Symbolic Verification
of Petri Net Based Models

PhD dissertation by

Andras Voros

Advisor

Tamas Bartha, Ph.D. (BME)

Andrés Voros
http://mit.bme.hu/"vori/

2018

Budapesti Miiszaki és Gazdasagtudomanyi Egyetem
Villamosmérnoki és Informatikai Kar
Méréstechnika és Informaciés Rendszerek Tanszék
Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudosok korutja 2.

http://mit.bme.hu/~vori/

ii

Declaration of own work and references

I, Andras Voros, hereby declare, that this dissertation, and all results claimed therein are my
own work, and rely solely on the references given. All segments taken word-by-word, or
in the same meaning from others have been clearly marked as citations and included in the
references.

Nyilatkozat 6nallé6 munkaroél, hivatkozasok atvételérdl

Alulirott Voros Andras kijelentem, hogy ezt a doktori értekezést magam készitettem és
abban csak a megadott forrasokat hasznaltam fel. Minden olyan részt, amelyet sz6 szerint,
vagy azonos tartalomban, de atfogalmazva mas forrasbdl atvettem, egyértelmtien, a forras
megadasaval megjeloltem.

Budapest, 2018. 06. 13.

Voros Andras

iv

Acknowledgements

I was really lucky to work together with amazing colleagues, students and friends, on various research
and industrial projects.

First and foremost I would like to express my gratitude to my advisor, Taméas Bartha, you have
been a tremendous mentor to me. I would like to thank you for encouraging my research and for
allowing me to grow as a research scientist. Your advice on both research as well as on my career
have been priceless. I would especially like to thank Andras Pataricza, Istvan Majzik, Daniel Varrd
and Zoltan Micskei for their advice, suggestions and all their help in the last decade. Your help goes
beyond this dissertation.

Special thanks all my colleagues and former colleagues at the research group, especially Daniel
Darvas, Gabor Szarnyas, Vince Molnar, Tamas Téth, Akos Hajdu, Imre Kocsis, L4szl6 Génczy, Kristof
Marussy, Attila Klenik, Janos Olah, David Honfi, Oszkar Semerath, Marton Bir, Akos Horvath, Istvan
Rath and Gabor Bergmann.

I would like also thank to my collaborators, with whom it was a great pleasure to work together.
Some important results could not be born without their help: Attila Jambor, Tamas Szab6 and Zoltan
Martonka.

I would like to thank the financial support of the R3-COP, R5-COP research projects and also the
support of the MTA-BME Lendiilet Cyber-Physical Systems Research Group.

Words cannot express how grateful I am to my whole family for all their love, support and help.

Koszonetnyilvanitas

Nagyon szerencsés voltam, hogy az elmult években fantasztikus kollégakkal, didkokkal és baratokkal
dolgozhattam egytt.

El6szor és mindenekelbtt szeretném kifejezni halamat konzulensemnek, Bartha Tamasnak. Sz-
eretnék koszonetet mondani a tamogatasért, amit az elmult években kaptam, és hogy barmilyen nehéz
pillanatban mellettem alltal, szamithattam a segitségedre.

A kutatocsoportban csodalatos vezetéim voltak, szeretnék koszonetet mondani Pataricza An-
drasnak, Majzik Istvannak, Varré Danielnek és Micskei Zoltannak tanacsaikért, vezetésiikért, tanita-
saikért, amelyek joval tilmutatnak ezen a disszertacion.

K6sz6nom szépen minden munkatarsamnak (és volt munkatarsamnak) a kutatécsoportban a
segitséget! Kiillonosen koszonom a disszertacio irasban és az évek soran nyujtott rengeteg tamo-
gatast Darvas Danielnek, Szarnyas Gabornak, Molnar Vincének, Téth Tamésnak, Hajdu Akosnak.
Emellett k6sz6nom Kocsis Imrének, Gonczy Laszlonak, Marussy Kristéfnak, Klenik Attilanak, Oldh
Janosnak, Honfi Davidnak, Semerath Oszkarnak, Bar Martonnak, Horvath Akosnak, Rath Istvannak
és Bergmann Gabornak az elmult id6ben nyujtott szakmai és emberi segitséget. Nagyszer(volt egyiitt
dolgozni Veletek! Koszonettel tartozom tovabba volt hallgatéimnak, akik nélkil tobb eredmény sem
sziilethetett volna meg, koszonom Nektek is a segitséget, élmény volt egyiitt dolgozni: Jambor Attila,
Szab6 Tamas és Martonka Zoltan.

Munkamat az R3-COP és az R5-COP kutatasi projektek, valamint az MTA-BME Lendiilet Kiber-
fizikai rendszerek kutatécsoport tAimogatta.

Ko6szoénom szépen a csaladom tAmogatasat. Edesapamnak, aki a példaképemként mindig motivalta
a munkamat, édesanyamnak, aki még a legnehezebb pillanatokban is a szeretetével elhalmozott és
tamogatott, 6csémnek, nagymamamnak, hogy hittek bennem. Kedvesemnek, hogy mellettem allt,
biztatott és tamogatott. Nagyon sokat koszonhetek Nektek.

Summary

Ensuring the correctness of critical systems is a challenging task: various verification techniques are
used to find errors or to prove correctness. Such verification methods are testing, monitoring (i. e.,
runtime-verification), model checking, static analysis and other design time verification techniques.
Formal verification can be used even at design time to precisely analyse the models of the systems and
evaluate their correctness. However, the complexity of real systems and the resulting computational
demand often hinders successful verification. The problem arises especially often for asynchronous,
concurrent and distributed systems, whose models face the state space explosion problem.

In my work, I aim to support the efficient modelling and verification of asynchronous systems
with data dependent behaviour. I propose a framework that provides Petri net based modelling lan-
guages to support the development of the formal representation of the arising engineering problems.
In the framework, ordinary Petri nets are used to capture the asynchronous behaviour of safety-
critical systems and coloured Petri nets (CPN) provide a convenient means to express data-dependent
behaviour. Furthermore, Petri nets can be used to efficiently represent and handle systems even with
infinite state spaces. The proposed approach contains powerful verification algorithms: next-state
computation and representation help efficiently handle variants of Petri net models. Saturation and
abstraction based state space exploration techniques can handle complex models with huge state
spaces. Various temporal logic specifications are supported: efficient CTL and LTL model checking
algorithms are devised in the framework to support the specification and analysis of complex prop-
erties. Exploring the (partial) state space of infinite-state systems and counterexample generation is
supported by bounded saturation based algorithms and Counterexample-Guided Abstraction Refine-
ment. The unique combination of the above mentioned algorithms in a model checking approach
yields the novelty of the framework.

The devised approach manifested in the PetriDotNet framework, which was used in various in-
dustrial and academic research projects.

The introduced approach needed many algorithmic contributions. In my thesis, I introduce the
following new algorithms:

« I created an efficient algorithm for the verification of coloured Petri net models based on
disjunctive-conjunctive decomposition. I also introduce a new temporal decomposition algo-
rithm, which could further improve the performance of the saturation algorithm for complex
Petri net based models.

+ I developed a parallel saturation based state space exploration algorithm that extends the for-
mer approach with a new locking and synchronisation mechanism, yielding better resource
utilisation compared to the former algorithm from the literature.

« I introduce a new model checking algorithm supporting the regular safety subset of the LTL
language. The new algorithm is based on a novel synchronous product computation method
which is significantly more efficient for asynchronous models than other approaches.

The algorithmic results became the building blocks of the new model checking approach envi-
sioned in the PetriDotNet framework.

With the help of various case studies I illustrate the efficiency of my algorithmic developments.
The CPN verification algorithm was the first which could fully verify a new safety logic of the Paks
Nuclear Power Plant. Various benchmark models are used to evaluate the new algorithms and I
compare their performance to those of existing model checking frameworks. The result of my work
helped the PetriDotNet framework — which consists of modelling support and various verification
algorithms — to become capable of solving industrial and research problems.

vi

Osszefoglalas

Kritikus rendszerek helyességének biztositasa nehéz feladat, e célbol kiilonbozé megkozelitések
léteznek a hibak megtalalasa, vagy a helyesség bizonyitasa érdekében. Ilyen ugynevezett verifikacios
megkozelitések tobbek kozott a tesztelés, monitorozas (azaz futasidejii ellendrzés), tovabba a mod-
ellellendrzés, statikus analizis, stb. A formalis verifikaci6 lehet6séget ad akar mar a tervezés soran,
hogy preciz analizist hajtsunk végre és a tervek helyességét vizsgaljuk.

Azonban a valds rendszerek Osszetettsége, és az ebbdl fakado szamitasi igény gyakran megakada-
lyozza a sikeres verifikaciot. Elosztott, aszinkron és konkurens rendszerek esetén ez a probléma
kilénosen gyakran felmeril az igynevezett allapottér robbanas jelensége miatt.

Munkam soran adatfiggd viselkedés(i aszinkron rendszerek hatékony modellezését és el-
lendrzését céloztam meg. Ezen ellendrzések tamogatasara egy megkozelitést dolgoztam ki és egy
keretrendszert javasolok, amely Petri net alapi modellezési nyelveket biztosit a felmeriilé mérnoki
az aszinkron biztonsag-kritikus rendszerek tervei, és a szinezett Petri hal6é formalizmust (CPN) az
adatfiiggd viselkedés hatékony modellezésére. Emellett Petri halok segitségével akar végtelen al-
lapotter(i rendszerek hatékony reprezentalasa és kezelése is lehetséges.

Az altalam javasolt megkdzelités modellezési és verifikacids megoldasokat kombinal oly mo-
don, hogy a keretrendszer alkalmas legyen komplex problémak megoldasara. A kiillonb6z6 Petri
megkozelitéseket mutatok be, kihasznalva az egyes modellezési formalizmusok jellemz6it. Dolgo-
zatomban 1j algoritmusokat mutatok be a Petri hal6 alapi modellek szélesebb korének tamogatasara,
azaz ellenérzésére. Bonyolult modellek komplex viselkedéseit és ezen rendszerek allapotterét ug-
ynevezett szaturacios algoritmusokkal kezeli a keretrendszer, amely emellett lehet6séget biztosit a
kovetelmények hatékony megfogalmazasara a CTL és az LTL specifikacios nyelvek segitségével is. A
CTL és LTL nyelven megfogalmazott kovetelmények ellenbrzésére pedig hatékony ellenérz6 algorit-
musok keriiltek kifejlesztésre. A (részleges) allapottér feltérképezésére, tovabba a végtelen allapot-
ter(i rendszerek kezelésére és a hatékony ellenpélda generalasra korlatos modellellenérzé algoritmu-
sok allnak rendelkezésre, tovabba az ellenpélda-alapu absztrakcid finomitas (Counterexample-Guided
Abstraction Refinement, CEGAR) médszerét alkalmazom. Ezen algoritmusok innovativ kombinacidja
jelenti a keretrendszer egyik tjdonsagat.

A kutatasaim soran kidolgozott megkozelités a PetriDotNet keretrendszerben keriilt meg-
valositasra, és killonboz6 ipari és tudomanyos kutatasi esettanulmanyok soran pedig kiértékelésre.
A bemutatott megkozelités hatékonysagahoz tobb algoritmikus fejlesztéssel jarultam hozza. Ezek az

alabbiak:

« Hatékony algoritmust dolgoztam ki a szinezett Petri halé modellek verifikalasahoz diszjunktiv-
konjunktiv dekompozici6 alkalmazasaval. Bemutatok dolgozatomban egy 1j, lusta algoritmust
a szinezett Petri hal6 modellek komplex allapotatmeneti fiiggvényeinek kezelésére. Az aj al-
goritmusok szignifikansan javitottak a szinezett Petri hal6 alapt modellek verifikacios teljesit-
ményét.

« Kidolgoztam egy parhuzamos szaturaci6 alapt allapottér felderit6 algoritmust, amely a korabbi
megkozelitéseket egy 0j zéarolasi és szinkronizaciés mechanizmussal béviti. Az 4j algoritmus
jobb eréforras-kihasznaltsagot, és ezaltal gyorsabb futasi id6ket eredményez, mint az irodalom-
bdl ismert korabbi algoritmus.

» Bemutatok egy 0j modellellenérzési algoritmust, amely az LTL specifikacioés nyelv regularis
részhalmazat tamogatja. Az 4j algoritmus egy Uj szinkronszorzat szamitasi megkozelitésen ala-

vii

pul, amely az aszinkron modellekre jelent6sen hatékonyabb, mint mas megkozelitések.

Az altalam kidolgozott 1uj algoritmusok a PetriDotNet keretrendszer modellellenérzési
megkozelitésének épitGelemei lettek.

Dolgozatomban kiilonféle esettanulmanyok segitségével bemutatom az 10j algoritmusok
hatékonysagat. Az altalam kidolgozott szinezett Petri halé verifikaciés algoritmus volt az elsé,
amely a Paksi Atomerémi egy bizonyos biztonsagi logikajanak a helyességét egyben bizonyitani
tudta. Az 4j algoritmusok értékelését kiillonb6z6 benchmark-modellek segitségével is elvégeztem és
Osszehasonlitottam mar meglévé megkozelitésekkel.

Dolgozatom eredményei hozzajarultak, hogy a PetriDotNet modellezé és formalis verifikacios
keretrendszer mind ipari, mind kutatési problémak megoldéasara alkalmassa valjon.

Contents

Contents
(1__Introduction|
[1.1 Preliminaries and Objectives|
[1.1.1 Target of the Dissertation|
[1.1.2 Verification Techniques in Systems Engineering|.
[L2__Formal Verificationl
[1.2.1 Applying Formal Verification in System Design|
[1.2.2 Formal Modelling|.
[1.2.3 Formal Requirements|.
|1.2.4 Formal Verification Techniques|
[1.2.5 Target Problem of the Dissertation|
M3 OVEIVIEW] . .« « v o v et e et e e e e e
[1.3.1 Model Checking of Asynchronous Systems|
[1.3.2 Formal Modelling|.
[1.3.3 Formal Requirements|.
[1.3.4 Objectives|

[2 Background|

21 PetriNets|. o
(2.2 Decision Diagrams|
23 Saturation]
|21311 Q ycx &ig && Qi Satulatiglﬂ -------------------------------
[2.3.2 Disjunctive and Conjunctive Partitioning|
[2.3.3 State-space Exploration Based on Saturation|.
[24 Model Checking|
25 CEGARforPefriNets|
[2.5.1 Petr1 Net State Equation| 0.
[2.5.2 The CEGAR Approach|

[3 Model Checking of High Level Models|

B3.1

Iteration Strategy for CPN| . .

B32

Encoding Next-state Relations|

viii

O O O N O U W W DN = =

—_ = =
_ o O

13
13
14
15
15
16
17
18
19
19
20

CONTENTS

[3.4 Disjunctive-Conjunctive Decomposition for CPN Models|
[3.4.1 Overview of the Approach|.
[3.4.2 Decomposition Algorithm for CPN|
[3.4.3 Event Handling Algorithm|.,
344 Off-Line Evaluationof Guards|
[3.4.5 Correctness of the Algorithm|
[3.5 Lazy Saturation Algorithm|
[3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN| . . .

B5.2

Overview of the Approach|.

B53

Iteration of Lazy Saturation|

B5.4

Computingand Using ER] o o

B55

Updating the Next-State Relation|

B5.6

Operation of Lazy Saturation|

B5.7

Correctness of Lazy Saturation|

B.6

Industrial Case Study|

B.6.1

The Modelled Industrial System|.

B.6.2

The PRISE Safety Function|.

3623

Coloured Petri Net Model of the PRISE Safety Function|.

B.6.4

Verification of the PRISE Safety Function|.

[3.7 Thesis 1: Model Checking of High-Level Models|

[4 Parallel Saturation-based State Space Exploration|

A1

Challenges|

@31

Extending the Decision Diagram Node Data Structure]

32

Working of the Algorithm|o 0o

a1

Algorithmic Improvements| L

[

New Locking and Synchronization Strategy|

A5

Correctness of the Algorithm|. 0.

@53

ConsIStENCY| ¢ v v i e e e e e e

A6

Implementation| L L

a7

Evaluation of the Algorithm|

71 Environmentl,

@72

Objectives of the Measurements|.

@73

Runtime and speed-upresults|

@74

Scalability|

@75

SUMMATY| .« . . v v v v v e e e e e e e e e e e e

A3

Thesis 2: Parallel State Space Exploration Techniques|

[5 Synchronous Product Generation for LTL Model Checking]
5.1 Introductionl

(.21

ix

29
29
29
31
32
33
34
34
35
36
36
39
39
41
42
42
43
44
46
48

49
49
50
50
51
52
55
58
59
60
60
61
61
63
64
64
64
65
66
67
68

CONTENTS

[5.2.2 Automata Theoretic Model Checking of Regular Properties| 71

[5.2.3 Synchronous Product|. 72

[5.3 Special Encoding Based On Constrained Saturation| 73
£.31 Tableau Automatal oL 73

[5.3.2 Encoding the Product Automaton|. 74

[5.3.3 Investigation of Correctness and Efficiency| 76

[5.4 Saturation-based On-the-fly LTL Model Checking| 77
[5.4.1 Abstracting the Constraint|. 0., 77

[5.4.2 Units of Processing — A Framework for On-the-fly Model Checking|. 78

G5 Evaluationl L 79
[5.6 Thesis 3: On-the-fly Synchronous Product Generation for Model Checking Regular |

| Safety Properties|. 81
[6 PetriDotNet Model Checking FrameworK| 83
[6.1 Model Checking Workflow| o000, 83
[6.1.1 Modelling and Verification Approach|. 84

[6.1.2 State Space Exploration Techniques|. 86

|6.1.3 Temporal Logic Model Checking| 87

[6.1.4 Bounded Model Checking| 87

[6.1.5 CEGAR Approach| 87

[6.2 Advancing the State-Of-The-Art] 89
|6.2.1 Configurable Approach for Model Checking Petri Net Models| 89

[6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm|. 90

[6.3 Tool Support for Usable Formal Methods| 91
[6.3.1 Functionality| 91

[6.3.2 Architecturel. 93

633 UseCases| o i e e e 94

[6.4 Thesis 4: PetriDotNet Model Checking Framework| 95
[Z__Conclusion and future work| 97
[7.1 Summary of the researchresults| 00 0. 97
(72 Futureworkl 98
Bibliography 101
... 101
References| L 103

Chapter 1

Introduction

1.1 Preliminaries and Objectives

Ensuring the correctness of systems is a long-standing requirement in the engineering disciplines.
Engineers have been using various techniques to analyse their projects and find design problems
before the implementation. Various means from the field of mathematics and physics helped to build
more stable buildings, more robust and stronger machines and so on. The design workflow depicted
on [Figure 1.1} which has worked for many centuries in the engineering disciplines is also applied in
the design of computer-based ICT (Information and Communication Technology) systems. However,
the analysis of complex ICT systems requires new techniques and algorithms [BKLO08|] compared to
the traditional engineering domains like the mechanical engineering domain or architecture.

Analysis

[Requirements J—»t Design J—v[ImplementationJ

Figure 1.1: Development process

In my dissertation, I focus on the correctness analysis of critical ICT systems, and specifically the
logical correctness checking, i.e. the verification of such systems. In my work I have investigated how
the development can be supported by modelling languages, verification algorithms, and a framework,
making all these techniques available to the computer engineers. The outcome of the verification
process will help the engineers producing systems with better quality and fewer errors.

1.1.1 Target of the Dissertation

A system is safety-critical if its failure could result in loss of life or significant damage. There are many
well-known safety-critical areas such as medical devices, aircraft flight control and nuclear systems.
Ensuring the correctness of these systems is especially important, in which advanced verification
techniques play a significant role.

Safety-critical systems are inherently distributed, components responsible for various functions
in these systems cooperate to keep up the proper operation. The distributed characteristics of the
components and their interaction results in intricate system level behaviour. This fact raises the main
challenge: the resulting behaviour is not only difficult to understand and to modify, but also to analyse.

2 CHAPTER 1. INTRODUCTION

Due to the technological development, recent safety-critical systems are becoming more and more
complex, raising challenges in the modelling, development and also in the verification. In my thesis,
I aim to provide solutions to support the modelling and verification of safety-critical systems. As
no single approach can cover all aspects of ICT systems, in my work I focus on the verification of
asynchronous systems, such as communication and distributed systems.

Verification analyses if the model of the system fulfils the given correctness criteria. Various kinds
of requirements [BKLO8]|| are expected to be fulfilled by the system:

« Safety requirements express that the system does not reach an error/dangerous state.

« Boundedness properties express restrictions to the resource usages and other aspects of the
system.

« Liveness properties expect the system to respond to a request after finite delay and also avoid
deadlock, for example, a client will finally send an answer to a request.

» Reversible systems can reach certain states again and again.

« Persistence requirements express that some property will finally hold in the system after a
transient phase. For example, in a distributed system, the connection will be established, and it
remains in that state stably.

In my dissertation, I aim to support a rich set of properties to specify the correctness requirements.

1.1.2 Verification Techniques in Systems Engineering

In this section, a typical engineering workflow based on the widely known V-model is used to show
the role of verification techniques at the various phases of development (the V-model received its
name as it forms a V shape). This workflow is used as a general guideline in the development of
safety-critical systems. Many variants of this workflow were developed by the industry tailored to
the special needs of the different sectors. The V-model defines the elementary steps and draws a
general workflow for the design and implementation of the system as depicted on Figure In
addition, the workflow defines verification and validation steps in the development to ensure that the
correct design is developed and it fulfils the requirements. In the following, the various verification
and validation techniques are summarised that ensure the correctness at the different phases of the
development. The V-model defines the verification goals to ensure correctness of:

« the design with regard to the requirements and

« the implementation with regard to the design.

The systems engineering process depicted on Figure starts by designing the requirements,
which are then refined in the next, so-called system design phase. This phase defines the main func-
tionalities of the system. In the next phase, designing the architecture provides the necessary de-
composition to be able to construct the component level design. At each step, the designer refines
the outcome of the former steps by providing more details. At the final step of the left wing of the
V-model, one can produce the implementation for each component from the design models. Imple-
mentation has to be tested and verified against coding and other implementation errors. After the
component level validation, system integration builds the smaller pieces together where extensive
integration testing is executed to validate that the components work properly together. Finally, sys-
tem validation ensures if the outcome is the system, which is desired by the customer.

Various analysis techniques serve the verification and validation of the system design and im-
plementation. In the following these analysis techniques, such as (computer) simulation, testing and
formal verification are shortly summarised:

1.1. PRELIMINARIES AND OBJECTIVES 3

Requirement l System validation >
design

Subsystem testing >

Integration testing

Implementation

Figure 1.2: Verification during system engineering

Simulation is the process of executing the model of a system. Simulation is a design-time activity to
assess the dynamic aspects of systems.

Testing is an activity in which a system or component is executed under specified conditions, the
results are observed or recorded, and evaluated according to the specification [Ins10; |[Mic13]].
Systems are tested at various phases of the development [Ana+13|] from component level im-
plementation [[GA14]] up to system level integration.

Formal verification is the procedure of proving or disproving the correctness of a system with re-
spect to a certain formal specification or property [CES86]. Formal verification is based on
the mathematics of computation. Both design models and also implementation [Bey17] can be
verified. However, as the models are becoming more detailed and the design approaches the
implementation level, the computational complexity increases.

Simulation is the elementary task of inspecting and analysing the system behaviour. The pre-
requisite is the model of a real or imagined system, which shall be designed and then experiments
are conducted on the model during simulation to reproduce the possible behaviour. The purpose of
simulation experiments is to understand the behaviour of the system or evaluate strategies for the
operation of the system. Simulation uses an abstract model (a computational model) for execution.
Simulation provides analysis capabilities at an early stage of the development when only models are
available.

The testing procedure can be carried out at various levels of abstraction. In one hand, testing the
model by simulating it and evaluating the behaviour can provide feedback for the developers at an
early stage of the design. Simulation is used as the elementary procedure to test models. On the other
hand, testing the implementation provides inputs and observes the reactions of the concrete system.
Testing is one of the most widely used verification approaches [MSB11].

In general, testing analyses the runs of the system by providing inputs, simulating the behaviour
and examining the reaction (output), by comparing it to an explicitly stated (provided as assertions) or
implicitly assumed (such as no crash should occur) expected behaviour. Testing is efficient in finding
problems, and it has many advantages. Testing the model of the system relies on simulation, which can
be computed efficiently. Besides, testing is easy-to-use for the developers: no additional knowledge
is required, it works on the model of the system. Testing can also be applied at the implementation
level so the revealed problems do not come from the inaccurate modelling but they are real problems
in the implementation. In addition, when exhaustive verification is not possible, testing can still help
locating problems.

4 CHAPTER 1. INTRODUCTION

On the other side, neither simulation nor testing can be complete in the sense that they usually
can not explore all the behaviour of a system so neither simulation nor testing can prove correctness
alone.

Formal verification extends their strengths with mathematically established proofs based on the
exhaustive traversal of all the possible behaviour.

Finding errors is one side of the problem: the need to be able to prove correctness naturally raised.
This need led to the development of formal verification techniques to support the engineers with tools
providing certainty about the correctness of their design.

The combination of the various verification methods can ensure the high quality of computer-
based systems. These techniques can be used in different phases of the systems engineering process,
and they together constitute a powerful tool to find errors at an early stage of the development.

1.2 Formal Verification

Formal verification is the analysis of hardware, software and systems that provides mathematically
established proofs for correctness or existing errors. Formal verification is performed on the abstract
representation (model) of the system or directly on the source code.

Nowadays, the application of formal methods is gaining high importance in the development of
modern ICT and especially safety-critical systems. Standards, like IEC 61508 also recommend the
application of formal techniques in the development process.

1.2.1 Applying Formal Verification in System Design

The traditional application of verification is depicted on [13]. The goal is to verify the
correctness of the system by checking if the engineering model fulfils the requirements [LMM99;
Cse+02]. Applying formal verification in the system development process consists of the following
steps.

1. Engineering models and requirements are developed.
2. Formal models and formal requirements are created.
3. The verification procedure is executed.

4. Results are interpreted and back-propagated to the engineering levels. Corrections are made,
and verification is run again if needed.

5. Implementation is derived from the engineering models.

The input of the procedure is the engineering model, which is usually described by a domain ex-
pert in the language of design tools, for example, SysML or UML. The requirements also come from
the engineers. Both the engineering models and the requirements have to be formalized and trans-
formed into the input language of some verification tools. Formal models provide a mathematically
precise way to describe the system: this enables the application of formal verification techniques on
the systems’ design. The result of the verification is interpreted on the level of the formal model and
formal specification: this result has to be back-propagated to the engineering domain to be under-
stood by the engineers. This back-propagation procedure is depicted on the figure with dashed lines
pointing towards the engineering level.

Supporting the whole verification process involves all the aforementioned steps. In this thesis, I
focus on how to support the formal modelling, and I will introduce novel verification algorithms to
enhance the verification process.

1.2. FORMAL VERIFICATION 5

i

Formal
model

Formal
requirements

Engineering Requirements
model

f

|
Back-
propagation

A

Figure 1.3: High-level view of the verification process

Y

Verification

1.2.2 Formal Modelling

Formal modelling is the process of developing a formal representation of the system under analysis
in a formal modelling language. The resulting model can be analysed by various techniques to prove
its correctness or find design errors.

1.2.2.1 Development of the Formal Representation

There are two main directions to develop the formal models: they can be developed manually, or
formal models are automatically generated from the engineering models by using model transfor-
mations. Verification engineers develop formal models from the system description. Increasing the
expressiveness of the formal modelling language supports the efficient development of the formal
models. It means a smaller abstraction gap between the engineering and formal modelling level and
also provides more information for the underlying verification engines.

Many approaches try to support the automatic generation of formal models from engineering
models, but they rarely provide a proper solution for the problem in their own as the generated
formal models might contain too many details preventing successful verification [Dar17],[[13]],[12].

1.2.2.2 Formal Modelling Languages

There are many formalisms to represent the system under analysis. As systems possess various char-
acteristics, formal representations have to be able to express these properties and exploit them for
verification.

Finite state automaton and their extensions are popular as they are easy to use and an automa-
ton can naturally represent certain problem domains. Additionally, networks of automata provide a
compact representation for distributed systems. Programming language-like formalisms are popular
for their expressiveness and as they are similar to those languages that software engineers are used
to. Petri nets and related models constitute an expressive class of formal modelling languages: they
are popular for their simplicity, but Petri nets still possess high expressive power. There are two main
types of Petri nets:

6 CHAPTER 1. INTRODUCTION

Petri net based modelling languages solve the problem of graphical and formal representation of
concurrent and distributed systems. Petri nets naturally handle the inherent asynchronism of
such systems. Petri nets can represent both finite and infinite state systems. Moreover, various
subclasses and extensions exist to support the modelling and analysis of concurrent systems.

Coloured Petri nets (CPN) extend Petri nets with various data types and variables, and additional
guard expressions are used to refine the possible behaviour of the systems further. Coloured
Petri nets can raise the abstraction level to help the efficient development of formal models.

Ordinary Petri nets are well-suited to model control flow and data dependent behaviour. Petri net
based models can have finite state space which means that a finite number of states are reachable from
the initial state. Various subclasses exist for representing the various problems. Finite state machines
and networks of finite state machines are expressed with finite Petri nets. The marked graph is a
special subclass of Petri nets being able to represent decision-free parallel activities. For these Petri
net subclasses, efficient verification methods exist [Mur89; BKP17].

On the other hand, Petri net based models can also represent infinite state systems, with an infi-
nite number of reachable states. Such ordinary Petri nets are used to model concurrent multi-threaded
programs with finite data structures. In general, the expressive power of Petri nets equals the expres-
sive power of Vector Addition Systems [EN94].

In coloured Petri nets, various data types can be used as colour types, and guard expressions can
be evaluated on them. Coloured Petri nets combine the inherent concurrency of Petri nets with data
dependent behaviours expressed with colour types and other language elements. Coloured Petri nets
are also a proper means to describe parametric systems. Compared to ordinary Petri nets where the
structure of the net encodes the modelled behaviour, in coloured Petri nets, a wider range of language
elements support the modelling.

1.2.3 Formal Requirements

Formal requirements capture the requirements of the design phase in a formally interpreted precise
language. In this thesis, our goal is to verify the behaviour of systems, so we restrict the introduction
to the formal requirement languages being able to express behavioural properties.

Formal requirements are usually expressed with the help of temporal logic. Various temporal
logics exist, the two most common are Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL). They have different semantics and expressive power. For example, deadlock freedom can be
only expressed with CTL while fairness properties are only expressible with LTL. It is desirable for a
model checker to support both formalisms. However, only a few model checkers provide support for
both of them.

1.2.4 Formal Verification Techniques

There are various formal verification techniques to ensure the correctness of systems [DKWO08]]. For-
mal verification does not rely on the concrete execution of the software/system, so these techniques
are often referred to as static analysis techniques. Widely used static analysis techniques are — among
others — abstract interpretation, model checking and theorem proving.

Abstract interpretation techniques derive properties from the structure of the models or the source
code. Abstract interpretation iterates through the program and approximates the possible be-
haviours without executing the calculations of the program. Over-approximation and various
abstractions tailored to the domain provide efficiency. However, accurate results can not be
provided due to the coarse approximations.

1.2. FORMAL VERIFICATION 7

Model checking analyses a model representation of the system. Model checking algorithms exhaus-
tively explore the possible states of the system and verify the requirements given as temporal
logic formulae. Model checking algorithms produce a counterexample if a property violation is
found.

Theorem proving based verification reduces the verification problem to solving first-order or higher-
order logic problems. First-order theorem provers might work fully automatically, higher-order
logic provers are mainly interactive. Both the property and the system representation have to
be expressed as a logic problem in the input language of the chosen theorem prover.

From the various approaches, there are semi-automatic procedures like interactive theorem prov-
ing, and on the other side, there are fully automatic techniques such as model checking and abstract
interpretation. There is a huge gap also in precision: abstract interpretation examines safety proper-
ties being reduced to the reachability checking of some erroneous states. Model checking extends the
set of analysis questions, and it is able to answer liveness or even complex fairness and timed prop-
erties. Theorem proving can prove even properties expressed in higher-order logic, however only for
certain (very restricted subset of) systems. In general, static analysis techniques (like abstract inter-
pretation) are known to be computationally cheaper but less precise, on the other side model checking
is more precise for the more computational cost.

The approaches use different formalisms to design the system representation: the verification
engineers can choose between directly verifying the implementation or execute the analysis on a
higher level of abstraction. The first approach provides information directly from the implemen-
tation: this advantage is however very expensive as the verification of programs is algorithmically
rarely tractable. Abstract models are usually easier — however in practice still difficult - to verify, but
implementation and coding problems are not detected at this higher level.

Formal verification is getting more and more widely used for industrial problems [Cal+15;/Adi+15}
DMB16}; LS09; Kle+09; SD10; BP12; Kai+09]. From the various techniques, model checking provides a
good trade-off between precision, expressiveness and computational costs [DKWO08]].

1.2.4.1 Model Checking

Model checking is an automated formal verification technique: given a formal model representing
the system, and a formal specification, a model checking algorithm traverses the possible behaviours
of the formal model and decides if the formal specification is fulfilled. The state space is represented
in the internal data structures of the model checker and used for the analysis of the formal proper-
ties. When the formal specification is fulfilled, the correctness of the design is proven. Otherwise,
the model checker produces a counterexample, which shows how the system can reach an incor-
rect/undesired situation.

There are two main families of model checking algorithms: explicit techniques use traditional
graph algorithms to explore the states one-by-one. On the other side, symbolic model checking al-
gorithms apply special encoding of the state space and the transition relation. Explicit state model
checking can be fast but often faces the so-called state space explosion problem: even small models
can have huge state spaces, which can not fit into the memory of modern computers. Symbolic algo-
rithms try to solve the state space explosion problem by avoiding the explicit representation of the
state graph and using a compact representation instead. One of the symbolic approaches is saturation,
which was devised for the verification of asynchronous, concurrent systems.

Model checking is a difficult problem in general: even small systems can have huge state space
due to the large number of interactions of asynchronous, concurrent or distributed systems, or caused

8 CHAPTER 1. INTRODUCTION

by the data content of the state variables. In many cases, formal models have infinite state spaces,
which have to be traversed and represented by the model checking algorithms. Explicit model check-
ing algorithms store the states and transitions one-by-one and traditional graph traversal algorithms
are used: the memory requirements of storing huge state space graphs often prevent their applica-
tion. On the contrary, symbolic model checking algorithms handle sets of states together instead of
manipulating them individually and clever encodings help to fit the state space representation into
the memory.

Symbolic state space representation. In symbolic model checking, characteristic functions are
used to encode sets of states and decision diagrams can be used for efficient storage. A decision dia-
gram is a directed acyclic graph, representing a Boolean or multi-valued function. Various reduction
rules ensure that decision diagrams are a canonical and compact representation of a given function or
set, which makes it a proper means to store set of states. Traditional symbolic algorithms encode the
reachable states and also the next state functions in decision diagrams. State variables are mapped to
the variables of the decision diagram and state vectors are stored in the decision diagram.

The other option is the application of SAT-based techniques to manipulate the characteristic func-
tion of the symbolic representation and efficient solvers help the state space traversal. Induction can
help to find proofs for correctness or bounded state space exploration searches counterexamples.

Symbolic model checking algorithms can manipulate a huge set of states together, but their effi-
ciency highly relies on the used encoding. Finding a good encoding can be a complex task.

Efficient state space traversal. In model checking, the state space has to be traversed. During
the exploration, states have to be stored or memorised, to avoid redundant exploration, redundant
computations. Decision diagrams offer a compact representation and storage for the state space, but
the construction of the state space representation i. e., the exploration strategy of the state space has
to be chosen. The states of synchronous hardware systems are traditionally explored by breadth-first
(BFS) traversal in symbolic model checking. However, BFS is used to be inefficient for asynchronous
systems [CMSO05]. On the other hand, depth-first (DFS) traversal does not fit the traditional decision
diagram based symbolic algorithms as symbolic algorithms are not able to handle states individually.

Ciardo and his colleagues developed a special iteration strategy to solve this problem, the so-called
saturation iteration algorithm, which combines BFS and DFS strategies tailored to the structure of the
decision diagram representation of the state space. Saturation is efficient[CMS05]] for asynchronous
and GALS (Globally Asynchronous Locally Synchronous) systems. Saturation was developed for Petri
nets, and some extensions also support model checking of various properties.

Checking temporal logic specifications. CTL and LTL are widely used temporal logics with dif-
ferent expressiveness and different verification algorithms. CTL model checking is reduced to com-
pute greatest and least fixed points of the next-state functions in the state space iteratively. This
approach is called structural model checking and decision diagram based symbolic approaches effi-
ciently solve the problem of traversing and storing the possible states. On the other side, LTL model
checking requires different algorithms as it is reduced to the checking of language inclusion of the
property automaton and the state space of the model. Model checking LTL properties is usually
composed of two challenges: one must compute the synchronous product of the state space and the
automaton model of the desired property, then look for counterexamples that is reduced to finding
strongly connected components (SCCs) in the state space of the product. Checking LTL properties is
computationally a harder problem than checking CTL properties in general.

