. This is carried out by the function ERBuild . As the enabling

relation ERγε is not much smaller thanRγε , the later is used in the algorithm to reduce the computa-

tional cost and avoid redundant computations. The algorithm also projects the relation to the state

3.5. LAZY SATURATION ALGORITHM 39

variables at line 5 as the relation has to represent if a state con�guration is enabled, but the exact

bindings are not used.

Optimizations. The relation ER contains unnecessary information to decide if an event is enabled

or not in a certain state: places (and their marking) connected to the outgoing edges do not in�uence

the enabledness of the transition. This means that the state variables corresponding to the places of

the outgoing edges can be left out from the relation without losing information and this leads to a

decreased number of conjuncts and reduced computational costs. Formally, the relation ER for the

event of transition t will be constructed from conjuncts ERk(vk, xin) where xin encodes the state

of pin and E(pin , t) ∈ A. Let xin represent the state variables corresponding to the input places of

transition t and xout represent the state variables corresponding to the output places of transition t,
then the simpli�ed ERε relation can be expressed as ∃xout ERε(xin ,xout). This is computed by the

projection operator as proj xout
(ERε). This optimisation is omitted from the pseudo code for the sake

of simplicity.

3.5.5 Updating the Next-State Relation

The lazy saturation algorithm updates at �rst the relation ER, and updates relationR only if neces-

sary. Now, I will explain how the algorithm detects the situation when relationR has to be updated.

R is updated if a state is reached, which is included only in relation ER. This means that a transition

�ring is enabled in that state, but this transition �ring is not yet included in R, so the algorithm has

to update R with the newly enabled possible �rings. The traversal collects the possible states from

which the events are enabled, and when the �ring of a new state transition is triggered, the next-state

relation is updated with the new information.

The next-state relations are updated by the function UpdateRelation of Algorithm 13. This func-

tion is called from the function LazySaturate at line 11. LazySaturate and LazyRelProd functions

update �rst the relation ER during the traversal. During the state space traversal, before �ring a new

event, function UpdateRelation is called. UpdateRelation traverses the state space representation

together with the relation ER andR, and checks if there is any reachable state which is represented

in ER but not represented in relationR. Those states which are only included in ER are the starting

state of a next-state relation to be included also inR.

The function UpdateRelation recursively computes if the given event is enabled, and updates the

next-state relation if needed. It traverses all event �rings recursively from the ERε andRε relations,

and the MDD denoted by sk that encodes the state space. During this traversal, the algorithm decides

whether a state transition is enabled or not. If the algorithm �nds at (line 10) a state from which a step

through event ε is enabled, but it is not included in relationRε (i. e., the next-state is unknown), calling

function LazyCPNConfirm will update the corresponding conjuncts of the next-state relation. After

updating the conjuncts of event ε, function LazyCPNBuild will rebuild the corresponding next-state

relation Rε. This function updates the Rε relation by calculating it from the updated conjuncts as

follows (x,x′) ∈ Rε i� and only i� x ∈ Sreach , and all the other rules remain the same as introduced

in Section 3.4.

3.5.6 Operation of Lazy Saturation

The working of the lazy saturation algorithm is illustrated now with an example. The example

Coloured Petri net model is shown in Figure 3.2a: the model consists of two places and a transi-

tion. Both places have the same colour type with two values: 1 and 2. Initially the place pA is marked

40 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

with a token valued 1, and the place pB is empty. The decomposition creates two submodels, one for

place pA and one for place pB . The encoding of the local states is shown in Figure 3.2b. Based on the

table, the initial (local) state of place pA is 1 and the initial state of place pB is 0. The decomposition

of the relationR (and of the relation ER) conforms to the decomposition of the state space, i. e., there

are two update conjuncts,RupdateA andRupdateB .

pA pB

x y

[x = y]

color: 1..2 color: 1..2

1

(a) Example CPN model

Local state Meaning
0 The place is empty.

1 The place is marked with a token valued 1.

2 The place is marked with a token valued 2.

11 The place is marked with two tokens, both valued 1.

12 The place is marked with two tokens, the value of the

�rst is 1, the value of the second is 2.

etc.

(b) Encoding of the local states

Figure 3.2: Example to illustrate the operation of lazy saturation

The MDDs created during the event handling of saturation are shown in Table 3.1. The content of

the �rst row belongs to the coloured saturation algorithm of Section 3.4, while the second row belongs

to the new lazy algorithm of Section 3.5. The decision diagram levels (variables) corresponding to the

variables of the guard and arc expressions are omitted from the MDDs for brevity (both approaches

build the same guard relation and use the same auxiliary variables).

The execution steps of the coloured saturation algorithm and the lazy algorithm for the example

are the following:

1. State space generation is started: relationRγ is initialized and its content is calculated o�-line.

(This relation is not shown in Table 3.1.)

2. Coloured saturation explores and collects all possible state changes into the RupdateB relation

by calling CPNConfirm(1, 0). Locally there are two new reachable states depending on the

assignment of variable y. Lazy saturation examines only whether the transition is �reable from

state 0, and procedure ERConfirm collects this enabled state into the relation ERB .

3. Saturation cannot make any steps, transition �rings are not enabled at this level of the decision

diagram as the Top value of the event is two.

4. Saturation continues the iteration and jumps to the second level of the decision diagram.

CPN saturation calls CPNConfirm(2, 1). Coloured saturation creates updates conjunctRupdate
A

while lazy saturation creates the relation ERA as depicted on the �gure.

5. Function Build called by saturation builds up the relation R from the conjuncts. At the same

step, lazy saturation calculates only the ER relation by calling the ERBuild function. The (not

represented) conjunct Rγ prevents the next-state relation from storing the (A,A′, B,B′) =
(1, 0, 0, 2) global state change (i. e., the (1, 0) → (0, 2) state transition, which is evidently

impossible).

6. Saturation continues the iteration. Coloured saturation �res the global state change (1, 0, 0, 1)
i. e., the (1, 0)→ (0, 1) state transition and updates the state space representation MDD. This is

the point where the lazy saturation algorithm calls the procedure UpdateRelation and realises

that relation R has to be updated (because it is still empty). After updating the next-state

relation, it makes the same steps as coloured saturation.

7. The newly reached local states must be con�rmed. Confirm(2, 0) (i. e., con�rming the local

state 0 at the level of place pA) does nothing because the transition cannot �re when place pA

3.5. LAZY SATURATION ALGORITHM 41

Table 3.1: Data structures (MDDs) of coloured saturation and lazy saturation

2nd 4th 5th 6th 7th 8th 9th

step step step step step step step

R
up

da
te

B

R
up

da
te

A

R R
up

da
te

B

R

C
o

l
o

u
r
e
d

S
a
t
u

r
a
t
i
o

n
yx

color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

ER
B

ER
A

ER R
up

da
te

B

R
up

da
te

A

R ER
B

ER R
up

da
te

B

R

L
a
z
y

S
a
t
u

r
a
t
i
o

n

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

B

B’

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

EA

EB

1

EA

EB

1

B

B’

1

yx
color: 1..2 color: 1..2

x=y
1

A B

A

A’

1

B

B’

1

A

A’

B

B’

1

EA

1

EB

1

EB

1

B

B’

1

B’

A

A’

B

B’

1

B’

is empty. However, the transition is enabled locally, if place pB contains a token, so the relation

RupdateB is updated by coloured saturation, and relation ERB is also updated by lazy saturation.

8. The algorithm updates the relationsR and ER by using the updated conjuncts, respectively.

9. Similarly to the 5th step of lazy saturation, R has to be extended with the enabled state

changes, before saturation takes a step in the state space. However, there is no newly enabled

state changes, so lazy saturation does not extend the relation with the change represented by

(A,A′, B,B′) = (1, 0, 1, 11), as the transition (1, 1) → (0, 11) is not possible with the given

initial marking.

10. There is no newly enabled relation for neither the lazy nor the coloured saturation algorithm,

so the procedure is �nished. The next-state relation of the lazy saturation algorithm contains

less next-states.

The example shows the main di�erences between coloured saturation of Section 3.4 and lazy

saturation of Section 3.5. Lazy saturation delays the building of the next state relation resulting smaller

next-state relations. Building relation ER is cheaper compared to the construction ofRwhich makes

the veri�cation of CPN models with complex guard relations more e�cient.

3.5.7 Correctness of Lazy Saturation

The correctness of the disjunctive-conjunctive decomposition was proven in Section 3.4.5. Now I show

that lazy saturation will do the same steps during the state space exploration. The iteration order of

saturation is slightly modi�ed in lazy saturation: next-state computation only updates relation ER.

However, before each next-state computation, the algorithm updates the relation R at line 11 of

42 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Algorithm 7 (UpdateRelation of Algorithm 13). As far as function UpdateRelation updates relation

R to contain all states which will be used by function LazyRelProd (note that UpdateRelation iterates

through the states similarly as the next-state computation), it is ensured that the algorithm will not

miss any states.

There are two more conditions, which have to be ensured:

• ER contains all the enabled states. This is ensured as it represents a projection of the next-state

function at each step.

• R contains all the states, which can be �red. This is ensured because function UpdateRelation
uses the same traversal as the next-state computation (recursive traversal of all possible com-

binations of ER and the state space), so function UpdateRelation will traverse all possible

next-states for the given state space and ER.

Sometimes, due to the projection, ER will lose information and might not constrain the next-

states as much as R would do. However, this is not a problem as relation ER can be permissive as

the next-state computations are done according to relationR.

3.6 Industrial Case Study

In this section, I introduce the industrial case study in which I evaluated the developed algorithms.

The industrial case study was initially introduced in [16].

3.6.1 The Modelled Industrial System

The subject of our research is a safety function, designed to initiate an emergency prevention activities

in the occurrence of the so-called PRISE event. This safety function is used in the Paks Nuclear Power

Plant (Paks NPP) located in Hungary. The Paks NPP operates four VVER-440/213 type pressurised

water reactor (PWR) units with a total nominal (electrical) power of approx. 2 GW. Nuclear power

plants are highly safety-critical and complex systems, where the correct operation of the safety pro-

cedures is of great importance. The plant protection systems must satisfy high safety requirements

and minimise spurious forced outages. Therefore, formal modelling and veri�cation methods need to

be applied to prove the correctness and completeness of the PRISE safety function.

The PRImary-to-SEcondary leaking (PRISE) event is one of the major faults in a reactor unit, re-

sulting due to a non-compensable leaking of parts in the primary circuit. The PRISE event occurs

when there is a rupture or other leakage within the steam generator (SG) vessel primary tubing, af-

fecting either a few (3–10) tubes or their collector that contain the high-pressure activated liquid of

the primary circuit.

The PRISE event is the VVER-440/213 analogue of the well-investigated Steam Generator Tube

Rupture (SGTR) event (see e. g., [IS94]) in other types of pressurized water reactors.

In the unlikely case of a PRISE event, the safety procedures �rst initiate the emergency shutdown

(scram, trip) of the reactor, and then isolate the faulty steam generator. However, there would still be

a possibility to release some of the contaminated water to the environment if the event would not be

handled properly. In order to prevent this and to increase the safety of the plant, a safety valve for

draining the contaminated water into the containment has been added to each steam generator, and

a new safety function, the PRISE safety function has been developed to control its operation.

3.6. INDUSTRIAL CASE STUDY 43

3.6.2 The PRISE Safety Function

The technological and I&C system experts of the Paks NPP have designed a timed logical scheme,

the basis of the PRISE safety function, in a heuristic way. The logical scheme was speci�ed as a

Functional Block Diagram (FBD) representation (a formalism similar to the one de�ned in the IEC

61131-3 standard). The PRISE safety function FBD is shown in Figure 3.3. The description of the

inputs and outputs of the PRISE safety function are included in Table 3.2.

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

1

1

1

&

&S

R1

S

R1

& S

R1

OUTPUT-1

OUTPUT-2

t 0

Figure 3.3: Functional block diagram of the PRISE safety function [Ném+09]

The purpose of the PRISE safety function is to initiate the draining of the steam generator if and
only if a PRISE event occurs. This implies preventing the activation of the safety valve, when a non-

PRISE fault event (causing similar symptoms but without a classi�ed PRISE event) occurs, i. e., the

PRISE safety function must be selective. Moreover, when the reactor unit is either being started up or

shut down, thus it is not in the normal operating regime, the PRISE safety function is designed not

to be active. In these circumstances the operators can activate the draining valve manually, should a

need arise.

The designed safety procedure initiates the draining (OUTPUT-1) when a critical decrease in the

primary pressure (INPUT-2) is followed (after a speci�ed time delay) by the increase of the steam

generator level (INPUT-1) that lasts for a certain time interval. However, the draining is initiated

only if the containment pressure keeps its nominal value (INPUT-3), i. e., it is not increasing due to

another, non-PRISE fault causing an in�ow of the primary water into the containment. The minimum

time interval constraint for INPUT-1 to hold its value prevents the incorrect initiation of draining by

an unreliable water level sensor measurement showing temporarily a spuriously high value (caused

by the solid scale content of the secondary water).

The INPUT-4 and INPUT-9 input conditions inhibit the operation in a startup or shutdown situ-

ation. INPUT-5 resets the operation of the PRISE safety procedure in case the reactor is being shut

down. INPUT-6 and INPUT-7 prevent the erroneous draining of the containment after the isolation

of a steam generator caused by a non-PRISE fault. INPUT-8 indicates the situation when the steam

44 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Table 3.2: PRISE safety procedure I/O description

Name Description Function
INPUT-1 SG level high Steam generator water level is increasing (due to closure of the

turbine)

INPUT-2 Primary pressure

decreasing

The pressure of the primary water is decreasing (due to PRISE or

other leakage)

INPUT-3 Containment pressure

is normal

The pressure of the containment is not increasing (no primary wa-

ter in�ow caused by a non-PRISE fault)

INPUT-4 Primary temperature

below nominal

Technical condition signifying that the reactor is in startup/ shut-

down regime

INPUT-5 Control rods fully down Technical condition used to reset the operation of the PRISE safety

procedure

INPUT-6 SG deltaP Technical conditions used to avoid the erroneous draining of

INPUT-7 SG RAP 1/2 the secondary water after isolation of the steam generator

INPUT-8 SG inhibition Technical condition used to indicate the SG inhibited state

INPUT-9 Primary pressure low Technical condition signifying that the reactor is in startup/ shut-

down regime

OUTPUT-1 SG is inhermetical Primary output, activates the secondary water drain

OUTPUT-2 ACTIVE Auxiliary output used in control operations

generator was manually isolated due to a failure indication. The primary OUTPUT-1 of the proce-

dure signals the presence of a PRISE event. Note that the auxiliary OUTPUT-2 signal indicates the

presence of all but one of the symptoms of the PRISE situation.

3.6.3 Coloured Petri Net Model of the PRISE Safety Function

I have created a hierarchical Coloured Petri net model of the PRISE safety function. Figure 3.4 shows

the high-level main net of our CPN model. The grey circles are the inputs and outputs of the PRISE

logic. The larger labelled rectangles are substitution transitions that denote subnets of the corre-

sponding function blocks. The smaller net elements are simple places and transitions that are only

needed for connecting the subnets. This main net integrates and connects the separately developed

and validated lower-level CPN subnets of the di�erent functional blocks. The transformation of the

Functional Block Diagram (see Figure 3.3) was straightforward and simple to validate since the struc-

ture of the FBD graph and the corresponding CPN graph are isomorphic.

The run-time environment is a safety-critical, highly dependable digital distributed control system

(DCS), which runs at an explicit 50-millisecond long scan cycle. During each scan cycle, the controller

�rst samples its inputs, then evaluates all of its functional diagram pages starting from the blocks

connected to the inputs and following the �ow of data until they reach the outputs, computes its

new internal state, sets the outputs, and in the remaining time performs self-tests. This behaviour is

re�ected by the CPN model the following way: the propagation of the tokens in the net represents the

�ow of data in the functional diagram. The CPN model has a feedback loop that puts a single coloured

token simultaneously into each input place at the beginning of a scan cycle. The colour of the input

tokens carries the input data value. These tokens initiate the execution of the subnets modelling the

function blocks. When every subnet has been executed, a single coloured token is generated into each

output place. The feedback loop takes away every generated token from the outputs, and the scan

cycle ends.

An example CPN subnet —modelling the operation of a functional block, namely the Delay mod-

3.6. INDUSTRIAL CASE STUDY 45

INPUT-1

INPUT-2

INPUT-3

INPUT-4

INPUT-5

INPUT-6

INPUT-7

INPUT-8

INPUT-9

neg

or

or

pulse
module

delay
module

pulse
module

pulse
module

neg

and

or

pulse
module

S

R
neg

neg

and
S

R
and

S

R

OUTPUT-1

OUTPUT-2

Figure 3.4: The Coloured Petri net model of the PRISE safety procedure [16]

ule— is shown in Figure 3.5a. The functionality of the Delay module is given by a time diagram in

Figure 3.5b. The purpose of the module (as its name implies) is to delay a rising edge pulse for a pre-

de�ned D number of cycles. When the module detects a rising edge, it starts a counter. If the pulse

is active (the input remains 1) for at least D number of cycles, the Delay module will “let the pulse

pass”, that is it sets its output to 1 (the true Boolean value). The output will remain 1 as long as the

input is active. When a falling edge is detected, the module resets itself to its default inactive state.

INPUT-1

bool

1‘true

1‘true

1‘false 1‘false

1‘false

cp

cp

cp

1‘9

DELAY

int_0_9

cp cn

[cp = 0]

bool

OUTPUT

[cp != 0 && succ(cn) = cp]

1‘true

1‘9

(a) The CPN subnet model of the Delay module

0

1

0

1

OUTPUT

INPUT-1

t

t
k1 k1+D k2 k2+D

(b) Time diagram of the operation

Figure 3.5: Delay module: model and operation

The operation of the CPN subnet model of the Delay module (see Figure 3.5a) is easy to follow.

The model has two port places (the INPUT-1 port, and the OUTPUT port) that represent the connec-

tions of the Delay module. The DELAY place stores the value of the delay counter. Its colour set is

46 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

int_0_9, a subset of integers: {0, . . . , 9}. Its initial marking has one token whose colour equals the

required delay time, given as D cycles (in the example D = 9). The three black rectangles are the

transitions that realise the three main phases of the operation. The expressions written in brackets

next to the transitions are their guards. A guard is a boolean expression that prohibits the �ring of

the corresponding transition unless it evaluates to true. The three main phases of the operation and

their transitions are as follows:

1. The lower transition detects the rising edge (a true value is in the input and the delay counter

has not yet reached zero), starts the delay counter, and continues counting down in the subse-

quent cycles. The guard prescribes the previous value of the counter to be the successor of the

next value, thus implementing the counting down process. The output remains inactive in this

phase.

2. The upper transition will �re whenever the delay counter has run out (reached zero), and the

input is active. The transition puts a token with value true in the output port place, therefore

the output will remain active as long as the input is active.

3. The middle transition detects the falling edge of the pulse, resets the value of the delay counter,

and deactivates the output.

3.6.4 Veri�cation of the PRISE Safety Function

We aimed to prove that the PRISE safety function initiates the draining always if a PRISE event occurs
in every normal operation regime coupled with a fault in the SG level sensor that is highly unreliable;

and never if a PRISE event does not occur even if severe faults causing similar symptoms happen. In

addition, it is also important to prove that the PRISE detection logic is free from deadlocks as they

represent dangerous situations. The required selective detection of the PRISE event and the heuristic

design process of the safety logic made it necessary to perform a rigorous formal veri�cation of the

PRISE safety procedure.

3.6.4.1 Formalization of the Requirements

I could translate the above requirements into the following veri�cation goals:

• Liveness requirement: the secondary water draining activity is always activated when a real

PRISE accident has occurred (no actuation masking).

• Safety requirement: the draining activity is not activated if not a real PRISE accident has oc-

curred (no erroneous actuation).

• Deadlock freedom: No deadlock situation can arise for any combination and sequence of input

signals.

I used branching-time temporal logic based model checking to prove the requirements. For com-

plexity reasons, we chose CTL temporal logic, as it provides an expressive formalism with e�cient

decision procedures.

• First, deadlock freedom of the system is checked. Informally this means that in every state there

exists at least one reachable successor state. The equivalent CTL temporal logic formula is the

following: AG(EX(true)).

• I also checked if the model is reversible, that is from every state the initial state can be reached. I

expressed this property with the following CTL formula: AG(EF([init])). This property ensures

that the safety function can be made ready to ful�l its goal in all circumstances.

3.6. INDUSTRIAL CASE STUDY 47

• The following formula expresses the safety requirement: ¬E(¬ [PRISE-event] U [actuation]).
I used an indirect proof to prove the safety requirement and ran the model checker with the

inverse CTL formula: E(¬ [PRISE-event] U [actuation]). This formula is satis�ed only if the

draining activity is activated without a PRISE event.

• The liveness requirement was also easier to prove by using indirection. I formalised the inverse

requirement as the following CTL formula: EF([PRISE-event] ∧ EG(¬ [actuation] ∧ ¬ [reset-
event])). Informally, we are searching for strongly connected components in the state space

that contain no actuation and reset-event, but contain a PRISE-event.

3.6.4.2 Evaluation of the Temporal Properties

The next step of the veri�cation was to explore and store the state space of the CPN model of the

safety function, using the new disjunctive-conjunctive decomposition algorithm and the lazy satura-

tion algorithm. After obtaining the complete state space we could evaluate the four CTL expressions

introduced in the previous section. For state space traversal and temporal logic-based model checking

we developed our own experimental implementation of our algorithms written in the C# program-

ming language. We used the following con�guration for our measurements: Intel L5420 2.5 GHz

processor, 8 GB memory, Windows Server 2008 R2 (x64) operation system, .NET 4.0 runtime. The

measurement results are listed in Table 3.3.

Table 3.3: Characteristics of the state space traversal

Coloured Lazy
Parameter saturation saturation
Run time 367 s 242 s

Number of global states 2.701 · 1012

State space representation (nodes) 1 587

Number of local state changes 10 084 401 1 864

Sum of nodes in next-state relations 164 711 66 741

Sum of nodes in ER relations 0 2 419

Total number of nodes 2.131 · 107 1.338 · 107

Run time represents the time needed to explore the state space. The state space generation re-

quired 367 s for the CPN model of the safety function using our former coloured saturation algorithm,

and only 242 s with the new lazy saturation algorithm. This is a 35% improvement considering the

runtime. Note, that former, non saturation-based approaches [NB09] could not discover the full state

space of the model. The evaluation of the temporal expressions took considerably less time: deadlock

freedom and reversibility checking temporal expressions took 6 s each to evaluate on the existing state

space representation. The liveness and safety requirements were evaluated in 2 s and 3 s, respectively.

