
Gazer-Theta: LLVM-based Verifier Portfolio
with BMC/CEGAR (Competition Contribution)

Zsófia Ádám1, Gyula Sallai2, and Ákos Hajdu1?

1 Budapest University of Technology and Economics, Budapest, Hungary
hajdua@mit.bme.hu

2 SonarSource S.A., Geneva, Switzerland

Abstract.

Authors’ manuscript. Published in J. F. Groote; and K. G. Larsen (Eds.):
TACAS 2021, LNCS 12652, 2021. The final publication is available at Springer via
https://doi.org/978-3-030-72013-1 27.

Gazer-Theta is a software model checking toolchain in-
cluding various analyses for state reachability. The frontend, namely
Gazer, supports C programs through an LLVM-based transformation
and optimization pipeline. Gazer includes an integrated bounded model
checker (BMC) and can also employ the Theta backend, a generic ver-
ification framework based on abstraction-refinement (CEGAR). On SV-
COMP 2021, a portfolio of BMC, explicit-value analysis, and predicate
abstraction is applied sequentially in this order.

1 Verification Approach and Software Architecture

Gazer-Theta is a software model checking toolchain with two main compo-
nents: Gazer, an LLVM-based frontend and Theta, a generic model checking
framework. An overview of the architecture and the verification approach can
be seen in Figure 1.

C code

clang
compiler

LLVM
IR

LLVM
passes

Automata
translation

Gazer
BMC

z3 solver

Theta
CEGAR

Predicate
analysis

Explicit
analysis

R
es

u
lt

p
ro

ce
ss

in
g

Í/ ä/ ë

Witness

Harness

Fig. 1. Overview of the architecture. Solid arrows represent the workflow, dashed ar-
rows indicate dependency. Gazer and Theta components are denoted by lighter and
darker backgrounds, respectively.

? Jury member representing Gazer-Theta at SV-COMP 2021.



2 Zs. Ádám et al.

Gazer. Gazer [7] is a verification frontend for C programs written in C++17,
using the LLVM compiler infrastructure.3 The input is a C program (possi-
bly consisting of multiple source files) that is first translated to the LLVM IR
(intermediate representation) using the clang compiler. Next, various built-in
and custom LLVM passes are executed to perform optimizations (e.g., inlining,
constant propagation, assertion lifting) and transformations (e.g., adding trace-
ability information) on the IR. The LLVM IR is then transformed into different
variants of control flow automata (CFA), depending on the backend to be used.
Gazer includes a built-in variant [5, 7] of bounded model checking [2], relying on
the z3 SMT solver [6]. The other supported backend is Theta (to be presented
below). Currently, both backends provide analysis for reachability properties.

In the final step, the “raw” results of the backends are processed to produce
a verdict (safe, unsafe, unknown) and a witness. Currently, Gazer only sup-
ports violation witnesses, both in a user-friendly syntax and in the format of
SV-COMP. Furthermore, Gazer is also capable of generating executable test
harnesses that can be used, e.g., in a debugger to reach the property violation.

Theta. Theta [8] is a generic and modular model checking framework written
in Java 11, providing abstraction- and CEGAR-based analyses [4] for various
formalisms, including CFA. Theta is highly configurable, supporting different
abstract domains (such as explicit-value analysis [1] or predicate abstraction [3])
and refinement strategies, mostly based on interpolation (using SMT solvers such
as z3 [6]). In the explicit-value analysis, only a subset of program variables is
tracked, while predicate abstraction keeps track of logical facts and relationships
instead of concrete values.

Verification portfolio. Based on our preliminary experiments, at SV-COMP 2021,
we apply a sequential portfolio consisting of 3 steps, as illustrated by Figure 2.
The portfolio is implemented as a Python script, which calls the tools described
previously. First, bounded model checking is performed with a 150s time limit,
which – in our experience – can already solve many unsafe instances. If BMC is
inconclusive, we move on to an explicit-value analysis with a 100s limit, which
can be effective for simpler, mostly deterministic programs. Finally, if the result
is still unknown, we move on to the more heavyweight method of predicate ab-
straction. If any of the phases reports an unsafe result, as an additional step,
we generate an executable test harness from the counterexample and check if
the program actually reaches the property violation. This allows us to filter out
some false positives (by reporting unknown instead of unsafe).

2 Strengths and Weaknesses

Gazer-Theta currently targets reachability analysis so we participate in the
ReachSafety category, excluding subcategories Arrays, Heap and Sequentialized,
due to features with limited support (e.g., pointers). The strength of the tool is

3 https://llvm.org/



Gazer-Theta 3

Gazer BMC Theta expl. Theta pred.

Execute cex. Execute cex. Execute cex.