1.3. OVERVIEW 9

1.2.5 Target Problem of the Dissertation

In this dissertation, I focus on the modelling and verification of concurrent, asynchronous systems,
which constitute a significant part of the set of safety-critical systems. These are typically discrete-
event systems (DES), so I show how such systems can be efficiently modelled and verified.

Summarising the verification challenges in general: there is a need to precisely (formally) repre-
sent the system and the requirements, efficient model checking algorithms are required to solve the
verification problem, and we need tool support with the aforementioned capabilities.

1.3 Overview

In this section, I overview the challenges in the model checking process. In [BKLO08], authors defined
the following phases in the application of model checking in systems engineering:

« Modelling phase:
— Model the system using the description language of the model checker.

— Perform sanity checks by simulation
— Formalize the requirements using a property specification language.
+ Running phase: run the model checker and check the validity of the property in the model.
+ Analysis phase:
- If the property is satisfied, check the next property.
— If the property is violated, then:
1. Analyse the generated counterexample;
2. Refine the model, design or the property;
3. Repeat the entire procedure.

— Out of memory or time-out necessitates the reduction of the model or the application of
a different model checking algorithm.

Formal verification is often desirable though complex task and each phase of the model checking
process has their own challenges. Developing formal models is time-consuming, and the verification
of real industrial problems is computationally hard. The huge gap between engineering and formal
models are difficult to bridge by automated techniques. On the other hand, verification engineers
might develop the proper formal models from engineering models. However, this process is time-
consuming. Even if the models are available in a formal representation, the requirements have to be
also expressed formally, which needs a rich set of formal requirement languages. After all, the high
computational cost of formal verification often prevents its successful application.

1.3.1 Model Checking of Asynchronous Systems

Formal verification is a computationally difficult problem: small systems still have huge state spaces,
which has to be traversed by the verification algorithms. This is especially true for the asynchronous
models of distributed systems: the various overlapping of the components’ behaviour yields a huge
number of possible behaviour. Advanced techniques are required to handle this explosion. The num-
ber of possible states grows exponentially with the growing number of components in a distributed
system, even up to the Cartesian product of the states of the individual components. As formal ver-
ification has to be exhaustive, the large number of states poses huge challenges for the verification
algorithms.

10 CHAPTER 1. INTRODUCTION

As it can be seen, formal verification of distributed systems is computationally expensive so choos-
ing the proper approach is crucial. Saturation provides an efficient solution for the model checking
of Petri net models: my work is based on saturation-based techniques.

Due to the computationally extensive nature of model checking, the question naturally arises
that how modern multi-core processor could be exploited for further enhancing the performance of
model checking. Efficient model checking approaches such as symbolic algorithms use complex data
structures and iteration strategies making the parallelisation task difficult. The reason for symbolic
model checking being inherently sequential is that fixed-point computation and detection needs the
results of the previous steps. This problem is especially true for saturation, which was also discussed
in the literature [CZJ09]]. With the newer and newer advances of model checking, the challenge of
exploiting multi-core computers in saturation-based model checking is raised.

1.3.2 Formal Modelling

Petrinets are a popular modelling language to describe the behaviour of concurrent and asynchronous
systems, but many application domains require a more expressive formalism: in such cases, coloured
Petri nets provide efficient means to describe asynchronous systems with data dependent behaviours.

Coloured Petri nets (CPN) extend ordinary Petri nets with various data types that can be used as
colour types, and guard expressions can be evaluated on them. However, this also yields challenges
for the verification algorithms. These intricate language elements of coloured Petri nets are difficult to
be handled by the model checking algorithms. This issue should be addressed in a formal verification
tool analysing coloured Petri net models.

Many efficient techniques and tools exist for the verification of Petri net models. The drawback
of the application of CPNs is the lack of efficient verification techniques, what we also faced in our
research. The reason for that is twofold: by choosing decision diagram based techniques, one can
efficiently represent the state space of Petri net models, but complex guard expressions are not ef-
ficient to be encoded in decision diagrams. On the other side, techniques based on advanced solver
technologies such as SAT and SMT being able to handle intricate guard expressions efficiently are not
good at verifying concurrent systems. These facts lead to the situation that coloured Petri net based
symbolic verification tools are not available. The most commonly used tool for verifying CPN models
is CPNTools [JKWO07]], which provides techniques based on explicit state traversal and representation.
Such explicit techniques rarely scale to real-life problems.

1.3.3 Formal Requirements

From the wide range of requirement languages, formal verification relies on formal languages such
as CTL or LTL: these are the most widely used formal specification languages being able to express
many kinds of properties of interest. CTL model checking is reduced to compute greatest and least
fixed points of the next state functions in the state space iteratively. This approach is called struc-
tural model checking and decision diagram based symbolic approaches efficiently solve the problem
of traversing and storing the possible states. On the other side, LTL model checking is reduced to
solving language containment problem. Model checking LTL properties is usually composed of two
challenges: one must compute the synchronous product of the state space and the automaton model
of the desired property, then look for counterexamples that is reduced to finding strongly connected
components (SCCs) in the state space of the product. Symbolic model checking approaches exist for
the SCC computation. However, the efficient construction of the synchronous product is still an open
question, especially when using saturation-based algorithms. Related work in this field uses tradi-

1.3. OVERVIEW 11

tional binary decision diagram encoding of the composite state space and encodes the synchronous
next state relation in a big, monolithic decision diagram. Saturation-based approaches avoid the ex-
plicit computation of the synchronous product [Thil5] by dividing the iteration order into smaller
parts. This approach might break the iteration strategy of saturation, which may decrease the effi-
ciency. Synchronous product computation is not yet integrated into saturation-based traversal for
LTL model checking in a way that it would fully exploit the efficiency of the iteration strategy.

1.3.4 Objectives

My goal is to introduce a model checking approach for the verification of Petri net based models
of complex systems. The proposed approach supports the formal modelling by providing coloured
Petri nets as a high-level formalism to represent the system. Temporal logics such as CTL and LTL
supports the development of formal specifications. Saturation is used to explore the state space and
the next-state function and stores them symbolically. Temporal logic model checking processes this
representation of the possible behaviours and evaluates the CTL or LTL specification. The result of the
procedure is an error trace to show the problem in the system. Otherwise, the model of the system is
assumed to be correct. In the following section, I summarise the challenges concerning the individual
steps of the verification process.

1.3.4.1 Summarizing the Challenges

Challenge 1: Verification of complex systems High-level modelling languages are needed to
model complex systems. High-level models of complex systems require rigorous verification tech-
niques, so the existing verification approaches and algorithms have to be extended to overcome the
challenges.

Saturation was introduced for the analysis of Petri-nets and their variants/simple extensions.
However, in practice, higher level languages provide a better means to describe complex, real-life
systems. Coloured Petri nets are a popular formalism, but saturation-based algorithms have not yet
been extended for their analysis. Complex data structures of Coloured Petri nets have prevented the
application of efficient saturation-based symbolic model checking algorithms in this field.

Challenge 2: Increase the efficiency of model checking algorithms New techniques are
needed to increase the efficiency of model checking algorithms and decrease runtime requirements.

Parallelization is a common approach to improve the performance of algorithms. However, sat-
uration is inherently sequential, so it is difficult to parallelise [CZJ09]. The reason behind is the fact
that saturation heavily relies on the results of former computations. Indeed, the parallel manipulation
of a decision diagram is a difficult problem on its own, which is the prerequisite to develop parallel
saturation-based algorithms. Exploit the computational power of modern multi-core computers in
saturation-based algorithms is a huge challenge.

Challenge 3. Verification support for various requirements Research and industrial case-
studies revealed the need for a wide range of specification languages to support the various types
of requirements of the use-cases.

CTL and LTL temporal logics have different strength and weaknesses, so it is important for a
model checker to support both formalisms from the usability point of view. Saturation was tradition-
ally used for CTL model checking as the traditional approaches for LTL model checking are difficult to
implement in symbolic settings. LTL model checking is reduced to automata based model checking,

12 CHAPTER 1. INTRODUCTION

and saturation-based model checking approaches have to be extended to support automata based for-
mal specifications. Automaton based specification provide the semantics for high-level specification
languages such as LTL. LTL model checking requires solving an additional problem during the state
space generation: namely the synchronous product computation with an automata representation of
the property under analysis. This problem is easy to solve by explicit state space traversal algorithms,
but intricate synchronisation constraints often prevent the efficient application of symbolic meth-
ods. This lead to that former saturation-based synchronous product generation approaches do not
compute synchronisation constraints symbolically instead they try to divide the problem into locally
solvable parts. However, this breaks the iteration might degrade it to a breadth-first like iteration.

Challenge 4: Tool support for formal modelling and verification. The wide range of indus-
trial problems necessitates a formal modelling and verification framework with various modelling
languages and verification algorithms. As no single formalism or algorithm can support the many
aspects of the use-cases, a configurable framework is needed, which can be fine-tuned to handle the
verification problems.

Therefore the goal of the dissertation was to define a framework addressing these challenges and
develop the necessary algorithms for supporting the verification procedure.

Beside the algorithmic developments, there is a need for tool support for the envisioned verifi-
cation framework. This involves modelling, verification and counterexample generation of complex
systems. There has not been any tool yet for combining the aforementioned algorithms together in
one tool to the efficient support of verification of various Petri net based models.

Chapter 2

Background

In this chapter, I introduce the theoretical background of my work. The basic definitions related to
Petri nets are from [4][[16]]. The introduction of decision diagrams is from [[¢]]. The overview for model
checking and saturation is based on [[5]] and [[20]].

2.1 Petri Nets

Petri nets are graphical models for concurrent and asynchronous systems, enabling both structural
and dynamical analysis. Formally, a Petri net [Mur89] is a tuple PN = (P, T, E, W, mg) where:

« P is the set of places,
« T is the set of transitions, with P # () ## T and PN T = 0,
« EC (P xT)U(T x P) is the set of arcs and

« W: E — Z7 is the weight function assigning weights w™ (p;, ;) to the edge (p;,t;) € F and
w™ (pj, t;) to the edge (t;,p;) € E.

A marking of a Petri net is a mapping m : P — Z(')F. The initial marking is denoted by myg. A place p
contains k tokens under a marking m if m(p) = k.

A transition t; € T is enabled in a marking m, if m(p;) > w™(pj, t;) holds for each p; € P with
(pj,ti) € E. An enabled transition ¢; can fire, consuming w™ (p;, t;) tokens from places p; € P with
(pj,t;) € E and producing w™ (p;,t;) tokens in places p; € P with (¢;,p;) € E. The firing of a
transition ¢; in a marking m is called an event and denoted by m/|t;)m’ where m’ is the marking after
firing t;.

A word o € T™ is a firing sequence. A firing sequence is realizable in a marking m and leads to
m’, (denoted by m[o)m/), if either m = m' and o is an empty word, or there exists a realizable firing
sequence w € T*, a transition t; € T, and a marking m” such that m[w)m”[t;)m' and o = {w, t;}.
The Parikh image of a firing sequence o is a vector p(c) : T — Zg , where p(o)(t;) is the number of
the occurrences of ¢; in 0.

Reachability problem. A marking m’ is reachable from m if there exists a realizable firing se-
quence o € T*, for which m[o)m/' holds. The set of all reachable markings from the initial marking
mg of a Petri net PN is denoted by R(PN,mg). The aim of the reachability problem is to check if
m’ € R(PN, mg) holds for a given marking m/.

13

14 CHAPTER 2. BACKGROUND

Define a predicate as a linear inequality on markings of the form Am > b, where A is a matrix,
and b is a vector of coefficients [EMO00]. The aim of the submarking coverability problem is to find a
reachable marking m’ € R(PN,my), for which the given predicate Am’ > b holds.

The reachability problem is decidable [May81]], but it is at least EXPSPACE-hard [Lip76].

Reachability graph. The state space of a Petri net is the set of states reachable from the initial state
through firings of transitions. The state space can be either finite or infinite. The reachability graph is
constructed by traversing the states and connecting them by edges representing the transition firings,
i.e., the steps in the state space. Figure depicts a simple example Petri net model of a producer-
consumer system. The producer creates items and places them in the buffer, from where the consumer
consumes them. For synchronising purposes the capacity of the buffer is one, so the producer has to
wait till the consumer takes the item from the buffer. This Petri net model has a finite state space of
8 states.

producer &
producer buffer consumer buffer level m
consumer
level

terminal "
level
(a) The Petri net of the producer- (b) State space representation
consumer model with MDD

Figure 2.1: Producer-consumer example

2.2 Decision Diagrams

Decision diagrams are widely used for verification. In this section, a basic definition is given.

A Multiple-valued Decision Diagram (MDD) is a directed acyclic graph, representing a function f
consisting of K variables: f : {0,1,...}” — {0,1}. An MDD has a node-set containing two types
of nodes: non-terminal nodes and two terminal nodes (0 and 1). The nodes are ordered into K + 1
levels. A non-terminal node is labelled by a variable index 0 < k& < K that indicates to which level
the node belongs (which variable it represents), and has nj (domain size of the variable, in binary
case ny = 2) arcs pointing to nodes in level £ — 1. A terminal node is labelled by the variable index
0. Duplicate nodes are not allowed, so if two nodes have identical successors in level k, they are also
identical. In a quasi-reduced MDD redundant nodes are allowed: it is possible that every arc of a node
points to the same successor.

These rules ensure that MDDs are canonical and compact representations of a given function or
set. The evaluation of the function is based on a top-down traversal of the MDD through the variable
assignments represented by the arcs between nodes. Figure depicts an MDD used for storing
the encoded state space of the example Petri net. Each edge encodes a possible local state, and the
possible state configurations are the paths from the root node to the terminal node labelled one.

2.3. SATURATION 15

2.3 Saturation

Saturation [[CZ]J12] is a state space generation and model checking algorithm that proved its efficiency
in the verification of asynchronous systems [CMS03]]. This section overviews the basic concepts of
the saturation algorithm.

2.3.1 Overview of Saturation

Saturation [CMSO06] is a symbolic algorithm for state space generation and model checking that is
particularly efficient for concurrent, asynchronous systems. Saturation explores the possible states of
the model and stores the encoded state space in an MDD. Decomposition serves as the prerequisite for
the symbolic encoding in saturation: the algorithm maps the state variables of the high-level model
into symbolic variables of the decision diagram. Formally, saturation explores the reachable state
space Sy, of a model M = (S, Sinit, £, N') composed of K components (or subsystems), where:

« § is the possible set of global states. A state variable is defined for each component denoted
by s1,...,SK with possible local state spaces Sy, ..., Sk, so that the global state space can
be defined as their Cartesian product: S = S§; X --- X Sk. Each global state s is a K -tuple
(s1,...,5K), whereeach s € S = {0, 1, ...} is the state of the k-th component (1 < k < K).
The variables are mapped into symbolic variables of the encoding decision diagrams;

« Sinit C &S is the set of initial states, S,.;, C S represents the set of states reachable from the
initial states;

« & is the set of (asynchronous) events, usually transitions of a high-level model i. e., firing of a
transition in a Petri net;

« N C 8 x S is the next state relation defined as the union of the separate next state relations of
the events as follows: N = | J,c¢ Nz, where N, is the next state relation of event . We often
treat \V' as a function, defining N/ (s) = {s/[(s,s’) € N} as the states that are reachable from s
in one step (and also A/(S) as an extension to sets of states).

The global state space S is represented as an MDD with K variables (levels), where variable x;
corresponds to the state of the ith component. A global state s is encoded by a trace (path) of the
MDD, where 1 = s1,...,Zx = sg. Decomposition helps the algorithm to exploit the inherent
locality efficiently of asynchronous systems.

Saturation uses a peculiar iteration strategy: it iterates through the MDD nodes and generates
the whole state space representation using a node-to-node transitive closure. Building the MDD
representation of the state space starts by building the MDD representing the initial state. Then
the algorithm saturates every node in a bottom-up manner, by applying saturation recursively when
new states are discovered. The result is the state space representation encoded in MDD. This way,
saturation avoids that the peak size of the MDD during the iteration exceeds its final size, which is a
critical problem in traditional approaches. The reader is referred for details and a running example
to [CMS03].

Saturation exploits the locality inherent in concurrent systems, where a single event usually af-
fects only a small number of components (state variables). This approach partitions the global next-
state function according to the high-level model events in the system. An event ¢ is independent from
the component £, if 1) its firing does not change the state of the component, and 2) its enabling does
not depend on the state of the component. If € depends on component k, then we call it a supporting
variable: k € supp(e). We define Top(e) as a function that returns the largest index in supp(e). Then
& is the set of events: {¢ € £|Top(e) = k}. For the sake of convenience we use N, to represent the

16 CHAPTER 2. BACKGROUND

next state function of all the events ¢ € &, formally N}, = |J ces, N-. Thus, the algorithm does not
create a large, monolithic next state function representation. Instead, it divides the global next state
function NV into smaller parts according to the set of events £ in the high-level model.

Symbolic encoding of the next state functions of events € € & relies on the following observation:
N:((s1,...,8K)) and Nc({s1,...,8k)) X {(Sg+1,...,SK)} are equivalent. From this fact we can
derive two important properties of saturation: 1) in the encoding of N it is only required to encode
the state changes of state variables s1, ..., si, where k = Top(¢), as well as 2) it is possible to apply
the individual N; functions in a finer granularity: N is applicable not only on the full state space
representation, but also on the local state space representation composed of state variables s1, .. ., sg.

The saturation iteration strategy divides the global fixed-point computation into smaller parts,
as it computes a local fixed-point with regard to a decision diagram node ng. A node ny is called
saturated, if it represents a local state space computed as the fixed-point of the transitive closure
of local next state relations: S(nx) = Uy <jcp Uoce, NE(S(nr)), where S(my) is the set of states
represented by node ny [CMS03]]. Building the MDD representation of the state space starts at the
MDD of the initial state. Then the algorithm saturates every node in a bottom-up manner, by applying
saturation recursively, if new states are discovered. In this way saturation avoids the peak size of the
MDD to be much larger than the final size, which is a critical problem in traditional approaches.

2.3.2 Disjunctive and Conjunctive Partitioning

The next-state function N; of an event ¢ describes the states reachable from a given state in one step
(i. e., with a single firing of a transition).

The global next-state of event ¢ can be defined as a product N = ,/\/'(571) X .. X J\f(E,K). This
encoding enables building the next-state functions locally, but it requires a Kronecker-consistent de-
composition [CMS03]]. Ordinary Petri nets are Kronecker-consistent for any partitioning of the places
[CMS03], but this is not guaranteed for more general models, like well-formed CPN models.

In [[CMS03]] the authors used a Kronecker matrix-based representation of AVZ. In their solution the
next-state function N (,i) of the event ¢ (firing of the corresponding transition) in the ith submodel
is encoded by a Kronecker matrix KC(. ;) [Buc+00]. K(. ;) is a binary matrix and it belongs to event
¢ at level i. KC(; is constructed as follows: K. ;[j,k] = 1 <+ k = N ;)(j). These Kronecker
matrices contain only the local next-state relations. Kronecker-consistent decomposition of the next-
state representation turned out to be very efficient in practice.

In [CY05] the authors introduced a new next-state representation for saturation-based algorithms
to be able to analyse a more general class of models. This solution uses MDDs with 2K levels to
symbolically encode a next-state function A\ into the relation R of from and to variables: R C S x S.
The variables x = (21,2, ...,z)) in R refer to the current (“from”) state, and the variables x’ =
(@],), ..., 2%) to the next (“to”) states. R encodes the next-state function so that from state x we
can go to states x’ in one step.

The algorithm avoids creating a large, monolithic next-state relation, it divides the global next-
state function into smaller parts instead. The first step is the disjunctive decomposition according to
the set £ of e events in the high-level model: R = \/_.¢ R.. The relation R. is called disjunct in
the following. In many cases the computation of these local relation R, is still expensive. So, in
the next step the algorithm partitions the R. disjuncts conjunctively according to the enabling and
updating relations [[CY05]: R. = A, Rgfig};’% A up RZ{’%”, where € € £ and en refers to those indices
(of the variables) which contribute to the enabling of the transition while up refers to those indices
(of the variables) which are updated by the transition, en, up € supp(e). The enabling relation is
responsible for deciding if the given event is enabled in a certain state while the update relation decides

2.3. SATURATION 17

to which next states the exploration can go. Each RZ. ,f,? * and jolgg’e relation is called a conjunct in the

following. Note that in the construction and representation of the individual conjuncts and transition
relations of the individual events only those variables are considered, which contribute to the firing
of the event. In the decision diagram representation, the so-called identity reduction [[CY05] is used
to provide a compact storage.

The enabling relation consists of variables necessary for deciding the enabling of the transition
related to a certain event. It contains only “from” variables (in x), and does not change the value
of any “to” variables (in x’). The updating relation represents the local state changes, i.e., the local
next-state functions, therefore it contains variables both from x and x’.

The transition relation R, explicitly defines the relation of variables affected by the event €. The
set of variables affected by R. is denoted by x. (and their corresponding next-state variables x’.).
For all other variables, their relation can be described as the identity relation[[CY05]], therefore the
following holds for the representation R.: for all z;, where z; ¢ X., ; = z}. So in the representa-
tion, we have to consider only variables of x., therefore R.(x) can be represented as R.(x.), while
assuming that the omitted variables yield the identity relation. This will decrease the storage require-
ments of the representation as identity reduction is applied [CY05]]. When the transition relation is
further decomposed into conjuncts, their representation is further simplified. Beside the identity re-
duction, each conjunct will refer to a subset of x., other variables are considered don’t care in the
representation.

This fine-grained decomposition approach makes it possible to handle arbitrary finite next-state
functions, which is the key to handle complex events efficiently. The smaller the partitions we create,
the less computation they need and also it makes their representation smaller. The limit for the size
of the partitioning comes from the used high-level modelling formalism.

2.3.3 State-space Exploration Based on Saturation

The most important properties and mathematical definitions have been introduced in the former
sections from which an efficient state space traversal algorithm is constructed in this section. The
pseudocode of the saturation algorithm is depicted on Algorithm[1]and Algorithm [2] [CMS05} [CY05]].
Saturation starts the exploration from the decision diagram representation of the initial states and
traverses each node of the decision diagram and saturates it by calling function Saturate of Algo-
rithm |1} During saturation, all the possible states are discovered locally by computing the next-
states of each locally fireable transition. Each local step is computed by the function RelProd
of Algorithm [2| RelProd computes the reachable set of states from a given initial state through
an event/transition represented by N, so function RelProd computes the next-state set, formally:
S(x') = {{x'} | Ix. : RelProd(x.,x'c) A §(x)} (according to [Bur+92; |(CMS05; CGP99])), where
S(x) represents the set of states over variables in x. The algorithm uses a caching mechanism which
is not detailed here, the interested reader is referred to [CMS05]]. Function Union computes the set
union operation of two decision diagrams. Operation Confirm depicted on Algorithm [3|updates the
enable and next-state relation if a new local state (localstate input argument of the function) is dis-
covered. Function ModelEnable. (i) evaluates if the local state ¢ makes event ¢ enabled locally and
ModelUpd, (i) computes the set of locally reachable states from local state ¢ through the firing of
event €. The function Build constructs the enable and update relations from the conjuncts. For the
sake of simplicity, the function Build is called after each RelProd function call to update the relations.
Practically, the function Build needs to be called only if new states are discovered at lower levels of
the MDD.

18

CHAPTER 2. BACKGROUND

Algorithm 1. Saturate

Algorithm 2. RelProd

input :sg:node
1 // sip: node to be saturated,
output :node

2 if s, = 1 then
3 Lreturn 1;

4 Return result from cache if possible;

5 k < Level(sy);
level of the MDD

6 tr < new Nodey;

7 foreachi € Sy : s;[i] # 0 do

8 Ltk[z} <+ Saturate(si[i]);

9 repeat

10 |foreache € £ : k € Top(e) do

11 || Re < N: as decision diagram;

12 || foreach si[i] # 0 A R.[i][i'] # O do

13 ti[i'] « tx[i'] U RelProd(ty[i], R[i][i']);
14 ||| if i’ ¢ Sk then

15 || || Confirm(k, i)

16 ||| Build(k);

17 until ¢;, unchanged,

18 ty < PutlnUniqueTable(ty);
19 Put inputs and results in cache;
20 return tj;

// retrieve the actual

10
11

12
13
14

input :sg, R :node

// si: node to be saturated,

// R: next-state representation node
output :node

if R = 1 then
Lreturn Sk}

Return result from cache if possible;

k « Level(s); // retrieve the actual
level of the MDD

tr < new Nodeyg;

foreach si[i] # 0 A R[i][i'] # 0 do

ti[i'] < tx[i'] U RelProd(si[i], R[i][¢']);

if i’ ¢ Sy, then

LConﬁrm(k, i)

ti < PutInUniqueTable(Saturate(ty));
Put inputs and results in cache;
return t;;

Algorithm 3. Confirm

Algorithm 4. Build

input :!: MDD level;
i : localstate
1 // l: 1level of the new state
2 // i: new local state to be confirmed

w

foreache € £ : | € supp(e) do
if ModelEnable. (i) then
Lrlzglezble «— R;r:;zble Ui

I' + ModelUpd. (4);

Rupdate — Rz‘z’)ldate U {Z} X I/;

e,l

(S

(=)}

8 S+ S Ui

1

2
3

4

input :[: MDD level
// l: actual level of MDD

foreache € £ : I = Top(c) do
enable enable,
RE A /\enEsupp(a) RE,E” >
update update
Re = /\upesuzw(f) Reup s

dat
Re Remable p R update,

Function PutInUniqueTable places the newly computed nodes in the so-called unique table which
serves as a storage and it also ensures that no redundant nodes can appear in the decision diagram.

2.4 Model Checking

Model checking is an automatic technique for verifying finite-state systems. Given a model, model
checking decides whether the model fulfils the specification. Formally: let M be a Kripke structure
(i. e., state transition graph). Let f be a formula of a given temporal logic (i. e., the specification).
The goal of model checking according to [[CGP99] is to find all states s of M such that M,s F f.
Structural model checking [CGP99] computes the results by exploring first the reachable states and

2.5. CEGAR FOR PETRI NETS 19

the state changes i. e., transition and traverses the possible behaviours to find those that satisfy the
property. The properties are computed as fixed-points and according to the definitions below.

CTL (Computation Tree Logic) [CGP99] is a frequently used language for specifying requirements.
CTL expresses atomic propositions and their temporal relations. It has an expressive syntax, and there
are efficient algorithms for its analysis. Operators occur in pairs in CTL: the path quantifier, either
A (on all paths) or E (there exists a path), is followed by the tense operator, one of X (next), F (future
or finally), G (globally), and U (until). However, we only need to implement EX, EU, EG of the eight
possible pairings due to duality [CGP99].

The semantics of the three required CTL operators are as follows (where p and ¢ are predicates):

« EX: M, s F EX p iff for model M, Is' € N(s") state such that s' F p. This means that
EX corresponds to the inverse A function, applying one step backward through the next-state
relation.

« EG: M, s° F EG piff for model M, 3T = (s°, s, 52, ...) infinite path such that Vj > 0 : s/*1 €
N (s7) and s’ F p, so there is a strongly connected component containing states satisfying p.

« EU: M,s% E E(p U gq) iff for model M, 3n > 0,31 = (s°,s',52,...,s") path such that
Vi<j<n:sl e N(s/),V0<k<n:s*Epands"Fq.

Various techniques are developed to handle the complexity yielded by recent systems. One of
them is symbolic model checking, which uses special encoding to be able to store the huge number of
reachable states of the systems. Decision diagrams provide a compact representation for the encoded
state space, and advanced algorithms are used for model-checking.

2.5 CEGAR for Petri Nets

Petri nets have a simple structure, which makes it possible to use strong structural analysis tech-
niques based on the so-called state equation. As the structural analysis is independent of the initial
state, it can handle even infinite state problems. Unfortunately, its pertinence to practical problems,
such as reachability analysis, has been limited. An algorithm [WW11]] using CounterExample-Guided
Abstraction Refinement (CEGAR) extended the applicability of state equation based reachability anal-
ysis. This section is based on [[4],[10]] and and it introduces the CEGAR method and its application
for the Petri net reachability problem.

2.5.1 Petri Net State Equation

The incidence matrix of a Petri net is a matrix C|p|y|r|, where C(i,7) = w™(p;, t;) — w™ (p;, t;).
Let m and m’ be markings of the Petri net, then the state equation takes the form m + Cz = m/.
Any vector x € (Z('f)|T| fulfilling the state equation is called a solution. Note that for any realizable
firing sequence o leading from m to m/, the Parikh image of the firing sequence fulfills the equation
m + Cp(c) = m’. On the other hand, not all solutions of the state equation are Parikh images of a
realizable firing sequence. Therefore, the existence of a solution for the state equation is a necessary
but not sufficient criterion for the reachability. A solution z is called realizable if a realisable firing
sequence o exists with p(o) = .

T-invariants. A vectorx € (Zg)Tl is called a T-invariant if Cz = 0 holds. A realisable T-invariant
represents the possibility of a cyclic behaviour in the modelled system since its complete occurrence
does not change the marking. However, while firing the transitions of the invariant, some interme-
diate markings can be interesting for us.

20 CHAPTER 2. BACKGROUND

Solution space. Each solution x of the state equation m + Cz = m/, can be written as the sum of
a base vector and the linear combination of T-invariants [WW11]], which can formally be written as
x = b+), n;y;, where b is a base vector and n; is the coefficient of the T-invariant y;.

2.5.2 The CEGAR Approach

Counterexample-guided abstraction refinement (CEGAR) is a general approach for analysing systems
with large or infinite state spaces. The CEGAR method works on an abstraction of the original model,
which has a less detailed state space representation. During the iteration steps, the CEGAR method
refines the abstraction using the information from the explored part of the state space. When applying
CEGAR on the Petri net reachability problem [WW11], the initial abstraction is the state equation.
Solving the state equation is an integer linear programming problem [DT97]], for which the ILP solver
tool can yield one solution, minimising a target function of the variables. Since the algorithm seeks the
shortest firing sequences leading to the target marking, it minimizes the function f(x) = Y, x(t).
The feasibility of the state equation is a necessary, but not sufficient criterion for reachability, so the
following situations are possible:

« If the state equation is infeasible, the necessary criterion does not hold, thus the target marking
is not reachable.

« If the state equation has a solution which is realisable by some firing sequence, the target mark-
ing is reachable.

« If the state equation has an unrealizable solution, it is a counterexample, and the abstraction
has to be refined.

The purpose of the abstraction refinement is to exclude counterexamples from the solution space
without losing any realisable solutions. For this purpose, the CEGAR approach uses linear inequalities
over transitions, called constraints.

Constraints. Two types of constraints were defined by Wimmel and Wolf [WW11]:

« Jump constraints have the form [t;| < n, where n € ZJ, t; € T and [t;| represents the fir-
ing count of the transition ¢;. Jump constraints can be used to switch between base vectors,
exploiting their pairwise incomparability.

« Increment constraints have the form S n;|t;| > n, where n; € Z,n € Z$, and t; € T. Incre-
ment constraints can be used to reach non-base solutions.

As an example, consider the Petri net in Figure with the reachability problem (1,0,1,0) €
R(PN, (0,0,1,0)). There are two base vectors for this problem: (1,0, 0) (firing tp) and (0, 1, 1) (firing
t1 and t3). The ILP solver yields the solution (1,0, 0) first, which is unrealizable, but using the jump
constraint |¢ty| < 1, the ILP solver can be forced to produce the realizable solution (0, 1, 1). Consider
now the Petri net in Figure [2.2b| with the reachability problem (1,0,1) € R(PN, (0,0,1)). The only
base vector for this problem is the vector (1, 0, 0) (firing ¢¢), which is unrealizable. Using an increment
constraint |t;| > 1, the ILP solver can be forced to add the T-invariant {¢;, 2} to the new solution
(1,1, 1), which is realizable by the firing sequence o = (t1, to, t2).

2.5.2.1 Partial solutions

Given a Petrinet PN = (P, T, E, W) and a reachability problem m’ € R(PN, my), a partial solution
is a tuple ps = (C, x, 0, 1), where:

2.5. CEGAR FOR PETRI NETS 21

D\ o 300
vﬂ/’ \D p1 to Do

ta

(a) Jump constraint example (b) Increment constraint example

Figure 2.2: Example nets for jump and increment constraints

C is the set of (jump and increment) constraints, together with the state equation they define
the ILP problem,

« x is the minimal solution satisfying the state equation and the constraints of C,

« 0 € T* is a maximal realisable firing sequence, with p(c) < z, i.e., each transition can fire as
many times as it is included in the solution vector = and if it is enabled it must fire,

« 7 = — p(0) is the remainder vector.

Generating partial solutions. Partial solutions can be produced from a solution vector x (and a
constraint set C) by firing as many transitions as possible. For this purpose, the algorithm uses a “brute
force” method. The algorithm builds a tree with markings as nodes and occurrences of transitions as
edges. The root of the tree is the initial marking m, and there is an edge labeled by ¢ between nodes
mq and my if mq [t)mso holds. On each path leading from the root of the tree to a leaf, each transition
t; can occur at most z(t;) times. Each path to a leaf represents a maximal firing sequence, thus a new
partial solution. Even though the tree can be traversed only storing one path in the memory at a time
using depth-first search, the size of the tree can grow exponentially. Some optimisations to reduce
the size of the tree are presented later in this section.

A partial solution is called a full solution if r = 0 holds, thus p(c) = =, which means that o
realizes the solution vector x. For each realizable solution x of the state equation there exists a full
solution [WW11]]. This full solution can be reached by continuously expanding the minimal solution
of the state equation with constraints.

Consider now a partial solution ps = (C, z, 0, 7), which is not a full solution, i.e., r # 0. This
means that some transitions could not fire enough times. There are three possible situations in this
case:

1. z may be realizable by another firing sequence ¢”, thus a full solution ps’ = (C, x, ¢’, 0) exists.

2. By adding jump constraints, greater, but pairwise incomparable solutions can be obtained.

3. For transitions t € T with r(¢) > 0 increment constraints can be added to increase the token
count in the input places of ¢, while the final marking m’ must be unchanged. This can be

achieved by adding new T-invariants to the solution. These T-invariants can “borrow” tokens
for transitions in the remainder vector.

2.5.2.2 Generating constraints

Jump constraints. FEach base vector of the solution space can be reached by continuously adding
jump constraints to the minimal solution [WW11]. In order to reach non-base solutions, increment
constraints are needed, but they might conflict with previous jump constraints. Jump constraints are
only needed to obtain a different base solution vector. However, after the computation of the base
solution, jump constraints can be transformed into equivalent increment constraints [WW11]].

22 CHAPTER 2. BACKGROUND

Increment constraints. Let ps = (C,z,0,r) be a partial solution with » > 0. This means that
some transitions (in 7) could not fire enough times. The algorithm uses a heuristic to find the places
and number of tokens needed to enable these transitions. If a set of places actually needs n (n > 0)
tokens, the heuristic estimates a number from 1 to n. If the estimate is too low, this method can
be applied again, converging to the actual number of required tokens. The heuristic consists of the
following three steps:

1. First, the algorithm builds a dependency graph [VH10] to collect the transitions and places that
are of interest. These are transitions that could not fire, and places that disable these transitions.
Each source SCCE] of the dependency graph has to be investigated because it cannot get tokens
from other components. Therefore, an increment constraint is needed.

2. The second step is to calculate the minimal number of missing tokens for each source SCC.
There are two sets of transitions, 7; C T and X; C T If one transition in T; becomes fireable,
it may enable all the other transitions of the SCC, while transitions in X; cannot activate each
other. Therefore their token shortage must be fulfilled at once.

3. The third step is to construct an increment constraint ¢ for each source SCC from the infor-
mation about the places and their token requirements. These constraints will force transitions
(with r(¢) = 0) to produce tokens in the given places. Since the final marking is left unchanged,
a T-invariant is added to the solution vector.

When applying the new constraint c, three situations are possible depending on the T-invariants
in the Petri net:

« If the state equation and the set of constraints become infeasible, this partial solution cannot
be extended to a full solution, therefore it can be skipped.

« Ifthe ILP solver can produce a solution x 4y (with y being a T-invariant), new partial solutions
can be found. If none of them helps to get closer to a full solution, the algorithm can get into an
infinite loop, but no full solution is lost. A method to avoid this non-termination phenomenon
will be discussed later in this section.

« If there is a new partial solution ps’ where some transitions in the remainder vector could fire,
this method can be repeated.

Reachability of solutions [WW11]. If the reachability problem has a solution, a realisable so-
lution of the state equation can be reached by continuously adding constraints, transforming jumps
before increments.