Beside the run time, the memory requirement is also the subject of interest. Measuring the mem-

ory consumption of programs executed in managed environment is problematic, because the garbage

collector does not free up all the unused memory necessarily [GZF12]. However, as most of the mem-

ory is used by the nodes and edges of the decision diagrams, the number of these elements can be

used as a representative of the memory consumption.

48 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

3.7 Thesis 1: Model Checking of High-Level Models

I used the Coloured Petri net formalism to develop formal models of complex systems. I have exam-

ined various veri�cation approaches being able to analyse systems designed in high-level modelling

languages, especially Coloured Petri nets. I investigated an industrial case study used as a motivation

example, which revealed the shortcomings of explicit state model checking techniques: due to state

space explosion, they can rarely handle the state space of real-life problems. Symbolic model checking

algorithms provide a solution, and from the available approaches, I chose saturation as an extremely

powerful method for the veri�cation of Petri nets. However, systematically reviewing the literature I

realised that saturation was not extended to handle Coloured Petri nets. I elaborated an approach to

support the veri�cation of high level Coloured Petri net based models. The existing algorithms can

not handle complex guard expressions of Colured Petri nets, so I developed a new encoding of the

next-state relation and I introduced e�cient algorithms for the construction of the symbolic repre-

sentation. The result of the research was integrated into the PetriDotNet model checking framework

and proved its e�ciency in an industrial setting.

Thesis 1 I developed new veri�cation algorithms for Coloured Petri nets. I devised an advanced
disjunctive-conjunctive decomposition algorithm for the e�cient representation of complex next-state
relations of coloured Petri net models. The introduced new decomposition algorithm combined with the
e�ciency of saturation made the veri�cation of even industrial problems possible. In addition, I developed
an algorithm for the temporal decomposition of the construction of the complex next-state relations. This
new algorithm further decreased the space requirements and runtime of the veri�cation of models with
complex guard expressions. I proved the correctness of the presented algorithms.

The results of my �rst thesis decreased the space requirements of handling complex next-state re-

lations by constructing smaller next-state representations for Coloured Petri nets. As a consequence,

the time requirements of the veri�cation process also decreased, and a new set of problems could be

veri�ed: the result of the thesis made possible to solve even real-life industrial examples. The new

algorithms are evaluated on a model of an industrial safety-critical system (PRISE): it was the �rst

time when the veri�cation of the correctness properties could be veri�ed on the entire Coloured Petri

net model of the safety-logic. Successful veri�cation proved the correctness of the system with regard

to deadlock freedom, safety and liveness properties.

Publications: My new results introduced in this thesis were published in the journal paper [5] and

in the following conference papers: [22] and [16]. The results contributed to the conference paper [7]

and journal paper [1].

Chapter 4

Parallel Saturation-based State Space
Exploration

Veri�cation requires signi�cant computational resources to succeed. In order to extend the limits of

veri�cation, even advanced techniques such as saturation or other symbolic techniques need further

improvements to be able to solve complex problems or existing problems more e�ciently. Various

approaches are known to improve the performance of the algorithms, one of them is parallelisation.

Recent advances in computer engineering and the increasing number of computational units in mod-

ern computers make this direction more and more attractive.

The saturation algorithm introduced an e�cient traversal strategy which kept the state space

representation small and could explore huge state spaces fast. However, this algorithm is inherently

sequential, as both decision diagram manipulations and also the iteration strategy of the algorithm

follows a well-de�ned, strict order of steps. Decision diagram manipulation is traditionally di�cult to

parallelise, and the literature also states the same for saturation [CZJ09]. Given the doubly recursive

dependencies of saturation, and the top-down dependencies in the decision diagram manipulations,

cumbersome synchronisation and locking mechanisms are required for the parallel implementation

of saturation.

In this section I will investigate an existing parallel saturation algorithm from [ELS06] and I will

introduce algorithmic improvements to increase the e�ciency of parallel saturation-based state space

traversal.

Publications related to this chapter. The results of this thesis were published in [17], and this

chapter is based on that paper.

Implementation and contributors. The parallel saturation algorithm introduced in this chapter

was implemented and made available in the PetriDotNet framework. While the theoretical and algo-

rithmic contributions were mainly my results, the implementation of the presented algorithm is the

result of the whole PetriDotNet team, and especially my students Tamás Szabó and Attila Jámbor.

4.1 Challenges

In the development of the parallel saturation algorithm, e�ciency and correctness are the two most

important issues. Ensuring correctness requires that the following properties of the saturation are

preserved:

49

50 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

• Bottom-up order of saturating/�nishing nodes.

• Local �xed-points are reached.

• Consistent caches store the �nal results of the computations.

• Decision diagram data structures are kept consistent.

In addition, beside the rigorous synchronisation, the parallel algorithm has to utilise the available

resources. This means that the independent tasks have to be recognised and run parallel. As the

iteration order of saturation highly depends on the structure of the decision diagram (and the model of

the system), the structure of the system and also the decomposition, static division of the exploration

into subtasks is not possible. Instead, during the traversal, the computing nodes have to wait for the

various tasks produced by the other threads.

4.2 Cache Data Structures in Saturation

When discussing parallel algorithms, one has to look deeper into the data structures and implemen-

tation details. In the former section, saturation was discussed from a high-level point of view. In this

section, I show the data structures used by saturation. In the following sections, I will also discuss

how to use them in a parallel setting.

Unique table. Decision diagram manipulations rely on the e�ciency of a caching mechanism, the

so-called unique table, or UT for short. The UT is implemented as a hash-table, which contains

〈key ,node〉 pairs: when the algorithms �nish the computation of a node in the decision diagram,

they look for a corresponding node in the UT , which represents the same function. If there is no such

node, the algorithms put the new node into the UT . If the UT contains a node representing the same

function, then the algorithms will use that node in the future. Putting a node to the UT is commonly

referred as the operation so-called check-in.

Fire cache. The saturation algorithm uses special caching mechanisms in the procedure Saturate
(Algorithm 1 at line 4) and in the procedure of the relational product computation function RelProd
(Algorithm 2 at line 5). The cache in the procedure saturate is not an essential part of the algorithm

(for some performance penalty it might be omitted), but the so-called �re cache (FC) is essential

to avoid redundant computations (so it signi�cantly reduces the computational complexity). The

algorithm extensively uses the FC , so in the following, the role of this special cache is overviewed.

As saturation computes the e�ects of the transition �rings locally, the FC can be used to store the

e�ects of the transition �rings. This cache enables the algorithm to �nd if an operation has already

been executed. The FC stores the e�ects of the relational product computations: the FC maps a pair

of decision diagram nodes (in the state space representation and next-state representation) to another

decision diagram node (in the state space representation).

4.3 Parallel Saturation

In this section, the algorithm from [ELS06] is introduced. This algorithm served as the basis of my

improved algorithm, which is presented in Section 4.4.

The authors of [ELS06] divided the saturation into several stages, and de�ned the computation

of each node as the elementary step in the algorithm which can be assigned to an individual thread.

Node computations and operations consist of:

4.3. PARALLEL SATURATION 51

• node management in the MDD data structures,

• event and next state computations,

• node modi�cations,

• the manipulation of the MDD by recursive calls.

According to the investigations[ELS06], the tasks which can run parallel are the �rings of the events

i. e., the next-state computations on the decision diagram representation of the state space. These tasks

are executed either by one thread or by multiple threads. When a thread �nished a local computation,

it calls other threads to do the remaining tasks i. e., �ring transitions at a lower level or higher levels

of the decision diagram. This way the iteration of saturation is cut into smaller pieces that have the

proper size to be executed by a thread. The logic of deciding which tasks are outsourced by a thread to

another is a critical point. These tasks should be large enough to avoid the increase in synchronisation

and communication overhead, but they also should be of reasonable size to enable more threads to

work parallel. The parallel saturation algorithm implements the work pool design pattern to provide

�exible distribution of the tasks.

Beside e�ciency, it is also important to ensure correctness by avoiding inconsistent MDD states

and ensuring synchronisation otherwise the algorithm is not able to reach a �xed-point. For this

purpose, various mechanisms are introduced. The sequential saturation algorithm was modi�ed by

introducing and exploiting the following means:

• work pool design pattern to ensure e�cient parallel execution,

• new attributes in the decision diagram data structure for state space representation,

• data structures and mechanisms for the FC to ensure synchronisation and mutual exclusion,

• data structures and mechanisms for the decision diagram representations to ensure mutual

exclusion and

• data structures and mechanisms for the other data structures (such as local states, next-state

representation) to ensure mutual exclusion.

4.3.1 Extending the Decision Diagram Node Data Structure

The node data structure in the decision diagrams has to be extended to support parallel execution. The

parallel saturation algorithm divides the saturation task into smaller subtasks that are run parallel,

but their results have to be synchronised, and the work which has been done by other threads has

to be registered. Hence the node data structure is extended with �elds to store the synchronisation

information. The following attributes are used for synchronisation purposes:

• upward arcs register arcs into which the result of the computations on the actual node will be

inserted

• ops integer variable counts the remaining tasks; when this variable is set to zero, then the

algorithm �nishes the saturation of the node

• saturating is a Boolean variable to indicate if the actual node was started to be saturated

• key stores the key with which the node was inserted into the FC .

The algorithm uses these attributes at various procedures at various points in the execution. In

the following, we shortly overview them. For the manipulation of upward arcs, the algorithm uses

two functions:

52 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

• SetUpArc(tk, sk+1, j) sets an upward arc in tk pointing to the edge j of sk+1 (on an above

level), and

• GetUpArc(sk) returns pairs of the form 〈r, i〉 representing an upward-arc where r is a node

above and i is the index of an arc (of node r).

The integer variable ops is used to register the number of remaining tasks which should be �n-

ished on the node. The value of this variable might be increased and also decreased during the traver-

sal. Variable ops is increased when a new thread starts working on that part of the state space repre-

sentation (a function is called on the node).

Variable key stores the key of the node which is used to place and �nd the nodes in the UT .

The algorithm stores this key for the following reason: as the node is continuously changed by many

threads, using the key argument it is easier to decide if the UT has to be updated with the new key.

The key is continuously updated, but the thread does not always have access to the exact state of the

node (especially if other threads changed it) to compute the key; storing the key in the node means

that the algorithm can excess the node in the FC .

Mutual exclusion has to be ensured i. e., only one thread can change the value of the arguments

of the nodes at a given point in time (this part is omitted from the pseudo codes).

4.3.2 Working of the Algorithm

The algorithm [ELS06] introduced a correct synchronisation and locking mechanism for parallel sat-

uration. In the following, the extensions to the sequential saturation iteration strategy are introduced:

the application of the synchronisation and the locking mechanisms at the various phases of the com-

putations is detailed.

Synchronization of data structures The saturation algorithm uses decision diagrams, therefore

it has to take care of the consistency of their underlying hash tables. The unique table (UT) is used

to store the nodes of the decision diagram. The goal of the algorithm was to enable as many threads

to manipulate nodes simultaneously as possible. The algorithm synchronises the manipulation of

the data structures at every level, this way avoiding inconsistent MDD levels. The responsibility for

global MDD consistency is left to the iteration, which is preserved with locking sub-MDDs when they

are manipulated.

Synchronization of MDD operations The parallel saturation algorithm uses a special locking

strategy to preserve MDD consistency. As MDD serves as the underlying data structure for the itera-

tion, preserving consistency is a critical task during parallel saturation. A classical decision diagram

approach was used in [ELS06], so at every operation, the argument MDD-s are locked to prevent

concurrent manipulation. This approach introduces a relatively high synchronisation overhead, but

it is essential for ensuring consistent manipulation. A big advantage of saturation is that it tries to

avoid operations on the whole decision diagram, instead, local operations are computed. This means

that the algorithm locks only smaller parts of the decision diagram representation, so the algorithm

itself is subject to smaller locking overhead. Therefore small MDD operations are a characteristic of

saturation and smaller parts of the decision diagrams are locked.

Synchronization of the iteration An important task is to preserve the correct iteration order.

The threads have to synchronise the operations executed on nodes: the algorithm has to avoid the

4.3. PARALLEL SATURATION 53

redundant computation, but it has to be ensured that all the transition �rings are executed and no

next-state computation is omitted.

The iteration is synchronised with the help of the special additional data structures introduced

in Section 4.3.1. Every node has a counter ops to register the tasks which are under execution or are

planned to be executed. This counter prevents the algorithm to �nish the computation and �nalise

the results before all the tasks have been �nished.

In order to preserve dependencies, the algorithm uses the upward arcs as depicted on Figure 4.1.

These arcs represent the dependencies in the iteration order. If a node has an upward arc pointing to

a node in the upper level of the state space representation that means: a thread computed the �ring

at the upper node and it called another thread to compute the lower levels of the MDD rooted there.

Figure 4.1 depicts the step when the procedure Saturate submits the relational product computation

tasks to other threads.

The algorithm also avoids redundant computations by using the various cache structures of the

sequential saturation algorithm. However, the FC is extended to not only store the values of �nished

computations but also serve as a synchronisation mechanism among the threads. The caching mech-

anism of the FC is extended with synchronisation constructs: when a thread starts computing a part

of the reachable state space, it signs it in the cache by placing the actual node with a �ag. This way,

if another thread would start exploring that part of the state space, it can check in the cache that it is

still being processed: redundant exploration is avoided, and the new thread just registers itself for the

result. The key argument of the nodes supports that the threads will not miss the nodes in the cache.

Thread A

PSaturate
(sk)

PRelProd
(sk[i])

Thread A

PSaturate
(sk)

PSaturate
(sk[i])

PRelProd
(sk[j]) Thread C

PSaturate
(sk[j])

upward arc to
preserve

iteration order

PRelProd
(sk[m])Thread B

1 2

Figure 4.1: Using upward arcs in saturation

Locking mechanism. Beside synchronizing the executed tasks, it is also important to keep the

consistency of the data structures: the parallel saturation algorithm introduced a locking mechanism

for this purpose. The locking strategy is simple: one thread can modify a node at a single point of

time which is ensured by using locks. During the next state iteration, the sub-MDD rooted in the

manipulated node is also locked, so the algorithm avoids that two threads use the same sub-MDD and

contained nodes during the node manipulations.

54 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

pk[i] = pk[i] U fk+1

waitLock(pk.dw)

Thread A

pk

ak+1 bk+1 sk[2]

qk

ck+1 dk+1 ek+1

Thread B

fk+1 gk+1

qk[i] = qk[i] U gk+1

Lock(qk.dw)

Thread A

pk

ak+1 bk+1 sk[2]

qk

ck+1 dk+1 ek+1

Thread B

gk+1

qk[i] = qk[i] U gk+1

1

2

Figure 4.2: Locking in saturation

Details of the algorithm. The formerly introduced eager �xed-point computations are calculated

parallel in this algorithm. Synchronization and locking mechanisms were formerly summarised, here

an insight is given to the main operation of the algorithm. The pseudo-code of the algorithm is

depicted on Algorithm 14, Algorithm 15, Algorithm 17 and Algorithm 16 with the modi�cations, so

the pseudo code contains the improvements (new locking mechanism) marked with an asterisk. The

original algorithm locks bigger parts of the operations as it is stated in [ELS06] and as it is depicted

on the �gures (discussed below). For the exact pseudo code of the original algorithm, the reader is

referred to [ELS06], here we only discuss the general idea.

Local �xed-points are computed by procedure PSaturation of Algorithm 14 and transition �rings

are computed by the relational product computation function PRelProd of Algorithm 15.

The operation of the work distribution in the algorithm is depicted in Figure 4.1. In this �gure,

Thread A starts saturating a node sk. During the computation recursive calls are needed for comput-

ing the next states. These calls are outsourced to other threads. In order to preserve the iteration order,

these threads set an upward arc to the arc of the upper node (arc j of sk+1) and increase the value

4.3. PARALLEL SATURATION 55

of variable ops of sk+1. This way the algorithm ensures that the upper node could not be �nished

until the nodes below are �nished. The signature of the parallel version of saturation and relational

product computation is similar to their sequential counterpart, only function PRelProd receives an

additional parameter representing an arc of the callee: the set represented by this arc will be extended

with the result of the procedure PRelProd .

Beside implementing a parallel saturation iteration and synchronising, these functions also lock

the decision diagrams when the union is computed and the arcs are updated with the newly discovered

states. Functions, which are responsible for synchronization: function Lock(pk.dw) locks the MDD

down from the node pk to ensure that no other thread will manipulate it; and function Unlock(pk.dw)
frees the lock and lets other threads working on the MDD. These functions lock the MDD data struc-

ture downward in order to prevent concurrent manipulation: this mechanism is depicted on Figure 4.2

where two threads want to compute unions of the diagram, but they use a common argument node,

so Thread B has to wait.

In addition to the above de�ned functions, the parallel algorithm published in [ELS06] uses func-

tion Remove(sk) of Algorithm 17 for removing dead endings from the MDD. These are created when

a parallel thread starts a computation of a �ring of a dead transition, which cannot �re from the

given marking, and it is only detected at a later phase of the �ring i. e., in lower levels of the decision

diagram.

The parallel algorithm also introduced the procedure NodeSaturated(sk) of Algorithm 16 to

�nish the saturation when the �rings of the transitions are �nished. In this case, function

NodeSaturated(sk) checks if the iteration reached a local �xed-point and then it persists the decision

diagram node into the cache data structures.

Correctness. The locking ensures that the iteration order is preserved, and operations executed on

nodes are not interfered by each other. The algorithm is proved to be correct [ELS06], as it ensures:

• correct iteration order: by removing synchronisation methods we get the sequential algorithm

• correct synchronisation of the data structures, both in the MDD operations and both in the next

state representations

• since locks ensure that updating a node is atomic, exhaustively �ring transitions will result in

the same MDD shape for a saturated node as in the sequential algorithm

A more detailed proof can be found in [ELS06].

4.3.3 Problems

Parallel implementation of saturation involves a big synchronisation overhead, making e�cient par-

allelisation di�cult. This also emphasises the fundamental role that the proper synchronisation plays

in the parallel realisation of the saturation algorithm. There are two main bottlenecks: �rst is that

parallelisation of state space exploration is generally a hard task. In order to avoid redundant state

exploration, we have to ensure that the parallel directions synchronise properly without dramatically

increasing the synchronisation costs. Another reason is that saturation uses a special underlying

data structure: decision diagrams. Parallelizing decision diagram operations involves a big synchro-

nisation overhead, caused by the fact that decision diagrams are built in a bottom-up fashion, where

upper levels highly depend on lower levels. As measurements showed in [ELS06], the parallel satura-

tion algorithm runs faster on more processors than on one, but still remains slower than the sequential

algorithm by 10-300%. Scalability is also an important factor in parallelisation. By scalability we mean

the following two characteristics:

56 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

• The runtime of the algorithm will decrease with respect to the increasing number of resources.

• The relative speed of the parallel algorithm will increase comparing to its sequential counterpart

with the growing number of tasks

It is important to examine the scalability of the parallel algorithm. The following problems were

revealed by the experiments [ELS06] (which were also con�rmed in our paper):

• the parallel algorithm could not exceed the speed of the sequential one, independent on how

much the resources were increased;

• increasing the model size (and the amount of tasks that should be solved by the algorithm) does

not yield and advantage for the parallel algorithm;

• the sequential algorithm solved the problems faster than the parallel even for large models and

also for environments with more computational units.

These �ndings motivated my work to investigate the algorithm and �nd a way to improve it.

4.3. PARALLEL SATURATION 57

Algorithm 14. PSaturate

input : sk : node
1 // sk: node to be saturated,

output : node

2 if sk = 1 then
3 return 1;

4 Return result from cache if possible;
5 k ← Level(sk); // retrieve the actual

level of the MDD

6 tk ← new Nodek;

7 tk.saturating = true ; // saturating the node

has started

8 tk.ops = tk.ops + 1; // increase ops counter

9 foreach i ∈ Sk : sk[i] 6= 0 do
10 tk[i]← PSaturate(sk[i]);

11 repeat
12 foreach ε ∈ E : k ∈ Top(ε) do
13 Rε ← Nε as decision diagram;

14 foreach sk[i] 6= 0 ∧Rε[i][i′] 6= 0 do
15 f ← PRelProd(tk[i],Rε[i][i′], tk, i′);
16 if f 6= 0 then
17∗ f ← tk[i

′] ∪ f ;

18∗ Lock(tk[i
′]);

19∗ tk[i
′]← tk[i

′] ∪ f ;

20∗ UnLock(tk[i
′]);

21 if i′ /∈ Sk then
22 Confirm(k, i′)

23 Build(k);

24 until tk unchanged;

25 tk.ops = tk.ops − 1; // decrease ops counter

26 if tk.ops = 0 then
27 NodeSaturated(tk); // finish saturation

28 return tk;

Algorithm 15. PRelProd

input : sk,R, sk+1 : node;

j : localstate
1 // sk: from node of the firing,

2 // sk+1: top node,

3 // R: next-state representation node,

4 // j: next state of the top node,

output : node

5 if R = 1 then
6 return sk;

7 tk : Find result of (sk,R) in cache;
8 if tk 6= 0 then
9 if tk is not saturated then

10 SetUpArc(tk, sk+1, j);
11 tk.ops = tk.ops + 1;

12 return 0;

13 else
14 return tk;

15 k ← Level(sk); // retrieve the actual

level of the MDD

16 tk ← new Nodek;

17 tk.ops = tk.ops + 1;

18 SetUpArc(tk, sk+1, j);
19 Put tk in cache, �ag set to not saturated;

20 foreach sk[i] 6= 0 ∧R[i][i′] 6= 0 do
21 f ← PRelProd(tk[i],Rε[i][i′], tk, i′);
22 if f 6= 0 then
23∗ f ← tk[i

′] ∪ f ;

24∗ Lock(tk[i
′]);

25∗ tk[i
′]← tk[i

′] ∪ f ;

26∗ UnLock(tk[i
′]);

27 if i′ /∈ Sk then
28 Confirm(k, i′)

29 tk.ops = tk.ops − 1;

30 if tk.ops = 0 then
31 if ∃i ∈ Sk : tk[i] 6= 0 then
32 Put tk into the saturation queue;

33 else
34 Remove(tk);

35 return 0;

58 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

Algorithm 16. NodeSaturated

input : sk : node
1 // sk: node to be saturated,

output : node

2 Put node sk into the UT ;

3 Update entry of sk in FC ;

4 sk.ops = sk.ops + 1; // increase ops

counter

5 foreach 〈r, i〉 = GetUpArc(sk) do
6∗ u← sk ∪ r[i];
7 if u 6= r[i] then
8∗ Lock(r[i]);
9∗ r[i]← r[i] ∪ u;

10∗ UnLock(r[i]);
11 Confirm(k + 1, i)
12 if r.saturating then
13 foreachRε[i][i′] 6= 0 : k + 1 ∈ Top(ε) do
14 f ← PRelProd(r[i],Rε[i][i′], r, i′);
15 if f 6= 0 then
16∗ f ← r[i′] ∪ f ;

17∗ Lock(r[i′]);
18∗ r[i′]← r[i′] ∪ f ;

19∗ UnLock(r[i′]);

20 if i′ /∈ Sk then
21 Confirm(k, i′)

22 Build(k);

23 r.ops = r.ops − 1; // decrease ops counter

24 if r.ops = 0 then
25 if r.saturating then
26 NodeSaturated(r); // finish saturation

27 else
28 Put r into the saturation queue;

Algorithm 17. Remove

input : sk : node
1 // sk: node to be removed,

2 Update entry of sk with 0 in FC ;

3 foreach 〈r, i〉 = GetUpArc(sk) do
4 r.ops = r.ops − 1; // decrease ops

counter

5 if r.ops = 0 then
6 if r.saturating then
7 NodeSaturated(r); // finish saturation

8 else
9 if ∃i ∈ Sk : r[i] 6= 0 then

10 Put r into the saturation queue;

11 else
12 Remove(r);

4.4 Algorithmic Improvements

I have investigated the main characteristics of the parallel saturation algorithm. The intrinsic com-

plexity of saturation makes the experimentation and understanding di�cult. The �ndings were the

following:

• The increasing number of computing nodes does not lead to increased performance, instead

increased waiting times.