ë Unsafe

ä Unknown

Í Safe

ä

ë

ë

Í

ä

ä

ë

ë

Í

ä

ä

ë

ë

Í

ä

900s

150s 100s

150s 150s 150s

Fig. 2. Overview of the portfolio approach. Symbols Í, ä, ë indicate safe, inconclusive
and unsafe results, respectively. Numbers indicate the time limit of each phase.

its modularity and configurability, combining the advantages of different anal-
yses into a diverse portfolio. Out of the 3679 tasks, there are 1722 confirmed
correct (1079 safe, 643 unsafe), 4 unconfirmed correct, and 13 incorrect (false
positive) results. A majority of the solved tasks (86% of 1722) come from the
BMC phase; with a few exceptions, the CEGAR analyses need to be utilized only
for safe instances (though they could also handle most of the tasks solved by
BMC based on our experiments). The explicit-value analysis handles further 100
tasks in the ECA subcategory, while predicate abstraction solves 130 additional
instances from Loops and ProductLines. Surprisingly, BMC can actually solve
a significant amount (857) of safe instances as well, which can be attributed to
LLVM optimizations and enhancements in the algorithm [7]. Furthermore, we
also observed that executable harnesses could rule out many (142) false positives.

The weakness of Gazer-Theta is its limited support for certain features,
such as arrays, bit-precise reasoning (only available for BMC), and pointers. We
also observed that the LLVM IR representation often results in large CFA (e.g.,
many temporary variables due to SSA form), which makes reasoning harder
via CEGAR (as witnessed, e.g., by the ECA subcategory). Currently, the tool
gives empty correctness witnesses only meeting syntactical requirements, but
surprisingly most of them were accepted. Furthermore, our violation witnesses
are quite “sparse” due to heavy usage of optimization passes, but some validators
can still prove their correctness. The 13 false positive results are caused by
unsupported library functions (related to floats) treated as external calls with
undefined (arbitrary) behavior.

3 Tool Setup and Configuration

The competition contribution is based on Gazer v1.2.14 and Theta v2.5.0.5

Additionally, the BMC backend of Gazer uses z3 version 4.8.6, while Theta
is based on z3 version 4.5.0. The projects’ repositories contain instructions on
building the tools, but the SV-COMP 2021 repository6 includes an archive with

4 https://github.com/ftsrg/gazer/releases/tag/v1.2.1
5 https://github.com/ftsrg/theta/releases/tag/v2.5.0
6 https://gitlab.com/sosy-lab/sv-comp/archives-2021



4 Zs. Ádám et al.

pre-built binaries for Ubuntu 18.04 or 20.04. The toolchain requires packages
clang-9, libgomp1, llvm-9, openjdk-11-jre-headless and python3 to be in-
stalled. The entry point of the toolchain is scripts/gazer starter.py, which
takes the verification task (C program) as its only mandatory input and runs the
portfolio. No other parameters or configuration is required. Optionally, the out-
put directory can be set (--output) and the version can be queried (--version).

4 Software Project

Gazer and Theta are maintained by the Critical Systems Research Group7 of
the Budapest University of Technology and Economics with various contributors.
The projects are available open-source on GitHub8 under an Apache 2.0 license.

Acknowledgment. The authors would like to thank Tamás Tóth, László Radnai,
Mihály Dobos-Kovács, István Majzik, Zoltán Micskei, András Vörös and Vince
Molnár for their contributions to the projects; and the competition organizers,
especially Dirk Beyer for their help during the preparation for SV-COMP.

This research has received funding from the EU ECSEL JU under the H2020
Framework Programme, JU grant nr. 826452 (Arrowhead Tools project) and
from the partners’ national funding authorities.

References

1. Beyer, D., Löwe, S.: Explicit-state software model checking based on CEGAR
and interpolation. In: FASE 2013, LNCS, vol. 7793, pp. 146–162. Springer (2013).
https://doi.org/10.1007/978-3-642-37057-1 11

2. Biere, A., Cimatti, A., Clarke, E.M., Zhu, Y.: Symbolic model checking with-
out BDDs. In: TACAS 1999, LNCS, vol. 1579, pp. 193–207. Springer (1999).
https://doi.org/10.1007/3-540-49059-0 14

3. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: CAV 1997,
LNCS, vol. 1254, pp. 72–83. Springer (1997). https://doi.org/10.1007/3-540-63166-
6 10

4. Hajdu, Á., Micskei, Z.: Efficient strategies for CEGAR-based model
checking. Journal of Automated Reasoning 64(6), 1051–1091 (2020).
https://doi.org/10.1007/s10817-019-09535-x

5. Lal, A., Qadeer, S., Lahiri, S.: Corral: A solver for reachability modulo
theories. In: CAV 2012. LNCS, vol. 7358, pp. 427–443. Springer (2012).
https://doi.org/10.1007/978-3-642-31424-7 32

6. de Moura, L., Bjørner, N.: Z3: An efficient SMT solver. In: TACAS 2008, LNCS,
vol. 4963, pp. 337–340. Springer (2008). https://doi.org/10.1007/978-3-540-78800-
3 24

7. Sallai, Gy.: LLVM IR-based Transformations for Software Model Checking. Master’s
thesis, Budapest University of Technology and Economics (2019)

8. Tóth, T., Hajdu, Á., Vörös, A., Micskei, Z., Majzik, I.: Theta: a framework for
abstraction refinement-based model checking. In: FMCAD 2017. pp. 176–179 (2017).
https://doi.org/10.23919/FMCAD.2017.8102257

7 https://ftsrg.mit.bme.hu
8 https://github.com/ftsrg/gazer and https://github.com/ftsrg/theta