2.5.2.3 Optimisations

Wimmel and Wolf [WW11]] also presented some methods for optimization. The following are impor-
tant for this work:

« Stubborn set: The stubborn set method [VH10] investigates conflicts, concurrency and de-
pendencies between transitions, and reduces the search space by filtering the transitions. The
stubborn set method usually leads to a search tree with a lower degree.

« Subtree omission: When a transition has to fire more than once (z(t) > 1), the stubborn set
method may not provide an efficient reduction. The same marking is often reached by firing
sequences that are only different in the order of transitions. During the abstraction refinement,
only the final marking of the firing sequence is important. If a marking m/’ is reached by firing

!Source strongly connected component, i.e., one without incoming edges from other components.

2.5. CEGAR FOR PETRI NETS 23

the same transitions as in a previous path, but in a different order, the subtree after m’ was
already processed. Therefore, it is no longer of interest.

« Filtering T-invariants: After adding a T-invariant y to the partial solution ps = (C, z, 0, 1),
all the transitions of y may fire without enabling any transition in r, yielding a partial solution
ps’ = (C',z + y,o',r). The final marking and remainder vector of ps’ is the same as in ps,
therefore the same T-invariant y is added to the solution vector again, which can prevent the
algorithm from terminating. However, while firing the transitions of y, the algorithm could get
closer to enabling a transition in r. These intermediate markings should be detected, and be
used as new partial solutions.

Chapter 3

Model Checking of High Level Models

This section introduces the new algorithms developed for the verification of high-level models. The
need for the introduced techniques originated in a project where we aimed to verify a critical function
(so-called PRISE function) of a control system of a nuclear power plant. Coloured Petri nets (CPN)
was proposed to be used in [Ném+09|] as a convenient modelling formalism to describe the PRISE
logic.

In this chapter, I propose a saturation-based algorithm to verify complex CPN models, and I further
extend the algorithm to reduce runtime and memory requirements. The proposed solution is the first
algorithm being able to solve the verification problem of the system of the PRISE industrial case study.

In the first part of the section, I draw the motivation and the used high-level modelling formalism.
In the next part, I introduce the new saturation-based verification algorithm using fine-grained de-
composition and its improvement. Finally, the PRISE use-case is outlined, and the verification results
are presented.

Publications related to this chapter. The results of this thesis were published in [5], and
and this chapter is based on that papers.

Implementation and contributors. All the algorithms presented in this chapter were imple-
mented and made available in the PetriDotNet framework. The implementation of the presented
algorithms is the result of the whole PetriDotNet team. The algorithms of Section [3.4] were imple-
mented by my students, Daniel Darvas and Attila Jambor. The algorithm presented in Section|3.5|was
implemented by Attila Jambor under my supervision.

3.1 Motivation

The motivation of this section is a case study, the PRISE safety function which has a huge state space
(> 10'2 states) and many different behaviours and functionalities, therefore efficient automatic meth-
ods are indispensable to prove its correctness. The first successful verification attempt was reported in
[NB09], where the authors used coloured Petri nets and the Design/CPN modelling tool. Design/CPN
has a simple explicit state model checker without built-in reduction methods. Thus it was not able
to explore the complete state space of the model, only a small part (approx. 4 - 10° states) could fit
into the memory. The authors used state space reduction techniques then partitioned the state space
and separately analysed different subspaces. Finally, they have managed to obtain reduced subspaces
with a manageable size and could complete the formal verification.

25

26 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Later, a student of our research group created a formal model of the PRISE safety function in the
Uppaatl tool [T6t09]]. The modelling formalism of UPPAAL uses networks of timed automata extended
with data structures and a data manipulation language. It has symbolic state space representation,
built-in state space reduction methods, and a (partial) Computation Tree Logic (CTL) model checker.
Unfortunately, UppaaL has also failed to explore the complete state space due to memory overflow.
Nevertheless, by reducing the model, we have at least succeeded proving some of the requirements
with UppAAL.

In [T6t09]], she also tried other symbolic approaches. The first choice was the Symbolic Analysis
Laboratory (SAL) model checker. Sadly, this attempt to verify the PRISE safety function has failed
as well, even though SAL uses a Binary Decision Diagram based efficient state space representation.
Without being able to trace the low-level operation of SAL, the assumption is that the next-state
relation grew too large: the state space explosion turned into decision diagram explosion in this case.

Our research group tried using other existing advanced Petri net verification methods [[18]]. These
approaches, however, operate on simple, uncoloured Petri nets. Therefore we have developed an
automated systematic conversion procedure to convert the coloured Petri net model of PRISE to a
simple Petri net first. In order to verify the Petri net model of the PRISE system, we have tried various
algorithms:

+ We have built an unfolding [ERV02] based verification tool. As unfolding is efficient for asyn-
chronous models, we expected that it could overcome the state space explosion problem. Un-
fortunately, this approach still ran out of memory due to the long distinctive trajectories.

« In [[CMSO03] the authors showed the saturation-based efficient symbolic state space generation
and model checking method for asynchronous systems, especially for Petri nets. We have im-
plemented and ran the algorithm with different settings on the converted simple net, but the
algorithm ran out of memory. Unfortunately, the size of the converted model was too large,
which caused both the state space representation and the next-state relation to exceed our re-
sources.

The common weakness of the listed past approaches is that they could only reach partial success,
as none of them was able to explore the full state space of the PRISE safety function.

Former investigations of the problem stated that Coloured Petri nets provide a suitable formalism
to efficiently design the formal model of the PRISE systems. This motivated our work to provide
an efficient model checking algorithm which is able to handle the complexity of real-life industrial
systems.

In this section, the saturation algorithm is extended to support the verification of high-level mod-
els. At first, the used coloured Petri net formalism is introduced according to [16]. A new decompo-
sition algorithm is introduced to handle the complex transitions of high level coloured Petri net
models, and a lazy transition relation construction algorithm |5 is developed to improve the efficiency
of the verification further. An industrial case study is used to illustrate the applicability of
the approach.

3.2 High-level Models: Coloured Petri Nets

Coloured Petri nets (CPN) provide a high level language to develop formal models, and they yield a
compact representation for complex systems. The coloured Petri net formalism enriches ordinary
Petri nets with complex data structures [JK09|]. There are many types of coloured Petri nets, in this
paper, a variant of well-formed coloured Petri nets from [[1]] and is used that is also supported by
the PetriDotNet tool. Well-formed coloured Petri nets have the same expressive power as ordinary

3.3. SATURATION FOR CPN MODELS 27

Petri nets, but they yield a more compact representation of systems. In the following, I will introduce
and use the definition from [JK09], which was slightly modified in [[1]].
Formally, a coloured Petri net is a tuple CPN = (P, T, A,%,V,C,G, E, My), where

+ P is the finite set of places,

« T is the finite set of transitions, with P NT = (),

« AC (P xT)U(T x P) is the finite set of arcs,

« . is the finite set of non-empty colour sets, i. e., types,

« V is the finite set of typed variables such that Vv € V' : Type[v] € X,

« C: P+ X is the colour set function assigning a colour set to each place,

« G: T — EXPR is the guard function assigning a guard expression to each transition t € T,
with Type[G(t)] = Bool,

« E: A — EXPR is the arc expression function assigning an expression to each arc a, with
Type[E(a)] = C(p)ums if a is connected to place p and C(p) pss is the multiset over C(p),

« My is the initial marking.

A marking M is a function mapping each place p into a multiset of values M (p) over the colour
set C(p). Individual elements of M (p) are called tokens. A multiset m over a set S is a function
m: S+ Z, where m(s) is the number of occurrences of the element s € S in m.

Firing rules of transitions in Petri nets only depend on the marking. However, in coloured Petri
nets the arc and guard expressions have to be considered as well. Let Var[t] denote the variables of
a transition ¢ € T, which includes the free variables appearing in the guard of ¢ and in expressions
on arcs connected to t. A binding b of a transition ¢ assigns each variable v € Var[t] a value b(v) €
Type[v]. The set of all bindings for a transition ¢ is denoted by B(t). A binding element is a pair (t, b)
of a transition ¢ and a binding b € B(t). Given a binding element (¢, b), let G(t)(b) denote the result
of evaluating a guard in the binding b. Similarly, let E(p,t)(b) and E(t,p)(b) denote the result of
evaluating arc expressions. If no such arcs exist, F(p, t)(b) = 0 and E(¢t,p)(b) = 0.

A binding element (¢,b) is enabled in a marking M if (1) G(t)(b) evaluates to true and (2)
E(p,t)(b) < M(p) for each p € P. An enabled binding element (¢,b) may occur leading to the
marking M’ defined by M'(p) = M (p) — E(p,t)(b) + E(t,p)(b) for each p € P, i.e., input arcs re-
move tokens, while output arcs produce tokens as specified by the arc expressions. Firing sequences
and reachability is defined the same way as for P/T nets.

3.3 Saturation for CPN Models

As it was discussed before, existing low-level models and inefficient model checking algorithms pre-
vented us from reaching our goal: to verify the PRISE safety function fully. Therefore, according to
the findings of [NB09], I selected coloured Petri nets as the modelling formalism, and saturation as
the basis of state space exploration and model checking. However, saturation did not support CPNs
at that time, thus I had to adopt the saturation algorithm to handle CPN models. In this section, I
overview how the state space of coloured Petri nets can be explored with the help of saturation.
Well-formed coloured Petri nets can model complex systems in a compact form by utilising the
data content of tokens instead of pure structural constructs. However, this compactness takes its
price during traversal: local state spaces and transition relations of the submodels in a decomposed
CPN are typically much larger and more complex than in simple Petri nets. Previous research [CY05]

28 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

proved that the smaller the partitions are, the more efficient saturation becomes, since the creation
and maintenance of the smaller parts require significantly less resources. In the following, I extend
the saturation-based state space traversal to handle CPN models. Then I extend this approach in
Section [3.4]to be able to handle the complex transition relation of CPN models.

3.3.1 Iteration Strategy for CPN

The basic prerequisites for saturation are decomposition and encoding. Decomposing CPN models can
be done similarly to the decomposition of ordinary Petri nets. The approach of conjunctive-disjunctive
next-state function decomposition lets us choose arbitrary decomposition of the CPN model. Encod-
ing consists of two subtasks: encoding the states and encoding the next-state relations. The used data
structures i. e., the colour types of the places increase the size of the local state spaces. However, as
long as the local state spaces do not grow prohibitively large, the iteration strategy will provide an
efficient solution for the state space exploration.

The iteration strategy of saturation exploits locality. CPN models can concisely represent sys-
tems by using the high-level constructs: this way the introduced dependencies will ruin locality for
some cases. Applying saturation for CPNs extends the set of models verified by saturation, but the
new algorithm cannot replace former saturation algorithms for all the problems. In general, when
saturation-based analysis of the CPN model is not feasible, one can still unfold the CPN to an ordi-
nary PN and try to use traditional saturation.

3.3.2 Encoding Next-state Relations

The biggest challenge in adapting saturation to CPNs is the construction of the next-state relations.
As it was discussed in Sectlon 2] the transition relation can be decomposed. According to [CYO05]],
the relation R. Re”“ble AR ate has to be created for each transition (event €). Further conjunctive
decomposition Rg”“ble = A\x Re”“ble and RZF date =N\ R up date can significantly reduce the computa-
tional cost. The smaller the conjuncts are, the easier and cheaper it is to construct them.

Kronecker consistent models can yield fine granularity by decomposing the conjuncts to refer to
only single state variables: this turned out to be very efficient in practice. However, this granularity
cannot be achieved for arbitrary models. CPN models can represent complex logic in a compact form,
and the dependencies in the transition relation might become intricate, so the decomposition rules
applied to Petri nets do not lead to a Kronecker consistent decomposition of CPN models. This implies
that each Re"“ble and Rup date will refer to a group of variables. When each group is smaller than the set
of all varlables affected by the event, the decomposition still increases the efficiency. Unfortunately,
the transition relation of CPNs usually cannot be decomposed using the conjunctive decomposition
rules because of the arc and guard expressions: they often express intricate dependencies among the
state variables. It is very seldom the case that the transition relation is conjunctively decomposable.
In addition, separating the enable and update parts of the transition relation often does not yield
any advantage for CPNs, as there is no construct in the language to express enabledness (contrary
to [[CY05])): a transition is enabled if the input arcs can take enough tokens from input places (so
the variables representing the input places have certain values). However, input arcs also consume
tokens, so they constitute also the update relations. The result is that the relation encoded in R
is fully encoded also in R2” date

These reasons lead to the situation that when the algorithm builds the relations, it has to traverse
all possible local state changes for all the places connected to the transition. This turned out to be very
expensive in practice and prevented the algorithms to verify our industrial case study, as we could

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 29

only solve smaller models by using the traditional decomposition algorithm. In the next section I
show a different decomposition method which proved to be efficient for CPNs.

3.4 Disjunctive-Conjunctive Decomposition for CPN Models

This section is based on the following papers: and [22].

Disjunctive-conjunctive decomposition proved its efficiency for many classes of Petri nets. De-
spite the fact that these Petri net classes are enriched with various constructs to increase expressive-
ness, they do not support data types i.e., colour types. The introduced decomposition was tailored
to the characteristics of variants of the ordinary Petri net formalism ([CY05]). Coloured Petri nets
brought not only various data types, but also arc and guard variables into consideration. In addition,
complex data types can have a huge number of different values depending on the size of the domain,
further increasing the complexity of the analysis by increasing the number of local states to be tra-
versed. In this section, I show how we can decompose the representation of the transition relations
according to the structure of a coloured Petri net. We will exploit the locality of Coloured Petri nets
and decompose the transition relations into manageable pieces. The basic building blocks of the de-
composition are the places of the Petri net so that the new algorithm will use the places as a guide for
the decomposition. However, in case of considering only places as state variables in the decision di-
agram representation, then complex guard functions will not enable the fine-grained decomposition,
as the effect of the transition is global with regard to a transition.

3.4.1 Overview of the Approach

As it was discussed before, the iteration strategy of saturation provides efficiency, but we have to
extend the algorithm to handle the complex transition relation of CPN models. In order to explore the
possible next-state relations and build the representation on-the-fly during the traversal, the algorithm
has to solve the following tasks:

1. Compute the representation according to the structure of the net.
2. Build the initial next-state relation.

3. Update the next-state relation when a new local state is discovered.

In the following sections, I will show a new efficient representation of the next-state relations of
CPN models. I also introduce algorithms for the efficient construction and on-the-fly update of the
next-state relation.

3.4.2 Decomposition Algorithm for CPN

I'will introduce the new representation and a fine-grained decomposition method for the next-state re-
lation of CPN models. The new algorithm exploits the formerly introduced disjunctive decomposition:
at first, the system-level next-state relation is decomposed according to the events as R = \/_.¢ Re,
so the decomposition of the whole next-state relation into smaller relations is applied according to
the literature. However, the conjunctive decomposition and construction of the individual next-state
relations (R.) are improved in this section. In the following, we assume that the encoding mapped
each place to a state variable, for the sake of simplicity. However, the algorithm is not restricted to
this encoding scheme.

30 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Next-state storage. The next-state representation of CPN models is constructed from the con-
straint of the guard expression, and the local effects of the variable bindings of the arc expressions.
In order to be able to represent the guard expression in the symbolic next-state representation, new
variables are needed: the symbolic representation of the next-state relation contains the “from” state
variables and the corresponding “to” state variables (x and x’) and the next-state representation also
contains new, auxiliary variables such as for each v € V a corresponding state variable z,, is included
into the symbolic next-state representation.

Next-state representation and decomposition. The new fine-grained decomposition of the tran-
sition relation of complex CPN models exploits the following facts. The constraint yielded by the
guard and arc expressions does not change during the state space exploration, and these constraints
can be computed without knowing the exact markings of the system. The main idea is to decompose
the state dependent and independent parts of the transition relation and then use the following rule

for computing the transition relation: RZ A A\, Rg{’ : “_In the decomposition, relation R represents

the constraint of the guard and arc expressions and each Rgp kd “ represents the changes caused by the

bindings of the variables to the corresponding state variables.

Next-state construction. To construct the relation R7, we have to introduce new variables into
the encoding. The new variables will represent variables of the set Var[e] i.e., the variables of the
input and output arcs and the guard expression of event €. For each v € Var[¢] the transition relation
encoding is extended with a corresponding variable x,, and RZ will only refer to these new variables.
Formally, RZ will represent the set of valid bindings for all the variables v € Var[e| such that Vb €
B(t), b € R if G(t)(b) evaluates to true and the arc expressions F(p,t)(b) and E(t,p)(b) are also
satisfied.

The relation R has similar role as the enable relation in the former approach. The main extensions
of R compared to the formerly introduced enable relation are summarized in the following:

+ The set of state variables has to be extended with auxiliary variables to be able to encode the
relation R7.

« The relation R represents not only the variable bindings which are enabled but also those
bindings which will change the state variables as the transition fires.

However, the introduced auxiliary variables are not present in the final R date elation as they

are only needed to build the relation efficiently, but we do not need them when using the relation.

During the state traversal, the goal is to update the next-state relation locally. This locality is
provided by the introduced auxiliary variables as they support the handling of the state variables
independently from each other, so we can decompose the relation and build an individual update re-
lation R?{}d ¢ corresponding to each state variable x. For each state variable x, the local update rela-
tion R¥"%" is constructed by using auxiliary variables from the set V' = Var[E(p, t)|U Var[E(t, p)].
where state variable x corresponds to the place p. The representation of the local state changes in case
of transition firing is constructed, the effects of the variable assignments to the marking of the place
are encoded by building a vector v of variables v € V' and constructing the relation R:” date(v, x,2').
These relations are continuously built and updated during the state space traversal and it will encode
the effects of F(p,t)(b) and E(t,p)(b) to place p in the corresponding markings when the firing of
transition ¢ happens (event ¢).

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 31

Projection to the state variables. During state space traversal the algorithm does not need infor-
mation regarding the assignments of the variables in the arc and guard expressions. This fact reduces
the size of the next-state relations as the information contained in these auxiliary variables can be
omitted. Putting things together, the next-state relation for the event ¢ is constructed according to
the following rule: R, = {(x,x’) | 3v RI(v) A A4 Rgﬁjate(vk, xk, ;) }. The guard relation is com-
puted from the guard and arc expressions, the next-state relations indexed by k are constructed during
state space traversal, and they correspond to the local state changes caused by the variable bindings
of the transition firing. Existential quantification is used to map the relation to the state variablesi.e.,
to omit the auxiliary variables from the relation.

3.4.3 Event Handling Algorithm

Coloured Petri nets can model complex systems in a very compact form by utilising the data content
of tokens instead of pure structural constructs. However, this compactness takes its toll during state
traversal: the local state spaces of the sub-models in a decomposed CPN are typically much larger
and more complex than in simple Petri nets. Moreover, in CPNs fewer variables are used to encode
the same set of states into decision diagrams, thus there is less redundancy in the state space rep-
resentation, resulting in a less efficient form of storage. Previous researches proved that the smaller
the partitions are, the more efficient saturation becomes, since the creation and maintenance of the
smaller parts require significantly less resources. The aim of the conjunctive refinement of the parti-
tioning, as described in Section[3.4.2] is to further decompose the state transitions into smaller parts
and to treat these parts separately and efficiently. The steps of this event handling process are shown

in Figure

State Updating
transition the complete
relation relation
Partitioning Conjunctive Offline Discovering Decision
according to partitioning evaluation of new states dlagram_ of
events the guards the relation

Figure 3.1: Workflow of the event handling

1. Partition the next-state relation according to events (i. e., transitions). The global state transition
relation is partitioned disjunctively driven by the events. The partitioning is done according
to the following observation: N' = | J,. NV: and the relation R, for each event ¢ € £ is stored
in separate decision diagram. The original state transition relation can be calculated as R =

VVEEE Ra'

2. Conjunctive decomposition by introducing auxiliary variables. The above partitioning is further

refined by splitting the R, state transition relation of each € event into smaller parts according

to the formerly introduced rule: R, = RZ(v) A A, R]j “(Vi, 21, ,) }. The fireable bindings

of the variables are stored in the relations Rgp kd (v, Tk, x}.) encoded as MDDs. Furthermore,

another MDD is created to represent the constraints imposed by the guards associated with the
events. This MDD, denoted as Rg(v), stores those bindings of the variables in the input and
output arc expressions of the transition for which the guard evaluates to true.

32 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

3. Off-line evaluation of guards. The symbolic representation for the guard constraint associated
to the event ¢ is created before the iteration of the saturation: a decision diagram is built for
RZ. The decision diagram is built by traversing the possible bindings, which evaluate the guard
expression to true. The variable bindings stored in this MDD need not be updated later during
saturation.

4. Discovering new states. As soon as a new state is discovered during the iteration of the satura-
tion, the fireable state transitions from this new state must be instantiated immediately. When
a new state transition of event ¢ is found affecting variable xj, then the MDD representing
Rgp ,j (v, T, x}.) is expanded with the new local state transitions. Additionally, the variable
bindings that make the state transitions fireable are also stored. This update operation is re-
alized in the function CPNConfirm function in Algorithm |5 the saturation algorithm uses this

function instead of function Confirm.

5. Updating the complete relation. Since the original iteration order of the saturation is preserved
in our algorithm, the complete state transition relation must be recreated by intersecting the
MDDs of the partial relations and projecting the relation to the state variables.This functionality
is implemented in the function CPNBuild of Algorithm [6} function CPNBuild will be called
instead of Build in the saturation algorithm.

Encode self-loops The decomposition algorithm has to pay special attention to self-loops. As it
was formerly mentioned, the conjuncts will encode the effects of E(p,t)(b) and E(t,p)(b) to place
p (variable x), in case of self-loops, the algorithm compiles the input and output arcs into a single

update . . e .
up (v, z, ") relation and ensures the correct construction of the transition relation.

3.4.4 Off-Line Evaluation of Guards

In order to exploit the fine-grained decomposition and the in-built caching mechanisms of MDDs, as
much of the transition relation as possible should be built off-line. The decomposition helps us to
compute off-line the relation representing the guard and arc expressions RZ (v). In addition, we can
compute the local next-state relations from the initial state: Rgp : (Ve Thy T)

The relation RZ (v) for each event ¢ is constructed off-line in four steps:

1. The variables included in the expressions corresponding to the transition are collected: V7 =
Var[E(p, t)]U Var[E(t, p)]U Var[G(1)].

2. For each variable v € V7 a corresponding variable (level) x, is created in the MDD. These
levels are inserted above the levels of the state variables.

3. The variables are bound for every combination of values permitted by their colour sets in an
exhaustive manner.

4. Fach possible variable binding of the guard expression is evaluated and every binding that
evaluates to true is stored in the decision diagram, since with this binding the guard permits
the firing of the transition. The colour sets are encoded: each colour in the colour set of a
variable in a newly created level is associated with an integer.

An MDD representing RZ (v) is initialised with the above steps, and it contains the possible bind-
ings that make the guard enable the firing of the transition. Since the guard expression does not
change during the execution of the model, it is not necessary to update the conjunct represented by
the MDD during saturation.

3.4. DISJUNCTIVE-CONJUNCTIVE DECOMPOSITION FOR CPN MODELS 33

Algorithm 5. CPNConfirm Algorithm 6. CPNBuild
input :l: MDD level; input :[/: MDD level
1 : localstate 1 // l: actual level of MDD

// l: level of the new state
// i: mnew local state to be confirmed

-

foreache € £ : 1 = Top(e) do
LRE — Rg(v) A /\k Rs,k(vk‘axiﬁx;c);

N
w N

'S

foreache € £ : 1 € supp(e) do Re + proj, . (Re(v,x, x));
foreach b(v) € B(e) do
LI’ + ModelUpd., (i, b(v));

R — RPI U {b(v)} x {i} x I';

£,l

A G s W

7 S+ S Ut

3.4.5 Correctness of the Algorithm

An efficient decomposition method and encoding were shown in the former section. However, beside
the efficiency of the algorithms, we have to overview correctness issues too.

The iteration order of saturation is not modified, so the construction of the next-state re-
lation has to be considered here. We have to investigate if the semantics of CPNs is mapped
correctly to the next-state representation. At first, the semantics of CPN is formally defined,
and then I show how the implementation reflects the possible behaviour. The algorithm con-
structs the next-state relation for the event ¢ of transition ¢ according to the following rule:
Re = {(x,x') | Iv RI(v) A A\ Rgﬁfate(vk, zk, x;)}. In the following, the correctness of the map-
ping is investigated.

Formally, a transition ¢ is enabled with respect to the binding b if the following holds:
« The guard expression is satisfied if G(¢)(b) evaluates to true, which is fulfilled if 3v RZ(v).
Satisfying variable assignment of variables v represents the bindings of the CPN variables by
binding b.

« G(t)(b) for all possible b is represented by RZ. As the expression language of the CPN formalism
introduced in Section is built on top of predicate logic it can be easily transformed to a
constraint satisfaction problem ([HVH10[]) and solved with the decision diagram representation.

« E(p,t)(b) < M (p) has to be satisfied for each p € P : (p,t) € A and this will be represented
by R:p lj ate(vk, x, ;) for each state variable = encoding the state p.

A transition ¢ changes the state of the CPN with the binding b as follows. Firing from marking M
through binding b leading to the marking M is computed as M'(p) = M (p) — E(p, t){(b) + E(t, p){(b)
for each p € P. The problem is divided into smaller pieces and represented as follows:

« For each arc from a connected place p to the transition ¢ such as (p,t) € A, the next-
state is computed M'(p) = M(p) — E(p,t)(b), which is encoded as an individual relation

Rgp]j (Vi s).) where x is the state variable corresponding to p and vy, represents the set

of variables V}, such as V, = Var[E(p, t)].

« For each arc from the transition ¢ to a connected place p such as (t,p) € A, the next-
state is computed M'(p) = M(p) + E(t,p)(b), which is encoded as an individual relation
Rgp,j ate(vk, xy, ;) where x is the state variable corresponding to p and vy, represents the set

of variables V}, such as Vj, = Var[E(t, p)].

+ The construction of each conjunct Rgplj ate(vk, xk, x)) represents the effects of the set of all
possible bindings i. e., B(t) to the corresponding places i. e., state variables

34 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

The semantics of the CPN transition ¢ is therefore represented by R.. We have to overview
also the implementation of the behaviour. The introduced algorithms use MDDs for representing the
relations. As it was discussed in Section auxiliary variables are introduced in the encoding,
for the variables in the arc expressions and guards. During the traversal, Algorithm [5|updates the
relations according to the newly discovered local states. The algorithms exhaustively compute the
possible local state changes according to the set of all possible bindings. New local states are computed
by the function ModelUpd, (i, b(v)), which function computes the new markings being reachable
from the local state ¢ by using binding b.

The procedure of Algorithm [6|updates the next-state relation R.. Computing the conjunction of
the individual conjuncts ensures that the firing can only happen if all the places are marked prop-
erly for the firing i. e., the binding which makes the guard enabled can be satisfied by the marking
of the individual places. Finally, the algorithm projects the relation to the state variables (to elim-
inate the bindings from the representation): proj, ,(R:) computes the existential quantification
Iv Re(v,x,x).

3.5 Lazy Saturation Algorithm

The algorithm which was introduced for the fine-grained decomposition of the transition relation for
CPNss turned out to be efficient (as it will be discussed in Section . However, the exploration of the
local state spaces and local next-state relations is still computationally expensive. In this section, a
new saturation algorithm is introduced [[5], which uses a more resource-efficient strategy to compose
the next-state relations during the state space traversal. The aim is to be able to filter out the unnec-
essary state changes by delaying the construction of the next state relation. In the following, this new
algorithm is called lazy coloured saturation, or lazy saturation for short. This section is mainly based

on [5].

3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN

Despite the fact that the new disjunctive-conjunctive decomposition algorithm for CPNs proved to
be efficient, there are some more challenges which came up when the algorithm was applied to our
industrial case study and also for synthetic benchmark models.

The coloured saturation algorithm is designed for a general class of CPNs, without restrictions. As
a consequence, the algorithm does not have a priori knowledge about the state space, neither about
local states, next-states and local next-states. This information will only be revealed during state
space exploration. Therefore, the introduced saturation algorithm builds the local state spaces and
transition relations on-the-fly, without having additional information that could be used to optimise
the traversal and the construction of the next-state relations.

Thus, when a new local state is discovered, both the local state space and the next-state relations
need to be updated with regard to the new information. Since these updates are frequent (as all local
states and next-state relations must be explored), they impose a big overhead on the algorithm. More-
over, incidental to the greedy transition relation building nature of symbolic methods, the algorithm
builds many transition relations that will never be fired, imposed by the restrictions of the state space.
The local state space of CPNs might become huge even in the case of decomposing the model into
small pieces. Complex data structures and colour types of big domains, various combinations of the
coloured tokens will all increase the complexity and overhead of computing the symbolic next-state
representation.

3.5. LAZY SATURATION ALGORITHM 35

Imagine the following example: there is a place p; with the colour type of domain size 10. When
the algorithm places a token on it through transition ¢, it will immediately also discover 10 new state
transitions representing the situation, that one more additional token arrives. For the 10 different
tokens, this will sum up to 100 new transitions. However, if the model will never take 2 tokens on
that place, these new transitions will never fire. Note that if transition ¢ removes a token from another
place pg, which can also be marked by the 10 different values of the colour type, the possible number
of state changes represented by transition ¢ will be 100 x 100 = 10000 more than what saturation
will use during the traversal (guard expression on transition ¢ can reduce this number).

In the following sections, a method is introduced to decrease the computation overhead of building
the next-state representation of Coloured Petri net models and reducing the size of the next-state
representation for the price of introducing a new, smaller relation and a modified iteration order for
saturation.

3.5.2 Overview of the Approach

Symbolic algorithms encode the possible states and state changes in decision diagrams. The data
structures are continuously updated as new states are discovered and unexplored transitions appear.
The data manipulation based on decision diagrams can be expensive, so various techniques are utilised
to decrease the computational costs. The disjunctive-conjunctive partitioning algorithm decomposes
the next-state relation, and saturation benefits from the efficient manipulation of the smaller parts.
During the iteration these subrelations are updated according to the recently discovered substates:
every time a new local state is discovered, all possible local state transitions are computed and added
to the corresponding next-state relation. This greedy strategy constructs the next-state relations in
one complex step, where each possible local and global state change is explored no matter if it is
reachable in the state space, or not. However, this can be wasteful as the growing number of local
states can easily lead to many unreachable combinations of them. This is especially true for CPNs,
as they provide a compact representation of even complex models. In such models, there can be
many state transitions that are reachable locally, but the algorithm will never reach a state where
they become enabled on the global, Petri net level. Since these infeasible local state transitions have
been added to the local next-state relations, the decomposed symbolic representation becomes bigger
than necessary.

In this section, I introduce a new approach to decrease the size of the transition relation repre-
sentation of complex CPN models. The main idea of the approach is to build the transition relation
lazily in two phases. The first phase is the discovery phase, where the algorithm only registers the
potentially reachable global states, but the algorithm constructs the next-state relation from a given
state only if the given state becomes globally reachable. This way the algorithm tries to avoid the
construction of the next-state relation for globally unreachable states. This temporal decomposition
of the construction of the next-state relation can be advantageous for CPN models.

The new algorithm aims to filter out as many infeasible transition relations as possible. For this
purpose, a new relation £R is introduced that only stores the states from which state transitions are
enabled. In other words, this relation contains only “from” states (x) and the “to” states (x’) are not
stored — contrary to the next-state relation. This lets the building of the next-state relations be delayed
until the algorithm can exactly decide which relation should be updated with the new information.
First, only the £R relation is built, and the state transition is stored in the next-state relation only
when the relation becomes globally enabled. This way the next-state relation will contain less globally
infeasible state transitions: its size will be reduced and also the state space traversal will be more
efficient. The motivation of our work is based on the observation that the size of the ER relation is

36 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

always smaller than the size of the R relations: using this smaller £R relation to postpone or to skip
the updating of the R relations is a good pay-off regarding the performance of the algorithm.

3.5.3 Iteration of Lazy Saturation

Saturation builds the next-state relation in an eager manner which has to be modified to work lazily.
The main functionalities of the saturation are not changed as it is depicted on Algorithm (7] The
cache manipulation and decision diagram specific operations are omitted for brevity, but the inter-
ested reader can find them in [CMS03]]. The changes compared to former approaches are marked with
an asterisk (), the rest of the algorithms are based on the formerly introduced saturation of Algo-
rithm and [[CMS03]]. The lazy saturation algorithm starts the state space exploration from the
initial states represented by a decision diagram and initialises £R and R representations. Function
Algorithm|[7]saturates the nodes of the state space representation and Algorithm|8|computes the steps
of the traversal. These functions build the MDD of the state space by firing all enabled events in a
recursive, exhaustive manner.

The main difference compared to the traditional saturation iteration strategy comes at this point.
As the next-state relations are built lazily, the algorithm has to check before the symbolic next-state
computation if a step has become enabled which is not in the next-state relation. So, before each
step in the state space, the new lazy saturation algorithm checks the next-state relations and the
ER relations: function UpdateRelation of Algorithm[13]extracts the necessary information from the
state space representation and from the relation £R to update the conjuncts of the next-state relation,
if needed. The function £R Build updates the next-state function of event € by reconstructing the
complete relation from the conjuncts.

If a new state is discovered, the function ER Confirm of Algorithm[9updates the relation ER. This
function is explained in detail in Section The next-state relation R is updated by the function
UpdateRelation at this point of saturation. Its operation is described in Section In the later
sections, the details of the steps are discussed.

3.5.4 Computing and Using ER

The goal of using an additional relation is to decrease the size and the computational cost of the next-
state relation. For this purpose, the new saturation algorithm constructs a simple set to store those
state configurations which can contribute to event firings. Constructing this representation delays
the construction of the next-state representation: the new saturation algorithm will only add a step
into the next-state representation if the state space traversal needs to fire it.

The construction of relation &R is similar to the construction of the next-state relations and
also similar to the construction of relation R¢"!¢ of Section The lazy saturation algorithm
exploits the locality also for the construction of £R: the disjunctive-conjunctive decomposition is also
applied to the ER relation. The algorithm creates a separate R, relation for each event ¢. In order
to efficiently manipulate the relation, the algorithm partitions each £R. relation into smaller parts,
and stores them separately according to the following rule: ER = \/ ¢ ER: and ER. = A\, ER. .
This way the new lazy algorithm can exploit event-locality and the other advantages of disjunctive-
conjunctive decomposition.

Contrary to the eager construction of the next-state representation of the traditional algorithm,
the new algorithm builds the £R relation during the iteration primarily. The algorithm discovers the
new states from which an event can be fired. The target states of the event firing are not traversed
in this phase of the iteration. So the role of the relation &R is simplified compared to the next-

3.5. LAZY SATURATION ALGORITHM

37

Algorithm 7. LazySaturate

Algorithm 8. LazyRelProd

input :sg: node
1 // Sx: mnode to be saturated,
output :node

2 if s = 1 then
3 Lreturn 1;

4 Return result from cache if possible;

5 k< Level(sy);
level of the MDD

6 tr < new Nodey;

7 foreachi € Sk : si[i] # 0 do

8 Ltk[z] <« Saturate(sk[i]);

9 repeat
10 |foreache € £ : k € Top(e) do
« 11 || UpdateRelation(e, sk, ER:, Re);
x12 || LazyCPNBuild(e);
13 || Re < N: as decision diagram;
14 || foreach si[i] # 0 A R.[i][i'] # O do
15 ||| tx[i'] < t&[i'] U LazyRelProd(ty [i], R<[i][i']);
16 |||if i’ ¢ Sy then
17 || || ER Confirm(k, i)

18 ||| ER Build (k);

19 until ¢ unchanged,

20 tj < PutlnUniqueTable(ty);
21 Put inputs and results in cache;
22 return iy;

// retrieve the actual

10
11

12
13
14

input :sg, R :node

// Skx: node to be saturated,

// R: next-state representation node
output :node

if R = 1 then
Lreturn Sk;

Return result from cache if possible;
k < Level(sg); // retrieve the actual

level of the MDD
tr <+ new Nodey;
foreach si[i] # 0 A R]i][i'] # 0 do

ti[t'] < tx[i'] U LazyRelProd(sk[i], R[i][i']);

if i’ ¢ Sk then

LSRConﬁrm(k, i')

ty, < PutInUniqueTable(Saturate(ty));
Put inputs and results in cache;
return t;;

Algorithm 9. £RConfirm

Algorithm 10. £RBuild

input :[: MDD level;

i : localstate

// l: level of the new state

// i: mnew local state to be confirmed

[T

foreache € £ : | € supp(e) do
foreach b(v) € B(e) do
Ef ModelUpd. (i, b(v)) # 0 then

A G e W

[ERe < ERe U {b(v)} x {i};

7 S+ S Ut

1

Goe W N

input :/: MDD level

// l: actual level of MDD

Ri 0

foreache € £ : | = Top(e) do

L&’Rg = RIV) A Nicsupp(e) ERek (Vi Th);
ER: + proj (ERe(Vi, Tk));

38 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Algorithm 11. LazyCPNConfirm Algorithm 13. UpdateRelation
input :¢:event;l: MDD level; input :e:event; sy, ER, R : node
4 : localstate 1 // e€: fired event,
1 // l: 1level of the new state 2 // sk: traversed node,
2 // i: new local state to be confirmed 3 // R: mnext-state representation node
3 foreach € & : | € supp(c) do 4 // ER: ER representation node
4 | foreach b(v) € B(¢) do 5 k < Level(sy); // retrieve the actual
5 || if ModelUpd.,i(i, b(v)) # () then level of the MDD
6 LgRs,l — ER U {b(v)} x {i}; 6 Return result from cache if possible;
7 if k = 0 then
7 S+ 8 Ui 8 Lreturn;
9 foreach i € Sy : si[i] # 0 A ER[i] # 0 do
Algorithm 12. LazyCPNBuild 10 | if R[é] is unknown then

input :¢: event 11 LLazyCPNConﬁrm(s, k,)

1 // €: actual event to be updated 12 | else
2 Re = RI(V) A Ny Rek(Vies Tk, 7): 13 || foreach j € S : spli] # 0 A R[i][j] # 0 do
3 R. « proj /(Rg(v,;(, X)) 14 | || UpdateRelation (e, sk [i], ER[i], R[i][4]);

15 Put inputs and results in cache;

state relations: this fact appears in the computational complexity and space requirements of the new
relation. Constructing and storing relation £R is much cheaper than the next-state relations.