• Ensuring consistency and locking required signi�cant resources.

• Correctness was also ensured in practice: the results of the parallel and sequential algorithms

were compared.

According to the experiences, the goal was to decrease waiting times by introducing a more �ne-

grained locking strategy which would decrease the synchronisation costs.

I have modi�ed the parallel saturation algorithm, and I developed a new synchronisation mech-

anism to improve the algorithm presented in [ELS06]. The goal of the new locking mechanism is

4.4. ALGORITHMIC IMPROVEMENTS 59

to localise the e�ect of the locks and to reduce the overhead caused by them. The improvements

led to signi�cant speed-up of the algorithm. Investigating the iteration order of the parallel algo-

rithm revealed that the complex locking strategy could be redesigned to lock only single nodes. I

introduce local synchronisation, which avoids downward locking of sub-MDDs. Beside the fact that

locking downward sub-MDDs poses signi�cant computation needs, additionally in many cases, the

ine�cient synchronisation makes the threads unable to run parallel.

4.4.1 New Locking and Synchronization Strategy

In this section, I introduce a new synchronisation and parallel iteration method. The goal of the new

algorithm is to decrease the overhead of downward locking. The new locking strategy is shown on

Algorithm 14, Algorithm 15 and Algorithm 16. The changes compared to the former parallel approach

are marked with an asterisk (∗), the rest of the algorithms are based on the formerly introduced parallel

saturation algorithm.

The locking strategy has to ensure the consistency of the data structures. When the former al-

gorithm had to compute the arc updates, the decision diagram was locked downward to ensure that

no other thread will modify it during the arc manipulation. Instead of this solution, I propose to use

an arc locking strategy to lock only the node, and especially the actual arc being processed. Function

Lock(pk[i]) locks the arc i of the MDD node pk to ensure that no other thread can use it. In the

former algorithm Lock(pk.dw) was used which locked the decision diagram downwards. Function

Unlock(pk[i]) frees the arc of the node and makes it available for other threads to work on. In the for-

mer algorithm, Unlock(pk.dw) was used to free the decision diagram downwards. I do not detail the

inner locking strategy (implementation of Lock and Unlock) as I used a programming environment

built-in library for this purpose with proven correctness.

In addition, investigating the iteration strategy of saturation revealed that locking could be applied

lazily which can reduce the synchronisation overhead: my proposed solution exploits the �ne-grained

arc locking strategy and puts the union computation outside the scope of the locking. However,

letting the threads do the image computations and the update operations in parallel may lead to lose

information and spoil convergence. The old algorithm could do in this case the following: updating

arc i leading to node p with the newly discovered local state space represented by q and r should

result that the arc i leads to a node representing p ∪ q ∪ r, but if the threads compute p ∪ q and p ∪ r
and update arc i independently, then the result will be only the subset of the expected.

To ensure the correct iteration and avoid the information loss, I propose to compute the result

of the union twice. The placement of locking is depicted on Algorithm 14 at line 18 and line 20,

Algorithm 15 at line 24 and line 26, and Algorithm 16 at line 8 and line 10 and line 17 and line 19. At

each procedure, the union of the old edge and the recently discovered state space representation is

computed twice at the following points: Algorithm 14 at line 17 and line 19, Algorithm 15 at line 23

and line 25, and Algorithm 16 at line 6 and line 9 and line 16 and line 18. At �rst, the union is computed

outside of the scope of the locking so that they can run in parallel. After the union computation, the

algorithm locks the node and computes the union once more and updates the arc of the corresponding

node. Even if multiple threads are working on the same node, as the algorithm locks the node when the

union is computed, and the arc is updated, it is ensured that the algorithm does not lose information,

so the convergence of the algorithm is ensured. However, the question naturally arises why we need

to compute the union twice. The answer is that in most cases the union will be computed by the

unlocked union indeed, and the locked union will only get the result from the corresponding cache

(union cache). As receiving the result from the cache is a fast operation, the node will be locked only

for a very short period. However, when the interference of the threads results that the value of the

60 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

arc is updated during the union computation, then the thread will lock the arc for the time when the

union is computed, and the arc is updated with the results.

The new locking strategy signi�cantly reduces the computation cost of the synchronisation.

A �ag is introduced as an attribute in the node data structure. Atomic operations are ensured on

the arcs with the help of this �ag, without making the MDD operations such as the union or next-state

computations mutually exclusive. This locking mechanism is applied in the �xed point computation

at every iteration step when the set represented by the arc is augmented. As functions PSaturate ,

PRelProd and NodeSaturated are all augmenting the set represented by the node, they all use this

new synchronisation strategy. A simpli�ed view of the locking strategy is depicted on Figure 4.3,

where the main idea of the arc locking strategy is compared to the solution of [ELS06] (referred to

as old locking strategy on the �gure). The node is locked for the time when the data structures are

manipulated, and also the cache is locked. However, the computationally most expensive task, when

saturation extends the represented set of states, can run parallel as the scope of locking is restricted

to the arc manipulation.

Old locking strategy

Arc of node lockedArguments lockedCache locked

MDD Node check cache
update

arguments
compute

next-state
compute union fixed-point?

next
MDD Node

recursive next-
state calls

recursive
union calls

set new edges

no

yes

compute union

Figure 4.3: Work�ow of the new synchronization strategy

4.5 Correctness of the Algorithm

The introduced locking and synchronisation strategy is proved to be the proper solution because if

the scope of the locking would be reduced, we could lose information, the algorithm would be slower,

or the convergence could be spoiled. On the other side, the introduced algorithms ensure correct

iteration and parallel state space exploration.

4.5.1 General Issues

The correctness of saturation was proved in many papers as it was discussed in former sections. The

basic parallel saturation algorithm was presented in [ELS06], where the correctness of the algorithm

is also proved. The main challenge in parallel saturation is to ensure uncorrupted iteration order.

Otherwise, either convergence is lost, or the �nal result is just the subset of the real state space. To

ensure both convergence and avoid omitting states, the sequential algorithm was extended in [ELS06]

with the locking and the proper work distribution mechanisms. These modi�cations let the algorithm

run hardly parallel, which is con�rmed by the measurements in [ELS06] and [17].

The modi�cations I presented exploit the resources of recent multiprocessor architectures more

e�ciently in parallel saturation-based model checking. Now I prove the correctness of the presented

4.5. CORRECTNESS OF THE ALGORITHM 61

approach. I discuss only modi�cations a�ecting the iteration order, as other improvements concern

mainly the implementation. The modi�ed algorithm should:

• Preserve iteration order,

• Reach saturated �nal state,

• Preserve consistency of data structures.

Iteration order is not a�ected by my modi�cations, so the reader is referred to [ELS06] for a

complete proof.

The procedures of [ELS06] are also introduced in my solution to compute the next-state Nε by

PRelProd on Algorithm 15 and by Remove on Algorithm 17, the transitive closure N ∗k computed

by PSaturate on Algorithm 14 and NodeSaturated on Algorithm 16. Consequently calling these

functions preserves the iteration order as it is proved in [ELS06]. After an iteration is �nished, function

call NodeSaturated ensures that every node encodes a saturated set, so the iteration is completed. The

algorithm also ensures that function NodeSaturated �nalizes the nodes after saturation and puts them

into the corresponding data stores in line 2 and line 3.

4.5.2 Correctness of the Iteration

The improvements to the algorithm modi�ed the order of the union function calls. However, by using

the tricky redundant union computation scheme, the convergence of the algorithm is ensured, and

the �nal result is the same as for the traditional sequential saturation. Commutativity of the union

operation is exploited to ensure that the �nal result contains the whole set of states computed by the

threads independently. For each thread i, fi represents the result computed by the thread and the set

represented by fi is used to extend the set represented by arc sk[j]. The algorithm ensures that the

arcs will properly represent the results of the next-state computations, so the set represented by sk[j]
will be the following:

⋃
∀i(fi ∪ sk[j]) = sk[j] ∪

⋃
∀i(fi).

4.5.3 Consistency

Preserving the consistency of data structures is especially important in parallel algorithms, and it is

highly a�ected by the new locking strategy. Consistent data manipulation is required to ensure global

consistency: the goal is to ensure that during the decision diagram and node manipulations, and also

during the procedures of saturation, the algorithm should use and produce consistent data. As I used

up many parts of the former algorithm, in the following, I will concentrate on the new parts, namely

to the computations of the union operation. It is important to examine whether the new locking

and iteration strategy did not spoil the consistency of the data structures, the data structures being

used in the union should be in a stable state (they must not change during the operations). The

new approach omits downward locking and preserves consistency without locking the argument sub

decision diagram of the union operation. From the consistency point of view, it has to be assured that

the operations do not change the state of the operands of the union operation.

Instead of proving the consistent manipulation of the nodes, I will prove a stronger statement

which also implies the consistency of the operations. My assumption is that the algorithm performs

MDD operations only on nodes, which are permanently placed in the MDD data structures: with

the correct locking of the actually manipulated node, this ensures that the consistency of the data

structures is preserved. What we have to prove now is that the algorithm only performs actions on

�nalised nodes that are placed in the UT i. e., the nodes used for compute the union are checked-in

(Algorithm 16 at line 2). This fact also implies that the result will be consistent.

62 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

The assumption can be proved inductively. In the following, I go through the proof. The saturation

algorithm with the introduced arc locking strategy is correct as the parallel saturation algorithm

ensures that the arguments of the union operation are checked-in.

• At the beginning of the algorithm, all edges are set to terminal nodes, so the condition holds:

we can only apply operations on nodes being checked-in.

• Each step of the algorithm either sets an arc to point to a checked-in decision diagram node

which is in the UT , or the algorithm delays the computation and sets upward-arcs to represent

the dependency.

The �rst condition expresses that the initial state is consistently represented. The second condition

needs a more rigorous analysis, so I will detail why individual steps ensure that the union computa-

tions use only consistent results of the former steps. Each step of the parallel saturation algorithm,

which extends the represented set of states, uses only a decision diagram node if it represents a �n-

ished part of the state space and it has already been put into the decision diagram data structure

i. e., the UT . Correct operation of functions NodeSaturated , PRelProd and PSaturate ensure that

only checked-in nodes are used during the construction of the state space representation, which is

summarised in the following.

Saturating the nodes: PSaturate starts the saturation of a node by �ring the transitions. The

consistency of the computations in PSaturate is preserved if the results of the function PRelProd
are checked-in to the UT . The function PSaturate does not place nodes into the decision diagram

data structures but if the saturation of a node can be �nished then function NodeSaturated is called

at line 27 to �nalise the results and data structures.

Firing transitions: Transition �rings are executed by the function PRelProd , which sets upward-

arcs: in Algorithm 15 at line 10 and line 18 an upward-arc is set to represent the dependency which

means the upper node can not be �nished before the actual node is saturated. The function PRelProd
returns in both cases the terminal node 0. The callee that is either function NodeSaturated , PRelProd
or PSaturate will examine the returned value and it realizes (in the di�erent procedures) at line 22,

line 16 and line 15 that the returned value is the empty set, so no further work has to be done now.

Upward-arcs will be processed in later phases by other threads.

The result of PRelProd on which the union operation is called in other operations is consistent as:

• PRelProd returns the node 0 if the computations are not �nished in lower levels (this also

means a new upward-arc to represent the dependency) or

• PRelProd detects that this step has already been executed and returns a consistent value from

the FC (the returned decision diagram node is also in the UT).

Transition �rings executed by the function PRelProd only returns a node di�erent from 0 if the

result is in the FC and it is a saturated decision diagram node (depicted at line 14). This node can be

safely used by other functions and threads to compute consistent results. The results of PRelProd are

used in function PSaturate , PRelProd and NodeSaturated at line 15, line 21 and line 14 to compute

the new set of states.

Adding new nodes to the decision diagram: We have to overview how new nodes can appear

in the decision diagram. The parallel saturation algorithm �nishes the saturation of a node by calling

function NodeSaturated . Function NodeSaturated checks-in the argument node at line 2 and places

the actual node into the MDD data structure. This node will not change in the future. Function

4.6. IMPLEMENTATION 63

NodeSaturated also updates the FC at line 3 and ensures that the cache hits will contain saturated

nodes that can be used safely in the operations. Note that when the cache hit is not saturated, then

function PRelProd will only return 0 instead of the un�nished nodes in FC .

Using nodes in the procedures of saturation: As it was discussed, a complex traversal strategy

ensures that the decision diagram nodes are only used for the construction of the state space repre-

sentation after they are checked-in. Decision diagram nodes may reach the union operation in the

following ways:

• When a node is saturated, the state set is extended by calling the operation union in function

NodeSaturated . In this case, the algorithm computes the union of a recently saturated node

with the old arc of the upper node, which has already been saturated. Both nodes are checked-

in, the result is consistent.

• The other case is when computation of the next-state succeeds as the node is found in the cache.

The algorithm uses the cache value only in the case if it is saturated, so this argument of the

operation is �nalised. The other argument of the union is also saturated as it was formerly the

endpoint of an arc of the node. As both nodes are saturated, which means that they were put

into the data structures by function NodeSaturated , the result will also be consistent.

Arc locking: Besides that the operation of the union is called on saturated nodes being checked-in,

mutual exclusion of the arcs has to be ensured. Lock(tk[i]) prevents other threads reading this arc

during the union computation and arc manipulation, so the consistency of the operations is also en-

sured. As well known locking mechanisms are used inside the function Lock , we can expect that the

synchronisation of the data structure is correct. Note that as we formerly discussed, union computa-

tions are only called on nodes being checked-in to the UT , so only saturation and transition �rings

can modify the actually locked node. As parallel saturation preserves the saturation iteration strategy

according to [ELS06], only function PSaturated and NodeSaturated will manipulate the actual node

being locked, which means that only local arc manipulations are executed, it is enough to lock only

the arcs during the traversal.

4.6 Implementation

We have implemented the formerly mentioned algorithms in the PetriDotNet framework[17]. We

have developed a complex synchronisation mechanism at the data structure level of saturation to

prevent data races and to ensure consistent execution. We have implemented a mutually exclusive

access to the data structures of the next-state computation, such as state transition representations

and globally reachable states. In addition, the implementation also pays attention to the access of the

data structures used for mapping the Petri-net states to the symbolic data structures.

The access to the MDD data structures is serialised at every level, in this way we can preserve

the consistency of the data structures. MDD operations manipulate the data structures and rely on

the synchronisation mechanisms of the UT , FC and the other data structures. The fact that MDD

operations do not modify the nodes which are checked-in to the UT signi�cantly reduces the syn-

chronisation cost. However, this approach will increase the number of produced nodes: unnecessary

nodes should be cleaned from the data structures. Every node has a counter counting the references

pointing to it so that we can decide at any time to clean the data structures and the algorithm can eas-

ily decide if a node is necessary. The algorithm introduced in [ELS06] exploited the FC data structures

64 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

and used it as a pre-cache mechanism to avoid redundant state space exploration. We have imple-

mented this method in our approach too. Using this cache for synchronisation helps avoid redundant

state-space computations. We only have to register the event and the node immediately if the event

is executed on it. All other threads intending to explore the same sub-state space will realise that it

is now executed, and the new threads just register themselves for the result. The synchronisation of

this cache is important. Our approach does not use a global cache; instead, we assign a cache to each

level. This reduces the synchronisation costs. The same strategy is used for the union operation, as

the algorithm does not lock the operations, but the MDD levels and the cache data structures, for

the time of modi�cations. This strategy enables the parallel computation of union operations even

with common arguments, which was a shortcoming in former algorithms. This leads to increased

parallelism and reduced overhead.

4.7 Evaluation of the Algorithm

In this section, the measurements of the new algorithm are presented, and the approach is compared

to the former algorithm of [ELS06].

4.7.1 Environment

We have developed an experimental implementation in the Microsoft C# programming language. We

used some of the framework’s built-in services, like the so-called ThreadPool and also the built-in

locking mechanisms. We examine our algorithm and compare our approach both to a sequential

algorithm written in C#, and to the implementation written in C programming language [ELS06]. We

used a desktop PC for the measurements: Intel Core2 Quad CPU Q8400 2,66GHz, 4 GB memory. For

our implementation we used Windows 7 Enterprise, .NET 4.0 x64. To run the implementation from

[ELS06] we used Ubuntu 10.10 with gcc-4.4.. Comparing the performance of [ELS06] and my approach

implemented by our team is a little bit di�cult. In order to make the comparison more realistic, our

implementation was extended to handle Kronecker matrix based next-state representation. However,

our implementation computes the local states dynamically. In contrast the algorithm [ELS06] needs a

pre-computation step and works with a formerly computed Kronecker representation, so they are two

di�erent variants of saturation. Former measures[CMS05] showed that with the use of precomputed

Kronecker representation 50-60% speedup can be gained. However in most cases, the user has to

adapt the model to some special requirements[CMS05], so it is more di�cult to use. The models we

used for the evaluation are widely known in the model checking community. Flexible Manufacturing

System (FMS) and Kanban system are models of production systems [7]. The parameter N refers to the

complexity of the model, and it in�uences the number of the tokens in it. Slotted Ring (SR) and Round

Robin (RR) are models of communication protocols [CMS05], where N is the number of participants

in the communication. The state spaces of the models range from 1015
up to 10150

.

4.7.2 Objectives of the Measurements

Measurements were conducted to evaluate both runtime and memory requirements. PetriDotNet was

developed in the Microsoft C# programming language, so the program runs in a managed environ-

ment, memory measurements are very di�cult. The implementation (work of Attila Jámbor, Tamás

Szabó and Dániel Darvas) follows best-practices from the community and some special heuristics

were also added (such as reusing freed node data structures). However, memory consumption was

still not optimal and varied from run to run. The reason for this phenomena is that parallel threads

4.7. EVALUATION OF THE ALGORITHM 65

SR(N) 30 60 90 120 150

sequential 0.66s 4.5s 14.8s 34.7s 70.7s

parallel 0.64s 4.5s 14.4s 33.8s 65.2s

speed-up 1.03 1.0 1.027 1.027 1.084

Kanban(N) 50 100 200 300 400

sequential 0.5s 5.1s 63.2s 295s 890s

parallel 0.4s 2.6s 20.5s 80.6s 228s

speed-up 1.25 1.96 3.08 3.66 3.90

FMS(N) 50 100 150 200 250

sequential 1.7s 14s 61s 180s 444s

parallel 1.2s 7.9s 27.1s 67s 143s

speed-up 1.41 1.77 2.25 2.68 3.10

Table 4.1: Runtime results of our algorithm

SR(N) 30 60 90 120 150

sequential 0.2s 1.4s 4.4s 10.2s 19.7s

parallel 0.4s 2.3s 7.5s 17.1s 34.4s

speed-up 0.5 0.61 0.59 0.6 0.57

Table 4.2: Runtime results of [ELS06]

consumed the memory in an irregular manner and depending on the garbage collection strategy, the

runs had di�erent runtime characteristics. As optimizing memory consumption in a parallel environ-

ment is a challenging task, we did not aim to provide proper memory measurements. However, as

an observation 20-100% memory consumption increase was caused by the parallel algorithm. A more

rigorous analysis is left to the future.

4.7.3 Runtime and speed-up results

Slotted Ring: The regular characteristic of the model suggests that it cannot be parallelised well.

Our measurements show that the parallel algorithm has the same performance as the sequential one.

Also, as the size of the model grows, the parallel algorithm outperforms the sequential one up to

8.4%. Comparing this result with the runtime of the former implementation (in Table 4.2), the version

written in C is faster as the programming environment yields less overhead. In addition, the solution

in Table 4.2 exploits precomputed next-state representations, whose computation time is not included

in these measurements.

However, we can also take another viewpoint and examine the relative speed-up of the algorithms

compared to their sequential counterpart. When we examined the relative speed of the algorithms,

our approach reached 8% runtime gain compared to its sequential counterpart, while the old one from

[ELS06] just about 40% runtime penalty. This suggest that the new locking strategy and iteration lets

the algorithm exploit more e�ciently the additional computational power of multi-core computers.

Kanban: The introduced algorithm turned to be very e�cient for the Kanban model. The state

space exploration of the Kanban system was 25% faster with the parallel algorithm for still small

models. However, for bigger models, the performance gain of the parallel algorithm increased. The

66 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

model Dining Philosophers Round Robin
size 1000 1000

sequential 0.91s 17.9s

parallel 1.35s 34.6s

Table 4.3: Runtime of not parallelizable models

measurement showed that the parallel algorithm is nearly 4 times as fast as the sequential (Table 4.1).

Comparing my algorithm with [ELS06] shows that the parallel algorithm from [ELS06] is about 50%

slower than its sequential counterpart. Direct comparison is omitted here as we can not reproduce

the measurements of [ELS06], for us, the tool of [ELS06] did not produce the results of that paper

(indeed, it produced much worse).

FlexibleManufacturing System: The FMS model has a huge state space and complex interactions,

which means that saturation faces problems during the state space traversal. However, this irregular

structure of the model and its state space yields more work for the threads of the parallel algorithm: the

parallel algorithm runs at least 41% faster than the sequential one. For large models, the sequential

algorithm needs 3 times as much time as the parallel one. We could not compare this result with

[ELS06] due to a segmentation error.

Models where parallel execution is not e�cient: The e�ciency of symbolic methods is highly

model-dependent. This is especially true for saturation and parallel saturation. Those models that

can not be veri�ed by saturation due to the high memory consumption, these models could also not

be veri�ed with parallel saturation. As parallel saturation usually uses 10-50% more memory than

the sequential one, the models which do not �t into memory in the sequential case will also not �t

in the parallel case. On the other side, for highly regular models, where sequential saturation turned

out to be extremely e�cient, parallelisation leads to 30-50-100% runtime overhead. These models

usually have only a few nodes at each level, so they provide less work for parallel threads. Moreover,

saturation usually �nishes state space generation within a second, so the overhead of creating threads

also makes worse the performance of the parallel algorithm. In the following table (Table 4.3) we show

the runtime results for two extremely big, but extremely regular models of [CMS05]. We present here

the measures for our algorithm, but the former approach [ELS06] produced similar runtime results in

general.