Set of states represented by £R. The relation ER aims to represent and encode those states from
which the firing of an event (in the context of CPN, a transition) is enabled, formally: x € &R iff
Je € £ : Ni(x) # 0. According to this rule, disjunctive partitioning of ER = \/_.¢ ER. can be
used to decomposed both the construction of the relation and also the usage during the state space
traversal.

Connection to R. The relation £ER can be derived from the next-state representation as follows:
x € ER T Ix’ : R.(x,x’). Effectively, this can be computed by the formerly presented projection
function: ER. = proj,(R.). However, it is not practical to compute relation R. first and derive ER .
from it. Instead, I show a method to compute £R directly during the state space traversal and use it
to reduce the size of R.

The relation ER. is the “simplified” version of the relation R. used by the traditional saturation
algorithm.

Efficient computation of £R. The efficient computation of relation £R is accomplished by func-
tions ER Confirm and ER Build of Algorithm [9|and Algorithm [10]

The pseudocode of the function £R Confirm updates the individual conjuncts of the ER relation.
The input parameters of the function represent the new (recently discovered) local state (7) at the level
[of the decision diagram. &R Confirm function examines if there is a binding of the events which
can be satisfied by state ¢ and updates the conjuncts with this information.

After a conjunct of ER. was updated, the whole £R. relation has to be rebuilt by computing
symbolically: ER. = ERI A\, ER- i This is carried out by the function ER Build. As the enabling
relation £R is not much smaller than R/, the later is used in the algorithm to reduce the computa-
tional cost and avoid redundant computations. The algorithm also projects the relation to the state

3.5. LAZY SATURATION ALGORITHM 39

variables at as the relation has to represent if a state configuration is enabled, but the exact
bindings are not used.

Optimizations. The relation £R contains unnecessary information to decide if an event is enabled
or not in a certain state: places (and their marking) connected to the outgoing edges do not influence
the enabledness of the transition. This means that the state variables corresponding to the places of
the outgoing edges can be left out from the relation without losing information and this leads to a
decreased number of conjuncts and reduced computational costs. Formally, the relation £R for the
event of transition ¢ will be constructed from conjuncts ER (v, x4,) Where z;, encodes the state
of pin and E(pi,,t) € A. Let x;, represent the state variables corresponding to the input places of
transition ¢ and x,,; represent the state variables corresponding to the output places of transition ¢,
then the simplified ER. relation can be expressed as Ixyu¢t ERc(Xin, Xout). This is computed by the
projection operator as proj, (ER.). This optimisation is omitted from the pseudo code for the sake
of simplicity.

3.5.5 Updating the Next-State Relation

The lazy saturation algorithm updates at first the relation £R, and updates relation R only if neces-
sary. Now, I will explain how the algorithm detects the situation when relation R has to be updated.
R is updated if a state is reached, which is included only in relation £R. This means that a transition
firing is enabled in that state, but this transition firing is not yet included in R, so the algorithm has
to update R with the newly enabled possible firings. The traversal collects the possible states from
which the events are enabled, and when the firing of a new state transition is triggered, the next-state
relation is updated with the new information.

The next-state relations are updated by the function UpdateRelation of Algorithm|[13] This func-
tion is called from the function LazySaturate at LazySaturate and LazyRelProd functions
update first the relation £R during the traversal. During the state space traversal, before firing a new
event, function UpdateRelation is called. UpdateRelation traverses the state space representation
together with the relation £R and R, and checks if there is any reachable state which is represented
in £R but not represented in relation R. Those states which are only included in £R are the starting
state of a next-state relation to be included also in R.

The function UpdateRelation recursively computes if the given event is enabled, and updates the
next-state relation if needed. It traverses all event firings recursively from the £R. and R. relations,
and the MDD denoted by s, that encodes the state space. During this traversal, the algorithm decides
whether a state transition is enabled or not. If the algorithm finds at a state from which a step
through event ¢ is enabled, but it is not included in relation R (i. e., the next-state is unknown), calling
function LazyCPN Confirm will update the corresponding conjuncts of the next-state relation. After
updating the conjuncts of event ¢, function LazyCPNBuild will rebuild the corresponding next-state
relation R.. This function updates the R, relation by calculating it from the updated conjuncts as
follows (x,x’) € R. iff and only iff x € S,¢4cn, and all the other rules remain the same as introduced
in Section

3.5.6 Operation of Lazy Saturation

The working of the lazy saturation algorithm is illustrated now with an example. The example
Coloured Petri net model is shown in Figure the model consists of two places and a transi-
tion. Both places have the same colour type with two values: 1 and 2. Initially the place p4 is marked

40 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

with a token valued 1, and the place pp is empty. The decomposition creates two submodels, one for
place p4 and one for place pp. The encoding of the local states is shown in Figure Based on the
table, the initial (local) state of place p4 is 1 and the initial state of place pp is 0. The decomposition
of the relation R (and of the relation £R) conforms to the decomposition of the state space, i. e., there

are two update conjuncts, R'Y’ date and RY date

Local state | Meaning

color: 1..2 color: 1..2 0 The bl .
e place 1s empty.
93—>I—!/—>O 1 The place is marked with a token valued 1.
pa [z =14] PB 2 The place is marked with a token valued 2.
11 The place is marked with two tokens, both valued 1.

E le CPN model
(a) Example fode 12 The place is marked with two tokens, the value of the

first is 1, the value of the second is 2.
etc.

(b) Encoding of the local states

Figure 3.2: Example to illustrate the operation of lazy saturation

The MDDs created during the event handling of saturation are shown in Table The content of
the first row belongs to the coloured saturation algorithm of Section[3.4} while the second row belongs
to the new lazy algorithm of Section 3.5] The decision diagram levels (variables) corresponding to the
variables of the guard and arc expressions are omitted from the MDDs for brevity (both approaches
build the same guard relation and use the same auxiliary variables).

The execution steps of the coloured saturation algorithm and the lazy algorithm for the example
are the following:

1. State space generation is started: relation R” is initialized and its content is calculated off-line.

(This relation is not shown in Table 3.1]) ot
2. Coloured saturation explores and collects all possible state changes into the R “" relation

by calling CPNConfirm(1,0). Locally there are two new reachable states depending on the
assignment of variable y. Lazy saturation examines only whether the transition is fireable from

state 0, and procedure ER Confirm collects this enabled state into the relation ER p.
3. Saturation cannot make any steps, transition firings are not enabled at this level of the decision

diagram as the Top value of the event is two.

4. Saturation continues the iteration and jumps to the second level of the decision diagram.
CPN saturation calls CPNConfirm(2, 1). Coloured saturation creates updates conjunct Rffdate

while lazy saturation creates the relation ER 4 as depicted on the figure.
5. Function Build called by saturation builds up the relation R from the conjuncts. At the same

step, lazy saturation calculates only the £R relation by calling the £R Build function. The (not
represented) conjunct R” prevents the next-state relation from storing the (A, A’, B, B') =
(1,0,0,2) global state change (i.e., the (1,0) — (0,2) state transition, which is evidently
impossible).

6. Saturation continues the iteration. Coloured saturation fires the global state change (1, 0,0, 1)
i.e, the (1,0) — (0, 1) state transition and updates the state space representation MDD. This is
the point where the lazy saturation algorithm calls the procedure UpdateRelation and realises
that relation R has to be updated (because it is still empty). After updating the next-state

relation, it makes the same steps as coloured saturation.
7. The newly reached local states must be confirmed. Confirm(2,0) (i.e., confirming the local

state O at the level of place p4) does nothing because the transition cannot fire when place p 4

3.5. LAZY SATURATION ALGORITHM 41

®

10.

Table 3.1: Data structures (MDDs) of coloured saturation and lazy saturation

2nd 4th | 5th 6th 7th 8th 9th
step step | step step step step step
5 N 5m
& ® | R &
®
g 1
= @
55 0
RO, ®
_cg 0 1 0
% e
2|1)2 o 1
S| [1]
Q N Q
S8 88 ' o« § SO E e
1 1
®) ®
g 0 0
E ® | ©® P o ® ®
5 1 0 1 0 1 0 0
& & 6 6 ® @ | ® ©
> 0 1 0 1 o{)1 ol)1 1 1
3 [1] 1] 1] [1]

is empty. However, the transition is enabled locally, if place pp contains a token, so the relation

Rupdate i updated by coloured saturation, and relation £R p is also updated by lazy saturation.
The algorithm updates the relations R and £R by using the updated conjuncts, respectively.
Similarly to the 5th step of lazy saturation, R has to be extended with the enabled state

changes, before saturation takes a step in the state space. However, there is no newly enabled
state changes, so lazy saturation does not extend the relation with the change represented by
(A, A", B,B’") = (1,0, 1,11), as the transition (1,1) — (0,11) is not possible with the given
initial marking.

There is no newly enabled relation for neither the lazy nor the coloured saturation algorithm,
so the procedure is finished. The next-state relation of the lazy saturation algorithm contains
less next-states.

The example shows the main differences between coloured saturation of Section and lazy
saturation of Section[3.5] Lazy saturation delays the building of the next state relation resulting smaller
next-state relations. Building relation £R is cheaper compared to the construction of R which makes
the verification of CPN models with complex guard relations more efficient.

3.5.7 Correctness of Lazy Saturation

The correctness of the disjunctive-conjunctive decomposition was proven in Section[3.4.5| Now I show
that lazy saturation will do the same steps during the state space exploration. The iteration order of
saturation is slightly modified in lazy saturation: next-state computation only updates relation ER.
However, before each next-state computation, the algorithm updates the relation R at line [11] of

42 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Algorithm[7)(UpdateRelation of Algorithm[13). As far as function UpdateRelation updates relation
‘R to contain all states which will be used by function LazyRelProd (note that Update Relation iterates
through the states similarly as the next-state computation), it is ensured that the algorithm will not
miss any states.

There are two more conditions, which have to be ensured:

« &R contains all the enabled states. This is ensured as it represents a projection of the next-state
function at each step.

+ R contains all the states, which can be fired. This is ensured because function UpdateRelation
uses the same traversal as the next-state computation (recursive traversal of all possible com-
binations of £R and the state space), so function UpdateRelation will traverse all possible
next-states for the given state space and £R.

Sometimes, due to the projection, £R will lose information and might not constrain the next-
states as much as R would do. However, this is not a problem as relation £R can be permissive as
the next-state computations are done according to relation k.

3.6 Industrial Case Study

In this section, I introduce the industrial case study in which I evaluated the developed algorithms.
The industrial case study was initially introduced in [[16].

3.6.1 The Modelled Industrial System

The subject of our research is a safety function, designed to initiate an emergency prevention activities
in the occurrence of the so-called PRISE event. This safety function is used in the Paks Nuclear Power
Plant (Paks NPP) located in Hungary. The Paks NPP operates four VVER-440/213 type pressurised
water reactor (PWR) units with a total nominal (electrical) power of approx. 2 GW. Nuclear power
plants are highly safety-critical and complex systems, where the correct operation of the safety pro-
cedures is of great importance. The plant protection systems must satisfy high safety requirements
and minimise spurious forced outages. Therefore, formal modelling and verification methods need to
be applied to prove the correctness and completeness of the PRISE safety function.

The PRImary-to-SEcondary leaking (PRISE) event is one of the major faults in a reactor unit, re-
sulting due to a non-compensable leaking of parts in the primary circuit. The PRISE event occurs
when there is a rupture or other leakage within the steam generator (SG) vessel primary tubing, af-
fecting either a few (3-10) tubes or their collector that contain the high-pressure activated liquid of
the primary circuit.

The PRISE event is the VVER-440/213 analogue of the well-investigated Steam Generator Tube
Rupture (SGTR) event (see e. g., [IS94]) in other types of pressurized water reactors.

In the unlikely case of a PRISE event, the safety procedures first initiate the emergency shutdown
(scram, trip) of the reactor, and then isolate the faulty steam generator. However, there would still be
a possibility to release some of the contaminated water to the environment if the event would not be
handled properly. In order to prevent this and to increase the safety of the plant, a safety valve for
draining the contaminated water into the containment has been added to each steam generator, and
a new safety function, the PRISE safety function has been developed to control its operation.

3.6. INDUSTRIAL CASE STUDY 43

3.6.2 The PRISE Safety Function

The technological and I&C system experts of the Paks NPP have designed a timed logical scheme,
the basis of the PRISE safety function, in a heuristic way. The logical scheme was specified as a
Functional Block Diagram (FBD) representation (a formalism similar to the one defined in the IEC
61131-3 standard). The PRISE safety function FBD is shown in Figure The description of the
inputs and outputs of the PRISE safety function are included in Table

INPUT-1

o

—
INPUT-2 [1He q[|
|
&
INPUT-3 | [s -4 & S | & S OUTPUT-1
_c
— R1
INPUT-4 |———y) r R1 r R1
1 *
INPUT-5 —cJ_LJ_
INPUT-6 OUTPUT-2
1
g -]
INPUT-7 | [
INPUT-8 m
1
INPUT-9 | [

Figure 3.3: Functional block diagram of the PRISE safety function [Ném+09]

The purpose of the PRISE safety function is to initiate the draining of the steam generator if and
only if a PRISE event occurs. This implies preventing the activation of the safety valve, when a non-
PRISE fault event (causing similar symptoms but without a classified PRISE event) occurs, i.e., the
PRISE safety function must be selective. Moreover, when the reactor unit is either being started up or
shut down, thus it is not in the normal operating regime, the PRISE safety function is designed not
to be active. In these circumstances the operators can activate the draining valve manually, should a
need arise.

The designed safety procedure initiates the draining (OUTPUT-1) when a critical decrease in the
primary pressure (INPUT-2) is followed (after a specified time delay) by the increase of the steam
generator level (INPUT-1) that lasts for a certain time interval. However, the draining is initiated
only if the containment pressure keeps its nominal value (INPUT-3), i. e., it is not increasing due to
another, non-PRISE fault causing an inflow of the primary water into the containment. The minimum
time interval constraint for INPUT-1 to hold its value prevents the incorrect initiation of draining by
an unreliable water level sensor measurement showing temporarily a spuriously high value (caused
by the solid scale content of the secondary water).

The INPUT-4 and INPUT-9 input conditions inhibit the operation in a startup or shutdown situ-
ation. INPUT-5 resets the operation of the PRISE safety procedure in case the reactor is being shut
down. INPUT-6 and INPUT-7 prevent the erroneous draining of the containment after the isolation
of a steam generator caused by a non-PRISE fault. INPUT-8 indicates the situation when the steam

44 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

Table 3.2: PRISE safety procedure I/O description

Name Description Function
INPUT-1 SG level high Steam generator water level is increasing (due to closure of the
turbine)
INPUT-2 Primary pressure The pressure of the primary water is decreasing (due to PRISE or
decreasing other leakage)
INPUT-3 Containment pressure The pressure of the containment is not increasing (no primary wa-
is normal ter inflow caused by a non-PRISE fault)
INPUT-4 Primary temperature Technical condition signifying that the reactor is in startup/ shut-
below nominal down regime
INPUT-5 Control rods fully down Technical condition used to reset the operation of the PRISE safety
procedure
INPUT-6 SG deltaP Technical conditions used to avoid the erroneous draining of
INPUT-7 SGRAP 1/2 the secondary water after isolation of the steam generator
INPUT-8 SG inhibition Technical condition used to indicate the SG inhibited state
INPUT-9 Primary pressure low Technical condition signifying that the reactor is in startup/ shut-
down regime
OUTPUT-1 SG is inhermetical Primary output, activates the secondary water drain
OUTPUT-2 ACTIVE Auxiliary output used in control operations

generator was manually isolated due to a failure indication. The primary OUTPUT-1 of the proce-
dure signals the presence of a PRISE event. Note that the auxiliary OUTPUT-2 signal indicates the
presence of all but one of the symptoms of the PRISE situation.

3.6.3 Coloured Petri Net Model of the PRISE Safety Function

I have created a hierarchical Coloured Petri net model of the PRISE safety function. Figure [3.4|shows
the high-level main net of our CPN model. The grey circles are the inputs and outputs of the PRISE
logic. The larger labelled rectangles are substitution transitions that denote subnets of the corre-
sponding function blocks. The smaller net elements are simple places and transitions that are only
needed for connecting the subnets. This main net integrates and connects the separately developed
and validated lower-level CPN subnets of the different functional blocks. The transformation of the
Functional Block Diagram (see Figure 3.3) was straightforward and simple to validate since the struc-
ture of the FBD graph and the corresponding CPN graph are isomorphic.

The run-time environment is a safety-critical, highly dependable digital distributed control system
(DCS), which runs at an explicit 50-millisecond long scan cycle. During each scan cycle, the controller
first samples its inputs, then evaluates all of its functional diagram pages starting from the blocks
connected to the inputs and following the flow of data until they reach the outputs, computes its
new internal state, sets the outputs, and in the remaining time performs self-tests. This behaviour is
reflected by the CPN model the following way: the propagation of the tokens in the net represents the
flow of data in the functional diagram. The CPN model has a feedback loop that puts a single coloured
token simultaneously into each input place at the beginning of a scan cycle. The colour of the input
tokens carries the input data value. These tokens initiate the execution of the subnets modelling the
function blocks. When every subnet has been executed, a single coloured token is generated into each
output place. The feedback loop takes away every generated token from the outputs, and the scan
cycle ends.

An example CPN subnet —modelling the operation of a functional block, namely the Delay mod-

3.6. INDUSTRIAL CASE STUDY 45

INPUT-1

delay
module

INPUT-2
pulse pulse

OUTPUT-1

O[]
& FPO PO]

OUTPUT-2 7I_‘

pulse
O] moduie

Figure 3.4: The Coloured Petri net model of the PRISE safety procedure ||

ule— is shown in Figure The functionality of the Delay module is given by a time diagram in
Figure The purpose of the module (as its name implies) is to delay a rising edge pulse for a pre-
defined D number of cycles. When the module detects a rising edge, it starts a counter. If the pulse
is active (the input remains 1) for at least D number of cycles, the Delay module will “let the pulse
pass’, that is it sets its output to 1 (the true Boolean value). The output will remain 1 as long as the
input is active. When a falling edge is detected, the module resets itself to its default inactive state.

[cp=0]

INPUT-1
14
INPUT-1 OUTPUT
1'false 1'false 0 t
bool bool
OUTPUT

H
I

T
1 1
1 1
1 1
1 1
1 1
1 1
1 1
! !
1 1
T T
+ 2

A

[cp = 0 && succ(cn) = cp]
(a) The CPN subnet model of the Delay module

=

k1+D

=

k2+D

—

b) Time diagram of the operation
Figure 3.5: Delay module: model and operation
The operation of the CPN subnet model of the Delay module (see Figure [3.5a) is easy to follow.

The model has two port places (the INPUT-1 port, and the OUTPUT port) that represent the connec-
tions of the Delay module. The DELAY place stores the value of the delay counter. Its colour set is

46 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

int_0_9, a subset of integers: {0, ...,9}. Its initial marking has one token whose colour equals the
required delay time, given as D cycles (in the example D = 9). The three black rectangles are the
transitions that realise the three main phases of the operation. The expressions written in brackets
next to the transitions are their guards. A guard is a boolean expression that prohibits the firing of
the corresponding transition unless it evaluates to true. The three main phases of the operation and
their transitions are as follows:

1. The lower transition detects the rising edge (a true value is in the input and the delay counter
has not yet reached zero), starts the delay counter, and continues counting down in the subse-
quent cycles. The guard prescribes the previous value of the counter to be the successor of the
next value, thus implementing the counting down process. The output remains inactive in this
phase.

2. The upper transition will fire whenever the delay counter has run out (reached zero), and the
input is active. The transition puts a token with value true in the output port place, therefore
the output will remain active as long as the input is active.

3. The middle transition detects the falling edge of the pulse, resets the value of the delay counter,
and deactivates the output.

3.6.4 Verification of the PRISE Safety Function

We aimed to prove that the PRISE safety function initiates the draining always if a PRISE event occurs
in every normal operation regime coupled with a fault in the SG level sensor that is highly unreliable;
and never if a PRISE event does not occur even if severe faults causing similar symptoms happen. In
addition, it is also important to prove that the PRISE detection logic is free from deadlocks as they
represent dangerous situations. The required selective detection of the PRISE event and the heuristic
design process of the safety logic made it necessary to perform a rigorous formal verification of the
PRISE safety procedure.

3.6.4.1 Formalization of the Requirements

I could translate the above requirements into the following verification goals:

 Liveness requirement: the secondary water draining activity is always activated when a real
PRISE accident has occurred (no actuation masking).

« Safety requirement: the draining activity is not activated if not a real PRISE accident has oc-
curred (no erroneous actuation).

+ Deadlock freedom: No deadlock situation can arise for any combination and sequence of input
signals.

I used branching-time temporal logic based model checking to prove the requirements. For com-
plexity reasons, we chose CTL temporal logic, as it provides an expressive formalism with efficient
decision procedures.

« First, deadlock freedom of the system is checked. Informally this means that in every state there
exists at least one reachable successor state. The equivalent CTL temporal logic formula is the
following: AG(EX(true)).

« Talso checked if the model is reversible, that is from every state the initial state can be reached. I
expressed this property with the following CTL formula: AG(EF([init])). This property ensures
that the safety function can be made ready to fulfil its goal in all circumstances.

3.6. INDUSTRIAL CASE STUDY 47

+ The following formula expresses the safety requirement: —E(— [PRISE-event] U [actuation]).
I used an indirect proof to prove the safety requirement and ran the model checker with the
inverse CTL formula: E(— [PRISE-event] U [actuation]). This formula is satisfied only if the
draining activity is activated without a PRISE event.

« The liveness requirement was also easier to prove by using indirection. I formalised the inverse
requirement as the following CTL formula: EF([PRISE-event] N EG(— [actuation] N — [reset-
event])). Informally, we are searching for strongly connected components in the state space
that contain no actuation and reset-event, but contain a PRISE-event.

3.6.4.2 Evaluation of the Temporal Properties

The next step of the verification was to explore and store the state space of the CPN model of the
safety function, using the new disjunctive-conjunctive decomposition algorithm and the lazy satura-
tion algorithm. After obtaining the complete state space we could evaluate the four CTL expressions
introduced in the previous section. For state space traversal and temporal logic-based model checking
we developed our own experimental implementation of our algorithms written in the C# program-
ming language. We used the following configuration for our measurements: Intel L5420 2.5 GHz
processor, 8 GB memory, Windows Server 2008 R2 (x64) operation system, .NET 4.0 runtime. The
measurement results are listed in [Table 3.3

Table 3.3: Characteristics of the state space traversal

Coloured Lazy
Parameter saturation saturation
Run time 367 s 242 s
Number of global states 2.701 - 1012
State space representation (nodes) 1587
Number of local state changes 10084 401 1864
Sum of nodes in next-state relations 164711 66741
Sum of nodes in £R relations 0 2419
Total number of nodes 2.131-107 1.338-107

Run time represents the time needed to explore the state space. The state space generation re-
quired 367 s for the CPN model of the safety function using our former coloured saturation algorithm,
and only 242 s with the new lazy saturation algorithm. This is a 35% improvement considering the
runtime. Note, that former, non saturation-based approaches [NB09|] could not discover the full state
space of the model. The evaluation of the temporal expressions took considerably less time: deadlock
freedom and reversibility checking temporal expressions took 6 s each to evaluate on the existing state
space representation. The liveness and safety requirements were evaluated in 2 s and 3 s, respectively.

Beside the run time, the memory requirement is also the subject of interest. Measuring the mem-
ory consumption of programs executed in managed environment is problematic, because the garbage
collector does not free up all the unused memory necessarily [GZF12]]. However, as most of the mem-
ory is used by the nodes and edges of the decision diagrams, the number of these elements can be
used as a representative of the memory consumption.

48 CHAPTER 3. MODEL CHECKING OF HIGH LEVEL MODELS

3.7 Thesis 1: Model Checking of High-Level Models

I used the Coloured Petri net formalism to develop formal models of complex systems. I have exam-
ined various verification approaches being able to analyse systems designed in high-level modelling
languages, especially Coloured Petri nets. I investigated an industrial case study used as a motivation
example, which revealed the shortcomings of explicit state model checking techniques: due to state
space explosion, they can rarely handle the state space of real-life problems. Symbolic model checking
algorithms provide a solution, and from the available approaches, I chose saturation as an extremely
powerful method for the verification of Petri nets. However, systematically reviewing the literature I
realised that saturation was not extended to handle Coloured Petri nets. I elaborated an approach to
support the verification of high level Coloured Petri net based models. The existing algorithms can
not handle complex guard expressions of Colured Petri nets, so I developed a new encoding of the
next-state relation and I introduced efficient algorithms for the construction of the symbolic repre-
sentation. The result of the research was integrated into the PetriDotNet model checking framework
and proved its efficiency in an industrial setting.

Thesis 1 I developed new verification algorithms for Coloured Petri nets. I devised an advanced
disjunctive-conjunctive decomposition algorithm for the efficient representation of complex next-state
relations of coloured Petri net models. The introduced new decomposition algorithm combined with the
efficiency of saturation made the verification of even industrial problems possible. In addition, I developed
an algorithm for the temporal decomposition of the construction of the complex next-state relations. This
new algorithm further decreased the space requirements and runtime of the verification of models with
complex guard expressions. I proved the correctness of the presented algorithms.

The results of my first thesis decreased the space requirements of handling complex next-state re-
lations by constructing smaller next-state representations for Coloured Petri nets. As a consequence,
the time requirements of the verification process also decreased, and a new set of problems could be
verified: the result of the thesis made possible to solve even real-life industrial examples. The new
algorithms are evaluated on a model of an industrial safety-critical system (PRISE): it was the first
time when the verification of the correctness properties could be verified on the entire Coloured Petri
net model of the safety-logic. Successful verification proved the correctness of the system with regard
to deadlock freedom, safety and liveness properties.

Publications: My new results introduced in this thesis were published in the journal paper [j5]] and
in the following conference papers: and [[16]]. The results contributed to the conference paper
and journal paper [[1]].

Chapter 4

Parallel Saturation-based State Space
Exploration

Verification requires significant computational resources to succeed. In order to extend the limits of
verification, even advanced techniques such as saturation or other symbolic techniques need further
improvements to be able to solve complex problems or existing problems more efficiently. Various
approaches are known to improve the performance of the algorithms, one of them is parallelisation.
Recent advances in computer engineering and the increasing number of computational units in mod-
ern computers make this direction more and more attractive.

The saturation algorithm introduced an efficient traversal strategy which kept the state space
representation small and could explore huge state spaces fast. However, this algorithm is inherently
sequential, as both decision diagram manipulations and also the iteration strategy of the algorithm
follows a well-defined, strict order of steps. Decision diagram manipulation is traditionally difficult to
parallelise, and the literature also states the same for saturation [CZJ09]]. Given the doubly recursive
dependencies of saturation, and the top-down dependencies in the decision diagram manipulations,
cumbersome synchronisation and locking mechanisms are required for the parallel implementation
of saturation.

In this section I will investigate an existing parallel saturation algorithm from [ELS06] and I will
introduce algorithmic improvements to increase the efficiency of parallel saturation-based state space
traversal.

Publications related to this chapter. The results of this thesis were published in [[17], and this
chapter is based on that paper.

Implementation and contributors. The parallel saturation algorithm introduced in this chapter
was implemented and made available in the PetriDotNet framework. While the theoretical and algo-
rithmic contributions were mainly my results, the implementation of the presented algorithm is the
result of the whole PetriDotNet team, and especially my students Tamas Szab6 and Attila Jambor.

4.1 Challenges

In the development of the parallel saturation algorithm, efficiency and correctness are the two most
important issues. Ensuring correctness requires that the following properties of the saturation are
preserved:

49

50 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

+ Bottom-up order of saturating/finishing nodes.
« Local fixed-points are reached.
« Consistent caches store the final results of the computations.

+ Decision diagram data structures are kept consistent.

In addition, beside the rigorous synchronisation, the parallel algorithm has to utilise the available
resources. This means that the independent tasks have to be recognised and run parallel. As the
iteration order of saturation highly depends on the structure of the decision diagram (and the model of
the system), the structure of the system and also the decomposition, static division of the exploration
into subtasks is not possible. Instead, during the traversal, the computing nodes have to wait for the
various tasks produced by the other threads.

4.2 Cache Data Structures in Saturation

When discussing parallel algorithms, one has to look deeper into the data structures and implemen-
tation details. In the former section, saturation was discussed from a high-level point of view. In this
section, I show the data structures used by saturation. In the following sections, I will also discuss
how to use them in a parallel setting.

Unique table. Decision diagram manipulations rely on the efficiency of a caching mechanism, the
so-called unique table, or UT for short. The UT is implemented as a hash-table, which contains
(key, node) pairs: when the algorithms finish the computation of a node in the decision diagram,
they look for a corresponding node in the UT, which represents the same function. If there is no such
node, the algorithms put the new node into the UT. If the UT contains a node representing the same
function, then the algorithms will use that node in the future. Putting a node to the UT is commonly
referred as the operation so-called check-in.

Fire cache. The saturation algorithm uses special caching mechanisms in the procedure Saturate
(Algorithm [1|at and in the procedure of the relational product computation function RelProd
(Algorithm 2] at [line 5). The cache in the procedure saturate is not an essential part of the algorithm
(for some performance penalty it might be omitted), but the so-called fire cache (FC) is essential
to avoid redundant computations (so it significantly reduces the computational complexity). The
algorithm extensively uses the FC, so in the following, the role of this special cache is overviewed.
As saturation computes the effects of the transition firings locally, the FC can be used to store the
effects of the transition firings. This cache enables the algorithm to find if an operation has already
been executed. The FC stores the effects of the relational product computations: the FC maps a pair
of decision diagram nodes (in the state space representation and next-state representation) to another
decision diagram node (in the state space representation).

4.3 Parallel Saturation

In this section, the algorithm from [ELS06] is introduced. This algorithm served as the basis of my
improved algorithm, which is presented in Section

The authors of [ELS06|] divided the saturation into several stages, and defined the computation
of each node as the elementary step in the algorithm which can be assigned to an individual thread.
Node computations and operations consist of:

4.3. PARALLEL SATURATION 51

+ node management in the MDD data structures,

event and next state computations,
+ node modifications,
« the manipulation of the MDD by recursive calls.

According to the investigations[ELS06], the tasks which can run parallel are the firings of the events
i. e., the next-state computations on the decision diagram representation of the state space. These tasks
are executed either by one thread or by multiple threads. When a thread finished a local computation,
it calls other threads to do the remaining tasks i. e., firing transitions at a lower level or higher levels
of the decision diagram. This way the iteration of saturation is cut into smaller pieces that have the
proper size to be executed by a thread. The logic of deciding which tasks are outsourced by a thread to
another is a critical point. These tasks should be large enough to avoid the increase in synchronisation
and communication overhead, but they also should be of reasonable size to enable more threads to
work parallel. The parallel saturation algorithm implements the work pool design pattern to provide
flexible distribution of the tasks.

Beside efficiency, it is also important to ensure correctness by avoiding inconsistent MDD states
and ensuring synchronisation otherwise the algorithm is not able to reach a fixed-point. For this
purpose, various mechanisms are introduced. The sequential saturation algorithm was modified by
introducing and exploiting the following means:

« work pool design pattern to ensure efficient parallel execution,
« new attributes in the decision diagram data structure for state space representation,
« data structures and mechanisms for the FC to ensure synchronisation and mutual exclusion,

« data structures and mechanisms for the decision diagram representations to ensure mutual
exclusion and

« data structures and mechanisms for the other data structures (such as local states, next-state
representation) to ensure mutual exclusion.

4.3.1 Extending the Decision Diagram Node Data Structure

The node data structure in the decision diagrams has to be extended to support parallel execution. The
parallel saturation algorithm divides the saturation task into smaller subtasks that are run parallel,
but their results have to be synchronised, and the work which has been done by other threads has
to be registered. Hence the node data structure is extended with fields to store the synchronisation
information. The following attributes are used for synchronisation purposes:

« upward arcs register arcs into which the result of the computations on the actual node will be

inserted

« ops integer variable counts the remaining tasks; when this variable is set to zero, then the
algorithm finishes the saturation of the node

« saturating is a Boolean variable to indicate if the actual node was started to be saturated

« key stores the key with which the node was inserted into the FC.

The algorithm uses these attributes at various procedures at various points in the execution. In
the following, we shortly overview them. For the manipulation of upward arcs, the algorithm uses
two functions:

52 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

o SetUpArc(ty, Sg+1,J) sets an upward arc in t; pointing to the edge j of sy (on an above
level), and

« GetUpArc(sy) returns pairs of the form (r,) representing an upward-arc where 7 is a node
above and 7 is the index of an arc (of node r).

The integer variable ops is used to register the number of remaining tasks which should be fin-
ished on the node. The value of this variable might be increased and also decreased during the traver-
sal. Variable ops is increased when a new thread starts working on that part of the state space repre-
sentation (a function is called on the node).

Variable key stores the key of the node which is used to place and find the nodes in the UT .
The algorithm stores this key for the following reason: as the node is continuously changed by many
threads, using the key argument it is easier to decide if the UT has to be updated with the new key.
The key is continuously updated, but the thread does not always have access to the exact state of the
node (especially if other threads changed it) to compute the key; storing the key in the node means
that the algorithm can excess the node in the FC.

Mutual exclusion has to be ensured i. e., only one thread can change the value of the arguments
of the nodes at a given point in time (this part is omitted from the pseudo codes).

4.3.2 Working of the Algorithm

The algorithm [ELS06] introduced a correct synchronisation and locking mechanism for parallel sat-
uration. In the following, the extensions to the sequential saturation iteration strategy are introduced:
the application of the synchronisation and the locking mechanisms at the various phases of the com-
putations is detailed.

Synchronization of data structures The saturation algorithm uses decision diagrams, therefore
it has to take care of the consistency of their underlying hash tables. The unique table (UT) is used
to store the nodes of the decision diagram. The goal of the algorithm was to enable as many threads
to manipulate nodes simultaneously as possible. The algorithm synchronises the manipulation of
the data structures at every level, this way avoiding inconsistent MDD levels. The responsibility for
global MDD consistency is left to the iteration, which is preserved with locking sub-MDDs when they
are manipulated.

Synchronization of MDD operations The parallel saturation algorithm uses a special locking
strategy to preserve MDD consistency. As MDD serves as the underlying data structure for the itera-
tion, preserving consistency is a critical task during parallel saturation. A classical decision diagram
approach was used in [ELS06], so at every operation, the argument MDD-s are locked to prevent
concurrent manipulation. This approach introduces a relatively high synchronisation overhead, but
it is essential for ensuring consistent manipulation. A big advantage of saturation is that it tries to
avoid operations on the whole decision diagram, instead, local operations are computed. This means
that the algorithm locks only smaller parts of the decision diagram representation, so the algorithm
itself is subject to smaller locking overhead. Therefore small MDD operations are a characteristic of
saturation and smaller parts of the decision diagrams are locked.

Synchronization of the iteration An important task is to preserve the correct iteration order.
The threads have to synchronise the operations executed on nodes: the algorithm has to avoid the

4.3. PARALLEL SATURATION 53

redundant computation, but it has to be ensured that all the transition firings are executed and no
next-state computation is omitted.

The iteration is synchronised with the help of the special additional data structures introduced
in Section Every node has a counter ops to register the tasks which are under execution or are
planned to be executed. This counter prevents the algorithm to finish the computation and finalise
the results before all the tasks have been finished.

In order to preserve dependencies, the algorithm uses the upward arcs as depicted on Figure
These arcs represent the dependencies in the iteration order. If a node has an upward arc pointing to
a node in the upper level of the state space representation that means: a thread computed the firing
at the upper node and it called another thread to compute the lower levels of the MDD rooted there.
Figure [4.1] depicts the step when the procedure Saturate submits the relational product computation
tasks to other threads.

The algorithm also avoids redundant computations by using the various cache structures of the
sequential saturation algorithm. However, the FC is extended to not only store the values of finished
computations but also serve as a synchronisation mechanism among the threads. The caching mech-
anism of the FC is extended with synchronisation constructs: when a thread starts computing a part
of the reachable state space, it signs it in the cache by placing the actual node with a flag. This way,
if another thread would start exploring that part of the state space, it can check in the cache that it is
still being processed: redundant exploration is avoided, and the new thread just registers itself for the
result. The key argument of the nodes supports that the threads will not miss the nodes in the cache.

Thread A Thread A

upward arc to
preserve
iteration order

PSaturate
(si)

PSaturate
(se)

—_— —_——

PRelProd
(selil)

PRelProd
(slil)

PRelProd
(se[m])

PSaturate
(selil)

Figure 4.1: Using upward arcs in saturation

Locking mechanism. Beside synchronizing the executed tasks, it is also important to keep the
consistency of the data structures: the parallel saturation algorithm introduced a locking mechanism
for this purpose. The locking strategy is simple: one thread can modify a node at a single point of
time which is ensured by using locks. During the next state iteration, the sub-MDD rooted in the
manipulated node is also locked, so the algorithm avoids that two threads use the same sub-MDD and
contained nodes during the node manipulations.

54 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

i1=pe[il U fi, i1 =q[il U g
pilil = pili] fk CIk[] Gkl U gist

L m——————— \I/LOCk(pde) wait| S ——

/ I
//\\ | \

~—_—— — -

{} i = i U +
qk[] qk[] gk 1
I N
|

Y Lock(qu.d -
//\\OC (qw-dw) N

Figure 4.2: Locking in saturation

Details of the algorithm. The formerly introduced eager fixed-point computations are calculated
parallel in this algorithm. Synchronization and locking mechanisms were formerly summarised, here
an insight is given to the main operation of the algorithm. The pseudo-code of the algorithm is
depicted on Algorithm [14] Algorithm [15] Algorithm [17]and Algorithm [16] with the modifications, so
the pseudo code contains the improvements (new locking mechanism) marked with an asterisk. The
original algorithm locks bigger parts of the operations as it is stated in [ELS06|] and as it is depicted
on the figures (discussed below). For the exact pseudo code of the original algorithm, the reader is
referred to [ELS06], here we only discuss the general idea.

Local fixed-points are computed by procedure PSaturation of Algorithm [14]and transition firings
are computed by the relational product computation function PRelProd of Algorithm [15]

The operation of the work distribution in the algorithm is depicted in Figure In this figure,
Thread A starts saturating a node sj. During the computation recursive calls are needed for comput-
ing the next states. These calls are outsourced to other threads. In order to preserve the iteration order,
these threads set an upward arc to the arc of the upper node (arc j of si1) and increase the value

4.3. PARALLEL SATURATION 55

of variable ops of sx11. This way the algorithm ensures that the upper node could not be finished
until the nodes below are finished. The signature of the parallel version of saturation and relational
product computation is similar to their sequential counterpart, only function PRelProd receives an
additional parameter representing an arc of the callee: the set represented by this arc will be extended
with the result of the procedure PRelProd.

Beside implementing a parallel saturation iteration and synchronising, these functions also lock
the decision diagrams when the union is computed and the arcs are updated with the newly discovered
states. Functions, which are responsible for synchronization: function Lock(py.dw) locks the MDD
down from the node py, to ensure that no other thread will manipulate it; and function Unlock (py.dw)
frees the lock and lets other threads working on the MDD. These functions lock the MDD data struc-
ture downward in order to prevent concurrent manipulation: this mechanism is depicted on Figure[4.2]
where two threads want to compute unions of the diagram, but they use a common argument node,
so Thread B has to wait.

In addition to the above defined functions, the parallel algorithm published in [ELS06]] uses func-
tion Remove(sy) of Algorithm|[17]for removing dead endings from the MDD. These are created when
a parallel thread starts a computation of a firing of a dead transition, which cannot fire from the
given marking, and it is only detected at a later phase of the firing i. e., in lower levels of the decision
diagram.

The parallel algorithm also introduced the procedure NodeSaturated(sy) of Algorithm [16| to
finish the saturation when the firings of the transitions are finished. In this case, function
NodeSaturated(sy) checks if the iteration reached a local fixed-point and then it persists the decision
diagram node into the cache data structures.

Correctness. The locking ensures that the iteration order is preserved, and operations executed on
nodes are not interfered by each other. The algorithm is proved to be correct [ELS06], as it ensures:

« correct iteration order: by removing synchronisation methods we get the sequential algorithm

« correct synchronisation of the data structures, both in the MDD operations and both in the next
state representations

« since locks ensure that updating a node is atomic, exhaustively firing transitions will result in
the same MDD shape for a saturated node as in the sequential algorithm

A more detailed proof can be found in [ELS06]).

4.3.3 Problems

Parallel implementation of saturation involves a big synchronisation overhead, making efficient par-
allelisation difficult. This also emphasises the fundamental role that the proper synchronisation plays
in the parallel realisation of the saturation algorithm. There are two main bottlenecks: first is that
parallelisation of state space exploration is generally a hard task. In order to avoid redundant state
exploration, we have to ensure that the parallel directions synchronise properly without dramatically
increasing the synchronisation costs. Another reason is that saturation uses a special underlying
data structure: decision diagrams. Parallelizing decision diagram operations involves a big synchro-
nisation overhead, caused by the fact that decision diagrams are built in a bottom-up fashion, where
upper levels highly depend on lower levels. As measurements showed in [ELS06], the parallel satura-
tion algorithm runs faster on more processors than on one, but still remains slower than the sequential
algorithm by 10-300%. Scalability is also an important factor in parallelisation. By scalability we mean
the following two characteristics:

56 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

« The runtime of the algorithm will decrease with respect to the increasing number of resources.

« The relative speed of the parallel algorithm will increase comparing to its sequential counterpart
with the growing number of tasks
It is important to examine the scalability of the parallel algorithm. The following problems were
revealed by the experiments [ELS06|] (which were also confirmed in our paper):
« the parallel algorithm could not exceed the speed of the sequential one, independent on how
much the resources were increased;

« increasing the model size (and the amount of tasks that should be solved by the algorithm) does
not yield and advantage for the parallel algorithm;

« the sequential algorithm solved the problems faster than the parallel even for large models and
also for environments with more computational units.

These findings motivated my work to investigate the algorithm and find a way to improve it.

4.3. PARALLEL SATURATION

57

Algorithm 14. PSaturate

Algorithm 15. PRelProd

10

11
12
13
14
15
16
* 17
* 18
* 19
* 20

21
22

23

24

25

26
27

28

input :sg:node
// Sr: mnode to be saturated,
output :node

if s; = 1 then
Lreturn 1;

Return result from cache if possible;

k < Level(sk); // retrieve the actual
level of the MDD

tr < new Nodeyg;

tx.saturating = true; // saturating the node
has started

tk.ops = ty.ops+ 1;// increase ops counter

foreach i € Sj; : si[i] # 0 do

Ltk[z] + PSaturate(sk[i]);

repeat
foreache € £ : k € Top(e) do

Re + N: as decision diagram;
foreach si[i] # 0 A R.[i][i'] # 0 do
[« PRelProd(tx[i], Re[i][¢'], tr, ');
if f # 0 then

[t U f;

Lock(tx[i']);

tili'] < te[d'1U f;

UnLock(tx[i']);

if i’ ¢ Sy, then
LConﬁrm(k, i')

| Build(k);

until ¢, unchanged,
tx.ops = ty.ops — 1;// decrease ops counter
if tx.ops = 0 then

LNodeSatumted(tk);

return t;;

// finish saturation

input :sg, R, Sk+1: node;
j : localstate
1 // sk: from node of the firing,
2 // Sk+1: top node,
3 // R: next-state representation node,
4 // j: next state of the top node,

output :node

5 if R = 1 then
6 Lreturn Sk

7ty : Find result of (sx, R) in cache;
8 if t # O then

9 |if tx is not saturated then

10 || SetUpArc(ty, Sk+1,7);

11 || tg.ops = ti.ops + 1;

12 || return O;

13 | else
14 Lreturn ti;

15 k < Level(sy);
level of the MDD

16 tx < new Nodey;

17 tg.ops = ti.ops + 1;

18 SetUpArc(ty, Sk+1,7);

19 Put t, in cache, flag set to not saturated;

20 foreach si[i] # 0 A R][i][i'] # 0 do

21 | f « PRelProd(ti[i], R<[i][¢'], tr,3’);

22 | if f # O then

23 || f« [U f;

24 || Lock(tx[i']);

25 || ti[i'] < te[i'] U f;

26 || UnLock(tx[i']);

27 |if i’ ¢ Sy then
28 || Confirm(k,i’)

// retrieve the actual

29 ty.ops = tg.ops — 1;

30 if tx.ops = 0 then

31 |if 3¢ € Sk : tx[i] # O then

32 LPut ti, into the saturation queue;

33 | else
34 LRemove(tk);

35 return O;

58

CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

Algorithm 16. NodeSaturated

Algorithm 17. Remove

'

e N«

* 10
11
12
13
14
15

20
21

22

23
24
25
26

27
28

input :sg:node
// sr: node to be saturated,
output :node

Put node sy, into the UT ;
Update entry of sy, in FC;
Sk.0ps = Sk.ops + 1;
counter
foreach (r,i) = GetUpArc(si) do
u < sp Ur[i);
if u # r[i] then
Lock(r[i));
ri] < r[i] U u;
UnLock(r[i]);
Confirm(k 4+ 1,14)
if r.saturating then
foreach R.[i][i'] #0: k+ 1 € Top(c) do
f < PRelProd(r[i], R:[7][¢'], ,7');
if f # 0 then
ferlifufs
Lock(r[i']);
r[i'] < r[i'] U f;
UnLock(r[i']);

if i’ ¢ Sy then
LConﬁrm(k, i)

| Build(k);

// increase ops

r.ops =r.ops — 1; // decrease ops counter
if r.ops = 0 then

if r.saturating then

LNodeSatumted(T); // finish saturation

else
LPut r into the saturation queue;

1

2
3
4

11
12

: Sk : node
node to be removed,

input

/] sk:

Update entry of sy with 0 in FC;

foreach (r,i) = GetUpArc(si) do

r.ops =r.ops — 1; // decrease ops
counter

if r.ops = 0 then

if r.saturating then

| NodeSaturated(r); // finish saturation

else
if 3i € Sy : r[i] # 0 then
LPut r into the saturation queue;

else
LRemove (r);

4.4 Algorithmic Improvements

I have investigated the main characteristics of the parallel saturation algorithm. The intrinsic com-
plexity of saturation makes the experimentation and understanding difficult. The findings were the
following:

«+ The increasing number of computing nodes does not lead to increased performance, instead

increased waiting times.

 Ensuring consistency and locking required significant resources.

« Correctness was also ensured in practice: the results of the parallel and sequential algorithms

were compared.

According to the experiences, the goal was to decrease waiting times by introducing a more fine-
grained locking strategy which would decrease the synchronisation costs.

I have modified the parallel saturation algorithm, and I developed a new synchronisation mech-
anism to improve the algorithm presented in [ELS06]. The goal of the new locking mechanism is

4.4. ALGORITHMIC IMPROVEMENTS 59

to localise the effect of the locks and to reduce the overhead caused by them. The improvements
led to significant speed-up of the algorithm. Investigating the iteration order of the parallel algo-
rithm revealed that the complex locking strategy could be redesigned to lock only single nodes. I
introduce local synchronisation, which avoids downward locking of sub-MDDs. Beside the fact that
locking downward sub-MDDs poses significant computation needs, additionally in many cases, the
inefficient synchronisation makes the threads unable to run parallel.

4.4.1 New Locking and Synchronization Strategy

In this section, I introduce a new synchronisation and parallel iteration method. The goal of the new
algorithm is to decrease the overhead of downward locking. The new locking strategy is shown on
Algorithm[14] Algorithm[15/and Algorithm[16] The changes compared to the former parallel approach
are marked with an asterisk (x), the rest of the algorithms are based on the formerly introduced parallel
saturation algorithm.

The locking strategy has to ensure the consistency of the data structures. When the former al-
gorithm had to compute the arc updates, the decision diagram was locked downward to ensure that
no other thread will modify it during the arc manipulation. Instead of this solution, I propose to use
an arc locking strategy to lock only the node, and especially the actual arc being processed. Function
Lock(pg[i]) locks the arc ¢ of the MDD node pj, to ensure that no other thread can use it. In the
former algorithm Lock(py.dw) was used which locked the decision diagram downwards. Function
Unlock(pg[i]) frees the arc of the node and makes it available for other threads to work on. In the for-
mer algorithm, Unlock(py.dw) was used to free the decision diagram downwards. I do not detail the
inner locking strategy (implementation of Lock and Unlock) as I used a programming environment
built-in library for this purpose with proven correctness.

In addition, investigating the iteration strategy of saturation revealed that locking could be applied
lazily which can reduce the synchronisation overhead: my proposed solution exploits the fine-grained
arc locking strategy and puts the union computation outside the scope of the locking. However,
letting the threads do the image computations and the update operations in parallel may lead to lose
information and spoil convergence. The old algorithm could do in this case the following: updating
arc ¢ leading to node p with the newly discovered local state space represented by ¢ and r should
result that the arc ¢ leads to a node representing p U ¢ U r, but if the threads compute pUgandp U r
and update arc ¢ independently, then the result will be only the subset of the expected.

To ensure the correct iteration and avoid the information loss, I propose to compute the result
of the union twice. The placement of locking is depicted on Algorithm (14| at [line 18| and [line 20}
Algorithm [15)at [line 24| and [line 26 and Algorithm[16]at[line 8 and [line 10| and [line 17|and [line 19] At
each procedure, the union of the old edge and the recently discovered state space representation is
computed twice at the following points: Algorithm [14]at[line 17|and [line 19 Algorithm [15]at
and[line 25 and Algorithm([16]at[line 6|and[line 9and[line 16|and[line 18] At first, the union is computed
outside of the scope of the locking so that they can run in parallel. After the union computation, the
algorithm locks the node and computes the union once more and updates the arc of the corresponding
node. Even if multiple threads are working on the same node, as the algorithm locks the node when the
union is computed, and the arc is updated, it is ensured that the algorithm does not lose information,
so the convergence of the algorithm is ensured. However, the question naturally arises why we need
to compute the union twice. The answer is that in most cases the union will be computed by the
unlocked union indeed, and the locked union will only get the result from the corresponding cache
(union cache). As receiving the result from the cache is a fast operation, the node will be locked only
for a very short period. However, when the interference of the threads results that the value of the

60 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

arc is updated during the union computation, then the thread will lock the arc for the time when the
union is computed, and the arc is updated with the results.

The new locking strategy significantly reduces the computation cost of the synchronisation.

A flag is introduced as an attribute in the node data structure. Atomic operations are ensured on
the arcs with the help of this flag, without making the MDD operations such as the union or next-state
computations mutually exclusive. This locking mechanism is applied in the fixed point computation
at every iteration step when the set represented by the arc is augmented. As functions PSaturate,
PRelProd and NodeSaturated are all augmenting the set represented by the node, they all use this
new synchronisation strategy. A simplified view of the locking strategy is depicted on Figure
where the main idea of the arc locking strategy is compared to the solution of [ELS06] (referred to
as old locking strategy on the figure). The node is locked for the time when the data structures are
manipulated, and also the cache is locked. However, the computationally most expensive task, when
saturation extends the represented set of states, can run parallel as the scope of locking is restricted
to the arc manipulation.

no

Cache locked Arguments locked ' Arc of node locked |:

compute union

arguments

compute . . ST
7 : fixed-point?
.] !

: 7 N\
. s v yes
¥ / b
! \ T~k
recursive next-)/ « M(compute union)/ next
state calls ' No 7 MDD Node

Figure 4.3: Workflow of the new synchronization strategy

4.5 Correctness of the Algorithm

The introduced locking and synchronisation strategy is proved to be the proper solution because if
the scope of the locking would be reduced, we could lose information, the algorithm would be slower,
or the convergence could be spoiled. On the other side, the introduced algorithms ensure correct
iteration and parallel state space exploration.

4.5.1 General Issues

The correctness of saturation was proved in many papers as it was discussed in former sections. The
basic parallel saturation algorithm was presented in [ELS06[], where the correctness of the algorithm
is also proved. The main challenge in parallel saturation is to ensure uncorrupted iteration order.
Otherwise, either convergence is lost, or the final result is just the subset of the real state space. To
ensure both convergence and avoid omitting states, the sequential algorithm was extended in [ELS06]
with the locking and the proper work distribution mechanisms. These modifications let the algorithm
run hardly parallel, which is confirmed by the measurements in [ELS06] and [[17]].

The modifications I presented exploit the resources of recent multiprocessor architectures more
efficiently in parallel saturation-based model checking. Now I prove the correctness of the presented

4.5. CORRECTNESS OF THE ALGORITHM 61

approach. I discuss only modifications affecting the iteration order, as other improvements concern
mainly the implementation. The modified algorithm should:

« Preserve iteration order,
« Reach saturated final state,

+ Preserve consistency of data structures.

Iteration order is not affected by my modifications, so the reader is referred to [ELS06] for a
complete proof.

The procedures of [ELS06] are also introduced in my solution to compute the next-state N by
PRelProd on Algorithm [15] and by Remove on Algorithm [17] the transitive closure N, computed
by PSaturate on Algorithm [14] and NodeSaturated on Algorithm Consequently calling these
functions preserves the iteration order as it is proved in [ELS06]]. After an iteration is finished, function
call NodeSaturated ensures that every node encodes a saturated set, so the iteration is completed. The
algorithm also ensures that function NodeSaturated finalizes the nodes after saturation and puts them
into the corresponding data stores in|line 2|and [line 3|

4.5.2 Correctness of the Iteration

The improvements to the algorithm modified the order of the union function calls. However, by using
the tricky redundant union computation scheme, the convergence of the algorithm is ensured, and
the final result is the same as for the traditional sequential saturation. Commutativity of the union
operation is exploited to ensure that the final result contains the whole set of states computed by the
threads independently. For each thread;, f; represents the result computed by the thread and the set
represented by f; is used to extend the set represented by arc si[j]. The algorithm ensures that the
arcs will properly represent the results of the next-state computations, so the set represented by s [7]

will be the following: (J, (fi U sk[j]) = sk[i] U Uy (fi)-

4.5.3 Consistency

Preserving the consistency of data structures is especially important in parallel algorithms, and it is
highly affected by the new locking strategy. Consistent data manipulation is required to ensure global
consistency: the goal is to ensure that during the decision diagram and node manipulations, and also
during the procedures of saturation, the algorithm should use and produce consistent data. As I used
up many parts of the former algorithm, in the following, I will concentrate on the new parts, namely
to the computations of the union operation. It is important to examine whether the new locking
and iteration strategy did not spoil the consistency of the data structures, the data structures being
used in the union should be in a stable state (they must not change during the operations). The
new approach omits downward locking and preserves consistency without locking the argument sub
decision diagram of the union operation. From the consistency point of view, it has to be assured that
the operations do not change the state of the operands of the union operation.

Instead of proving the consistent manipulation of the nodes, I will prove a stronger statement
which also implies the consistency of the operations. My assumption is that the algorithm performs
MDD operations only on nodes, which are permanently placed in the MDD data structures: with
the correct locking of the actually manipulated node, this ensures that the consistency of the data
structures is preserved. What we have to prove now is that the algorithm only performs actions on
finalised nodes that are placed in the UT i.e., the nodes used for compute the union are checked-in

(Algorithm[16]at[line 2). This fact also implies that the result will be consistent.

62 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

The assumption can be proved inductively. In the following, I go through the proof. The saturation
algorithm with the introduced arc locking strategy is correct as the parallel saturation algorithm
ensures that the arguments of the union operation are checked-in.

« At the beginning of the algorithm, all edges are set to terminal nodes, so the condition holds:
we can only apply operations on nodes being checked-in.

« Each step of the algorithm either sets an arc to point to a checked-in decision diagram node
which is in the UT, or the algorithm delays the computation and sets upward-arcs to represent
the dependency.

The first condition expresses that the initial state is consistently represented. The second condition
needs a more rigorous analysis, so I will detail why individual steps ensure that the union computa-
tions use only consistent results of the former steps. Each step of the parallel saturation algorithm,
which extends the represented set of states, uses only a decision diagram node if it represents a fin-
ished part of the state space and it has already been put into the decision diagram data structure
i.e., the UT. Correct operation of functions NodeSaturated, PRelProd and PSaturate ensure that
only checked-in nodes are used during the construction of the state space representation, which is
summarised in the following.

Saturating the nodes: PSaturate starts the saturation of a node by firing the transitions. The
consistency of the computations in PSaturate is preserved if the results of the function PRelProd
are checked-in to the UT . The function PSaturate does not place nodes into the decision diagram
data structures but if the saturation of a node can be finished then function NodeSaturated is called
at to finalise the results and data structures.

Firing transitions: Transition firings are executed by the function PRelProd, which sets upward-
arcs: in Algorithm [15at [line 10|and [line 18/an upward-arc is set to represent the dependency which
means the upper node can not be finished before the actual node is saturated. The function PRelProd
returns in both cases the terminal node 0. The callee that is either function NodeSaturated, PRelProd
or PSaturate will examine the returned value and it realizes (in the different procedures) at
lline 16/and [line 15|that the returned value is the empty set, so no further work has to be done now.
Upward-arcs will be processed in later phases by other threads.

The result of PRelProd on which the union operation is called in other operations is consistent as:

« PRelProd returns the node O if the computations are not finished in lower levels (this also
means a new upward-arc to represent the dependency) or

« PRelProd detects that this step has already been executed and returns a consistent value from

the FC (the returned decision diagram node is also in the UT).

Transition firings executed by the function PRelProd only returns a node different from O if the
result is in the FC and it is a saturated decision diagram node (depicted at[line 14). This node can be
safely used by other functions and threads to compute consistent results. The results of PRelProd are
used in function PSaturate, PRelProd and NodeSaturated at|line 15| line 21| and [line 14|to compute
the new set of states.

Adding new nodes to the decision diagram: We have to overview how new nodes can appear
in the decision diagram. The parallel saturation algorithm finishes the saturation of a node by calling
function NodeSaturated. Function NodeSaturated checks-in the argument node at and places
the actual node into the MDD data structure. This node will not change in the future. Function

4.6. IMPLEMENTATION 63

NodeSaturated also updates the FC at and ensures that the cache hits will contain saturated
nodes that can be used safely in the operations. Note that when the cache hit is not saturated, then
function PRelProd will only return O instead of the unfinished nodes in FC.

Using nodes in the procedures of saturation: As it was discussed, a complex traversal strategy
ensures that the decision diagram nodes are only used for the construction of the state space repre-
sentation after they are checked-in. Decision diagram nodes may reach the union operation in the
following ways:

« When a node is saturated, the state set is extended by calling the operation union in function
NodeSaturated. In this case, the algorithm computes the union of a recently saturated node
with the old arc of the upper node, which has already been saturated. Both nodes are checked-
in, the result is consistent.

« The other case is when computation of the next-state succeeds as the node is found in the cache.
The algorithm uses the cache value only in the case if it is saturated, so this argument of the
operation is finalised. The other argument of the union is also saturated as it was formerly the
endpoint of an arc of the node. As both nodes are saturated, which means that they were put
into the data structures by function NodeSaturated, the result will also be consistent.

Arclocking: Besides that the operation of the union is called on saturated nodes being checked-in,
mutual exclusion of the arcs has to be ensured. Lock(tx[i]) prevents other threads reading this arc
during the union computation and arc manipulation, so the consistency of the operations is also en-
sured. As well known locking mechanisms are used inside the function Lock, we can expect that the
synchronisation of the data structure is correct. Note that as we formerly discussed, union computa-
tions are only called on nodes being checked-in to the UT, so only saturation and transition firings
can modify the actually locked node. As parallel saturation preserves the saturation iteration strategy
according to [ELS06], only function PSaturated and NodeSaturated will manipulate the actual node
being locked, which means that only local arc manipulations are executed, it is enough to lock only
the arcs during the traversal.

4.6 Implementation

We have implemented the formerly mentioned algorithms in the PetriDotNet framework[[17]. We
have developed a complex synchronisation mechanism at the data structure level of saturation to
prevent data races and to ensure consistent execution. We have implemented a mutually exclusive
access to the data structures of the next-state computation, such as state transition representations
and globally reachable states. In addition, the implementation also pays attention to the access of the
data structures used for mapping the Petri-net states to the symbolic data structures.

The access to the MDD data structures is serialised at every level, in this way we can preserve
the consistency of the data structures. MDD operations manipulate the data structures and rely on
the synchronisation mechanisms of the UT, FC and the other data structures. The fact that MDD
operations do not modify the nodes which are checked-in to the UT significantly reduces the syn-
chronisation cost. However, this approach will increase the number of produced nodes: unnecessary
nodes should be cleaned from the data structures. Every node has a counter counting the references
pointing to it so that we can decide at any time to clean the data structures and the algorithm can eas-
ily decide if a node is necessary. The algorithm introduced in [ELS06] exploited the FC data structures

64 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

and used it as a pre-cache mechanism to avoid redundant state space exploration. We have imple-
mented this method in our approach too. Using this cache for synchronisation helps avoid redundant
state-space computations. We only have to register the event and the node immediately if the event
is executed on it. All other threads intending to explore the same sub-state space will realise that it
is now executed, and the new threads just register themselves for the result. The synchronisation of
this cache is important. Our approach does not use a global cache; instead, we assign a cache to each
level. This reduces the synchronisation costs. The same strategy is used for the union operation, as
the algorithm does not lock the operations, but the MDD levels and the cache data structures, for
the time of modifications. This strategy enables the parallel computation of union operations even
with common arguments, which was a shortcoming in former algorithms. This leads to increased
parallelism and reduced overhead.

4.7 Evaluation of the Algorithm

In this section, the measurements of the new algorithm are presented, and the approach is compared
to the former algorithm of [ELS06].

4.7.1 Environment

We have developed an experimental implementation in the Microsoft C# programming language. We
used some of the framework’s built-in services, like the so-called ThreadPool and also the built-in
locking mechanisms. We examine our algorithm and compare our approach both to a sequential
algorithm written in C#, and to the implementation written in C programming language [ELS06]. We
used a desktop PC for the measurements: Intel Core2 Quad CPU Q8400 2,66GHz, 4 GB memory. For
our implementation we used Windows 7 Enterprise, NET 4.0 x64. To run the implementation from
[ELS06]] we used Ubuntu 10.10 with gcc-4.4.. Comparing the performance of [ELS06|] and my approach
implemented by our team is a little bit difficult. In order to make the comparison more realistic, our
implementation was extended to handle Kronecker matrix based next-state representation. However,
our implementation computes the local states dynamically. In contrast the algorithm [ELS06] needs a
pre-computation step and works with a formerly computed Kronecker representation, so they are two
different variants of saturation. Former measures|[CMS05] showed that with the use of precomputed
Kronecker representation 50-60% speedup can be gained. However in most cases, the user has to
adapt the model to some special requirements|[CMS05], so it is more difficult to use. The models we
used for the evaluation are widely known in the model checking community. Flexible Manufacturing
System (FMS) and Kanban system are models of production systems [7]. The parameter N refers to the
complexity of the model, and it influences the number of the tokens in it. Slotted Ring (SR) and Round
Robin (RR) are models of communication protocols [CMS05]], where IV is the number of participants
in the communication. The state spaces of the models range from 10'5 up to 10'°°,

4.7.2 Objectives of the Measurements

Measurements were conducted to evaluate both runtime and memory requirements. PetriDotNet was
developed in the Microsoft C# programming language, so the program runs in a managed environ-
ment, memory measurements are very difficult. The implementation (work of Attila Jambor, Tamés
Szab6 and Daniel Darvas) follows best-practices from the community and some special heuristics
were also added (such as reusing freed node data structures). However, memory consumption was
still not optimal and varied from run to run. The reason for this phenomena is that parallel threads

4.7. EVALUATION OF THE ALGORITHM 65

SR(N) 30 | 60 | 90 | 120 | 150
sequential | 0.66s | 4.5s | 14.8s | 34.7s | 70.7s
parallel 0.64s | 4.55 | 14.4s | 33.8s | 65.2s
speed-up 1.03 | 1.0 | 1.027 | 1.027 | 1.084

Kanban(N) | 50 100 | 200 300 400
sequential | 0.5s | 5.1s | 63.2s | 295s | 890s
parallel 0.4s | 2.6s | 20.5s | 80.6s | 228s
speed-up 1.25 | 1.96 | 3.08 3.66 3.90

FMS(N) 50 100 150 200 250
sequential | 1.7s | 14s | 61s | 180s | 444s
parallel 1.2s | 79s | 27.1s | 67s | 143s
speed-up 1.41 | 1.77 | 2.25 2.68 3.10

Table 4.1: Runtime results of our algorithm

SRIN) [30 [60 [90 [120 | 150
sequential | 0.2s | 1.4s | 4.4s | 10.2s | 19.7s
parallel | 0.4s | 2.3s | 7.5s | 17.1s | 34.4s
speed-up | 0.5 | 0.61 | 0.59 | 0.6 0.57

Table 4.2: Runtime results of [ELS06]]

consumed the memory in an irregular manner and depending on the garbage collection strategy, the
runs had different runtime characteristics. As optimizing memory consumption in a parallel environ-
ment is a challenging task, we did not aim to provide proper memory measurements. However, as
an observation 20-100% memory consumption increase was caused by the parallel algorithm. A more
rigorous analysis is left to the future.

4.7.3 Runtime and speed-up results

Slotted Ring: The regular characteristic of the model suggests that it cannot be parallelised well.
Our measurements show that the parallel algorithm has the same performance as the sequential one.
Also, as the size of the model grows, the parallel algorithm outperforms the sequential one up to
8.4%. Comparing this result with the runtime of the former implementation (in Table [4.2), the version
written in C is faster as the programming environment yields less overhead. In addition, the solution
in Table[4.2)exploits precomputed next-state representations, whose computation time is not included
in these measurements.

However, we can also take another viewpoint and examine the relative speed-up of the algorithms
compared to their sequential counterpart. When we examined the relative speed of the algorithms,
our approach reached 8% runtime gain compared to its sequential counterpart, while the old one from
[ELSO06] just about 40% runtime penalty. This suggest that the new locking strategy and iteration lets
the algorithm exploit more efficiently the additional computational power of multi-core computers.

Kanban: The introduced algorithm turned to be very efficient for the Kanban model. The state
space exploration of the Kanban system was 25% faster with the parallel algorithm for still small
models. However, for bigger models, the performance gain of the parallel algorithm increased. The

66 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

model | Dining Philosophers | Round Robin
size 1000 1000
sequential 0.91s 17.9s
parallel 1.35s 34.6s

Table 4.3: Runtime of not parallelizable models

measurement showed that the parallel algorithm is nearly 4 times as fast as the sequential (Table [4.1).
Comparing my algorithm with [ELS06|] shows that the parallel algorithm from [ELS06]] is about 50%
slower than its sequential counterpart. Direct comparison is omitted here as we can not reproduce
the measurements of [ELS06], for us, the tool of [ELS06] did not produce the results of that paper
(indeed, it produced much worse).

Flexible Manufacturing System: The FMS model has a huge state space and complex interactions,
which means that saturation faces problems during the state space traversal. However, this irregular
structure of the model and its state space yields more work for the threads of the parallel algorithm: the
parallel algorithm runs at least 41% faster than the sequential one. For large models, the sequential
algorithm needs 3 times as much time as the parallel one. We could not compare this result with
[ELS06]] due to a segmentation error.

Models where parallel execution is not efficient: The efficiency of symbolic methods is highly
model-dependent. This is especially true for saturation and parallel saturation. Those models that
can not be verified by saturation due to the high memory consumption, these models could also not
be verified with parallel saturation. As parallel saturation usually uses 10-50% more memory than
the sequential one, the models which do not fit into memory in the sequential case will also not fit
in the parallel case. On the other side, for highly regular models, where sequential saturation turned
out to be extremely efficient, parallelisation leads to 30-50-100% runtime overhead. These models
usually have only a few nodes at each level, so they provide less work for parallel threads. Moreover,
saturation usually finishes state space generation within a second, so the overhead of creating threads
also makes worse the performance of the parallel algorithm. In the following table (Table[4.3) we show
the runtime results for two extremely big, but extremely regular models of [CMSO05]]. We present here
the measures for our algorithm, but the former approach [ELS06|] produced similar runtime results in
general.

4.7.4 Scalability

In this section, the scalability of the new parallel algorithm is investigated: the scaling of the runtimes
with the number of used processors is measured. The goal of the new algorithm was to reduce the
synchronisation overhead and increase parallelism in the execution. In this section, I show the results
of the FMS model with parameter N = 200. The execution time of the parallel algorithm is compared
to the runtime of the sequential algorithm, and the number of available processors is increased to 1-
2-3-4 CPU-s. Figure 4.4/ shows that the algorithm scales well with the growing number of processors.
Also, the algorithm is faster than the sequential one still on one CPU, as it can efficiently exploit
hyper-threading technology and that we can run multiple threads on one CPU.

We also examined the scaling of the runtimes with the growing size of the models. Figure
depicts the runtimes of the parallel and sequential state space generator algorithms presented in this

4.7. EVALUATION OF THE ALGORITHM 67

200
150
5 parallel
< 100 _
£ —a&— sequential
T 50
0

1 2 3 4
Number of CPU-s

Figure 4.4: Runtimes of our implementations, FMS model

paper for the FMS model. The advantage of the parallel algorithm grows with the growing number
of tasks meant by the bigger models (N is the size of the model).

500

400 '

300 /

200

—¢— sequential

parallel
100 /
J/
0 .
0 50 100 150 200 250
N

time (sec)

Figure 4.5: Scaling of the parallel algorithm

4.7.5 Summary

The introduced parallel algorithm is more efficient than its sequential counterpart regarding the run-
time performance. However, from the memory consumption point of view, the situation is different:
as parallel threads start computing more “dead endings” (directions where no solution can be found),
memory consumption is usually 10-50% more than for the sequential algorithm. Comparison of the
introduced approach and the former one of[ELS06] is quite difficult: as they use neither the same
kind of saturation algorithm nor the same programming environment, runtime results are not easily
comparable. However, the speedup factor compared to the sequential counterparts of each algorithm
suggests that the introduced new locking and synchronisation strategy leads to the more efficient
parallelisation of the computations.

68 CHAPTER 4. PARALLEL SATURATION-BASED STATE SPACE EXPLORATION

4.8 Thesis 2: Parallel State Space Exploration Techniques

I investigated various techniques to speed-up the model checking algorithms. Extending existing
algorithms to exploit the computational power of modern multicore computers necessitates the con-
struction of rigorous parallel algorithms and synchronisation mechanisms. Extending symbolic al-
gorithms to run parallel is especially challenging due to the complex data structures and intricate
symbolic computations. Saturation uses a special iteration strategy for traversing and building the
symbolic representation of both the state space and the next-state relation in an incremental manner,
which means that the steps heavily rely on the results of the former computations. This makes the par-
allel implementation a challenging task. I investigated the existing parallel saturation algorithm, and
I identified some points where it could be improved. I introduced a new synchronisation mechanism
which reduces the synchronisation overhead and it could significantly speed up the model check-
ing algorithm. The developed parallel algorithm could exploit the computational power of modern
multi-core processor computers in saturation-based state space exploration.

Thesis 2 Ideveloped a parallel saturation based state space traversal algorithm using a novel synchro-
nisation method and locking strategy. The new locking strategy applies a fine-grained locking mecha-
nism, which only synchronises the manipulation of the state space representation. The algorithm prevents
the occurrence of inconsistent states and ensures the correct execution of the saturation iteration order.
The new synchronisation algorithm decreased the synchronisation overhead and led to increased paral-
lelism. The new parallel algorithm can exploit the computational power of modern multicore computers
by decreasing the synchronisation overhead — for certain benchmark models — significantly. I proved the
correctness of the new parallel algorithm.

Various measurements showed the competitiveness of the new algorithm on benchmark models.
The new algorithm scales with the growing number of computation units better than the former
approaches. The new synchronisation algorithm significantly reduced the synchronisation overhead,
and it could lead to significant performance gain compared to former approaches.

Publications: My new results introduced in this thesis were published in the conference paper

[17].