4.7.4 Scalability

In this section, the scalability of the new parallel algorithm is investigated: the scaling of the runtimes

with the number of used processors is measured. The goal of the new algorithm was to reduce the

synchronisation overhead and increase parallelism in the execution. In this section, I show the results

of the FMS model with parameterN = 200. The execution time of the parallel algorithm is compared

to the runtime of the sequential algorithm, and the number of available processors is increased to 1-

2-3-4 CPU-s. Figure 4.4 shows that the algorithm scales well with the growing number of processors.

Also, the algorithm is faster than the sequential one still on one CPU, as it can e�ciently exploit

hyper-threading technology and that we can run multiple threads on one CPU.

We also examined the scaling of the runtimes with the growing size of the models. Figure 4.5

depicts the runtimes of the parallel and sequential state space generator algorithms presented in this

4.7. EVALUATION OF THE ALGORITHM 67

Figure 4.4: Runtimes of our implementations, FMS model

paper for the FMS model. The advantage of the parallel algorithm grows with the growing number

of tasks meant by the bigger models (N is the size of the model).

Figure 4.5: Scaling of the parallel algorithm

4.7.5 Summary

The introduced parallel algorithm is more e�cient than its sequential counterpart regarding the run-

time performance. However, from the memory consumption point of view, the situation is di�erent:

as parallel threads start computing more “dead endings” (directions where no solution can be found),

memory consumption is usually 10-50% more than for the sequential algorithm. Comparison of the

introduced approach and the former one of[ELS06] is quite di�cult: as they use neither the same

kind of saturation algorithm nor the same programming environment, runtime results are not easily

comparable. However, the speedup factor compared to the sequential counterparts of each algorithm

suggests that the introduced new locking and synchronisation strategy leads to the more e�cient

parallelisation of the computations.

68 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

4.8 Thesis 2: Parallel State Space Exploration Techniques

I investigated various techniques to speed-up the model checking algorithms. Extending existing

algorithms to exploit the computational power of modern multicore computers necessitates the con-

struction of rigorous parallel algorithms and synchronisation mechanisms. Extending symbolic al-

gorithms to run parallel is especially challenging due to the complex data structures and intricate

symbolic computations. Saturation uses a special iteration strategy for traversing and building the

symbolic representation of both the state space and the next-state relation in an incremental manner,

which means that the steps heavily rely on the results of the former computations. This makes the par-

allel implementation a challenging task. I investigated the existing parallel saturation algorithm, and

I identi�ed some points where it could be improved. I introduced a new synchronisation mechanism

which reduces the synchronisation overhead and it could signi�cantly speed up the model check-

ing algorithm. The developed parallel algorithm could exploit the computational power of modern

multi-core processor computers in saturation-based state space exploration.

Thesis 2 I developed a parallel saturation based state space traversal algorithm using a novel synchro-
nisation method and locking strategy. The new locking strategy applies a �ne-grained locking mecha-
nism, which only synchronises the manipulation of the state space representation. The algorithm prevents
the occurrence of inconsistent states and ensures the correct execution of the saturation iteration order.
The new synchronisation algorithm decreased the synchronisation overhead and led to increased paral-
lelism. The new parallel algorithm can exploit the computational power of modern multicore computers
by decreasing the synchronisation overhead – for certain benchmark models – signi�cantly. I proved the
correctness of the new parallel algorithm.

Various measurements showed the competitiveness of the new algorithm on benchmark models.

The new algorithm scales with the growing number of computation units better than the former

approaches. The new synchronisation algorithm signi�cantly reduced the synchronisation overhead,

and it could lead to signi�cant performance gain compared to former approaches.

Publications: My new results introduced in this thesis were published in the conference paper

[17].

Chapter 5

Synchronous Product Generation for
LTL Model Checking

This chapter introduces my results in the �eld of automata theoretic model checking of regular prop-

erties. As I showed in the former chapters, CTL-based structural model checking was investigated

by many researchers and used for the model checking of ordinary Petri nets. However, there was a

need for a larger set of speci�cation languages. LTL model checking has di�erent expressive power

and it is considered more convenient for engineering applications [Var01]. My work in this chapter is

a step towards providing language theoretic LTL model checking by using regular properties as the

input of the model checking procedure. Later, this research was continued by my colleagues, and it

was extended to provide saturation-based veri�cation for the full set of LTL properties.

Publications related to this chapter. The initial results of this chapter were published in [24] and

than it was continued in [20], this chapter is based on the later paper. Based on these results, the syn-

chronous product generation approach was further improved later by my colleague, who combined

it with e�cient on-the-�y LTL model checking algorithms in [11] and [2]

Implementation and contributors. All the algorithms presented in this chapter were imple-

mented and made available in the PetriDotNet framework as a joint e�ort of the development team.

The algorithms of this section were implemented by my student, Vince Molnár.

5.1 Introduction

Model checking requires that the property should be expressed either declaratively in a temporal logic

language or imperatively by using, for example, an automaton formalism.

Many kinds of properties might be of interest from which safety properties constitute a signi�cant

part of the veri�cation problems [BKL08].

The veri�cation of safety properties is often reduced to analysing �nite traces. Regular languages

can express a safety subset of LTL properties, and �nite automata accept regular languages describing

safety properties. In addition, the �nite automaton formalism is used to express safety properties:

�nite automaton is a simple formalism, can be used conveniently and can naturally express �nite

error traces. For these reasons, it is widely used by the veri�cation community, but it is also widely

accepted by software engineers to specify requirements (for example, in the form of protocol state

machines). Automata can be used to specify the correct or the incorrect runs of the system. However,

69

70 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

when applying model checking, traditional automata-theoretic model checking approaches require

that the automata used by the algorithm represent the incorrect runs of the system. This can also be

achieved in the case when the given automaton describes the correct traces: the complement language

will de�ne the incorrect behaviour, and an accepting automaton can be constructed for this purpose

by switching the accepting and non-accepting states of the property automaton.

When the automata describing the violations of the property is given, automata-theoretic model

checking can be applied, which involves two main challenges:

1. compute the synchronous product of the system automaton with the property automaton de-

scribing the possible property violations, and

2. check if the product language is empty.

Constructing the synchronous product is a computationally expensive task as it can easily blow

up the size of the state space representation. This causes not only a storage complexity, but it also

makes language containment analysis di�cult. Various techniques exist to decrease resource con-

sumption and make the veri�cation more e�cient: one of them is on-the-�y model checking. Doing

the veri�cation on-the-�y during the state space traversal has two advantages:

• Synchronous product computation may �lter out parts of the state space which are irrelevant

for the veri�cation.

• The veri�cation can stop immediately when an error is found, and the remaining parts of the

state space will not be explored.

On-the-�y model checking is widely used with explicit state space traversal techniques. How-

ever, when extending symbolic state encoding techniques with on-the-�y model checking capabili-

ties, synchronous product computation becomes a complex problem. Symbolic synchronous product

computation involves two main problems to solve:

• encoding both the property automaton and also the state space symbolically, and

• synchronising the steps taken through the symbolic next-state representations.

These tasks are far from trivial. The big advantage of symbolic methods is that they can handle a

huge set of states (and state transitions) together. However, this makes the synchronisation problem

di�cult: Synchronous product computation relies on stepping the transitions of the state space and

the property automaton together. As symbolic methods handle sets together, doing element-wise

synchronisation is challenging.

Some attempts [CGH97; STV05] target to combine traditional BDD-based symbolic approaches

with automata-theoretic model checking. These approaches encoded the synchronous product and

the transition relation of software and hardware models. However, these approaches do not provide

a solution for asynchronous systems.

My goal was to devise an algorithm which can exploit the e�ciency of saturation in automata-

theoretic model checking.

In the following I will overview the general scheme of the automata-theoretic model checking

approach and then I introduce my contributions:

• I have identi�ed a special form of �nite automata which has the necessary properties to serve

as an input for the synchronous product computation.

• I investigated the properties of this special class of �nite automata.

• I devised an algorithm based on saturation to compute the synchronous product of the automa-

ton and the state space on-the-�y during the state space traversal.

5.2. PRELIMINARIES 71

5.2 Preliminaries

In this section, the preliminaries of my work is introduces. I will shortly overview the target speci�-

cation language and also the model checking approach, which serves as the algorithmic framework

for my contribution.

5.2.1 Property Speci�cation

In this thesis, I aim to provide an e�cient veri�cation technique for regular safety properties, which

can be represented by a �nite automaton. This class of properties consists of invariants, reachability

and even more complex properties.

Regular expressions and LTL can be both used to de�ne safety properties. However, due to the

semantic di�erence, they used to be interpreted di�erently.

In the following, we will consider the runs of the system as paths/trajectories, where each state

is consistent with a set of atomic propositions from the set of all atomic propositions AP .

The properties under consideration are de�ned below (according to [BKL08]).

De�nition 1 (Safety Property) A property P is called safety property, if for each violation σ of the

property, there exists a �nite pre�x σ̂ of the violation such as σ = σ̂ · σrem and σrem is the arbitrary

remaining part of the trace, then σ̂ can not be a pre�x of any trajectory satisfying the property, so for

any σP |= P , σP ∩ σ̂ = ∅. 2

De�nition 2 (Regular Safety Property) Safety property over AP is called regular if its set of bad

pre�xes constitutes a regular language over 2AP
. 2

For example, invariants are regular safety properties: let invariant property Pinv prescribe state for-

mula φ to be satis�ed by all the states, then the violations of Pinv are characterized by the regular

expression: φ∗ (¬φ) true∗. true∗ captures the fact that for regular safety properties, after �nding an

accepting path, the remaining behaviour of the system is not relevant. When dealing with LTL, it is

assumed that the remaining behaviour of the system contains at least one in�nite run. However, the

model checking approach I suggest will terminate immediately when reaching an accepting state.

In the following the semantics of regular expression will be interpreted as follows: if a pre�x

of a trajectory leads to an accepting state of the automaton, then the trajectory is accepted by the

automaton. So the expression true∗ is implicitly assumed to be at the end of each regular expression

(for example, φ∗ (¬φ) true∗ will be equal to φ∗ (¬φ)).

5.2.2 Automata Theoretic Model Checking of Regular Properties

Deciding whether a system M satis�es a regular property P over a set of atomic propositions AP
is reduced to checking language emptiness of the system constructed as the parallel (synchronous)

composition of the modelM and the automaton A for (the violations of) property P (referred to as

a property automaton).

The language L(M) describes the runs of system M and the language of the possible violations

of property P accepted by automaton A is denoted by L(A). The model checking procedure then

reduces to check if L(M) ∩ L(A) = ∅. If the intersection of the languages is not the empty set that

means the existence of a feasible error trace. Figure 5.1 depicts the general work�ow, which either

produces an error trace (an element of the language accepted by the product automaton) or it proves

the correctness of the system.

72 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

Property automaton

System automaton

Synchronous product
automaton

Error trace

Synchronous product
computation

Checking language
emptiness

OK

Figure 5.1: Automata theoretic model checking

Formally an automaton A is a tuple 〈Σ, Q,∆, Q0, F 〉, where Σ is a �nite alphabet, Q is a �nite

set of states, ∆ ⊆ Q× Σ×Q is a transition relation, Q0 ⊆ Q is a set of initial states and F ⊆ Q is a

set of accepting states. A run of an automaton over an input word is a sequence of states starting with

an initial state, where the transition relation holds between the consecutive states. A run is accepting
if it passes an accepting state in F . In case of �nite automata modelling regular safety properties, the

alphabet is the set of possible valuations of atomic propositions in the property: Σ = 2AP
. In practice,

the model checking procedure consists of constructing the synchronous product of the automaton and

the transition system, and then �nding accepting runs. The product inherits the accepting states of

the property automaton and search procedure can be de�ned algorithmically as searching the product

for accepting states.

Constructing a �nite automaton of the system description necessitates the traversal of the state

space (resulting S) and the possible state transitionsN . The state space representation is considered

as a �nite automaton in the automata theoretical sense with all states as accepting. The reason behind

representing the state space as accepting is that the synchronous product will inherit the acceptance

condition of the property automaton.

Checking language emptiness is an important part of the automata-theoretic model checking al-

gorithm. In this thesis, I reduce language emptiness checking to checking if an accepting state is

reachable in the synchronous product. This can be achieved on-the-�y during the traversal, as I will

show later.

LTL is a more convenient and wide-spread formalism to express properties so I will also use LTL

requirements during this thesis. As in this thesis we will consider only reactive models, which do

not contain deadlock, we can assume that regular properties are a subset of LTL properties. This also

demonstrates that even though the introduced model checking algorithm necessitates the automata

formalism as an input, the approach is neither restricted strictly to one property speci�cation language

nor to one speci�c automata formalism.

In the following, I show how properties can be speci�ed to support synchronous product compu-

tation based on saturation. A new form of �nite automata is introduced which supports the e�cient

encoding of the synchronous product and the synchronisation of the steps of the state space traver-

sal. On top of the new automata formalism, I build a saturation-based on-the-�y model checking

algorithm.

5.2.3 Synchronous Product

The synchronous product of the modelM is de�ned by interpreting the transition system generated

byM as a (�nite) automaton. This automaton represents the possible states, i. e., the state space S . A

labeling function over S is de�ned as L : S → 2AP
assigning a valuation of the atomic propositions

of P to each state of the state space S (ofM). The alphabet of the automaton corresponding toM is

the same as that of the property automaton: 2AP
. N is extended to support composition Inputs of its

5.3. SPECIAL ENCODING BASED ON CONSTRAINED SATURATION 73

transitions are the valuations assigned to the target state by L. Synchronous composition with this

automaton forces the property automaton A to read the valuations that appear on a state sequence

ofM. Regarding the structures de�ned so far, the synchronous product can be de�ned as follows:

M×A = 〈Σ, S ×Q,∆×, Sinit ×Q0, F 〉, where ∆× = {〈〈s, q〉, α, 〈s′, q′〉〉|〈s, s′〉 ∈ N , 〈q, α, q′〉 ∈
∆, α = L(s′)}.

5.3 Special Encoding Based On Constrained Saturation

In this section, I will characterise a special form of �nite automata on which the symbolic encoding

relies. After that, I propose a new encoding that can be used as an input for the constrained saturation

algorithm to compute the product state space. This e�cient encoding serves as the background of the

new model checking algorithm of Section 5.4.

5.3.1 Tableau Automata

The �rst step in automata theoretic model checking is the translation of the property into a �nite

automaton. Observing the output automaton of widely used �nite automata conversion algorithms

such as [Brü93] and also tableau-based conversion algorithms (such as [Ger+95; SB00; Kes+93]) for

LTL, I identi�ed a common structural property that can be exploited to encode and compute the

product e�ciently. I refer to these kinds of automata as tableau automaton.

De�nition 3 (Tableau automaton) A tableau automaton is a tuple 〈AP ,Σ, Q,∆, Q0, F, L
+, L−〉,

where

• AP is a set of atomic propositions,

• Σ = 2AP
is the alphabet of the automaton,

• Q is the set of states,

• ∆ ⊆ Q×Q is the transition relation,

• Q0 ⊆ Q is the set of initial states,

• F ⊆ Q is the set of accepting states, and

• L+ : Q→ 2AP
and L− : Q→ 2AP

are labeling functions, L+
assigning propositions that must

hold in the given state, while L− assigning those that must not. 2

A run of a tableau automaton over an input word is also a �nite sequence of states q0q1 . . . starting

with an initial state q0 ∈ Q0, but unlike simple automata, there is an additional requirement beyond

satisfying the transition relation. For every i, the input letter αi ∈ 2AP
of the word representing a

valuation of the atomic propositions must contain every proposition assigned to qi+1 by L+
and must

not contain any assigned by L−, formally: L+(qi+1) ⊆ αi and L−(qi+1) ∩ αi = ∅. Accepting runs

are de�ned the same way as for �nite automata.

At this point, it is important to emphasise that tableau automata are only a special form of

�nite automata, with the same expressive power. An equivalent �nite automaton has the same

states (including initial and �nal states), the same alphabet, and a transition relation in the form

of

⋃
〈q,q′〉∈∆{〈q, α, q′〉|L+(q′) ⊆ α,L−(q′)∩α = ∅}. Because of this equivalence, we will often refer

to a �nite automaton directly corresponding to a tableau automaton to be in tableau form. In Section

5.3.3 I will show that every �nite automaton can be transformed into this form.

74 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(a) By de�nition

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(b) Compact repre-

sentation

{a}

{a}

{b} {a,b}

{0}

b a&b

¬ b

{b}{0} {a,b}

¬ b

a&b

 b

Ø

{b}{a,b}

{a}

{b}
{a,b}

Ø {a}

Ø {a} {b} {a,b}

Ø {a,b}

{a} {b}

b

¬ b

¬ b

b

¬b

b

0

2

3

1

{a,b}

{a,b}

{b}

{a,b}

{b}{a,b}

Ø {a} {b} {a,b}

0

2

3

1

Ø {a,b}

{a} {b}

aᴧb

b

b

aᴧb

0

2

3

1

b

aᴧb

(c) Tableau automaton

Figure 5.2: Three forms of a �nite automaton corresponding to the regular property “b∗ (a∧ b)” (LTL

property “aR b”).

In the following example, we will use a safety property which can be expressed either with the

help of regular expressions or by using the LTL language.

Figure 5.2 shows di�erent representations of a safety property expressed as a regular expression

b∗ (a∧ b) and an LTL expression aRb. On Figure 5.2a, the corresponding automaton is shown exactly

as it is described by the de�nition: each transition in the transition relation gets an own arc. Labels

of the arcs are the sets representing valuations of the atomic propositions a and b. Figure 5.2b shows

the same automaton in a more compact form, merging arcs and characterising their labels with a

conjunctive expression. This automaton is in tableau form since all of the arcs targeting the same

state are labelled by the same conjunction. Moving these labels to the state itself results in a tableau

automaton shown on Figure 5.2c. Let φq denote the conjunction on the arcs targeting q. Then the

labelling functions L+
and L− are de�ned such that every atomic proposition that is positive in φq is

in L+(q), while those that are negative are returned by L−(q).

5.3.2 Encoding the Product Automaton

In this section, I investigate the main aspects of the symbolic encoding, and I suggest a solution which

supports the e�cient application of saturation.

For now, we assume that the state space and the next state relations of the system are already

computed. Later in Section 5.4.2, I will show an on-the-�y construction algorithm. The speci�cation

is given as an automaton. Since the main goal is to exploit the power of saturation in model checking,

we need to de�ne the states and transitions in the way we did in Section 2.3. Formally a product
system is built which is a tupleM× = 〈S×,S×init, E×,N×〉 collecting states in S×, initial states in

S×init and transitions into N× preferably partitioned by events ε ∈ E× according to the events of the

transition system.

Besides keeping the original state variables of the transition system, one or more additional vari-

ables are needed to encode the states of the automaton representing the property.
1

Note that every

event of the product system must a�ect the encoding variables of the automaton, since their steps

are synchronised. For this reason, to keep the e�ciency of the saturation iteration strategy, these

variables need to be situated in the lower levels of the decision diagram encoding: inserting them

1

The property automaton is typically small enough to get encoded into a single variable, but a binary encoding (or

anything in between) can also be used for a more compact representation.

5.3. SPECIAL ENCODING BASED ON CONSTRAINED SATURATION 75

immediately above the terminal level is an ideal choice. This way the encoding has no impact on the

Top values of system events. Since the e�ciency of saturation iteration strategy is highly dependent
on the Top values of system events, not ruining the Top values produced by a good variable order is a

sane requirement towards any algorithm.

The encoding of the transitions is a bit more challenging: as mentioned in Section 5.2.3 the steps

of the system model and the property automaton need to read the same input letters, i.e. valuations of

atomic propositions in the checked property. Thus it is insu�cient to simply compute the Cartesian

product of the next state relation of the model and the transition relation of the automaton.

In Section 5.2.3, we have already de�ned the product automaton ofM and A. To de�ne the next

state relation of the product system, we will drop the input labels of the transitions of the automaton.

Saturation and model checking altogether is not interested in what input the product automaton reads

during the state space traversal as long as the system model and the property automaton both read the

same word. Formally, the next state relation of the product system is N× = {〈〈s, q〉, 〈s′, q′〉〉|∃α ∈
2AP , 〈〈s, q〉, α, 〈s′, q′〉〉 ∈ ∆×}. While this de�nition is mathematically correct and can even be

realised as conjunctive-disjunctive decomposition suitable for saturation [CMS05] (i.e. events are kept

and the next state relation is the composition of next state relations of events), it fails to accomplish

one of our main goals: preserving the Top values of events.

If the synchronisation on the input word is encoded into the next state relation, Top values of

every event are inevitably raised to the same value that can even beK , the highest level possible. This

means that saturation’s strategy to apply the next state relation in a �ner granularity is spoiled, every

event is processed on the same level and the optimisations of saturation targeting concurrency are

lost. To understand the reason for this rise in the Top values, we de�ne the subject level of atomic

propositions.

We assume that the truth value of an atomic proposition is only dependent on a single state

variable, we call this the subject of the atomic proposition. Let Sub(p) denote the level on which this

variable is encoded in the decision diagram. Due to the synchronisation, each step of the system model

results in a step of the property automaton. A step of the property automaton requires a full valuation

of the atomic propositions, so every event ε ∈ E× of the product system now depends on all variables

that are subjects of any p ∈ AP . By de�nition, this means that supp(ε) ⊇ {i|∃p ∈ AP ,Sub(p) = i},
i.e. the support of ε contains every level encoding variables that are subject to an atomic proposition

in AP. It is easy to see that Top(ε) is now at least max{i|∃p ∈ AP ,Sub(p) = i}. For an example,

imagine a property in which subjects of atomic propositions cover every state variable, so regardless

of variable ordering, all Top values are raised to the maximum.

Since this is clearly not what we want to do, I devised a solution that preserves the Top values of

the events by decomposing the problem, separating the next state relation and the constraint of reading
the same word. This enables us to keep saturation’s every advantage.

My proposed solution exploits the way tableau automata work. Furthermore, I employ the main

idea of constrained saturation[ZC09]: check and �re. Instead of intersecting relations, I 1) relax the

next state relation of the product toN ×∆ in order to ignore the input of the participating automata

and then 2) only allow state transitions reaching legal states. A reached state 〈s, q〉 is legal, if the

valuation L(s) determined by the system’s state satis�es φq , i.e. all propositions in L+(q) are true

and those in L−(q) are false. I use the characteristics of tableau automata to be able to validate states,
not steps – just like constrained saturation does.