Chapter 5

Synchronous Product Generation for
LTL Model Checking

This chapter introduces my results in the field of automata theoretic model checking of regular prop-
erties. As I showed in the former chapters, CTL-based structural model checking was investigated
by many researchers and used for the model checking of ordinary Petri nets. However, there was a
need for a larger set of specification languages. LTL model checking has different expressive power
and it is considered more convenient for engineering applications [Var01]]. My work in this chapter is
a step towards providing language theoretic LTL model checking by using regular properties as the
input of the model checking procedure. Later, this research was continued by my colleagues, and it
was extended to provide saturation-based verification for the full set of LTL properties.

Publications related to this chapter. The initial results of this chapter were published in and
than it was continued in [[20]], this chapter is based on the later paper. Based on these results, the syn-
chronous product generation approach was further improved later by my colleague, who combined

it with efficient on-the-fly LTL model checking algorithms in and

Implementation and contributors. All the algorithms presented in this chapter were imple-
mented and made available in the PetriDotNet framework as a joint effort of the development team.
The algorithms of this section were implemented by my student, Vince Molnar.

5.1 Introduction

Model checking requires that the property should be expressed either declaratively in a temporal logic
language or imperatively by using, for example, an automaton formalism.

Many kinds of properties might be of interest from which safety properties constitute a significant
part of the verification problems [BKLO08].

The verification of safety properties is often reduced to analysing finite traces. Regular languages
can express a safety subset of LTL properties, and finite automata accept regular languages describing
safety properties. In addition, the finite automaton formalism is used to express safety properties:
finite automaton is a simple formalism, can be used conveniently and can naturally express finite
error traces. For these reasons, it is widely used by the verification community, but it is also widely
accepted by software engineers to specify requirements (for example, in the form of protocol state
machines). Automata can be used to specify the correct or the incorrect runs of the system. However,

69

70 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

when applying model checking, traditional automata-theoretic model checking approaches require
that the automata used by the algorithm represent the incorrect runs of the system. This can also be
achieved in the case when the given automaton describes the correct traces: the complement language
will define the incorrect behaviour, and an accepting automaton can be constructed for this purpose
by switching the accepting and non-accepting states of the property automaton.

When the automata describing the violations of the property is given, automata-theoretic model
checking can be applied, which involves two main challenges:

1. compute the synchronous product of the system automaton with the property automaton de-
scribing the possible property violations, and

2. check if the product language is empty.

Constructing the synchronous product is a computationally expensive task as it can easily blow
up the size of the state space representation. This causes not only a storage complexity, but it also
makes language containment analysis difficult. Various techniques exist to decrease resource con-
sumption and make the verification more efficient: one of them is on-the-fly model checking. Doing
the verification on-the-fly during the state space traversal has two advantages:

+ Synchronous product computation may filter out parts of the state space which are irrelevant
for the verification.

« The verification can stop immediately when an error is found, and the remaining parts of the
state space will not be explored.

On-the-fly model checking is widely used with explicit state space traversal techniques. How-
ever, when extending symbolic state encoding techniques with on-the-fly model checking capabili-
ties, synchronous product computation becomes a complex problem. Symbolic synchronous product
computation involves two main problems to solve:

« encoding both the property automaton and also the state space symbolically, and

« synchronising the steps taken through the symbolic next-state representations.

These tasks are far from trivial. The big advantage of symbolic methods is that they can handle a
huge set of states (and state transitions) together. However, this makes the synchronisation problem
difficult: Synchronous product computation relies on stepping the transitions of the state space and
the property automaton together. As symbolic methods handle sets together, doing element-wise
synchronisation is challenging.

Some attempts [CGH97; STV05] target to combine traditional BDD-based symbolic approaches
with automata-theoretic model checking. These approaches encoded the synchronous product and
the transition relation of software and hardware models. However, these approaches do not provide
a solution for asynchronous systems.

My goal was to devise an algorithm which can exploit the efficiency of saturation in automata-
theoretic model checking.

In the following I will overview the general scheme of the automata-theoretic model checking
approach and then I introduce my contributions:

« [have identified a special form of finite automata which has the necessary properties to serve
as an input for the synchronous product computation.

« Iinvestigated the properties of this special class of finite automata.

« I devised an algorithm based on saturation to compute the synchronous product of the automa-
ton and the state space on-the-fly during the state space traversal.

5.2. PRELIMINARIES 71

5.2 Preliminaries

In this section, the preliminaries of my work is introduces. I will shortly overview the target specifi-
cation language and also the model checking approach, which serves as the algorithmic framework
for my contribution.

5.2.1 Property Specification

In this thesis, I aim to provide an efficient verification technique for regular safety properties, which
can be represented by a finite automaton. This class of properties consists of invariants, reachability
and even more complex properties.

Regular expressions and LTL can be both used to define safety properties. However, due to the
semantic difference, they used to be interpreted differently.

In the following, we will consider the runs of the system as paths/trajectories, where each state
is consistent with a set of atomic propositions from the set of all atomic propositions AP.

The properties under consideration are defined below (according to [BKL03])).

Definition 1 (Safety Property) A property P is called safety property, if for each violation o of the
property, there exists a finite prefix & of the violation such as ¢ = & - 0yep, and oyep, is the arbitrary
remaining part of the trace, then 6 can not be a prefix of any trajectory satisfying the property, so for
anyop = P,opNé = 0. O

Definition 2 (Regular Safety Property) Safety property over AP is called regular if its set of bad
prefixes constitutes a regular language over 247, 0

For example, invariants are regular safety properties: let invariant property P;,, prescribe state for-
mula ¢ to be satisfied by all the states, then the violations of P, are characterized by the regular
expression: ¢* (—¢) true*. true* captures the fact that for regular safety properties, after finding an
accepting path, the remaining behaviour of the system is not relevant. When dealing with LTL, it is
assumed that the remaining behaviour of the system contains at least one infinite run. However, the
model checking approach I suggest will terminate immediately when reaching an accepting state.

In the following the semantics of regular expression will be interpreted as follows: if a prefix
of a trajectory leads to an accepting state of the automaton, then the trajectory is accepted by the
automaton. So the expression true* is implicitly assumed to be at the end of each regular expression
(for example, ¢* (—¢) true* will be equal to ¢* (—¢)).

5.2.2 Automata Theoretic Model Checking of Regular Properties

Deciding whether a system M satisfies a regular property P over a set of atomic propositions AP
is reduced to checking language emptiness of the system constructed as the parallel (synchronous)
composition of the model M and the automaton A for (the violations of) property P (referred to as
a property automaton).

The language £(M) describes the runs of system)M and the language of the possible violations
of property P accepted by automaton A is denoted by £(A). The model checking procedure then
reduces to check if £L(M) N L(A) = (. If the intersection of the languages is not the empty set that
means the existence of a feasible error trace. Figure [5.1| depicts the general workflow, which either
produces an error trace (an element of the language accepted by the product automaton) or it proves
the correctness of the system.

72 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

{ Property automaton =~ ——— { Error trace |
l_____________! e ——

‘ r————————————

Synchronous product | Synchronous product [Checking language
computation L automaton | emptiness

-
. | ;' ____________ |
System automaton =~ b——— —> oK |
]]

Figure 5.1: Automata theoretic model checking

Formally an automaton A is a tuple (X, Q, A, Qo, F'), where X is a finite alphabet, () is a finite
set of states, A C Q X X X Q is a transition relation, Qg C (@ is a set of initial statesand F C Q) is a
set of accepting states. A run of an automaton over an input word is a sequence of states starting with
an initial state, where the transition relation holds between the consecutive states. A run is accepting
if it passes an accepting state in F'. In case of finite automata modelling regular safety properties, the
alphabet is the set of possible valuations of atomic propositions in the property: ¥ = 24 In practice,
the model checking procedure consists of constructing the synchronous product of the automaton and
the transition system, and then finding accepting runs. The product inherits the accepting states of
the property automaton and search procedure can be defined algorithmically as searching the product
for accepting states.

Constructing a finite automaton of the system description necessitates the traversal of the state
space (resulting S) and the possible state transitions . The state space representation is considered
as a finite automaton in the automata theoretical sense with all states as accepting. The reason behind
representing the state space as accepting is that the synchronous product will inherit the acceptance
condition of the property automaton.

Checking language emptiness is an important part of the automata-theoretic model checking al-
gorithm. In this thesis, I reduce language emptiness checking to checking if an accepting state is
reachable in the synchronous product. This can be achieved on-the-fly during the traversal, as I will
show later.

LTL is a more convenient and wide-spread formalism to express properties so I will also use LTL
requirements during this thesis. As in this thesis we will consider only reactive models, which do
not contain deadlock, we can assume that regular properties are a subset of LTL properties. This also
demonstrates that even though the introduced model checking algorithm necessitates the automata
formalism as an input, the approach is neither restricted strictly to one property specification language
nor to one specific automata formalism.

In the following, I show how properties can be specified to support synchronous product compu-
tation based on saturation. A new form of finite automata is introduced which supports the efficient
encoding of the synchronous product and the synchronisation of the steps of the state space traver-
sal. On top of the new automata formalism, I build a saturation-based on-the-fly model checking
algorithm.

5.2.3 Synchronous Product

The synchronous product of the model M is defined by interpreting the transition system generated
by M as a (finite) automaton. This automaton represents the possible states, i. e., the state space S. A
labeling function over S is defined as L : S — 24" assigning a valuation of the atomic propositions
of P to each state of the state space S (of M). The alphabet of the automaton corresponding to M is
the same as that of the property automaton: 247, A/ is extended to support composition Inputs of its

5.3. SPECIAL ENCODING BASED ON CONSTRAINED SATURATION 73

transitions are the valuations assigned to the target state by L. Synchronous composition with this
automaton forces the property automaton A to read the valuations that appear on a state sequence
of M. Regarding the structures defined so far, the synchronous product can be defined as follows:
Mx A= (25 xQ,A%, Sinit X Qo, F), where A* = {((s,q),a, (s',¢'))|(s,s') € N, {q,,¢) €
A,a=L(s)}.

5.3 Special Encoding Based On Constrained Saturation

In this section, I will characterise a special form of finite automata on which the symbolic encoding
relies. After that, I propose a new encoding that can be used as an input for the constrained saturation
algorithm to compute the product state space. This efficient encoding serves as the background of the
new model checking algorithm of Section [5.4]

5.3.1 Tableau Automata

The first step in automata theoretic model checking is the translation of the property into a finite
automaton. Observing the output automaton of widely used finite automata conversion algorithms
such as [Brii93]] and also tableau-based conversion algorithms (such as [Ger+95; SB00; Kes+93]) for
LTL, I identified a common structural property that can be exploited to encode and compute the
product efficiently. I refer to these kinds of automata as tableau automaton.

Definition 3 (Tableau automaton) A tableau automaton is a tuple (AP, 3, Q, A, Qo, F, L™, L™),
where

« AP is a set of atomic propositions,

« ¥ = 247 is the alphabet of the automaton,
« (is the set of states,

« A C @ x @ is the transition relation,

Qo C Q is the set of initial states,
« F C (@ is the set of accepting states, and

« LT:Q — 247 and L™: Q — 247 are labeling functions, LT assigning propositions that must
hold in the given state, while L~ assigning those that must not. O

A run of a tableau automaton over an input word is also a finite sequence of states qoq; . . . starting
with an initial state g9 € Qp, but unlike simple automata, there is an additional requirement beyond
satisfying the transition relation. For every i, the input letter o; € 247 of the word representing a
valuation of the atomic propositions must contain every proposition assigned to ¢;+1 by L+ and must
not contain any assigned by L~, formally: L1 (g;+1) C «a; and L™ (g;+1) N o = (). Accepting runs
are defined the same way as for finite automata.

At this point, it is important to emphasise that tableau automata are only a special form of
finite automata, with the same expressive power. An equivalent finite automaton has the same
states (including initial and final states), the same alphabet, and a transition relation in the form
of U(g.gnealld, o) |IL*(¢") € o, L~ (¢') N = (0}. Because of this equivalence, we will often refer
to a finite automaton directly corresponding to a tableau automaton to be in tableau form. In Section
[5.3.3]I will show that every finite automaton can be transformed into this form.

74 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

(a) By definition (b) Compact repre- (c)Tableau automaton
sentation

Figure 5.2: Three forms of a finite automaton corresponding to the regular property “b* (a A b)” (LTL
property “a Rb”).

In the following example, we will use a safety property which can be expressed either with the
help of regular expressions or by using the LTL language.

Figure |5.2| shows different representations of a safety property expressed as a regular expression
b* (a Ab) and an LTL expression aRb. On Figure[5.24] the corresponding automaton is shown exactly
as it is described by the definition: each transition in the transition relation gets an own arc. Labels
of the arcs are the sets representing valuations of the atomic propositions a and b. Figure shows
the same automaton in a more compact form, merging arcs and characterising their labels with a
conjunctive expression. This automaton is in tableau form since all of the arcs targeting the same
state are labelled by the same conjunction. Moving these labels to the state itself results in a tableau
automaton shown on Figure Let ¢4 denote the conjunction on the arcs targeting ¢g. Then the
labelling functions Lt and L~ are defined such that every atomic proposition that is positive in ¢, is
in L™ (q), while those that are negative are returned by L™ (q).

5.3.2 Encoding the Product Automaton

In this section, I investigate the main aspects of the symbolic encoding, and I suggest a solution which
supports the efficient application of saturation.

For now, we assume that the state space and the next state relations of the system are already
computed. Later in Section I will show an on-the-fly construction algorithm. The specification
is given as an automaton. Since the main goal is to exploit the power of saturation in model checking,
we need to define the states and transitions in the way we did in Section Formally a product
system is built which is a tuple M* = (§*, S8 ., E*, N'*) collecting states in S*, initial states in
S+ ., and transitions into N> preferably partitioned by events ¢ € £* according to the events of the
transition system.

Besides keeping the original state variables of the transition system, one or more additional vari-
ables are needed to encode the states of the automaton representing the property Note that every
event of the product system must affect the encoding variables of the automaton, since their steps
are synchronised. For this reason, to keep the efficiency of the saturation iteration strategy, these

variables need to be situated in the lower levels of the decision diagram encoding: inserting them

"The property automaton is typically small enough to get encoded into a single variable, but a binary encoding (or
anything in between) can also be used for a more compact representation.

5.3. SPECIAL ENCODING BASED ON CONSTRAINED SATURATION 75

immediately above the terminal level is an ideal choice. This way the encoding has no impact on the
Top values of system events. Since the efficiency of saturation iteration strategy is highly dependent
on the Top values of system events, not ruining the Top values produced by a good variable order is a
sane requirement towards any algorithm.

The encoding of the transitions is a bit more challenging: as mentioned in Section [5.2.3|the steps
of the system model and the property automaton need to read the same input letters, i.e. valuations of
atomic propositions in the checked property. Thus it is insufficient to simply compute the Cartesian
product of the next state relation of the model and the transition relation of the automaton.

In Section[5.2.3] we have already defined the product automaton of M and A. To define the next
state relation of the product system, we will drop the input labels of the transitions of the automaton.
Saturation and model checking altogether is not interested in what input the product automaton reads
during the state space traversal as long as the system model and the property automaton both read the
same word. Formally, the next state relation of the product system is N = {{(s, ¢), (s, ¢'))|3a €
24P ((s,q),, (s',¢')) € A*}. While this definition is mathematically correct and can even be
realised as conjunctive-disjunctive decomposition suitable for saturation [CMS05] (i.e. events are kept
and the next state relation is the composition of next state relations of events), it fails to accomplish
one of our main goals: preserving the Top values of events.

If the synchronisation on the input word is encoded into the next state relation, Top values of
every event are inevitably raised to the same value that can even be K, the highest level possible. This
means that saturation’s strategy to apply the next state relation in a finer granularity is spoiled, every
event is processed on the same level and the optimisations of saturation targeting concurrency are
lost. To understand the reason for this rise in the Top values, we define the subject level of atomic
propositions.

We assume that the truth value of an atomic proposition is only dependent on a single state
variable, we call this the subject of the atomic proposition. Let Sub(p) denote the level on which this
variable is encoded in the decision diagram. Due to the synchronisation, each step of the system model
results in a step of the property automaton. A step of the property automaton requires a full valuation
of the atomic propositions, so every event ¢ € £* of the product system now depends on all variables
that are subjects of any p € AP. By definition, this means that supp(e) 2 {i|3p € AP, Sub(p) =i},
i.e. the support of € contains every level encoding variables that are subject to an atomic proposition
in AP. It is easy to see that Top(e) is now at least max{i|dp € AP, Sub(p) = i}. For an example,
imagine a property in which subjects of atomic propositions cover every state variable, so regardless
of variable ordering, all Top values are raised to the maximum.

Since this is clearly not what we want to do, I devised a solution that preserves the Top values of
the events by decomposing the problem, separating the next state relation and the constraint of reading
the same word. This enables us to keep saturation’s every advantage.

My proposed solution exploits the way tableau automata work. Furthermore, I employ the main
idea of constrained saturation[|ZC09]: check and fire. Instead of intersecting relations, I 1) relax the
next state relation of the product to /' x A in order to ignore the input of the participating automata
and then 2) only allow state transitions reaching legal states. A reached state (s, q) is legal, if the
valuation L(s) determined by the system’s state satisfies ¢, i.e. all propositions in L™ (g) are true
and those in L~ (q) are false. I use the characteristics of tableau automata to be able to validate states,
not steps — just like constrained saturation does.

I have to constrain the steps of relaxed next state relation R = A X A to traverse only legal
states. As I utilise the constrained saturation algorithm for this purpose, I have to compute the input
constraint for the algorithm. We have to recall now that constrained saturation computes the set of
states AV'(S) NC in each step during the state space traversal, where C is the constraint characterising

76 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

possible states. Following this idea, I define the constraint as the set of legal states: C* = {(s, q)|s €
S,q € Q,L"(q) C L(s),L™(q) N L(s) = 0} (where s corresponds to the vector representation of s).

Last but not least, the initial states of the product system can be obtained by pairing the appropri-
ate initial states of A with initial states of M. The property automaton is typically interpreted such
that the input of the first step from the initial state is the valuation implied by the initial state of M.
This means that we initialise the property with the current (initial) state of the system, observing its
behaviour starting from this point of time.

In Section I will show how to provide an on-the-fly model checking algorithm based on the
presented approach.

5.3.3 Investigation of Correctness and Efficiency

In order to prove the correctness of the algorithm, it is necessary to show that using the introduced
next state relation and constraint, constrained saturation applies the same state transitions as satura-
tion would use the previously defined next state relation N/'*.

Theorem 1 Given a set of states S, a product next state relation N'*, a relaxed next state relation R
and a constraint of legal states C* the constrained saturation algorithm with R and C* computes the
same set of states reachable with one step from S as the saturation algorithm does with N'*. o

The reader shall consider the definitions of Section and in order to prove that the set
of states R(.S) NC* constrained saturation computes are equivalent to N/*(.S) directly computed by
saturation. The equivalence holds because N/* contains only legal state transitions: while R is less
strict, C* restricts it to legal states. Due to the introduction of tableau automata, constraining the
transitions or the target states has the same effect.

I will examine the size of tableau automata in general. It is easy to see that most automata are not
in tableau form, so they need to be transformed to get the corresponding automaton.

Theorem 2 Given a (finite) automaton A with a state count of n over valuations of atomic propositions
AP as an alphabet, a tableau automaton accepting the same language can be constructed with a state
count at mostn - O (2|AP|). o

Proor Constructive proof. Let ¢’ be a state of A with input transitions § = {{(q, @, ¢') € A}. Denote
the set of valuations appearing in these transitions by o = {«|3(q,a,¢') € §}. Let ¢, denote a
logical function in minimal disjunctive normal form that is true for exactly the valuations in ¢ (such
an expression always exists). Finally, denote the conjunctive parts of ¢, by c(¢o) = {¢ }.

If |c(¢o)| = 1, replace the parallel transitions with a single one of the tableau automaton, then
label ¢’ according to ¢,. Otherwise, an automaton accepting the same language is obtained by splitting
q into |c(d,)| states {q'}, each of them with the same outgoing transitions and input transitions
defined by ¢ . Once every (potentially new) state is processed, the result is a tableau automaton.

To examine the number of resulting states, consider that every state will only be split once. The
number of states it is split into depends on the disjunction ¢, since every conjunction in it will
yield a new state. It is well known that the upper limit on the number of conjunctions in a minimal
disjunctive normal form of any Boolean formula over b binary variables is O (2b). As a result, every
state will be split into at most O (Q‘AP |) new states. =

Although this may sound very disappointing, I emphasize that widely-used tableau-based au-
tomata construction algorithms produce automata that are always in tableau form, so no more trans-

5.4. SATURATION-BASED ON-THE-FLY L'TL MODEL CHECKING 77

formation is needed. However, there may be a rightful need to further simplify these automata. For-
tunately, many methods aiming to reduce the size of the property automaton keep the tableau form,
such as those introduced in [EHO0|] excluding the reduction based on bisimulation, which can be
modified to preserve the tableau form in exchange for some loss of compacting power. Note however,
that for widely used regular safety and even temporal logic properties, the tableau form yields only a
constant factor growth in the size: the efficiency of saturation used to overcome this difficulty as my
measurements will also show.

5.4 Saturation-based On-the-fly LTL Model Checking

In the former section, I introduced an efficient encoding and computation scheme of the synchronous
product. Now, I extend this framework to provide efficient on-the-fly model checking. The novelty of
my approach is that it provides fully symbolic on-the-fly model checking, where both the state space
and the automaton is encoded. The proposed algorithm computes the synchronous product on the
fly during the traversal and searches for accepting states at each step.

5.4.1 Abstracting the Constraint

The presented algorithm of Section introduced an efficient encoding of the product system by
decomposing the transition relation into an over-approximating next state relation and a constraint of
legal states. I utilised constrained saturation to build the state space of the product system. I defined
the legal state constraint as set C* = {(s,¢)|s € Syen,q € Q,L1(q) C L(s),L™(q) N L(s) = 0}.
With the previously defined next state relation R and this constraint, the constrained saturation
algorithm explores the state space and builds a symbolic representation of the synchronous product.

Now I introduce an abstraction layer providing the ability to build the symbolic product rep-
resentation on the fly. This abstraction layer will “virtualize” the legal state constraint, letting the
algorithm build the abstraction without precomputing the state space of the system model. The vir-
tual constraint will encode the possible valuations and corresponding automaton states symbolically.
Suppose that AP is a list of atomic propositions p; ordered by Sub(p;), the level on which their sub-
jects are encoded. Then the constraint is the set (J,co(p1(q) X - .. X pn(q) X {q}) where p;(¢) is a
function assigning the possible valuations of p; that satisfies the labeling of ¢, i.e. p;(q) = {true} if
pi € L*(q), pi(q) = {false} if p; € L~ (q) and p;(q) = {true, false} otherwise. Figure [5.3|shows the
constraint of the example tableau automaton of Figure[5.2¢

In order to be able to use this abstract constraint for the on-the-fly traversal, I defined a function
to map between the abstract constraint and the concrete states. This function is depicted on Algo-
rithm[18] The function takes a constraint node c, a local state 7 and its level number /, and evaluates all
atomic propositions whose subject is encoded on level [in a fixed order. If i fulfils p (i.e. ap(i) = true),
then it steps downward in the decision diagram through the ¢rue branch (reaching c[true]), otherwise
through the branch labelled with false (reaching c[false]). This way the algorithm is able to locally
evaluate if a valuation of the global state satisfies the labelling of the reached state of the property
automaton.

This approach has the advantage of using the constrained saturation algorithm with only a slight
modification: the algorithm will only have to use the simple function described above to determine
the next constraint node based on the valuations of the local states currently processed. This way the
constraint only depends on the property automaton and can be built before starting the state space
exploration.

78 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

Algorithm 18. StepConstraint

input :c:node ¢,!: indices
1 // c¢: product constraint,
2 // i: 1index of state
3 // l: index of actual level
output :node

4 if [=1 then
5 L return c[if;

6 foreach p € AP, Sub(p) =1 do
7 | c<¢[p(i)]; // evaluate p on i

Figure 5.3: A constraint encod- 8 return g
ing the tableau automaton of

Figure

5.4.2 Units of Processing — A Framework for On-the-fly Model Checking

Based on the formerly introduced algorithms I developed an on-the-fly model checking framework.
This framework uses constrained saturation with the abstract constraint for the exploration of the
state space of the synchronous product. Now I extend it to be able to do on-the-fly model checking.
The building blocks of the algorithm are the recursive saturate function calls computing local fixed-
points. The introduced new algorithm combines the traversal with local accepting state detection, so
after each local fixed-point computation I apply a search algorithm to detect accepting states in the
sub-state space of the product.

The whole algorithm is similar to the constrained saturation algorithm, the extensions for being
able to compute the synchronous product on the fly are signed with asterisks on Algorithm [19|and
AcceptingStateDetection(t) is the function for searching accepting states locally in the sub-state
space represented by decision diagram node ¢.

The introduced algorithm is easy to extend with SCC detection algorithms from or other
arbitrary SCC detection algorithm to provide LTL model checking: the only modification is that we
have to change function AcceptingStateDetection(t) searching for accepting states to a function,
which looks for accepting cycles.

In order to evaluate the solution and compare it with traditional model checking algorithms, I use
an SCC detection solution of [[11]], which combined the traditional Emerson Lei [EL86]] SCC computa-
tion and an incremental approach of [Wan+01]]. This way my algorithm can also provide verification
support for the full set of LTL specifications and I am able to compare it with other LTL model check-
ing algorithms.

5.5. EVALUATION

79

Algorithm 19. ProdConsSaturate

Algorithm 20. RelProd

input :c,s:node
1 // c¢: product constraint,
2 // s: node to be saturated
output :node

input :c,s,r:node
1 // c¢: product constraint,
2 // s: node to be saturated,
3 // r: next state function
output :node

3 |+ s.level;r /\/’l_l;
4 t < new Nodey; pc < c¢; 4 if s=1Ar =1then
5 foreachi € S; : s[i] # 0 do 5 L return 1
x 6 | pc+ StepConstraint(c,i,1); 6 |« s.level:
7 | if pc # 0 then 7t 0
8 tli] « 8 pc G
ProdConsSaturate(pe, s[i]); o foreachi,i’ € S; : r[i][i'] # 0 do
9 | else %10 | pc < StepConstraint(c,i,1);
10 t[i] < sli; // mo steps 11 | if pc # O then
| allowed 12 | | w < RelProd(pc, t[i], r[i][i']);
“ ;epeat 13 if.u # 0 then
12 | foreachi,i' € S : r[i][i'] # 0do " if £ =0 then
x 13 pc < StepConstraint(c,i,1); 1 L t <= new Node;
14 if pc # 0 then 16 t[i'] < Union(t[i'], u);
15 u < RelProd(pc,t[i], r[i][']); L
16 Lt[i'] «— Union(t[i'], u); 17 t < ProdConsSaturate(c,t);
- 18 t < PutInUniqueTable(l,t);
17 until ¢ unchanged, 19 return t;

18 ¢ < PutInUniqueTable(l,t);
19 AccetpingStateDetection(t);
20 returnt;

5.5 Evaluation

We have developed an experimental implementation of the formerly introduced algorithms in the
PetriDotNet framework and evaluated it by comparing runtime results on well known concurrent
benchmark models, running the classic BDD-based algorithm of NuSMYV, the state-of-the-art SAT-
based algorithm IC3 [Bra+11]] of nuXmv, the saturation-based algorithm of ITS Tools [Dur+11] and
the introduced new algorithm called Tableau-ModelChecker, or shortly T-MC. The results are shown
on Table[5.1]

My algorithm was extended with SCC detection (from and [[2]}) to provide verification of the
full set of LTL as it is also done by the competitors (this work was done by Vince Molnar). Note that
if the comparison would only target regular safety properties, that would not be a fair comparison as
all the competitors do LTL model checking by searching for strongly connected components.

The algorithms were run by using the same memory and computational resources to be fair: the
computer used for the evaluation had Intel Xeon processors (4 cores, 2.2GHz) and 8 GB of RAM.

In Table —M) marks cases in which the tool ran out of memory, and —® is shown in case the
input model was not constructed in the format of a tool. It can be concluded from the results that my
new approach is competitive: ITS tool could significantly beat it for the Round Robin model, where
the task is a simple cycle detection (which is not the target of my thesis). For all other models, my
algorithm has the same runtime complexity, or it was faster than the other tools.

Figure[5.4|depicts a comparison of the scaling of the tools with the growing number of participants
in the Slotted Ring protocol. I investigated a simple safety property here to focus mainly to the
introduced new synchronous product generation algorithms (and not on the SCC detection problem).

80 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING

Table 5.1: Measurement results of state-of-the-art model checking tools and T-MC.

Runtime (s)

N
NuSMV nuXmv ITS-LTL T-MC
Counter-N, expression: =G (bity_1)
10 0.01 0.01 -0 <0.01
15 0.21 0.02 -0 <0.01
20 15.30 0.02 -0 0.01
50 >1200 0.04 -0 0.02
DPhil-N, expression: GF(HasRightN) — GF(HasLeftN A HasRightN)
50 >1200 178.87 0.22 0.16
100 >1200 >1200 0.64 0.60
200 —9 —09 2.19 245
300 — — 5.13 5.93
Kanban-N, expression: =G(Pback2 = N — 1V Pback3 = N — 1)
10 0.07 0.02 0.02 <0.01
20 9.51 0.02 0.03 <0.01
30 13.64 0.03 0.02 <0.01
SlottedRing-N, expression: ~G(H1; =0V G1 = 0)
5 39.43 0.03 0.06 0.02
10 >1200 0.11 0.22 0.07
50 >1200 6.10 18.33 2.69
100 —9 —9 168.73 16.51
SlottedRing- N, expression: ~G(Cn = 0)
5 14.45 0.04 0.03 <0.01
10 >1200 0.10 0.03 <0.01
50 >1200 5.87 0.19 0.04
100 —) —) 0.58 0.14
RoundRobin-N, expression: =G (true)
10 >1200 0.08 0.08 0.03
50 >1200 4.70 0.64 1.37
100 —09 —09 2.13 9.12
FlexibleManufacturingSystem—-NN, expression: F(PIs = P2s = P3s = N)
5 >1200 0.03 0.13 0.01
10 >1200 0.02 0.53 0.01
20 >1200 0.03 3.70 0.02

It shows that for properties having compact tableau representation my model checking approach has
competitive performance.

5.6. THESIS 3: ON-THE-FLY SYNCHRONOUS PRODUCT GENERATION FOR MODEL CHECKING

REGULAR SAFETY PROPERTIES 81
800 [[T1T []
—m— T-MC
—e— ITS-LTL
nuXmv
600 |- —— NuSMV N
E 400 -
.g
o~
200 |- —
0 JFH— |
|1 | | | | | |
2510 20 50 75 100 150
N

Figure 5.4: Slotted Ring, scaling (expression: “G(H; = 0V G = 0))

5.6 Thesis 3: On-the-fly Synchronous Product Generation for
Model Checking Regular Safety Properties

Users have to analyse various kinds of properties, which can be expressed with the help of tempo-
ral logics. CTL and LTL are widely used temporal logics and they have different expressive power.
Deadlock-freedom is expressible in CTL while fairness properties are supported by LTL. To support
the engineers in verification, it is suggested to provide verification for both specification languages.
I investigated the literature and efficient saturation based algorithms exist for the structural model
checking of CTL properties. However, LTL model checking lacks the verification support based on ef-
ficient symbolic algorithms. In this thesis, I focus on a significant subset of the LTL language, namely
regular safety properties. Model checking regular safety properties can be traced back to two main
problems: synchronous product generation and detection of accepting states. Synchronous product
generation is a difficult problem in a symbolic setting where one has to encode the property automaton
and has to synchronise the steps with the state space. This is a difficult problem as saturation tra-
verses the states in an irregular order which makes the synchronous product computation extremely
difficult. I propose an efficient technique to compute synchronous product on the fly during the state
space exploration and model checking of safety regular properties. The goal of the approach is to
enable on-the-fly model checking during the state space traversal.

Thesis 3 1developed a saturation based model checking algorithm for the safety regular subset of LTL
properties. I propose a symbolic encoding of the automaton, and I introduce a new symbolic constraint to
the saturation algorithm. I also introduce a new state space traversal technique to compute synchronous
product on the fly during the state space traversal and do on-the-fly LTL model checking. The new
algorithm served as the foundation of a new saturation-based LTL model checking procedure.

My solution is the first algorithm which provides verification for a rich set of specification lan-
guages based on the saturation algorithm. The new algorithm extends the set of systems and require-
ments which could be verified by saturation. Various measurements showed the competitiveness of
the new algorithm on benchmark models. In addition, the LTL model checker based on the new syn-

82 CHAPTER 5. SYNCHRONOUS PRODUCT GENERATION FOR LTL MODEL CHECKING
chronisation algorithm was the first which could verify LTL properties of the PRISE industrial case
study.

Publications: My new results introduced in this thesis were published in the paper [[20]. The results
contributed to the conference paper [[7] and journal papers [2]] and [[I]].

Chapter 6

PetriDotNet Model Checking
Framework

In this chapter, I put the pieces together and I introduce the PetriDotNet model checking framework.
This chapter encapsulates the former results and also the results of many collaborators into a con-
sistent, coherent framework. The main goal is enable users to use the algorithms in the modelling,
formalization and analysis of their problems. This part of my work bridges the gap between the sci-
entific results and the applications in the engineering domain and the introduced approach and the
framework serves as a usable solution for the verification engineers.

My contribution in this chapter is the the novel combination of the various algorithms that yielded
the efficient verification approach in the PetriDotNet framework. The devised approach proved its
applicability in many research projects. In addition, the framework was used in various industrial
case-studies to analyse the functional and even extra-functional aspects of system designs.

Beside the introduced verification workflow, I also made theoretical investigations regarding the
CEGAR algorithm. The CEGAR algorithm complements the symbolic techniques, which are the topic
of the former theses. However, the completeness of the Petri net CEGAR approach has never been
evaluated before. In this chapter I also extend former theoretical results and I prove the incomplete-
ness of the algorithm. This work served as a basis for other researchers to extend the CEGAR algo-
rithm and integrate the new developments also into PetriDotNet .

Publications related to this chapter. The results of this chapter were published in [[1]l, [4], [7].
and and this chapter is based on that papers.

Implementation and contributors. All the algorithms presented in this chapter were imple-
mented and made available in the PetriDotNet framework. The implementation of the presented
algorithms is the result of the whole PetriDotNet team: Déniel Darvas, Vince Molnar, Attila Jambor,
Tamas Szabo, Akos Hajdu, Zoltan Martonka, Attila Klenik, Kristof Marussy.

6.1 Model Checking Workflow

The goal of my work was to provide a comprehensive approach covering all phases of the verification
process.

The aforementioned challenges belong to three aspects of the verification problem according to
[BKLOS]:

83

84 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

1. Modelling of complex systems.
2. Specifying formal requirements.

3. Verifying the model with regard to the requirements.

The goal of my research was to introduce a framework supporting the main tasks in verification.
In this section, the proposed verification approach and the corresponding subtasks are introduced.

6.1.1 Modelling and Verification Approach

In this section I propose a modelling and verification approach. This new approach was designed
according to lessons learnt from the research and industrial projects and case-studies of the research
group. The introduced approach targets a certain class of problems: the modelling and verification of
asynchronous, safety-critical systems with control and finite data.

Problem. Formal modelling necessitates a proper modelling formalism, which is able to capture the
problem of the domain. Our experience showed that there is no comprehensive tool and approach
which would support the modelling and analysis of asynchronous systems. Petri net based modelling
languages provide modelling means for asynchronous systems. However, either a tool has an expres-
sive formalism, but weak analysis such as [JKWO07], or it provides efficient analysis techniques but
difficult to use [Cia+03].

Formal verification requires expressive specification languages to be able to capture the intent of
the designers. This is often a problem, as tools either support reachability checking, or CTL or LTL,
but not all of them.

Verification tools supporting Petri net formalisms tend to use only one technique for verification.
However, one technique is rarely enough to analyse all aspects of a system. There exists a framework
using a wide range of techniques for the verification of synchronous hardware or software systems
[Cav+14], but these techniques are not efficient for asynchronous systems [[2]. LTSmin is another
framework for process algebra, timed automata and extended state machines and it supports vari-
ous symbolic and explicit techniques [Kan+15]]. However, LTSmin does not support Petri nets as a
modelling language, and it lacks those techniques from the literature that are efficient Petri net based
models.

Summarizing the problems, we need a tool to support all aspects of the verification problem and
an approach to support the verification of asynchronous, distributed safety-critical systems.

Goal. As it was discussed, ordinary Petri nets and Coloured Petri nets efficiently capture the be-
haviour of asynchronous, distributed safety-critical systems, so I propose to combine efficient model
checking algorithms from the literature to provide LTL and CTL model checking for Petri net based
models.

The overall goal is to provide a tooling for verification engineers. The approach targets verification
engineers who aim to develop formal models and execute verification tasks. In order to cover the tasks
arising during the verification of complex systems, three main functionalities have to be provided by
the framework:

« Editor and persistence support for designing formal models in the Petri net and Coloured Petri
net formalism,

« Specifying the formal requirements with CTL and LTL temporal logics,
+ Model checking of the formal models if they satisfy the temporal logic requirements.

6.1. MODEL CHECKING WORKFLOW 85

The goal is to provide modelling and verification support tailored to not a specific domain, but
for a wide range of problems, which can be naturally captured by Petri net based models. The target
problem domain of the framework is asynchronous, concurrent or distributed systems with data
dependence.

Proposed approach. I propose a modelling and analysis approach which combines the expressive
power of Petri net based models with the efficiency of saturation and abstraction based algorithms.
The approach supports widely-used specification languages such as LTL and CTL.

I propose the verification workflow depicted on[Figure 6.1]consisting of various methods to cover
the main aspects of designing and analysing formal models. As verification is a complex task, a wide-
range of algorithms is available, and the goal of the workflow is to combine the advantages of these
techniques.

According to the literature, I propose to use, integrate and extend the following algorithms into a
framework to provide formal modelling and verification support for the engineers:

« Saturation-based algorithms for the efficient state space exploration of PN and CPN models of

asynchronous systems.

« Saturation-based LTL and CTL model checking algorithms.

« Bounded saturation and abstraction based algorithms such as CEGAR (Counterexample-Guided
Abstraction Refinement) extends the verification capabilities of the framework to handle finite
and infinite state models.

+ Bounded saturation and abstraction based algorithms are used to generate counterexamples for

safety properties.

[Figure 6.1]|depicts the verification workflow starting with the formal modelling step and the devel-
opment of the formal specification. The goal of the framework is to provide Petri net based modelling
languages such as Petri nets and Coloured Petri nets and also temporal logic-based specification lan-
guages such as CTL and LTL.

The proposed (symbolic) analysis methods need to encode the state space and also the next-state
function symbolically. Kronecker matrix based representations are used for PN models, and I propose
special algorithms for the handling of CPN models, these algorithms are the disjunctive-conjunctive
and the lazy decomposition algorithms.

Various algorithms can be used to explore the state space: beside traditional saturation algorithm,
bounded saturation can help verifying models with infinite state space and parallel saturation can
exploit the computation power of recent multicore computers. In addition, if the model has infinite
state space (for example when representing parametric systems), Counterexample-Guided Abstrac-
tion Refinement solves the safety verification problem efficiently. CEGAR can also be used efficiently
in other cases of safety verification.

In case of intended LTL model checking, synchronous product generation is needed to compute
the product representation of the state space and the property automaton.

Finally, we need temporal logic model checking algorithms in the framework to verify CTL and
LTL properties.

Extending the state-of-the-art. In this section, I summarise the work I was involved in, and I will
discuss how we advanced the state-of-the-art.

The proposed approach uses the state space exploration algorithm for Petri net and Coloured Petri
net models, which is based on [[CMS03;|CY05]]. An efficient structural CTL model checking approach
of [CS03;(ZC09] is integrated into the framework.

86 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

The idea of handling models with infinite state space continues the work of Ciardo et al. [Cia+03}
YCLO09|]. The combination of counterexample generation with saturation follows also this line of re-
search. However, beside the existing techniques, our research group extended the set of bounded state
space exploration algorithms and introduced new bounded model checking algorithms. In addition,
we utilised also a CEGAR approach of [WW11]] to handle a new set of problems and also to provide
efficient trace generation.

I propose to integrate saturation-based bounded model checking with structural model checking
approaches.

The LTL model checking approach continues the results in this field of [Thil5;[Wan+01; Dur+11}
CGH97; STVO05} |Ger+95]] and the goal is to exploit and combine their strengths, such as: on-the-
fly LTL model checking, abstraction techniques specialised for LTL model checking, synchronous
product generation and saturation.

However, some of these algorithms did not exist before I started to devise the approach. In addi-
tion, their integration into an efficient analysis framework was also far from trivial.

During the development, we aimed to extend the existing approaches with new algorithms to fill
the research gaps. In the following the extensions are summarised, which had to be contributed to
provide a flexible and configurable model checking process:

« Bounded saturation-based CTL model checking was presented in [[3][6]],[14] and in order

to be able to efficiently combine bounded saturation-based state space traversal of [YCLO09]] with
structural model checking [[CS03}|ZC09].

+ SCC computation and efficient on-the-fly LTL model checking based on saturation presented
in [11].
« New CEGAR algorithms in [[4]], and to extend the solvable set of reachability problems.

My contribution. Beside the complex approach that was put together by the extensive work of
our research team, my contributions also significantly extended the applicability of the approach.
The model checking framework was introduced in [[1]] and [[7]. The verification process of the frame-
work supports the verification of a wide set of problems, with the help of multiple combinations of
algorithms. Beside the whole approach, highlights the steps improved by my work of this
dissertation with a grey background.

My algorithmic contributions to the model checking approach are summarised as follows:

« New model checking algorithms for Coloured Petri net models presented in [[5].
« New parallel saturation algorithm presented in [[17]].

« A new synchronous product generation algorithm, presented in in order to provide
saturation-based LTL model checking [2]].

« Theoretical investigation of the Petri net CEGAR approach in [4]] and [[15].

6.1.2 State Space Exploration Techniques

Saturation is proved to be one of the most efficient techniques for the verification of asynchronous
systems, which motivated our choice that saturation is used as the state space exploration engine
in the framework. The introduced approach provides three different next-state representation and
computation algorithms:

» Kronecker matrices,

« decision diagram based disjunctive-conjunctive decomposition, and

6.1. MODEL CHECKING WORKFLOW 87

« decision diagram based lazy representation.

The different variants of Petri nets require different next-state representations to be efficient: Kro-
necker matrix representation is advised to the verification of ordinary Petri net models, disjunctive
-conjunctive decomposition is used for Coloured Petri net models and the lazy approach yield effi-
ciency gains over other approaches for Coloured Petri net models with large domains or bigger token
counts. The algorithms can be combined with other algorithms presented in the framework.

6.1.3 Temporal Logic Model Checking

The framework provides support for various temporal logics. Saturation-based LTL and CTL model
checking can be provided both for ordinary and also Coloured Petri nets as Kronecker matrices,
disjunctive-conjunctive decomposition and also lazy saturation can be used.

CTL model checking is based on the traditional approach of [ZC09]], which combines structural
model checking with the so-called constrained saturation algorithm.

Automata-theoretic LTL model checking computes the synchronous product of the state space
with the property automaton. Various automaton formalisms are supported with various synchronous
product generation algorithms, which can be used for LTL model checking. Safety regular properties
are efficiently verified by tableau automaton based model checking, more complex properties require
the more complex SCC-detection algorithm combined with the general Biichi automata representation

2]].

6.1.4 Bounded Model Checking

Various bounded model checking algorithms are available in the framework, they are summarised
in [Dar17|]. They aim to provide analysis support for models with infinite state spaces. Beside the
traditional bounded algorithms of [YCL09], the provided algorithms are the B-I-Sat and the compacting
saturation approaches which provide significantly better performance [Dar17]. In addition, more
variants of the B-I-Sat algorithm were developed such as restarting and continuing. Bounded model
checking algorithms can be run on ordinary and also Coloured Petri nets, and they can be combined
with arbitrary next-state computation/representation strategy.

6.1.5 CEGAR Approach

Counterexample-Guided Abstraction Refinement (CEGAR) is an efficient state space exploration and
trace generation technique which has complementary strengths as saturation. CEGAR can easily
handle models with infinite state space and efficiently searches for traces by using various reduction
techniques. However, when the models are correct, and no counterexample (trace) exists then it often
fails to prove the absence of the error states. However, according to the intricate iteration of the Petri
net CEGAR algorithm, no theoretical analysis was available aiming the completeness and correctness
of the algorithm. Without such investigations, it is impossible to tell when to use CEGAR and when
to use other algorithms.

88

Build next-state

Temporal logic

representation

//

CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

Formal model

Explore state space

model checking

Al

Al

Al

—
—

Formal requirements
Coloured .
Petri net// Petri net/ CTL // LTL // Safety /
]

—
—

Does the model have a
finite state space? Finite

A 4

Finite %ﬁnite !

Modelling A
formalism? CPN
PN i
Y ¢ ¢
Build Kronecker e I e Build lazy
X conjunctive g
matrices : representation
representation
ol
Type of the property* Safety property
LTL
\ 4 CTL
Generate
synchronous product

A 4

Counterexample

Saturation Boundgd Parall_el Guided Abstraction
saturation saturation .
Refinement
CTL i LTL
Type of t%/property?
A 4 Y
CTL model LTL model
checking checking
A - .

-
/e /

Figure 6.1: High-level view of the proposed verification approach

Formal verification

6.2. ADVANCING THE STATE-OF-THE-ART 89

6.2 Advancing the State-Of-The-Art

In this section, I shortly summarise the ingredients of the novel model checking approach and also
my theoretical results regarding the CEGAR step of the workflow.

6.2.1 Configurable Approach for Model Checking Petri Net Models

The approach envisaged on was worked out in the PetriDotNet framework. The main ad-
vantage of the approach is that it supports the configuration of the algorithms according to the cho-
sen formalisms: different variants of Petri nets require different variants of the saturation algorithm,
and also different specification languages need different algorithms to be efficient. The tool contains
prepared chains of the algorithms providing the best performance for certain classes of problems.
However, these algorithms can be further combined and modified. The provided approaches for each
problem domain are the following.

Temporal logic model checking of ordinary Petri nets. Kronecker matrix based next-state rep-
resentation combined with saturation provides an efficient means for the state space exploration of
bounded ordinary Petri nets, while bounded saturation techniques [Dar17]] or CEGAR [WW11] can
efficiently explore the behaviour of ordinary Petri nets with infinite state spaces. The structural CTL
model checking algorithm can be used with arbitrary next-state representations, and it works together
even with bounded saturation providing bounded CTL model checking capabilities. Model checking
reachability properties of ordinary Petri nets can be solved with CEGAR. Regular safety properties of
ordinary and Coloured Petri nets are verified by tableau automaton based model checking algorithm
(introduced in Chapter [5) and general LTL model checking (for future and also past LTL) is provided
by the framework [2]].

Temporal logic model checking of Coloured Petri nets. Disjunctive-conjunctive decomposi-
tion based state space exploration for Coloured Petri nets (introduced in Section is the basic
underlying algorithm: if this algorithm does not succeed then it can be changed to lazy saturation
(Section which can battle the problem caused by the possibly bigger local state spaces. The CE-
GAR approach works on ordinary Petri nets, so if we want to apply them on a problem represented
by a Coloured Petri net, then it has to be unfolded, which is also provided by the framework.

The structural CTL model checking algorithm can be combined with the disjunctive-conjunctive
decomposition algorithm and also lazy saturation. In addition, it works together even with bounded
saturation providing bounded CTL model checking capabilities. Regular safety properties and general
LTL model checking (for future and also past LTL) is provided as it was discussed in Section [5|and in

12]].

Handling infinite state spaces. Various bounded model checking algorithms are present in the
framework working on ordinary and also on Coloured Petri net representations. Bounded model
checking is provided to find a counterexample or a witness for properties. However, bounded model
checking is not complete unless we explored the full state space. For this purpose, I propose to use
the Petri net CEGAR approach, which is able also to prove the absence of traces to a certain state.
However, this approach lacked theoretical investigation regarding completeness. In the following
section I will show that unfortunately, the Petri net CEGAR approach is not complete.

90 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm

The CEGAR algorithm was introduced in [WW11]], where the authors combined the CEGAR approach
with the Petri net state equation. However, the completeness of CEGAR highly depends on the sys-
tems it is applied to. On one hand, CEGAR provides a convergent iteration strategy for finite state
systems. On the other hand, CEGAR may not find a solution when applied to an infinite state system.
The Petri net CEGAR approach was not investigated from the completeness and correctness point of
view. In this chapter I try to fill this gap and provide theoretical investigation of this question.

6.2.2.1 Completeness Analysis of the Petri Net CEGAR Algorithm

To my best knowledge, the completeness of the algorithm has neither been proved nor disproved
yet. When I examined the iteration strategy of the abstraction loop, I found a whole subclass of nets
that cannot be solved with this strategy. As an example, consider the Petri net in Figure [6.2| with the
reachability problem (1,1,0,0) € R(PN,(0,1,0,0)), i.e., we want to produce a token in py. We
constructed the net so that the firing sequence o5 = (t1, t4, t2, t3, t3, to, t1, t2, t5) solves the problem.
The main concept of this example is that we lend an extra token in p; indirectly using the T-invariant

{ts,t5}.

t1 P2
2 t
O«m@ 4
Po tg P
I
t3 D3 t5

Figure 6.2: Counterexample of completeness

When applying the algorithm on this problem, the minimal solution vectoris ¢ = (1, 0,0, 0,0, 0),
ie., firing to. Since tp is not enabled, the only partial solution is psy = (0,z0,00 = (),r0 =
(1,0,0,0,0,0)). The algorithm finds that an additional token is required in p; and only ¢3 can sat-
isfy this need. With an increment constraint ¢; : |t3| > 1, the T-invariant {¢1,t2,t3} is added to
the new solution vector 1 = (1,1,1,1,0,0), giving us one partial solution ps; = ({¢1},z1,01 =
(t1,t2,t3),m1 = o). Firing the invariant {t1, t2, t3} does not help getting closer to enabling ¢y, since
no extra token can be “borrowed” from the previous T-invariant. The iteration strategy of the original
algorithm does not recognize the fact that an extra token could be produced in p3 (using ¢4) and then
moved in pj, therefore it cannot decide reachability.

As this example shows, the algorithm can not properly traverse the space of the possible t-
invariants. Any extension of this problem will not be solved by the algorithm. In addition, when
the complex combination of possible t-invariants should be used to solve the reachability problem, de
algorithm will fail to detect the need for additional firings and omit the solution.

6.2.2.2 Extensions to CEGAR

In order to assess the applicability of the CEGAR approach, I have investigated the completeness
in Section This work was continued by my colleagues, who provided results regarding the
correctness of the algorithm and major improvements.

6.3. TOOL SUPPORT FOR USABLE FORMAL METHODS 91

The result of the completeness analysis was used and the CEGAR approach was extended to be
able to handle a bigger subset of the reachability problems and also to handle inhibitor arcs in
. In this work I contributed as the supervisor of the students: Akos Hajdu and Zoltan Martonka.

6.3 Tool Support for Usable Formal Methods

In this section, I overview the PetriDotNet tool, which was developed to provide a comprehensive tool

support for the introduced approach and algorithms. The tool was developed by our research group,

the implementation was done mainly by Daniel Darvas, Vince Molnar, Attila Jambor, Tamas Szabo,

Akos Hajdu, Krist6f Marussy and Attila Klenik under the supervision of Tamés Bartha and myself.
This overview was formerly published in [[1] and [[7]).

6.3.1 Functionality

This section overviews the main functionality of PetriDotNet and the plug-ins shipped with the tool.

' PetriDotMet - [Crossing_traffic_lamp_with_failure] EI@

¥ FEle Edit View Insert CPM Mode Tools Add-in Window - & x
DEBE [&|E 4 =88

Design Simulation

Toolbax

Select

Place Transition
— .
B Token . red_yellow yellow .

Other elements

Properties

yellow_blinking \‘_)7

Name of the Petri net.

Grow height of design area. Place ; red 142 ;66

Figure 6.3: The main window of PetriDotNet

6.3.1.1 Editor Features

First and foremost, PetriDotNet is an editor for Petri nets. It provides graphical editing capabilities (cf.
Figure for both ordinary and well-formed coloured Petri nets (see Section [3.2]for the definition of
the supported coloured Petri net variant). The tool supports Petri nets extended with inhibitor arcs,
transition priorities, and places with limited token capacity. Moreover, the construction of hierarchical
Petri nets is supported by allowing coarse transitions that can be refined by a subnet.

The tool provides simulation functionality (token game) for Petri nets, where the simulation can
be manually conducted or automatically executed. The tool is shipped with a plug-in that can perform

92 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

large-scale simulation, executing thousands or millions of non-deterministic firing, and then present
the statistics.

To save and load the Petri nets, PetriDotNet supports two formalisms natively. The default format
is PNML (Petri Net Markup Language) [ISO11]], a standard, XML-based Petri net description format.
PNML is supported by various other tools, therefore this is an interface between these tools and the
PetriDotNet framework. A binary, custom file format is also supported that provides more efficient
persistence for large models.

6.3.1.2 Plug-in Features

The functionality of the tool is extensible with plug-ins. Plug-ins can perform simulation tasks, pro-
vide analysis features (e. g., model checking) or export/import capabilities. Each plug-in can access
the Petri net data models, use the graphical user interface, add new menu items, and call built-in
PetriDotNet commands. The architecture of the tool is designed to keep the development of plug-ins
simple, in order to help the users to focus on functionality instead of technology. See Section|[6.3.2]for
more details.

6.3.1.3 Export and Import Features

It is possible to export the constructed Petri nets into other Petri net formalisms, such as to the syntax
of the GPenSI (General Purpose Petri Net Simulator) and the .pnt format of the IN (Integrated Net
Analyzer) tool. Also, the Petri net models can be translated into to the input format of SAIE] (Symbolic
Analysis Laboratory). Furthermore, import is also provided from the .net textual Petri net file format
used by the INA/TinaE] tools, among others. New import or export plug-ins can be developed easily
as the internal model representations are simply accessible.

6.3.1.4 Formal Methods Course Plug-in

As one of the first motivations was to support the education, the framework has built-in support for
the following tasks:
« Calculating invariants, and displaying the results right on the Petri net,
« Generating the reachability/coverability graph, and exporting their graphical representation
into image files,
« Computing various liveness properties [Mur89].

The invariant analysis covers both P and T-invariants based on the well-known Martinez-Silva
algorithm [MS82]], and a different algorithm by Cayir and Ucer [CU05] that computes the bases of
invariants.

6.3.1.5 Integrated Analysis Methods

In the last five years, in addition to the educational features, PetriDotNet became a Petri net analysis
package providing plug-ins for a wide range of analysis methods. Among others, as detailed below,
PetriDotNet supports advanced formal verification techniques based on decision diagrams and ab-
straction. The algorithms of the approach are discussed in earlier sections with some more details.

'http://www.davidrajuh.net/gpensim/
*http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
*http://sal.csl.sri.com/

‘http://projects.laas.fr/tina/

http://www.davidrajuh.net/gpensim/
http://www2.informatik.hu-berlin.de/lehrstuehle/automaten/ina/
http://sal.csl.sri.com/
http://projects.laas.fr/tina/

6.3. TOOL SUPPORT FOR USABLE FORMAL METHODS 93

Saturation-Based Model Checking Algorithms. In PetriDotNet , various algorithms provide
model checking based on the saturation algorithm [CMS03}; [CMS06}, [CY05} [CZJ12]. The CTL model
checking approaches are based on the work of Ciardo [ZC09] and the bounded model checking ap-
proach is the extension of [YCL09|]. The LTL model checking algorithms are built on top of the ideas
of [HRS13; Dur+11]]. Our research resulted in significant extensions and improvements, this way
PetriDotNet currently supports novel analysis algorithms as follows:

« CTL model checking of ordinary and coloured Petri nets based on traditional and extended

versions of saturation [[5]],[[16]],

+ Bounded CTL model checking based on a novel saturation-based algorithm, with various search
strategies [[6]],[3]l,

« LTL model checking based on a novel synchronous product computation algorithm and
incremental SCC detection [[11]].

CEGAR-Based Reachability Algorithms. PetriDotNet includes reachability analysis algorithms
based on Counterexample-Guided Abstraction Refinement (CEGAR) [Cla+00] for ordinary Petri nets.
Petri net CEGAR-based algorithms over-approximate the set of reachable states using the state equa-
tion, which is a necessary criterion for reachability. The CEGAR algorithm for Petri nets introduced
in [WW11]] was the base of our work. Our implementation includes various search strategies, adapted
to the characteristics of the different models [4],[[10]].

Stochastic Analysis Algorithms. Recently the tool was extended to support the modelling and
analysis of stochastic Petri net models. The goal was to provide a configurable stochastic analy-
sis framework where various state space exploration, matrix representation and numerical analysis
algorithms can be combined [[9]L,[[7]],[[8]]. PetriDotNet provides the following stochastic analysis for
ordinary stochastic Petri net models:

« Steady-state reward and sensitivity analysis,
« Transient reward analysis,

« Calculation of the mean time to reach a state partition, that is used to calculate mean-time-to-
first-failure (MTFF) in dependability models.

6.3.2 Architecture

General Architectural Overview. The tool is written in C#, based on the Microsoft NET frame-
work. The architecture of PetriDotNet is kept as simple as reasonably possible. It is a modular tool:
it provides some basic functionalities and can be extended by various plug-ins.

The tool uses a base library defining the Petri net data structures, developed for PetriDotNet . This
library contains object models for ordinary and coloured Petri nets. The PetriDotNet core contains
the graphical user interface and the plug-in interface. The architecture of the tool is summarized in

Figure

Plug-in Interface. To follow the previously presented educational goals, it is simple to extend
PetriDotNet with a new plug-in. This allows a steep learning curve and low entry barrier, therefore the
plug-in developers can focus on their algorithms, instead of the applied technologies. From the tool’s
point of view, a plug-in is just a .dll file in the add-in folder, in which at least one class implements the

94 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

Import add-ins
Export add-ins
Simulation
add-ins
Analysis
add-ins

Editor GUI Add-in interface

PetriDotNet core

Petri Net data structures

Ordinary PN Coloured PN

Figure 6.4: High-level overview of the PetriDotNet architecture ||

IPDNPlugin interface (see Figure[6.5). Metadata about the plug-in (e. g., name, author, required Petri-
DotNet version) can be provided using annotations of this class (e. g., [AddinAuthor ("X. Y.")]).
When PetriDotNet starts, it loads all plug-ins and calls their Initialize method. In this method, the
plug-ins can make their menu contributions and store the application descriptor. This latter allows
the plug-ins to call commands (e. g., save, load) and to access the currently active Petri net.

Being a .NET-based tool, PetriDotNet requires that the plug-ins be also implemented in one of
the .NET languages. While having a graphical editor for Petri nets developed in .NET is a reasonable
choice, implementing e. g., model checking algorithms seems to be uncommon, as managed languages
are considered to have some overhead. However, (i) according to our experience the runtime of the
.NET-based implementations of various model checking algorithms proved to be competitive com-
pared to their native version, and (ii) the development in .NET is easier and less error-prone than
e.g., in C or C++ for computer engineering students, allowing them to make correct implementa-
tions in a shorter time. Thus the choice of .NET can be regarded as sacrificing some runtime per-
formance in favour of development time, which is similarly important in our educational setting. If
the performance needs cannot be satisfied using .NET, the plug-in can wrap or depend on a native
implementation (.dll).

«interface» PDNAppDescriptor

IPDNPlugin

-~ ~~? + AddPluginMenultem(string menuText, EventHandler method)
+ InvokeCommand(PDNCommands command)
+ get_ CurrentPetriNet() : PetriNet

+ Initialize(PDNAppDescriptor appDesc)

Figure 6.5: PetriDotNet plug-ins

6.3.3 Use Cases

This section overviews the use cases where we applied PetriDotNet as an editor or an analysis tool.
According to the original goals we start the overview with educational use cases, then we move on
to industrial case studies.

6.4. THESIS 4: PETRIDOTNET MODEL CHECKING FRAMEWORK 95

Application in Education. PetriDotNet is used as an educational tool and a tool for the homework
assignments in the Formal Methods course of the Budapest University of Technology and Economics
since 2011. During this time, approximately 900 M.Sc. students attended the course. The stochastic
analysis module of the tool is used for demonstration purposes in the Software and Systems Verifica-
tion course to teach reliability modelling for the students.

Student Projects. To this day 23 B.Sc. and M.Sc. theses were written that applied or extended Petri-
DotNet and various student projects used it to get an insight to formal methods. Besides, the various
new formal verification algorithms resulted in 20 scientific papers presented at conferences or jour-
nal Several students who started to get familiar with research by extending and implementing an
algorithm in PetriDotNet are now Ph.D. students or planning to apply for post-graduate programmes.
So far one Ph.D. was awarded for a topic related to PetriDotNet [Dar17].

Application in Industrial Cases. We are aware of various usages of our tool to model, simulate
and analyse different real-life systems.

« We have applied PetriDotNet to model and formally verify a safety logic of the Paks Nuclear
Power Plant using saturation-based CTL model checking in [[5]],[16] (Section B.6). This work
validated the coloured Petri net editing capabilities and proved the efficiency of our CTL model
checking algorithms, as presented the first successful formal verification of the complete
safety logic.

+ PetriDotNet was used to model and simulate sensor nets in [Mil+14] and in the FuturICT.hu
projeclﬂ
+ PetriDotNet was applied to model and study railway interlocking systems [[CTS14].

« The R3-COP projectﬂ applied PetriDotNet to generate test input sequences for testing the ro-
bustness of communicating autonomous robots [DV13].

« Initial case studies were made to apply PetriDotNet to analyse control software used at the
European Organization for Nuclear Research (CERN) [DFB13].

« Stochastic analysis and MTFF computation were used in an industrial project at our depart-
ment to evaluate safety (hazard rate) of an embedded control system. The mean time to reach
undetected failures or shutdown was computed in a stochastic model of a two-channel architec-
ture with separate diagnostic facility, comparison, and time-limited degraded (single-channel)
functionality.

6.4 Thesis 4: PetriDotNet Model Checking Framework

The usability of the developed algorithms cannot be achieved without tool support. T have investigated
many existing tools and approaches and evaluated them amongst others on the industrial problem of
the PRISE safety system. According to the experiences, I chose to use Petri nets as a simple formal-
ism and Coloured Petri nets as a convenient formalism to develop high-level models. However, the
available tool support for the verification of Petri nets was weak in the sense that either good editor
and tooling were available or advanced verification algorithms. However, the verification problem

*See the complete list of related publications at http://petridotnet.inf.mit.bme.hu/publications/,
*http://www.futurict.szte.hu/en/home/
"http://www.r3-cop.eu/

http://petridotnet.inf.mit.bme.hu/publications/
http://www.futurict.szte.hu/en/home/
http://www.r3-cop.eu/

96 CHAPTER 6. PETRIDOTNET MODEL CHECKING FRAMEWORK

is difficult in general so no single algorithm or approach can be efficient on their own. Therefore I
developed a model checking workflow to combine the various advantages of the different algorithms
and approaches. The novel combination of the algorithms was implemented in the PetriDotNet model
checking framework. Theoretical examination of the algorithms was needed in order to extend them
and combine their strength in a framework. The proposed model checking framework addressed
the problem of modelling safety-critical systems with high-level modelling languages, specifying the
requirements with the help of temporal logics and verify finite state and infinite state models with
various algorithms.

Thesis4 Iworked out an approach for the modelling and verification of complex systems. We developed
a framework to support the Coloured Petri net based modelling and verification of complex systems. The
framework provides CTL and LTL model checking based on novel algorithms. In order to extend the
handled classes of models, infinite state and trace generation algorithms were integrated. We extended
the model checking algorithms to be able to handle infinite state systems by applying bounded model
checking and a special algorithm based on Counterexample-Guided Abstraction Refinement (CEGAR).
The latter algorithm provides traces as a feedback for the developers. I did theoretical investigations, and
I examined the CEGAR algorithm from the completeness point of view: I proved the incompleteness of the
CEGAR-based Petri net reachability algorithm.

This thesis encapsulates the various results together into a framework supporting the engineers
developing correct systems. A theoretical analysis was elaborated on a well-known algorithm, and its
applicability for trace generation was examined. This opens new directions for further developments
in the future[[10]. I envisioned and designed the PetriDotNet model checking framework where we
could successfully integrate the research results of the participants of the research group and students
supervised by myself.

Publications: My new results introduced in this thesis were published in the journal papers [[4]
and [[1]] and in the following conference papers: and [[7]].

Chapter 7

Conclusion and future work

7.1 Summary of the research results

In this section, I summarise the challenges of my work (also discussed in Section|1.3.4.1) and also my
solutions for each problem.

Challenge 1: Verification of complex systems High-level modelling languages are needed to
model complex systems. High-level models of complex systems require rigorous verification tech-
niques, so the existing verification approaches and algorithms have to be extended to overcome the
challenges.

Solution in Thesis 1.: Chapter[3 presented novel techniques for the verification of high-level system
models. At first, I propose to use Coloured Petri nets as an expressive, high-level modelling language
being able to capture the behaviour of asynchronous, distributed safety-critical systems. I investigated
the verification algorithms in the literature especially symbolic algorithms such as saturation. I identified
that existing algorithms are not efficient for CPNs due to the high expressiveness of the language. This
motivated my research to develop a new model checking algorithm, which can efficiently represent the
symbolic next-state relations. I introduced two new symbolic decomposition and next-state computation
algorithms for the verification of Coloured Petri nets: by using the disjunctive-conjunctive decomposition
algorithm we could successfully verify a safety function of an industrial case study. The second algorithm
could further extend the applicability of the approach by decreasing the computational complexity of the
verification algorithm for CPN models with large variable domains.

Challenge 2: Increase the efficiency of model checking algorithms New techniques are
needed to increase the efficiency of model checking algorithms and decrease runtime requirements.

Solution in Thesis 2.: Parallelization is a common approach to improve the performance of algo-
rithms. However, saturation is inherently sequential, so it is difficult to parallelise [CZJ09]. Former
attempts [ELS06] faced difficulties, and they could not reach significant performance gains. In my work
in Chapter[41 investigated the former parallel saturation approaches, and I identified the causes of the
poor scalability of the algorithm. According to the insights I gained during the investigations, I propose to
use a more lightweight synchronisation mechanism. I devised a new locking and synchronisation strategy
to reduce the synchronisation overhead. We did extensive measurements to compare the new algorithm
to its competitor regarding scalability, and the introduced new approach proved its efficiency.

97

98 CHAPTER 7. CONCLUSION AND FUTURE WORK

Challenge 3. Verification support for various requirement specification languages Re-
search and industrial case studies revealed the need for a wide range of specification languages to
support the various types of requirements of the use-cases.

Solution in Thesis 3.: CTL and LTL temporal logics have different strength and weaknesses, so it is
important for a model checker to support both formalisms from the usability point of view. In Chapter[6 1
introduced a complex model checking approach which provides efficient verification techniques for various
temporal logic-based specification languages. As the efficiency of saturation was mainly exploited in
CTL model checking, in Chapter[51 propose an approach for the computation of the synchronous product
of a property automaton and the state space representation on-the-fly during the exploration. This is
the essential step of automata-theoretic model checking and based on the novel synchronous product
computation algorithm, I propose a model checking algorithm for the set of regular safety properties.

Challenge 4: Formal modelling and verification framework. The wide range of industrial
problems necessitates a formal modelling and verification framework with various modelling lan-
guages and verification algorithms. As no single formalism or algorithm can support the many as-
pects of the use-cases, a configurable framework is needed, which can be fine-tuned to handle the
verification problems.

Solution in Thesis 4.: The main goal of my work was to introduce an approach which is able to
support the verification engineers in the development and analysis of verification models. I introduced
a comprehensive verification approach in Chapter 6 and I put its pieces together. The approach uses
saturation-based symbolic algorithms and abstraction based techniques to support all aspects of the ver-
ification problem. In addition, I investigated one key component, namely the Petri net CEGAR approach,
and I found that this algorithm is not complete. In Chapter |6, I also provided a simple proof for the
incompleteness of the CEGAR algorithm.

The introduced model checking algorithm manifested in the PetriDotNet framework proved its appli-
cability in many research and industrial projects, also discussed in this thesis.

7.2 Future work

Beside the results, my work also opened new questions and research directions to be explored. I was
very fortunate to work with many students who will continue this line of research.

Incremental model checking. The results presented in Chapter |5| were the first steps towards
efficient model checking of LTL properties, which was then extended later to provide efficient model
checking capabilities for the general class of LTL properties. A promising direction was revealed
during our research: by exploiting the locality of saturation, one could build an incremental model
checking algorithm by tracking the changes of the models and using saturation to adjust the verifi-
cation results according to the changes. This could lead to faster verification results and decreased
response time. My colleague, (my former student) Vince Molnar is working on this direction in his
PhD studies.

CTL" model checking. The introduced approach supports both CTL and LTL model checking.
However, CTL* is a more general specification language, which is supported yet neither by the Petri-
DotNet framework and also nor by other model checkers, due to complexity reasons. It could be a

7.2. FUTURE WORK 99

potential research direction to combine the strengths of the CTL and LTL model checking algorithms
used in the PetriDotNet framework and provide C'T'L* model checking capabilities.

Improve the Petri net CEGAR approach. I proved the incompleteness of the approach, and it
revealed many new research directions. The CEGAR approach could be further improved by com-
bining its forward iteration strategy with backward search algorithms. This way I am sure that we
could further extend the verification capabilities of the algorithm. This research line is continued by
my colleague (my former student), Akos Hajdu.

Exploit saturation for stochastic analysis. In the PetriDotNet framework, we now provide basic
stochastic analysis capabilities. However, in the future, it could be further improved by using more
information from the decision diagram encoding. Other research teams produced some initial results,
and with my students, we are also working on this direction now actively.

Combining POR with saturation. Saturation is efficient for asynchronous systems. However,
traditional algorithms used Partial Order Reduction (POR) techniques to combat the state space ex-
plosion problem. An interesting future work is to combine the two approaches. This will need much
theoretical investigation. We did the first steps into this direction with our student in a Scientific
Student Association report [ES15].