I have to constrain the steps of relaxed next state relation R = N × ∆ to traverse only legal

states. As I utilise the constrained saturation algorithm for this purpose, I have to compute the input

constraint for the algorithm. We have to recall now that constrained saturation computes the set of

statesN (S)∩C in each step during the state space traversal, where C is the constraint characterising

76 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

possible states. Following this idea, I de�ne the constraint as the set of legal states: C× = {〈s, q〉|s ∈
S, q ∈ Q,L+(q) ⊆ L(s), L−(q)∩L(s) = ∅} (where s corresponds to the vector representation of s).

Last but not least, the initial states of the product system can be obtained by pairing the appropri-

ate initial states of A with initial states of M . The property automaton is typically interpreted such

that the input of the �rst step from the initial state is the valuation implied by the initial state of M .

This means that we initialise the property with the current (initial) state of the system, observing its

behaviour starting from this point of time.

In Section 5.4, I will show how to provide an on-the-�y model checking algorithm based on the

presented approach.

5.3.3 Investigation of Correctness and E�ciency

In order to prove the correctness of the algorithm, it is necessary to show that using the introduced

next state relation and constraint, constrained saturation applies the same state transitions as satura-

tion would use the previously de�ned next state relation N×.

Theorem 1 Given a set of states S, a product next state relation N×, a relaxed next state relation R
and a constraint of legal states C× the constrained saturation algorithm with R and C× computes the
same set of states reachable with one step from S as the saturation algorithm does with N×. 2

The reader shall consider the de�nitions of Section 5.3.1 and 5.3.2 in order to prove that the set

of statesR(S)∩C× constrained saturation computes are equivalent toN×(S) directly computed by

saturation. The equivalence holds because N× contains only legal state transitions: while R is less

strict, C× restricts it to legal states. Due to the introduction of tableau automata, constraining the

transitions or the target states has the same e�ect.

I will examine the size of tableau automata in general. It is easy to see that most automata are not

in tableau form, so they need to be transformed to get the corresponding automaton.

Theorem 2 Given a (�nite) automatonA with a state count of n over valuations of atomic propositions
AP as an alphabet, a tableau automaton accepting the same language can be constructed with a state
count at most n ·O

(
2|AP |). 2

Proof Constructive proof. Let q′ be a state ofA with input transitions δ = {〈q, α, q′〉 ∈ ∆}. Denote

the set of valuations appearing in these transitions by σ = {α|∃〈q, α, q′〉 ∈ δ}. Let φσ denote a

logical function in minimal disjunctive normal form that is true for exactly the valuations in σ (such

an expression always exists). Finally, denote the conjunctive parts of φσ by c(φσ) = {φiσ}.
If |c(φσ)| = 1, replace the parallel transitions with a single one of the tableau automaton, then

label q′ according toφσ . Otherwise, an automaton accepting the same language is obtained by splitting

q into |c(φσ)| states {qi}, each of them with the same outgoing transitions and input transitions

de�ned by φiσ . Once every (potentially new) state is processed, the result is a tableau automaton.

To examine the number of resulting states, consider that every state will only be split once. The

number of states it is split into depends on the disjunction φσ , since every conjunction in it will

yield a new state. It is well known that the upper limit on the number of conjunctions in a minimal

disjunctive normal form of any Boolean formula over b binary variables is O
(
2b
)
. As a result, every

state will be split into at most O
(
2|AP |)

new states. �

Although this may sound very disappointing, I emphasize that widely-used tableau-based au-

tomata construction algorithms produce automata that are always in tableau form, so no more trans-

5.4. SATURATION-BASED ON-THE-FLY LTL MODEL CHECKING 77

formation is needed. However, there may be a rightful need to further simplify these automata. For-

tunately, many methods aiming to reduce the size of the property automaton keep the tableau form,

such as those introduced in [EH00] excluding the reduction based on bisimulation, which can be

modi�ed to preserve the tableau form in exchange for some loss of compacting power. Note however,

that for widely used regular safety and even temporal logic properties, the tableau form yields only a

constant factor growth in the size: the e�ciency of saturation used to overcome this di�culty as my

measurements will also show.

5.4 Saturation-based On-the-�y LTL Model Checking

In the former section, I introduced an e�cient encoding and computation scheme of the synchronous

product. Now, I extend this framework to provide e�cient on-the-�y model checking. The novelty of

my approach is that it provides fully symbolic on-the-�y model checking, where both the state space

and the automaton is encoded. The proposed algorithm computes the synchronous product on the

�y during the traversal and searches for accepting states at each step.

5.4.1 Abstracting the Constraint

The presented algorithm of Section 5.3.2 introduced an e�cient encoding of the product system by

decomposing the transition relation into an over-approximating next state relation and a constraint of

legal states. I utilised constrained saturation to build the state space of the product system. I de�ned

the legal state constraint as set C× = {〈s, q〉|s ∈ Srch , q ∈ Q,L+(q) ⊆ L(s), L−(q) ∩ L(s) = ∅}.
With the previously de�ned next state relation R and this constraint, the constrained saturation

algorithm explores the state space and builds a symbolic representation of the synchronous product.

Now I introduce an abstraction layer providing the ability to build the symbolic product rep-

resentation on the �y. This abstraction layer will “virtualize” the legal state constraint, letting the

algorithm build the abstraction without precomputing the state space of the system model. The vir-

tual constraint will encode the possible valuations and corresponding automaton states symbolically.

Suppose that AP is a list of atomic propositions pi ordered by Sub(pi), the level on which their sub-

jects are encoded. Then the constraint is the set

⋃
q∈Q(p1(q) × . . . × pn(q) × {q}) where pi(q) is a

function assigning the possible valuations of pi that satis�es the labeling of q, i.e. pi(q) = {true} if

pi ∈ L+(q), pi(q) = {false} if pi ∈ L−(q) and pi(q) = {true, false} otherwise. Figure 5.3 shows the

constraint of the example tableau automaton of Figure 5.2c.

In order to be able to use this abstract constraint for the on-the-�y traversal, I de�ned a function

to map between the abstract constraint and the concrete states. This function is depicted on Algo-

rithm 18. The function takes a constraint node c, a local state i and its level number l, and evaluates all

atomic propositions whose subject is encoded on level l in a �xed order. If i ful�ls p (i.e. ap(i) = true),

then it steps downward in the decision diagram through the true branch (reaching c[true]), otherwise

through the branch labelled with false (reaching c[false]). This way the algorithm is able to locally

evaluate if a valuation of the global state satis�es the labelling of the reached state of the property

automaton.

This approach has the advantage of using the constrained saturation algorithm with only a slight

modi�cation: the algorithm will only have to use the simple function described above to determine

the next constraint node based on the valuations of the local states currently processed. This way the

constraint only depends on the property automaton and can be built before starting the state space

exploration.

78 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

0

2

3

1

b

aᴧb

¬a a

1

0 3 0 31 23

b¬bb ¬b

2 0

Figure 5.3: A constraint encod-

ing the tableau automaton of

Figure 5.2c.

Algorithm 18. StepConstraint

input : c : node i, l: indices

1 // c: product constraint,

2 // i: index of state

3 // l: index of actual level

output : node

4 if l = 1 then
5 return c[i];

6 foreach p ∈ AP ,Sub(p) = l do
7 c← c[p(i)] ; // evaluate p on i

8 return c;

5.4.2 Units of Processing – A Framework for On-the-�y Model Checking

Based on the formerly introduced algorithms I developed an on-the-�y model checking framework.

This framework uses constrained saturation with the abstract constraint for the exploration of the

state space of the synchronous product. Now I extend it to be able to do on-the-�y model checking.

The building blocks of the algorithm are the recursive saturate function calls computing local �xed-

points. The introduced new algorithm combines the traversal with local accepting state detection, so

after each local �xed-point computation I apply a search algorithm to detect accepting states in the

sub-state space of the product.

The whole algorithm is similar to the constrained saturation algorithm, the extensions for being

able to compute the synchronous product on the �y are signed with asterisks on Algorithm 19 and

20. AcceptingStateDetection(t) is the function for searching accepting states locally in the sub-state

space represented by decision diagram node t.
The introduced algorithm is easy to extend with SCC detection algorithms from [11] or other

arbitrary SCC detection algorithm to provide LTL model checking: the only modi�cation is that we

have to change function AcceptingStateDetection(t) searching for accepting states to a function,

which looks for accepting cycles.

In order to evaluate the solution and compare it with traditional model checking algorithms, I use

an SCC detection solution of [11], which combined the traditional Emerson Lei [EL86] SCC computa-

tion and an incremental approach of [Wan+01]. This way my algorithm can also provide veri�cation

support for the full set of LTL speci�cations and I am able to compare it with other LTL model check-

ing algorithms.

5.5. EVALUATION 79

Algorithm 19. ProdConsSaturate

input : c, s : node
1 // c: product constraint,

2 // s: node to be saturated

output : node

3 l← s.level ; r ← N−1
l ;

4 t← new Nodel; pc ← c;

5 foreach i ∈ Sl : s[i] 6= 0 do
6∗ pc ← StepConstraint(c, i, l);
7 if pc 6= 0 then
8 t[i]←

ProdConsSaturate(pc, s[i]);

9 else
10 t[i]← s[i]; // no steps

allowed

11 repeat
12 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
13∗ pc ← StepConstraint(c, i, l);
14 if pc 6= 0 then
15 u← RelProd(pc, t[i], r[i][i′]);
16 t[i′]← Union(t[i′], u);

17 until t unchanged;

18 t← PutInUniqueTable(l, t);
19 AccetpingStateDetection(t);
20 return t;

Algorithm 20. RelProd

input : c, s, r : node
1 // c: product constraint,

2 // s: node to be saturated,

3 // r: next state function

output : node

4 if s = 1 ∧ r = 1 then
5 return 1

6 l← s.level ;
7 t← 0;

8 pc ← c;

9 foreach i, i′ ∈ Sl : r[i][i′] 6= 0 do
10∗ pc ← StepConstraint(c, i, l);
11 if pc 6= 0 then
12 u← RelProd(pc, t[i], r[i][i′]);
13 if u 6= 0 then
14 if t = 0 then
15 t← new Nodel;

16 t[i′]← Union(t[i′], u);

17 t← ProdConsSaturate(c, t);
18 t← PutInUniqueTable(l, t);
19 return t;

5.5 Evaluation

We have developed an experimental implementation of the formerly introduced algorithms in the

PetriDotNet framework and evaluated it by comparing runtime results on well known concurrent

benchmark models, running the classic BDD-based algorithm of NuSMV, the state-of-the-art SAT-

based algorithm IC3 [Bra+11] of nuXmv, the saturation-based algorithm of ITS Tools [Dur+11] and

the introduced new algorithm called Tableau–ModelChecker, or shortly T–MC. The results are shown

on Table 5.1.

My algorithm was extended with SCC detection (from [11] and [2]) to provide veri�cation of the

full set of LTL as it is also done by the competitors (this work was done by Vince Molnár). Note that

if the comparison would only target regular safety properties, that would not be a fair comparison as

all the competitors do LTL model checking by searching for strongly connected components.

The algorithms were run by using the same memory and computational resources to be fair: the

computer used for the evaluation had Intel Xeon processors (4 cores, 2.2GHz) and 8 GB of RAM.

In Table 5.1, —
(M)

marks cases in which the tool ran out of memory, and —
(I)

is shown in case the

input model was not constructed in the format of a tool. It can be concluded from the results that my

new approach is competitive: ITS tool could signi�cantly beat it for the Round Robin model, where

the task is a simple cycle detection (which is not the target of my thesis). For all other models, my

algorithm has the same runtime complexity, or it was faster than the other tools.

Figure 5.4 depicts a comparison of the scaling of the tools with the growing number of participants

in the Slotted Ring protocol. I investigated a simple safety property here to focus mainly to the

introduced new synchronous product generation algorithms (and not on the SCC detection problem).

80 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

Table 5.1: Measurement results of state-of-the-art model checking tools and T–MC.

N
Runtime (s)

NuSMV nuXmv ITS–LTL T–MC

Counter–N , expression: ¬G(bitN−1)
10 0.01 0.01 —

(I) <0.01
15 0.21 0.02 —

(I) <0.01
20 15.30 0.02 —

(I) 0.01
50 >1200 0.04 —

(I) 0.02

DPhil–N , expression: GF(HasRightN)→ GF(HasLeftN ∧ HasRightN)
50 >1200 178.87 0.22 0.16

100 >1200 >1200 0.64 0.60
200 —

(M)
—

(M) 2.19 2.45

300 —
(M)

—
(M) 5.13 5.93

Kanban–N , expression: ¬G(Pback2 = N − 1 ∨ Pback3 = N − 1)
10 0.07 0.02 0.02 <0.01
20 9.51 0.02 0.03 <0.01
30 13.64 0.03 0.02 <0.01

SlottedRing–N , expression: ¬G(H1 = 0 ∨G1 = 0)
5 39.43 0.03 0.06 0.02

10 >1200 0.11 0.22 0.07
50 >1200 6.10 18.33 2.69

100 —
(M)

—
(M)

168.73 16.51

SlottedRing–N , expression: ¬G(CN = 0)
5 14.45 0.04 0.03 <0.01

10 >1200 0.10 0.03 <0.01
50 >1200 5.87 0.19 0.04

100 —
(M)

—
(M)

0.58 0.14

RoundRobin–N , expression: ¬G(true)
10 >1200 0.08 0.08 0.03
50 >1200 4.70 0.64 1.37

100 —
(M)

—
(M) 2.13 9.12

FlexibleManufacturingSystem–N , expression: F(P1s = P2s = P3s = N)
5 >1200 0.03 0.13 0.01

10 >1200 0.02 0.53 0.01
20 >1200 0.03 3.70 0.02

It shows that for properties having compact tableau representation my model checking approach has

competitive performance.

5.6. THESIS 3: ON-THE-FLY SYNCHRONOUS PRODUCT GENERATION FOR MODEL CHECKING
REGULAR SAFETY PROPERTIES 81

25 10 20 50 75 100 150

0

200

400

600

800

N

R
u

n
t
i
m

e
(
s
)

T–MC

ITS–LTL

nuXmv

NuSMV

Figure 5.4: Slotted Ring, scaling (expression: ¬G(H1 = 0 ∨G1 = 0))

5.6 Thesis 3: On-the-�y Synchronous Product Generation for
Model Checking Regular Safety Properties

Users have to analyse various kinds of properties, which can be expressed with the help of tempo-

ral logics. CTL and LTL are widely used temporal logics and they have di�erent expressive power.

Deadlock-freedom is expressible in CTL while fairness properties are supported by LTL. To support

the engineers in veri�cation, it is suggested to provide veri�cation for both speci�cation languages.

I investigated the literature and e�cient saturation based algorithms exist for the structural model

checking of CTL properties. However, LTL model checking lacks the veri�cation support based on ef-

�cient symbolic algorithms. In this thesis, I focus on a signi�cant subset of the LTL language, namely

regular safety properties. Model checking regular safety properties can be traced back to two main

problems: synchronous product generation and detection of accepting states. Synchronous product

generation is a di�cult problem in a symbolic setting where one has to encode the property automaton

and has to synchronise the steps with the state space. This is a di�cult problem as saturation tra-

verses the states in an irregular order which makes the synchronous product computation extremely

di�cult. I propose an e�cient technique to compute synchronous product on the �y during the state

space exploration and model checking of safety regular properties. The goal of the approach is to

enable on-the-�y model checking during the state space traversal.

Thesis 3 I developed a saturation based model checking algorithm for the safety regular subset of LTL
properties. I propose a symbolic encoding of the automaton, and I introduce a new symbolic constraint to
the saturation algorithm. I also introduce a new state space traversal technique to compute synchronous
product on the �y during the state space traversal and do on-the-�y LTL model checking. The new
algorithm served as the foundation of a new saturation-based LTL model checking procedure.

My solution is the �rst algorithm which provides veri�cation for a rich set of speci�cation lan-

guages based on the saturation algorithm. The new algorithm extends the set of systems and require-

ments which could be veri�ed by saturation. Various measurements showed the competitiveness of

the new algorithm on benchmark models. In addition, the LTL model checker based on the new syn-

82 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

chronisation algorithm was the �rst which could verify LTL properties of the PRISE industrial case

study.

Publications: My new results introduced in this thesis were published in the paper [20]. The results

contributed to the conference paper [7] and journal papers [2] and [1].

Chapter 6

PetriDotNet Model Checking
Framework

In this chapter, I put the pieces together and I introduce the PetriDotNet model checking framework.

This chapter encapsulates the former results and also the results of many collaborators into a con-

sistent, coherent framework. The main goal is enable users to use the algorithms in the modelling,

formalization and analysis of their problems. This part of my work bridges the gap between the sci-

enti�c results and the applications in the engineering domain and the introduced approach and the

framework serves as a usable solution for the veri�cation engineers.

My contribution in this chapter is the the novel combination of the various algorithms that yielded

the e�cient veri�cation approach in the PetriDotNet framework. The devised approach proved its

applicability in many research projects. In addition, the framework was used in various industrial

case-studies to analyse the functional and even extra-functional aspects of system designs.

Beside the introduced veri�cation work�ow, I also made theoretical investigations regarding the

CEGAR algorithm. The CEGAR algorithm complements the symbolic techniques, which are the topic

of the former theses. However, the completeness of the Petri net CEGAR approach has never been

evaluated before. In this chapter I also extend former theoretical results and I prove the incomplete-

ness of the algorithm. This work served as a basis for other researchers to extend the CEGAR algo-

rithm and integrate the new developments also into PetriDotNet .

Publications related to this chapter. The results of this chapter were published in [1], [4], [7],

[10] and [15] and this chapter is based on that papers.

Implementation and contributors. All the algorithms presented in this chapter were imple-

mented and made available in the PetriDotNet framework. The implementation of the presented

algorithms is the result of the whole PetriDotNet team: Dániel Darvas, Vince Molnár, Attila Jámbor,

Tamás Szabó, Ákos Hajdu, Zoltán Mártonka, Attila Klenik, Kristóf Marussy.

6.1 Model Checking Work�ow

The goal of my work was to provide a comprehensive approach covering all phases of the veri�cation

process.

The aforementioned challenges belong to three aspects of the veri�cation problem according to

[BKL08]:

83

84 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

1. Modelling of complex systems.

2. Specifying formal requirements.

3. Verifying the model with regard to the requirements.

The goal of my research was to introduce a framework supporting the main tasks in veri�cation.

In this section, the proposed veri�cation approach and the corresponding subtasks are introduced.

6.1.1 Modelling and Veri�cation Approach

In this section I propose a modelling and veri�cation approach. This new approach was designed

according to lessons learnt from the research and industrial projects and case-studies of the research

group. The introduced approach targets a certain class of problems: the modelling and veri�cation of

asynchronous, safety-critical systems with control and �nite data.

Problem. Formal modelling necessitates a proper modelling formalism, which is able to capture the

problem of the domain. Our experience showed that there is no comprehensive tool and approach

which would support the modelling and analysis of asynchronous systems. Petri net based modelling

languages provide modelling means for asynchronous systems. However, either a tool has an expres-

sive formalism, but weak analysis such as [JKW07], or it provides e�cient analysis techniques but

di�cult to use [Cia+03].

Formal veri�cation requires expressive speci�cation languages to be able to capture the intent of

the designers. This is often a problem, as tools either support reachability checking, or CTL or LTL,

but not all of them.

Veri�cation tools supporting Petri net formalisms tend to use only one technique for veri�cation.

However, one technique is rarely enough to analyse all aspects of a system. There exists a framework

using a wide range of techniques for the veri�cation of synchronous hardware or software systems

[Cav+14], but these techniques are not e�cient for asynchronous systems [2]. LTSmin is another

framework for process algebra, timed automata and extended state machines and it supports vari-

ous symbolic and explicit techniques [Kan+15]. However, LTSmin does not support Petri nets as a

modelling language, and it lacks those techniques from the literature that are e�cient Petri net based

models.

Summarizing the problems, we need a tool to support all aspects of the veri�cation problem and

an approach to support the veri�cation of asynchronous, distributed safety-critical systems.

Goal. As it was discussed, ordinary Petri nets and Coloured Petri nets e�ciently capture the be-

haviour of asynchronous, distributed safety-critical systems, so I propose to combine e�cient model

checking algorithms from the literature to provide LTL and CTL model checking for Petri net based

models.

The overall goal is to provide a tooling for veri�cation engineers. The approach targets veri�cation

engineers who aim to develop formal models and execute veri�cation tasks. In order to cover the tasks

arising during the veri�cation of complex systems, three main functionalities have to be provided by

the framework:

• Editor and persistence support for designing formal models in the Petri net and Coloured Petri

net formalism,

• Specifying the formal requirements with CTL and LTL temporal logics,

• Model checking of the formal models if they satisfy the temporal logic requirements.

6.1. MODEL CHECKING WORKFLOW 85

The goal is to provide modelling and veri�cation support tailored to not a speci�c domain, but

for a wide range of problems, which can be naturally captured by Petri net based models. The target

problem domain of the framework is asynchronous, concurrent or distributed systems with data

dependence.

Proposed approach. I propose a modelling and analysis approach which combines the expressive

power of Petri net based models with the e�ciency of saturation and abstraction based algorithms.

The approach supports widely-used speci�cation languages such as LTL and CTL.

I propose the veri�cation work�ow depicted on Figure 6.1 consisting of various methods to cover

the main aspects of designing and analysing formal models. As veri�cation is a complex task, a wide-

range of algorithms is available, and the goal of the work�ow is to combine the advantages of these

techniques.

According to the literature, I propose to use, integrate and extend the following algorithms into a

framework to provide formal modelling and veri�cation support for the engineers:

• Saturation-based algorithms for the e�cient state space exploration of PN and CPN models of

asynchronous systems.

• Saturation-based LTL and CTL model checking algorithms.

• Bounded saturation and abstraction based algorithms such as CEGAR (Counterexample-Guided

Abstraction Re�nement) extends the veri�cation capabilities of the framework to handle �nite

and in�nite state models.

• Bounded saturation and abstraction based algorithms are used to generate counterexamples for

safety properties.

Figure 6.1 depicts the veri�cation work�ow starting with the formal modelling step and the devel-

opment of the formal speci�cation. The goal of the framework is to provide Petri net based modelling

languages such as Petri nets and Coloured Petri nets and also temporal logic-based speci�cation lan-

guages such as CTL and LTL.

The proposed (symbolic) analysis methods need to encode the state space and also the next-state

function symbolically. Kronecker matrix based representations are used for PN models, and I propose

special algorithms for the handling of CPN models, these algorithms are the disjunctive-conjunctive

and the lazy decomposition algorithms.