Bibliography

Publication list

Journal papers

(1]

(2]

(3]

(4]

(5]

A. Vérés, D. Darvas, A. Hajdu, A. Klenik, K. Marussy, V. Molnar, T. Bartha, and I. Majzik. “In-
dustrial Applications of the PetriDotNet Modelling and Analysis Tool”. In: Science of Computer
Programming (2017). In press. 1ssN: 0167-6423. po1: 10.1016/j.scico.2017.09.003

V. Molnér, A. Voros, D. Darvas, T. Bartha, and 1. Majzik. “Component-wise Incremental LTL
Model Checking”. In: Formal Aspects of Computing 28.3 (2016), pp. 345-379. 1sSN: 0934-5043.
DpoI: 110.1007/s00165-015-0347-x

D. Darvas, A. Voros, and T. Bartha. “Improving Saturation-based Bounded Model Checking”.
In: Acta Cybernetica 22.3 (2016), pp. 573-589. 1ssN: 0324-721X. por: [10.14232/actacyb.22.
3.2016.2

A. Hajdu, A. Vérés, T. Bartha, and Z. Méartonka. “Extensions to the CEGAR Approach on Petri
Nets”. In: Acta Cybernetica 21.3 (2014), pp. 401-417. po1:|10.14232/actacyb.21.3.2014.8

A. Voros, D. Darvas, A. Jambor, and T. Bartha. “Advanced Saturation-based Model Checking of
Well-formed Coloured Petri Nets”. In: Periodica Polytechnica, Electrical Engineering and Com-
puter Science 58.1 (2014), pp. 3-13. 1ssN: 2064-5279. por:[10.3311/PPee . 2080

A. Voros, D. Darvas, and T. Bartha. “Bounded saturation-based CTL model checking”. In:
Proceedings of the Estonian Academy of Sciences 62.1 (2013), pp. 59-70. 1sSN: 1736-6046. DOTI:
10.3176/proc.2013.1.07

International conference and workshop papers

(7]

(9]

A. Vérds, D. Darvas, V. Molnar, A. Klenik, A. Hajdu, A. Jambor, T. Bartha, and I. Majzik. “Petri-
DotNet 1.5: Extensible Petri Net Editor and Analyser for Education and Research”. In: Appli-
cation and Theory of Petri Nets and Concurrency. Ed. by F. Kordon and D. Moldt. Vol. 9698.
Lecture Notes in Computer Science. Springer, 2016, pp. 123-132. 1SBN: 978-3-319-39086-4. DOI:
10.1007/978-3-319-39086-4_9

K. Marussy, A. Klenik, V. Molnar, A. Vorés, I. Majzik, and M. Telek. “Efficient decomposition
algorithm for stationary analysis of complex stochastic Petri net models”. In: Application and
Theory of Petri Nets and Concurrency. Ed. by F. Kordon and D. Moldt. Vol. 9698. Lecture Notes in
Computer Science. Springer, 2016, pp. 281-300. 1SBN: 978-3-319-39086-4. po1: [10.1007/978-
3-319-39086-4_17

K. Marussy, A. Klenik, V. Molnar, A. Voros, M. Telek, and 1. Majzik. “Configurable Numerical
Analysis for Stochastic Systems”. In: Proceedings of the 2016 Workshop on Symbolic and Nu-

101

https://doi.org/10.1016/j.scico.2017.09.003
https://doi.org/10.1007/s00165-015-0347-x
https://doi.org/10.14232/actacyb.22.3.2016.2
https://doi.org/10.14232/actacyb.22.3.2016.2
https://doi.org/10.14232/actacyb.21.3.2014.8
https://doi.org/10.3311/PPee.2080
https://doi.org/10.3176/proc.2013.1.07
https://doi.org/10.1007/978-3-319-39086-4_9
https://doi.org/10.1007/978-3-319-39086-4_17
https://doi.org/10.1007/978-3-319-39086-4_17

102 BIBLIOGRAPHY

merical Methods for Reachability Analysis (SNR). ed. by E. Abraham and S. Bogomolov. Vienna,
Austria: IEEE, 2016. 1sBN: 978-1-5090-3079-8. por: |10.1109/SNR.2016.7479383

[10] A. Hajdu, A. Vérds, and T. Bartha. “New search strategies for the Petri net CEGAR approach”.
In: Application and Theory of Petri Nets and Concurrency. Ed. by R. Devillers and A. Valmari.
Vol. 9115. Lecture Notes in Computer Science. Springer, 2015, pp. 309-328. 1SBN: 978-3-319-
19488-2. por1:|10.1007/978-3-319-19488-2_16

[11] V.Molnar, D.Darvas, A. Voros, and T. Bartha. “Saturation-Based Incremental LTL Model Check-
ing with Inductive Proofs”. In: Tools and Algorithms for the Construction and Analysis of Systems.
Ed. by C. Baier and C. Tinelli. Vol. 9035. Lecture Notes in Computer Science. Springer, 2015,
pp. 643-657. 1SBN: 978-3-662-46680-3. po1: 10.1007/978-3-662-46681-0_58

[12] D. Darvas, B. Fernandez Adiego, A. Vords, T. Bartha, E. Blanco Vifiuela, and V. M. Gonzalez
Suérez. “Formal verification of complex properties on PLC programs”. In: Formal Techniques for
Distributed Objects, Components, and Systems. Ed. by E. Abraham and C. Palamidessi. Vol. 8461.
Lecture Notes in Computer Science. Springer, 2014, pp. 284-299. 1SBN: 978-3-662-43612-7. DOI:
10.1007/978-3-662-43613-4_18

[13] Z. Micskei, R.-A. Konnerth, B. Horvath, O. Semerath, A. Voros, and D. Varrd. “On Open Source
Tools for Behavioral Modeling and Analysis with f{UML and Alf”. In: Proceedings of the Ist
Workshop on Open Source Software for Model Driven Engineering. Ed. by F. Bordelau, J. Dingel,
S. Gerard, and S. Voss. Valencia, Spain, Sept. 2014, pp. 31-41

[14] D. Darvas, A. Voros, and T. Bartha. “Efficient Saturation-based Bounded Model Checking of
Asynchronous Systems”. In: Proceedings of the 13th Symposium on Programming Languages
and Software Tools, SPLST’13. Ed. by A. Kiss. Szeged, Hungary: University of Szeged, 2013,
pp- 259-273. 1sBN: 978-963-306-228-9

[15] A.Hajdu, A. Vorés, T. Bartha, and Z. Martonka. “Extensions to the CEGAR Approach on Petri
Nets”. In: Proceedings of the 13th Symposium on Programming Languages and Software Tools,
SPLST’13. Ed. by A. Kiss. Szeged, Hungary: University of Szeged, 2013, pp. 274-288. ISBN:
978-963-306-228-9

[16] T. Bartha, A. Voros, A. Jambor, and D. Darvas. “Verification of an Industrial Safety Function
Using Coloured Petri Nets and Model Checking”. In: Proceedings of the 14th International Con-
ference on Modern Information Technology in the Innovation Processes of the Industrial Enterprises
(MITIP 2012). Ed. by E. Ilie-Zudor, Z. Kemény, and L. Monostori. Budapest, Hungary: Hungarian
Academy of Sciences, Computer and Automation Research Institute, 2012, pp. 472-485. 1SBN:
978-963-311-373-8

[17] A.Véros, T. Bartha, D. Darvas, T. Szab6, A. Jambor, and A. Horvath. “Parallel Saturation Based
Model Checking”. In: Proceedings of the 10th International Symposium on Parallel and Distributed
Computing (ISPDC). Cluj Napoca, Romania: IEEE Computer Society, 2011, pp. 94-101. ISBN:
978-1-4577-1536-5. po1:110.1109/ISPDC.2011.23

[18] A. Voros, D. Darvas, and T. Bartha. “Bounded Saturation Based CTL Model Checking”. In:
Proceedings of the 12th Symposium on Programming Languages and Software Tools, SPLST’11.
Ed. by J. Penjam. Tallinn, Estonia: Tallinn University of Technology, Institute of Cybernetics,
2011, pp. 149-160. ISBN: 978-9949-23-178-2

Local conference and workshop papers

https://doi.org/10.1109/SNR.2016.7479383
https://doi.org/10.1007/978-3-319-19488-2_16
https://doi.org/10.1007/978-3-662-46681-0_58
https://doi.org/10.1007/978-3-662-43613-4_18
https://doi.org/10.1109/ISPDC.2011.23

REFERENCES 103

[19]

[20]

[21]

[22]

A. Hajdu, R. Német, S. Varr6-Gyapay, and A. Vérds. “Petri Net Based Trajectory Optimiza-
tion”. In: ASCONIKK 2014: Extended Abstracts. Future Internet Services. Veszprém, Hungary:
University of Pannonia, 2014, pp. 11-19

V. Molnar and A. Vords. “Synchronous Product Automaton Generation for Controller Optimiza-
tion”. In: ASCONIKK 2014: Extended Abstracts. L Information Technologies for Logistic Systems.
Veszprém, Hungary: University of Pannonia, 2014, pp. 22-29. 1SBN: 978-963-396-046-2

D. Darvas and A. Voros. “Szaturacidalapt tesztbemenet-generalas szinezett Petri-halokkal [in
Hungarian]”. In: Mesterproba 2013. Konferenciakiadvany. Budapest, Hungary, 2013, pp. 48-51

A. Vorés. “Modellellenérzés alkalmazasa egy biztonsagkritikus rendszer védelmi logikajanak

s s e

Romania: Erdélyi Mizeum-Egyesiilet Miiszaki Tudomanyok Szakosztalya, 2012, pp. 383-386

A. Voros. “Forward Saturation Based Model Checking”. In: Proceedings of the 19th PhD Min-
isymposium of the Department of Measurement and Information Systems. Budapest, Hungary,
2012, pp. 38-41

A. Vorés. “Optimizing Saturation Based Model Checking”. In: Proceedings of the 18th PhD Min-
isymposium of the Department of Measurement and Information Systems. Budapest, Hungary,
2011, pp. 96-99

References

[Adi+15] B. F. Adiego, D. Darvas, E. B. Vifiuela, J. C. Tournier, S. Bliudze, J. O. Blech, and V. M. G.

Suérez. “Applying Model Checking to Industrial-Sized PLC Programs”. In: IEEE Trans-
actions on Industrial Informatics 11.6 (Dec. 2015), pp. 1400-1410. 1ssN: 1551-3203. DoI:
10.1109/T1I1.2015.2489184|

[Ana+13] S. Anand, E. K. Burke, T. Y. Chen, J. Clark, M. B. Cohen, W. Grieskamp, M. Harman,

M. J. Harrold, and P. McMinn. “An orchestrated survey of methodologies for automated
software test case generation”. In: Journal of Systems and Software 86.8 (2013), pp. 1978—
2001. 1ssN: 0164-1212. po1:110.1016/5 . jss.2013.02.061,

[Bey17] D. Beyer. “Software Verification with Validation of Results”. In: Tools and Algorithms

for the Construction and Analysis of Systems. Ed. by A. Legay and T. Margaria. Berlin,
Heidelberg: Springer, 2017, pp. 331-349. 1SBN: 978-3-662-54580-5. por:[10 . 1007 /978 -
3-662-54580-5_20.

[BKLO08] C. Baier, J.-P. Katoen, and K. G. Larsen. Principles of model checking. MIT press, 2008.
[BKP17] H. Bride, O. Kouchnarenko, and F. Peureux. “Reduction of Workflow Nets for Generalised

Soundness Verification”. In: Verification, Model Checking, and Abstract Interpretation: 18th
International Conference, VMCAI 2017, Paris, France, January 15-17, 2017, Proceedings. Ed.
by A. Bouajjani and D. Monniaux. Cham: Springer, 2017, pp. 91-111. 1sBN: 978-3-319-
52234-0. po1:110.1007/978-3-319-52234-0_6.

[BP12] D. Beyer and A. K. Petrenko. “Linux Driver Verification”. In: Leveraging Applications of

Formal Methods, Verification and Validation. Applications and Case Studies: 5th Interna-
tional Symposium, ISoOLA 2012, Heraklion, Crete, Greece, October 15-18, 2012, Proceedings,
Part II. Ed. by T. Margaria and B. Steffen. Berlin, Heidelberg: Springer, 2012, pp. 1-6.
ISBN: 978-3-642-34032-1. po1:/10.1007/978-3-642-34032-1_1|

https://doi.org/10.1109/TII.2015.2489184
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-662-54580-5_20
https://doi.org/10.1007/978-3-319-52234-0_6
https://doi.org/10.1007/978-3-642-34032-1_1

104

[Bra+11]

[Brii93]

[Buc+00]

[Bur+92]

[Cal+15]

[Cav+14]

[CES86]

[CGHY7]

[CGP99]
[Cia+03]

[Cla+00]

[CMS03]

[CMS05]

BIBLIOGRAPHY

A.R. Bradley, F. Somenzi, Z. Hassan, and Y. Zhang. “An incremental approach to model
checking progress properties”. In: Proc. of The Int. Conf. on Formal Methods in Computer-
Aided Design (FMCAD’11). FMCAD Inc., 2011, pp. 144-153. 1SBN: 978-0-9835678-1-3.

A. Briiggemann-Klein. “Regular expressions into finite automata”. In: Theoretical Com-
puter Science 120.2 (1993), pp. 197-213.

P. Buchholz, G. Ciardo, S. Donatelli, and P. Kemper. “Complexity of Memory-Efficient
Kronecker Operations with Applications to the Solution of Markov Models”. In: IN-
FORMS j. on Computing 12.3 (July 2000), pp. 203-222. 1ssN: 1526-5528. por: 10. 1287/
1joc.12.3.203.12634|

J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. “Symbolic model checking: 102"
States and beyond”. In: Information and Computation 98.2 (1992), pp. 142—170. 1ssN: 0890-
5401. por:110.1016/0890-5401(92)90017-A.

C. Calcagno, D. Distefano, J. Dubreil, D. Gabi, P. Hooimeijer, M. Luca, P. O’'Hearn, I. Pa-
pakonstantinou, J. Purbrick, and D. Rodriguez. “Moving Fast with Software Verification”.
In: NASA Formal Methods: 7th International Symposium, NFM 2015, Pasadena, CA, USA,
April 27-29, 2015, Proceedings. Ed. by K. Havelund, G. Holzmann, and R. Joshi. Cham:
Springer, 2015, pp. 3—11. 1SBN: 978-3-319-17524-9. po1: 10.1007/978-3-319-17524 -
9_1.

R. Cavada, A. Cimatti, M. Dorigatti, A. Griggio, A. Mariotti, A. Micheli, S. Mover, M.
Roveri, and S. Tonetta. “The nuXmv Symbolic Model Checker”. In: Computer-Aided Ver-
ification. Ed. by A. Biere and R. Bloem. Vol. 8559. Lecture Notes in Computer Science.
Springer, 2014, pp. 334-342. 1SBN: 978-3-319-08866-2.

E. Clarke, E. A. Emerson, and A. P. Sistla. “Automatic Verification of Finite-state Concur-
rent Systems Using Temporal Logic Specifications”. In: ACM Trans. Program. Lang. Syst.
8.2 (Apr. 1986), pp. 244-263. 1SSN: 0164-0925. por: 10. 1145/5397.5399,

E. Clarke, O. Grumberg, and K. Hamaguchi. “Another Look at LTL Model Checking”. In:
Formal Methods in System Design 10.1 (1997), pp. 47-71. 1ssN: 0925-9856. po1:({10.1023/
A:1008615614281.

E. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

G. Ciardo, R. L. Jones, A. S. Miner, and R. Siminiceanu. “Logical and stochastic mod-
eling with SMART”. In: International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation. Springer. 2003, pp. 78-97.

E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. “Counterexample-guided abstrac-
tion refinement”. In: Computer-Aided Verification. Ed. by E. A. Emerson and A. P. Sistla.
Vol. 1855. LNCS. Springer, 2000, pp. 154-169. 1sBN: 978-3-540-67770-3. por1: |10 . 1007/
10722167 _15.

G. Ciardo, R. Marmorstein, and R. Siminiceanu. “Saturation Unbound”. In: Tools and Al-
gorithms for the Construction and Analysis of Systems. Springer, 2003, pp. 379-393.

G. Ciardo, R. Marmorstein, and R. Siminiceanu. “The saturation algorithm for symbolic
state-space exploration”. In: International Journal on Software Tools for Technology Trans-
fer 8.1 (Nov. 2005), p. 4. 1sSN: 1433-2787. po1:/10.1007/510009-005-0188-7.

https://doi.org/10.1287/ijoc.12.3.203.12634
https://doi.org/10.1287/ijoc.12.3.203.12634
https://doi.org/10.1016/0890-5401(92)90017-A
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1007/978-3-319-17524-9_1
https://doi.org/10.1145/5397.5399
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1023/A:1008615614281
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/10722167_15
https://doi.org/10.1007/s10009-005-0188-7

REFERENCES 105

[CMS06]

[CS03]

[Cse+02]

[CTS14]

[CU05]

[CY05]

[CZJ09]

[CZ]12]

[Dar17]

[DFB13]

[DKW08]

[DMB16]

[DT97]

G. Ciardo, R. Marmorstein, and R. Siminiceanu. “The saturation algorithm for symbolic
state-space exploration”. In: Int. J. Softw. Tools Technol. Transf. 8.1 (2006), pp. 4-25. ISSN:
1433-2779.

G. Ciardo and R. Siminiceanu. “Structural symbolic CTL model checking of asyn-
chronous systems”. In: Computer-Aided Verification. Vol. 3. Springer. 2003, pp. 40-53.

G. Csertan, G. Huszerl, I. Majzik, Z. Pap, A. Pataricza, and D. Varro. “VIATRA - visual
automated transformations for formal verification and validation of UML models”. In:
Proceedings 17th IEEE International Conference on Automated Software Engineering, 2002,
pp- 267-270. po1:10.1109/ASE.2002.1115027|

A. Cseh, G. Tarnai, and B. Saghi. “Petri Net Modelling of Signalling Systems [in Hun-
garian, original title: Biztositoberendezések modellezése Petri-halokkal]”. In: Vezetékek
Vilaga XIX.1 (2014), pp. 14-17. 1sSN: 1416-1656.

S. Cayir and M. Ucer. “An Algorithm to Compute a Basis of Petri Net Invariants”. In: 4th
ELECO Int. Conf. on Electrical and Electronics Engineering. Bursa, Turkey: UCTEA, 2005.

G. Ciardo and A. Yu. “Saturation-based symbolic reachability analysis using conjunctive
and disjunctive partitioning”. In: Correct Hardware Design and Verification Methods 3725
(2005), pp. 146-161.

G. Ciardo, Y. Zhao, and X. Jin. “Parallel symbolic state-space exploration is difficult, but
what is the alternative?” In: arXiv preprint arXiv:0912.2785 (2009).

G. Ciardo, Y. Zhao, and X. Jin. “Ten Years of Saturation: A Petri Net Perspective”. In:
Transactions on Petri Nets and Other Models of Concurrency V. Ed. by K. Jensen, S. Do-
natelli, and]. Kleijn. Vol. 6900. Lecture Notes in Computer Science. Springer, 2012,
pp- 51-95. 1SBN: 978-3-642-29071-8.

D. Darvas. “Practice-Oriented Formal Methods to Support the Software Development of
Industrial Control Systems”. PhD thesis. Budapest University of Technology and Eco-
nomics, 2017. po1:/10.5281/zenodo . 162950,

D. Darvas, B. Fernandez Adiego, and E. Blanco Vifiuela. Transforming PLC programs
into formal models for verification purposes. Internal Note CERN-ACC-NOTE-2013-0040.
CERN, 2013.

V. D’Silva, D. Kroening, and G. Weissenbacher. “A Survey of Automated Techniques
for Formal Software Verification”. In: IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems 27.7 (July 2008), pp. 1165-1178. 1ssN: 0278-0070. Do1: |10.
1109/TCAD.2008.923410.

D. Darvas, I. Majzik, and E. Blanco Vifiuela. “Formal Verification of Safety PLC Based
Control Software”. In: Integrated Formal Methods: 12th International Conference, IFM 2016,
Reykjavik, Iceland, June 1-5, 2016, Proceedings. Ed. by E. Abraham and M. Huisman. Cham:
Springer, 2016, pp. 508-522. ISBN: 978-3-319-33693-0. por: |10 . 1007 /978 - 3 - 319 -
33693-0_32.

G. B. Dantzig and M. N. Thapa. Linear programming 1: introduction. Secaucus, NJ, USA:
Springer, 1997. 1sBN: 0-387-94833-3.

https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.5281/zenodo.162950
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1109/TCAD.2008.923410
https://doi.org/10.1007/978-3-319-33693-0_32
https://doi.org/10.1007/978-3-319-33693-0_32

106

[Dur+11]

[EH00]

[EL86]

[ELS06]

[EM00]

[EN94]

[ERV02]

[ES15]

[GA14]

[Ger+95]

[GZF12]

[HRS13]

[HVH10]

[Ins10]

BIBLIOGRAPHY

A.Duret-Lutz, K. Klai, D. Poitrenaud, and Y. Thierry-Mieg. “Self-Loop Aggregation Prod-
uct — A New Hybrid Approach to On-the-Fly LTL Model Checking”. In: Automated
Technology for Verification and Analysis. Vol. 6996. Lecture Notes in Computer Science.
Springer, 2011, pp. 336-350. por:[10.1007/978-3-642-24372-1_24.

K. Etessami and G. J. Holzmann. “Optimizing Biichi automata”. In: CONCUR 2000 — Con-
currency Theory. Vol. 1877. Lecture Notes in Computer Science. Springer, 2000, pp. 153—
168.

E. A. Emerson and C.-L. Lei. “Efficient Model Checking in Fragments of the Propositional
Mu-Calculus (Extended Abstract)”. In: Proc. of the Symposium on Logic in Computer Sci-
ence (LICS). IEEE Computer Society, 1986, pp. 267-278.

J. Ezekiel, G. Luttgen, and R. Siminiceanu. “Can Saturation Be Parallelised?” In: Inter-
national Workshop on Formal Methods for Industrial Critical Systems. Springer. 2006,
pp- 331-346.

J. Esparza and S. Melzer. “Verification of Safety Properties Using Integer Programming:
Beyond the State Equation”. In: Formal Methods in System Design 16.2 (Mar. 2000),
pp- 159-189. 1ssN: 1572-8102. por:10.1023/A:1008743212620.

J. Esparza and M. Nielsen. “Decidability issues for Petri nets”. In: BRICS Report Series 1.8
(1994).

J. Esparza, S. Romer, and W. Vogler. “An Improvement of McMillan’s Unfolding Algo-
rithm”. In: Formal Methods in System Design 20.3 (May 2002), pp. 285-310. 1SsN: 1572-
8102. po1:/10.1023/A:1014746130920.

D. El6 and A. Soltész. Symbolic model checking and trace generation by guided search. 1st
prize. 2015.

S.J. Galler and B. K. Aichernig. “Survey on test data generation tools”. In: International
Journal on Software Tools for Technology Transfer 16.6 (Nov. 2014), pp. 727-751. 1SSN:
1433-2787. po1:110.1007/s10009-013-0272-3|

R. Gerth, D. Peled, M. Y. Vardi, and P. Wolper. “Simple on-the-fly automatic verification
of linear temporal logic”. In: Proc. of the Int. Symp. on Protocol Specification, Testing and
Verification. Chapman & Hall, Ltd., 1995, pp. 3-18. 1sBN: 0-412-71620-8.

S. Goldshtein, D. Zurbalev, and L. Flatow. Pro .NET Performance. Apress, 2012. 1SBN: 978-
1-4302-4458-5. po1:110.1007/978-1-4302-4459-2.

M. Heiner, C. Rohr, and M. Schwarick. “MARCIE - Model Checking and Reachability
Analysis Done Efficiently”. In: Petri Nets 2013. Ed. by J.-M. Colom and J. Desel. Vol. 7927.
LNCS. Springer, 2013, pp. 389-399. 1sBN: 978-3-642-38696-1. DO1: 10.1007/978-3-642-
38697-8_21.

S.Hoda, W.-J. Van Hoeve, and J. N. Hooker. “A systematic approach to MDD-based con-
straint programming”. In: International Conference on Principles and Practice of Constraint
Programming. Springer. 2010, pp. 266—280.

Institute of Electrical and Electronics Engineers. “Systems and software engineering
— Vocabulary”. In: ISO/IEC/IEEE 24765:2010(E) (Dec. 2010), pp. 1-418. por1: |10 . 1109/
IEEESTD.2010.5733835.

https://doi.org/10.1007/978-3-642-24372-1_24
https://doi.org/10.1023/A:1008743212620
https://doi.org/10.1023/A:1014746130920
https://doi.org/10.1007/s10009-013-0272-3
https://doi.org/10.1007/978-1-4302-4459-2
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1007/978-3-642-38697-8_21
https://doi.org/10.1109/IEEESTD.2010.5733835
https://doi.org/10.1109/IEEESTD.2010.5733835

REFERENCES 107

[1S94]

[1SO11]

[JK09]

JKW07]

[Kai+09]

[Kan+15]

[Kes+93]

[Kle+09]

[Lip76]

[LMMO99]

[LS09]

[May81]

[Mic13]

J. Izquierdo-Rocha and M. Sanchez-Perea. “Application of the Integrated Safety Assess-
ment methodology to the emergency procedures of a SGTR of a PWR”. In: Reliability
Engineering and System Safety 45 (1994), pp. 159-173.

ISO/IEC. 15909-2:2011, Systems and software engineering — High-level Petri nets — Part 2:
Transfer format. Standard. ISO/IEC, 2011.

K. Jensen and L. M. Kristensen. Coloured Petri Nets - Modelling and Validation of Concur-
rent Systems. Springer, 2009. ISBN: 978-3-642-00283-0.

K. Jensen, L. M. Kristensen, and L. Wells. “Coloured Petri Nets and CPN Tools for mod-
elling and validation of concurrent systems”. In: International Journal on Software Tools
for Technology Transfer 9.3 (2007), pp. 213-254. 1ssN: 1433-2787. po1: 10.1007/s10009-
007-0038-x|

R. Kaivola et al. “Replacing Testing with Formal Verification in Intel CoreTM i7 Processor
Execution Engine Validation”. In: Computer-Aided Verification. Ed. by A. Bouajjani and
O. Maler. Berlin, Heidelberg: Springer, 2009, pp. 414-429. 1sBN: 978-3-642-02658-4. DOLI:
10.1007/978-3-642-02658-4_32.

G. Kant, A. Laarman, J. Meijer, J. van de Pol, S. Blom, and T. van Dijk. “LTSmin: High-
Performance Language-Independent Model Checking”. In: Tools and Algorithms for the
Construction and Analysis of Systems. Ed. by C. Baier and C. Tinelli. Berlin, Heidelberg:
Springer, 2015, pp. 692-707. ISBN: 978-3-662-46681-0. DoI: |10 . 1007 / 978 - 3 - 662 -
46681-0_61|

Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. “A Decision Algorithm for Full Proposi-
tional Temporal Logic”. In: Computer Aided Verification. Vol. 697. Lecture Notes in Com-
puter Science. Springer, 1993, pp. 97-109. 1SBN: 3-540-56922-7. por: 10.1007/3-540-
56922-7_9.

G. Klein et al. “seL4: Formal Verification of an OS Kernel”. In: Proceedings of the ACM
SIGOPS 22Nd Symposium on Operating Systems Principles. SOSP ’09. Big Sky, Montana,
USA: ACM, 2009, pp. 207-220. 1sBN: 978-1-60558-752-3. por1: (10 . 1145 / 1629575 .
1629596.

R. Lipton. The Reachability Problem Requires Exponential Space. Research report, Yale
University, Dept. of Computer Science. 1976.

D. Latella, I. Majzik, and M. Massink. “Automatic Verification of a Behavioural Subset of
UML Statechart Diagrams Using the SPIN Model-checker”. In: Formal Aspects of Com-
puting 11.6 (Dec. 1999), pp. 637-664. 1ssN: 1433-299X. por: 10 1007/5001659970003]

D. Leinenbach and T. Santen. “Verifying the Microsoft Hyper-V Hypervisor with VCC”.
In: Proceedings of the 2Nd World Congress on Formal Methods. FM °09. Eindhoven, The
Netherlands: Springer, 2009, pp. 806—809. 1SBN: 978-3-642-05088-6. DO1:(10.1007/978-
3-642-05089-3_51|

E. W. Mayr. “An algorithm for the general Petri net reachability problem”. In: Proceedings
of the Thirteenth Annual ACM Symposium on Theory of Computing. STOC ’81. Milwaukee,
Wisconsin, United States: ACM, 1981, pp. 238-246. po1: 10.1145/800076.802477.

Z. Micskei. “Languages and frameworks for specifying test artifacts”. PhD thesis. Bu-
dapest University of Technology and Economics, 2013.

https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/s10009-007-0038-x
https://doi.org/10.1007/978-3-642-02658-4_32
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/978-3-662-46681-0_61
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1007/3-540-56922-7_9
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1007/s001659970003
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1007/978-3-642-05089-3_51
https://doi.org/10.1145/800076.802477

108

[Mil+14]

[MS82]

[MSB11]

[Mur89]

[NB09]

[Ném+09]

[SB0O]

[SD10]

[STV05]

[Thi15]

[T6t09]

[Var01]

BIBLIOGRAPHY

A. Milankovich, G.IlI, K. Lendvai, S. Imre, and S. Szab6. “Evaluation of Energy Efficiency
of Aggregation in WSNs using Petri Nets”. In: Proc. of the 3rd Int. Conf. on Sensor Net-
works. Science and Technology Publications, 2014, pp. 289-297. 1SBN: 978-989-758-001-7.
por:/10.5220/0004668402890297.

J. Martinez and M. Silva. “A simple and Fast Algorithm to Obtain all Invariants of a
Generalised Petri Net”. In: Application and Theory of Petri Nets. Ed. by C. Girault and W.
Reisig. Vol. 52. Informatik-Fachberichte. Springer, 1982, pp. 301-310. 1SBN: 978-3-540-
11189-4. po1:110.1007/978-3-642-68353-4_47.

G. J. Myers, C. Sandler, and T. Badgett. The art of software testing. John Wiley & Sons,
2011.

T. Murata. “Petri nets: Properties, analysis and applications”. In: Proceedings of the IEEE
77.4 (Apr. 1989), pp. 541-580. 1sSN: 0018-9219. po1:(10.1109/5.24143.

E. Németh and T. Bartha. “Formal Verification of Safety Functions by Reinterpretation of
Functional Block Based Specifications”. In: Formal Methods for Industrial Critical Systems.
Ed. by D. Cofer and A. Fantechi. Vol. 5596. Lecture Notes in Computer Science. Springer,
2009, pp. 199-214. 1sBN: 978-3-642-03239-4. pOI1:(10.1007/978-3-642-03240-0_17,

E. Németh, T. Bartha, C. Fazekas, and K. M. Hangos. “Verification of a primary-to-
secondary leaking safety procedure in a nuclear power plant using coloured Petri nets”.
In: Reliability Engineering and System Safety 94 (5) (2009), pp. 942-953.

F. Somenzi and R. Bloem. “Efficient Biichi Automata from LTL Formulae”. In: Computer
Aided Verification. Ed. by E. Emerson and A. Sistla. Vol. 1855. Lecture Notes in Computer
Science. Springer, 2000, pp. 248—263. 1sSBN: 978-3-540-67770-3. po1:/10.1007/10722167 _
21l

W. Steiner and B. Dutertre. “SMT-based Formal Verification of a TTEthernet Synchro-
nization Function”. In: Proceedings of the 15th International Conference on Formal Methods
for Industrial Critical Systems. FMICS’10. Antwerp, Belgium: Springer, 2010, pp. 148-163.
ISBN: 3-642-15897-8, 978-3-642-15897-1.

R. Sebastiani, S. Tonetta, and M. Y. Vardi. “Symbolic Systems, Explicit Properties: On
Hybrid Approaches for LTL Symbolic Model Checking”. In: Computer Aided Verification.
Ed. by K. Etessami and S. K. Rajamani. Vol. 3576. Lecture Notes in Computer Science.
Springer, 2005, pp. 350-363. ISBN: 978-3-540-27231-1.

Y. Thierry-Mieg. “Symbolic Model-Checking Using ITS-Tools”. In: Tools and Algorithms
for the Construction and Analysis of Systems. Ed. by C. Baier and C. Tinelli. Berlin, Hei-
delberg: Springer, 2015, pp. 231-237. 1SBN: 978-3-662-46681-0. por1: (10 . 1007 /978- 3 -
662-46681-0_20.

Z. To6th Heinemann. “Modelling and verification of discrete industrial control systems
using formal methods”. [In Hungarian]. MA thesis. Budapest University of Technology
and Economics, 2009.

M. Y. Vardi. “Branching vs. Linear Time: Final Showdown”. In: Tools and Algorithms for
the Construction and Analysis of Systems. Ed. by T. Margaria and W. Yi. Berlin, Heidelberg:
Springer, 2001, pp. 1-22. ISBN: 978-3-540-45319-2. por:[10. 1007/3-540-45319-9_1|

https://doi.org/10.5220/0004668402890297
https://doi.org/10.1007/978-3-642-68353-4_47
https://doi.org/10.1109/5.24143
https://doi.org/10.1007/978-3-642-03240-0_17
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/10722167_21
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/978-3-662-46681-0_20
https://doi.org/10.1007/3-540-45319-9_1

REFERENCES 109

[VH10]

[Wan+01]

[WW11]

[YCL09]

[ZC09]

A. Valmari and H. Hansen. “Can Stubborn Sets Be Optimal?” In: Applications and Theory
of Petri Nets. Vol. 6128. Lecture Notes in Computer Science. Springer, 2010, pp. 43-62.
ISBN: 978-3-642-13674-0.

C. Wang, R. Bloem, G. D. Hachtel, K. Ravi, and F. Somenzi. “Divide and Compose: SCC
Refinement for Language Emptiness”. In: CONCUR 2001 — Concurrency Theory. Vol. 2154.
Lecture Notes in Computer Scienc. Springer, 2001, pp. 456—471. 1SBN: 3-540-42497-0.

H. Wimmel and K. Wolf. “Applying CEGAR to the Petri Net State Equation”. In: Tools
and Algorithms for the Construction and Analysis of Systems. Ed. by P. A. Abdulla and
K. R. M. Leino. Vol. 6605. Lecture Notes in Computer Science. Springer, 2011, pp. 224—
238. por1:/10.1007/978-3-642-19835-9_19.

A. Yu, G. Ciardo, and G. Liittgen. “Decision-diagram-based techniques for bounded
reachability checking of asynchronous systems”. In: International Journal on Software
Tools for Technology Transfer 11 (2 2009), pp. 117-131. 1ssN: 1433-2779. por: 10. 1007/
510009-009-0099-0.

Y. Zhao and G. Ciardo. “Symbolic CTL Model Checking of Asynchronous Systems Us-
ing Constrained Saturation”. In: Automated Technology for Verification and Analysis.
Vol. 5799. Lecture Notes in Computer Science. Springer, 2009, pp. 368-381. 1SBN: 978-
3-642-04760-2. po1: 110.1007/978-3-642-04761-9_27.

https://doi.org/10.1007/978-3-642-19835-9_19
https://doi.org/10.1007/s10009-009-0099-0
https://doi.org/10.1007/s10009-009-0099-0
https://doi.org/10.1007/978-3-642-04761-9_27

	Contents
	1 Introduction
	1.1 Preliminaries and Objectives
	1.1.1 Target of the Dissertation
	1.1.2 Verification Techniques in Systems Engineering

	1.2 Formal Verification
	1.2.1 Applying Formal Verification in System Design
	1.2.2 Formal Modelling
	1.2.3 Formal Requirements
	1.2.4 Formal Verification Techniques
	1.2.5 Target Problem of the Dissertation

	1.3 Overview
	1.3.1 Model Checking of Asynchronous Systems
	1.3.2 Formal Modelling
	1.3.3 Formal Requirements
	1.3.4 Objectives

	2 Background
	2.1 Petri Nets
	2.2 Decision Diagrams
	2.3 Saturation
	2.3.1 Overview of Saturation
	2.3.2 Disjunctive and Conjunctive Partitioning
	2.3.3 State-space Exploration Based on Saturation

	2.4 Model Checking
	2.5 CEGAR for Petri Nets
	2.5.1 Petri Net State Equation
	2.5.2 The CEGAR Approach

	3 Model Checking of High Level Models
	3.1 Motivation
	3.2 High-level Models: Coloured Petri Nets
	3.3 Saturation for CPN Models
	3.3.1 Iteration Strategy for CPN
	3.3.2 Encoding Next-state Relations

	3.4 Disjunctive-Conjunctive Decomposition for CPN Models
	3.4.1 Overview of the Approach
	3.4.2 Decomposition Algorithm for CPN
	3.4.3 Event Handling Algorithm
	3.4.4 Off-Line Evaluation of Guards
	3.4.5 Correctness of the Algorithm

	3.5 Lazy Saturation Algorithm
	3.5.1 Performance Issues of Disjunctive-Conjunctive Decomposition for CPN
	3.5.2 Overview of the Approach
	3.5.3 Iteration of Lazy Saturation
	3.5.4 Computing and Using ER
	3.5.5 Updating the Next-State Relation
	3.5.6 Operation of Lazy Saturation
	3.5.7 Correctness of Lazy Saturation

	3.6 Industrial Case Study
	3.6.1 The Modelled Industrial System
	3.6.2 The PRISE Safety Function
	3.6.3 Coloured Petri Net Model of the PRISE Safety Function
	3.6.4 Verification of the PRISE Safety Function

	3.7 Thesis 1: Model Checking of High-Level Models

	4 Parallel Saturation-based State Space Exploration
	4.1 Challenges
	4.2 Cache Data Structures in Saturation
	4.3 Parallel Saturation
	4.3.1 Extending the Decision Diagram Node Data Structure
	4.3.2 Working of the Algorithm
	4.3.3 Problems

	4.4 Algorithmic Improvements
	4.4.1 New Locking and Synchronization Strategy

	4.5 Correctness of the Algorithm
	4.5.1 General Issues
	4.5.2 Correctness of the Iteration
	4.5.3 Consistency

	4.6 Implementation
	4.7 Evaluation of the Algorithm
	4.7.1 Environment
	4.7.2 Objectives of the Measurements
	4.7.3 Runtime and speed-up results
	4.7.4 Scalability
	4.7.5 Summary

	4.8 Thesis 2: Parallel State Space Exploration Techniques

	5 Synchronous Product Generation for LTL Model Checking
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Property Specification
	5.2.2 Automata Theoretic Model Checking of Regular Properties
	5.2.3 Synchronous Product

	5.3 Special Encoding Based On Constrained Saturation
	5.3.1 Tableau Automata
	5.3.2 Encoding the Product Automaton
	5.3.3 Investigation of Correctness and Efficiency

	5.4 Saturation-based On-the-fly LTL Model Checking
	5.4.1 Abstracting the Constraint
	5.4.2 Units of Processing – A Framework for On-the-fly Model Checking

	5.5 Evaluation
	5.6 Thesis 3: On-the-fly Synchronous Product Generation for Model Checking Regular Safety Properties

	6 PetriDotNet Model Checking Framework
	6.1 Model Checking Workflow
	6.1.1 Modelling and Verification Approach
	6.1.2 State Space Exploration Techniques
	6.1.3 Temporal Logic Model Checking
	6.1.4 Bounded Model Checking
	6.1.5 CEGAR Approach

	6.2 Advancing the State-Of-The-Art
	6.2.1 Configurable Approach for Model Checking Petri Net Models
	6.2.2 Theoretical Investigation of the Petri Net CEGAR Algorithm

	6.3 Tool Support for Usable Formal Methods
	6.3.1 Functionality
	6.3.2 Architecture
	6.3.3 Use Cases

	6.4 Thesis 4: PetriDotNet Model Checking Framework

	7 Conclusion and future work
	7.1 Summary of the research results
	7.2 Future work

	Bibliography
	Publication list
	References