Various algorithms can be used to explore the state space: beside traditional saturation algorithm,

bounded saturation can help verifying models with in�nite state space and parallel saturation can

exploit the computation power of recent multicore computers. In addition, if the model has in�nite

state space (for example when representing parametric systems), Counterexample-Guided Abstrac-

tion Re�nement solves the safety veri�cation problem e�ciently. CEGAR can also be used e�ciently

in other cases of safety veri�cation.

In case of intended LTL model checking, synchronous product generation is needed to compute

the product representation of the state space and the property automaton.

Finally, we need temporal logic model checking algorithms in the framework to verify CTL and

LTL properties.

Extending the state-of-the-art. In this section, I summarise the work I was involved in, and I will

discuss how we advanced the state-of-the-art.

The proposed approach uses the state space exploration algorithm for Petri net and Coloured Petri

net models, which is based on [CMS03; CY05]. An e�cient structural CTL model checking approach

of [CS03; ZC09] is integrated into the framework.

86 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

The idea of handling models with in�nite state space continues the work of Ciardo et al. [Cia+03;

YCL09]. The combination of counterexample generation with saturation follows also this line of re-

search. However, beside the existing techniques, our research group extended the set of bounded state

space exploration algorithms and introduced new bounded model checking algorithms. In addition,

we utilised also a CEGAR approach of [WW11] to handle a new set of problems and also to provide

e�cient trace generation.

I propose to integrate saturation-based bounded model checking with structural model checking

approaches.

The LTL model checking approach continues the results in this �eld of [Thi15; Wan+01; Dur+11;

CGH97; STV05; Ger+95] and the goal is to exploit and combine their strengths, such as: on-the-

�y LTL model checking, abstraction techniques specialised for LTL model checking, synchronous

product generation and saturation.

However, some of these algorithms did not exist before I started to devise the approach. In addi-

tion, their integration into an e�cient analysis framework was also far from trivial.

During the development, we aimed to extend the existing approaches with new algorithms to �ll

the research gaps. In the following the extensions are summarised, which had to be contributed to

provide a �exible and con�gurable model checking process:

• Bounded saturation-based CTL model checking was presented in [3],[6],[14] and [18] in order

to be able to e�ciently combine bounded saturation-based state space traversal of [YCL09] with

structural model checking [CS03; ZC09].

• SCC computation and e�cient on-the-�y LTL model checking based on saturation presented

in [11].

• New CEGAR algorithms in [4], [10] and [15] to extend the solvable set of reachability problems.

My contribution. Beside the complex approach that was put together by the extensive work of

our research team, my contributions also signi�cantly extended the applicability of the approach.

The model checking framework was introduced in [1] and [7]. The veri�cation process of the frame-

work supports the veri�cation of a wide set of problems, with the help of multiple combinations of

algorithms. Beside the whole approach, Figure 6.1 highlights the steps improved by my work of this

dissertation with a grey background.

My algorithmic contributions to the model checking approach are summarised as follows:

• New model checking algorithms for Coloured Petri net models presented in [5].

• New parallel saturation algorithm presented in [17].

• A new synchronous product generation algorithm, presented in [20] in order to provide

saturation-based LTL model checking [2].

• Theoretical investigation of the Petri net CEGAR approach in [4] and [15].

6.1.2 State Space Exploration Techniques

Saturation is proved to be one of the most e�cient techniques for the veri�cation of asynchronous

systems, which motivated our choice that saturation is used as the state space exploration engine

in the framework. The introduced approach provides three di�erent next-state representation and

computation algorithms:

• Kronecker matrices,

• decision diagram based disjunctive-conjunctive decomposition, and

6.1. MODEL CHECKING WORKFLOW 87

• decision diagram based lazy representation.

The di�erent variants of Petri nets require di�erent next-state representations to be e�cient: Kro-

necker matrix representation is advised to the veri�cation of ordinary Petri net models, disjunctive

-conjunctive decomposition is used for Coloured Petri net models and the lazy approach yield e�-

ciency gains over other approaches for Coloured Petri net models with large domains or bigger token

counts. The algorithms can be combined with other algorithms presented in the framework.

6.1.3 Temporal Logic Model Checking

The framework provides support for various temporal logics. Saturation-based LTL and CTL model

checking can be provided both for ordinary and also Coloured Petri nets as Kronecker matrices,

disjunctive-conjunctive decomposition and also lazy saturation can be used.

CTL model checking is based on the traditional approach of [ZC09], which combines structural

model checking with the so-called constrained saturation algorithm.

Automata-theoretic LTL model checking computes the synchronous product of the state space

with the property automaton. Various automaton formalisms are supported with various synchronous

product generation algorithms, which can be used for LTL model checking. Safety regular properties

are e�ciently veri�ed by tableau automaton based model checking, more complex properties require

the more complex SCC-detection algorithm combined with the general Büchi automata representation

[2].

6.1.4 Bounded Model Checking

Various bounded model checking algorithms are available in the framework, they are summarised

in [Dar17]. They aim to provide analysis support for models with in�nite state spaces. Beside the

traditional bounded algorithms of [YCL09], the provided algorithms are the B-I-Sat and the compacting
saturation approaches which provide signi�cantly better performance [Dar17]. In addition, more

variants of the B-I-Sat algorithm were developed such as restarting and continuing. Bounded model

checking algorithms can be run on ordinary and also Coloured Petri nets, and they can be combined

with arbitrary next-state computation/representation strategy.

6.1.5 CEGAR Approach

Counterexample-Guided Abstraction Re�nement (CEGAR) is an e�cient state space exploration and

trace generation technique which has complementary strengths as saturation. CEGAR can easily

handle models with in�nite state space and e�ciently searches for traces by using various reduction

techniques. However, when the models are correct, and no counterexample (trace) exists then it often

fails to prove the absence of the error states. However, according to the intricate iteration of the Petri

net CEGAR algorithm, no theoretical analysis was available aiming the completeness and correctness

of the algorithm. Without such investigations, it is impossible to tell when to use CEGAR and when

to use other algorithms.

88 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

Result

Generate

synchronous product

Counterexample

Guided Abstraction

Refinement

Build Kronecker

matrices

Saturation
Parallel

saturation

Bounded

saturation

CPN

PN

LTL

CTL

Finite Infinite

Safety property

B
u

ild
 n

e
x
t-

s
ta

te

re
p
re

s
e
n

ta
ti
o
n

E
x
p
lo

re
 s

ta
te

 s
p

a
c
e

CTL model

checking

LTL model

checking

T
e

m
p

o
ra

l
lo

g
ic

m
o
d
e

l
c
h

e
c
k
in

g

Modelling

formalism?

Type of the property?

Does the model have a

finite state space?

Type of the property?

LTLCTL

F
o

rm
a
l
v
e
ri
fi
c
a
ti
o
n

Formal model

Coloured

Petri net
Petri net

Formal requirements

CTL LTL Safety

Build lazy

representation

Build disjunctive-

conjunctive

representation

Finite

Figure 6.1: High-level view of the proposed veri�cation approach

6.2. ADVANCING THE STATE-OF-THE-ART 89

6.2 Advancing the State-Of-The-Art

In this section, I shortly summarise the ingredients of the novel model checking approach and also

my theoretical results regarding the CEGAR step of the work�ow.

6.2.1 Con�gurable Approach for Model Checking Petri Net Models

The approach envisaged on Figure 6.1 was worked out in the PetriDotNet framework. The main ad-

vantage of the approach is that it supports the con�guration of the algorithms according to the cho-

sen formalisms: di�erent variants of Petri nets require di�erent variants of the saturation algorithm,

and also di�erent speci�cation languages need di�erent algorithms to be e�cient. The tool contains

prepared chains of the algorithms providing the best performance for certain classes of problems.

However, these algorithms can be further combined and modi�ed. The provided approaches for each

problem domain are the following.

Temporal logicmodel checking of ordinary Petri nets. Kronecker matrix based next-state rep-

resentation combined with saturation provides an e�cient means for the state space exploration of

bounded ordinary Petri nets, while bounded saturation techniques [Dar17] or CEGAR [WW11] can

e�ciently explore the behaviour of ordinary Petri nets with in�nite state spaces. The structural CTL

model checking algorithm can be used with arbitrary next-state representations, and it works together

even with bounded saturation providing bounded CTL model checking capabilities. Model checking

reachability properties of ordinary Petri nets can be solved with CEGAR. Regular safety properties of

ordinary and Coloured Petri nets are veri�ed by tableau automaton based model checking algorithm

(introduced in Chapter 5) and general LTL model checking (for future and also past LTL) is provided

by the framework [2].

Temporal logic model checking of Coloured Petri nets. Disjunctive-conjunctive decomposi-

tion based state space exploration for Coloured Petri nets (introduced in Section 3.4) is the basic

underlying algorithm: if this algorithm does not succeed then it can be changed to lazy saturation

(Section 3.5) which can battle the problem caused by the possibly bigger local state spaces. The CE-

GAR approach works on ordinary Petri nets, so if we want to apply them on a problem represented

by a Coloured Petri net, then it has to be unfolded, which is also provided by the framework.

The structural CTL model checking algorithm can be combined with the disjunctive-conjunctive

decomposition algorithm and also lazy saturation. In addition, it works together even with bounded

saturation providing bounded CTL model checking capabilities. Regular safety properties and general

LTL model checking (for future and also past LTL) is provided as it was discussed in Section 5 and in

[2].

Handling in�nite state spaces. Various bounded model checking algorithms are present in the

framework working on ordinary and also on Coloured Petri net representations. Bounded model

checking is provided to �nd a counterexample or a witness for properties. However, bounded model

checking is not complete unless we explored the full state space. For this purpose, I propose to use

the Petri net CEGAR approach, which is able also to prove the absence of traces to a certain state.

However, this approach lacked theoretical investigation regarding completeness. In the following

section I will show that unfortunately, the Petri net CEGAR approach is not complete.

90 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm

The CEGAR algorithm was introduced in [WW11], where the authors combined the CEGAR approach

with the Petri net state equation. However, the completeness of CEGAR highly depends on the sys-

tems it is applied to. On one hand, CEGAR provides a convergent iteration strategy for �nite state

systems. On the other hand, CEGAR may not �nd a solution when applied to an in�nite state system.

The Petri net CEGAR approach was not investigated from the completeness and correctness point of

view. In this chapter I try to �ll this gap and provide theoretical investigation of this question.

6.2.2.1 Completeness Analysis of the Petri Net CEGAR Algorithm

To my best knowledge, the completeness of the algorithm has neither been proved nor disproved

yet. When I examined the iteration strategy of the abstraction loop, I found a whole subclass of nets

that cannot be solved with this strategy. As an example, consider the Petri net in Figure 6.2 with the

reachability problem (1, 1, 0, 0) ∈ R(PN, (0, 1, 0, 0)), i.e., we want to produce a token in p0. We

constructed the net so that the �ring sequence σs = (t1, t4, t2, t3, t3, t0, t1, t2, t5) solves the problem.

The main concept of this example is that we lend an extra token in p1 indirectly using the T-invariant

{t4, t5}.

p0 p1

p2

p3

t0

t1

t2

t3

t4

t5

2

2

Figure 6.2: Counterexample of completeness

When applying the algorithm on this problem, the minimal solution vector isx0 = (1, 0, 0, 0, 0, 0),

i.e., �ring t0. Since t0 is not enabled, the only partial solution is ps0 = (∅, x0, σ0 = (), r0 =
(1, 0, 0, 0, 0, 0)). The algorithm �nds that an additional token is required in p1 and only t3 can sat-

isfy this need. With an increment constraint c1 : |t3| ≥ 1, the T-invariant {t1, t2, t3} is added to

the new solution vector x1 = (1, 1, 1, 1, 0, 0), giving us one partial solution ps1 = ({c1}, x1, σ1 =
(t1, t2, t3), r1 = r0). Firing the invariant {t1, t2, t3} does not help getting closer to enabling t0, since

no extra token can be “borrowed” from the previous T-invariant. The iteration strategy of the original

algorithm does not recognize the fact that an extra token could be produced in p3 (using t4) and then

moved in p1, therefore it cannot decide reachability.

As this example shows, the algorithm can not properly traverse the space of the possible t-

invariants. Any extension of this problem will not be solved by the algorithm. In addition, when

the complex combination of possible t-invariants should be used to solve the reachability problem, de

algorithm will fail to detect the need for additional �rings and omit the solution.

6.2.2.2 Extensions to CEGAR

In order to assess the applicability of the CEGAR approach, I have investigated the completeness

in Section 6.2.2. This work was continued by my colleagues, who provided results regarding the

correctness of the algorithm and major improvements.

6.3. TOOL SUPPORT FOR USABLE FORMAL METHODS 91

The result of the completeness analysis was used and the CEGAR approach was extended to be

able to handle a bigger subset of the reachability problems and also to handle inhibitor arcs in [15] [4]

[10]. In this work I contributed as the supervisor of the students: Ákos Hajdu and Zoltán Mártonka.

6.3 Tool Support for Usable Formal Methods

In this section, I overview the PetriDotNet tool, which was developed to provide a comprehensive tool

support for the introduced approach and algorithms. The tool was developed by our research group,

the implementation was done mainly by Dániel Darvas, Vince Molnár, Attila Jámbor, Tamás Szabó,

Ákos Hajdu, Kristóf Marussy and Attila Klenik under the supervision of Tamás Bartha and myself.

This overview was formerly published in [1] and [7].

6.3.1 Functionality

This section overviews the main functionality of PetriDotNet and the plug-ins shipped with the tool.

Figure 6.3: The main window of PetriDotNet [1]

6.3.1.1 Editor Features

First and foremost, PetriDotNet is an editor for Petri nets. It provides graphical editing capabilities (cf.

Figure 6.3) for both ordinary and well-formed coloured Petri nets (see Section 3.2 for the de�nition of

the supported coloured Petri net variant). The tool supports Petri nets extended with inhibitor arcs,

transition priorities, and places with limited token capacity. Moreover, the construction of hierarchical

Petri nets is supported by allowing coarse transitions that can be re�ned by a subnet.

The tool provides simulation functionality (token game) for Petri nets, where the simulation can

be manually conducted or automatically executed. The tool is shipped with a plug-in that can perform

92 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

large-scale simulation, executing thousands or millions of non-deterministic �ring, and then present

the statistics.

To save and load the Petri nets, PetriDotNet supports two formalisms natively. The default format

is PNML (Petri Net Markup Language) [ISO11], a standard, XML-based Petri net description format.

PNML is supported by various other tools, therefore this is an interface between these tools and the

PetriDotNet framework. A binary, custom �le format is also supported that provides more e�cient

persistence for large models.

6.3.1.2 Plug-in Features

The functionality of the tool is extensible with plug-ins. Plug-ins can perform simulation tasks, pro-

vide analysis features (e. g., model checking) or export/import capabilities. Each plug-in can access

the Petri net data models, use the graphical user interface, add new menu items, and call built-in

PetriDotNet commands. The architecture of the tool is designed to keep the development of plug-ins

simple, in order to help the users to focus on functionality instead of technology. See Section 6.3.2 for

more details.

6.3.1.3 Export and Import Features

It is possible to export the constructed Petri nets into other Petri net formalisms, such as to the syntax

of the GPenSIM
1

(General Purpose Petri Net Simulator) and the .pnt format of the INA
2

(Integrated Net

Analyzer) tool. Also, the Petri net models can be translated into to the input format of SAL
3

(Symbolic

Analysis Laboratory). Furthermore, import is also provided from the .net textual Petri net �le format

used by the INA/Tina
4

tools, among others. New import or export plug-ins can be developed easily

as the internal model representations are simply accessible.

6.3.1.4 Formal Methods Course Plug-in

As one of the �rst motivations was to support the education, the framework has built-in support for

the following tasks:

• Calculating invariants, and displaying the results right on the Petri net,

• Generating the reachability/coverability graph, and exporting their graphical representation

into image �les,

• Computing various liveness properties [Mur89].

The invariant analysis covers both P and T-invariants based on the well-known Martinez–Silva

algorithm [MS82], and a di�erent algorithm by Cayir and Ucer [CU05] that computes the bases of

invariants.

6.3.1.5 Integrated Analysis Methods

In the last �ve years, in addition to the educational features, PetriDotNet became a Petri net analysis

package providing plug-ins for a wide range of analysis methods. Among others, as detailed below,

PetriDotNet supports advanced formal veri�cation techniques based on decision diagrams and ab-

straction. The algorithms of the approach are discussed in earlier sections with some more details.

1http://www.davidrajuh.net/gpensim/
2http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
3http://sal.csl.sri.com/
4http://projects.laas.fr/tina/

http://www.davidrajuh.net/gpensim/
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://sal.csl.sri.com/
http://projects.laas.fr/tina/

6.3. TOOL SUPPORT FOR USABLE FORMAL METHODS 93

Saturation-Based Model Checking Algorithms. In PetriDotNet , various algorithms provide

model checking based on the saturation algorithm [CMS03; CMS06; CY05; CZJ12]. The CTL model

checking approaches are based on the work of Ciardo [ZC09] and the bounded model checking ap-

proach is the extension of [YCL09]. The LTL model checking algorithms are built on top of the ideas

of [HRS13; Dur+11]. Our research resulted in signi�cant extensions and improvements, this way

PetriDotNet currently supports novel analysis algorithms as follows:

• CTL model checking of ordinary and coloured Petri nets based on traditional and extended

versions of saturation [5],[16],

• Bounded CTL model checking based on a novel saturation-based algorithm, with various search

strategies [6],[3],

• LTL model checking based on a novel synchronous product computation algorithm [2] and

incremental SCC detection [11].

CEGAR-Based Reachability Algorithms. PetriDotNet includes reachability analysis algorithms

based on Counterexample-Guided Abstraction Re�nement (CEGAR) [Cla+00] for ordinary Petri nets.

Petri net CEGAR-based algorithms over-approximate the set of reachable states using the state equa-

tion, which is a necessary criterion for reachability. The CEGAR algorithm for Petri nets introduced

in [WW11] was the base of our work. Our implementation includes various search strategies, adapted

to the characteristics of the di�erent models [4],[10].

Stochastic Analysis Algorithms. Recently the tool was extended to support the modelling and

analysis of stochastic Petri net models. The goal was to provide a con�gurable stochastic analy-

sis framework where various state space exploration, matrix representation and numerical analysis

algorithms can be combined [9],[7],[8]. PetriDotNet provides the following stochastic analysis for

ordinary stochastic Petri net models:

• Steady-state reward and sensitivity analysis,

• Transient reward analysis,

• Calculation of the mean time to reach a state partition, that is used to calculate mean-time-to-

�rst-failure (MTFF) in dependability models.

6.3.2 Architecture

General Architectural Overview. The tool is written in C#, based on the Microsoft .NET frame-

work. The architecture of PetriDotNet is kept as simple as reasonably possible. It is a modular tool:

it provides some basic functionalities and can be extended by various plug-ins.

The tool uses a base library de�ning the Petri net data structures, developed for PetriDotNet . This

library contains object models for ordinary and coloured Petri nets. The PetriDotNet core contains

the graphical user interface and the plug-in interface. The architecture of the tool is summarized in

Figure 6.4.

Plug-in Interface. To follow the previously presented educational goals, it is simple to extend

PetriDotNet with a new plug-in. This allows a steep learning curve and low entry barrier, therefore the

plug-in developers can focus on their algorithms, instead of the applied technologies. From the tool’s

point of view, a plug-in is just a .dll �le in the add-in folder, in which at least one class implements the

94 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

Petri Net data structures

Ordinary PN Coloured PN

PetriDotNet core

Editor GUI Add-in interface

...I
m

p
o

r
t

a
d

d
-
i
n

s

E
x
p

o
r
t

a
d

d
-
i
n

s

S
i
m

u
l
a
t
i
o

n

a
d

d
-
i
n

s

A
n

a
l
y

s
i
s

a
d

d
-
i
n

s

Figure 6.4: High-level overview of the PetriDotNet architecture[1]

IPDNPlugin interface (see Figure 6.5). Metadata about the plug-in (e. g., name, author, required Petri-

DotNet version) can be provided using annotations of this class (e. g., [AddinAuthor("X. Y.")]).

When PetriDotNet starts, it loads all plug-ins and calls their Initialize method. In this method, the

plug-ins can make their menu contributions and store the application descriptor. This latter allows

the plug-ins to call commands (e. g., save, load) and to access the currently active Petri net.

Being a .NET-based tool, PetriDotNet requires that the plug-ins be also implemented in one of

the .NET languages. While having a graphical editor for Petri nets developed in .NET is a reasonable

choice, implementing e. g., model checking algorithms seems to be uncommon, as managed languages

are considered to have some overhead. However, (i) according to our experience the runtime of the

.NET-based implementations of various model checking algorithms proved to be competitive com-

pared to their native version, and (ii) the development in .NET is easier and less error-prone than

e. g., in C or C++ for computer engineering students, allowing them to make correct implementa-

tions in a shorter time. Thus the choice of .NET can be regarded as sacri�cing some runtime per-

formance in favour of development time, which is similarly important in our educational setting. If

the performance needs cannot be satis�ed using .NET, the plug-in can wrap or depend on a native

implementation (.dll).

«interface»
IPDNPlugin

+ Initialize(PDNAppDescriptor appDesc)

PDNAppDescriptor

+ AddPluginMenuItem(string menuText, EventHandler method)
+ InvokeCommand(PDNCommands command)
+ get_CurrentPetriNet() : PetriNet

Figure 6.5: PetriDotNet plug-ins[7]

6.3.3 Use Cases

This section overviews the use cases where we applied PetriDotNet as an editor or an analysis tool.

According to the original goals we start the overview with educational use cases, then we move on

to industrial case studies.

6.4. THESIS 4: PETRIDOTNET MODEL CHECKING FRAMEWORK 95

Application in Education. PetriDotNet is used as an educational tool and a tool for the homework

assignments in the Formal Methods course of the Budapest University of Technology and Economics

since 2011. During this time, approximately 900 M.Sc. students attended the course. The stochastic

analysis module of the tool is used for demonstration purposes in the Software and Systems Veri�ca-

tion course to teach reliability modelling for the students.

Student Projects. To this day 23 B.Sc. and M.Sc. theses were written that applied or extended Petri-

DotNet and various student projects used it to get an insight to formal methods. Besides, the various

new formal veri�cation algorithms resulted in 20 scienti�c papers presented at conferences or jour-

nals
5
. Several students who started to get familiar with research by extending and implementing an

algorithm in PetriDotNet are now Ph.D. students or planning to apply for post-graduate programmes.

So far one Ph.D. was awarded for a topic related to PetriDotNet [Dar17].

Application in Industrial Cases. We are aware of various usages of our tool to model, simulate

and analyse di�erent real-life systems.

• We have applied PetriDotNet to model and formally verify a safety logic of the Paks Nuclear

Power Plant using saturation-based CTL model checking in [5],[16] (Section 3.6). This work

validated the coloured Petri net editing capabilities and proved the e�ciency of our CTL model

checking algorithms, as [16] presented the �rst successful formal veri�cation of the complete

safety logic.

• PetriDotNet was used to model and simulate sensor nets in [Mil+14] and in the FuturICT.hu

project
6
.

• PetriDotNet was applied to model and study railway interlocking systems [CTS14].

• The R3-COP project
7

applied PetriDotNet to generate test input sequences for testing the ro-

bustness of communicating autonomous robots [DV13].

• Initial case studies were made to apply PetriDotNet to analyse control software used at the

European Organization for Nuclear Research (CERN) [DFB13].

• Stochastic analysis and MTFF computation were used in an industrial project at our depart-

ment to evaluate safety (hazard rate) of an embedded control system. The mean time to reach

undetected failures or shutdown was computed in a stochastic model of a two-channel architec-

ture with separate diagnostic facility, comparison, and time-limited degraded (single-channel)

functionality.

6.4 Thesis 4: PetriDotNet Model Checking Framework

The usability of the developed algorithms cannot be achieved without tool support. I have investigated

many existing tools and approaches and evaluated them amongst others on the industrial problem of

the PRISE safety system. According to the experiences, I chose to use Petri nets as a simple formal-

ism and Coloured Petri nets as a convenient formalism to develop high-level models. However, the

available tool support for the veri�cation of Petri nets was weak in the sense that either good editor

and tooling were available or advanced veri�cation algorithms. However, the veri�cation problem

5

See the complete list of related publications at http://petridotnet.inf.mit.bme.hu/publications/.

6http://www.futurict.szte.hu/en/home/
7http://www.r3-cop.eu/

http://petridotnet.inf.mit.bme.hu/publications/
http://www.futurict.szte.hu/en/home/
http://www.r3-cop.eu/

96 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

is di�cult in general so no single algorithm or approach can be e�cient on their own. Therefore I

developed a model checking work�ow to combine the various advantages of the di�erent algorithms

and approaches. The novel combination of the algorithms was implemented in the PetriDotNet model

checking framework. Theoretical examination of the algorithms was needed in order to extend them

and combine their strength in a framework. The proposed model checking framework addressed

the problem of modelling safety-critical systems with high-level modelling languages, specifying the

requirements with the help of temporal logics and verify �nite state and in�nite state models with

various algorithms.

Thesis 4 I worked out an approach for themodelling and veri�cation of complex systems. We developed
a framework to support the Coloured Petri net based modelling and veri�cation of complex systems. The
framework provides CTL and LTL model checking based on novel algorithms. In order to extend the
handled classes of models, in�nite state and trace generation algorithms were integrated. We extended
the model checking algorithms to be able to handle in�nite state systems by applying bounded model
checking and a special algorithm based on Counterexample-Guided Abstraction Re�nement (CEGAR).
The latter algorithm provides traces as a feedback for the developers. I did theoretical investigations, and
I examined the CEGAR algorithm from the completeness point of view: I proved the incompleteness of the
CEGAR-based Petri net reachability algorithm.

This thesis encapsulates the various results together into a framework supporting the engineers

developing correct systems. A theoretical analysis was elaborated on a well-known algorithm, and its

applicability for trace generation was examined. This opens new directions for further developments

in the future[10]. I envisioned and designed the PetriDotNet model checking framework where we

could successfully integrate the research results of the participants of the research group and students

supervised by myself.

Publications: My new results introduced in this thesis were published in the journal papers [4]

and [1] and in the following conference papers: [15] and [7].

Chapter 7

Conclusion and future work

7.1 Summary of the research results

In this section, I summarise the challenges of my work (also discussed in Section 1.3.4.1) and also my

solutions for each problem.

Challenge 1: Veri�cation of complex systems High-level modelling languages are needed to

model complex systems. High-level models of complex systems require rigorous veri�cation tech-

niques, so the existing veri�cation approaches and algorithms have to be extended to overcome the

challenges.

Solution in Thesis 1.: Chapter 3 presented novel techniques for the veri�cation of high-level system
models. At �rst, I propose to use Coloured Petri nets as an expressive, high-level modelling language
being able to capture the behaviour of asynchronous, distributed safety-critical systems. I investigated
the veri�cation algorithms in the literature especially symbolic algorithms such as saturation. I identi�ed
that existing algorithms are not e�cient for CPNs due to the high expressiveness of the language. This
motivated my research to develop a new model checking algorithm, which can e�ciently represent the
symbolic next-state relations. I introduced two new symbolic decomposition and next-state computation
algorithms for the veri�cation of Coloured Petri nets: by using the disjunctive-conjunctive decomposition
algorithm we could successfully verify a safety function of an industrial case study. The second algorithm
could further extend the applicability of the approach by decreasing the computational complexity of the
veri�cation algorithm for CPN models with large variable domains.

Challenge 2: Increase the e�ciency of model checking algorithms New techniques are

needed to increase the e�ciency of model checking algorithms and decrease runtime requirements.

Solution in Thesis 2.: Parallelization is a common approach to improve the performance of algo-
rithms. However, saturation is inherently sequential, so it is di�cult to parallelise [CZJ09]. Former
attempts [ELS06] faced di�culties, and they could not reach signi�cant performance gains. In my work
in Chapter 4 I investigated the former parallel saturation approaches, and I identi�ed the causes of the
poor scalability of the algorithm. According to the insights I gained during the investigations, I propose to
use a more lightweight synchronisation mechanism. I devised a new locking and synchronisation strategy
to reduce the synchronisation overhead. We did extensive measurements to compare the new algorithm
to its competitor regarding scalability, and the introduced new approach proved its e�ciency.

97

98 CHAPTER 7. CONCLUSION AND FUTURE WORK

Challenge 3. Veri�cation support for various requirement speci�cation languages Re-

search and industrial case studies revealed the need for a wide range of speci�cation languages to

support the various types of requirements of the use-cases.

Solution in Thesis 3.: CTL and LTL temporal logics have di�erent strength and weaknesses, so it is
important for a model checker to support both formalisms from the usability point of view. In Chapter 6 I
introduced a complexmodel checking approachwhich provides e�cient veri�cation techniques for various
temporal logic-based speci�cation languages. As the e�ciency of saturation was mainly exploited in
CTL model checking, in Chapter 5 I propose an approach for the computation of the synchronous product
of a property automaton and the state space representation on-the-�y during the exploration. This is
the essential step of automata-theoretic model checking and based on the novel synchronous product
computation algorithm, I propose a model checking algorithm for the set of regular safety properties.

Challenge 4: Formal modelling and veri�cation framework. The wide range of industrial

problems necessitates a formal modelling and veri�cation framework with various modelling lan-

guages and veri�cation algorithms. As no single formalism or algorithm can support the many as-

pects of the use-cases, a con�gurable framework is needed, which can be �ne-tuned to handle the

veri�cation problems.

Solution in Thesis 4.: The main goal of my work was to introduce an approach which is able to
support the veri�cation engineers in the development and analysis of veri�cation models. I introduced
a comprehensive veri�cation approach in Chapter 6 and I put its pieces together. The approach uses
saturation-based symbolic algorithms and abstraction based techniques to support all aspects of the ver-
i�cation problem. In addition, I investigated one key component, namely the Petri net CEGAR approach,
and I found that this algorithm is not complete. In Chapter 6, I also provided a simple proof for the
incompleteness of the CEGAR algorithm.

The introduced model checking algorithm manifested in the PetriDotNet framework proved its appli-
cability in many research and industrial projects, also discussed in this thesis.

7.2 Future work

Beside the results, my work also opened new questions and research directions to be explored. I was

very fortunate to work with many students who will continue this line of research.

Incremental model checking. The results presented in Chapter 5 were the �rst steps towards

e�cient model checking of LTL properties, which was then extended later to provide e�cient model

checking capabilities for the general class of LTL properties. A promising direction was revealed

during our research: by exploiting the locality of saturation, one could build an incremental model

checking algorithm by tracking the changes of the models and using saturation to adjust the veri�-

cation results according to the changes. This could lead to faster veri�cation results and decreased

response time. My colleague, (my former student) Vince Molnár is working on this direction in his

PhD studies.

CTL∗ model checking. The introduced approach supports both CTL and LTL model checking.

However, CTL∗ is a more general speci�cation language, which is supported yet neither by the Petri-

DotNet framework and also nor by other model checkers, due to complexity reasons. It could be a

7.2. FUTURE WORK 99

potential research direction to combine the strengths of the CTL and LTL model checking algorithms

used in the PetriDotNet framework and provide CTL∗ model checking capabilities.

Improve the Petri net CEGAR approach. I proved the incompleteness of the approach, and it

revealed many new research directions. The CEGAR approach could be further improved by com-

bining its forward iteration strategy with backward search algorithms. This way I am sure that we

could further extend the veri�cation capabilities of the algorithm. This research line is continued by

my colleague (my former student), Ákos Hajdu.

Exploit saturation for stochastic analysis. In the PetriDotNet framework, we now provide basic

stochastic analysis capabilities. However, in the future, it could be further improved by using more

information from the decision diagram encoding. Other research teams produced some initial results,

and with my students, we are also working on this direction now actively.

Combining POR with saturation. Saturation is e�cient for asynchronous systems. However,

traditional algorithms used Partial Order Reduction (POR) techniques to combat the state space ex-

plosion problem. An interesting future work is to combine the two approaches. This will need much

theoretical investigation. We did the �rst steps into this direction with our student in a Scienti�c

Student Association report [ÉS15].

Bibliography

Publication list

Journal papers
[1] A. Vörös, D. Darvas, Á. Hajdu, A. Klenik, K. Marussy, V. Molnár, T. Bartha, and I. Majzik. “In-

dustrial Applications of the PetriDotNet Modelling and Analysis Tool”. In: Science of Computer
Programming (2017). In press. issn: 0167-6423. doi: 10.1016/j.scico.2017.09.003

[2] V. Molnár, A. Vörös, D. Darvas, T. Bartha, and I. Majzik. “Component-wise Incremental LTL

Model Checking”. In: Formal Aspects of Computing 28.3 (2016), pp. 345–379. issn: 0934-5043.

doi: 10.1007/s00165-015-0347-x

[3] D. Darvas, A. Vörös, and T. Bartha. “Improving Saturation-based Bounded Model Checking”.

In: Acta Cybernetica 22.3 (2016), pp. 573–589. issn: 0324-721X. doi: 10.14232/actacyb.22.

3.2016.2

[4] Á. Hajdu, A. Vörös, T. Bartha, and Z. Mártonka. “Extensions to the CEGAR Approach on Petri

Nets”. In: Acta Cybernetica 21.3 (2014), pp. 401–417. doi: 10.14232/actacyb.21.3.2014.8

[5] A. Vörös, D. Darvas, A. Jámbor, and T. Bartha. “Advanced Saturation-based Model Checking of

Well-formed Coloured Petri Nets”. In: Periodica Polytechnica, Electrical Engineering and Com-
puter Science 58.1 (2014), pp. 3–13. issn: 2064-5279. doi: 10.3311/PPee.2080

[6] A. Vörös, D. Darvas, and T. Bartha. “Bounded saturation-based CTL model checking”. In:

Proceedings of the Estonian Academy of Sciences 62.1 (2013), pp. 59–70. issn: 1736-6046. doi:

10.3176/proc.2013.1.07

International conference and workshop papers
[7] A. Vörös, D. Darvas, V. Molnár, A. Klenik, Á. Hajdu, A. Jámbor, T. Bartha, and I. Majzik. “Petri-

DotNet 1.5: Extensible Petri Net Editor and Analyser for Education and Research”. In: Appli-
cation and Theory of Petri Nets and Concurrency. Ed. by F. Kordon and D. Moldt. Vol. 9698.

Lecture Notes in Computer Science. Springer, 2016, pp. 123–132. isbn: 978-3-319-39086-4. doi:

10.1007/978-3-319-39086-4_9

[8] K. Marussy, A. Klenik, V. Molnár, A. Vörös, I. Majzik, and M. Telek. “E�cient decomposition

algorithm for stationary analysis of complex stochastic Petri net models”. In: Application and
Theory of Petri Nets and Concurrency. Ed. by F. Kordon and D. Moldt. Vol. 9698. Lecture Notes in

Computer Science. Springer, 2016, pp. 281–300. isbn: 978-3-319-39086-4. doi: 10.1007/978-

3-319-39086-4_17

[9] K. Marussy, A. Klenik, V. Molnár, A. Vörös, M. Telek, and I. Majzik. “Con�gurable Numerical

Analysis for Stochastic Systems”. In: Proceedings of the 2016 Workshop on Symbolic and Nu-

101

https://doi.org/10.1016/j.scico.2017.09.003
https://doi.org/10.1007/s00165-015-0347-x
https://doi.org/10.14232/actacyb.22.3.2016.2
https://doi.org/10.14232/actacyb.22.3.2016.2
https://doi.org/10.14232/actacyb.21.3.2014.8
https://doi.org/10.3311/PPee.2080
https://doi.org/10.3176/proc.2013.1.07
https://doi.org/10.1007/978-3-319-39086-4_9
https://doi.org/10.1007/978-3-319-39086-4_17
https://doi.org/10.1007/978-3-319-39086-4_17

102 BIBLIOGRAPHY

merical Methods for Reachability Analysis (SNR). ed. by E. Ábrahám and S. Bogomolov. Vienna,

Austria: IEEE, 2016. isbn: 978-1-5090-3079-8. doi: 10.1109/SNR.2016.7479383

[10] Á. Hajdu, A. Vörös, and T. Bartha. “New search strategies for the Petri net CEGAR approach”.

In: Application and Theory of Petri Nets and Concurrency. Ed. by R. Devillers and A. Valmari.

Vol. 9115. Lecture Notes in Computer Science. Springer, 2015, pp. 309–328. isbn: 978-3-319-

19488-2. doi: 10.1007/978-3-319-19488-2_16

[11] V. Molnár, D. Darvas, A. Vörös, and T. Bartha. “Saturation-Based Incremental LTL Model Check-

ing with Inductive Proofs”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. Baier and C. Tinelli. Vol. 9035. Lecture Notes in Computer Science. Springer, 2015,

pp. 643–657. isbn: 978-3-662-46680-3. doi: 10.1007/978-3-662-46681-0_58

[12] D. Darvas, B. Fernández Adiego, A. Vörös, T. Bartha, E. Blanco Viñuela, and V. M. González

Suárez. “Formal veri�cation of complex properties on PLC programs”. In: Formal Techniques for
Distributed Objects, Components, and Systems. Ed. by E. Ábrahám and C. Palamidessi. Vol. 8461.

Lecture Notes in Computer Science. Springer, 2014, pp. 284–299. isbn: 978-3-662-43612-7. doi:

10.1007/978-3-662-43613-4_18

[13] Z. Micskei, R.-A. Konnerth, B. Horváth, O. Semeráth, A. Vörös, and D. Varró. “On Open Source

Tools for Behavioral Modeling and Analysis with fUML and Alf”. In: Proceedings of the 1st
Workshop on Open Source Software for Model Driven Engineering. Ed. by F. Bordelau, J. Dingel,

S. Gerard, and S. Voss. Valencia, Spain, Sept. 2014, pp. 31–41

[14] D. Darvas, A. Vörös, and T. Bartha. “E�cient Saturation-based Bounded Model Checking of

Asynchronous Systems”. In: Proceedings of the 13th Symposium on Programming Languages
and Software Tools, SPLST’13. Ed. by Á. Kiss. Szeged, Hungary: University of Szeged, 2013,

pp. 259–273. isbn: 978-963-306-228-9

[15] Á. Hajdu, A. Vörös, T. Bartha, and Z. Mártonka. “Extensions to the CEGAR Approach on Petri

Nets”. In: Proceedings of the 13th Symposium on Programming Languages and Software Tools,
SPLST’13. Ed. by Á. Kiss. Szeged, Hungary: University of Szeged, 2013, pp. 274–288. isbn:

978-963-306-228-9

[16] T. Bartha, A. Vörös, A. Jámbor, and D. Darvas. “Veri�cation of an Industrial Safety Function

Using Coloured Petri Nets and Model Checking”. In: Proceedings of the 14th International Con-
ference on Modern Information Technology in the Innovation Processes of the Industrial Enterprises
(MITIP 2012). Ed. by E. Ilie-Zudor, Z. Kemény, and L. Monostori. Budapest, Hungary: Hungarian

Academy of Sciences, Computer and Automation Research Institute, 2012, pp. 472–485. isbn:

978-963-311-373-8

[17] A. Vörös, T. Bartha, D. Darvas, T. Szabó, A. Jámbor, and Á. Horváth. “Parallel Saturation Based

Model Checking”. In: Proceedings of the 10th International Symposium on Parallel and Distributed
Computing (ISPDC). Cluj Napoca, Romania: IEEE Computer Society, 2011, pp. 94–101. isbn:

978-1-4577-1536-5. doi: 10.1109/ISPDC.2011.23

[18] A. Vörös, D. Darvas, and T. Bartha. “Bounded Saturation Based CTL Model Checking”. In:

Proceedings of the 12th Symposium on Programming Languages and Software Tools, SPLST’11.

Ed. by J. Penjam. Tallinn, Estonia: Tallinn University of Technology, Institute of Cybernetics,

2011, pp. 149–160. isbn: 978-9949-23-178-2

Local conference and workshop papers

https://doi.org/10.1109/SNR.2016.7479383
https://doi.org/10.1007/978-3-319-19488-2_16
https://doi.org/10.1007/978-3-662-46681-0_58
https://doi.org/10.1007/978-3-662-43613-4_18
https://doi.org/10.1109/ISPDC.2011.23

REFERENCES 103

[19] Á. Hajdu, R. Német, S. Varró-Gyapay, and A. Vörös. “Petri Net Based Trajectory Optimiza-

tion”. In: ASCONIKK 2014: Extended Abstracts. Future Internet Services. Veszprém, Hungary:

University of Pannonia, 2014, pp. 11–19

[20] V. Molnár and A. Vörös. “Synchronous Product Automaton Generation for Controller Optimiza-

tion”. In: ASCONIKK 2014: Extended Abstracts. I. Information Technologies for Logistic Systems.
Veszprém, Hungary: University of Pannonia, 2014, pp. 22–29. isbn: 978-963-396-046-2

[21] D. Darvas and A. Vörös. “Szaturációalapú tesztbemenet-generálás színezett Petri-hálókkal [in

Hungarian]”. In: Mesterpróba 2013. Konferenciakiadvány. Budapest, Hungary, 2013, pp. 48–51

[22] A. Vörös. “Modellellenőrzés alkalmazása egy biztonságkritikus rendszer védelmi logikájának

veri�kációjára [in Hungarian]”. In: XVII. Fiatal Műszakiak Tudományos Ülésszaka. Cluj Napoca,

Romania: Erdélyi Múzeum-Egyesület Műszaki Tudományok Szakosztálya, 2012, pp. 383–386

[23] A. Vörös. “Forward Saturation Based Model Checking”. In: Proceedings of the 19th PhD Min-
isymposium of the Department of Measurement and Information Systems. Budapest, Hungary,

2012, pp. 38–41

[24] A. Vörös. “Optimizing Saturation Based Model Checking”. In: Proceedings of the 18th PhD Min-
isymposium of the Department of Measurement and Information Systems. Budapest, Hungary,

2011, pp. 96–99

References

[Adi+15] B. F. Adiego, D. Darvas, E. B. Viñuela, J. C. Tournier, S. Bliudze, J. O. Blech, and V. M. G.

Suárez. “Applying Model Checking to Industrial-Sized PLC Programs”. In: IEEE Trans-
actions on Industrial Informatics 11.6 (Dec. 2015), pp. 1400–1410. issn: 1551-3203. doi:

10.1109/TII.2015.2489184.

[Ana+13] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold, and P. McMinn. “An orchestrated survey of methodologies for automated

software test case generation”. In: Journal of Systems and Software 86.8 (2013), pp. 1978–

2001. issn: 0164-1212. doi: 10.1016/j.jss.2013.02.061.

[Bey17] D. Beyer. “Software Veri�cation with Validation of Results”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by A. Legay and T. Margaria. Berlin,

Heidelberg: Springer, 2017, pp. 331–349. isbn: 978-3-662-54580-5. doi: 10.1007/978-

3-662-54580-5_20.

[BKL08] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press, 2008.

[BKP17] H. Bride, O. Kouchnarenko, and F. Peureux. “Reduction of Work�ow Nets for Generalised

Soundness Veri�cation”. In:Veri�cation,Model Checking, andAbstract Interpretation: 18th
International Conference, VMCAI 2017, Paris, France, January 15–17, 2017, Proceedings. Ed.

by A. Bouajjani and D. Monniaux. Cham: Springer, 2017, pp. 91–111. isbn: 978-3-319-

52234-0. doi: 10.1007/978-3-319-52234-0_6.

[BP12] D. Beyer and A. K. Petrenko. “Linux Driver Veri�cation”. In: Leveraging Applications of
Formal Methods, Veri�cation and Validation. Applications and Case Studies: 5th Interna-
tional Symposium, ISoLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings,
Part II. Ed. by T. Margaria and B. Ste�en. Berlin, Heidelberg: Springer, 2012, pp. 1–6.

isbn: 978-3-642-34032-1. doi: 10.1007/978-3-642-34032-1_1.

https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-319-52234-0_6
https://doi.org/10.1007/978-3-642-34032-1_1

104 BIBLIOGRAPHY

[Bra+11] A. R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. “An incremental approach to model

checking progress properties”. In: Proc. of The Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD’11). FMCAD Inc., 2011, pp. 144–153. isbn: 978-0-9835678-1-3.

[Brü93] A. Brüggemann-Klein. “Regular expressions into �nite automata”. In: Theoretical Com-
puter Science 120.2 (1993), pp. 197–213.

[Buc+00] P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. “Complexity of Memory-E�cient

Kronecker Operations with Applications to the Solution of Markov Models”. In: IN-
FORMS J. on Computing 12.3 (July 2000), pp. 203–222. issn: 1526-5528. doi: 10.1287/

ijoc.12.3.203.12634.

[Bur+92] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. “Symbolic model checking: 1020

States and beyond”. In: Information and Computation 98.2 (1992), pp. 142–170. issn: 0890-

5401. doi: 10.1016/0890-5401(92)90017-A.

[Cal+15] C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’Hearn, I. Pa-

pakonstantinou, J. Purbrick, and D. Rodriguez. “Moving Fast with Software Veri�cation”.

In: NASA Formal Methods: 7th International Symposium, NFM 2015, Pasadena, CA, USA,
April 27-29, 2015, Proceedings. Ed. by K. Havelund, G. Holzmann, and R. Joshi. Cham:

Springer, 2015, pp. 3–11. isbn: 978-3-319-17524-9. doi: 10.1007/978-3-319-17524-

9_1.

[Cav+14] R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M.

Roveri, and S. Tonetta. “The nuXmv Symbolic Model Checker”. In: Computer-Aided Ver-
i�cation. Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture Notes in Computer Science.

Springer, 2014, pp. 334–342. isbn: 978-3-319-08866-2.

[CES86] E. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Veri�cation of Finite-state Concur-

rent Systems Using Temporal Logic Speci�cations”. In: ACM Trans. Program. Lang. Syst.
8.2 (Apr. 1986), pp. 244–263. issn: 0164-0925. doi: 10.1145/5397.5399.

[CGH97] E. Clarke, O. Grumberg, and K. Hamaguchi. “Another Look at LTL Model Checking”. In:

Formal Methods in System Design 10.1 (1997), pp. 47–71. issn: 0925-9856. doi: 10.1023/

A:1008615614281.

[CGP99] E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[Cia+03] G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. “Logical and stochastic mod-

eling with SMART”. In: International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation. Springer. 2003, pp. 78–97.

[Cla+00] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-guided abstrac-

tion re�nement”. In: Computer-Aided Veri�cation. Ed. by E. A. Emerson and A. P. Sistla.

Vol. 1855. LNCS. Springer, 2000, pp. 154–169. isbn: 978-3-540-67770-3. doi: 10.1007/

10722167_15.

[CMS03] G. Ciardo, R. Marmorstein, and R. Siminiceanu. “Saturation Unbound”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer, 2003, pp. 379–393.

[CMS05] G. Ciardo, R. Marmorstein, and R. Siminiceanu. “The saturation algorithm for symbolic

state-space exploration”. In: International Journal on Software Tools for Technology Trans-
fer 8.1 (Nov. 2005), p. 4. issn: 1433-2787. doi: 10.1007/s10009-005-0188-7.

https://doi.org/10.1287/ijoc.12.3.203.12634
https://doi.org/10.1287/ijoc.12.3.203.12634
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/5397.5399
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/s10009-005-0188-7

REFERENCES 105

[CMS06] G. Ciardo, R. Marmorstein, and R. Siminiceanu. “The saturation algorithm for symbolic

state-space exploration”. In: Int. J. Softw. Tools Technol. Transf. 8.1 (2006), pp. 4–25. issn:

1433-2779.

[CS03] G. Ciardo and R. Siminiceanu. “Structural symbolic CTL model checking of asyn-

chronous systems”. In: Computer-Aided Veri�cation. Vol. 3. Springer. 2003, pp. 40–53.

[Cse+02] G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro. “VIATRA - visual

automated transformations for formal veri�cation and validation of UML models”. In:

Proceedings 17th IEEE International Conference on Automated Software Engineering, 2002,

pp. 267–270. doi: 10.1109/ASE.2002.1115027.

[CTS14] A. Cseh, G. Tarnai, and B. Sághi. “Petri Net Modelling of Signalling Systems [in Hun-

garian, original title: Biztosítóberendezések modellezése Petri-hálókkal]”. In: Vezetékek
Világa XIX.1 (2014), pp. 14–17. issn: 1416-1656.

[CU05] S. Cayir and M. Ucer. “An Algorithm to Compute a Basis of Petri Net Invariants”. In: 4th
ELECO Int. Conf. on Electrical and Electronics Engineering. Bursa, Turkey: UCTEA, 2005.

[CY05] G. Ciardo and A. Yu. “Saturation-based symbolic reachability analysis using conjunctive

and disjunctive partitioning”. In: Correct Hardware Design and Veri�cation Methods 3725

(2005), pp. 146–161.

[CZJ09] G. Ciardo, Y. Zhao, and X. Jin. “Parallel symbolic state-space exploration is di�cult, but

what is the alternative?” In: arXiv preprint arXiv:0912.2785 (2009).

[CZJ12] G. Ciardo, Y. Zhao, and X. Jin. “Ten Years of Saturation: A Petri Net Perspective”. In:

Transactions on Petri Nets and Other Models of Concurrency V. Ed. by K. Jensen, S. Do-

natelli, and J. Kleijn. Vol. 6900. Lecture Notes in Computer Science. Springer, 2012,

pp. 51–95. isbn: 978-3-642-29071-8.

[Dar17] D. Darvas. “Practice-Oriented Formal Methods to Support the Software Development of

Industrial Control Systems”. PhD thesis. Budapest University of Technology and Eco-

nomics, 2017. doi: 10.5281/zenodo.162950.

[DFB13] D. Darvas, B. Fernández Adiego, and E. Blanco Viñuela. Transforming PLC programs
into formal models for veri�cation purposes. Internal Note CERN-ACC-NOTE-2013-0040.

CERN, 2013.

[DKW08] V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of Automated Techniques

for Formal Software Veri�cation”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27.7 (July 2008), pp. 1165–1178. issn: 0278-0070. doi: 10.

1109/TCAD.2008.923410.

[DMB16] D. Darvas, I. Majzik, and E. Blanco Viñuela. “Formal Veri�cation of Safety PLC Based

Control Software”. In: Integrated FormalMethods: 12th International Conference, IFM 2016,
Reykjavik, Iceland, June 1-5, 2016, Proceedings. Ed. by E. Ábrahám and M. Huisman. Cham:

Springer, 2016, pp. 508–522. isbn: 978-3-319-33693-0. doi: 10 . 1007 / 978 - 3 - 319 -

33693-0_32.

[DT97] G. B. Dantzig and M. N. Thapa. Linear programming 1: introduction. Secaucus, NJ, USA:

Springer, 1997. isbn: 0-387-94833-3.

https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.5281/zenodo.162950
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.1007/978-3-319-33693-0_32

106 BIBLIOGRAPHY

[Dur+11] A. Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. “Self-Loop Aggregation Prod-

uct – A New Hybrid Approach to On-the-Fly LTL Model Checking”. In: Automated
Technology for Veri�cation and Analysis. Vol. 6996. Lecture Notes in Computer Science.

Springer, 2011, pp. 336–350. doi: 10.1007/978-3-642-24372-1_24.

[EH00] K. Etessami and G. J. Holzmann. “Optimizing Büchi automata”. In: CONCUR 2000 – Con-
currency Theory. Vol. 1877. Lecture Notes in Computer Science. Springer, 2000, pp. 153–

168.

[EL86] E. A. Emerson and C.-L. Lei. “E�cient Model Checking in Fragments of the Propositional

Mu-Calculus (Extended Abstract)”. In: Proc. of the Symposium on Logic in Computer Sci-
ence (LICS). IEEE Computer Society, 1986, pp. 267–278.

[ELS06] J. Ezekiel, G. Lüttgen, and R. Siminiceanu. “Can Saturation Be Parallelised?” In: Inter-
national Workshop on Formal Methods for Industrial Critical Systems. Springer. 2006,

pp. 331–346.

[EM00] J. Esparza and S. Melzer. “Veri�cation of Safety Properties Using Integer Programming:

Beyond the State Equation”. In: Formal Methods in System Design 16.2 (Mar. 2000),

pp. 159–189. issn: 1572-8102. doi: 10.1023/A:1008743212620.

[EN94] J. Esparza and M. Nielsen. “Decidability issues for Petri nets”. In: BRICS Report Series 1.8

(1994).

[ERV02] J. Esparza, S. Römer, and W. Vogler. “An Improvement of McMillan’s Unfolding Algo-

rithm”. In: Formal Methods in System Design 20.3 (May 2002), pp. 285–310. issn: 1572-

8102. doi: 10.1023/A:1014746130920.

[ÉS15] D. Élő and A. Soltész. Symbolic model checking and trace generation by guided search. 1st

prize. 2015.

[GA14] S. J. Galler and B. K. Aichernig. “Survey on test data generation tools”. In: International
Journal on Software Tools for Technology Transfer 16.6 (Nov. 2014), pp. 727–751. issn:

1433-2787. doi: 10.1007/s10009-013-0272-3.

[Ger+95] R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. “Simple on-the-�y automatic veri�cation

of linear temporal logic”. In: Proc. of the Int. Symp. on Protocol Speci�cation, Testing and
Veri�cation. Chapman & Hall, Ltd., 1995, pp. 3–18. isbn: 0-412-71620-8.

[GZF12] S. Goldshtein, D. Zurbalev, and I. Flatow. Pro .NET Performance. Apress, 2012. isbn: 978-

1-4302-4458-5. doi: 10.1007/978-1-4302-4459-2.

[HRS13] M. Heiner, C. Rohr, and M. Schwarick. “MARCIE – Model Checking and Reachability

Analysis Done E�ciently”. In: Petri Nets 2013. Ed. by J.-M. Colom and J. Desel. Vol. 7927.

LNCS. Springer, 2013, pp. 389–399. isbn: 978-3-642-38696-1. doi: 10.1007/978-3-642-

38697-8_21.

[HVH10] S. Hoda, W.-J. Van Hoeve, and J. N. Hooker. “A systematic approach to MDD-based con-

straint programming”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2010, pp. 266–280.

[Ins10] Institute of Electrical and Electronics Engineers. “Systems and software engineering

– Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E) (Dec. 2010), pp. 1–418. doi: 10.1109/

IEEESTD.2010.5733835.

https://doi.org/10.1007/978-3-642-24372-1_24
https://doi.org/10.1023/A:1008743212620
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1007/s10009-013-0272-3
https://doi.org/10.1007/978-1-4302-4459-2
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835

REFERENCES 107

[IS94] J. Izquierdo-Rocha and M. Sánchez-Perea. “Application of the Integrated Safety Assess-

ment methodology to the emergency procedures of a SGTR of a PWR”. In: Reliability
Engineering and System Safety 45 (1994), pp. 159–173.

[ISO11] ISO/IEC. 15909-2:2011, Systems and software engineering – High-level Petri nets – Part 2:
Transfer format. Standard. ISO/IEC, 2011.

[JK09] K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modelling and Validation of Concur-
rent Systems. Springer, 2009. isbn: 978-3-642-00283-0.

[JKW07] K. Jensen, L. M. Kristensen, and L. Wells. “Coloured Petri Nets and CPN Tools for mod-

elling and validation of concurrent systems”. In: International Journal on Software Tools
for Technology Transfer 9.3 (2007), pp. 213–254. issn: 1433-2787. doi: 10.1007/s10009-

007-0038-x.

[Kai+09] R. Kaivola et al. “Replacing Testing with Formal Veri�cation in Intel CoreTM i7 Processor

Execution Engine Validation”. In: Computer-Aided Veri�cation. Ed. by A. Bouajjani and

O. Maler. Berlin, Heidelberg: Springer, 2009, pp. 414–429. isbn: 978-3-642-02658-4. doi:

10.1007/978-3-642-02658-4_32.

[Kan+15] G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. “LTSmin: High-

Performance Language-Independent Model Checking”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by C. Baier and C. Tinelli. Berlin, Heidelberg:

Springer, 2015, pp. 692–707. isbn: 978-3-662-46681-0. doi: 10 . 1007 / 978 - 3 - 662 -

46681-0_61.

[Kes+93] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. “A Decision Algorithm for Full Proposi-

tional Temporal Logic”. In: Computer Aided Veri�cation. Vol. 697. Lecture Notes in Com-

puter Science. Springer, 1993, pp. 97–109. isbn: 3-540-56922-7. doi: 10.1007/3-540-

56922-7_9.

[Kle+09] G. Klein et al. “seL4: Formal Veri�cation of an OS Kernel”. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana,

USA: ACM, 2009, pp. 207–220. isbn: 978-1-60558-752-3. doi: 10 . 1145 / 1629575 .

1629596.

[Lip76] R. Lipton. The Reachability Problem Requires Exponential Space. Research report, Yale

University, Dept. of Computer Science. 1976.

[LMM99] D. Latella, I. Majzik, and M. Massink. “Automatic Veri�cation of a Behavioural Subset of

UML Statechart Diagrams Using the SPIN Model-checker”. In: Formal Aspects of Com-
puting 11.6 (Dec. 1999), pp. 637–664. issn: 1433-299X. doi: 10.1007/s001659970003.

[LS09] D. Leinenbach and T. Santen. “Verifying the Microsoft Hyper-V Hypervisor with VCC”.

In: Proceedings of the 2Nd World Congress on Formal Methods. FM ’09. Eindhoven, The

Netherlands: Springer, 2009, pp. 806–809. isbn: 978-3-642-05088-6. doi: 10.1007/978-

3-642-05089-3_51.

[May81] E. W. Mayr. “An algorithm for the general Petri net reachability problem”. In: Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing. STOC ’81. Milwaukee,

Wisconsin, United States: ACM, 1981, pp. 238–246. doi: 10.1145/800076.802477.

[Mic13] Z. Micskei. “Languages and frameworks for specifying test artifacts”. PhD thesis. Bu-

dapest University of Technology and Economics, 2013.

https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s001659970003
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1145/800076.802477

108 BIBLIOGRAPHY

[Mil+14] Á. Milánkovich, G. Ill, K. Lendvai, S. Imre, and S. Szabó. “Evaluation of Energy E�ciency

of Aggregation in WSNs using Petri Nets”. In: Proc. of the 3rd Int. Conf. on Sensor Net-
works. Science and Technology Publications, 2014, pp. 289–297. isbn: 978-989-758-001-7.

doi: 10.5220/0004668402890297.

[MS82] J. Martínez and M. Silva. “A simple and Fast Algorithm to Obtain all Invariants of a

Generalised Petri Net”. In: Application and Theory of Petri Nets. Ed. by C. Girault and W.

Reisig. Vol. 52. Informatik-Fachberichte. Springer, 1982, pp. 301–310. isbn: 978-3-540-

11189-4. doi: 10.1007/978-3-642-68353-4_47.

[MSB11] G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley & Sons,

2011.

[Mur89] T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of the IEEE
77.4 (Apr. 1989), pp. 541–580. issn: 0018-9219. doi: 10.1109/5.24143.

[NB09] E. Németh and T. Bartha. “Formal Veri�cation of Safety Functions by Reinterpretation of

Functional Block Based Speci�cations”. In: FormalMethods for Industrial Critical Systems.
Ed. by D. Cofer and A. Fantechi. Vol. 5596. Lecture Notes in Computer Science. Springer,

2009, pp. 199–214. isbn: 978-3-642-03239-4. doi: 10.1007/978-3-642-03240-0_17.

[Ném+09] E. Németh, T. Bartha, C. Fazekas, and K. M. Hangos. “Veri�cation of a primary-to-

secondary leaking safety procedure in a nuclear power plant using coloured Petri nets”.

In: Reliability Engineering and System Safety 94 (5) (2009), pp. 942–953.

[SB00] F. Somenzi and R. Bloem. “E�cient Büchi Automata from LTL Formulae”. In: Computer
Aided Veri�cation. Ed. by E. Emerson and A. Sistla. Vol. 1855. Lecture Notes in Computer

Science. Springer, 2000, pp. 248–263. isbn: 978-3-540-67770-3. doi: 10.1007/10722167_

21.

[SD10] W. Steiner and B. Dutertre. “SMT-based Formal Veri�cation of a TTEthernet Synchro-

nization Function”. In: Proceedings of the 15th International Conference on Formal Methods
for Industrial Critical Systems. FMICS’10. Antwerp, Belgium: Springer, 2010, pp. 148–163.

isbn: 3-642-15897-8, 978-3-642-15897-1.

[STV05] R. Sebastiani, S. Tonetta, and M. Y. Vardi. “Symbolic Systems, Explicit Properties: On

Hybrid Approaches for LTL Symbolic Model Checking”. In: Computer Aided Veri�cation.

Ed. by K. Etessami and S. K. Rajamani. Vol. 3576. Lecture Notes in Computer Science.

Springer, 2005, pp. 350–363. isbn: 978-3-540-27231-1.

[Thi15] Y. Thierry-Mieg. “Symbolic Model-Checking Using ITS-Tools”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by C. Baier and C. Tinelli. Berlin, Hei-

delberg: Springer, 2015, pp. 231–237. isbn: 978-3-662-46681-0. doi: 10.1007/978-3-

662-46681-0_20.

[Tót09] Z. Tóth Heinemann. “Modelling and veri�cation of discrete industrial control systems

using formal methods”. [In Hungarian]. MA thesis. Budapest University of Technology

and Economics, 2009.

[Var01] M. Y. Vardi. “Branching vs. Linear Time: Final Showdown”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by T. Margaria and W. Yi. Berlin, Heidelberg:

Springer, 2001, pp. 1–22. isbn: 978-3-540-45319-2. doi: 10.1007/3-540-45319-9_1.

https://doi.org/10.5220/0004668402890297
https://doi.org/10.1007/978-3-642-68353-4_47
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-03240-0_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/3-540-45319-9_1

REFERENCES 109

[VH10] A. Valmari and H. Hansen. “Can Stubborn Sets Be Optimal?” In: Applications and Theory
of Petri Nets. Vol. 6128. Lecture Notes in Computer Science. Springer, 2010, pp. 43–62.

isbn: 978-3-642-13674-0.

[Wan+01] C. Wang, R. Bloem, G. D. Hachtel, K. Ravi, and F. Somenzi. “Divide and Compose: SCC

Re�nement for Language Emptiness”. In: CONCUR 2001 – Concurrency Theory. Vol. 2154.

Lecture Notes in Computer Scienc. Springer, 2001, pp. 456–471. isbn: 3-540-42497-0.

[WW11] H. Wimmel and K. Wolf. “Applying CEGAR to the Petri Net State Equation”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by P. A. Abdulla and

K. R. M. Leino. Vol. 6605. Lecture Notes in Computer Science. Springer, 2011, pp. 224–

238. doi: 10.1007/978-3-642-19835-9_19.

[YCL09] A. Yu, G. Ciardo, and G. Lüttgen. “Decision-diagram-based techniques for bounded

reachability checking of asynchronous systems”. In: International Journal on Software
Tools for Technology Transfer 11 (2 2009), pp. 117–131. issn: 1433-2779. doi: 10.1007/

s10009-009-0099-0.

[ZC09] Y. Zhao and G. Ciardo. “Symbolic CTL Model Checking of Asynchronous Systems Us-

ing Constrained Saturation”. In: Automated Technology for Veri�cation and Analysis.
Vol. 5799. Lecture Notes in Computer Science. Springer, 2009, pp. 368–381. isbn: 978-

3-642-04760-2. doi: 10.1007/978-3-642-04761-9_27.

https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/s10009-009-0099-0
https://doi.org/10.1007/s10009-009-0099-0
https://doi.org/10.1007/978-3-642-04761-9_27

	Contents
	1 Introduction
	1.1 Preliminaries and Objectives
	1.1.1 Target of the Dissertation
	1.1.2 Verification Techniques in Systems Engineering

	1.2 Formal Verification
	1.2.1 Applying Formal Verification in System Design
	1.2.2 Formal Modelling
	1.2.3 Formal Requirements
	1.2.4 Formal Verification Techniques
	1.2.5 Target Problem of the Dissertation

	1.3 Overview
	1.3.1 Model Checking of Asynchronous Systems
	1.3.2 Formal Modelling
	1.3.3 Formal Requirements
	1.3.4 Objectives

	2 Background
	2.1 Petri Nets
	2.2 Decision Diagrams
	2.3 Saturation
	2.3.1 Overview of Saturation
	2.3.2 Disjunctive and Conjunctive Partitioning
	2.3.3 State-space Exploration Based on Saturation

	2.4 Model Checking
	2.5 CEGAR for Petri Nets
	2.5.1 Petri Net State Equation
	2.5.2 The CEGAR Approach

	3 Model Checking of High Level Models
	3.1 Motivation
	3.2 High-level Models: Coloured Petri Nets
	3.3 Saturation for CPN Models
	3.3.1 Iteration Strategy for CPN
	3.3.2 Encoding Next-state Relations

	3.4 Disjunctive-Conjunctive Decomposition for CPN Models
	3.4.1 Overview of the Approach
	3.4.2 Decomposition Algorithm for CPN
	3.4.3 Event Handling Algorithm
	3.4.4 Off-Line Evaluation of Guards
	3.4.5 Correctness of the Algorithm

	3.5 Lazy Saturation Algorithm
	3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN
	3.5.2 Overview of the Approach
	3.5.3 Iteration of Lazy Saturation
	3.5.4 Computing and Using ER
	3.5.5 Updating the Next-State Relation
	3.5.6 Operation of Lazy Saturation
	3.5.7 Correctness of Lazy Saturation

	3.6 Industrial Case Study
	3.6.1 The Modelled Industrial System
	3.6.2 The PRISE Safety Function
	3.6.3 Coloured Petri Net Model of the PRISE Safety Function
	3.6.4 Verification of the PRISE Safety Function

	3.7 Thesis 1: Model Checking of High-Level Models

	4 Parallel Saturation-based State Space Exploration
	4.1 Challenges
	4.2 Cache Data Structures in Saturation
	4.3 Parallel Saturation
	4.3.1 Extending the Decision Diagram Node Data Structure
	4.3.2 Working of the Algorithm
	4.3.3 Problems

	4.4 Algorithmic Improvements
	4.4.1 New Locking and Synchronization Strategy

	4.5 Correctness of the Algorithm
	4.5.1 General Issues
	4.5.2 Correctness of the Iteration
	4.5.3 Consistency

	4.6 Implementation
	4.7 Evaluation of the Algorithm
	4.7.1 Environment
	4.7.2 Objectives of the Measurements
	4.7.3 Runtime and speed-up results
	4.7.4 Scalability
	4.7.5 Summary

	4.8 Thesis 2: Parallel State Space Exploration Techniques

	5 Synchronous Product Generation for LTL Model Checking
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Property Specification
	5.2.2 Automata Theoretic Model Checking of Regular Properties
	5.2.3 Synchronous Product

	5.3 Special Encoding Based On Constrained Saturation
	5.3.1 Tableau Automata
	5.3.2 Encoding the Product Automaton
	5.3.3 Investigation of Correctness and Efficiency

	5.4 Saturation-based On-the-fly LTL Model Checking
	5.4.1 Abstracting the Constraint
	5.4.2 Units of Processing – A Framework for On-the-fly Model Checking

	5.5 Evaluation
	5.6 Thesis 3: On-the-fly Synchronous Product Generation for Model Checking Regular Safety Properties

	6 PetriDotNet Model Checking Framework
	6.1 Model Checking Workflow
	6.1.1 Modelling and Verification Approach
	6.1.2 State Space Exploration Techniques
	6.1.3 Temporal Logic Model Checking
	6.1.4 Bounded Model Checking
	6.1.5 CEGAR Approach

	6.2 Advancing the State-Of-The-Art
	6.2.1 Configurable Approach for Model Checking Petri Net Models
	6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm

	6.3 Tool Support for Usable Formal Methods
	6.3.1 Functionality
	6.3.2 Architecture
	6.3.3 Use Cases

	6.4 Thesis 4: PetriDotNet Model Checking Framework

	7 Conclusion and future work
	7.1 Summary of the research results
	7.2 Future work

	Bibliography
	Publication list
	References

